15,518 Matching Annotations
  1. Nov 2023
    1. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Wankowicz et al. describes updates to qFit, an algorithm for the characterization of conformational heterogeneity of protein molecules based on X-ray diffraction of Cryo-EM data. The work provides a clear description of the algorithm used by qFit. The authors then proceed to validate the performance of qFit by comparing it to deposited X-ray entries in the PDB in the 1.2-1.5 Å resolution range as quantified by Rfree, Rwork-Rfree, detailed examination of the conformations introduced by qFit, and performance on stereochemical measures (MolProbity scores). To examine the effect of experimental resolution of X-ray diffraction data, they start from an ultra high-resolution structure (SARS-CoV2 Nsp3 macrodomain) to determine how the loss of resolution (introduced artificially) degrades the ability of qFit to correctly infer the nature and presence of alternate conformations. The authors observe a gradual loss of ability to correctly infer alternate conformations as resolution degrades past 2 Å. The authors repeat this analysis for a larger set of entries in a more automated fashion and again observe that qFit works well for structures with resolutions better than 2 Å, with a rapid loss of accuracy at lower resolution. Finally, the authors examine the performance of qFit on cryo-EM data. Despite a few prominent examples, the authors find only a handful (8) of datasets for which they can confirm a resolution better than 2.0 Å. The performance of qFit on these maps is encouraging and will be of much interest because cryo-EM maps will, presumably, continue to improve and because of the rapid increase in the availability of such data for many supramolecular biological assemblies. As the authors note, practices in cryo-EM analysis are far from uniform, hampering the development and assessment of tools like qFit.

      Strengths:

      qFit improves the quality of refined structures at resolutions better than 2.0 A, in terms of reflecting true conformational heterogeneity and geometry. The algorithm is well designed and does not introduce spurious or unnecessary conformational heterogeneity. I was able to install and run the program without a problem within a computing cluster environment. The paper is well written and the validation thorough.<br /> I found the section on cryo-EM particularly enlightening, both because it demonstrates the potential for discovery of conformational heterogeneity from such data by qFit, and because it clearly explains the hurdles towards this becoming common practice, including lack of uniformity in reporting resolution, and differences in map and solvent treatment.

      Weaknesses:

      The authors begin the results section by claiming that they made "substantial improvement" relative to the previous iteration of qFit, "both algorithmically (e.g., scoring is improved by BIC, sampling of B factors is now included) and computationally (improving the efficiency and reliability of the code)" (bottom of page 3). However, the paper does not provide a comparison to previous iterations of the software or quantitation of the effects of these specific improvements, such as whether scoring is improved by the BIC, how the application of BIC has changed since the previous paper, whether sampling of B factors helps, and whether the code faster. It would help the reader to understand what, if any, the significance of each of these improvements was.

      The exclusion of structures containing ligands and multichain protein models in the validation of qFit was puzzling since both are very common in the PDB. This may convey the impression that qFit cannot handle such use cases. (Although it seems that qFit has an algorithm dedicated to modeling ligand heterogeneity and seems to be able to handle multiple chains). The paper would be more effective if it explained how a user of the software would handle scenarios with ligands and multiple chains, and why these would be excluded from analysis here.

      It would be helpful to add some guidance on how/whether qFit models can be further refined afterwards in Coot, Phenix, ..., or whether these models are strictly intended as the terminal step in refinement.

      Appraisal & Discussion:

      Overall, the authors convincingly demonstrate that qFit provides a reliable means to detect and model conformational heterogeneity within high-resolution X-ray diffraction datasets and (based on a smaller sample) in cryo-EM density maps. This represents the state of the art in the field and will be of interest to any structural biologist or biochemist seeking to attain an understanding of the structural basis of the function of their system of interest, including potential allosteric mechanisms-an area where there are still few good solutions. That is, I expect qFit to find widespread use.

    2. Reviewer #3 (Public Review):

      Summary:

      The authors address a very important issue of going beyond a single-copy model obtained by the two principal experimental methods of structural biology, macromolecular crystallography and cryo electron microscopy (cryo-EM). Such multiconformer model is based on the fact that experimental data from both these methods represent a space- and time-average of a huge number of the molecules in a sample, or even in several samples, and that the respective distributions can be multimodal. Different from structure prediction methods, this approach is strongly based on high-resolution experimental information and requires validated single-copy high-quality models as input. Overall, the results support the authors' conclusions.

      In fact, the method addresses two problems which could be considered separately:

      - An automation of construction of multiple conformations when they can be identified visually;<br /> - A determination of multiple conformations when their visual identification is difficult or impossible.

      The first one is a known problem, when missing alternative conformations may cost a few percent in R-factors. While these conformations are relatively easy to detect and build manually, the current procedure may save significant time being quite efficient, as the test results show.

      The second problem is important from the physical point of view and has been addressed first by Burling & Brunger (1994; https://doi.org/10.1002/ijch.199400022). The new procedure deals with a second-order variation in the R-factors, of about 1% or less, like placing riding hydrogen atoms, modeling density deformation or variation of the bulk solvent. In such situations, it is hard to justify model improvement. Keeping Rfree values or their marginal decreasing can be considered as a sign that the model is not overfitted data but hardly as a strong argument in favor of the model.

      In general, overall targets are less appropriate for this kind of problem and local characteristics may be better indicators. Improvement of the model geometry is a good choice. Indeed, yet Cruickshank (1956; https://doi.org/10.1107/S0365110X56002059) showed that averaged density images may lead to a shortening of covalent bonds when interpreting such maps by a single model. However, a total absence of geometric outliers is not necessarily required for the structures solved at a high resolution where diffraction data should have more freedom to place the atoms where the experiments "see" them.

      The key local characteristic for multi conformer models is a closeness of the model map to the experimental one. Actually, the procedure uses a kind of such measure, the Bayesian information criteria (BIC). Unfortunately, there is no information about how sharply it identifies the best model, how much it changes between the initial and final models; in overall there is not any feeling about its values. The Q-score (page 17) can be a tool for the first problem where the multiple conformations are clearly separated and not for the second problem where the contributions from neighboring conformations are merged. In addition to BIC or to even more conventional target functions such as LS or local map correlation, the extreme and mean values of the local difference maps may help to validate the models.

      This method with its results is a strong argument for a need in experimental data and information they contain, differently from a pure structure prediction. At the same time, absence of strong density-based proofs may limit its impact.

      Strengths:

      Addressing an important problem and automatization of model construction for alternative conformations using high-resolution experimental data.

      Weaknesses:

      An insufficient validation of the models when no discrete alternative conformations are visible and essentially missing local real-space validation indicators.

    1. Reviewer #1 (Public Review):

      The manuscript considers a hierarchical network of neurons, of the type that can be found in the sensory cortex, and assumes that they aim to constantly predict sensory inputs that may change in time. The paper describes the dynamics of neurons and rules of synaptic plasticity that minimize the integral of prediction errors over time.

      The manuscript describes and analyses the model in great detail, and presents multiple and diverse simulations illustrating the model's functioning. However, the manuscript could be made more accessible and easier to read. The paper may help to understand the organization of cortical neurons, their properties, as well as the function of their particular components (such as apical dendrites).

    2. Reviewer #2 (Public Review):

      Neuroscientists often state that we have no theory of the brain. The example of theoretical physics is often cited, where numerous and quite complex phenomena are explained by a compact mathematical description. Lagrangian and Hamiltonian pictures provide such powerful 'single equation'. These frameworks are referred to as 'energy', an elegant way to turn numerous differential equations into a single compact relationship between observable quantities (state variables like position and speed) and scaling constants (like the gravity constant or the Planck constant). Such energy-pictures have been used in theoretical neuroscience since the 1980s.

      The manuscript "neuronal least-action principle for real-time learning in cortical circuits" by Walter Senn and collaborators describes a theoretical framework to link predictive coding, error-based learning, and neuronal dynamics. The central concept is that an energy function combining self-supervised and supervised objectives is optimized by realistic neuronal dynamics and learning rules when considering the state of a neuron as a mixture of the current membrane potential and its rate of change. As compared with previous energy functions in theoretical neuroscience, this theory captures a more extensive range of observations while satisfying normative constraints. Particularly, no theory had to my knowledge related to adaptive dynamics widely observed in the brain (referred to as prospective coding in the text, but is sometimes referred to as adaptive coding or redundancy reduction) with the dynamics of learning rules.

      The manuscript first exposes the theory of two previously published papers by the same group on somato-dendritic error with apical and basal dendrites. These dynamics are then related to an energy function, whose optimum recovers the dynamics. The rest of the manuscript illustrates how features of this model fit either normative or observational constraints. Learning follows a combination of self-supervised learning (learning to predict the next step) and supervised learning (learning to predict an external signal). The credit assignment problem is solved by an apical-compartment projecting a set of interneurons with learning rules whose role is to align many weight matrices to avoid having to do multiplexing. An extensive method section and supplementary material expand on mathematical proofs and makes more explicit the mathematical relationship between different frameworks.

      Experts would say that much of the article agglomerates previous theoretical papers by the same authors that have been published recently either in archival servers or in conference proceedings. A number of adaptations to previous theoretical results were necessary, so the present article is not easily reduced to a compendium of previous pre-prints. However, the manuscript is by no means easy to read as there are several inconsistencies and it lacks a single thread. Also, there remains a few thorny assumptions (unobserved details of the learning rules or soma-dendrites interactions), but the theory is likely going to be regarded as an important step towards a comprehensive theory of the brain.

    1. Reviewer #1 (Public Review):

      The authors bring together multiple study methods (brain recordings with EEG and behavioral coding of infant and caregiver looking, and caregiver vocal changes) to understand social processes involved in infant attention. They test different hypotheses on whether caregivers scaffold attention by structuring a child's behavior, versus whether the child's attention is guided by internal factors and caregivers then respond to infants' attentional shifts. They conclude that internal processes (as measured by brain activation preceding looking) control infants' attention, and that caregivers rapidly modify their behaviors in response to changes in infant attention.

      The study is meticulously documented, with cutting-edge analytic approaches to testing alternative models; this type of work provides a careful and well-documented guide for how to conduct studies and process and analyze data for researchers in the relatively new area of neural response in infants in social contexts.

      Some concerns arise around the use of terms (for example, an infant may "look" at an object, but that does not mean the infant is actually "attending); collapsing of different types of looks (to people and objects), and the averaging of data across infants that may mask some of the individual patterns.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This paper acknowledges that most development occurs in social contexts, with other social partners. The authors put forth two main frameworks of how development occurs within a social interaction with a caregiver. The first is that although social interaction with mature partners is somewhat bi-directional, mature social partners exogenously influence infant behaviors and attention through "attentional scaffolding", and that in this case infant attention is reactive to caregiver behavior. The second framework posits that caregivers support and guide infant attention by contingently responding to reorientations in infant behavior, thus caregiver behaviors are reactive to infant behavior. The aim of this paper is to use moment-to-moment analysis techniques to understand the directionality of dyadic interaction. It is difficult to determine whether the authors prove their point as the results are not clearly explained as is the motivation for the chosen methods.

      Strengths<br /> The question driving this study is interesting and a genuine gap in the literature. Almost all development occurs in the presence of a mature social partner. While it is known that these interactions are critical for development, the directionality of how these interactions unfold in real-time is less known.

      The analyses largely seem to be appropriate for the question at hand, capturing small moment-to-moment dynamics in both infant and child behavior, and their relationships with themselves and each other. Autocorrelations and cross-correlations are powerful tools that can uncover small but meaningful patterns in data that may not be uncovered with other more discretized analyses (i.e. regression).

      Weaknesses<br /> The major weakness of this paper is that the reader is assumed to understand why these results lead to their claimed findings. The authors need to describe more carefully their reasoning and justification for their analyses and what they hope to show. While a handful of experts would understand why autocorrelations and cross-correlations should be used, they are by no means basic analyses. It would also be helpful to use simulated data or even a simple figure to help the reader more easily understand what a significant result looks like versus an insignificant result.

      While the overall question is interesting the introduction does not properly set up the rest of the paper. The authors spend a lot of time talking about oscillatory patterns in general but leave very little discussion to the fact they are using EEG to measure these patterns. The justification for using EEG is also not very well developed. Why did the authors single out fronto-temporal channels instead of using whole brain techniques, which are more standard in the field? This is idiosyncratic and not common.

      A worrisome weakness is that the figures are not consistently formatted. The y-axes are not consistent within figures making the data difficult to compare and interpret. Labels are also not consistent and very often the text size is way too small making reading the axes difficult. This is a noticeable lack of attention to detail.

      No data is provided to reproduce the figures. This does not need to include the original videos but rather the processed and de-identified data used to generate the figures. Providing the data to support reproducibility is increasingly common in the field of developmental science and the authors are greatly encouraged to do so.

    1. Reviewer #1 (Public Review):

      Many studies reported findings implying that rhizobial infection is associated with cell cycle re-entry and progression, however, our understanding has been fragmented. This study provides exciting new insights as it represents a comprehensive description of the cell cycle progression during early stages of nodulation using fluorescence markers.

      To briefly summarize, the authors first monitor H3.1 / H3.3 replacement to distinguish between replicating (S phase) and non-replicating cells to show that M. truncatula cortex cells along the bacterial infection thread are non-replicating (while neighbors enter the S phase). Nuclear size measurements revealed that these non-replicative cells are in the post-replicative stage (G2) rather than in the pre-replicative G1 phase, which the authors confirm with the Plant Cell Cycle Indicator (PlaCCI) fluorescent marker to track cell cycle progression in more detail. Cortex cells in the trajectory of the infection thread did not accumulate the late G2 marker of the PlaCCI nor the G2/M marker KNOLLE, indicating that these cells indeed remain in G2. Because nuclear size measurements indicated that infected cells are polyploid, the authors used the centromere histone marker CENH3 to determine chromosome number. They find that cortex cells giving rise to the nodule primordium are endomitotic and tetraploid, probably because their cell cycle is halted at centromere separation. Although not a focus of this manuscript, the authors also use their fluorescent tools to track cell cycle progression during arbuscular mycorrhiza symbiosis. They confirm that infected cells transition from a replicating to a non-replicating state (H3.1 to H3.3) with progressing development of the arbuscules. In addition, the CENH3 marker confirms previous findings that cortex cells infected by fungi are endocycling (i.e., DNA synthesis without segregation of replicated parts). This represents an important confirmation of previous findings and contrasts with the situation during nodulation symbiosis, where chromosomes separate after replication.

      In my view, the part about NF-YA1 is less strong - although I realize this is a compelling candidate to be a regulator of cell cycle progression, the experimental approaches used to address this question falls a bit short, in particular, compared to the very detailed approaches shown in the rest of the manuscript. The authors show that the transcription factor NF-YA1 regulates cell division in tobacco leaves; however, there is no experimental validation in the experimental system (nodules). All conclusions are based on a heterologous cell division system in tobacco leaves. The authors state that NF-YA1 has a nodule-specific role as a regulator of cell differentiation. I am concerned the tobacco system may not allow for adequate testing of this hypothesis. With the fluorescent tools the authors have at hand (in particular tools to detect G2/M transition, which the authors suggest is regulated by NF-YA1), it would be interesting to test what happens to cell division if NF-YA1 is over-expressed in Medicago roots?

      Based on NF-YA1 expression data published previously and their results in tobacco epidermal cells, the authors hypothesize that NF-YA regulates the mitotic entry of nodule primordial cells. Given that much of the manuscript deals with earlier stages of the infection, I wonder if NF-YA1 could also have a role in regulating mitotic entry in cells adjacent to the infection thread?

      In general, all microscopy images are of very high quality and support the authors' conclusions. While individually each set of fluorescent markers has its limitations, combined they constitute a powerful tool to track various stages of cell cycle progression in individual root cells during symbiosis. Overall, this is a very strong manuscript that comprehensively elucidates root cell cycle changes during microbial infection.

    2. Reviewer #2 (Public Review):

      Cell cycle control during nitrogen-fixing symbiosis is an important topic, but our understanding of the process is poor and lacks resolution, as the nodule is a complex organ with many cell types that undergo profound changes. The authors aim to define the cell cycle state of individual plant cells in the emerging nodule primordium, as a transcellular infection thread passes through the meristem to reach cells deep in the incipient nodule and releases bacteria to form symbiosomes. The authors used a number of cell cycle reporters, such as different Histone 3 variants and cyclins, to follow cell cycle progress in exquisite detail. They showed that the host cells in the path of an infection thread exhibit a cell fate distinct from their immediate neighbors: after entering the S phase similar to their neighbors, these cells exit the cell cycle and enter a special differentiated state. This is likely an important shift that allows the proper passage of the infection thread. Although definitive proof needs more investigation, they showed that a pioneering transcription factor, NF-YA1, likely represses these endoreduplicated cells from completing the cell cycle.

    1. Reviewer #1 (Public Review):

      Calcium channels are key regulators of synaptic strength and plasticity, yet how these channels are differentially utilized to enable synaptic diversity is not clear. In this manuscript, the authors use new endogenous tagging of the Drosophila CaV2 channel Cac and three auxiliary subunits to investigate distinct calcium channel functions at two motor neuron subtypes at the fly NMJ, Is and Ib. Although it is clear from previous studies that Pr is higher at Is over Ib, it is not clear why. The authors confirm these differences using postsynaptic calcium imaging combined with post-hoc Cac-TdTomato imaging. Then, through a series of confocal and super resolution imaging studies, the authors describe differences in calcium channel and active zone structure between Is and Ib motor neuron terminals, and the role of Brp and homeostatic plasticity in regulating channel abundance. Finally, the authors show that while the CaBeta subunit is present at similar levels at Is and Ib active zones, there is an interesting reduction in Stj at Is active zones. The authors conclude that these differences in active zone structure and architecture contribute to the generation of the observed heterogeneity in synaptic strength.

      Overall the manuscript is well written, and the successful generation of the new endogenous Cac tags (Td-Tomato, Halo) and CaBeta, stj, and stolid genes with V5 tags will be powerful reagents for the field to enable new studies on calcium channels in synaptic structure, function, and plasticity. There are also some interesting, though not entirely unexpected, findings regarding how Brp and homeostatic plasticity modulate calcium channel abundance. However, a major concern is that the conclusions about how "molecular and organization diversity generate functional synaptic heterogeneity" are not really supported by the data presented in this study. In particular, the key fact that frames this study is that Cac levels are similar at Ib and Is active zones, but that Pr is higher at Is over Ib (which was previously known). While Pr can be influenced by myriad processes, the authors should have first assessed presynaptic calcium influx - if they had, they would have better framed the key questions in this study. As the authors reference from previous studies, calcium influx is at least two-fold higher per active zone at Is over Ib, and the authors likely know that this difference is more than sufficient to explain the difference in Pr at Is over Ib. Hence, there is no reason to invoke differences in "molecular and organization diversity" to explain the difference in Pr, and the authors offer no data to support that the differences in active zone structure at Is vs Ib are necessary for the differences in Pr. Indeed, the real question the authors should have investigated is why there are such differences in presynaptic calcium influx at Is over Ib despite having similar levels/abundance of Cac. This seems the real question, and is all that is needed to explain the Pr differences shown in Fig. 1. The other changes in active zone structure and organization at Is vs Ib may very well contribute to additional differences in Pr, but the authors have not shown this in the present study, and rely on other studies (such as calcium-SV coupling at Is vs Ib) to support an argument that is not necessitated by their data. At the end of this manuscript, the authors have found an interesting possibility that Stj levels are reduced at Is vs Ib, that might perhaps contribute to the difference in calcium influx. However, at present this remains speculative.

      Overall, the authors have generated powerful reagents for the field to study calcium channels and how they are regulated, but draw conclusions about active zone structure and organization contributing to functional heterogeneity that are not strongly supported by the data presented.

    2. Reviewer #2 (Public Review):

      The authors aim to investigate how voltage-gated calcium channel number, organization, and subunit composition lead to changes in synaptic activity at tonic and phasic motor neuron terminals, or type Is and Ib motor neurons in Drosophila. These neuron subtypes generate widely different physiological outputs, and many investigations have sought to understand the molecular underpinnings responsible for these differences. Additionally, these authors explore not only static differences that exist during the third-instar larval stage of development but also use a pharmacological approach to induce homeostatic plasticity to explore how these neuronal subtypes dynamically change the structural composition and organization of key synaptic proteins contributing to physiological plasticity. The Drosophila neuromuscular junction (NMJ) is glutamatergic, the main excitatory neurotransmitter in the human brain, so these findings not only expand our understanding of the molecular and physiological mechanisms responsible for differences in motor neuron subtype activity but also contribute to our understanding of how the human brain and nervous system functions.

      The authors employ state-of-the-art tools and techniques such as single-molecule localization microscopy 3D STORM and create several novel transgenic animals using CRISPR to expand the molecular tools available for exploration of synaptic biology that will be of wide interest to the field. Additionally, the authors use a robust set of experimental approaches from active zone level resolution functional imaging from live preparations to electrophysiology and immunohistochemical analyses to explore and test their hypotheses. All data appear to be robustly acquired and analyzed using appropriate methodology. The authors make important advancements to our understanding of how the different motor neuron subtypes, phasic and tonic-like, exhibit widely varying electrical output despite the neuromuscular junctions having similar ultrastructural composition in the proteins of interest, voltage gated calcium channel cacophony (cac) and the scaffold protein Bruchpilot (brp). The authors reveal the ratio of brp:cac appears to be a critical determinant of release probability (Pr), and in particular, the packing density of VGCCs and availability of brp. Importantly, the authors demonstrate a brp-dependent increase in VGCC density following acute philanthotoxin perfusion (glutamate receptor inhibitor). This VGCC increase appears to be largely responsible for the presynaptic homeostatic plasticity (PHP) observable at the Drosophila NMJ. Lastly, the authors created several novel CRISPR-tagged transgenic lines to visualize the spatial localization of VGCC subunits in Drosophila. Two of these lines, CaBV5-C and stjV5-N, express in motor neurons and in the nervous system, localize at the NMJ, and most strikingly, strongly correlate with Pr at tonic and phasic-like terminals.

      The few limitations in this study could be addressed with some commentary, a few minor follow-up analyses, or experiments. The authors use a postsynaptically expressed calcium indicator (mhc-Gal4>UAS -GCaMP) to calculate Pr, yet do not explore the contribution that glutamate receptors, or other postsynaptic contributors (e.g. components of the postsynaptic density, PSD) may contribute. A previous publication exploring tonic vs phasic-like activity at the drosophila NMJ revealed a dynamic role for GluRII (Aponte-Santiago et al, 2020). Could the speed of GluR accumulation account for differences between neuron subtypes?

      The observation that calcium channel density and brp:cac ratio as a critical determinant of Pr is an important one. However, it is surprising that this was not observed in previous investigations of cac intensity (of which there are many). Is this purely a technical limitation of other investigations, or are other possibilities feasible? Additionally, regarding VGCC-SV coupling, the authors conclude that this packing density increases their proximity to SVs and contributes to the steeper relationship between VGCCs and Pr at phasic type Is. Is it possible that brp or other AZ components could account for these differences. The authors possess the tools to address this directly by labeling vesicles with JanellaFluor646; a stronger signal should be present at Is boutons. Additionally, many different studies have used transmission electron microscopy to explore SVs location to AZs (t-bars) at the Drosophila NMJ.

      In reference to the contradictory observations that VGCC intensity does not always correlate with, or determine Pr. Previous investigations have also observed other AZ proteins or interactors (e.g. synaptotagmin mutants) critically control release, even when the correlation between cac and release remains constant while Pr dramatically precipitates.

      To confirm the observations that lower brp levels results in a significantly higher cac:brp ratio at phasic-like synapses by organizing VGCCs; this argument could be made stronger by analyzing their existing data. By selecting a population of AZs in Ib boutons that endogenously express normal cac and lower brp levels, the Pr from these should be higher than those from within that population, but comparable to Is Pr. I believe the authors should also be able to correlate the cac:brp ratio with Pr from their data set generally; to determine if a strong correlation exists beyond their observation for cac correlation.

      For the philanthotoxin induced changes in cac and brp localization underlying PHP, why do the authors not show cac accumulation after PhTx on live dissected preparations (i.e. in real time)? This also be an excellent opportunity to validate their brp:cac theory. Do the authors observe a dynamic change in brp:cac after 1, or 5 minutes; do Is boutons potentiate stronger due to proportional increases in cac and brp? Also regarding PhTx-induced PHP, their observations that stj and α2δ-3are more abundant at Is synapses, suggests that they may also play a role in PhTx induced changes in cac. If either/both are overexpressed during PhTx, brp should increase while cac remains constant. These accessory proteins may determine cac incorporation at AZs.<br /> Taken together this study generates important data-driven, conceptional, and theoretical advancements in our understanding of the molecular underpinnings of different motor neurons, and our understanding of synaptic biology generally. The data are robust, thoroughly analyzed, appropriately depicted. This study not only generates novel findings but also generated novel molecular tools which will aid future investigations and investigators progress in this field.

    1. Reviewer #1 (Public Review):

      This manuscript investigates how homeostatic structural plasticity and synaptic scaling act under different levels of activity suppression and how this influences the network dynamics during growth and temporary or persistent silencing. To this end, the authors first use electrophysiology and chronic imaging to investigate the influence of different levels of AMPA-receptor blockade. A smaller level leads to reduced activity and up-regulation of synapse size and number, whereas a complete block abolished activity and decreases spine numbers. Along this line, the choice to block AMPAR is unconventional and needs to be better justified as both investigated homeostatic mechanisms are known to be AMPAR dependent.

      Second, this finding is transferred into a mathematical rewiring rule, where spine number shrinks, grows, and shrinks again with increasing activity. It is shown that this rule, in contrast to other, simpler rules (grow, shrink), can grow healthy networks from scratch only if additional stimulation is provided. Continuing with these stable networks, the activity of a sub-network is increased, decreased, or silenced by modulating an external stimulation to the neurons. Whereas both activity and connectivity return to a stable state for small alteration, complete silencing leads to disconnection of the silenced network parts. Recovery from this can be achieved by restoring stimulation before the connectivity has completely decayed or by adding sufficiently fast synaptic scaling, although both cases can lead to unhealthy activity. A more systematic assessment of this interaction between scaling and homeostatic rewiring revealed a minimal timescale ratio that is needed for recovery. This is an important step towards disentangling the necessity of multiple, seemingly redundant mechanisms. Yet, in the simulations, the role of recurrent connectivity versus external inputs should be investigated in more detail in order to ensure the generality of the finding that a recovery of the activity is impossible for the presented rewiring rule without synaptic scaling.

      Overall, the combination of experiments and simulations is a promising approach to investigating network self-organization. The gradual blocking of activity is especially valuable to inform mathematical models and distinguish them from alternatives. Here, the simulation results clearly demonstrate that the experimentally informed rule exhibits qualitatively different dynamics including the need for another homeostatic mechanism. However, a better connection between the simulations and experiment two would be desirable. In particular, it is unclear whether the model would actually reproduce the experiment, to which other experiments the model results relate, and which experimentally testable predictions the model makes.

      In summary, this manuscript makes a valuable contribution to discerning the mathematical shape of a homeostatic structural plasticity model and understanding the necessity of synaptic scaling in the same network. Both experimental and computational methods are solid and well-described. Yet, both parts could be linked better in order to obtain conclusions with more impact and generality.

    2. Reviewer #2 (Public Review):

      This manuscript by Lu et al addresses the understudied interplay between structural and functional changes underlying homeostatic plasticity. Using hippocampal organotypic slice cultures allowing chronic imaging of dendritic spines, the authors showed that partial or complete inhibition of AMPA-type glutamate receptors differentially affects spine density, respectively leading to an increase or decrease of spines. Based on that dataset, they built a model where activity-dependent synapse formation is regulated by a biphasic rule and tested it in stimulation- or deprivation-induced homeostatic plasticity. The model matches experimental data (from the authors and the literature) quite well, and provides a framework within which functional and structural changes coexist to regulate firing rate homeostasis.

      While the correlation between changes in AMPAR numbers and in spine number/size has been well characterized during Hebbian plasticity, the situation is much less clear in homeostatic plasticity due to multiple studies yielding diverging results. This manuscript adds new experimental results to the existing data and presents a valuable effort to generate a model that can explain these divergences in a unifying and satisfactory framework.

      The model and its successive implantation steps are well presented along a clear thread. However, it would have benefited from having an actual timeline of structural changes throughout the three days of AMPAR inhibition, especially as their experimental model allows it. This would have provided additional information on spine dynamics (especially transient spines) and on the respective timescale of the structural and functional changes, and thus led to a better-informed model.

      Additionally, the model would have been strengthened by an experimental dataset with homeostatic plasticity induced by higher activity (e.g. with bicuculline). To the best of my knowledge, there is currently no data on structural plasticity following scaling down, and it is also known that scaling up and down are mediated by different molecular pathways. The extension of the model from scaling up (in response to silencing) to scaling down (in response to increased activity) offers an interesting perspective but may be a bit of a stretch.

      Finally, the authors are very specific in their definition and distinction of structural and functional homeostatic plasticity for their model. Structural plasticity is limited to spine density and functional plasticity to synaptic scaling, which allows the authors to discuss the interplay between very distinct "synapse number-based structural plasticity" and "synaptic weight-based synaptic scaling", and appears to bypass the fact that spine size regulates the space available for AMPARs at the synapse and thus synaptic weight. The authors are of course aware of the importance of changes in spine size, as they present some intriguing data showing that spine size is differentially affected by partial or complete inhibition of AMPARs and include the putative role of spine size changes in the discussion. However, spine size does not seem to be taken into account in their network simulations, which present synaptic scaling and structural plasticity as completely distinct processes. While the model still offers interesting insights into the interaction of these processes, it would have benefited from a less stringent distinction; this choice and the reasons behind it should be made more explicit in the manuscript.

    1. Reviewer #1 (Public Review):

      In the manuscript, the authors explore the mechanism by which Taenia solium larvae may contribute to human epilepsy. This is extremely important question to address because T. solium is a significant cause of epilepsy and is extremely understudied. Advances in determining how T. solium may contribute to epilepsy could have significant impact on this form of epilepsy. Excitingly, the authors convincingly show that Taenia larvae contain and release glutamate sufficient to depolarize neurons and induce recurrent excitation reminiscent of seizures. They use a combination of cutting-edge tools including electrophysiology, calcium and glutamate imaging, and biochemical approaches to demonstrate this important advance. They also show that this occurs in neurons from both mice and humans. This is relevant for pathophysiology of chronic epilepsy development. This study does not rule out other aspects of T. solium that may also contribute to epilepsy, including immunological aspects, but demonstrates a clear potential role for glutamate.

      Strengths:

      - The authors examine not only T. solium homogenate, but also excretory/secretory products which suggests glutamate may play a role in multiple aspects of disease progression.<br /> - The authors confirm that the human relevant pathogen also causes neuronal depolarization in human brain tissue<br /> - There is very high clinical relevance. Preventing epileptogenesis/seizures possibly with Glu-R antagonists or by more actively removing glutamate as a second possible treatment approach in addition to/replacing post-infection immune response.<br /> - Effects are consistent across multiple species (rat, mouse, human) and methodological assays (GluSnFR AND current clamp recordings AND Ca imaging)<br /> - High K content (comparable levels to high-K seizure models) of larvae could have also caused depolarization. Adequate experiments to exclude K and other suspected larvae contents (i.e. Substance P).

      Weaknesses:

      - Acute study is limited to studying depolarization in slices and it is unclear what is necessary/sufficient for in vivo seizure generation or epileptogenesis for chronic epilepsy.<br /> - There is likely a significant role of the immune system that is not explored here. This issue is adequately addressed in the discussion, however, and the glutamate data is considered in this context.

      Discuss impact:

      - Interfering with peri-larval glutamate signaling may hold promise to prevent ictogenesis and chronic epileptogenesis as this is a very understudied cause of epilepsy with unknown mechanistic etiology.<br /> Additional context for interpreting significance:<br /> - High medical need as most common adult onset epilepsy in many parts of the world.

    2. Reviewer #2 (Public Review):

      Since neurocysticercosis is associated with epilepsy, the authors wish to establish how cestode larvae affect neurons. The underlying hypothesis is that the larvae may directly excite neurons and thus favor seizure genesis.

      To test this hypothesis, the authors collected biological materials from larvae (from either homogenates or excretory/secretory products), and applied them to hippocampal neurons (rats and mice) and human cortical neurons.

      This constitutes a major strength of the paper, providing a direct reading of larvae's biological effects. Another strength is the combination of methods, including patch clamp, Ca, and glutamate imaging.

      There are some weaknesses:

      1) The main one relates to the statement: "Together, these results indicate that T. crassiceps larvae homogenate results not just in a transient depolarization of cells in the immediate vicinity of application, but can also trigger a wave of excitation that propagates through the brain slice in both space and time. This demonstrates that T. crassiceps homogenate can initiate seizure-like activity under suitable conditions."<br /> The only "evidence" of propagation is an image at two time points. It is one experiment, and there is no quantification. Either increase n's and perform a quantification, or remove such a statement.<br /> Likewise, there is no evidence of seizure genesis. A single cell recording is shown. The presence of a seizure-like event should be evaluated with field recordings.

      2) Control puff experiments are lacking for Fig 1. Would puffing ACSF also produce a depolarization, and even firing, as suggested in Fig. 2D? This is needed for at least one species.

      3) What is the rationale to use a Cs-based solution? Even in the presence of TTX and with blocking K channels, the depolarization may be sufficient to activate Ca channels (LVGs), which would further contribute to the depolarization. Why not perform voltage clamp recordings to directly the current?

      4) Why did you use organotypic slices? Since you wish to model adult epilepsy, it would have been more relevant to use fresh slices from adult rats/mice. At least, discuss the caveat of using a network still in development in vitro.

      5) Please include both the number of slices and number of cells recorded in each condition. This is the standard (the number of cells is not enough).

      6) Please provide a table with the basic properties of cells (Rin, Rs, etc.). This is standard to assess the quality of the recordings.

      7) Please provide a table on patient's profile. This is standard when using human material. Were these TLE cases (and "control" cortex) or epileptogenic cortex?

      Globally, the authors achieved their aims. They show convincingly that larvae material can depolarize neurons, with glutamate (and aspartate) as the most likely candidates.<br /> This is important not only because it provides mechanistic insight but also potential therapeutic targets. The result is impactful, as the authors use quasi-naturalistic conditions, to assess what might happen in the human brain. The experimental design is appropriate to address the question. It can be replicated by any interested person.

    3. Reviewer #3 (Public Review):

      This paper has high significance because it addresses a prevalent parasitic infection of the nervous system, Neurocysticercosis (NCC). The infection is caused by larvae of the parasitic cestode Taenia solium It is a leading cause of epilepsy in adults worldwide

      To address the effects of cestode larvae, homogenates and excretory/secretory products of larvae were added to organotypic brain slice cultures of rodents or layer 2/3 of human cortical brain slices from patients with refractory epilepsy.

      A self-made pressure ejection system was used to puff larvae homogenate (20 ms puff) onto the soma of patched neurons. The mechanical force could have caused depolarizaton so a vehicle control is critical. On line 150 they appear to have used saline in this regard, and clarification would be good. Were the controls here (and aCSF elsewhere) done with the low Mg2+o aCSF like the larvae homogenates?

      They found that neurons depolarized after larvae homogenate exposure and the effect was mediated by glutamate but not nicotinic receptors for acetylcholine (nAChRs), acid-sensing channels or substance P. To address nAChRs, they used 10uM mecamyline, and for ASICs 2mM amiloride which seems like a high concentration. Could the concentrations be confirmed for their selectivity? Glutamate receptor antagonists, used in combination, were 10uM CNQX, 50uM DAP5, and 2mM kynurenic acid. These concentrations are twice what most use. Please discuss. Also, it would be very interesting to know if the glutamate receptor is AMPA, Kainic acid, or NMDA. Were metabotropic antagonists ever tested? That would be logical because CNQX/DAPR/Kynurenic acid did not block all of the depolarization.

      They also showed the elevated K+ in the homogenate (~11 mM) could not account for the depolarization. However, the experiment with K+ was not done in a low Mg2+o buffer (Or was it -please clarify). They also confirmed that only small molecules led to the depolarization after filtering out very large molecules. That supports the conclusion that glutamate - which is quite small - could be responsible.

      It is logical to test substance P because the Intro points out prior work links the larvae and seizures by inflammation and implicates substance P. However, why focus on nAChRs and ASIC?

      The depolarizations caused seizure-like events in slices. The slices were exposed to a proconvulant buffer though- low Mg2+o. This buffer can cause spontaneous seizure-like events so it is important to know what the buffer did alone.

      They suggest the effects could underlie seizure generation in NCC. However, there is only one event that is seizure-like in the paper and it is just an inset. Were others similar? How frequency were they? How long?

      Using Glutamate-sensing fluorescent reporters they found the larvae contain glutamate and can release it, a strength of the paper.

      Fig. 4. Could an inset be added to show the effects are very fast? That would support an effect of glutamate.

      Why is aspartate relatively weak and glutamate relatively effective as an agonist?

      Could some of the variability in Fig 4G be due to choice of different cell types? That would be consistent with Fig 5B where only a fraction of cells in the culture showed a response to the larvae nearby.

      On what basis was the ROI drawn in Fig. 5B.

      Also in 5B, I don't see anything in the transmitted image. What should be seen exactly?

      Human brain slices were from temporal cortex of patients with refractory epilepsy. Was the temporal cortex devoid of pathology and EEG abnormalities? This area may be quite involved in the epilepsy because refractory epilepsy that goes to surgery is often temporal lobe epilepsy. Please discuss the liitations of studying the temporal cortex of humans with epilepsy since it may be more susceptible to depolarizations of many kinds, not just larvae.

      Please discuss the limitations of the cultures - they are from very young animals and cultured for 6-14 days.

    1. Reviewer #1 (Public Review):

      The manuscript describes an interesting experiment in which an animal had to judge a duration of an interval and press one of two levers depending on the duration. The Authors recorded activity of neurons in key areas of the basal ganglia (SNr and striatum), and noticed that they can be divided into 4 types.

      I would like to thank the Authors for performing the analyses I suggested in my previous review - I found their results very interesting and surprising. This is a very interesting and impressive paper.

    2. Reviewer #2 (Public Review):

      In this valuable manuscript Li & Jin record from the substantial nigra and dorsal striatum to identify subpopulations of neurons with activity that reflects different dynamics during action selection, and then use optogenetics in transgenic mice to selectively inhibit or excite D1- and D2- expressing spiny projection neurons in the striatum, demonstrating a causal role for each in action selection in an opposing manner. They argue that their findings cannot be explained by current models and propose a new 'triple control' model instead, with one direct and two indirect pathways. These findings will be of broad interest to neuroscientists, but lacks some direct evidence for the proposal of the new model.

      Overall there are many strengths to this manuscript including the fact that the empirical data in this manuscript is thorough and the experiments are well-designed.

    1. Reviewer #2 (Public Review):

      The manuscript by Bohl et al. is an interesting and carefully done study on the biochemical properties and mode of action of potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes. ClpL is encoded on plasmids. It shows high thermal stability and provides Listeria monocytogenes food-pathogen substantial increase in resistance to heat. The authors show that ClpL interacts with aggregated proteins through the aromatic residues present in its N-terminal domain and subsequently unfolds proteins from aggregates translocating polypeptide chains through the central pore in its oligomeric ring structure. The structure of ClpL oligomers was also investigated in the manuscript. The results suggest that mono-ring structure and not dimer or trimer of rings, observed in addition to mono-ring structures under EM, is an active species of disaggregase.

      Presented experiments are conclusive and well-controlled. Several mutants were created to analyze the importance of a particular ClpL domain.

      The study's strength lies in the direct comparison of ClpL biochemical properties with autonomous ClpG disaggregase present in selected Gram-negative bacteria and well-studied E. coli system consisting of ClpB disaggregase and DnaK and its cochaperones. This puts the obtained results in a broader context.

    2. Reviewer #1 (Public Review):

      Summary:<br /> This work describes the mechanism of protein disaggregation by the ClpL AAA+ protein of Listeria monocytogenes. Using several model subtrate proteins the authors first show that ClpL possesses a robust disaggregase activity that does not further require the endogenous DnaK chaperone in vitro. In addition, they found that ClpL is more thermostable than the endogenous L. monocytogenes DnaK and has the capacity to unfold tightly folded protein domains. The mechanistic basis for the robust disaggregase activity of ClpL was also dissected in vitro and in some cases, supported by in vivo data performed in chaperone-deficient E. coli strains. The data presented show that the two AAA domains, the pore-2 site and the N-terminal domain (NTD) of ClpL are critical for its disaggregase activity. Remarkably, grafting the NTD of ClpL to ClpB converted ClpB into an autonomous disaggregase, highlighting the importance of such a domain in the DnaK-independent disaggregation of proteins. The role of the ClpL NTD domain was further dissected, identifying key residues and positions necessary for aggregate recognition and disaggregation. Finally, using sets of SEC and negative staining EM experiments combined with conditional covalent linkages and disaggregation assays the authors found that ClpL shows significant structural plasticity, forming dynamic hexameric and heptameric active single rings that can further form higher assembly states via their middle domains.

      Strengths:<br /> The manuscript is well-written and the experimental work is well executed. It contains a robust and complete set of in vitro data that push further our knowledge of such important disaggregases. It shows the importance of the atypical ClpL N-terminal domain in the disaggregation process as well as the structural malleability of such AAA+ proteins. More generally, this work expands our knowledge of heat resistance in bacterial pathogens.

      Weaknesses:<br /> There is no specific weakness in this work, although it would have helped to have a drawing model showing how ClpL performs protein disaggregation based on their new findings. The function of the higher assembly states of ClpL remains unresolved and will need further extensive research. Similarly, it will be interesting in the future to see whether the sole function of the plasmid-encoded ClpL is to cope with general protein aggregates under heat stress.

    3. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript details the characterization of ClpL from L. monocytogenes as a potent and autonomous AAA+ disaggregase. The authors demonstrate that ClpL has potent and DnaK-independent disaggregase activity towards a variety of aggregated model substrates and that this disaggregase activity appears to be greater than that observed with the canonical DnaK/ClpB co-chaperone. Furthermore, Lm ClpL appears to have greater thermostability as compared to Lm DnaK, suggesting that ClpL-expressing cells may be able to withstand more severe heat stress conditions. Interestingly, Lm ClpP can provide thermotolerance to E. coli that have been genetically depleted of either ClpB or in cells expressing a mutant DnaK103. The authors further characterized the mechanisms by which ClpL interacts with protein aggregates, identifying that the N-terminal domain of ClpL is essential for disaggregase function. Lastly, by EM and mutagenesis analysis, the authors report that ClpL can exist in a variety of larger macromolecular complexes, including dimer or trimers of hexamers/heptamers, and they provide evidence that the N-terminal domains of ClpL prevent dimer ring formation, thus promoting an active and substrate-binding ClpL complex. Throughout this manuscript the authors compare Lm ClpL to ClpG, another potent and autonomous disaggregase found in gram-negative bacteria that have been reported on previously, demonstrating that these two enzymes share homologous activity and qualities. Taken together this report clearly establishes ClpL as a novel and autonomous disaggregase.

      Strengths:<br /> The work presented in this report amounts to a significant body of novel and significant work that will be of interest to the protein chaperone community. Furthermore, by providing examples of how ClpL can provide in vivo thermotolerance to both E. coli and L. gasseri the authors have expanded the significance of this work and provided novel insight into potential mechanisms responsible for thermotolerance in food-borne pathogens.

      Weaknesses:<br /> The figures are clearly depicted and easy to understand, though some of the axis labeling is a bit misleading or confusing and may warrant revision. While I do feel that the results and discussion as presented support the authors' hypothesis and overall goal of demonstrating ClpL as a novel disaggregase, interpretation of the data is hindered as no statistical tests are provided throughout the manuscript. Because of this only qualitative analysis can be made, and as such many of the concluding statements involving pairwise comparisons need to be revisited or quantitative data with stats needs to be provided. The addition of statistical analysis is critical and should not be difficult, nor do I anticipate that it will change the conclusions of this report.

    1. Reviewer #1 (Public Review):

      Summary: The manuscript offers a commendable exploration into the relationship between plasma omega-6/omega-3 fatty acid ratios and mortality outcomes.

      Strengths: The chosen study design and analytical techniques align well with the research objectives, and the results resonate with existing literature.

      Weaknesses: Lack of information on the selection criteria for participants; 5. The analysis of individual PUFAs is not appropriate; The definition of comorbidities is vague; The rationale of conducting the mediation analysis of blood biomarkers is not given.

    2. Reviewer #2 (Public Review):

      Summary: This study utilized a large sample from the UK Biobank which enhanced statistical robustness, employed a prospective design to establish clear temporal relationships, used objective biomarkers for assessing plasma omega-6/omega-3 ratio, and investigated various mortality causes including CVD and cancer for a holistic health understanding.

      Strengths: The authors used a large sample size, employed a prospective design, and investigated various mortality.

      Weaknesses: Analyzing n-3 and n-6 PUFAs separately might be less instructive. It might not be methodologically sound to treat TG, HDL, LDL, and apolipoproteins as mediators. It's imperative to exercise caution when drawing causal conclusions from the observed correlations. The manuscript might propose potential research trajectories.

    3. Reviewer #3 (Public Review):

      Summary: The authors are trying to find out whether the levels of omega-6 and omega-3 fatty acids in the blood are linked to the likelihood of dying from anything, of dying from cancer and of dying from cardiovascular disease. They use a large dataset called UK Biobank where fatty acid levels were measured in blood at the start of the study and what happened to the participants over the following years (average of 12.7 years) was followed. They find that both omega-6 AND omega-3 fatty acids were linked with less likelihood of dying from anything, from cancer and from cardiovascular disease. The effects of omega-3s were stronger. They then made a ratio of omega-6 to omega-3 fatty acids and found that as that ratio increased risk of dying also increased,. This supports the idea that omega-3s have stronger effects than omega-6s.

      Strengths: This is a large study (over 85,000 participants) with a good follow up period (average 12.7 years). Using blood levels of fatty acids is superior to using estimated dietary intakes. The authors take account of many variables that could interfere with the findings (confounding variables) - they do this using statistical methods.

      Weaknesses: There are several omega-6 and omega-3 fatty acids - it is not clear which ones were actually measured in this study.

    1. Reviewer #1 (Public Review):

      Summary:

      Zanzibar archipelago is close to achieving malaria elimination, but despite the implementation of effective control measures, there is still a low-level seasonal malaria transmission. This could be due to the frequent importation of malaria from mainland Tanzania and Kenya, reservoirs of asymptomatic infections, and competent vectors. To investigate population structure and gene flow of P. falciparum in Zanzibar and mainland Tanzania, they used 178 samples from mainland Tanzania and 213 from Zanzibar that were previously sequenced using molecular inversion probes (MIPs) panels targeting single nucleotide polymorphisms (SNPs). They performed Principal Component Analysis (PCA) and identity by descent (IBD) analysis to assess genetic relatedness between isolates. Parasites from coastal mainland Tanzania contribute to the genetic diversity in the parasite population in Zanzibar. Despite this, there is a pattern of isolation by distance and microstructure within the archipelago, and evidence of local sharing of highly related strains sustaining malaria transmission in Zanzibar that are important targets for interventions such as mass drug administration and vector control, in addition to measures against imported malaria.

      Strengths:

      This study presents important samples to understand population structure and gene flow between mainland Tanzania and Zanzibar, especially from the rural Bagamoyo District, where malaria transmission persists and there is a major port of entry to Zanzibar. In addition, this study includes a larger set of SNPs, providing more robustness for analyses such as PCA and IBD. Therefore, the conclusions of this paper are well supported by data.

      Weaknesses:

      Some points need to be clarified:<br /> 1) SNPs in linkage disequilibrium (LD) can introduce bias in PCA and IBD analysis. Were SNPs in LD filtered out prior to these analyses?<br /> 2) Many IBD algorithms do not handle polyclonal infections well, despite an increasing number of algorithms that are able to handle polyclonal infections and multiallelic SNPs. How polyclonal samples were handled for IBD analysis?

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript describes P. falciparum population structure in Zanzibar and mainland Tanzania. 282 samples were typed using molecular inversion probes. The manuscript is overall well-written and shows a clear population structure. It follows a similar manuscript published earlier this year, which typed a similar number of samples collected mostly in the same sites around the same time. The current manuscript extends this work by including a large number of samples from coastal Tanzania, and by including clinical samples, allowing for a comparison with asymptomatic samples.

      The two studies made overall very similar findings, including strong small-scale population structure, related infections on Zanzibar and the mainland, near-clonal expansion on Pemba, and frequency of markers of drug resistance. Despite these similarities, the previous study is mentioned a single time in the discussion (in contrast, the previous research from the authors of the current study is more thoroughly discussed). The authors missed an opportunity here to highlight the similar findings of the two studies.

      Strengths:

      The overall results show a clear pattern of population structure. The finding of highly related infections detected in close proximity shows local transmission and can possibly be leveraged for targeted control.

      Weaknesses:

      A number of points need clarification:

      It is overall quite challenging to keep track of the number of samples analyzed. I believe the number of samples used to study population structure was 282 (line 141), thus this number should be included in the abstract rather than 391. It is unclear where the number 232 on line 205 comes from, I failed to deduct this number from supplementary table 1.

      Also, Table 1 and Supplementary Table 1 should be swapped. It is more important for the reader to know the number of samples included in the analysis (as given in Supplementary Table 1) than the number collected. Possibly, the two tables could be combined in a clever way.

      Methods<br /> The authors took the somewhat unusual decision to apply K-means clustering to GPS coordinates to determine how to combine their data into a cluster. There is an obvious cluster on Pemba islands and three clusters on Unguja. Based on the map, I assume that one of these three clusters is mostly urban, while the other two are more rural. It would be helpful to have a bit more information about that in the methods. See also comments on maps in Figures 1 and 2 below.

      Following this point, in Supplemental Figure 5 I fail to see an inflection point at K=4. If there is one, it will be so weak that it is hardly informative. I think selecting 4 clusters in Zanzibar is fine, but the justification based on this figure is unclear.

      For the drug resistance loci, it is stated that "we further removed SNPs with less than 0.005 population frequency." Was the denominator for this analysis the entire population, or were Zanzibar and mainland samples assessed separately? If the latter, as for all markers <200 samples were typed per site, there could not be a meaningful way of applying this threshold. Given data were available for 200-300 samples for each marker, does this simply mean that each SNP needed to be present twice?

      Discussion:<br /> I was a bit surprised to read the following statement, given Zanzibar is one of the few places that has an effective reactive case detection program in place: "Thus, directly targeting local malaria transmission, including the asymptomatic reservoir which contributes to sustained transmission (Barry et al., 2021; Sumner et al., 2021), may be an important focus for ultimately achieving malaria control in the archipelago (Björkman & Morris, 2020)." I think the current RACD program should be mentioned and referenced. A number of studies have investigated this program.

      The discussion states that "In Zanzibar, we see this both within and between shehias, suggesting that parasite gene flow occurs over both short and long distances." I think the term 'long distances' should be better defined. Figure 4 shows that highly related infections rarely span beyond 20-30 km. In many epidemiological studies, this would still be considered short distances.

      Lines 330-331: "Polymorphisms associated with artemisinin resistance did not appear in this population." Do you refer to background mutations here? Otherwise, the sentence seems to repeat lines 324. Please clarify.

      Line 344: The opinion paper by Bousema et al. in 2012 was followed by a field trial in Kenya (Bousema et al, 2016) that found that targeting hotspots did NOT have an impact beyond the actual hotspot. This (and other) more recent finding needs to be considered when arguing for hotspot-targeted interventions in Zanzibar.

      Figures and Tables:<br /> Table 2: Why not enter '0' if a mutation was not detected? 'ND' is somewhat confusing, as the prevalence is indeed 0%.

      Figure 1: Panel A is very hard to read. I don't think there is a meaningful way to display a 3D-panel in 2D. Two panels showing PC1 vs. PC2 and PC1 vs. PC3 would be better. I also believe the legend 'PC2' is placed in the wrong position (along the Y-axis of panel 2).

      Supplementary Figure 2B suffers from the same issue.

      The maps for Figures 1 and 2 don't correspond. Assuming Kati represents cluster 4 in Figure 2, the name is put in the wrong position. If the grouping of shehias is different between the Figures, please add an explanation of why this is.

      Figure 2: In the main panel, please clarify what the lines indicate (median and quartiles?). It is very difficult to see anything except the outliers. I wonder whether another way of displaying these data would be clearer. Maybe a table with medians and confidence intervals would be better (or that data could be added to the plots). The current plots might be misleading as they are dominated by outliers.

      In the insert, the cluster number should not only be given as a color code but also added to the map. The current version will be impossible to read for people with color vision impairment, and it is confusing for any reader as the numbers don't appear to follow any logic (e.g. north to south).

      The legend for Figure 3 is difficult to follow. I do not understand what the difference in binning was in panels A and B compared to C.

      Font sizes for panel C differ, and it is not aligned with the other panels.

      Why is Kusini included in Supplemental Figure 4, but not in Figure 1?

      Supplemental Figures 6 and 7: What does the width of the line indicate?

      What was the motivation not to put these lines on the map, as in Figure 4A? This might make it easier to interpret the data.

    1. Reviewer #1 (Public Review):

      The overall tone of the rebuttal and lack of responses on several questions was surprising. Clearly, the authors did not appreciate the phrase 'no smoking gun' and provided a lengthy repetition of the fair argument about 'ticking boxes' on the classic list of criteria. They also make repeated historical references that descriptions of neurotransmitters include many papers, typically over decades, e.g. in the case of ACh and its discovery by Sir Henry Dale. While I empathize with the authors' apparent frustration (I quote: '...accept the reality that Rome was not built in a single day and that no transmitter was proven by a one single paper') I am a bit surprised at the complete brushing away of the argument, and in fact the discussion. In the original paper, the notion of a receptor was mentioned only in a single sentence and all three reviewers brought up this rather obvious question. The historical comparisons are difficult: Of course many papers contribute to the identification of a neurotransmitter, but there is a much higher burden of proof in 2023 compared to the work by Otto Loewi and Sir Henry Dale: most, if not all, currently accepted neurotransmitter have a clear biological function at the level of the brain and animal behavior or function - and were in fact first proposed to exist based on a functional biological experiment (e.g. Loewi's heart rate change). This, and the isolation of the chemical that does the job, were clear, unquestionable 'smoking guns' a hundred years ago. Fast forward 2023: Creatine has been carefully studied by the authors to tick many of the boxes for neurotransmitters, but there is no clear role for its function in an animal. The authors show convincing effects upon K+ stimulation and electrophysiological recordings that show altered neuronal activity using the slc6a8 and agat mutants as well as Cr application - but, as has been pointed out by other reviewers, these effects are not a clear-cut demonstration of a chemical transmitter function, however many boxes are ticked. The identification of a role of a neurotransmitter for brain function and animal behavior has reasonably more advanced possibilities in 2023 than a hundred years ago - and e.g. a discussion of approaches for possible receptor candidates should be possible.

      Again, I reviewed this positively and agree that a lot of cumulative data are great to be put out there and allow the discovery to be more broadly discussed and tested. But I have to note, that the authors simply respond with the 'Rome was not built in a single day' statement to my suggestions on at least 'have some lead' how to approach the question of a receptor e.g. through agonists or antagonists (while clearly stating 'I do not think the publication of this manuscript should not be made dependent' on this). Similarly, in response to reviewer 2's concerns about a missing receptor, the authors' only (may I say snarky) response is ' We have deleted this sentence, though what could mediate postsynaptic responses other than receptors?' The bullet point by reviewer 3 ' • No candidate receptor for creatine has been identified postsynaptically.' is the one point by that reviewer that is simply ignored by the authors completely. Finally, I note that my reivew question on the K stimulation issues (e.g. 35 neurons that simply did not respond at all) was: ' Response: To avoid the disadvantage of K stimulation, we also performed optogenetic experiments recently and obtained encouraging preliminary results.' No details, not data - no response really.

      In sum, I find this all a bit strange and the rebuttal surprising - all three reviewers were supportive and have carefully listed points of discussion that I found all valid and thoughtful. In response, the authors selectively responded scientifically to some experimental questions, but otherwise simply rather non-scientifically dismissed questions with 'Rome was not built in a day'-type answers, or less. I my view, the authors have disregarded the review process and the effort of three supportive reviewers, which should be part of the permanent record of this paper.

    2. Reviewer #2 (Public Review):

      Bian et al studied creatine (Cr) in the context of central nervous system (CNS) function. They detected Cr in synaptic vesicles purified from mouse brains with anti-Synaptophysin using capillary electrophoresis-mass spectrometry. Cr levels in the synaptic vesicle fraction was reduced in mice lacking the Cr synthetase AGAT, or the Cr transporter SLC6A8. They provide evidence for Cr release within several minutes after treating brain slices with KCl. This KCl-induced Cr release was partially calcium dependent and was attenuated in slices obtained from AGAT and SLC6A8 mutant mice. Cr application also decreased the excitability of cortical pyramidal cells in one third of the cells tested. Finally, they provide evidence for SLC6A8-dependent Cr uptake into synaptosomes, and ATP-dependent Cr loading into synaptic vesicles. Based on these data, the authors propose that Cr may act as neurotransmitter in the CNS.

      Strengths:

      1. A major strength of the paper is the broad spectrum of tools used to investigate Cr.<br /> 2. The study provides evidence that Cr is present in/loaded into synaptic vesicles.

      Weaknesses (resubmission):

      1. There is no significant decrease in Cr content pulled down by anti-Syp in AGAT-/- mice when normalized to IgG controls. Hence, blocking AGAT activity/Cr synthesis does not affect Cr levels in the synaptic vesicle fraction, arguing against a Cr enrichment.<br /> 2. There is no difference in KCl-induced Cr release between SLC6A8-/Y and SLC6A8+/Y when normalizing the data to the respective controls. Thus, the data are not consistent with the idea that depolarization-induced Cr release requires SLC6A8.<br /> 3. The rationale of grouping the excitability data into responders and non-responders is not convincing because the threshold of 10% decrease in AP rate is arbitrary. The data do therefore not support the conclusion that Cr reduces neuronal excitability.

    3. Reviewer #3 (Public Review):

      SUMMARY:

      The manuscript by Bian et al. promotes the idea that creatine is a new neurotransmitter. The authors conduct an impressive combination of mass spectrometry (Fig. 1), genetics (Figs. 2, 3, 6), biochemistry (Figs. 2, 3, 8), immunostaining (Fig. 4), electrophysiology (Figs. 5, 6, 7), and EM (Fig. 8) in order to offer support for the hypothesis that creatine is a CNS neurotransmitter.

      STRENGTHS:

      There are many strengths to this study.

      • The combinatorial approach is a strength. There is no shortage of data in this study.<br /> • The careful consideration of specific criteria that creatine would need to meet in order to be considered a neurotransmitter is a strength.<br /> • The comparison studies that the authors have done in parallel with classical neurotransmitters is helpful.<br /> • Demonstration that creatine has inhibitory effects is another strength.<br /> • The new genetic mutations for Slc6a8 and AGAT are strengths and potentially incredibly helpful for downstream work.

      WEAKNESSES:

      • Some data are indirect. Even though Slc6a8 and AGAT are helpful sentinels for the presence of creatine, they are not creatine themselves. Of note, these molecules themselves are not essential for making the case that creatine is a neurotransmitter.<br /> • Regarding Slc6a8, it seems to work only as a reuptake transporter - not as a transporter into SVs. Therefore, we do not know what the transporter into the TVs is.<br /> • Puzzlingly, Slc6a8 and AGAT are in different cells, setting up the complicated model that creatine is created in one cell type and then processed as a neurotransmitter in another. This matter will likely need to be resolved in future studies.<br /> • No candidate receptor for creatine has been identified postsynaptically. This will likely need to be resolved in future studies.<br /> • Because no candidate receptor has been identified, it is important to fully consider other possibilities for roles of creatine that would explain these observations other than it being a neurotransmitter? There is some attention to this in the Discussion.

      There are several criteria that define a neurotransmitter. The authors nicely delineated many criteria in their discussion, but it is worth it for readers to do the same with their own understanding of the data.

      By this reviewer's understanding (and combining some textbook definitions together) a neurotransmitter: 1) must be present within the presynaptic neuron and stored in vesicles; 2) must be released by depolarization of the presynaptic terminal; 3) must require Ca2+ influx upon depolarization prior to release; 4) must bind specific receptors present on the postsynaptic cell; 5) exogenous transmitter can mimic presynaptic release; 6) there exists a mechanism of removal of the neurotransmitter from the synaptic cleft.

      For a paper to claim that the published work has identified a new neurotransmitter, several of these criteria would be met - and the paper would acknowledge in the discussion which ones have not been met. For this particular paper, this reviewer finds that condition 1 is clearly met.

      Conditions 2 and 3 seem to be met by electrophysiology, but there are caveats here. High KCl stimulation is a blunt instrument that will depolarize absolutely everything in the prep all at once and could result in any number of non-specific biological reactions as a result of K+ rushing into all neurons in the prep. Moreover, the results in 0 Ca2+ are puzzling. For creatine (and for the other neurotransmitters), why is there such a massive uptick in release, even when the extracellular saline is devoid of calcium?

      Condition 4 is not discussed in detail at all. In the discussion, the authors elide the criterion of receptors specified by Purves by inferring that the existence of postsynaptic responses implies the existence of receptors. True, but does it specifically imply the existence of creatinergic receptors? This reviewer does not think that is necessarily the case. The authors should be appropriately circumspect and consider other modes of inhibition that are induced by activation or potentiation of other receptors (e.g., GABAergic or glycinergic).

      Condition 5 may be met, because authors applied exogenous creatine and observed inhibition. However, this is tough to know without understanding the effects of endogenous release of creatine. if they were to test if the absence of creatine caused excess excitation (at putative creatinergic synapses), then that would be supportive of the same. Nicely, Ghirardini et al., 2023 study cited by the reviewers does provide support for this exact notion in pyramidal neurons.

      For condition 6, the authors made a great effort with Slc6a8. This is a very tough criterion to understand or prove for many synapses and neurotransmitters.

      In terms of fundamental neuroscience, the story should be impactful. There are certainly more neurotransmitters out there than currently identified and by textbook criteria, creatine seems to be one of them taking all of the data in this study and others into account.

    1. Reviewer #1 (Public Review):

      Bolumar et al. isolated and characterized EV subpopulations, apoptotic bodies (AB), Microvesicles (MV), and Exosomes (EXO), from endometrial fluid through the female menstrual cycle. By performing DNA sequencing, they found the MVs contain more specific DNA sequences than other EVs, and specifically, more mtDNA were encapsulated in MVs. They also found a reduction of mtDNA content in the human endometrium at the receptive and post-receptive period that is associated with an increase in mitophagy activity in the cells, and a higher mtDNA content in the secreted MVs was found at the same time. Last, they demonstrated that the endometrial Ishikawa cell-derived EVs could be taken by the mouse embryos and resulted in altered embryo metabolism.

      This is a very interesting study and is the first one demonstrating the direct transmission of maternal mtDNA to embryos through EVs.

    2. Reviewer #2 (Public Review):

      In Bolumar, Moncayo-Arlandi et al. the authors explore whether endometrium-derived extracellular vesicles contribute DNA to embryos and therefore influence embryo metabolism and respiration. The manuscript combines techniques for isolating different populations of extracellular vesicles, DNA sequencing, embryo culture, and respiration assays performed on human endometrial samples and mouse embryos.

      Vesicle isolation is technically difficult and therefore collection from human samples is commendable. Also, the influence of maternally derived DNA on the bioenergetics of embryos is unknown and therefore novel.

    1. Reviewer #2 (Public Review):

      This study investigates how genes in the Gr28 family of gustatory receptors function in the taste system of Drosophila larvae. Gr28 genes are intriguing because they have been implicated in taste as well as other functions, such as sensing temperature and ultraviolet light. This study makes several new findings. First, the authors show that four Gr28 genes are expressed in putative taste neurons, and these neurons can be largely divided into subsets that express Gr28a versus Gr28bc. The authors then demonstrate that these two neuronal subsets drive opposing behaviors (attraction versus avoidance) when activated. The avoidance-promoting neurons respond to bitter compounds and are required for bitter avoidance, and Gr28bc and Gr28ba were specifically implicated in bitter detection in these cells. Together, these findings provide insight into the complexity of taste receptor expression and function in Drosophila, even within a single receptor subfamily.

      The conclusions are well-supported by the experimental data. Strengths of the paper include the use of precise genetic tools, thorough analyses of expression patterns, carefully validated behavioral assays, and well-controlled functional imaging experiments. The role of Gr28bc neurons is more thoroughly explored than that of Gr28a neurons. However, a previous study from the same lab (Mishra et al., 2018) showed that Gr28a neurons detect RNA and ribose, which are attractive to larvae. Presumably this is the attractive response that is being recapitulated upon artificial activation of Gr28a neurons.

    2. Reviewer #1 (Public Review):

      Ahn and Amrein characterize the expression of members of the Gr28 family of gustatory receptors in taste neurons in the Drosophila melanogaster larva, define the behaviorally-relevant ligands for these receptors, and use chemogenetic experiments to show, strikingly, that different neurons have opposite behavioral responses to the chemogenetic ligand. They go on to show what neurons need to be silenced to lose responses to bitters, and very nicely show what subunits of the Gr28 bitter receptors are necessary and sufficient for responses to bitters. This is a nice piece of work, rigorously carried out, that tackles the neurons and receptors that drive innate responses to tastants in Drosophila larvae.

      The authors have revised the paper to address all of my recommendations. The new cartoons are extremely clear and I appreciate the more measured language when discussing the hypothetical structure and stoichiometry of the functional GR complex.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The study examines the role of release site clearance in synaptic transmission during repetitive activity under physiological conditions in two types of central synapses, calyx of Held and hippocampal CA1 synapses. After the acute block of endocytosis by pharmacology, deeper synaptic depression or less facilitation was observed in two types of synapses. Acute block of CDC42 and actin polymerization, which possibly inhibits the activity of Intersectin, affected synaptic depression at the calyx synapse, but not at CA1 synapses. The data suggest an unexpected, fast role of the site clearance in counteracting synaptic depression.

      Strengths:<br /> The study uses an acute block of the molecular targets with pharmacology together with precise electrophysiology. The experimental results are clear-cut and convincing. The study also examines the physiological roles of the site clearance using action potential-evoked transmission at physiological Ca and physiological temperature at mature animals. This condition has not been examined.

      Weaknesses:<br /> Pharmacology may have some off-target effects, though acute manipulation should be appreciated. Although this is a hard question and difficult to address experimentally, reagents may affect synaptic vesicle mobilization to the release sites directly in addition to blocking endocytosis.

    2. Reviewer #3 (Public Review):

      General comments:

      (1) While Dynasore and Pitstop-2 may impede release site clearance due to an arrest of membrane retrieval, neither Latrunculin-B nor ML-141 specifically acts on AZ scaffold proteins. Interference with actin polymerization may have a number of consequences many of which may be unrelated to release site clearance. Therefore, neither Latrunculin-B nor ML-141 can be considered suitable tools for specifically identifying the role of AZ scaffold proteins (i.e. ELKS family proteins, Piccolo, Bassoon, α-liprin, Unc13, RIM, RBP, etc) in release site clearance which was defined as one of the principal aims of this study.

      (2) Initial EPSC amplitudes more than doubled in the presence of Dynasor at hippocampal SC->CA1 synapses (Figure S2). This unexpected result raises doubts about the specificity of Dynasor as a tool to selectively block SV endocytosis.

      (3) In this study, the application of Dynasore and Pitstop-2 strongly decreases 100 Hz steady-state release at calyx synapses while - quite unexpectedly - strongly accelerates recovery from depression. A previous study found that genetic ablation of dynamin-1 actually enhanced 300 Hz steady-state release while only little affecting recovery from depression (Mahapatra et al., 2016). A similar scenario holds for the Latrunculin-B effects: In this study, Latrunculin-B strongly increased steady-state depression while in Babu et al. (2020), Latrunculin-B did not affect steady-state depression. In Mahapatra et al. (2016), Latrunculin-B marginally enhanced steady-state depression. The authors need to make a serious attempt to explain all these seemingly contradicting results.

      (4) The experimental conditions need to be better specified. It is not clear which recordings were obtained in 1.3 mM and which (if any?) in 2 mM external Ca. It is also unclear whether 'pooled data' are presented (obtained from control recordings and from separate recordings after pre-incubation with the respective drugs), or whether the data actually represent 'before'/'after' comparisons obtained from the same synapses after washing in the respective drugs. The exact protocol of drug application (duration of application/pre-incubation?, measurements after wash-out or in the continuous presence of the drugs?) needs to be clearly described in the methods and needs to be briefly mentioned in Results and/or Figure legends.

      (5) The authors compare results obtained in calyx with those obtained in SC->CA1 synapses which they considered examples for 'fast' and 'slow' synapses, respectively. There is little information given to help readers understand why these two synapse types were chosen, what the attributes 'fast' and 'slow' refer to, and how that may matter for the questions studied here. I assume the authors refer to the maximum frequency these two synapse types are able to transmit rather than to EPSC kinetics?

      (6) Strong presynaptic stimuli such as those illustrated in Figures 1B and C induce massive exocytosis. The illustrated Cm increase of 2 to 2.5 pF represents a fusion of 25,000 to 30,000 SVs (assuming a single SV capacitance of 80 aF) corresponding to a 12 to 15% increase in whole terminal membrane surface (assuming a mean terminal capacitance of ~16 pF). Capacitance measurements can only be considered reliable in the absence of marked changes in series and membrane conductance. Since the data shown in Figs. 1 and 3 are central to the argumentation, illustration of the corresponding conductance traces is mandatory. Merely mentioning that the first 450 ms after stimulation were skipped during analysis is insufficient.

      (7) It is essential for this study to preclude a contamination of the results with postsynaptic effects (AMPAR saturation and desensitization). AMPAR saturation limits the amplitudes of initial responses in EPSC trains and hastens the recovery from depression due to a 'ceiling effect'. AMPAR desensitization occludes paired-pulse facilitation and reduces steady-state responses during EPSC trains while accelerating the initial recovery from depression. The use of, for example, 1 mM kynurenic acid in the bath is a well-established strategy to attenuate postsynaptic effects at calyx synapses. All calyx EPSC recordings should have been performed under such conditions. Otherwise, recovery time courses and STP parameters are likely contaminated by postsynaptic effects. Since the effects of AMPAR saturation on EPSC_1 and desensitization on EPSC_ss may partially cancel each other, an unchanged relative STD in the presence of kynurenic acid is not necessarily a reliable indicator for the absence of postsynaptic effects. The use of kynurenic acid in the bath would have had the beneficial side effect of massively improving voltage-clamp conditions. For the typical values given in this MS (10 nA EPSC, 3 MOhm Rs) the expected voltage escape is ~30 mV corresponding to a change in driving force of 30 mV/80 mV=38%, i.e. initial EPSCs in trains are likely underestimated by 38%. Such large voltage escape usually results in unclamped INa(V) which was suppressed in this study by routinely including 2 mM QX-314 in the pipette solution. That approach does, however, not reduce the voltage escape.

      (8) In the Results section (pages 7 and 8), the authors analyze the time course into STD during 100 Hz trains in the absence and presence of drugs. In the presence of drugs, an additional fast component is observed which is absent from control recordings. Based on this observation, the authors conclude that '... the mechanisms operate predominantly at the beginning of synaptic depression'. However, the consequences of blocking or slowing site clearing are expected to be strongly release-dependent. Assuming a probability of <20% that a fusion event occurs at a given release site, >80% of the sites cannot be affected at the arrival of the second AP even by a total arrest of site clearance simply because no fusion has yet occurred. That number decreases during a train according to (1-0.2)^n, where n is the number of the AP, such that after 10 APs, ~90% of the sites have been used and may potentially be unavailable for new rounds of release after slowing site clearance. Perhaps, the faster time course into STD in the presence of the drugs isn't related to site clearance?

      (9) In the Discussion (page 10), the authors present a calculation that is supposed to explain the reduced size of the second calyx EPSC in a 100 Hz train in the presence of Dynasore or Pitstop-2. Does this calculation assume that all endocytosed SVs are immediately available for release within 10 ms? Please elaborate.

      (10) It is not clear, why the bafilomycin/folimycin data is presented in Fig. S5. The data is also not mentioned in the Discussion. Either explain the purpose of these experiments or remove the data.

      (11) The scheme in Figure 7 is not very helpful.

    3. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, Mahapatra and Takahashi report on the physiological consequences of pharmacologically blocking either clathrin and dynamin function during compensatory endocytosis or of the cortical actin scaffold both in the calyx of Held synapse and hippocampal boutons in acute slice preparations

      Strengths:<br /> Although many aspects of these pharmacological interventions have been studied in detail during the past decades, this is a nice comprehensive and comparative study, which reveals some interesting differences between a fast synapse (Calyx of Held) tuned to reliably transmit at several 100 Hz and a more slow hippocampal CA1 synapse. In particular, the authors find that acute disturbance of the synaptic actin network leads to a marked frequency-dependent enhancement of synaptic depression in the Calyx, but not in the hippocampal synapse. This striking difference between both preparations is the most interesting and novel finding.

      Weaknesses:<br /> Unfortunately, however, these findings concerning the different consequences of actin depolymerization are not sufficiently discussed in comparison to the literature. My only criticism concerns the interpretation of the ML 141 and Lat B data. With respect to the Calyx data, I am missing a detailed discussion of the effects observed here in light of the different RRP subpools SRP and FRP. This is very important since Lee et al. (2012, PNAS 109 (13) E765-E774) showed earlier that disruption of actin inhibits the rapid transition of SRP SVs to the FRP at the AZ. The whole literature on this important concept is missing. Likewise, the role of actin for the replacement pool at a cerebellar synapse (Miki et al., 2016) is only mentioned in half a sentence. There is quite some evidence that actin is important both at the AZ (SRP to FRP transition, activation of replacement pool) and at the peri-active zone for compensatory endocytosis and release site clearance. Both possible underlying mechanisms (SRP to FRP transition or release site clearance) should be better dissected.

    1. Reviewer #1 (Public Review):

      Summary:

      o A well-executed series of experiments that will likely be of immense interest to (a) vector-borne disease researchers and (b) gram-negative sepsis/bacteremia researchers. The study uses comparative transcriptomics to begin probing what makes Peromyscus leucopus a unique host for numerous pathogens across the tree of life. Authors responded well to concerns raised in peer review and have produced an excellent second version of the manuscript.

      Strengths:

      o Use of outbred M. musculus is a commendable choice for the studies here.<br /> o Use of both LPS and B. hermsii allows analysis of multiple different signaling pathways that may differ between the species.<br /> o Upload of analyzed data onto Dryad is appreciated.

      Weaknesses:

      o None noted beyond the authors own limitation discussion section

    2. Reviewer #2 (Public Review):

      Milovic, Duong, and Barbour investigate the inflammatory response of three species of small mammals (P. leucopus, M. musculus, and R. norvegicus) to endotoxin lipopolysaccharide (LPS) injection via genome-wide transcriptomics from blood samples. Understanding the inflammation response of P. leucopus is of importance as they are a reservoir for several pathogens. The study is a thorough, controlled, well researched analysis that will be valuable for designing and interpreting future studies. The authors discuss the limitations of the data and the potential directions. Clearly P. leucopus respond differently to the LPS exposure which is very interesting and opens the door for numerous other comparative studies.

      The conclusions of the manuscript are thoughtful and supported by the data. The authors addressed my questions about mouse numbers, sex differences, and the presentation of Nos2 and Arg1 data.

    1. Reviewer #1 (Public Review):

      The manuscript by Lin, Sosnick et al investigates the functional conformational dynamics of two members of the SLC26 family of anion transporters (Prestin and SLC26A9). A key aspect of the work is that the authors use HDX-MS to convincingly identify that the folding of the unstable anion binding site is related to the fast electromechanical changes that are important for the function of Prestin. In good apparent agreement, such folding-related changes upon anion binding are absent in the related non-piezoelectric SLC26A9 that does not exhibit similar electro-motile transport. Overall, I find the work very interesting and generally well carried out - and it should be of considerable interest to researchers studying transmembrane transporters or just membrane proteins in general.

    2. Reviewer #2 (Public Review):

      In this manuscript, Xiaoxuan Lin and colleagues provide new insights into the dynamics of prestin using H/D exchange coupled with mass spectrometry. The authors aim to reveal how local changes in folding upon anion binding sustain the unique electro-transduction capabilities of prestin.

      Prestin is an unusual member of the SLC26 family, that changes its cross-sectional area in the membrane upon binding of a chloride ion. In contrast to SLC26 homologs, prestin is not an anion transporter per se but requires an anion to sense voltage. Binding of Cl- at a conserved binding site located between the end of TM3 and TM10 drives the displacement of a conserved arginine (R399), that causes major conformational changes, transmitting the voltage sensing into a mechanical force exerted on the membrane.

      Cryo-EM structures are available for the protein bound to various anions, including Cl-, but these structures do not explain how a conserved couple of positive (R399) and negative (the Cl- anion) charge pair transforms voltage sensitivity into mechanical changes in the membrane. To address this challenge, the authors explore local dynamics of the anion binding site and compare it with that of a "real" anion transporter SLC26A9. The authors make a convincing case that the differences in local dynamics they measure are the molecular basis for voltage sensing and its translation into electromotility.

      Practically the authors make a thorough HDX-MS investigation of prestin in the presence of different anions Cl-, SO4-, salicylate as well as in the apo form, and provide insight mostly on local dynamics of the anion binding site. The experiments are well-designed and conducted and their quality and reproducibility allows for quantitative interpretation by deriving ΔΔG values of changes in dynamics at specific sites. Furthermore, the authors show by comparing the apo condition with Cl- bound condition that the absence of Cl- causes fraying of the TM3 and TM10 helices. They deduce that Cl- binding allows for directional helix structuration, leading to local structural changes that cause a rearrangement of the charge configuration at the anion binding site that lays the molecular basis for voltage sensitivity. They demonstrate based on a detailed analysis of their HDX data that such helix fraying is a specific feature of the binding site and differs from the cooperative unfolding happening elsewhere on the prestin.

      However, the main question that the authors are addressing is how voltage sensitivity translates at the molecular level in the requirement for a negative-positive charge pair. The interpretation that the binding site instability observed only for prestin is a feature required for this voltage dependent is a bit speculative. Could other lines of evidence support the claim that the charge ion gap is reduced upon Cl- binding and that this leads to cross-section area expansion? An obvious option that comes to mind is MD simulations There are differences in time-scale between HDX and simulations, but the propensity for H-bond destabilization can be quantified even at short timescales. It might be that such data is already available out there but it should be explicit in the discussion. The discussion section itself is a bit narrow in scope at the moment. Discussing the data in the context of the available structures would help the non-specialist reader.

    3. Reviewer #3 (Public Review):

      Synopsis:<br /> The lack of visualizing the dynamic nature of biomolecules is a major weakness of crystallography or electron microscopy to study structure-function relationship of proteins. Such a challenge can be exemplified by the case of prestin, which shares high structural similarity to SLC26A9 anion transporter but is not an ion transporter. In this study, Lin et al aimed to use hydrogen-deuterium exchange and mass spectrometry (HDX-MS) to investigate the mobility of prestin and its response to anions. The authors exploited the nature of anion-dependent folding of this type of transporter to systematically analyze the mobility of transmembrane helices of both transporters by HDX. The authors found that the anion-binding helices engage in the stabilization of the anion-binding site. When stripped from Cl-, the site exposes to the transporter's extracellular side. More importantly, the authors narrowed down TM3 and TM10 with experimental data supporting the notion of R399's unique role in prestin's function. The results thus provide a working model of how the charged residue works in conjunction with the cooperativity of helix unfolding at the anion-binding site to drive the electromotive force of prestin.

      Strengths:<br /> The use of HDX-MS to probe the dynamic nature of prestin is a major strength of this study, which provides experimental evidence revealing the global and local differences in the folding events between prestin and SLC26A9. The mass experimental data led to the identification of TM3 and TM10 as the primary contributors to the folding changes, as well as a calculation of ΔΔG of ~2.4 kcal/mol, within the thermodynamic range of the dipole between the two helices. The latter also suggests the role of R399 as previously speculated in cryo-EM structures.

      This study went further to dissect the cooperativity during the folding and unfolding events on TM3, in which the authors observed a helix fraying at the anion-binding site and cooperative unfolding at the distal lipid-facing helices. This provides strong evidence of why prestin can undergo fast electromechanical rearrangement.

      Weakness:<br /> The authors tried to investigate the allostery by probing the intermediate folding/unfolding states by using sulfate or salicylate in the absence of chloride. Sulfate-bound proteins appear in an apo state earlier than normal chloride binding, and salicylate treatment led to a stable TMD state with slower HDX. It is unclear from the data (Fig 4) how the allostery works without titrating chloride ions into the reaction. The sulfate or salicylate experiments seem to show two extreme folding events outside the normal chloride conditions.

      TM3 and TM10 contribute to the anion-binding site together, and the authors beautifully showed the cooperativity of TM3. Does TM10 show the same cooperativity in prestin and SLC26A9? In addition, it is unclear whether the folding model at the anion-binding helices (Fig. 5B) remains the same when expressing prestin on live cells, such as thermodynamic data derived from electrophysiology studies.

      The authors observed increased stability upon chloride binding at the subunit interface in the cytosol for both prestin and SLC26A9 (Fig 1). How does this similarity in the cytosolic region contribute to the differential mechanisms as seen in the TMD in both transporters? It is unclear in this version of the manuscript.

    1. Reviewer #1 (Public Review):

      This study provides compelling evidence that RAR, rather than its obligate dimerization partner RXR, is functionally limiting for chromatin binding. This manuscript provides a paradigm for how to dissect the complicated regulatory networks formed by dimerizing transcription factor families.

      Dahal and colleagues use advanced SMT techniques to revisit the role of RXR in DNA-binding of the type-2 nuclear receptor (T2NR) RAR. The dominant consensus model for regulated DNA binding of T2NRs posits that they compete for a limited pool of RXR to form an obligate T2NR-RXR dimer. Using advanced SMT and proximity-assisted photoactivation technologies, Dahal et al. now test the effect of manipulating the endogenous pool size of RAR and RXR on heterodimerization and DNA-binding in live U2OS cells. Surprisingly, it turns out that RAR, rather than RXR, is functionally limiting for heterodimerization and chromatin binding. By inference, the relative pool size of various T2NRs expressed in a given cell, rather than RXR, is likely to determine chromatin binding and transcriptional output.

      The conclusions of this study are well supported by the experimental results and provide unexpected novel insights into the functioning of the clinically important class of T2NR TFs. Moreover, the presented results show how the use of novel technologies can put long-standing theories on how transcription factors work upside down. This manuscript provides a paradigm for how to further dissect the complicated regulatory networks formed by T2NRs or other dimerizing TFs. I found this to be a complete story that does not require additional experimental work. However, I do have some suggestions for the authors to consider.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In the manuscript "Surprising Features of Nuclear Receptor Interaction Networks Revealed by Live Cell Single Molecule Imaging", Dahal et al combine fast single molecule tracking (SMT) with proximity-assisted photoactivation (PAPA) to study the interaction between RARa and RXRa. The prevalent model in the nuclear receptor field suggests that type II nuclear receptors compete for a limiting pool of their partner RXRa. Contrary to this, the authors find that over-expression of RARa but not RXRa increases the fraction of RXRa molecules bound to chromatin, which leads them to conclude that the limiting factor is the abundance of RARa and not RXRa. The authors also perform experiments with a known RARa agonist, all trans retinoic acid (atRA) which has little effect on the bound fraction. Using PAPA, they show that chromatin binding increases upon dimerization of RARa and RXRa.

      Strengths:<br /> In my view, the biggest strength of this study is the use of endogenously tagged RARa and RXRa cell lines. As the authors point out, most previous studies used either in vitro assays or over-expression. I commend the authors on the generation of single-cell clones of knock-in RARa-Halo and Halo-RXRa. The authors then carefully measure the abundance of each protein using FACS, which is very helpful when comparing across conditions. The manuscript is generally well written and figures are easy to follow. The consistent color-scheme used throughout the manuscript is very helpful.

      Weaknesses:<br /> 1. Agonist treatment:<br /> The authors test the effect of all trans retinoic acid (atRA) on the bound fraction of RARa and RXRa and find that "These results are consistent with the classic model in which dimerization and chromatin binding of T2NRs are ligand independent." However, all the agonist treatments are done in media containing FBS. FBS is not chemically defined and has been found to have between 10 and 50 nM atRA (see references in PMID 32359651 for example). The addition of 1 nM or 100 nM atRA is unlikely to result in a strong effect since the medium already contains comparable or higher levels of agonist. To test their hypothesis of ligand-independent dimerization, the authors should deplete the media of atRA by growing the cells in a medium containing charcoal-stripped FBS for at least 24 hours before adding agonist.

      2. Photobleaching and its effect on bound fraction measurements:<br /> The authors discard the first 500 to 1000 frames due to the high localization density in the initial frames. This will preferentially discard bound molecules that will bleach in the initial frames of the movie and lead to an over-estimation of the unbound fraction.

      For experiments with over-expression of RAR-Halo and Halo-RXR, the authors state that the cells were pre-bleached and that these frames were used to calculate the mean intensity of the nuclei. When pre-bleaching, bound molecules will preferentially bleach before the diffusing population. This will again lead to an over-representation of the unbound fraction since this is the population that will remain relatively unaffected by the pre-bleaching. Indeed, the bound fraction for over-expressed RARa and RXRa is significantly lower than that for the corresponding knock in lines. To confirm whether this is a biological result, I suggest that the authors either reduce the amount of dye they use so that this pre-bleaching is not necessary or use the direct reactivation strategy they use for their PAPA experiments to eliminate the pre-bleaching step.

      As for the measurement of the nuclear intensity, since the authors have access to multiple HaloTag dyes, they can saturate the HaloTagged proteins with a high concentration of JF646 or JFX650 to measure the mean intensity of the protein while still using the PA-JFX549 for SMT. Together, these will eliminate the need to pre-bleach or discard any frames.

      3. Heterogeneous expression of the SNAP fusion proteins:<br /> The cell lines expressing SNAP tagged transgenes shown in Fig S6 have very heterogeneous expression of the SNAP proteins. While the bulk measurements done by Western blotting are useful, while doing single-cell experiments (especially with small numbers - ~20 - of cells), it is important to control for expression levels. Since these transgenic stable lines were not FACS sorted, it would be helpful for the reader to know the spread in the distribution of mean intensities of the SNAP proteins for the cells that the SMT data are presented for. This step is crucial while claiming the absence of an effect upon over-expression and can easily be done with a SNAPTag ligand such as SF650 using the procedure outlined for the over-expressed HaloTag proteins.

      4. Definition of bound molecules:<br /> The authors state that molecules with a diffusion coefficient less than 0.15 um2/s are considered bound and those between 1-15 um2/s are considered unbound. Clarification is needed on how this threshold was determined. In previous publications using saSPT, the authors have used a cutoff of 0.1 um2/s (for example, PMID 36066004, 36322456). Do the results rely on a specific cutoff? A diffusion coefficient by itself is only a useful measure of normal diffusion. Bound molecules are unlikely to be undergoing Brownian motion, but the state array method implemented here does not seem to account for non-normal diffusive modes. How valid is this assumption here?

      5. Movies:<br /> Since this is an imaging manuscript, I request the authors to provide representative movies for all the presented conditions. This is an essential component for a reader to evaluate the data and for them to benchmark their own images if they are to try to reproduce these findings.

      6. Definition of an ROI:<br /> The authors state that "ROI of random size but with maximum possible area was selected to fit into the interior of the nuclei" while imaging. However, the readout speed of the Andor iXon Ultra 897 depends on the size of the defined ROI. If the ROI was variable for every movie, how do the authors ensure the same sampling rate?

    3. Reviewer #3 (Public Review):

      Summary:<br /> This study aims to investigate the stoichiometric effect between core factors and partners forming the heterodimeric transcription factor network in living cells at endogenous expression levels. Using state-of-the-art single-molecule analysis techniques, the authors tracked individual RARα and RXRα molecules labeled by HALO-tag knock-in. They discovered an asymmetric response to the overexpression of counter-partners. Specifically, the fact that an increase in RARα did not lead to an increase in RXRα chromatin binding is incompatible with the previous competitive core model. Furthermore, by using a technique that visualizes only molecules proximal to partners, they directly linked transcription factor heterodimerization to chromatin binding.

      Strengths:<br /> The carefully designed experiments, from knock-in cell constructions to single-molecule imaging analysis, strengthen the evidence of the stoichiometric perturbation response of endogenous proteins. The novel finding that RXR, previously thought to be a target of competition among partners, is in excess provides new insight into key factors in dimerization network regulation. By combining the cutting-edge single-molecule imaging analysis with the technique for detecting interactions developed by the authors' group, they have directly illustrated the relationship between the physical interactions of dimeric transcription factors and chromatin binding. This has enabled interaction analysis in live cells that was challenging in single-molecule imaging, proving it is a powerful tool for studying endogenous proteins.

      Weaknesses:<br /> As the authors have mentioned, they have not investigated the effects of other T2NRs or RXR isoforms. These invisible factors leave room for interpretation regarding the origin of chromatin binding of endogenous proteins (Recommendations 4). In the PAPA experiments, overexpressed factors are visualized, but changes in chromatin binding of endogenous proteins due to interactions with the overexpressed proteins have not been investigated. This might be tested by reversing the fluorescent ligands for the Sender and Receiver. Additionally, the PAPA experiments are likely to be strengthened by control experiments (Recommendations 5).

    1. Reviewer #1 (Public Review):

      Major concerns:

      1. Is the direct binding of MCAK to the microtubule cap important for its in vivo function?

      a. The authors claim that their "study provides mechanistic insights into understanding the end-binding mechanism of MCAK". I respectfully disagree. My concern is that the paper offers limited insights into the physiological significance of direct end-binding for MCAK activity, even in vitro. The authors estimate that in the absence of other proteins in vitro, ~95% of MCAK molecules arrive at the tip by direct binding in the presence of ~ physiological ATP concentration (1 mM). In cells, however, the major end-binding pathway may be mediated by EB, with the direct binding pathway contributing little to none. This is a reasonable concern because the apparent dissociation constant measured by the authors shows that MCAK binding to microtubules in the presence of ATP is very weak (69 uM). This concern should be addressed by 1) calculating relative contributions of direct and EB-dependent pathways based on the affinities measured in this and other published papers and estimated intracellular concentrations. Although there are many unknowns about these interactions in cells, a modeling-based analysis may be revealing. 2) the recapitulation of these pathways using purifying proteins in vitro is also feasible. Ideally, some direct evidence should be provided, e.g. based on MCAK function-separating mutants (GDP-Pi tubulin binding vs. catalytic activity at the curled protofilaments) that contribution from the direct binding of MCAK to microtubule cap in EB presence is significant.

      b. As mentioned in the Discussion, preferential MCAK binding to tubulins near the MT tip may enhance MCAK targeting of terminal tubulins AFTER the MCAK has been "delivered" to the distal cap via the EB-dependent mechanism. This is a different targeting mechanism than the direct MCAK-binding. However, the measured binding affinity between MCAK and GMPCPP tubulins is so weak (69 uM), that this effect is also unlikely to have any impact because the binding events between MCAK and microtubule should be extremely rare. Without hard evidence, the arguments for this enhancement are very speculative.

      2. The authors do not provide sufficient justification and explanation for their investigation of the effects of different nucleotides in MCAK binding affinity. A clear summary of the nucleotide-dependent function of MCAK (introduction with references to prior affinity measurements and corresponding MCAK affinities), the justifications for this investigation, and what has been learned from using different nucleotides (discussion) should be provided. My take on these results is that by far the strongest effect on microtubule wall and tip binding is achieved by adding any adenosine, whereas differences between different nucleotides are relatively minor. Was this expected? What can be learned from the apparent similarity between ATP and AMPPNP effects in some assays (Fig 1E, 4C, etc) but not others (Fig 1D,F, etc)?

      3. It is not clear why the authors decided to use these specific mutant MCAK proteins to advance their arguments about the importance of direct tip binding. Both mutants are enzymatically inactive. Both show roughly similar tip interactions, with some (minor) differences. Without a clear understanding of what these mutants represent, the provided interpretations of the corresponding results are not convincing.

      4. GMPCPP microtubules are used in the current study to represent normal dynamic microtubule ends, based on some published studies. However, there is no consensus in the field regarding the structure of growing vs. GMPCPP-stabilized microtubule ends, which additionally may be sensitive to specific experimental conditions (buffers, temperature, age of microtubules, etc). To strengthen the authors' argument, Taxol-stabilized microtubules should be used as a control to test if the effects are specific. Additionally, the authors should consider the possibility that stronger MCAK binding to the ends of different types of microtubules may reflect MCAK-dependent depolymerization events on a very small scale (several tubulin rows). These nano-scale changes to tubulins and the microtubule end may lead to the accumulation of small tubulin-MCAK aggregates, as is seen with other MAPs and slowly depolymerizing microtubules. These effects for MCAK may also depend on specific nucleotides, further complicating the interpretation. This possibility should be addressed because it provides a different interpretation than presented in the manuscript.

      5. It would be helpful if the authors provided microtubule polymerization rates and catastrophe frequencies for assays with dynamic microtubules and MCAK in the presence of different nucleotides. The video recordings of microtubules under these conditions are already available to the authors, so it should not be difficult to provide these quantifications. They may reveal that microtubule ends are different (or not) under the examined conditions. It would also help to increase the overall credibility of this study by providing data that are easy to compare between different labs.

      6. Are there other published studies that report MCAK binding affinity to microtubules? I find it quite surprising that the authors have reported the apparent dissociation constant for MCAK as 1mM. Such a high Kd value suggests no interaction under normal conditions, given that the intracellular concentrations of most proteins are orders of magnitude lower. If this information is inaccurate, it raises questions about the accuracy of other quantifications in the study.

      7. Experimental and data analysis techniques are described superficially, and in some cases, only references to the prior work by others are provided. More direct evidence for these techniques and the corresponding controls should be provided.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, Chen et al. investigate the localization of microtubule kinesin-13 MCAK to the microtubule ends. MCAK is a prominent microtubule depolymerase whose molecular mechanisms of action have been extensively studied by a number of labs over the last ~twenty years. Here, the authors use single-molecule approaches to investigate the precise localization of MCAK on growing microtubules and conclude that MCAK preferentially binds to a GDP-Pi-tubulin portion of the microtubule end. The conclusions are speculative and not well substantiated by the data, making the impact of the study in its current form rather limited. Specifically, greater effort should be made to define the region of MCAK binding on microtubule ends, as well as its structural characteristics. Given that MCAK has been previously shown to effectively tip-track growing microtubule ends through an established interaction with EB proteins, the physiological relevance of the present study is unclear. Finally, the manuscript does not cite or properly discuss a number of relevant literature references, the results of which should be directly compared and contrasted to those presented here.

    3. Reviewer #3 (Public Review):

      The authors revisit an old question of how MCAK goes to microtubule ends, partially answered by many groups over the years. The authors seem to have omitted the literature on MCAK in the past 10-15 years. The novelty is limited due to what has previously been done on the question. Previous work showed MCAK targets to microtubule plus-ends in cells through association with EB proteins and Kif18b (work from Wordeman, Medema, Walczak, Welburn, Akhmanova) but none of their work is cited.

      It is not obvious in the paper that these in vitro studies only reveal microtubule end targeting, rather than plus end targeting. MCAK diffuses on the lattice to both ends and its conformation and association with the lattice and ends has also been addressed by other groups-not cited here. I want to particularly highlight the work from Friel's lab where they identified a CDK phosphomimetic mutant close to helix4 which reduces the end preference of MCAK. This residue is very close to the one mutated in this study and is highly relevant because it is a site that is phosphorylated in vivo. This study and the mutant produced here suggest a charge-based recognition of the end of microtubules.

      Here the authors analyze this MCAK recognition of the lattice and microtubule ends, with different nucleotide states of MCAK and in the presence of different nucleotide states for the microtubule lattice. The main conclusion is that MCAK affinity for microtubules varies in the presence of different nucleotides (ATP and analogs) which was partially known already. How different nucleotide states of the microtubule lattice influence MCAK binding is novel. This information will be interesting to researchers working on the mechanism of motors and microtubules. However, there are some issues with some experiments. In the paper, the authors say they measure MCAK residency of growing end microtubules, but in the kymographs, the microtubules don't appear dynamic- in addition, in Figure 1A, MCAK is at microtubule ends and does not cause depolymerization. I would have expected to see depolymerization of the microtubule after MCAK targeting. The MCAK mutants are not well characterized. Do they still have ATPase activity? Are they folded? Can the authors also highlight T537 and discuss this?

      Finally, a few experiments are done with MCAK and XMAP215, after the authors say they have demonstrated the binding sites overlap. The data supporting this statement were not obvious and the conclusions that the effect of the two molecules are additive would argue against competing binding sites. Overall, while there are some interesting quantitative measurements of MCAK on microtubules - in particular in relation to the nucleotide state of the microtubule lattice - the insights into end-recognition are modest and do not address or discuss how it might happen in cells. Often the number of events is not recorded. Histograms with large SEM bars are presented, so it is hard to get a good idea of data distribution and robustness. Figures lack annotations. This compromises therefore their quantifications and conclusions. The discussion was hard to follow and needs streamlining, as well as putting their work in the context of what is known from other groups who produced work on this in the past few years.

    1. Reviewer #1 (Public Review):

      This work provides new mechanistic insights into the competitive inhibition in the mammalian P2X7 receptors using structural and functional approaches. The authors solved the structure of panda (pd) P2X7 in the presence of the classical competitive antagonists PPNDS and PPADS. They find that both drugs bind to the orthosteric site employed by the physiological agonist ATP. However, owing to the presence of a single phosphate group, they prevent movements in the flipper domain required for channel opening. The authors performed structure-based mutational analysis together with electrophysiological characterization to understand the subtype-specific binding of these drugs. It is known from previous studies that P2X1 and P2X3 are more sensitive to these drugs as compared to P2X7, hence, the residues adjacent to the ATP binding site in pdP2X7 were mutated to those present in P2X1. They observed that mutations of Q143, I214, and Q248 into lysine (hP2X1) increased the P2X7 sensitivity to PPNDS, whereas in P2X1, mutations of these lysines to alanine reduced sensitivity to PPNDS, suggesting that these key residues contribute to the subunit-specific sensitivity to these drugs. Similar experiments were done in hP2X3 to demonstrate its higher sensitivity to PPNDS. This preprint provides a useful framework for developing subtype-specific drugs for the family of P2X receptor channels, an area that is currently relatively unexplored.

      The conclusions of the paper are mostly well supported, but need some clarification for the following:

      1) Why was the crystallization construct of panda P2X7 used for structural studies instead of rat P2X7 with the cytoplasmic ballast which is a more complete receptor that is closely related to the human receptor? Can the authors provide a justification for this choice?

      2) Was there a good reason why hP2X1 and hP2X3 currents were recorded in perforated patches, whereas pdP2X7 currents were recorded using the whole-cell configuration? It seems that the extent of rundown is less of a problem with perforated patch recordings. Can the authors comment and perhaps provide a justification? It would also be good to present data for repeated applications of ATP alone using protocols similar to those for testing antagonists so the reader can better appreciate the extent of run down with different recording configurations for the different receptors.

      3) The data in Fig. S1, panel A shows multiple examples where the currents activated by ATP after removal of the antagonist are considerably smaller than the initial ATP application. Is this due to rundown or incomplete antagonist unbinding? It is interesting that this wasn't observed with hP2X1 and hP2X3 even though they have a higher affinity for the antagonist. Showing examples of rundown without antagonist application would help to distinguish these distinct phenomena and it would be good for the authors to comment on this in the text. It is also curious why a previous study on pdP2X7 did not seem to have problems with rundown (see Karasawa and Kawate. eLife, 2016).

      4) The written presentation could be improved as there are many instances where the writing lacks clarity and the reader has to guess what the authors wish to communicate.

    2. Reviewer #2 (Public Review):

      Summary:<br /> P2X receptors play pivotal roles in physiological processes such as neurotransmission and inflammation, making them promising drug targets. This study, through cryo-EM and functional experiments, reveals the structural basis of the competitive inhibition of the PPNDS and PPADS on mammalian P2X7 receptors. Key findings include the identification of the orthosteric site for these antagonists, the revelation of how PPADS/PPNDS binding impedes channel-activating conformational changes, and the pinpointing of specific residues in P2X1 and P2X3 subtypes that determine their heightened sensitivity to these antagonists. These insights present a comprehensive understanding that could guide the development of improved drugs targeting P2X receptors. This work will be a valuable addition to the field.

      Strengths and weaknesses:<br /> The combination of structural experiments and mutagenesis analyses offers a deeper understanding of the mechanism. While the inclusion of MD simulation is appreciated, providing more insights from the simulation might further strengthen this already compelling story.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this manuscript, Schmassmann et al. present a study on the immune microenvironment of grade 4 gliomas using single-cell RNA-seq data from the tumor center, periphery, and peripheral blood of patients. This manuscript is overall well written and reads easily. The approach to studying the TME at various spatial locations is innovative and interesting, and the dataset presented has the potential to become a useful resource for the community. However, the size of the dataset, notably in the context of the important inter-patient variability on key clinical information, hinders the generalizability of the results. The analysis presented by the authors seems at times somewhat shallow as compared to other studies in the literature, being almost solely based on the analysis of a single dataset with extremely limited biological validation of the observations, and some claims made by the authors do not seem appropriately backed by the data they present. While I appreciate the vast analysis effort undertaken by the authors, it seems more work is required to make the most of this interesting dataset and substantiate the conclusions.

      Strengths:<br /> The authors have provided useful insights into diverse GBMs (IDH mutant and IDH wild-type) that provide a deep assessment of individual tumors with spatial information.

      Weaknesses:<br /> A larger set of tumors will need to be explored before general principles of immune biology and GBM immune evasion can be uncovered. This is a descriptive study that provides some interesting new hypotheses - but these will need deeper functional exploration.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Most of this paper concerns scRNA-seq data generated from glioblastoma patients, from three regions: tumor center, tumor periphery, and peripheral blood mononuclear cells. They focus on immune cells, and especially microglia and T-cells, where they look at the presence/absence/changes in different types of immune signatures. The data and analysis are sound and supportive of the conclusions they draw, though future studies with more patients and/or low-throughput validation would strengthen their evidence. This study adds to our knowledge of the immune cell environment in glioblastoma patients and its regional variation.

      Strengths:<br /> A key strength of the paper lies in the novelty of the data, which simultaneously examines, at single-cell resolution, gene expression in two different tumor regions (center and periphery) along with peripheral blood. The authors provide numerous detailed and state-of-the-art analyses of this data, including gene differential expression, differential abundance of cell types, gene ontology analyses, tSNE visualizations, etc.

      They focus in particular on differences in immune cell types. There are some suggestive differences in immune cell composition of center versus periphery, although the number of patients (5, one of whom is missing center data) does not allow one to draw a definitive conclusion.

      They identified more definitive gene expression differences in center versus peripheral microglia -- differences that were not reflected in other cell types, and which included downregulation of a number of immune response functions. They also identified gene expression differences between two subsets of microglia, although those may partly reflect regional differences (the subsets are differentially enriched in the center versus periphery) or differential representation of different patients.

      Finally, they identify differences in CD8+ T cells and NK cells in the center versus the periphery, where the latter were less activated/proliferative/cytotoxic.

      Data analysis is performed to a high standard, using best-available methods and in some cases backed up with alternative approaches showing similar results.

      Weaknesses:<br /> While the nature of the dataset is novel, the relatively low patient numbers (five) and patient diversity (e.g. with regard to IHD1 status) may be obscuring differences in cell type abundances or cell state between regions.

      Most discoveries based on the scRNA-seq discussed in the paper remain to be validated by low-throughput methods in either the same patient samples, if material remains, or in other patients.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Kwong et al. present evidence that two actin-filament based cytoskeletal structures regulate the clockwise and anticlockwise rotation of the cytoplasm. These claims are based on experiments using cells plated on micropatterned substrates (circles). Previous reports have shown that the actomyosin network that forms on the dorsal surface of a cell plated on a circle drives a rotational or swirling pattern of movement in the cytoplasm. This actin network is composed of a combination of non-contractile radial stress fibers (AKA dorsal stress fibers) which are mechanically coupled to contractile transverse actin arcs (AKA actin arcs). The authors claim that directionality of the rotation of the cytoplasm (i.e., clockwise or anticlockwise) depends on either the actin arcs or radial fibers, respectively. While this would interesting, the authors are not able to remove either actin-based network without effecting the other. This is not surprising, as it is likely that the radial fibers require the arcs to elongate them, and the arcs require the radial fibers to stop them from collapsing. As such, it is difficult to make simple interpretations such as the clockwise bias is driven by the arcs and anticlockwise bias is driven by the radial fibers.

      Weaknesses:<br /> There are also multiple problems with how the data is displayed and interpreted. First, it is difficult to compare the experimental data with the controls as the authors do not include control images in several of the figures. For example, Figure 6 has images showing myosin IIA distribution, but Figure 5 has the control image. Each figure needs to show controls. Otherwise, it will be difficult for the reader to understand the differences in localization of the proteins shown. This could be accomplished by either adding different control examples or by combining figures.

      It is important that the authors should label the range of gray values of the heat maps shown. It is difficult to know how these maps were created. I could not find a description in the methods, nor have previous papers laid out a standardized way of doing it. As such, the reader needs some indication as to whether the maps showing different cells were created the same and show the same range of gray levels. In general, heat maps showing the same protein should have identical gray levels. The authors already show color bars next to the heat maps indicating the range of colors used. It should be a simple fix to label the minimum (blue on the color bar) and the maximum (red on the color bar) gray levels on these color bars. The profiles of actin shown in Figure 3 and Figure 3- figure supplement 3 were useful for interpretating the distribution of actin filaments. Why did not the authors show the same for the myosin IIa distributions?<br /> Line 189 "This absence of radial fibers is unexpected". The authors should clarify what they mean by this statement. The claim that the cell in Figure 3B has reduced radial stress fiber is not supported by the data shown. Every actin structure in this cell is reduced compared to the cell on the larger micropattern in Figure 3A. It is unclear if the radial stress fibers are reduced more than the arcs. Are the authors referring to radial fiber elongation?<br /> The choice of the small molecule inhibitors used in this study is difficult to understand, and their results are also confusing. For example, sequestering G actin with Latrunculin A is a complicated experiment. The authors use a relatively low concentration (50 nM) and show that actin filament-based structures are reduced and there are more in the center of the cell than in controls (Figure 3E). What was the logic of choosing this concentration? Using a small molecule that binds the barbed end (e.g., cytochalasin) could conceivably be used to selectively remove longer actin filaments, which the radial fibers have compared to the lamellipodia and the transverse arcs. The authors should articulate how the actin cytoskeleton is being changed by latruculin treatment and the impact on chirality. Is it just that the radial stress fibers are not elongating? There seems to be more radial stress fibers than in controls, rather than an absence of radial stress fibers. Similar problems arise from the other small molecules as well. LPA has more effects than simply activating RhoA. Additionally, many of the quantifiable effects of LPA treatment are apparent only after the cells are serum starved, which does not seem to be the case here. Furthermore, inhibiting ROCK with, Y-27632, effects myosin light chain phosphorylation and is not specific to myosin IIA. Are the two other myosin II paralogs expressed in these cells (myosin IIB and myosin IIC)? If so, the authors' statements about this experiment should refer to myosin II not myosin IIa. None of the uses of the small molecules above have supporting data using a different experimental method. For example, backing up the LPA experiment by perturbing RhoA tho.<br /> The use of SMIFH2 as a "formin inhibitor" is also problematic. SMIFH2 also inhibits myosin II contractility, making interpreting its effects on cells difficult to impossible. The authors present data of mDia2 knockdown, which would be a good control for this SMIFH2. However, the authors claim that mDia2 "typically nucleates tropomyosin-decorated actin filaments, which recruit myosin II and anneal endwise with α-actinin- crosslinked actin filaments." There is no reference to this statement and the authors own data shows that both arcs and radial fibers are reduced by mDia2 knockdown. Overall, the formin data does not support the conclusions the authors report.<br /> The data in Figure 7 does not support the conclusion that myosin IIa is exclusively on top of the cell. There are clear ventral stress fibers in A (actin) that have myosin IIa localization. The authors simply chose to not draw a line over them to create a height profile.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Chirality of cells, organs, and organisms can stem from the chiral asymmetry of proteins and polymers at a much smaller lengthscale. The intrinsic chirality of actin filaments (F-actin) is implicated in the chiral arrangement and movement of cellular structures including F-actin-based bundles and the nucleus. It is unknown how opposite chiralities can be observed when the chirality of F-actin is invariant. Kwong, Chen, and co-authors explored this problem by studying chiral cell-scale structures in adherent mammalian cultured cells. They controlled the size of adhesive patches, and examined chirality at different timepoints. They made various molecular perturbations and used several quantitative assays. They showed that forces exerted by antiparallel actomyosin bundles on parallel radial bundles are responsible for the chirality of the actomyosin network at the cell scale.

      Strengths:<br /> Whereas previously, most effort has been put into understanding radial bundles, this study makes an important distinction that transverse or circumferential bundles are made of antiparallel actomyosin arrays. A minor point that was nice for the paper to make is that between the co-existing chirality of nuclear rotation and radial bundle tilt, it is the F-actin driving nuclear rotation and not the other way around. The paper is clearly written.

      Weaknesses:<br /> The paper could benefit from grammatical editing.

    1. Reviewer #1 (Public Review):

      Schmit et al. analyze and compare different strategies for the allocation of funding for insecticide-treated nets (ITNs) to reduce the global burden of malaria. They use previously published models of Plasmodium falciparum and Plasmodium vivax malaria transmission to quantify the effect of ITN distribution on clinical malaria numbers and the population at risk. The impact of different resource allocation strategies on the reduction of malaria cases or a combination of malaria cases and achieving pre-elimination is considered to determine the optimal strategy to allocate global resources to achieve malaria eradication.

      Strengths:

      Schmit et al. use previously published models and optimization for a rigorous analysis and comparison of the global impact of different funding allocation strategies for ITN distribution. This provides evidence of the effect of three different approaches: the prioritization of high-transmission settings to reduce the disease burden, the prioritization of low-transmission settings to "shrink the malaria map", and a resource allocation proportional to the disease burden.

      Weaknesses:

      The analysis and optimization which provide the evidence for the conclusions and are thus the central part of this manuscript necessitate some simplifying assumptions which may have important practical implications for the allocation of resources to reduce the malaria burden. For example, seasonality, mosquito species-specific properties, stochasticity in low transmission settings, and changing population sizes were not included. Other challenges to the reduction or elimination of malaria such as resistance of parasites and mosquitoes or the spread of different mosquito species as well as other beneficial interventions such as indoor residual spraying, seasonal malaria chemoprevention, vaccinations, combinations of different interventions, or setting-specific interventions were also not included. Schmit et al. clearly state these limitations throughout their manuscript.

      This work considers different ITN distribution strategies, other interventions are not considered. It also provides a global perspective but an analysis of the specific local setting (as also noted by Schmit et al.) and different interventions as well as combinations of interventions should also be taken into account for any decisions. Nonetheless, the rigorous analysis supports the authors' conclusions and provides evidence that supports the prioritization of funding of ITNs for settings with high Plasmodium falciparum transmission. Overall, this work may contribute to making evidence-based decisions regarding the optimal prioritization of funding and resources to achieve a reduction in the malaria burden.

    2. Reviewer #2 (Public Review):

      Summary:

      In this article, the authors discuss an optimal resource allocation strategy to best allocate funding in maximising malaria eradication efforts. Though achieving elimination by only using insecticide-treated bed nets (ITNs) is not the best practice, and countries utilise different interventions simultaneously, this analysis could be relevant in allocating funding for the global malaria elimination effort. To analyse and compare the impact of ITNs on P. falciparum and P. vivax cases and the total populations at risk, the authors use two previously published models (for P. falciparum and P. vivax).

      Strengths:

      The authors use models for both P. falciparum and P. vivax to analyse the impact of different strategies for allocating ITNs and provide the best strategies for funding to minimise malaria burden across different transmission settings. Using previously published models that account for various malaria aspects, including demography, heterogeneity in bite exposure, immunity, variation in hypnozoite across bites (P. vivax), mosquito larval dynamics, etc., gives a solid foundation for the analysis performed here.

      Weaknesses:

      Though the objective of the study is to identify the best setting to allocate funding to eradicate malaria, the authors use prevalence estimates (P. falciparum and P. vivax) based on the year 2000 as the baseline. Given their reasoning behind this choice, the analysis would be more relevant or useful if the proposed strategy were compared to the current Global Technical Strategy for Malaria (GTS 2016-2030). That is, using estimates based on around the year 2016.

      In settings where both P. falciparum and P. vivax are co-endemic, using models that do not account for the interplay between the species, especially regarding immunity, somewhat underplays the overall disease dynamics. Furthermore, assuming the transmission within each setting (very low, low, moderate, high) is homogenous is also a weakness as there is heterogeneity in transmission intensity, bite exposure, etc, within each setting.

    1. Reviewer #1 (Public Review):

      Summary: The authors investigated the function of Microrchidia (MORC) proteins in the human malaria parasite Plasmodium falciparum. Recognizing MORC's implication in DNA compaction and gene silencing across diverse species, the study aimed to explore the influence of PfMORC on transcriptional regulation, life cycle progression and survival of the malaria parasite. Depletion of PfMORC leads to the collapse of heterochromatin and thus to the killing of the parasite. The potential regulatory role of PfMORC in the survival of the parasite suggests that it may be central to the development of new antimalarial strategies.

      Strengths: The application of the cutting-edge CRISPR/Cas9 genome editing tool, combined with other molecular and genomic approaches, provides a robust methodology. Comprehensive ChIP-seq experiments indicate PfMORC's interaction with sub-telomeric areas and genes tied to antigenic variation, suggesting its pivotal role in stage transition. The incorporation of Hi-C studies is noteworthy, enabling the visualization of changes in chromatin conformation in response to PfMORC knockdown.

      Weaknesses: Although disruption of PfMORC affects chromatin architecture and stage-specific gene expression, determining a direct cause-effect relationship requires further investigation. Furthermore, while numerous interacting partners have been identified, their validation is critical and understanding their role in directing MORC to its targets or in influencing the chromatin compaction activities of MORC is essential for further clarification. In addition, the authors should adjust their conclusions in the manuscript to more accurately represent the multifaceted functions of MORC in the parasite.

    2. Reviewer #2 (Public Review):

      Summary: This paper, titled "Regulation of Chromatin Accessibility and Transcriptional Repression by PfMORC Protein in Plasmodium falciparum," delves into the PfMORC protein's role during the intra-erythrocytic cycle of the malaria parasite, P. falciparum. Le Roch et al. examined PfMORC's interactions with proteins, its genomic distribution in different parasite life stages (rings, trophozoites, schizonts), and the transcriptome's response to PfMORC depletion. They conducted a chromatin conformation capture on PfMORC-depleted parasites and observed significant alterations. Furthermore, they demonstrated that PfMORC depletion is lethal to the parasite.

      Strengths: This study significantly advances our understanding of PfMORC's role in establishing heterochromatin. The direct consequences of the PfMORC depletion are addressed using chromatin conformation capture.

      Weaknesses: The study only partially addressed the direct effects of PfMORC depletion on other heterochromatin markers.

    1. Reviewer #1 (Public Review):

      Anderson, Henikoff and Ahmad et al. performed a series of genomics assays to study Drosophila spermatogenesis. Their main approaches include (1) Using two different genetic mutants that arrest male germ cell differentiation at distinct stages, bam and aly mutant, they performed CUT&TAG using H3K4me2, a histone modification for active promoters and enhancers; (2) Using FACS sorted pure spermatocytes, they performed CUT&TAG using antibodies against RNA PolII phosphorylated Ser 2, H4K16ac, H3K9me2, H3K27me3, and ubH2AK118. They also compare these chromatin profiling results with the published single-cell and single-nucleus RNA-seq data. Their analyses are across the genome but the major conclusions are about the chromatin features of the sex chromosomes. For example, the X chromosome is lack of dosage compensation as well as inactivation in spermatocytes, while Y chromosome is activated but enriched with ubH2A in spermatocytes. Overall, this work provides high quality epigenome data in testes and in purified germ cells. The analyses are very informative to understand and appreciate the dramatic chromatin structure change during spermatogenesis in Drosophila.

    2. Reviewer #2 (Public Review):

      Anderson et al profiled chromatin features, including active chromatin marks, RNA polymerase II distribution, and histone modifications in the sex chromosomes of spermatogenic cells in Drosophila. The experiments and analyses were well done, by a combination of the latest and appropriate methods. They include appropriate numbers of replicates. Results were parsed by comparing them among wildtype and two mutant with different arrest stages in spermatogenesis, as well as in FACS-sorted spermatocytes. The authors profiled larval wing discs as reference-somatic cells, allowing focus on features associated with germ cells; comparisons to testis somatic cells provided further specificity. Results were further refined by categorizing genes of interest based on available single nucleus RNA seq expression profiles. The authors acknowledge that the paper's interpretations are based on subtractive logic using the mutants, but comment that more precise ways of staging would not have yielded sufficient sample for their methods.

      The authors documented differences in the distribution of RNAPIIS2p on some genes in germ cells vs somatic cells, the presence of a uH2A body beginning in early spermatocytes, and high levels of uH2A on the Y chromosome with little or none on the X, which is intriguing because uH2A is usually associated with silencing, yet the Y chromosome is active in spermatogenic cells. All of these are new, interesting, and important. Also importantly, the authors' data provide molecular details consistent with lack of MSCI, and lack of dosage compensation of the X chromosome in Drosophila spermatocytes.

    1. Reviewer #1 (Public Review):

      Suarez-Freire et al. analyzed here the function of the exocyst complex in the secretion of the glue proteins by the salivary glands of the Drosophila larva. This is a widely used, genetically accessible system in which the formation, maturation and precisely timed exocytosis of the glue secretory granules can be beautifully imaged. Using RNAi, the authors show that all units of the exocyst complex are required for exocytosis. They show that not just granule fusion with the plasma membrane is affected (canonical role), but also, with different penetrance, that glue protein is retained in the ER, secretory granules fail to fuse homo-typically or fail to acquire maturation features. The authors document these phenotypes and postulate specific roles for the exocyst in these additional processes to explain them: exocyst as an ER-Golgi tether and exocyst as a granule-granule tether. However, the evidence for these highly novel, potentially interesting roles would need to be more compelling to support direct involvement. For instance, the localization of exocyst to Golgi or to granule-granule contact sites does not seem substantial. Instead, it is possible that defects in Golgi traffic and granule homotypic fusion are not due to direct involvement of the exocyst in these processes, but secondary to a defect in canonical exocyst roles at the plasma membrane. A block in the last step of glue exocytosis could perhaps propagate backward in the secretory pathway to disrupt Golgi complexes or cause poor cellular health due to loss of cell polarity or autophagy. In the absence of stronger evidence for these other exocyst roles, I would suggest focusing the study on the canonical role (interesting, as it was previously reported that Drosophila exocyst had no function in the salivary gland and limited function elsewhere [DOI: 10.1034/j.1600-0854.2002.31206.x]), and leave the alternative roles for discussion and deeper study in the future.

    2. Reviewer #2 (Public Review):

      The manuscript from Wappner and Melani labs claims a novel for the exocyst subunits in multiple aspects of secretory granule exocytosis. This an intriguing paper that suggests multiple roles of the exocyst in granule maturation and fusion with roles at the ER/Golgi interface, TGN, and granule homotypic fusion.

      A key strength is the breadth of the assays and study of all 8 exocyst subunits in a powerful model system (fly larvae). Many of the assays are quantitated and roles of the exocyst in early phases of granule biogenesis have not been ascribed.

      However there are several weaknesses, both in terms of experimental controls, concrete statements about the granules (better resolution), and making a clear conceptual framework.

      Namely, why do KD of different exocysts have different effects on presumed granule formation? Why does just overexpression of a single subunit (Sec15) induce granule fusion? While the paper is fascinating, the major comments need to be addressed to really be able to make better sense of this work, which at present is hard to disentangle direct vs. secondary effects, especially as much of the TGN seems to be altered in the KDs. The authors conveniently ascribe many of the results to the holocomplex, but their own data (Fig. 4 and Fig. 6) are at odds with this.

      Major Comments:

      1. Resolution not sufficient. Identification of "mature secretory granules" (MSG) in Fig. 3 is based on low-resolution images in which the MSG are not clearly seen (see control in Fig. 3A) and rather appear as a diffuse haze, and not as clear granules. There may be granules here, but as shown it is not clear. Thus it would be helpful to acquire images at higher resolution (at the diffraction limit, or higher) to see and count the MSG. (Note: the authors are not clear on which objective was used. The 20x/0.8 NA or 63x/1.4 NA? Maybe the air objective as the resolution appears poor). They need to prove that the diffuse Sgs3-GFP haze is indeed due to MSG. Related it is unclear what are the granule structures that correspond to Immature secretory granules (ISG) and cells with mesh-like structures (MLS)? Similarly, Sgs3 images of KD of 8 exocyst subunits were interpreted to be identical, in Fig. 4, but the resolution is poor.

      2. Explanation of variability of exocyst KD on the appearance of MSG. What is remarkable is a highly variable effect of different subunit KD on the percentage of cells with MLS (Fig. 4C). Controls = 100 %, Exo70=~75% (at 19 deg), Sec3 = ~30%, Sec10 = 0%, Exo84 = 100% ... This is interesting for the functional exocyst is an octameric holocomples, thus why the huge subunit variability in the phenotypes? The trivial explanation is either: i) variable exocyst subunit KD (not shown) or ii) variability between experiments (no error bars are shown). Both should be addressed by quantification of the KD of different proteins and secondly by replicating the experiments. If their data holds up then the underlying mechanism here needs to be considered. (Note: there is some precedent from the autophagy field of differential exocyst effects).

      3. In the salivary glands the authors state that the exocyst is needed for Sgs3-GFP exit from the ER. First, Pearson's coefficient should be shown so as to quantitate the degree of ER localizations of all KDs. Second, there should be some rescue performed (if possible) to support specificity. Third, importantly other proteins that should traffic to the PM need to be shown to traffic normally so as to rule out a non-specific effect.

      4. Golgi: It is unclear from their model (Fig. 5) why after exocyst KD of Sec15 the cis-Golgi is more preserved than the TGN, which appears as large vacuoles. This is not quantitated and not shown for the 8 subunits.

      5. Acute/Chronic control: It would be nice to acutely block the exocyst so as to better distinguish if the effects observed are primary or secondary effects (e.g. on a recycling pathway).

      6. Higher Resolution imaging (EM or super-resolution) - this would be nice to better understand the morphological interpretations.

      7. Granule homotypic fusion. Strangely over-expression of just one subunit, Sec15-GFP, made giant secretory granules (SG) that were over 8 microns big! Why is that, especially if normally the exocyst is normally a holocomplex. Was this an effect that was specific to Sec15 or all exocyst subunits? Is the Sec15 level rate limiting in these cells? It may be that a subcomplex of Sec15/10 plays earlier roles, but in any case this needs to be addressed across all (or many) of the exocyst subcomplex members.

      In summary, there are clearly striking effects on secretory granule biogenesis by dysfunction of the exocyst, however right now it is hard to disentangle effects on ERGolgi traffic, loss of the TGN, and a problem in maturation or fusion of granules. It is also confusing if the entire exocyst holocomplex or subcomplex plays a key role.

    3. Reviewer #3 (Public Review):

      Freire and co-authors examine the role of the exocyst complex during the formation and secretion of mucins from secretory granules in the larval salivary gland of Drosophila melanogaster. Using transgenic lines with a tagged Sgs3 mucin the authors KD expression of exocyst subunit members and observe a defect in secretory granules with a heterogeneity of phenotypes. By carefully controlling RNAi expression using a Gal4-based system the authors can KD exocyst subunit expression to varying degrees. The authors find that the stronger the inhibition of expression of exocyst the earlier in the secretory pathway the defect. The manuscript is well written, the model system is physiological, and the techniques are innovative.

      My major concern is that the evidence underlying the fundamental claim of the manuscript that "the exocyst complex participates" in multiple secretory processes lacks direct evidence. It is clear from multiple lines of evidence, which are discussed by the authors, that exocyst is essential for an array of exocytic events. The fundamental concern is that loss of homeostasis on the plasma membrane proteome and lipidome might have severe pleiotropic effects on the cell. Indeed exocyst is essential, even in tissue culture conditions, and loss is lethal. Therefore, is an alternative explanation not that they are observing varying degrees of pleiotropic defect on the secretory pathway? Perhaps the authors have more evidence that exocyst is important for homeotypic fusion of the SGs, as supported by the localisation of Sec15 on the fusion sites.

      The second question that I think is important to address is, what exactly do the varying RNAi levels correspond to in terms of experiments, and have these been validated? Due to the fundamental claim being that the severity of the phenotype being correlated with the level of KD, I think validation of this model is absolutely essential.

    1. Reviewer #1 (Public Review):

      Summary:

      There is a long-believed dogma in the malaria field; a mosquito infected with a single oocyst is equally infectious to humans as another mosquito with many oocysts. This belief has been used for goal setting (and modeling) of malaria transmission-blocking interventions. While recent studies using rodent malaria suggest that the dogma may not be true, there was no such study with human P. falciparum parasites. In this study, the numbers of oocysts and sporozoite in the mosquitoes and the number of expelled sporozoites into artificial skin from the infected mosquito was quantified individually. There was a significant correlation between sporozoite burden in the mosquitoes and expelled sporozoites. In addition, this study showed that highly infected mosquitoes expelled sporozoites sooner.

      Strengths:

      • The study was conducted using two different parasite-mosquito combinations; one was lab-adapted parasites with Anopheles stephensi and the other was parasites, which were circulated in infected patients, with An. coluzzii. Both combinations showed statistically significant correlations between sporozoite burden in mosquitoes and the number of expelled sporozoites.

      • Usually, this type of study has been done in group bases (e.g., count oocysts and sporozoites at different time points using different mosquitoes from the same group). However, this study determined the numbers in individual bases after multiple optimization and validation of the approach. This individual approach significantly increases the power of correlation analysis.

      Weaknesses:

      • In a natural setting, most mosquitoes have less than 5 oocysts. Thus, the conclusion is more convincing if the authors perform additional analysis for the key correlations (Fig 3C and 4D) excluding mosquitoes with very high total sporozoite load (e.g., more than 5-oocyst equivalent load).

      • As written as the second limitation of the study, this study did not investigate whether all expelled sporozoites were equally infectious. For example, Day 9 expelled sporozoites may be less infectious than Day 11 sporozoites, or expelled sporozoites from high-burden mosquitoes may be less infectious because they experience low nutrient conditions in a mosquito. Ideally, it is nice to test the infectivity by ex vivo assays, such as hepatocyte invasion assay, and gliding assay at least for salivary sporozoites. But are there any preceding studies where the infectivity of sporozoites from different conditions was evaluated? Citing such studies would strengthen the argument.

      • Since correlation analyses are the main points of this paper, it is important to show 95%CI of Spearman rank coefficient (not only p-value). By doing so, readers will understand the strengths/weaknesses of the correlations. The p-value only shows whether the observed correlation is significantly different from no correlation or not. In other words, if there are many data points, the p-value could be very small even if the correlation is weak.

    2. Reviewer #2 (Public Review):

      Summary:

      The malaria parasite Plasmodium develops into oocysts and sporozoites inside Anopheles mosquitoes, in a process called sporogony. Sporozoites invade the insect salivary glands in order to be transmitted during a blood meal. An important question regarding malaria transmission is whether all mosquitoes harboring Plasmodium parasites are equally infectious. In this paper, the authors investigated the progression of P. falciparum sporozoite development in Anopheles mosquitoes, using a sensitive qPCR method to quantify sporozoites and an artificial skin system to probe for parasite expelling. They assessed the association between oocyst burden, salivary gland infection intensity, and sporozoites expelled.

      The data show that higher sporozoite loads are associated with earlier colonization of salivary glands and a higher prevalence of sporozoite-positive salivary glands and that higher salivary gland sporozoite burdens are associated with higher numbers of expelled sporozoites. Intriguingly, there is no clear association between salivary gland burdens and the prevalence of expelling, suggesting that most infections reach a sufficient threshold to allow parasite expelling during a mosquito bite. This important observation suggests that low-density gametocyte carriers, although less likely to infect mosquitoes, could nevertheless contribute to malaria transmission.

      Strengths:

      The paper is well written and the work is well conducted. The authors used two experimental models, one using cultured P. falciparum gametocytes and An. stephensi mosquitoes, and the other one using natural gametocyte infections in a field setup with An. coluzzii mosquitoes. Both studies gave similar results, reinforcing the validity of the observations. Parasite quantification relies on a robust and sensitive qPCR method, and parasite expelling was assessed using an innovative experimental setup based on artificial skin.

      Weaknesses:

      There is no clear association between the prevalence of sporozoite expelling and the parasite burden. However, high total sporozoite burdens are associated with earlier and more efficient colonization of the salivary glands, and higher salivary gland burdens are associated with higher numbers of expelled sporozoites. While these observations suggest that highly infected mosquitoes could transmit/expel parasites earlier, this is not directly addressed in the study. In addition, whether all expelled sporozoites are equally infectious is unknown. The central question, i.e. whether all infected mosquitoes are equally infectious, therefore remains open.

    3. Reviewer #3 (Public Review):

      Summary:

      This study uses a state-of-the-art artificial skin assay to determine the quantity of P. falciparum sporozoites expelled during feeding using mosquito infection (by standardised membrane feeding assay SMFA) using both cultured gametocytes and natural infection. Sporozoite densities in salivary glands and expelled into the skin are quantified using a well-validated molecular assay. These studies show clear positive correlations between mosquito infection levels (as determined by oocyst numbers), sporozoite numbers in salivary glands, and sporozoites expelled during feeding. This indicates potentially significant heterogeneity in infectiousness between mosquitoes with different infection loads and thus challenges the often-made assumption that all infected mosquitoes are equally infectious.

      Strengths:

      Very rigorously designed studies using very well validated, state-of-the-art methods for studying malaria infections in the mosquito and quantifying load of expelled sporozoites. This resulted in very high-quality data that was well-analyzed and presented. Both sources of gametocytes (cultures vs. natural infection) show consistent results further strengthening the quality of the results obtained.

      Weaknesses:

      As is generally the case when using SMFAs, the mosquito infections levels are often relatively high compared to wild-caught mosquitoes (e.g. Bombard et al 2020 IJP: median 3-4 ), and the strength of the observed correlations between oocyst sheet and salivary gland sporozoite load even more so between salivary gland sporozoite load and expelled sporozoite number may be dominated by results from mosquitoes with infection levels rarely observed in wild-caught mosquitoes. This could result in an overestimation of the importance of these well-observed positive relationships under natural transmission conditions.

      The results obtained from these excellently designed and executed studies very well supported their conclusion - with a slight caveat regarding their application to natural transmission scenarios

      This work very convincingly highlights the potential for significant heterogeneity in the infectiousness between individual P. falciparum-infected mosquitoes. Such heterogeneity needs to be further investigated and if again confirmed taken into account both when modelling malaria transmission and when evaluating the importance of low-density infections in sustaining malaria transmission.

    4. Reviewer #4 (Public Review):

      The study compares the number of sporozoites expelled by mosquitoes with different Plasmodium infection burden. To my knowledge this is the first report comparing the number of expelled P. falciparum sporozoites and their relation to oocyst burden (intact and ruptured) and residual sporozoites in salivary glands. The study provides important evidence on malaria transmission biology although conclusions cannot be drawn on direct impact on transmission.

      Although there is some evidence from malaria challenge studies that the burden of sporozoites injected into a host is directly correlated with the likelihood of infection, this has been done using experimental infection models which administer sporozoites intravenously. It is unclear whether the same correlation occurs with natural infections and what the actual threshold for infection may be. Host immunity and other host related factors also play a critical role in transmission and need to be taken into consideration; these have not been mentioned by the authors. This is of particular importance as host immunity is decreasing with reduction in transmission intensity.

      The natural infections reported in the study were not natural as the authors described. Gametocyte enrichment was done to attain high oocyst infection numbers. Studying natural infections would have been better without the enrichment step. The infected mosquitoes have much larger infection burden than what occurs in the wild.<br /> Nevertheless, the findings support the same results as in the experiments conducted in the Netherlands and therefore are of interest. I suggest the authors change the wording. Rather than calling these "natural" infections, they could be called, for example, "experimental infections with wild parasite strains".

      I do not believe the study results generate sufficient evidence to conclude that lower infection burden in mosquitoes is likely to result in changes to transmission potential in the field. In study limitations section, the authors say "In addition, our quantification of sporozoite inoculum size is informative for comparisons between groups of high and low-infected mosquitoes but does not provide conclusive evidence on the likelihood of achieving secondary infections. Given striking differences in sporozoite burden between different Plasmodium species - low sporozoite densities appear considerably more common in mosquitoes infected with P. yoelli and P. Berghei the association between sporozoite inoculum and the likelihood of achieving secondary infections may be best examined in controlled human infection studies. However, in the abstract conclusion the authors state "Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is associated with the number of expelled sporozoites and may need to be considered in estimations of transmission potential." Kindly consider ending the sentence at "expelled sporozoites." Future studies on CHMI can be recommended as a conclusion if authors feel fit.

    1. Reviewer #1 (Public Review):

      Summary:

      The present study by Mikati et al demonstrates an improved method for in-vivo detection of enkephalin release and studies the impact of stress on the activation of enkephalin neurons and enkephalin release in the nucleus accumbens (NAc). The authors refine their pipeline to measure met and leu enkephalin using liquid chromatography and mass spectrometry. The authors subsequently measured met and leu enkephalin in the NAc during stress induced by handling, and fox urine, in addition to calcium activity of enkephalinergic cells using fiber photometry. The authors conclude that this improved tool for measuring enkephalin reveals experimenter handling stress-induced enkephalin release in the NAc that habituates and is dissociable from the calcium activity of these cells, whose activity doesn't habituate. The authors subsequently show that NAc enkephalin neuron calcium activity does habituate to fox urine exposure, is activated by a novel weigh boat, and that fox urine acutely causes increases in met-enk levels, in some animals, as assessed by microdialysis.

      Strengths:

      A new approach to monitoring two distinct enkephalins and a more robust analytical approach for more sensitive detection of neuropeptides. A pipeline that potentially could help for the detection of other neuropeptides.

      Weaknesses:

      Some of the interpretations are not fully supported by the existing data or would require further testing to draw those conclusions. This can be addressed by appropriately tampering down interpretations and acknowledging other limitations the authors did not cover brought by procedural differences between experiments.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors aimed to improve the detection of enkephalins, opioid peptides involved in pain modulation, reward, and stress. They used optogenetics, microdialysis, and mass spectrometry to measure enkephalin release during acute stress in freely moving rodents. Their study provided better detection of enkephalins due to the implementation of previously reported derivatization reaction combined with improved sample collection and offered insights into the dynamics and relationship between Met- and Leu-Enkephalin in the Nucleus Accumbens shell during stress.

      Strengths:

      A strength of this work is the enhanced opioid peptide detection resulting from an improved microdialysis technique coupled with an established derivatization approach and sensitive and quantitative nLC-MS measurements. These improvements allowed basal and stimulated peptide release with higher temporal resolution, lower detection thresholds, and native-state endogenous peptide measurement.

      Weaknesses:

      The draft incorrectly credits itself for the development of an oxidation method for the stabilization of Met- and Leu-Enk peptides. The use of hydrogen peroxide reaction for the oxidation of Met-Enk in various biological samples, including brain regions, has been reported previously, although the protocols may slightly vary. Specifically, the manuscript writes about "a critical discovery in the stabilization of enkephalin detection" and that they have "developed a method of methionine stabilization." Those statements are incorrect and the preceding papers that relied on hydrogen peroxide reaction for oxidation of Met-Enk and HPLC for quantification of oxidized Enk forms should be cited. One suggested example is Finn A, Agren G, Bjellerup P, Vedin I, Lundeberg T. Production and characterization of antibodies for the specific determination of the opioid peptide Met5-Enkephalin-Arg6-Phe7. Scand J Clin Lab Invest. 2004;64(1):49-56. doi: 10.1080/00365510410004119. PMID: 15025428.

      Another suggestion for this draft is to make the method section more comprehensive by adding information on specific tools and parameters used for statistical analysis:

      1) Need to define "proteomics data" and explain whether calculations were performed on EIC for each m/z corresponding to specific peptides or as a batch processing for all detected peptides, from which only select findings are reported here. What type of data normalization was used, and other relevant details of data handling? Explain how Met- and Leu-Enk were identified from DIA data, and what tools were used.

      2) Simple Linear Regression Analysis: The text mentions that simple linear regression analysis was performed on forward and reverse curves, and line equations were reported, but it lacks details such as the specific variables being regressed (although figures have labels) and any associated statistical parameters (e.g., R-squared values).

      3) Violin Plots: The proteomics data is represented as violin plots with quartiles and median lines. This visual representation is mentioned, but there is no detail regarding the software/tools used for creating these plots.

      4) Log Transformation: The text states that the data was log-transformed to reduce skewness, which is a common data preprocessing step. However, it does not specify the base of the logarithm used or any information about the distribution before and after transformation.

      5) Two-Way ANOVA: Two-way ANOVA was conducted with peptide and treatment as independent variables. This analysis is described, but there is no information regarding the software or statistical tests used, p-values, post-hoc tests, or any results of this analysis.

      6) Paired T-Test: A paired t-test was performed on predator odor proteomic data before and after treatment. This step is mentioned, but specific details like sample sizes, and the hypothesis being tested are not provided.

      7) Correlation Analysis: The text mentions a simple linear regression analysis to correlate the levels of Met-Enk and Leu-Enk and reports the slopes. However, details such as correlation coefficients, and p-values are missing.

      8) Fiber Photometry Data: Z-scores were calculated for fiber photometry data, and a reference to a cited source is provided. This section lacks details about the calculation of z-scores, and their use in the analysis.

      9) Averaged Plots: Z-scores from individual animals were averaged and represented with SEM. It is briefly described, but more details about the number of animals, the purpose of averaging, and the significance of SEM are needed.

      A more comprehensive and objective interpretation of results could enhance the overall quality of the paper.

    3. Reviewer #3 (Public Review):

      Summary:

      This important paper describes improvements to the measurement of enkephalins in vivo using microdialysis and LC-MS. The key improvement is the oxidation of met- to prevent having a mix of reduced and oxidized methionine in the sample which makes quantification more difficult. It then shows measurements of enkephalins in the nucleus accumbens in two different stress situations - handling and exposure to predator odor. It also reports the ratio of released met- and leu-enkephalin matching what is expected from the digestion of proenkephalin. Measurements are also made by photometry of Ca2+ changes for the fox odor stressor. Some key takeaways are the reliable measurement of met-enkephalin, the significance of directly measuring peptides as opposed to proxy measurements, and the opening of a new avenue into the research of enkephalins due to stress based on these direct measurements.

      Strengths:

      -Improved methods for measurement of enkephalins in vivo.

      -Compelling examples of using this method.

      -Opening a new area of looking at stress responses through the lens of enkephalin concentrations.

      Weaknesses:

      1) It is not clear if oxidized met-enk is endogenous or not and this method eliminates being able to discern that.

      2) It is not clear if the spatial resolution is really better as claimed since other probes of similar dimensions have been used.

      3) Claims of having the first concentration measurement are not quite accurate.

      4) Without a report of technical replicates, the reliability of the method is not as well-evaluated as might be expected.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Mitochondria is the power plant of the cells including neurons. Thomas et al. characterized the distribution of mitochondria in dendrites and spines of L2/3 neurons from the ferret visual cortex, for which visually driven calcium responses of individual dendritic spines were examined. The authors analyzed the relationship between the position of mitochondria and the morphology or orientation selectivity of nearby dendrite spines. They found no correlation between mitochondrion location and spine morphological parameters associated with the strength of synapses, but correlation with the spine-somatic difference in orientation preference and local heterogeneity in preferred orientation of nearby spines. Moreover, they reported that the spines that have a mitochondrion in the head or neck are larger in size and have stronger orientation selectivity. Therefore, they proposed that "mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs."

      Strengths:<br /> This paper attempted to address a fundamental question: whether the distribution of the mitochondria along the dendrites of visual cortical neurons is associated with the functions of the spines, postsynaptic sites of excitatory synapses. Two state of the art techniques (2 photon Ca imaging of somata and spines and EM reconstructions of cortical pyramidal neurons) had been used on the same neurons, which provides a great opportunity to examine and correlate the functional properties of spine ultrastructure and spatial distribution of dendritic mitochondria. The conclusion that dendritic mitochondria support functional diversity of spines, but not synaptic strength is surprising and will inspire rethinking the role of mitochondria in synaptic functions.

      Weaknesses:<br /> Overall, the findings are intriguing. However, the interpretations of these findings need extra cautions due to the limitations of experimental designs and tools in this study. Neurons in L2/3 of visual cortex are highly diverse in functional properties, which is represented by not only orientation selectivity, but also direction selectivity and spatial/temporal frequency selectivity, etc. The orientation tuning with fixed spatial and temporal frequency may not be the optimal way of stimulating individual synaptic inputs to evaluate synaptic strengths. And the correlation between mitochondria distribution and spine activity evoked by other visual stimulation parameters is worth exploration. Moreover, GCaMP6s measures only spine Ca signals mediated by NMDA and voltage-gated Ca channels, but not sodium currents mediated by ligand-gated or voltage-gated channels. Thus, it reports only some aspects of synaptic properties. Future studies with new tools might help resolve those issues.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Mitochondria in synapses are important to support functional needs, such as local protein translation and calcium buffering. Thus, they may be strategically localized to maximize functional efficiency. In this study, the authors examine whether a correlation exists between the positioning of mitochondria and the structure or function of dendritic spines in the visual cortex of a ferret. Unexpectedly, the authors found no correlation between structural measures of synaptic strength to mitochondria positioning, which may indicate that they are not localized only because of the local energy needs. Instead, the authors discover that mitochondria are positioned preferably in spines that display heterogeneous responses, showing that they are localized to support specific functional needs probably distinct from ATP output.

      Strengths:<br /> The thorough analysis provides a yet unprecedented insight into the correlation between synaptic tuning and mitochondrial positioning in the visual cortex in vivo.

      Weaknesses:<br /> Analysis of this study suggested that mitochondrial volume does not correlate with structural measures of synaptic strength (e.g. spine volume and post-synaptic density (PSD) area), but it remains to be determined if mitochondria localization is also co-related to the frequency of synaptic activity, and what causes the correlation (driven by mitochondrial positioning, or by synaptic activity).

    3. Reviewer #3 (Public Review):

      Summary: This is a careful examination of the distribution of mitochondria in the basal dendrites of ferret visual cortex in a previously published volume electron microscopy dataset. The authors report that mitochondria are sparsely, as opposed to continuously distributed in the dendritic shafts, and that they tend to cluster near dendritic spines with heterogeneous orientation selectivity.

      Strengths: Volume EM is the gold standard for quantification of organelle morphology. An unusual strength of this particular dataset is that the orientation selectivity of the dendritic spines was measured by calcium imaging prior to EM reconstruction. This allowed the authors to assess how spines with varying selectivity are organized relative to mitochondria, leading to an intriguing observation that they localize to heterogeneous spine clusters. The analysis is carefully performed. An additional strength is the use of a carnivore with a sophisticated visual system.

      Weaknesses: Using threshold distances between mitochondria and synapses as opposed to absolute distances may overlook important relationships in the data.

    1. Joint Public Review:

      The work is of fundamental importance and is a useful structural resource to the SARS-CoV2 proteome. The work relies on large-scale SARS-CoV2 genomes and extracts frequent mutations in two key proteins NSP16 and NSP10. The impact of these mutations was studied using x-ray crystallogrpahy, biophysical assays and simulations to propose structural changes. The evidence is, therefore, convincing to suggest NSP10 conformational changes are limited. More analysis on functional implications would be useful to understand the underlying reasons of limited structural variability. The questions raised during the review of the original submission have been addressed by the authors.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study addressed an alternative hypothesis to temporal binding phenomena. In temporal binding, two events that are separated in time are "pulled" towards one another, such that they appear more coincidental. Previous research has shown evidence of temporal binding events in the context of actions and multisensory events. In this context, the author revisits the well-known Libet clock paradigm, in which subjects view a moving clock face, press a button at a time of their choosing to stop the clock, a tone is played (after some delay), and then subjects move the clock dial to the point where the one occurred (or when the action occurred). Classically, the reported clock time is a combination of the action and sound times. The author here suggests that attention can explain this by a mechanism in which the clock dial leads to a roving window of spatiotemporal attention (that is, it extends in both space and time around the dial). To test this, the author conducted a number of experiments where subjects performed the Libet clock experiment, but with a variety of different stimulus combinations. Crucially, a visual detection task was introduced by flashing a disc at different positions along the clock face. The results showed that detection performance was also "pulled" towards the action event or sensory event, depending on the condition. A model of roving spatiotemporal attention replicated these effects, providing further evidence of the attentional window.

      Strengths:<br /> The study provides a novel explanation for temporal binding phenomena, with clear and cleverly designed experiments. The results provide a nice fit to the proposed model, and the model itself is able to recapitulate the observed effects.

      Weaknesses:<br /> Despite the above, the paper could be clearer on why these effects are occurring. In particular, the control experiment introduced in Experiment 3 is not well justified. Why should a tactile stimulus not lead to a similar effect? There are possibilities here, but the author could do well to lay them out. Further, from a perspective related to the attentional explanation, other alternatives are not explored. The author cites and considers work suggesting that temporal binding relies on a Bayesian cue combination mechanism, in which the estimate is pulled towards the stimulus with the lowest variance, but this is not discussed. None of this necessarily detracts from the findings, but otherwise makes the case for attention less clear.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Temporal binding, generally considered a timing illusion, results from actions triggering outcomes after a brief delay, distorting perceived timing. The present study investigates the relationship between attention and the perception of timing by employing a series of tasks involving auditory and visual stimuli. The results highlight the role of attention in event timing and the functional relevance of attention in outcome binding.

      Strengths:<br /> - Experimental Design: The manuscript details a well-structured sequence of experiments investigating the attention effect in outcome binding. Thoughtful variations in manipulation conditions and stimuli contribute to a thorough and meaningful investigation of the phenomenon.<br /> - Statistical Analysis: The manuscript employs a diverse set of statistical tests, demonstrating careful selection and execution. This statistical approach enhances the reliability of the reported findings.<br /> - Narrative Clarity: Both in-text descriptions and figures provide clear insights into the experiments and their results, facilitating readers in following the logic of the study.

      Weaknesses:<br /> - Conceptual Clarity: The manuscript aims to integrate key concepts in human cognitive functions, including attention, timing perception, and sensorimotor processes. However, before introducing experiments, there's a need for clearer definitions and explanations of these concepts and their known and unknown interrelationships. Given the complexity of attention, a more detailed discussion, including specific types and properties, would enhance reader comprehension.

      - Computational Modeling: The manuscript lacks clarity in explaining the model architecture and setup, and it's unclear if control comparisons were conducted. These details are critical for readers to properly interpret attention-related findings in the modeling section. Providing a clearer overview of these aspects will improve the overall understanding of the computational models used.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this study, Millard and colleagues investigated if the analgesic effect of nicotine on pain sensitivity, assessed with two pain models, is mediated by Peak Alpha Frequency (PAF) recorded with resting state EEG. The authors found indeed that nicotine (4 mg, gum) reduced pain ratings during phasic heat pain but not cuff pressor algometry compared to placebo conditions. Nicotine also increased PAF (globally). However, mediation analysis revealed that the reduction in pain ratings elicited by the phasic heat pain after taking nicotine was not mediated by the changes in PAF. Also, the authors only partially replicated the correlation between PAF and pain sensitivity at baseline (before nicotine treatment). At the group-level no correlation was found, but an exploratory analysis showed that the negative correlation (lower PAF, higher pain sensitivity) was present in males but not in females. The authors discuss the lack of correlation.<br /> In general, the study is rigorous, methodology is sound and the paper is well-written. Results are compelling and sufficiently discussed.

      Strengths:<br /> Strengths of this study are the pre-registration, proper sample size calculation, and data analysis. But also the presence of the analgesic effect of nicotine and the change in PAF.

      Weaknesses:<br /> It would even be more convincing if they had manipulated PAF directly.

    2. Reviewer #2 (Public Review):

      Summary: The study by Millard et al. investigates the effect of nicotine on alpha peak frequency and pain in a very elaborate experimental design. According to the statistical analysis, the authors found a factor-corrected significant effect for prolonged heat pain but not for alpha peak frequency in response to the nicotine treatment.

      Strengths: I very much like the study design and that the authors followed their research line by aiming to provide a complete picture of the pain-related cortical impact of alpha peak frequency. This is very important work, even in the absence of any statistical significance. I also appreciate the preregistration of the study and the well-written and balanced introduction. However, it is important to give access to the preregistration beforehand.

      Weaknesses: The weakness of the study revolves around three aspects:

      (1) I am not entirely convinced that the authors' analysis strategy provides a sufficient signal-to-noise ratio to estimate the peak alpha frequency in each participant reliably. A source separation (ICA or similar) would have been better suited than electrode ROIs to extract the alpha signal. By using a source separation approach, different sources of alpha (mu, occipital alpha, laterality) could be disentangled.

      (2) Also, there's a hint in the literature (reference 49 in the manuscript) that the nicotine treatment may not work as intended. Instead, the authors' decision to use nicotine to modulate the peak alpha frequency and pain relied on other, not suitable work on chronic pain and permanent smokers. In the present study, the authors use nicotine treatment and transient painful stimulation on non-smokers.

      In my view, the discussion could be more critical for some aspects and the authors speculate towards directions their findings can not provide any evidence. Speculations are indeed very important to generate new ideas but should be restricted to the context of the study (experimental pain, acute interventions). The unfortunate decision to use nicotine severely hampered the authors' aim of the study.

      Impact: The impact of the study could be to show what has not worked to answer the research questions of the authors. The authors claim that their approach could be used to define a biomarker of pain. This is highly desirable but requires refined methods and, in order to make the tool really applicable, more accurate approaches at subject level.

    3. Reviewer #3 (Public Review):

      In this manuscript, Millard et al. investigate the effects of nicotine on pain sensitivity and peak alpha frequency (PAF) in resting state EEG. To this end, they ran a pre-registered, randomized, double-blind, placebo-controlled experiment involving 62 healthy adults who received either 4 mg nicotine gum (n=29) or placebo (n=33). Prolonged heat and pressure were used as pain models. Resting state EEG and pain intensity (assessed with a visual analog scale) were measured before and after the intervention. Additionally, several covariates (sex at birth, depression and anxiety symptoms, stress, sleep quality, among others) were recorded. Data was analyzed using ANCOVA-equivalent two-wave latent change score models, as well as repeated measures analysis of variance. Results do not show *experimentally relevant* changes of PAF or pain intensity scores for either of the prolonged pain models due to nicotine intake.

      The main strengths of the manuscript are its solid conceptual framework and the thorough experimental design. The researchers make a good case in the introduction and discussion for the need to further investigate the association of PAF and pain sensitivity. Furthermore, they proceed to carefully describe every aspect of the experiment in great detail, which is excellent for reproducibility purposes. Finally, they analyze the data from almost every possible angle and provide an extensive report of their results.<br /> The main weakness of the manuscript is the interpretation of these results. Even though some of the differences are statistically significant (e.g., global PAF, pain intensity ratings during heat pain), these differences are far from being experimentally or clinically relevant. The effect sizes observed are not sufficiently large to consider that pain sensitivity was modulated by the nicotine intake, which puts into question all the answers to the research questions posed in the study.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This manuscript introduced a new behavioral apparatus to regulate the animal's behavioral state naturally. It is a thermal maze where different sectors of the maze can be set to different temperatures; once the rest area of the animal is cooled down, it will start searching for a warmer alternative region to settle down again. They recorded with silicon probes from the hippocampus in the maze and found that the incidence of SWRs was higher at the rest areas and place cells representing a rest area were preferentially active during rest-SWRs as well but not during non-REM sleep.

      Strengths:<br /> The maze can have many future applications, e.g., see how the duration of waking immobility can influence learning, future memory recall, or sleep reactivation. It represents an out-of-the-box thinking to study and control less-studies aspects of the animals' behavior.

      Weaknesses:<br /> The impact is only within behavioral research and hippocampal electrophysiology.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, Vöröslakos and colleagues describe a new behavioural testing apparatus called ThermoMaze, which should facilitate controlling when a mouse is exploring the environment vs. remaining immobile. The floor of the apparatus is tiled with 25 plates, which can be individually heated, whereas the rest of the environment is cooled. The mouse avoids cooled areas and stays immobile on a heated tile. The authors systematically changed the location of the heated tile to trigger the mouse's exploratory behaviours. The authors showed that if the same plate stays heated longer, the mouse falls into an NREM sleep state. The authors conclude their apparatus allows easy control of triggering behaviours such as running/exploration, immobility and NREM sleep. The authors also carried out single-unit recordings of CA1 hippocampal cells using various silicone probes. They show that the location of a mouse can be decoded with above-chance accuracy from cell activity during sharp wave ripples, which tend to occur when the mouse is immobile or asleep. The authors suggest that consistent with some previous results, SPW-Rs encode the mouse's current location and any other information they may encode (such as past and future locations, usually associated with them).

      Strengths:<br /> Overall, the apparatus may open fruitful avenues for future research to uncover the physiology of transitions from different behavioural states such as locomotion, immobility, and sleep. The setup is compatible with neural recordings. No training is required.

      Weaknesses:<br /> I have a few concerns related to the authors' methodology and some limitations of the apparatus's current form. Although the authors suggest that switching between the plates forces animal behaviour into an exploratory mode, leading to a better sampling of the enclosure, their example position heat maps and trajectories suggest that the behaviour is still very stereotypical, restricted mostly to the trajectories along the walls or the diagonal ones (between two opposite corners). This may not be ideal for studying spatial responses known to be affected by the stereotypicity of the animal's trajectories. Moreover, given such stereotypicity of the trajectories mice take before and after reaching a specific plate, it may be that the stable activity of SWR-P ripples used for decoding different quadrants may be representing future and/or past trajectories rather than the current locations suggested by the authors. If this is the case, it may be confusing/misleading to call such activity ' place-selective firing', since they don't necessarily encode a given place per se (line 281).

      Another main study limitation is the reported instability of the location cells in the Thermomaze. This may be related to the heating procedure, differences in stereotypical sampling of the enclosure, or the enclosure size (too small to properly reveal the place code). It would be helpful if the authors separate pyramidal cells into place and non-place cells to better understand how stable place cell activity is. This information may also help to disambiguate the SPW-R-related limitations outlined above and may help to solve the poor decoding problem reported by the authors (lines 218-221).

    1. Reviewer #1 (Public Review):

      Summary: The study introduces and validates the Cyclic Homogeneous Oscillation (CHO) detection method to precisely determine the duration, location, and fundamental frequency of non-sinusoidal neural oscillations. Traditional spectral analysis methods face challenges in distinguishing the fundamental frequency of non-sinusoidal oscillations from their harmonics, leading to potential inaccuracies. The authors implement an underexplored approach, using the auto-correlation structure to identify the characteristic frequency of an oscillation. By combining this strategy with existing time-frequency tools to identify when oscillations occur, the authors strive to solve outstanding challenges involving spurious harmonic peaks detected in time-frequency representations. Empirical tests using electrocorticographic (ECoG) and electroencephalographic (EEG) signals further support the efficacy of CHO in detecting neural oscillations.

      Strengths:

      1. The paper puts an important emphasis on the 'identity' question of oscillatory identification. The field primarily identifies oscillations through frequency, space (brain region), and time (length, and relative to task or rest). However, more tools that claim to further characterize oscillations by their defining/identifying traits are needed, in addition to data-driven studies about what the identifiable traits of neural oscillations are beyond frequency, location, and time. Such tools are useful for potentially distinguishing between circuit mechanistic generators underlying signals that may not otherwise be distinguished. This paper states this problem well and puts forth a new type of objective for neural signal processing methods.

      2. The paper uses synthetic data and multimodal recordings at multiple scales to validate the tool, suggesting CHO's robustness and applicability in various real-data scenarios. The figures illustratively demonstrate how CHO works on such synthetic and real examples, depicting in both time and frequency domains. The synthetic data are well-designed, and capable of producing transient oscillatory bursts with non-sinusoidal characteristics within 1/f noise. Using both non-invasive and invasive signals exposes CHO to conditions which may differ in extent and quality of the harmonic signal structure. An interesting followup question is whether the utility demonstrated here holds for MEG signals, as well as source-reconstructed signals from non-invasive recordings.

      3. This study is accompanied by open-source code and data for use by the community.

      Weaknesses:

      1. Due to the proliferation of neural signal processing techniques that have been designed to tackle issues such as harmonic activity, transient and event-like oscillations, and non-sinusoidal waveforms, it is naturally difficult for every introduction of a new tool to include exhaustive comparisons of all others. Here, some additional comparisons may be considered for the sake of context, a selection of which follows, biased by the previous exposure of this reviewer. One emerging approach that may be considered is known as state-space models with oscillatory and autoregressive components (Matsuda 2017, Beck 2022). State-space models such as autoregressive models have long been used to estimate the auto-correlation structure of a signal. State-space oscillators have recently been applied to transient oscillations such as sleep spindles (He 2023). Therefore, state-space oscillators extended with auto-regressive components may be able to perform the functions of the present tool through different means by circumventing the need to identify them in time-frequency. Another tool that should be mentioned is called PAPTO (Brady 2022). Although PAPTO does not address harmonics, it detects oscillatory events in the presence of 1/f background activity. Lastly, empirical mode decomposition (EMD) approaches have been studied in the context of neural harmonics and non-sinusoidal activity (Quinn 2021, Fabus 2022). EMD has an intrinsic relationship with extrema finding, in contrast with the present technique. In summary, the existence of methods such as PAPTO shows that researchers are converging on similar approaches to tackle similar problems. The existence of time-domain approaches such as state-space oscillators and EMD indicates that the field of time-series analysis may yield even more approaches that are conceptually distinct and may theoretically circumvent the methodology of this tool.

      2. The criteria that the authors use for neural oscillations embody some operating assumptions underlying their characteristics, perhaps informed by immediate use cases intended by the authors (e.g., hippocampal bursts). The extent to which these assumptions hold in all circumstances should be investigated. For instance, the notion of consistent auto-correlation breaks down in scenarios where instantaneous frequency fluctuates significantly at the scale of a few cycles. Imagine an alpha-beta complex without harmonics (Jones 2009). If oscillations change phase position within a timeframe of a few cycles, it would be difficult for a single peak in the auto-correlation structure to elucidate the complex time-varying peak frequency in a dynamic fashion. Likewise, it is unclear whether bounding boxes with a pre-specified overlap can capture complexes that maneuver across peak frequencies.

      3. Related to the last item, this method appears to lack implementation of statistical inferential techniques for estimating and interpreting auto-correlation and spectral structure. In standard practice, auto-correlation functions and spectral measures can be subjected to statistical inference to establish confidence intervals, often helping to determine the significance of the estimates. Doing so would be useful for expressing the likelihood that an oscillation and its harmonic has the same auto-correlation structure and fundamental frequency, or more robustly identifying harmonic peaks in the presence of spectral noise. Here, the authors appear to use auto-correlation and time-frequency decomposition more as a deterministic tool rather than an inferential one. Overall, an inferential approach would help differentiate between true effects and those that might spuriously occur due to the nature of the data. Ultimately, a more statistically principled approach might estimate harmonic structure in the presence of noise in a unified manner transmitted throughout the methodological steps.

      4. As with any signal processing method, hyperparameters and their ability to be tuned by the user need to be clearly acknowledged, as they impact the robustness and reproducibility of the method. Here, some of the hyperparameters appear to be: a) number of cycles around which to construct bounding boxes and b) overlap percentage of bounding boxes for grouping. Any others should be highlighted by the authors and clearly explained during the course of tool dissemination to the community, ideally in tutorial format through the Github repository.

      5. Most of the validation demonstrations in this paper depict the detection capabilities of CHO. For example, the authors demonstrate how to use this tool to reduce false detection of oscillations made up of harmonic activity and show in simulated examples how CHO performs compared to other methods in detection specificity, sensitivity, and accuracy. However, the detection problem is not the same as the 'identity' problem that the paper originally introduced CHO to solve. That is, detecting a non-sinusoidal oscillation well does not help define or characterize its non-sinusoidal 'fingerprint'. An example problem to set up this question is: if there are multiple oscillations at the same base frequency in a dataset, how can their differing harmonic structure be used to distinguish them from each other? To address this at a minimum, Figure 4 (or a followup to it) should simulate signals at similar levels of detectability with different 'identities' (i.e. different levels and/or manifestations of harmonic structure), and evaluate CHO's potential ability to distinguish or cluster them from each other. Then, does a real-world dataset or neuroscientific problem exist in which a similar sort of exercise can be conducted and validated in some way? If the "what" question is to be sufficiently addressed by this tool, then this type of task should be within the scope of its capabilities, and validation within this scenario should be demonstrated in the paper. This is the most fundamental limitation at the paper's current state.

      References:

      Beck AM, He M, Gutierrez R, Purdon PL. An iterative search algorithm to identify oscillatory dynamics in neurophysiological time series. bioRxiv. 2022. p. 2022.10.30.514422. doi:10.1101/2022.10.30.514422

      Brady B, Bardouille T. Periodic/Aperiodic parameterization of transient oscillations (PAPTO)-Implications for healthy ageing. Neuroimage. 2022;251: 118974.

      Fabus MS, Woolrich MW, Warnaby CW, Quinn AJ. Understanding Harmonic Structures Through Instantaneous Frequency. IEEE Open J Signal Process. 2022;3: 320-334.

      Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI. Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. J Neurophysiol. 2009;102: 3554-3572.

      He M, Das P, Hotan G, Purdon PL. Switching state-space modeling of neural signal dynamics. PLoS Comput Biol. 2023;19: e1011395.

      Matsuda T, Komaki F. Time Series Decomposition into Oscillation Components and Phase Estimation. Neural Comput. 2017;29: 332-367.

      Quinn AJ, Lopes-Dos-Santos V, Huang N, Liang W-K, Juan C-H, Yeh J-R, et al. Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics. J Neurophysiol. 2021;126: 1190-1208.

    2. Reviewer #2 (Public Review):

      Summary: A new toolbox is presented that builds on previous toolboxes to distinguish between real and spurious oscillatory activity, which can be induced by non-sinusoidal waveshapes. Whilst there are many toolboxes that help to distinguish between 1/f noise and oscillations, not many tools are available that help to distinguish true oscillatory activity from spurious oscillatory activity induced in harmonics of the fundamental frequency by non-sinusoidal waveshapes. The authors present a new algorithm which is based on autocorrelation to separate real from spurious oscillatory activity. The algorithm is extensively validated using synthetic (simulated) data, and various empirical datasets from EEG, intracranial EEG in various locations and domains (i.e. auditory cortex, hippocampus, etc.).

      Strengths: Distinguishing real from spurious oscillatory activity due to non-sinusoidal waveshapes is an issue that has plagued the field for quite a long time. The presented toolbox addresses this fundamental problem which will be of great use for the community. The paper is written in a very accessible and clear way so that readers less familiar with the intricacies of Fourier transform and signal processing will also be able to follow it. A particular strength is the broad validation of the toolbox, using synthetic, scalp EEG, EcoG, and stereotactic EEG in various locations and paradigms.

      Weaknesses: At many parts in the results section critical statistical comparisons are missing (e.g. FOOOF vs CHO). Another weakness concerns the methods part which only superficially describes the algorithm. Finally, a weakness is that the algorithm seems to be quite conservative in identifying oscillatory activity which may render it only useful for analysing very strong oscillatory signals (i.e. alpha), but less suitable for weaker oscillatory signals (i.e. gamma).

    1. Reviewer #2 (Public Review):

      Summary:<br /> This paper further investigates the role of self-assembly of ice-binding bacterial proteins in promoting ice-nucleation. For the P. borealis Ice Nucleating Protein (PbINP) studied here, earlier work had already determined clearly distinct roles for different subdomains of the protein in determining activity. Key players are the water-organizing loops (WO-loops) of the central beta-solenoid structure and a set of non-water-organizing C-terminal loops, called the R-loops in view of characteristically located arginines. Previous mutation studies (using nucleation activity as a read-out) had already suggested the R-loops interact with the WO loops, to cause self-assembly of PbINP, which in turn was thought to lead to enhanced ice-nucleating activity. In this paper, the activities of additional mutants are studied, and a bioinformatics analysis on the statistics of the number of WO- and R-loops is presented for a wide range of bacterial ice-nucleating proteins, and additional electron-microscopy results are presented on fibrils formed by the non-mutated PbINP in E coli lysates.

      Strengths:<br /> -A very complete set of additional mutants is investigated to further strengthen the earlier hypothesis.<br /> -A nice bioinformatics analysis that underscores that the hypothesis should apply not only to PbINP but to a wide range of (related) bacterial ice-nucleating proteins.<br /> -Convincing data that PbINP overexpressed in E coli forms fibrils (electron microscopy on E coli lysates).

      Weaknesses:<br /> -The new data is interesting and further strengthens the hypotheses put forward in the earlier work. However, just as in the earlier work, the proof for the link between self-assembly and ice-nucleation remains indirect. Assembly into fibrils is shown for E coli lysates expressing non-mutated pbINP, hence it is indeed clear that pbINP self-associates. It is not shown however that the mutations that lead to loss of ice-nucleating activity also lead to loss of self-assembly. A more quantitative or additional self-assembly assay could shine light on this, either in the present or in future studies.

      -Also the "working model" for the self-assembly of the fibers remains not more than that, just as in the earlier papers, since the mutation-activity relationship does not contain enough information to build a good structural model. Again, a better model would require different kinds of experiments, that yield more detailed structural data on the fibrils.

    2. Reviewer #1 (Public Review):

      Summary: Hansen et al. dissect the molecular mechanisms of bacterial ice nucleating proteins mutating the protein systematically. They assay the ice nucleating ability for variants changing the R-coils as well as the coil capping motifs. The ice nucleation mechanism depends on the integrity of the R-coils, without which the multimerization and formation of fibrils are disrupted.

      Strengths: The effects of mutations are really dramatic, so there is no doubt about the effect. The variants tested are logical and progressively advance the story. The authors identify an underlying mechanism involving multimerization, which is plausible and compatible with EM data. The model is further shown to work in cells by tomography.

      Weaknesses: The theoretical model presented for how the proteins assemble into fibrils is simple, but not supported by much data.

    3. Reviewer #3 (Public Review):

      Summary: in this manuscript, Hansen and co-authors investigated the role of R-coils in the multimerization and ice nucleation activity of PbINP, an ice nucleation protein identified in Pseudomonas borealis. The results of this work suggest that the length, localization, and amino acid composition of R-coils are crucial for the formation of PbINP multimers.

      Strengths: The authors use a rational mutagenesis approach to identify the role of the length, localisation, and amino acid composition of R-coils in ice nucleation activity. Based on these results, the authors hypothesize a multimerization model. Overall, this is a multidisciplinary work that provides new insights into the molecular mechanisms underlying ice nucleation activity.

      Weaknesses: Several parts of the work appear cryptic and unsuitable for non-expert readers. The results of this work should be better described and presented.

    1. Reviewer #2 (Public Review):

      The strengths of this paper begin with the topic. Specifically, this approaches the question of how GPCR signals are directed to different outcomes under different conditions. There is rich complexity within this question; there are potentially billions of molecules that could interact with >800 human GPCRs and thousands of molecular effectors that may be activated. However, these outcomes are filtered through a small number of GPCR-interacting proteins that direct the signal.

      Experimentally, strengths include the initial experimental controls employed in characterizing their ever-important antisera, on which their conclusions hinge. In showing strong agonist-dependent and phosphosite-dependent recognition, as well as the addition of GRK inhibitors and eventually an antagonist and phosphatase treatment, the authors substantiate the role of the antiserum in recognizing their intended motifs. When employed, those antisera overall give clear indications of differences across variables in immunoblots, and while the immunocytochemical studies are qualitative and at times not visually significantly different across all variables, they are in large part congruent with the results of the immunoblots and provide secondary supporting evidence for the author's major claims. One confounding aspect of the immunocytochemical images is the presence of background pThr306/pThr310, like in Figures 4C and 6A and B. In 4A and C, while the immunoblot shows a complete absence of pThr306/pThr310, Figure 4C's immuno image does not. In 6A and B, a similar presence of pThr306/pThr310 is seen in the vehicle image, which is not strikingly over-shown by the MOMBA-treated image. In addition, only Ser/Thr residues of the C-terminus were investigated, while residues of ICL3 have long been known to direct signaling in many GPCRs. Because of the presentations of sequences, it was not clear whether there were residues of ICL3 that have the possibility of being involved.

      It may be possible and further testable to show whether the residues that maintain basal phosphorylation could also be tissue-specific, especially considering the presence of pThr306/pThr310 detection in both the Figure 6A immunoblot's vehicle lane (but not MOMBA lane). The aforementioned detection in the immunocytochemical vehicle image could support differential basal phosphorylation in the enteroendocrine cells. Should this be the case, it could have confounded the initial mass-spec screen wherein the Ser residues were basally active in that cell type, while in a distinct cell type that may not be the case. Lastly, should normalized quantification of these images be possible, it may help in clearing up these hard-to-compare visual images.

      It is noted that aspects of the writing and presentation may lead to confusion for some readers, but this does not affect the overall significance of the work.

      Nevertheless, in terms of the global goal of the authors, the indication of differences in phosphorylation states between tissues is still evident across the experiments. Accordingly, the paper is overall strongly well-researched, well-controlled, and the conclusions made by the authors are data-grounded and not overly extrapolated. Providing direct evidence for the tissue-based branch of the barcode hypothesis is both novel and significant for the field, and the paper leaves room for much more exciting research to be done in the area, opening the door for new questions and hypotheses.

    2. Reviewer #1 (Public Review):

      Summary:

      Very systematic generation of phosphosite-specific antisera to monitor FFA2 phosphorylation in native cells and tissues. Provides evidence that FFA2 phosphorylation is tissue-specific.

      Strengths:

      Technical tour de force, rigorous experimental approaches taking advantage of wt and DREADD versions of FFA2 to make sure that ligand-and receptor-dependent phosphorylations are indeed specific to FFA2.

      Weaknesses:

      In this reviewer's opinion, the only shortcoming is that the implications of tissue-selective phosphorylation barcoding remain unexplored. However, I understand that tool development is required before tools are used to provide insight into the functional outcomes of receptor regulation by phosphorylation. The study is a technical tour de force to generate highly valuable tools. I have no major criticisms but suggest adding an additional aspect to the discussion as specified below.

      Arrestins are highly flexible and dynamic phosphate sensors. If two arrestins have to recognize 800 different phosphorylated GPCRs, is it possible that any barcode serves the same purpose: arrestin recognition followed by signal arrest and internalization? Because phosphorylation barcoding is linked to G protein-independent signaling, which is claimed by some but is experimentally unsupported, and because arrestins don't transduce receptor signals on their own (they only scaffold signaling components and shuttle receptors within cellular compartments), I would also include this option in the discussion, i.e. that the different barcodes are a way nature may have chosen to regulate the location of 800 GPCRs by only 2 arrestins.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors generate and characterize two phosphospecific antisera for FFA2 receptor and claim a "bar code" difference between white fat and Peyers patches.

      Strengths:

      The question is interesting and the antibody characterization is convincing.

      Weaknesses:

      The mass spectrometry analysis is not convincing because the method is not quantitative (no SILAC, TMT, internal standards etc). Figure 1 shows single tryptic peptides with one and two phosphorylation fragmentations as claimed, but there is no data testing the abundance of these so the differences claimed between cell treatment conditions are not established.

      The blot analysis cannot distinguish 296/7 but it does convincingly show an agonist increase. Can the authors clarify why the amount of constitutive phosphorylation is much higher in the example blot in Figure 2 than in Figure 3? It would be helpful to quantify this across more than one example, like in Figures 4 and 5 for tissue.

      Compound 101 is shown in Figure 2 to block barrestin recruitment. I agree this suggests phosphorylation mediated by GRK2/3 but this is not tested. The new antibodies should be good for this so I don't understand why the indirect approach.

      The conditions used to inhibit dephosphorylation are not specified, the method only says "phosphatase inhibitors". How do the authors know that low P at 306/7 in white fat is not a result of dephosphorylation during sample preparation? If these sites are GRK2/3 dependent (see above) then does adipose tissue lack this GRK?

    1. Reviewer #1 (Public Review):

      Summary:<br /> This important study from Godneeva et al. establishes a Drosophila model system for understanding how the activity of Tif1 proteins is modified by SUMO. The authors convincingly show that Bonus, like homologous mammalian Tif1 proteins, is a repressor, and that it interacts with other co-repressors Mi-2/NuRD and SetDB1 in Drosophia ovaries and S2 cells. They also show that Bonus is SUMOylated by Su(var)2-10 on one lysine at its N-terminus to promote its interaction with SetDB1. By combining biochemistry with an elegant reporter gene approach, they show that SUMOylation is important for Bonus interaction with SetDB1, and that this SUMO-dependent interaction triggers high levels of H3K9me3 deposition and gene silencing. While there are still major questions of how SUMO molecularly promotes this process, the authors conducted several experiments that will guide future work. For example, they showed that SUMOylation likely indirectly promotes Bon interaction with SetDB1 because mostly unSUMOylated Bon copurifies with SetDB1. They also show that SUMOylated and unSUMOylated Bon differentially localize within the cell, and preventing Bon SUMOylation alters its subcellular localization. These important experiments disfavor a simple model where SUMO bridges the Bon/SetDB1 interaction and hint at a more complex multi-step assembly process that regulates Bon-dependent transcriptional silencing.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors analyze the functions and regulation of Bon, the sole Drosophila ortholog of the TIF1 family of mammalian transcriptional regulators. Bon has been implicated in several developmental programs, however the molecular details of its regulation have not been well understood. Here, the authors reveal the requirement of Bon in oogenesis, thus establishing a previously unknown biological function for this protein. Furthermore, careful molecular analysis convincingly established the role of Bon in transcriptional repression. This repressor function requires interactions with the NuRD complex and histone methyltransferase SetDB1, as well as sumoylation of Bon by the E3 SUMO ligase Su(var)2-10. Overall, this work represents a significant advance in our understanding of the functions and regulation of Bon and, more generally, the TIF1 family. Since Bon is the only TIF1 family member in Drosophila, the regulatory mechanisms delineated in this study may represent the prototypical and important modes of regulation of this protein family. The presented data are rigorous and convincing. As discussed below, this study can be strengthened by a demonstration of a direct association of Bon with its target genes, and by analysis of the biological consequences of the K20R mutation.

      Strengths:<br /> 1. This study identified the requirement for Bon in oogenesis, a previously unknown function for this protein.<br /> 2. Identified Bon target genes that are normally repressed in the ovary, and showed that the repression mechanism involves the repressive histone modification mark H3K9me3 deposition on at least some targets.<br /> 3. Showed that Bon physically interacts with the components of the NuRD complex and SetDB1. These protein complexes are likely mediating Bon-dependent repression.<br /> 4. Identified Bon sumoylation site (K20) that is conserved in insects. This site is required for repression in a tethering transcriptional reporter assay, and SUMO itself is required for repression and interaction with SetDB1. Interestingly, the K20-mutant Bon is mislocalized in the nucleus in distinct puncta.<br /> 5. Showed that Su(var)2-10 is a SUMO E3 ligase for Bon and that Su(var)2-10 is required for Bon-mediated repression.

      Weaknesses:<br /> The study would be strengthened by demonstrating a direct recruitment of Bon to the target genes identified by RNA-seq. - It appears that the authors have attempted such an experiment, but it was not successful due to the current technical limitations, as the authors describe in their rebuttal.

      The second area where the manuscript can be improved is to analyze the biological function of the K20R mutant Bonus protein. The molecular data suggest that this residue is important for function, and it would be important to confirm this in vivo. - Fig. 5G indeed shows that the 3KR mutant is deficient in inducing repression, which partially addresses this concern. In the future, it would be interesting to test if the single K20R is similarly deficient, and to analyze any resulting phenotypes.

    1. Reviewer #1 (Public Review):

      In their study, Zhou et al. unveil the pivotal role of ULK4 in conjunction with STK36, shedding light on their collective impact on GLI2 phosphorylation and the subsequent activation of the SHH pathway. The research delves deep into the intricate interactions between ULK4 and various components of the SHH pathway within the primary cilium.

      The main strength of the study lies in the careful and systematic sequence of logical methods. The authors apply the expression of a range of different deletion and mutation constructs and carry out a comprehensive biochemical study of the consequences of depletion and reintroduction of various components in the context of STK36 and ULK4.

      Their findings reveal that ULK4 forms dynamic interactions with a complex composed of STK36 and GLI2. It is proposed that ULK4 acts as a scaffold, facilitating the essential interaction between STK36 and GLI2, thereby driving GLI2 phosphorylation by STK36. Notably, the research reveals that the N-terminal pseudokinase domain of ULK4 binds to Stk36, while the C-terminal regulatory domain of ULK4 interacts with Gli2. Moreover, the study presents compelling evidence for co-localization of ULK4 and STK36 with GLI2 at the ciliary tip within NIH 3T3 cells. Importantly, ULK4 and STK36 mutually rely on each other for their accumulation at this ciliary tip.

      This intricate mechanism, orchestrated by ULK4, brings to light the nuanced modulation of the SHH pathway. The research is substantiated by rigorous Co-IP experiments, kinase assays, and confocal imaging localization studies. To unravel the fine details of GLI2 phosphorylation at the primary cilium tip, the authors meticulously employ a diverse array of mutated and wild-type constructs of STK36 and ULK4.

      In summary, the studiy provide compelling insights into the intricate regulation of signaling pathways. Zhou et al.'s work on ULK4 and STK36 in the SHH pathway deepen our understanding of these complex processes, offering potential avenues for drug development, particularly in the context of cancer therapeutics.

    2. Reviewer #2 (Public Review):

      The authors provide solid molecular and cellular evidence that ULK4 and STK36 not only interact, but that STK36 is targeted (transported?) to the cilium by ULK4. Their data helps generate a model for ULK4 acting as a scaffold for both STK36 and its substrate, Gli2, which appear to co-localise through mutual binding to ULK4. This makes sense, given the proposed role of most pseuodkinases as non-catalytic signaling hubs. There is also an important mechanistic analysis performed, in which ULK4 phosphorylation in an acidic consensus by STK36 is demonstrated using IP'd STK36 or an inactive 'AA' mutant, which suggests this phosphorylation is direct.

      The major strength of the study is the well-executed combination of logical approaches taken, including expression of various deletion and mutation constructs and the careful (but not always quantified in immunoblot) effects of depleting and adding back various components in the context of both STK36 and ULK3, which broadens the potential impact of the work. The biochemical analysis of ULK4 phosphorylation appears to be solid, and the mutational study at a particular pair of phosphorylation sites upstream of an acidic residue (notably T2023) is further strong evidence of a functional interaction between ULK4/STK36. The possibility that ULK4 requires ATP binding for these mechanisms is not approached, though would provide significant insight: for example it would be useful to ask if Lys39 in ULK4 is involved in any of these processes, because this residue is likely important for shaping the ULK4 substrate-binding site as a consequence of ATP binding; this was originally shown in PMID 24107129 and discussed more recently in PMID: 33147475 in the context of the large amount of ULK4 proteomics data released.

      The discussion is excellent, and raises numerous important future work in terms of potential transportation mechanisms of this complex. It also explains why the ULK4 pseudokinase domain is linked to an extended C-terminal region. Does AF2 predict any structural motifs in this region that might support binding to Gli2?

      A weakness in the study, which is most evident in Figure 1, where Ulk4 siRNA is performed in the NIH3T3 model (and effects on Shh targets and Gli2 phosphorylation assessed), is that we do not know if ULK4 protein is originally present in these cells in order to actually be depleted. Also, we are not informed if the ULK4 siRNA has an effect on the 'rescue' by HA-ULK4; perhaps the HA-ULK4 plasmid is RNAi resistant, or if not, this explains why phosphorylation of Gli2 never reaches zero? Given the important findings of this study, it would be useful for the authors to comment on this, and perhaps discuss if they have tried to evaluate endogenous levels of ULK4 (and Stk36) in these cells using antibody-based approaches, ideally in the presence and absence of Shh. The authors note early on the large number of binding partners identified for ULK4, and siRNA may unwittingly deplete some other proteins that could also be involved in ULK4 transport/stability in their cellular model.

      The sequence of ULK4 siRNAs is not included in the materials and methods as far as I can see, though this is corrected in the next version of the manuscript.

    3. Reviewer #3 (Public Review):

      In this manuscript, Zhou et al. demonstrate that the pseudokinase ULK4 has an important role in Hedgehog signaling by scaffolding the active kinase Stk36 and the transcription factor Gli2, enabling Gli2 to be phosphorylated and activated.<br /> Through nice biochemistry experiments, they show convincingly that the N-terminal pseudokinase domain of ULK4 binds Stk36 and the C-terminal Heat repeats bind Gli2.

      Lastly, they show that upon Sonic Hedgehog signaling, ULK4 localizes to the cilia and is needed to localize Stk36 and Gli2 for proper activation.

      This manuscript is very solid and methodically shows the role of ULK4 and STK36 throughout the whole paper, with well controlled experiments. The phosphomimetic and incapable mutations are very convincing as well.<br /> I think this manuscript is strong and stands as is, and there is no need for additional experiments.

      Overall, the strengths are the rigor of the methods, and the convincing case they bring for the formation of the ULK4-Gli2-Stk36 complex. There are no weaknesses noted. I think a little additional context for what is being observed in the immunofluorescence might benefit readers who are not familiar with these cell types and structures.

      The revised manuscript has improved some of the unclear areas.

    1. Reviewer #1 (Public Review):

      This work provides a new dataset of 71,688 images of different ape species across a variety of environmental and behavioral conditions, along with pose annotations per image. The authors demonstrate the value of their dataset by training pose estimation networks (HRNet-W48) on both their own dataset and other primate datasets (OpenMonkeyPose for monkeys, COCO for humans), ultimately showing that the model trained on their dataset had the best performance (performance measured by PCK and AUC). In addition to their ablation studies where they train pose estimation models with either specific species removed or a certain percentage of the images removed, they provide solid evidence that their large, specialized dataset is uniquely positioned to aid in the task of pose estimation for ape species.

      The diversity and size of the dataset make it particularly useful, as it covers a wide range of ape species and poses, making it particularly suitable for training off the shelf pose estimation networks or for contributing to the training of a large foundational pose estimation model. In conjunction with new tools focused on extracting behavioral dynamics from pose, this dataset can be especially useful in understanding the basis of ape behaviors using pose.

      Overall this work is a terrific contribution to the field, and is likely to have a significant impact on both computer vision and animal behavior.

      Strengths:<br /> - Open source dataset with excellent annotations on the format, as well as example code provided for working with it<br /> - Properties of the dataset are mostly well described<br /> - Comparison to pose estimation models trained on humans vs monkeys, finding that models trained on human data generalized better to apes than the ones trained on monkeys, in accordance with phylogenetic similarity. This provides evidence for an important consideration in the field: how well can we expect pose estimation models to generalize to new species when using data from closely or distantly related ones.<br /> - Sample efficiency experiments reflect an important property of pose estimation systems, which indicates how much data would be necessary to generate similar datasets in other species, as well as how much data may be required for fine tuning these types of models (also characterized via ablation experiments where some species are left out)<br /> - The sample efficiency experiments also reveal important insights about scaling properties of different model architectures, finding that HRNet saturates in performance improvements as a function of dataset size sooner than other architectures like CPMs (even though HRNets still perform better overall).

    1. Reviewer #2 (Public Review):

      The authors have used transcranial magnetic stimulation (TMS) and motor evoked potentials (MEPs) and TMS-electroencephalography (EEG) evoked potentials (TEPs) to determine how experimental heat pain could induce alterations these metrics.
In Experiment 1 thermal stimuli were administered over the forearm, with the first, second and third block of stimuli consisting of warm but non painful (pre-pain block), painful heat (pain block) and warm but non-painful (post-pain block) temperatures respectively. Painful stimuli led to an increase in the amplitude of the fronto-central N45, with a larger increase associated with higher pain ratings. Experiments 2 and 3 studied the correlation between the increase in the N45 in pain and the effects of a sham stimulation protocol/higher stimulation intensity. They found that the centro-frontal N45 TEP was decreased in acute pain. While their results are in line with reductions seen in motor evoked responses during pain and effort was made to address possible confounding factors (study 2 and 3). This study opens the way for the use exploration of cortical excitability outside M1 in acute pain, and potentially in chronic pain instances. While there is still open discussion on the best strategy to handle auditory and mechanical tactile noise, technological and methodological improvements seen in the last years have greatly improved the signal to noise ratio of TMS-EEG.

    1. Reviewer #1 (Public Review):

      Summary: The study provides valuable insights into the role of PfMORC in Plasmodium's epigenetic regulation, backed by a comprehensive methodological approach. The overarching goal was to understand the role of PfMORC in epigenetic regulation during asexual blood stage development, particularly its interactions with ApiAP2 TFs and its potential involvement in the regulation of genes vital for Plasmodium virulence. To achieve this, they conducted various analyses. These include a proteomic analysis to identify nuclear proteins interacting with PfMORC, a study to determine the genome-wide localization of PfMORC at multiple developmental stages, and a transcriptomic analysis in PfMORCHA-glmS knockdown parasites. Taken together, this study suggests that PfMORC is involved in chromatin assemblies that contribute to the epigenetic modulation of transcription during the asexual blood stage development.

      Strengths: The study employed a multi-faceted approach, combining proteomic, genomic, and transcriptomic analyses, providing a holistic view of PfMORC's role. The proteomic analysis successfully identified several nuclear proteins that may interact with PfMORC. The genome-wide localization offered valuable insights into PfMORC's function, especially its predominant recruitment to subtelomeric regions. The results align with previous findings on PfMORC's interaction with ApiAP2 TFs. Notably, the authors meticulously contextualized their findings with prior research, including pre-prints, adding credibility to their work.

      Weaknesses: While the study identifies potential interacting partners and loci of binding, direct functional outcomes of these interactions remain an inference. The authors heavily rely on past research for some of their claims. While it strengthens some assertions, it might indicate a lack of direct evidence in the current study for particular aspects. The declaration that PfMORC may serve as an attractive drug target is substantial. While the data suggests its involvement in essential processes, further studies are required to validate its feasibility as a drug target.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This is a paper entitled "Plasmodium falciparum MORC protein modulates gene expression through interaction with heterochromatin" describes the role of PfMORC during the intra-erythrocytic cycle of Plasmodium falciparum. Garcia et al. investigated the PfMORC-interacting proteins and PfMORC genomic distribution in trophozoites and schizonts. They also examined the transcriptome of the parasites after partial knockdown of the transcript.

      Strengths:<br /> This study is a significant advance in the knowledge of the role of PfMORC in heterochromatin assembly. It provides an in-depth analysis of the PfMORC genomic localisation and its correlation with other chromatin marks and ApiAP2 transcription factor binding.

      Weaknesses:<br /> However, most of the conclusions are based on the function of interacting proteins and the genomic localisation of the protein. The authors did not investigate the direct effects of PfMORC depletion on heterochromatin marks. Furthermore, the results of the transcriptomic analysis are puzzling as 50% of the transcripts are downregulated, a phenotype not expected for a heterochromatin marker.

    1. Reviewer #1 (Public Review):

      This is an interesting, informative, and well-designed study that combines theoretical and experimental methodologies to tackle the phenomenon of higher-resolution structures/substructures in model biomolecular condensates. The results should be published. However, there is significant room for improvement in the presentation and interpretation of the results. As it stands, the precise definition of "frustration," which is a main theme of this manuscript (as emphasized in the title), is not sufficiently well articulated. This situation should be rectified to avoid "frustration" becoming a "catch-all" term without a clear perimeter of applicability rather than a precise, informative description of the physical state of affairs. There are also a few other concerns, e.g., regarding interpretation of correlation of phase-separation critical temperature and transfer free energy of amino acid residues as well as the difference between critical temperature and onset temperature, and the way the simulated configurations are similar to that of gyroids. Accordingly, the manuscript should be revised to address the following:

      1. It is accurately pointed out on p.4 that elastin-like polypeptides (ELPs) undergo heat-induced phase separation and therefore exhibit lower critical solution temperatures (LCSTs). But it is not entirely clear how this feature is reproduced by the authors' simulation. A relationship between simulated surface tension and "transition temperature" is provided in Fig.1C; but is the "transition temperature" (authors cited ref.41 by Urry) the same as critical temperature? Apparently, Urry's Tt is "critical onset temperature", the temperature when phase separation happens at a given polymer concentration. This is different from the (global) critical temperature LCST - though the two may be correlated-or not-depending on the shape of the phase boundary. Moreover, is the MOFF coarse-grained forcefield (first step in the multi-scale simulation), by itself, capable of reproducing heat-induced phase separation in a way similar to the forcefield of Dignon et al., ACS Cent Sci 5, 821-230 (2019)? Or is this temperature-dependent effect appearing only subsequently, after the implementation of the MARTINI and/or all-atom steps? Clarification is needed. To afford a more informative context for the authors' introductory discussion, the aforementioned Dignon et al. work and the review by Cinar et al. [Chem Eur J 25, 13049-13069 (2019)], both touching upon the physical underpinning of the LCST feature of elastin, should also be cited along with refs.41-43.

      2. "Frustration" and "frustrated" are used prominently in the manuscript to characterize certain observed molecular configurations (11 times total, in both the title and in the abstract). Apparently, it is the most significant conceptual pronouncement of this work, hence its precise meaning is of central importance to the authors' thesis. Whereas one should recognize that the theoretical and experimental observations are striking without invocation of the "frustration" terminology, usage of the term can be useful if it offers a unifying conceptual framework. However, as it stands, a clear definition of the term "frustration" is lacking, leaving readers to wonder what molecular configurations are considered "frustrated" and what are not (i.e., is the claim of observation of frustration falsifiable?). For instance, "frustrated microphase separation" appears in both the title and abstract. A logical question one may ask is: "Are all microphase separations frustrated"? If the answer is in the affirmative, does invocation of the term "frustration" add anything to our physical insight? If the answer is not in the affirmative, then how does one distinguish between microphase separations that are frustrated from those that are not frustrated? Presumably all simulated and experimental molecular configurations in the present study are those of lowest free energy for the given temperature. In other words, they are what they are. In the discussion about frustrated phase separation on p.13, for example, the authors appear to refer to the fact that chain connectivity is preventing hydrophobic residues to come together in a way to achieve the most favorable interactions as if there were no chain connectivity (one may imagine in that case all the hydrophobic residues will form a large cluster without microphase separation). Is this what the authors mean by "frustration"? If that's true, isn't that merely stating the obvious, at least for the observed microphase separation? In general, does "frustration" always mean deviation of actual, physical molecular configurations from certain imagined/hypothetical/reference molecular configurations, and therefore dependent upon the choice of the imagined reference configuration? If this is how the authors apply the term "frustration" in the present work, what is the zero-frustration reference state/configuration for microphase separation? And, similarly, what is the zero-frustration reference state/configuration when frustrated EPS-water interactions are discussed (~p.14-p.15, Fig.5)? How do non-frustrated water-protein interactions look like? Is the classic clathrate-like organization of water hydrogen bonds around small nonpolar solute "frustrated"?

      3. In the discussion about the correlation of various transfer free energy scales for amino acids and Urry's critical onset temperature (ref.41) on p.11 and Fig.4, is there any theoretical relationship to be expected between the interactions among amino acids of ELPs and their critical onset temperatures? While a certain correlation may be intuitively expected if the free energy scale "is working", is there any theoretical insight into the mathematical form of this relationship? A clarifying discussion is needed because it bears logically on whether the observed correlation or lack thereof for different transfer energy scales is a good indication of the adequacy of the energy scales in describing the actual physical interactions at play. This question requires some prior knowledge of the expected mathematical relationship between interaction parameters and onset temperature.

      4. To provide a more comprehensive context for the present study, it is useful to compare the microphase separation seen in the authors' simulation with the micelle-like structures observed in recent simulated condensed/aggregated states of hydrophobic-polar (HP) model sequences in Statt et al., J Chem Phys 152, 075101 (2020) [see esp. Fig.6] and Wessén et al., J Phys Chem B 126, 9222-9245 (2022) [see, e.g., Fig.10].

      5. "Gyroid-like morphology" is mentioned several times in the manuscript (p.4, p.8, p.17, Fig.S3). This is apparently an interesting observation, but a clear explanation is lacking. A more detailed and specific discussion, perhaps with additional graphical presentations, should be provided to demonstrate why the simulated condensed-phase ELP configurations are similar to the classical description of gyroid as in, e.g., Terrones & Mackay, Chem Phys Lett 207, 45-50 (1993) and Lambert et al., Phil Trans R Soc A 354, 2009-2023 (1996).

    2. Reviewer #2 (Public Review):

      Summary:<br /> Latham A.P. et al. apply simulations and FLIM to analyse several di-block elastin-like polypetides and connect their sequence to the micro-structure of coacervates resulting from their phase-separation.

      Strengths:<br /> Understanding the molecular grammar of phase separating proteins and the connection with mesoscale properties of the coacervates is highly relevant. This work provides insights into micro-structures of coacervates resulting from di-block polypetides.

      Weaknesses:<br /> The results apply to a very specific architecture (di-block polypetides) with specific sequences.

    1. Reviewer #1 (Public Review):

      This remarkable and creative study from the Asbury lab examines the extent to which mechanical coupling can coordinate the growth of two microtubules attached to isolated kinetochores. The concept of mechanical coupling in kinetochores was proposed in the mid-1990s and makes sense intuitively (as shown in Fig. 1B). But intuitive concepts still need experimental validation, which this study at long last provides. The experiments described in this paper will serve as a foundation for the transition of an intuitive concept into a robust, quantitative, and validated model.

      The introduction cites at least 5 papers that proposed mechanical coupling in kinetochores, as well as 5 theoretical studies on mechanical coupling within microtubule bundles, so it's clear that this manuscript will be of considerable interest to the field. The intro is very well written (as is the manuscript in general), but I recommend that the authors include a brief review of the variable size of k-fibers across species, to help the reader contextualize the problem. For example, budding yeast kinetochores are built around a single microtubule (Winey 1995), so mechanical coupling is not relevant for this species.

      Indeed, the use of yeast kinetochores to study mechanical coupling is an odd fit, because these structures did not evolve to support such coupling. There is no doubt that yeast kinetochores are useful for demonstrating mechanical coupling and for measuring the stiffnesses necessary to achieve coupling, but I recommend that the authors include a caveat somewhere in the manuscript, perhaps in the place where they discuss their use of simple elastic coupling as compared to viscoelastic coupling or strain-stiffening. It's easy to imagine that kinetochores with large k-fibers might require complex coupling mechanisms, for example. And is mechanical coupling relevant for holocentric kinetochores like those found in C. elegans?

      The paper shows considerable rigour in terms of experimental design, statistical analysis, and presentation of results. My only comment on this topic relates to the bandwidth of the dual-trap assay, which I recommend describing in the main text in addition to the methods. For example, the authors note that the stage position is updated at 50 Hz. The authors should clearly explain that this bandwidth is sufficiently fast relative to microtubule growth speeds.

      After describing their measurements, the authors use Monte Carlo simulations to show that pauses are essential to a quantitative explanation of their coupling data. Apparently, there is a history of theoretical approaches to coupling, as the introduction cites 5 theoretical studies.

      Overall, this paper is rigorous, creative, and thought-provoking. The unique experimental approach developed by the Asbury lab shows great promise, and I very much look forward to future iterations.

    2. Reviewer #2 (Public Review):

      Leeds et al. employ elegant in vitro experiments and sophisticated numerical modeling to investigate the ability of mechanical coupling to coordinate the growth of individual microtubules within microtubule bundles, specifically k-fibers. While individual microtubules naturally polymerize at varying rates, their growth must be tightly regulated to function as a cohesive unit during chromosome segregation. Although this coordination could potentially be achieved biochemically through selective binding of polymerases and depolymerases, the authors demonstrate, using a novel dual laser trap assay, that mechanical coupling alone can also coordinate the growth of in vitro microtubule pairs.

      By reanalyzing recordings of single microtubules growing under constant force (data from their own previous work), the authors investigate the stochastic kinetics of pausing and show that pausing is suppressed by tension. Using a constant shared load, the authors then show that filament growth is tightly coordinated when pairs of microtubules are mechanically coupled by a material with sufficient stiffness. In addition, the authors develop a theoretical model to describe both the natural variability and force dependence of growth, using no freely adjustable parameters. Simulations based on this model, which accounts for stochastic force-dependent pausing and intrinsic variability in microtubule growth rate, fit the dual-trap data well.

      Overall, this study illuminates the potential of mechanical coupling in coordinating microtubule growth and offers a framework for modeling k-fibers under shared loads. The research exhibits meticulous technical rigor and is presented with exceptional clarity. It provides compelling evidence that a minimal, reconstituted biological system can exhibit complex behavior. As it currently stands, the paper is highly informative and valuable to the field.

    1. Reviewer #1 (Public Review):

      The paper offers interesting insight into the allosteric communication pathways of the CTFR protein. A mutation to this protein can cause cystic fibrosis and both synthetic and endogenous ligands exert allosteric control of the function of this pivotal enzyme. The current study utilizes Gaussian Network Models (GNMs) of various substrate and mutational states of CFTR to quantify and characterize the role of individual residues in contributing to two main quantities that the authors deem important for allostery: transfer entropy (TE) and cross correlation. I found the TE of the Apo system and the corresponding statistical analysis particularly compelling. The authors updated the manuscript nicely to include the limitations of the chosen model (GNM) and thus allow the reader to assess the limitations of the results. I appreciated the comprehensive discussion of a proposed mechanism by which allostery is achieved in the protein (though I would have put that in the introduction and had it motivate the choice of methods). This discussion allows the reader to place the allosteric mechanism of this protein in the broader context of protein allostery.

    2. Reviewer #2 (Public Review):

      In this study, the authors used ANM-LD and GNM-based Transfer Entropy to investigate the allosteric communications network of CFTR. The modeling results are validated with experimental observations. Key residues were identified as pivotal allosteric sources and transducers and may account for disease mutations.

      The paper is well written and the results are significant for understanding CFTR biology.

    1. Reviewer #1 (Public Review):

      The authors have previously employed micrococcal nuclease tethered to various Mcm subunits to the cut DNA to which the Mcm2-7 double hexamers (DH) bind. Using this assay, they found that Mcm2-7 DH are located on many more sites in the S. cerevisiae genome than previously shown. They then demonstrated that these sites have characteristics consistent with origins of DNA replication, including the presence of ARS consensus sequences, the location of very inefficient sites of initiation of DNA replication in vivo, and for the most part are free of nucleosomes. They contain a G-C skew and they locate to intergenic regions of the genome. The authors suggest, consistent with published single molecule results, that there are many more potential origins in the S. cerevisiae genome than previously annotated, but also conclude that many of the newly discovered Mcm2-7 DH are very infrequently used as active origins of DNA replication.

      The results are convincing and are consistent with prior observations. The analysis of the origin associated features is informative.

      Specific Comments:

      1. Page 8. The addition of an estimate of the most active origins using Southern blotting is fine for highly active origins, but how was Southern blotting used to calculate that 1-2% of cells in the eight cohort have an Mcm complex loaded.

    2. Reviewer #2 (Public Review):

      By mapping the sites of the Mcm2-7 replicative helicase loading across the budding yeast genome using high-resolution chromatin endogenous cleavage or ChEC, Bedalov and colleagues find that these markers for origins of DNA replication are much more broadly distributed than previously appreciated. Interestingly, this is consistent with early reconstituted biochemical studies that showed that the ACS was not essential for helicase loading in vitro (e.g. Remus et al., 2009, PMID: 19896182). To accomplish this, they combined the results of 12 independent assays to gain exceptionally deep coverage of Mcm2-7 binding sites. By comparing these sites to previous studies mapping ssDNA generated during replication initiation, they provide evidence that at least a fraction of the 1600 most robustly Mcm2-7-bound sequences act as origins. A weakness of the paper is that the group-based (as opposed to analyzing individual Mcm2-7 binding sites) nature of the analysis prevents the authors from concluding that all of the 1,600 sites mentioned in the title act as origins. The authors also show that the location of Mcm2-7 location after loading are highly similar in the top 500 binding sites, although the mobile nature of loaded Mcm2-7 double hexamers prevents any conclusions about the location of initial loading. Interestingly, by comparing subsets of the Mcm2-7 binding sites, they find that there is a propensity of at least a subset of these sites to be nucleosome depleted, to overlap with at least a partial match to the ACS sequence (found at all of the most well-characterized budding yeast origins), and a GC-skew centered around the site of Mcm loading. Each of these characteristics is related to previously characterized S. cerevisiae origins of replication.

      Overall, this manuscript greatly broadens the number of sites that are capable of loading Mcm2-7 in budding yeast cells and shows that a subset of these additional sites act as replication origins. Although these studies show that the sequence specificity of S. cerevisiae replication origins still sets it apart from metazoan origins, the ability to license and initiate replication from sites with increasing sequence divergence suggests a previously unappreciated versatility.

      Specific points:

      1. The authors need to come up with a consistent name for loaded Mcms at an origin. In the manuscript they variously use 'MCM'(page 3), 'Mcm complexes' (page 4), 'MCM double hexamer' (page 6), and 'double-helicase' (page 8) to describe the Mcm2-7 complexes detected in their ChEC experiments. They should pick one name (Mcm2-7 double hexamer or MCM double hexamer would be the most accurate and clear) and stick with it throughout the manuscript.

      2. The authors state that "It is notable that, when Mcm is present, it is present predominantly as a single double-hexamer (right panel of Figure 3A), and that this remains true across the entire range of abundance shown in Figure 3A." This statement would be improved by prefacing it with "Based on the size of the protected regions" or some other clarifying statement that lets the reader know what they should be looking for in the data in 3A.


      3. The revised statements that "We have previously used Southern blotting to demonstrate that approximately 90% of the DNA at one of the most acive known origins (ARS1103) is cut by Mcm-MNase (Foss et al., 2021), and to thereby infer that 90% of cells have a double- helicase loaded at this origin. Using this as a benchmark, we estimate that ~1-2 % cells have an Mcm complex loaded at the Mcm binding sites in the eighth cohort (ranks 1401- 1600)." partially clarifies how the authors came to the 1-2% number, however, the calculation is still unclear. Based on Figure 1A, there are at least three logs (1,00 fold) difference in the number of CBMSs between the best origins (which is what they state the 90% comes from) to anywhere close to the 1400-1600 rank. Seems like the number should be at best 0.1% and probably less. Either way, the authors need to explain this calculation either in the text or in the text. This sort of number tends to get thrown around later and without a clear explanation readers cannot evaluate its credibility. 


      4. The authors make the point in the introduction and discussion that recent single-molecule studies of replication origins indicate that as many as 20% of the origins identified are outside of known origins. This is very interesting but there seems to be a missed opportunity of comparing the location of these origins with the CBMSs. It would improve the manuscript to include some sort of comparison rather than using only the much older and less accurate ssDNA analysis.

      5. The authors state at the end of the first paragraph on page 6 that the ChEC data is "very reproducible" which does seem to be the case but it is a little confusing for the knowledgeable reader since one would expect quite different results for an HU arrested strain versus a asynchronous or G1 arrested strain. This is hidden in the analysis in Figure S1 since 13 experiments are compared against one in each plot, however, if one x one comparisons were done there would certainly be substantial differences (or if there are not, there is a problem with the data - e.g. HU arrested cells should lack licensing at early firing origins).

      6. On page 8 the authors state, "First, clear peaks of ssDNA extend down to the eighth cohort..." This seems to be stretching the data. There are clear peaks for the first five cohorts and then there is a notable change with any peak being much broader, extending over at least 10,000 bp. The authors should reconsider their statement here as it is not well supported by the data.

      7. There is one last missing reference. Wherever Eaton et al, 2010 is referenced Berbenetz, et al, 2010 (full ref below) should also be referenced as they come to very similar conclusions.

      Berbenetz, N. M., Nislow, C. & Brown, G. W. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6, (2010).

    1. Reviewer #1 (Public Review):

      This paper describes the discovery, functional analysis and structure of TcaP, a protein encoded by the Vibrio phage satellite PLE, that forms a size-determining scaffold around PLE procapsids made from helper phage ICP1 structural proteins.

      The system displays a fascinating similarity to the P2/P4 system, which had previously been unique in its use of a dominant, size-determining external scaffolding protein (Sid). An interesting observation is that PLE appears to be dependent on small capsids for efficient transduction, a phenomenon not previously seen in headful packaging phage/satellite pairs. It is not clear why this is the case.

      The work is interesting, comprehensive and of high quality. The reconstruction and modeling statistics are good; unfortunately, although the map has clear alpha-helical density around the threefold axes, the TcaP model does not include this critical region. The comparison to Sid provides an illustration of probable convergent evolution.

      The paper constitutes an important contribution to the field of phage and virus structure and assembly, with implications for understanding the evolution of phage satellites and for macromolecular assembly processes in general.

    2. Reviewer #2 (Public Review):

      Phage satellites are fascinating elements that have evolved to hijack phages for induction, packaging, and transfer, promoting their widespread dissemination in nature. It is remarkable how different satellites use conserved strategies of parasitism, utilising unrelated proteins that perform similar roles in their cognate elements. In the current manuscript, Dr. Seed and coworkers elucidated the mechanism used by one family of satellites, the PLEs, to produce small capsids, a process that inhibits phage reproduction while increasing PLE transmission. The work is presented beautifully, and the results are astonishing. The authors identified the gene responsible for generating the small capsids, characterised its role in the PLE transfer and phage inhibition, and determined the structure of the PLE-sized small capsids. It is a truly impressive piece of work.

    3. Reviewer #3 (Public Review):

      The manuscript by Boyd and co-authors "A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodelling hijacked phage coat proteins into small capsids" reports important results related to self-defending mechanisms that bacteria are used against phages that infect them. It has been shown previously that bacteria produce phage-inducible chromosomal island-like elements (PLE) that encode proteins that are integrated into bacterial genome. These proteins are used by bacteria to amend the phage capsids and to create phage-like particles (satellites) that move between cells and transfer the genetic material of PLE to another bacteria. That study highlights the interactions between a PLE-encoded protein, TcaP, and capsid proteins of the phage ICP1.

      The manuscript is well written, provides a lot of new information and the results are supported by biochemical analysis.

    1. Joint Public Review:

      In this study, Wang et al extend on their previous finding of a novel quality control pathway, the MAGIC pathway. This pathway allows misfolded cytosolic proteins to become imported into mitochondria and there they are degraded by the LON protease. Using a screen, they identify Snf1 as a player that regulates MAGIC. Snf1 inhibits mitochondrial protein import via the transcription factor Hap4 via an unknown pathway. This allows cells to adapt to metabolic changes, upon high glucose levels, misfolded proteins become imported and degraded, while during low glucose growth conditions, import of these proteins is prevented, and instead import of mitochondrial proteins is preferred.

      This is a nice and well-structured manuscript reporting on important findings about a regulatory mechanism of a quality control pathway. The findings are obtained by a combination of mostly fluorescent protein-based assays. Findings from these assays support the claims well.

      While this study convincingly describes the mechanisms of a mitochondria-associated import pathway using mainly model substrates, my major concern is that the physiological relevance of this pathway remains unclear: what are endogenous substrates of the pathway, to which extent are they imported and degraded, i.e. how much does MAGIC contribute to overall misfolded protein removal (none of the experiments reports quantitative "flux" information). Lastly, it remains unclear by which mechanism Snf1 impacts on MAGIC or whether it is "only" about being outcompeted by mitochondrial precursors.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Sumarac et al investigate differences in globus pallidus internus (GPi) spike activity and short- and long-term plasticity of direct pathway projections in patients with Parkinson's disease (PD) and dystonia. Their main claims are that GPi neurons exhibit distinct characteristics in these two disorders, with PD associated with specific power-frequency oscillations and dystonia showing lower firing rates, increased burstiness, and less regular activity. Additionally, long-term plasticity and synaptic depression appear to differ between the two conditions. The authors suggest that these findings support the concept of hyperfunctional GPi output in PD and hypofunctional output in dystonia, possibly driven by variations in the plasticity of striato-pallidal synapses. Overall enthusiasm is relatively high, but I think the discussion omits discussing findings that don't align well with standard models.

      Strengths:<br /> These types of studies are valuable as the data arise from patients who have dystonia or PD. This could provide unique insights into disease pathophysiology that might not be recapitulated in animal systems work.

      Weaknesses:<br /> - The rate model and indirect/direct pathway ideas lack explanatory power; too much of the hypothesis generation and discussion in this manuscript is set in the context of these old ideas. Their data in my view emphasize this somewhat emphatically. Most patients with the 'hypokinetic' movement disorder PD have dystonia as a part of their motor features. Dystonia is a form of excessive muscle activation that on the one hand is 'hyperkinetic' but on the other usually decreases the speed of motor tasks, even in patients with primary dystonia. Similarly, PD patients display a bewildering variety of hyperkinetic manifestations as well (rest tremor, dystonia, dyskinesia). If these are truly independent classifications, i.e. hyper- versus hypo-kinetic, the authors must acknowledge that there is considerable overlap in the spike activity across groups - numerous dystonia patients display higher discharge rates than the majority of the PD sample. Based on the firing rate alone, it would not be possible to distinguish these groups.

      - If beta power is pathognomonic of parkinsonism, the authors found no differences in beta-related spike discharges across the groups. One would have predicted greater beta power in PD than in primary dystonia. This should be discussed explicitly and an interpretation should be provided.

      - The study lacks a healthy control group, making it challenging to differentiate disease-specific findings from normal variations in GPi activity and plasticity. Although this is acknowledged in the discussion, this complicates the interpretation of the results. The sample sizes for PD and dystonia patients are relatively small, and the study combines various forms of dystonia, potentially masking subtype-specific differences. A larger and more homogenous sample could enhance the study's reliability.

      - While they mention that data are available on request, sharing data openly would increase transparency and allow for independent validation of the results. It is unclear how sharing deidentified data would compromise patient privacy or present ethical issues of any kind, as claimed by the authors.

      - They appropriately acknowledge several limitations, such as the inability to use pharmacological interventions and the need for further research in the chronic setting.

      - The manuscript highlights differences in GPi activity and plasticity between PD and dystonia but could provide more context on the clinical implications of these findings, particularly regarding what the implications would be novel paradigms for deep brain stimulation.

      - While statistical tests are mentioned, the manuscript could benefit from a more detailed presentation of statistical methods, including correction for multiple comparisons and effect sizes. Did the authors consider different recording sites within each patient as independent observations? I think this is not appropriate if that was the case.

      - The manuscript could elaborate on the potential mechanisms underlying the observed differences in GPi activity and plasticity and their relevance to the pathophysiology of PD and dystonia.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors investigated how neuronal activity and metrics of plasticity using local electrical stimulation in the GPi were different between Parkinson's disease and dystonia patients.

      Strengths:<br /> The introduction highlights the importance of the work and the fundamental background needed to understand the rest of the paper. It also clearly lays out the novelty (i.e., that the dynamics of plastic effects in GPi between dystonia and PD have not been directly compared).

      The methods are clearly described and the results are well organized in the figures.

      The results are strong with measurements from a large population of patients for each disease group and with distinct findings for each group.

      Weaknesses:<br /> The discussion was hard to follow in several places, making it difficult to fully appreciate how well the authors' claims and conclusions are justified by their data, mostly in relation to the plasticity results. It may help to summarize the relevant findings for each section first and then further expand on the interpretation, comparison with prior work, and broader significance. Currently, it is hard to follow each section without knowing which results are being discussed until the very end of the section. With the current wording in the "Neuronal correlates.." section, it is not always clear which results are from the current manuscript, and where the authors are referring to past work.

      Also, I felt that more discussion could be used to highlight the significance of the current results by comparing and/or contrasting them to prior relevant work and mechanisms. The novelty or impact is not very clear as written. Could this be further substantiated in the Discussion?

      Some specific comments and questions about the Discussion:<br /> Lines 209-211 - This sentence was hard to understand, could it be clarified?<br /> Lines 211-213 - What do phasic and tonic components mean exactly? Could this be specifically defined? Are there specific timescales (as referred to in Intro)?<br /> Lines 215-217 - It's not clear what was delayed in dystonia, and how the authors are trying to contrast this with the faster time course in PD. I think some of this is explained in the introduction, but could also be re-summarized here as relevant to the results discussed.<br /> Lines 223-224 - I'm not sure I follow the implication that network reorganization leads to delayed functional benefits. Could this be further elaborated?

      Could the absence of a relationship between FR and disease in PD be discussed?

      It wasn't very clear how the direct pathway can be attributed to plasticity changes if the GPi makes up both the direct and indirect pathways. Could this be further clarified?

      The mechanism of short- and long-term plasticity as applied in the protocols used in this work are outlined in reference to previous citations [15, 16, 18]. Because this is a central aspect of the current work and interpreting the results, it was difficult to appreciate how these protocols provide distinct metrics of short and long-term plasticity in GPi without some explanation of how it applies to the current work and the specific mechanisms. It would also help to be able to better link how the results fit with the broader conclusions.

      In the Conclusion, it was difficult to understand the sentence about microcircuit interaction (line 232) and how it selectively modulates the efficacy of target synapses. Some further explanation here would be helpful. Also, it was not clear how these investigations (line 237) provide cellular-level support for closed-loop targeting. Could the reference to closed-loop targeting also be further explained?

      How is the burst index calculated (Methods)?

      Figures and figure captions are missing some details:

      Fig. 1 - What does shading represent?

      Fig. 2 - Can the stimulation artifact be labeled so as not to be confused with the physiological signal? Is A representing the average of all patients or just one example? Are there confidence intervals for this data as it's not clear if the curves are significantly different or not (may not be important to show if just one example)? Same for D. What is being plotted in E? Is this the exponential fitted on data? Can this be stated in the figure citation directly so readers don't have to find it in the text, where it may not be directly obvious which figure the analyses are being applied towards?

      What does shading here represent?

    1. Reviewer #1 (Public Review):

      Summary:<br /> Rigor in the design and application of scientific experiments is an ongoing concern in preclinical (animal) research. Because findings from these studies are often used in the design of clinical (human) studies, it is critical that the results of the preclinical studies are valid and replicable. However, several recent peer-reviewed published papers have shown that some of the research results in cardiovascular research literature may not be valid because their use of key design elements is unacceptably low. The current study is designed to expand on and replicate previous preclinical studies in nine leading scientific research journals. Cardiovascular research articles that were used for examination were obtained from a PubMed Search. These articles were carefully examined for four elements that are important in the design of animal experiments: use of both biological sexes, randomization of subjects for experimental groups, blinding of the experimenters, and estimating the proper size of samples for the experimental groups. The findings of the current study indicate that the use of these four design elements in the reported research in preclinical research is unacceptably low. Therefore, the results replicate previous studies and demonstrate once again that there is an ongoing problem in the experimental design of preclinical cardiovascular research.

      Strengths:<br /> This study selected four important design elements for study. The descriptions in the text and figures of this paper clearly demonstrate that the rate of use of all four design elements in the examined research articles was unacceptably low. The current study is important because it replicates previous studies and continues to call attention once again to serious problems in the design of preclinical studies, and the problem does not seem to lessen over time.

      Weaknesses:<br /> The current study uses both descriptive and inferential statistics extensively in describing the results. The descriptive statistics are clear and strong, demonstrating the main point of the study, that the use of these design elements is quite low, which may invalidate many of the reported studies. In addition, inferential statistical tests were used to compare the use of the four design elements against each other and to compare some of the journals. The use of inferential statistical tests appears weak because the wrong tests may have been used in some cases. However, the overall descriptive findings are very strong and make the major points of the study.

    2. Reviewer #2 (Public Review):

      Summary<br /> This study replicates a 2017 study in which the authors reviewed papers for four key elements of rigor: inclusion of sex as a biological variable, randomization of subjects, blinding outcomes, and pre-specified sample size estimation. Here they screened 298 published papers for the four elements. Over a 10 year period, rigor (defined as including any of the 4 elements) failed to improve. They could not detect any differences across the journals they surveyed, nor across models. They focused primarily on cardiovascular disease, which both helps focus the research but limits the potential generalizability to a broader range of scientific investigation. There is no reason, however, to believe rigor is any better or worse in other fields, and hence this study is a good 'snapshot' of the progress of improving rigor over time.

      Strengths<br /> The authors randomly selected papers from leading journals, e.g., PNAS). Each paper was reviewed by 2 investigators. They pulled papers over a 10-year period, 2011 to 2021, and have a good sample of time over which to look for changes. The analysis followed generally accepted guidelines for a structured review.

      Weaknesses<br /> The authors did not use the exact same journals as they did in the 2017 study. This makes comparing the results complicated. Also, they pulled papers from 2011 to 2021, and hence cannot assess the impact of their own prior paper.<br /> The authors write "the proportion of studies including animals of both biological sexes generally increased between 2011 and 2021, though not significantly (R2= 0.0762, F(1,9)= 0.742, p= 0.411 (corrected p=8.2". This statement is not rigorous because the regression result is not statistically significant. Their data supports neither a claim of an increase nor a decrease over time. A similar problem repeats several times in the remainder of their results presentation.<br /> I think the Introduction and the Discussion are somewhat repetitive and the wording could be reduced.

      Impact and Context<br /> Lack of reproducibility remains an enormous problem in science, plaguing both basic and translational investigations. With the increased scrutiny on rigor, and requirements at NIH and other funding agencies for more rigor and transparency, one would expect to find increasing rigor, as evidenced by authors including more study design elements (SDEs) that are recommended. This review found no such change, and this is quite disheartening. The data implies that journals-editors and reviewers-will have to increase their scrutiny and standards applied to preclinical and basic studies. This work could also serve as a call to action to investigators outside of cardiovascular science to reflect on their own experiences and when planning future projects.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This work successfully identified and validated TRLs in hepatic metastatic uveal melanoma, providing new horizons for enhanced immunotherapy. Uveal melanoma is a highly metastatic cancer that, unlike cutaneous melanoma, has a limited effect on immune checkpoint responses, and thus there is a lack of formal clinical treatment for metastatic UM. In this manuscript, the authors described the immune microenvironmental profile of hepatic metastatic uveal melanoma by sc-RNAseq, TCR-seq, and PDX models. Firstly, they identified and defined the phenotypes of tumor-reactive T lymphocytes (TRLs). Moreover, they validated the activity of TILs by in vivo PDX modeling as well as in vitro co-culture of 3D tumorsphere cultures and autologous TILs. Additionally, the authors found that TRLs are mainly derived from depleted and late-activated T cells, which recognize melanoma antigens and tumor-specific antigens. Most importantly, they identified TRLs-associated phenotypes, which provide new avenues for targeting expanded T cells to improve cellular and immune checkpoint immunotherapy.

      Strengths:<br /> Jonas A. Nilsson, et al. has been working on new therapies for melanoma. The team has also previously performed the most comprehensive genome-wide analysis of uveal melanoma available, presenting the latest insights into metastatic disease. In this work, the authors performed paired sc-RNAseq and TCR-seq on 14 patients with metastatic UM, which is the largest single-cell map of metastatic UM available. This provides huge data support for other studies of metastatic UM.

      Weaknesses:<br /> Although the paper does have strengths in principle, the weaknesses of the paper are that these strengths are not directly demonstrated. That is, insufficient analyses are performed to fully support the key claims in the manuscript by the data presented. In particular:

      The author's description of the overall results of the article should be logical, not just a description of the observed phenomena. For example, the presentation related to the results of TRLs lacked logic. In addition, the title of the article emphasizes the three subtypes of hepatic metastatic UM TRLs, but these three subtypes are not specifically discussed in the results as well as the discussion section. The title of the article is not a very comprehensive generalization and should be carefully considered by the authors.

      The authors' claim that they are the first to use autologous TILs and sc-RNAseq to study immunotherapy needs to be supported by the corresponding literature to be more convincing. This can help the reader to understand the innovation and importance of the methodology. In addition, the authors argue that TILs from metastatic UM can kill tumor cells. This is the key and bridging point to the main conclusion of the article. Therefore, the credibility of this conclusion should be considered. Metastatic UM1 and UM9 remain responsive to autologous tumors under in vitro conditions with their autologous TILs. In contrast, UM22, also as a metastatic UM, did not respond to TIL treatment. In particular, the presence of MART1-responsive TILs. The reliability of the results obtained by the authors in the model of only one case of UM22 liver metastasis should be considered. The authors should likewise consider whether such a specific cellular taxon might also exist in other patients with metastatic UM, producing an immune response to tumor cells. The results would be more comprehensive if supported by relevant data.

      In addition, the authors in that study used previously frozen biopsy samples for TCR-seq, which may be associated with low-quality sequencing data, high risk of outcome indicators, and unfriendly access to immune cell information. The existence of these problems and the reliability of the results should be considered. If special processing of TCR-seq data from frozen samples was performed, this should also be accounted for.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The study's goal is to characterize and validate tumor-reactive T cells in liver metastases of uveal melanoma (UM), which could contribute to enhancing immunotherapy for these patients. The authors used single-cell RNA and TCR sequencing to find potential tumor-reactive T cells and then used patient-derived xenograft (PDX) models and tumor sphere cultures for functional analysis. They discovered that tumor-reactive T cells exist in activated/exhausted T cell subsets and in cytotoxic effector cells. Functional experiments with isolated TILs show that they are capable of killing UM cells in vivo and ex vivo.

      Strengths:<br /> The study highlights the potential of using single-cell sequencing and functional analysis to identify T cells that can be useful for cell therapy and marker selection in UM treatment. This is important and novel as conventional immune checkpoint therapies are not highly effective in treating UM. Additionally, the study's strength lies in its validation of findings through functional assays, which underscores the clinical relevance of the research.

      Weaknesses:<br /> The manuscript may pose challenges for individuals with limited knowledge of single-cell analysis and immunology markers, making it less accessible to a broader audience.

    1. Joint Public Review:

      Murphy, Fancy and Skene performed a reanalysis of snRNA-seq data from Alzheimer Disease (AD) patients and healthy controls published previously by Mathys et al. (2019), arriving at the conclusion that many of the transcriptional differences described in the original publication were false positives. This was achieved by revising the strategy for both quality control and differential expression analysis. With this re-analysis, the authors aim to raise awareness of the impact of data analysis choices for scRNA-seq data and to caution focus on putatively wrongly identified genes in the AD research community. The revised manuscript has been improved by separating QC and DE analysis, which makes interpretation of both steps more straightforward.

      STRENGTHS:

      The authors demonstrate that the choice of data analysis strategy can have a vast impact on the results of a study, which in itself may not be obvious to many researchers.

      The authors apply a pseudobulk-based differential expression analysis strategy (essentially, adding up counts from all cells per individual and comparing those counts with standard RNA-seq differential expression tests), which is (a) in line with latest community recommendations, (b) different from the "default options" in most popular scRNA-seq analysis suites, and (c) explains the vastly different number of DEGs identified by the authors and the original publication. The recommendation of this approach together with a detailed assessment of the DEGs found by both methodologies could potentially be a useful finding for the research community. Unfortunately, it is currently not sufficiently substantiated.

      All code and data used in this study are publicly available to the readers.

      WEAKNESSES:

      The authors interpret the fact that they found fewer DEGs with their method than the original paper as a good thing by making the assumption that all genes that were not found were false positives. However, they do not prove this, and it is likely that at least some genes were not found due to a lack of statistical power and not because they were actually "incorrect". The original paper also had performed independent validations of some genes that were not found here. I had raised this weakness in my first review, but it was not explicitly addressed and still pertains to the revised manuscript. The authors have added an analysis that shows that "pseudoreplication" is prone to false positive (FP) discoveries for high cell numbers (Fig. 1f), but this does not prove that all of Mathys' DEGs were wrong.

      I am concerned that almost all DEGs found by the authors are in the rare cell types, foremost the rare microglia (see Fig. 1e). Indeed, there is a weak negative correlation between cell counts and numbers of DEGs (Fig. 1e), if the correlation analysis is to be believed (see next point). It is unclear to me how many cells the pseudo-bulk counts were based on for these cell types, but it seems that (a) there were few and (b) there were quite few reads per cells. If both are the case, the pseudobulk counts for these cell populations might be rather noisy and the DEG results liable to outliers with extreme fold changes. Supp. Fig. 3b now shows three examples of DEGs, of which one (EGR1) looks like the DE call is indeed largely driven by four outliers, while Supp. Fig 3a shows at least one gene (BEX1) that could be FP of the pseudobulk approach due to insufficient statistical power. The authors go on to cite two papers (one is their own, published in a journal with suspected lack of appropriate quality assurance measures https://predatoryreports.org/the-predatory-journals-1), to support that the finding of DEGs in microglia "makes more sense" (l. 127). In summary, neither the presented examples nor the supporting literature are convincing. Lastly, the authors even show themselves that their approach is liable to FPs if applied with very low cell numbers in the range of those for microglia and OPCs (Fig. 1g).

      The correlation analysis between cell counts and number of DEGs found is weak. In all three cases (Fig. 1c, d, e) the correlation is largely driven by a single outlier data point.

      The authors claim they improved the quality control of the dataset but offer no objective metric to assess this putative improvement. The authors' QC procedure removes some 20k cells that had not been filtered out by Mathys' et al. As the authors state themselves, this difference is mostly due to the removal of cells with a high mitochondrial read content. Murphy et al use a fixed threshold for the mitochondrial percentage of reads, while the original paper had removed cell clusters with an "abnormally high" mitochondrial read fraction. That also seems reasonable, given that some cells might have a higher mitochondrial read content for reasons other than being "low quality". Simply stating that Mathys' approach was ineffective at removing cells with high mitochondrial read content is a self-fulfilling prophecy given the difference in approach, and itself not proof that the original QC procedure was inferior.

      Batch correction: "Dataset integration has become a common step in single-cell RNA-Seq protocols and is recommended to remove confounding sources of variation" (l. 38). While it is true that many authors now choose to perform an integration step as part of their analysis workflow, this is by no means uncontroversial as there is a risk of "over-integration" and loss of true biological differences. I had raised this point previously, but the authors chose not to address it (quoted text and line numbers updated). Given that there is controversy in the literature and "community opinion" on the topic of data integration, this is another example of the authors claiming superiority in analysis without showing proof.

      Due to a lack of comparison with other methods and due to the fact that the author's methodology was only applied to a single dataset, the paper presents merely a case study, which could be useful but falls short of providing a general recommendation for a best practice workflow.

      APPRAISAL:

      The manuscript could help to increase awareness of data analysis choices in the community, but only if the superiority of the methodology was clearly demonstrated. However, the authors only show that there are differences but have no convincing (orthogonal) evidence that their methodology was indeed better. This applies to both QC and DE analysis.

    1. Reviewer #1 (Public Review):

      This paper presents a highly compelling and novel hypothesis for how the brain could generate signals to guide navigation toward remembered goals. Under this hypothesis, which the authors call "Endotaxis", the brain co-opts its ancient ability to navigate up odor gradients (chemotaxis) by generating a "virtual odor" that grows stronger the closer the animal is to a goal location. This idea is compelling from an evolutionary perspective and a mechanistic perspective. The paper is well-written and delightful to read.

      The authors develop a detailed model of how the brain may perform "Endotaxis", using a variety of interconnected cell types (point, map, and goal cells) to inform the chemotaxis system. They tested the ability of this model to navigate in several state spaces, representing both physical mazes and abstract cognitive tasks. The Endotaxis model performed reasonably well across different environments and different types of goals.

      The authors further tested the model using parameter sweeps and discovered a critical level of network gain, beyond which task performance drops. This critical level approximately matched analytical derivations.

      Overall, this paper provides a very compelling model for how neural circuits may have evolved the ability to navigate towards remembered goals, using ancient chemotaxis circuits.

      This framework will likely be very important for understanding how the hippocampus (and other memory/navigation-related circuits) interfaces with other processes in the brain, giving rise to memory-guided behavior.

    2. Reviewer #2 (Public Review):

      The manuscript presents a computational model of how an organism might learn a map of the structure of its environment and the location of valuable resources through synaptic plasticity, and how this map could subsequently be used for goal-directed navigation.

      The model is composed of 'map cells', which learn the structure of the environment in their recurrent connections, and 'goal-cell' which store the location of valued resources with respect to the map cell population. Each map cell corresponds to a particular location in the environment due to receiving external excitatory input at this location. The synaptic plasticity rule between map cells potentiates synapses when activity above a specified threshold at the pre-synaptic neuron is followed by above-threshold activity at the post-synaptic neuron. The threshold is set such that map neurons are only driven above this plasticity threshold by the external excitatory input, causing synapses to only be potentiated between a pair of map neurons when the organism moves directly between the locations they represent. This causes the weight matrix between the map neurons to learn the adjacency for the graph of locations in the environment, i.e. after learning the synaptic weight matrix matches the environment's adjacency matrix. Recurrent activity in the map neuron population then causes a bump of activity centred on the current location, which drops off exponentially with the diffusion distance on the graph. Each goal cell receives input from the map cells, and also from a 'resource cell' whose activity indicates the presence or absence of a given values resource at the current location. Synaptic plasticity potentiates map-cell to goal-cell synapses in proportion to the activity of the map cells at time-points when the resource cell is active. This causes goal cell activity to increase when the activity of the map cell population is similar to the activity where the resource was obtained. The upshot of all this is that after learning the activity of goal cells decreases exponentially with the diffusion distance from the corresponding goal location. The organism can therefore navigate to a given goal by doing gradient ascent on the activity of the corresponding goal cell. The process of evaluating these gradients and using them to select actions is not modelled explicitly, but the authors point to the similarity of this mechanism to chemotaxis (ascending a gradient of odour concentration to reach the odour source), and the widespread capacity for chemotaxis in the animal kingdom, to argue for its biological plausibility. The ideas are interesting and the presentation of the results in the manuscript is generally clear.

      Closely related ideas have been explored in previous work, and there are some aspects of how the work relates to previous literature that it would be useful to clarify. Several lines of work have proposed learning long-range relationships between states in the environment, to enable navigation to rewarding goals by effectively descending distance gradients. The most well-known of these in the neuroscience literature is the Successor Representation (SR) (Dayan 1993), which is defined as the expected discounted future occupancy of each state given the current state. As noted in the discussion, this is closely related to the representation learnt by the map cells in the current model. The key difference is that the successor representation uses state-state transitions under a given policy (a mapping from states to actions), whereas the current model uses the adjacency matrix between states, which depends only on the environment and hence is independent of the policy followed while the representation is learnt (given sufficient exploration). This policy independence is useful, as the SR can fail to generate good routes to goals when these are very different from the policy under which it was learned (see Russek et al. https://doi.org/10.1371/journal.pcbi.1005768). However, there are several prior proposals for policy-independent SR-like mechanisms that it would be useful to discuss. Baram et al. (https://doi.org/10.1101/421461) propose navigating to goals by doing gradient descent on diffusion distances, computed as powers of the adjacency matrix as in the current work. One limitation of using the adjacency matrix is that it does not handle situations where transitions between states are probabilistic, which is not a big issue for navigation in physical space but is for applying the mechanism to cognitive tasks more broadly. There are prior ideas for learning policy-independent representations similar to the SR that do not have this limitation. Kaelbling (Learning to achieve goals, IJCAI, 1993) proposed using an off-policy learning rule similar to Q-learning, to learn shortest path distances between states. Piray and Daw https://doi.org/10.1038/s41467-021-25123-3) consider a default representation, which is a successor-like representation under a generic default policy, building on the Linear Markov Decision Process (LMDP) framework of Todorov (https://doi.org/10.1073/pnas.0710743106). Also relevant to the current study is the work of Fang et al. (https://doi.org/10.7554/eLife.80680) who, as in the current work, propose using recurrent network dynamics to compute a long-range representation (the SR) from synaptic weights that store local transition information.

      One other area where I felt the work could be better integrated with the existing literature was the discussion of mapping the model onto brain circuits. An interesting and attractive aspect of the work is the idea that the relatively high-level operation of goal-directed navigation could be built on top of evolutionarily older mechanisms for ascending odour gradients. Given this framing, I was expecting the discussion of brain circuits to consider interactions between spatial mapping systems and regions involved in olfactory processing. However the discussion of mammalian brains focussed exclusively on the hippocampus without any link to olfaction, which feels like a missed opportunity. I am not an expert on olfaction, but one region that seems particularly interesting in this context is the olfactory tubercle (see Wesson & Wilson https://doi.org/10.1016/j.neubiorev.2010.08.004 for a review). This region is contiguous with the ventral striatum and has similar local circuitry, receives strong input from olfactory regions, but also input from the hippocampal formation, and a strong dopaminergic innervation from VTA. This suggests a mapping of the model to brain circuits in which map cells in the hippocampal formation project to goal cells in the olfactory tubercle, with the dopaminergic input acting as resource cells (note that different dopamine neuron populations appear to respond to different reward types, see e.g. https://doi.org/10.1038/s41586-022-04954-0, https://doi.org/10.1101/2023.05.09.540067). I was also surprised not to see any discussion of internally generated sequential activity in the hippocampus as a possible mechanism for the look-ahead needed to evaluate the goal distance gradient, particularly given the authors suggest that vicarious trial and error (VTE) is a behavioural signature of this gradient sampling, and it is known that during VTE hippocampus plays out internally generated sequences of possible future locations (see Redish https://doi.org/10.1038/nrn.2015.30).

    3. Reviewer #3 (Public Review):

      This paper describes an algorithm that provides a general mechanism for goal-directed behaviour in a biologically plausible neural form.

      The method depends on substantial simplifying assumptions. The simulated animal effectively moves through an environment consisting of discrete locations and can reliably detect when it is in each location. Whenever it moves from one location to an adjacent location, it perfectly learns the connectivity between these two locations (changes the value in an adjacency matrix to 1). This creates a graph of connections that reflects the explored environment. In this graph, the current location gets input activation and this spreads to all connected nodes multiplied by a constant decay (adjusted to the branching number of the graph) so that as the number of connection steps increases the activation decreases. Some locations will be marked as goals through experiencing a resource of a specific identity there and subsequently will be activated by an amount proportional to their distance in the graph from the current location, i.e., their activation will increase if the agent moves a step closer and decrease if it moves a step further away. Hence by making such exploratory movements, the animal can decide which way to move to obtain a specified goal.

      Although the algorithm is presented within a conceptual framework of chemotaxis, I.e., making movements to sample a local gradient and move up it, the approach relates closely to previous models of exploration, learning, and navigation that similarly establish (through experience) a graph structure to represent how locations are connected and use some form of activity-propagation from the current node or goal node to identify a (shortest) route between them. Many of these similarly claim to be plausible neural circuits. The current authors argue that the current algorithm has several desirable features with respect to such previous work: for example, the 'readout' of the path does not require explicit 'look-up' and activation of the goal node (although it does require a choice of which goal node is currently connected to behavior); and does not require any separate control or rules for learning vs. navigation phases. By comparison to the successor representation method used in RL, which also appears related, they note that the gain (decay) factor is not equivalent to a temporal discount and that their method learns only state-state transitions, allowing the value of actions to be externalised, I.e., calculated by trying alternative actions to see which increases the activation at the goal node the most. On the other hand, it should be noted that some issues addressed in previous models, such as uncertainty over the current state or probabilistic state(-action) transitions are not addressed in this work.

      The algorithm presents some elegant features with respect to previous work such as conceptually separating the 'goal' nodes from the state (location) graph (I.e. 'goals' are not just special target states within the graph) so that a small number of goals can become associated to (potentially) multiple regions of the state graph where they are satisfied, or near to being satisfied. This architecture is suggested, in the discussion, to resemble the insect mushroom body (MB), where it is known that a small number of output neurons (MBONs, putative goal neurons) are activated by plastic connections from Kenyon cells (KCs, putative state neurons). However, it goes substantially beyond any available evidence to claim that KC connectivity could support the acquisition of a graph (in the form of an adjacency matrix) representing the structure of the environment: KCs show sparse distributed activity (not one active node per state); it seems unlikely that any two arbitrary KCs can (rapidly) become connected; and as yet has not been demonstrated that KC connectivity is plastic at all.

      The results presented are fairly straightforward given the simplification of the tasks, as described above. They show 1) in practical terms, the spreading signal travels further for a larger decay but becomes erratic as the decay parameter (map neuron gain) approaches its theoretical upper bound and decreases below noise levels beyond a certain distance. Both follow the theory but it is perhaps helpful to see that there is a viable range of values of the gain for which the mechanism works, that is, it is not highly dependent on precise tuning. 2) That different graph structures can be acquired and used to approach goal locations (not surprising). 3) That simultaneous learning and exploitation of the graph only minimally affects the performance over starting with perfect knowledge of the graph. 4) That the parameters interact in expected ways. 5) That the separation of goals from states can be used flexibly e.g. the homing behaviour (a goal state is learned before any of the map is learned) and the patrolling behaviour (a goal cell that monitors all states for how recently they were visited). It is also interesting to link the mechanism of exploration of neighbouring states to observed scanning behaviours in navigating animals. It would have been interesting to explore whether the parameters could be dynamically tuned, based on the overall graph activity.

    1. Reviewer #3 (Public Review):

      In this manuscript, Lewis et al. investigate the role of tetraspanins in the formation of discs- the key structure of vertebrate photoreceptors essential for light reception. Two tetraspanin proteins play a role in this process: PRPH2 and ROM1. The critical contribution of PRPH2 has been well established and loss of its function is not tolerated and result in gross anatomical pathology and degeneration in both mice and humans. However, the role of ROM1 is much less understood and has been considered somewhat redundant. This paper provides a definitive answer about the long-standing uncertainty regarding the contribution of ROM1 firmly establishing its role in outer segment morphogenesis. First, using ingenious quantitative proteomic technique the authors show PRPH2 compensatory increase in ROM1 knockout explaining the redundancy of its function. Second, they uncover that despite this compensation, ROM1 is still needed and its loss delays disc enclosure and result in the failure to form incisures. Third, the authors used a transgenic mouse model and show that deficits seen in ROM1 KO could be completely compensated by the overexpression of PRPH2. Finally, they analyzed yet another mouse model based on double manipulation with both ROM1 loss and expression of PRPH2 mutant unable to form dimerizing disulfide bonds further arguing that PRPH2-ROM1 interactions are not required for disc enclosure. To top it off the authors complement their in vivo studies by series of biochemical assays done upon reconstitution of tetraspanins in transfected cultured cell as well as fractionations of native retinas. This report is timely, addresses significant questions in cell biology of photoreceptors and pushes the field forward in a classical area of photoreceptor biology and mechanics of membrane structure as well. The manuscript is executed at the top level of technical standard, exceptionally well written and does not leave much more to desire. It also pushes standards of the field- one such domain is quantitative approach to analysis of the EM images which is notoriously open to alternative interpretations - yet this study does an exceptional job unbiasing this approach.

    2. Reviewer #2 (Public Review):

      In this study, Lewis et al seek to further define the role of ROM1. ROM1 is a tetraspanin protein that oligomerizes with another tetraspanin, PRPH2, to shape the rims of the membrane discs that comprise the light sensitive outer segment of vertebrate photoreceptors. ROM1 knockout mice and several PRPH2 mutant mice are reexamined. The conclusion reached is that ROM1 is redundant to PRPH2 in regulating the size of newly forming discs, although excess PRPH2 is required to compensate for the loss of ROM1.

      This replicates earlier findings, while adding rigor using a mass spectrometry-based approach to quantitate the ratio of ROM1 and PRPH2 to rhodopsin (the protein packed in the body of the disc membranes) and careful analysis of tannic acid labeled newly forming discs using transmission electron microscopy.

      In ROM1 knockout mice PRPH2 expression was found to be increased so that the level of PRPH2 in those mice matches the combined amount of PRPH2 and ROM1 in wildtype mice. Despite this, there are defects in disc formation that are resolved when the ROM1 knockout is crossed to a PRPH2 overexpressing line. A weakness of the study is that the molar ratios between ROM1, PRPH2 and rhodopsin were not measured in the PRPH2 overexpressing mice. This would have allowed the authors to be more precise in their conclusion that a sufficient excess of PRPH2 can compensate for defects in ROM1.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Here the authors address the idea that postural and movement control are differentially impacted with stroke. Specifically, they examined whether resting postural forces influenced several metrics of sensorimotor control (e.g., initial reach angle, maximum lateral hand deviation following a perturbation, etc.) during movement or posture. The authors found that resting postural forces influenced control only following the posture perturbation for the paretic arm of stroke patients, but not during movement. They also found that resting postural forces were greater when the arm was unsupported, which correlated with abnormal synergies (as assessed by the Fugl-Meyer). The authors suggest that these findings can be explained by the idea that the neural circuitry associated with posture is relatively more impacted by stroke than the neural circuitry associated with movement. They also propose a conceptual model that differentially weights the reticulospinal tract (RST) and corticospinal tract (CST) to explain greater relative impairments with posture control relative to movement control, due to abnormal synergies, in those with stroke.

      Strengths:<br /> The strength of the paper is that they clearly demonstrate with the posture task (i.e., active holding against a load) that the resting postural forces influence subsequent control (i.e., the path to stabilize, time to stabilize, max. deviation) following a sudden perturbation (i.e., suddenly removal of the load). Further, they can explain their findings with a conceptual model, which is depicted in Figure 9.

      Weaknesses:<br /> Current weaknesses and potential concerns relate to i) not displaying or reporting the results of healthy controls and non-paretic arm in Experiment 2 and ii) large differences in force perturbation waveforms between movement (sudden onset) and posture (sudden release), which could potentially influence the results and or interpretation.

      Larger concerns<br /> 1. Additional analyses to further support the interpretation. In Experiment 1 the authors present the results for the paretic arm, non-paretic arm, and controls. However, in Experiment 2 for several key analyses, they only report summary statistics for the paretic arm (Figure 5D-I; Figure 6D-E; Figure 7F). It is understood that the controls have much smaller resting postural force biases, but they are still present (Figure 3B). It would strengthen the position of the paper to show that controls and the non-paretic arm are not influenced by resting postural force biases during movement and particularly during posture, while acknowledging the caveat that the resting positional forces are smaller in these groups. It is recommended that the authors report and display the results shown in Figure 5D-I; Figure 6D-E; Figure 7F for the controls and non-paretic arm. If these results are all null, the authors could alternatively place these results in an additional supplementary.

      Further, the results could be further boosted by reporting/displaying additional analyses. In Figure 6D the authors performed a correlation analysis. Can they also display the same analysis for initial deviation and endpoint deviation for the data shown in Figure 5D-F & 5G-I, as well for 7F for the path to stabilization, time to stabilization, and max deviation? This will also create consistency in the analyses performed for each dependent variable across the paper.

      2. Inconsistency in perturbations that would differentially impact muscle and limb states during movement and posture. It is well known that differences in muscle state (activation / preloaded, muscle fiber length and velocity) and limb state (position and velocity) impact sensorimotor control (Pruszynski, J. A., & Scott, S. H. (2012). Experimental brain research, 218, 341-359.). Of course, it is appreciated that it is not possible to completely control all states when comparing movement and posture (i.e., muscle and limb velocity). However, using different perturbations differentially impacts muscle and limb states. Within this paper, the authors used very different force waveforms for movement perturbations (i.e., 12 N peak, bell-shaped, 0.7ms duration -> sudden force onset to push the limb; Figure 6A) and posture perturbations (i.e., 6N, 2s ramp up -> 3s hold -> sudden force release that resulted in limb movement; Figure 4) that would differentially impact muscle (and limb) states. Preloaded muscle (as in the posture perturbation) has a very different response compared to muscle that has little preload (as in the movement perturbations, where muscles that would resist a sudden lateral perturbation would likely be less activated since they are not contributing to the forward movement). Would the results hold if the same perturbation had been used for both posture and movement (e.g., 12 N pulse for both experiments)? It is recommended that the authors comment and discuss in the paper why they chose different perturbations and how that might impact the results.

      Relatedly, an alternative interpretation of the results is that preloading muscle for stroke patients, whether by supporting the weight of one's arm (experiment 1) or statically resisting a load prior to force release (experiment 2), leads to a greater postural force bias that can subsequently influence control. It is recommended that the authors comment on this.

    2. Reviewer #1 (Public Review):

      This study extends the previous interesting work of this group to address the potentially differential control of movement and posture. Their earlier work explored a broad range of data to make the case for a downstream neural integrator hypothesized to convert descending velocity movement commands into postural holding commands. Included in that data were observations from people with hemiparesis due to stroke. The current study uses similar data but pushes into a different, but closely related direction, suggesting that these data may address the independence of these two fundamental components of motor control. I find the logic laid out in the second sentence of the abstract ("The paretic arm after stroke is notable for abnormalities both at rest and during movement, thus it provides an opportunity to address the relationships between control of reaching, stopping, and stabilizing") less than compelling, but the study does make some interesting observations. Foremost among them, is the relation between the resting force postural bias and the effect of force perturbations during the target hold periods, but not during movement. While this interesting observation is consistent with the central mechanism the authors suggest, it seems hard to me to rule out other mechanisms, including peripheral ones.

      On the other hand, the relation between force bias and the well-recognized flexor synergy seems rather self-evident, and I don't see that these results add much to that story. I am also struck by what seems to be a contradiction between the conclusions of the current and former studies: "These findings in stroke suggest that moving and holding still are functionally separable modes of control" and "the commands that hold the arm and finger at a target location depend on the mathematical integration of the commands that moved the limb to that location." The former study is mentioned here only in passing, in a single phrase in the discussion, with no consideration of the relation between the two studies. This is odd and should be addressed.

      A minor wording concern I had is that the term "holding still" is frequently hard to parse. A couple of examples: "These findings in stroke suggest that moving and holding still are functionally separable modes of control." This example is easily read, "moving and holding [continue to be] functionally separable". Another: "...active reaching and holding still in the same workspace, " could be "...active reaching and holding [are] still in the same workspace." Simply "holding", "posture" or "posture maintenance" would all be better options.

    3. Reviewer #3 (Public Review):

      The authors attempt to dissociate differences in resting vs active vs perturbed movement biases in people with motor deficits resulting from stroke. The analysis of movement utilizes techniques that are similar to previous motor control in both humans and non-human primates, to assess impairments related to sensorimotor injuries. In this regard, the authors provide additional support to the extensive literature describing movement abnormalities in patients with hemiparesis both at rest and during active movement. The authors describe their intention to separate out the contribution of holding still at a position vs active movement as a demonstration that these two aspects of motor control are controlled by two separate control regimes.

      Strengths:<br /> 1. The authors utilize a device that is the same or similar to devices previously used to investigate motor control of movement in normal and impaired conditions in humans and non-human primates. This allows comparisons to existing motor control studies.<br /> 2. Experiment 1 demonstrates resting flexion biases both in supported and unsupported forelimb conditions. These biases show a correlated relationship with FM-UE scores, suggesting that the degree of motor impairment and the degree of resting bias are related.<br /> 3. The stroke patient participant population had a wide range of both levels of impairment and time since stroke, including both sub-acute and chronic cases allowing the results to be compared across impairment levels.

      The authors describe several results from their study: 1. Postural biases were systematically toward the body (flexion) and increased with distance from the body (when the arm was more extended) and were stronger when the arm was unsupported. 2. These postural biases were correlated with FM-UE score. 3. They found no evidence of postural biases impacting movement, even when that movement was perturbed. 4. When holding a position at the end of a movement, if the position was perturbed opposite of the direction of bias, movement back to the target was improved compared to the perturbation in the direction of bias. Taken together, the authors suggest that there are at least two separate motor controls for tasks at rest versus with motion. Further, the authors propose that these results indicate that there is an imbalance between cortical control of movement (through the corticospinal tracts) and postural control (through the reticulospinal tract). There are several weaknesses related to the interpretation of the results:

      In Experiment 1, the participants are instructed to keep their limbs in a passive position after being moved. The authors show that, in the impaired limb, these resting biases are significantly higher when the limb is unsupported and increase when the arm is moved to a more extended position.

      When supported by the air sled, the arm is in a purely passive position, not requiring the same anti-gravity response so will have less RST but also less CST involvement. While the unsupported task invokes more involvement of the reticulospinal tract (RST), it likely also has significantly higher CST involvement due to the increased difficulty and novelty of the task.

      If there were an imbalance in CST regulating RST as proposed by the authors, the bias should be higher in the supported condition as there should be relatively less CST activation/involvement/modulation leading to less moderating input onto the RST and introducing postural biases. In the unsupported condition, there is likely more CST involvement, potentially leading to an increased modulatory effect on RST. If the proportion of CST involvement significantly outweighs the RST activation in the unsupported task, then it isn't obvious that there is a clear differentiation of motor control. As the degree of resting force bias and FM-UE score are correlated, an argument could be made that they are both measuring the impairment of the CST unrelated to any RST output. If it is purely the balance of CST integrity compared to RST, then the degree of bias should have been the same in both conditions. In this idea of controller vs modulator, it is unclear when this switch occurs or how to weigh individual contributions of CST vs. extrapyramidal tracts. Further, it isn't clear why less modulation on the RST would lead only to abnormal flexion.

      This resting bias could be explained by an imbalance in the activation of flexors vs extensors which follows the results that this bias is larger as the arm is extended further, and/or in a disconnect in sensory integration that is overcome during active movement. Neither would necessitate separate motor control for holding vs active movement.

      In Experiment 2, the participants are actively moving to and holding at targets for all trials while being supported by the air sled. Even with the support, the paretic participants all showed start- and end-point force biases around the movement despite not showing systematic deviations in force direction during active movement start or stop. There could be several factors that limit systematic deviations in force direction. The most obvious is that the measured biases are significantly higher when the limb is unsupported and by testing with a supported limb the authors are artificially limiting any effect of the bias. It is also possible that significant adaptation or plasticity with the CST or rubrospinal tracts could give rise to motor output that already accounts for any intrinsic resting bias. In any case, the results from the reaching phase of Experiment 2 do not definitively show that directional biases are not present during active reaching, just that the authors were unable to detect them with their design. The authors do acknowledge the limitations in this design (a 2D constrained task) in explaining motor impairment in 3D unconstrained tasks.

      It would have been useful, in Experiment 2, to use FM-UE scores (and time from injury) as a factor to determine the relationship between movement and rest biases. Using a GLMM would have allowed a similar comparison to Experiment 1 of how impairment level is related to static perturbation responses. While not a surrogate for imaging tractography data showing a degree of CST involvement in stroke, FM-UE may serve as an appropriate proxy so that this perturbation at hold responses may be put into context relative to impairment.

      It is not clear that even in the static perturbation trials that the hold (and subsequent move from perturbation) is being driven by reticulospinal projections. Given a task where ~20% of the trials are going to be perturbed, there is likely a significant amount of anticipatory or preparatory signaling from the CST. How does this balance with any proposed contribution that the RST may have with increased grip?

      In general, the weakness of the interpretation of the results with respect to the CST/RST framework is that it is necessary to ascribe relative contributions of different tracts to different phases of movement and hold using limited or indirect measures. Barring any quantification of this data during these tasks, different investigators are likely to assess these contributions in different ways and proportions limiting the framework's utility.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Ishii et al used molecular genetics and behavioral analyses in mice to study the functional role of a subset of MPOA neurons in the regulation of female sexual drive. They first employed a self-paced mating assay during which a female could control the amount of interaction time with a male to assess female sexual drive after completion of mating. The authors observed that after mating completion females spent significantly less time interacting with the mated males, indicating that their sexual drive was reduced. Next, the authors performed a brain-wide analysis of neurons activated during the completion of mating and identified the MPOA as a strong candidate region. However, their activity labeling was not exclusive to neurons activated during mating completion but included all neurons activated before, during, and after the mating encounter. This makes it difficult to interpret these data. Importantly, the authors do provide in vivo calcium imaging data showing that a subset of MPOA neurons responds significantly and specifically to mating completion and not other behaviors during the social encounter. The authors performed these studies in both excitatory and inhibitory populations of the MPOA. Their analysis identified a subpopulation of inhibitory neurons that exhibit sustained increased activity for 90 sec following mating completion. Finally, the authors used chemogenetics to activate MPOA neurons during home cage mating, condition place preference, pup retrieval, and the self-paced mating assay. They found that activation of these neurons significantly reduced mating behaviors and time spent interacting with a male during the self-paced mating assay. The authors suggest that their chemogenetic activation is restricted to neurons activated during mating completion, but their activity-dependent labeling strategy resulted in chemogenetic activation of all MPOA neurons activated either before, during, or after mating.

      The authors' experimental execution is rigorous and well-performed. Their data identify inhibitory neurons in the female MPOA as a neural locus that is activated following the completion of mating and potentially a key neural population in the regulation of female sexual motivation. However, the conclusions and interpretation of the data extend beyond what is reasonable given the limitations of the activity-dependent labeling strategy employed.

      Strengths:<br /> 1) The use of the self-paced mating assay in combination with neural imaging and manipulation to assess female sexual drive is innovative. The authors correctly assert that relatively little is known about how mating completion affects sexual motivation in females as compared to males. Therefore, the data collected from these studies is important and valuable.

      2) The authors provide convincing histological data and analyses to verify and validate their brain-wide activity labeling, neural imaging, and chemogenetic studies.

      3) The single-cell in vivo calcium imaging data are well performed and analyzed. They provide key insights into the activity profiles of both excitatory and inhibitory neurons in the female MPOA during mating encounters. The authors' identification of an inhibitory subpopulation of female MPOA neurons that are selectively activated following the completion of mating is fundamental for future experiments which could potentially find a molecular marker for this population and specifically manipulate these neurons to understand their role in female sexual motivation in greater detail.

      Weaknesses:<br /> 1) Their activity-dependent labeling strategy is not exclusive to mating completion but instead includes all neurons active before, during, and after the social encounter. In the manuscript, the authors did not discuss the time course of Fos activation or the timeframe of the FosTRAP labeling strategy. Fos continues to be expressed and is detectable for hours following neural activation. Therefore, the FosTRAP strategy also labels neurons that were activated 3 hours before the injection of 4-OHT. The original FosTRAP2 paper which is cited in this manuscript (DeNardo et al, 2019) performed a detailed analysis of the labeling window in Supplementary Figure 2 of that paper. Here is quoted text from that paper: "Resultant patterns of tdTomato expression revealed that the majority of TRAPing occurred within a 6-hour window centered around the 4-OHT injection." Thus, the FosTRAP "mating completion" groups throughout this manuscript also include neurons activated 3 hours before mating completion, which includes neurons activated during appetitive and consummatory mating behaviors.

      This makes all of the FosTRAP data very difficult to interpret. Compounding this is the issue that the two groups the authors compare in their experiments are females administered 4-OHT following appetitive investigation behaviors (with the male removed before mating behaviors occurred) and females administered 4-OHT following mating completion. The "appetitive" group labeled neurons activated only during appetitive investigation, but the "completion" group labeled neurons activated during appetitive investigations, consummatory mating bouts, and mating completion. Therefore, in the brain-wide analysis of Figure 2, it is impossible to identify brain regions that were activated exclusively by mating completion and not by consummatory mating behaviors. This could have been achieved if the "completion" group was compared to a group of females that had commenced consummatory mating behaviors but were separated from the male before mating was completed. Then, any neurons labeled by the "completion" FosTRAP but not the "consummatory" FosTRAP would be neurons specifically activated by mating completion. In the current brain-wide analysis experiments, neurons activated by consummatory behaviors and mating completion can not be disassociated.

      This same issue is present in the interpretation of the chemogenetic activation data in Figure 6. In the experiments of Figure 6, the authors are activating neurons naturally activated during consummatory mating behaviors as well as those activated during mating completion.

      2) This study does not definitively show that the female mice used in this study display decreased sexual motivation after the completion of mating. The females exhibit reduced interaction with males that had also just completed mating, but it is unclear if the females would continue to show reduced interaction time if given the choice to interact with a male that was not in the post-ejaculatory refractory period. Perhaps, these females have a natural preference to interact more with sexually motivated males compared to recently mated (not sexually motivated) males. To definitively show that these females exhibit decreased sexual motivation the authors should perform two control experiments: 1) provide the females with access to a fully sexually motivated male after the females have completed mating with a different male to see if interaction time changes, and 2) compare interaction time toward mated and non-mated males using the self-paced mating assay. These controls would show that the reduction in the interaction time is because the females have reduced sexual motivation and not because these females just naturally interact with sexually motivated males more than males in the post-ejaculatory refractory period.

      3) It is unclear how the transient 90-second response of these MPOA neurons following the completion of mating causes the prolonged reduction in female sexual motivation that is at the minutes to hours timeframe. No molecular or cellular mechanism is discussed.

      4) The authors discuss potential cell types and neural population markers within the MPOA and go into some detail in Figure S3. However, their experiments are performed with only the larger excitatory and inhibitory MPOA neural populations.

    2. Reviewer #1 (Public Review):

      Summary:<br /> This manuscript by Ishii et al utilizes a classical, but extremely understudied, female self-paced assay to directly address aspects of female sexual motivation independent from the male's behavior. This allowed for a clear separation of appetitive and consummatory events, of which whole brain unbiased activity was mapped. Mating completion in females was then focused on the medial preoptic nucleus where the authors performed a rigorous set of single-cell GCaMP recordings in populations marked by Vglut2 and Vgat, finding the latter display stronger and prolonged activity after the onset of mating completion. Finally, they demonstrate function to these Fos-TRAPPED completion cells demonstrating their capacity to suppress female sexual behavior.

      Strengths:<br /> This manuscript sought to explicitly explore the female mating drive as dictated by the female, a very rare angle for those studying mating behavior which almost always is controlled by the male's behavior. To achieve this, the authors went back to old literature and modified a classical paradigm in which a measurable approach and avoidance of male conspecifics can be measured in female mice using a self-paced mating assay. Strengths include a detailed quantification of female behaviors demonstrating a robust attenuated sexual motivation in females after mating completion. To determine the neural basis behind this, a brain-wide analysis of cells responding to mating completion in the female brain was conducted which revealed numerous anatomical regions displaying increased Fos activity, including the MPOA, of which the authors concentrated the remaining of their study. Employing microendoscopic imaging, the authors discovered that this mating completion signal was strongly represented in the MPOA. The single cell data analyses are of very high quality as is the number of individual cells resolved. While they identified both excitatory and inhibitory cell types that were activated by mating completion, they found the latter exhibited stronger and more persistent activity. Segmentation into individual mating behaviors reinforced the importance of GABAergic completion cells, which display prolonged activity late after the onset of mating completion. This information provides a potential mechanism for how female mice suppress further mating activity following completion. The authors then definitively demonstrate this function by TRAP'ping completion cells with chemogenetic actuators and show that CNO-induced activation of these cells specifically and strongly suppresses female sexual behavior. All experiments were extremely well-designed and performed carefully and expertly with the necessary controls solidifying the conclusions.

      Weaknesses:<br /> While there are no glaring weaknesses in this study, it should be noted that a great deal of literature has pinpointed the MPOA (and specifically inhibitory cells in this area) as being critical to sexual behavior, including female mating. However, no study to my knowledge has explored self-paced female mating with such fine control over manipulating and monitoring cellular activity in this region. In addition, this study may act to inspire others to further explore the additional brain regions found to show upregulation of neural activity (Fos) during mating completion in the female using the data sets generated here.

    3. Reviewer #2 (Public Review):

      Summary:<br /> In this set of studies, the authors identify cFos activation in neurons in female mice that mated with males, and after experiencing male sexual behavior that is either restricted to appetitive behavior or including ejaculation. The medial preoptic nucleus was identified as an area with high cFos induction following ejaculation. Characterization of neurochemical phenotypes of cfos-expressing neurons showed a heterogenous distribution of activated neurons in the MPOA, including both inhibitory and excitatory cell types. Next, in vivo calcium imaging was used to show activation of Vgat and Vglut neurons in female mice MPOA after displaying sniffing of the male, experiencing male appetitive, or male consummatory sexual behavior, demonstrating significantly higher activation and of a greater subpopulation of Vgat neurons than Vglut neurons. Moreover, the greatest activation of Vgat neurons was detected following experiencing ejaculation, and ejaculation activated different subpopulations of MPOA cells than consummatory or appetitive sexual behaviors experienced by the female. Finally, pharmaco-genetic activation of the subpopulation of MPOA neurons that were previously activated following ejaculation resulted in a significant reduction of approach behavior by the female mice towards the male, interpreted as suppression of female sexual motivation. In conclusion, a subpopulation of inhibitory cells in the MPOA is activated in female mice after experiencing ejaculation, in turn contributing to the suppression of sexual approach behavior.

      Strengths:<br /> The current set of studies replicates previous findings that ejaculation causes longer latencies to initiate interactions with a male after receiving an ejaculation in a paced mating paradigm, which is widely validated and extensively used to investigate sexual behavior in female rodents. Studies also confirm that ejaculation increases cFos expression in the MPOA while extending prior findings with a careful analysis of the neurochemical phenotype of activated neurons. A major strength of the studies is the use of cell-specific in vivo imaging and pharmaco-genetic activation to reveal a functional role of specific neuronal ensemble within the MPOA for post-ejaculatory female sexual behavior.

      Weaknesses:<br /> The authors include an elegant manipulation of ejaculation-activated neurons in the MPOA using DREADD. However, this study was limited to show that activation of previously activated cells was sufficient to reduce approach behavior in a paced mating paradigm and receiving intromissions in a home cage mating paradigm. An inhibition approach using DREADD would have been a great complement to this study as it would have examined if activation of the cells was required. Moreover, additional tests for sexual motivation would have greatly strengthened the overall conclusions.

    1. Reviewer #1 (Public Review):

      Cell death plays a critical role on regulating organogenesis. During tooth morphogenesis, apoptosis of embryonic dental tissue plays critical roles on regulating tooth germ development. The current study focused on ferroptosis, another way of cell death which has rarely been investigated in tooth development, and showed it may also play an important role on regulating the tooth dimension. The topic is novel and interesting, but the experimental design has some flaws which compromised the study.

      The entire study was based on ex vivo tooth germ explant culture. I hope the authors can continue working on this direction with more convincing transgenic models.

    2. Reviewer #2 (Public Review):

      The present study by Ye et al. characterizes some of the major effects of ferroptotic stress on tooth morphogenesis.

      The strengths of this study are its innovative nature and the beautiful histology. Mechanistic data are convincing Overall, the study is well done.

    3. Reviewer #3 (Public Review):

      This is an interesting work reporting ferroptosis that is involved in the tooth morphogenesis. The authors showed that Gpx4, the core anti-lipid peroxidation enzyme in ferroptosis, is upregulated in tooth development using ex vivo culture system.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In the present manuscript, the authors present the results of a well-designed, thoughtful, and well-motivated study, targeting the role of angular gyrus in insight-based memory gains. The study is well conducted, timely, and presents clear-cut behavioral results. However, the analysis of the EEG-data lacks clarity and leaves many open questions - especially with regard to the representational similarity analyses. (Nevertheless, analogous concerns with regard to the focus on the three-way interaction and the comparison of linked vs. non-linked events pertain similarly to the connectivity analyses.)

      Strengths:<br /> - Well-conducted study with a proper sham-controlled TMS design.<br /> - Clever insight-based memory task.<br /> - Interesting behavioral findings.

      Weaknesses:<br /> - "We then calculated Pearson's correlations to compare the power patterns across theta frequency between the time points of linked events (A with B), as well as between the time points of non-linked events (A with X) for the pre- and the post-phase separately, separately for stories linked via imagination and via observation." (p.34)

      The RSA basically asks on the lowest level, whether neural activation patterns (as measured by EEG) are more similar between linked events compared to non-linked events. At least this is the first question that should be asked. However, on page 11 the authors state: "We examined insight-induced effects on neural representations for linked events [...]". Hence, the critical analysis reported in the manuscript fully ignores the non-linked events and their neural activation patterns. However, the non-linked events are a critical control. If the reported effects do not differ between linked and non-linked events, there is no way to claim that the effects are due to experimental manipulation - neither imagination nor observation. Hence, instead of immediately reporting on group differences (sham vs. control) in a two-way interaction (pre vs. post X imagination vs. observation), the authors should check (and report) first, whether the critical experimental manipulation had any effect on the similarity of neural activation patterns in the first place.

      Overall, the focus on the targeted three-way interaction is poorly motivated. Also, a functional interpretation is largely missing.

      - "Interestingly, we observed a different pattern of insight-related representational pattern changes for non-linked events."

      It is not sufficient to demonstrate that a given effect is present in one condition (linked events) but not the other (non-linked events). To claim that there are actually different patterns, the authors would need to compare the critical conditions directly (Nieuwenhuis et al., 2011).

      - "This analysis yielded a negative cluster (p = 0.032, ci-range = 0.00, SD = 0.00) in the parieto-temporal region (electrodes: T7, Tp7, P7; Fig. 3B)." (p. 11)

      The authors report results with specificity for certain topographical locations. However, this is in stark contrast to the fact that the authors derived time X time RSA maps.

      "These theta power values were then combined to create representational feature vectors, which consisted of the power values for four frequencies (4-7 Hz) × 41 time points (0-2 seconds) × 64 electrodes. We then calculated Pearson's correlations to compare the power patterns across theta frequency between the time points of linked events (A with B), as well as between the time points of non-linked events (A with X) for the pre- and the post-phase separately, separately for stories linked via imagination and via observation. To ensure unbiased results, we took precautions not to correlate the same combination of stories twice, which prevented potential inflation of the data. To facilitate statistical comparisons, we applied a Fisher z-transform to the Pearson's rho values at each time point. This yielded a global measure of similarity on each electrode site. We, thus, obtained time × time similarity maps for the linked events (A and B) and the non-linked events (A and X) in the pre- and post-phases, separately for the insight gained through imagination and observation." (p. 34+35)

      If RSA values were calculated at each time point and electrode, the Pearson correlations would have been computed effectively between four samples only, which is by far not enough to derive reliable estimates (Schönbrodt & Perugini, 2013). The problem is aggravated by the fact that due to the time and frequency smoothing inherent in the time-frequency decomposition of the EEG data, nearby power values across neighboring theta frequencies are highly similar to start with. (e.g., Schönauer et al., 2017; Sommer et al., 2022)

      Alternative approaches would be to run the correlations across time for each electrode (resulting in the elimination of the time dimension) or to run the correlations at each time point across electrodes (resulting in the elimination of topographic specificity).

      At least, the authors should show raw RSA maps for linked and non-linked events in the pre- and post-phases separately for the insight gained through imagination and observation in each group, to allow for assessing the suitability of the input data (in the supplements?) before progressing to reporting the results of three-way interactions.

      References:<br /> Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E.-J. (2011). Erroneous analyses of interactions in neuroscience: A problem of significance. Nature Neuroscience, 14(9), 1105-1107. https://doi.org/10.1038/nn.2886<br /> Schönauer, M., Alizadeh, S., Jamalabadi, H., Abraham, A., Pawlizki, A., & Gais, S. (2017). Decoding material-specific memory reprocessing during sleep in humans. Nature Communications, 8(1), 15404. https://doi.org/10.1038/ncomms15404<br /> Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47(5), 609-612. https://doi.org/10.1016/j.jrp.2013.05.009<br /> Sommer, V. R., Mount, L., Weigelt, S., Werkle-Bergner, M., & Sander, M. C. (2022). Spectral pattern similarity analysis: Tutorial and application in developmental cognitive neuroscience. Developmental Cognitive Neuroscience, 54, 101071. https://doi.org/10.1016/j.dcn.2022.101071

    2. Reviewer #2 (Public Review):

      The formation of long-term memory representations requires the continuous updating of ongoing representations. Various studies have shown that the left angular gyrus (AG) may support this cognitive operation. However, this study demonstrates that this brain region plays a causal role in the formation of long-term memory representations, affecting both the neural and behavioural measures of information binding.

      A significant strength of this work is that it is the first one to test the hypothesis that the left angular gyrus has a causal role in the reconfiguration and binding of long-term memory representations by comparing when insights are primarily derived from direct observation versus imagination. Consequently, the results from this manuscript have the potential to be informative for all areas of cognitive research, including basic perception, language cognition, and memory.

      Furthermore, this study presents a comprehensive set of measurements on the same individuals, encompassing various task-related behavioural measures, EEG data, and questionnaire responses.

      There are, however, some weaknesses. One of them pertains to the link between the observed results and the conclusions. While the observed memory reconfiguration/changes are attributed to the angular gyrus in this study, it remains unclear whether these effects are solely a result of the AG's role in reconfiguration processes or to what extent the hippocampus might also mediate these memory effects (e.g., Tambini et al., 2018; Hermiller et al., 2019).

      Another weakness in this manuscript is the use of different groups of participants for the key TMS intervention, along with underspecified or incomplete hypotheses/predictions. Furthermore, in some instances, the types of analyses used do not appear to be suitable for addressing the questions posed by the current study, and there is limited explanation provided for the choice of analyses and questionnaires.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Grob and colleagues investigated the causal role of the angular gyrus in insight-driven memory reconfiguration. Participants watched unrelated movie scenes while EEG was recorded prior to receiving either active or sham continuous theta burst stimulation (cTBS) over the left angular gyrus. Following stimulation, participants either observed or imagined links or non-links between scenes watched before stimulation. Next, participants rated their comprehension of the links. Following this part, participants completed questionnaires for 30 minutes, followed by a free recall test of details from the videos. Subjects then watched the videos again while EEG was recorded and engaged in a recognition test to determine whether they retained information about the linking events. Participants showed strong evidence of insight-driven linking between videos. The results indicate that overall memory of video details was stronger for the Sham group compared to the cTBS group, but only for the linked videos. An RSA analysis using pre- and post-video observation indicated that similarity increased for imagined and linked videos for the sham group, but not for the cTBS group, in sensors in parieto-temporal regions. Similarity for imagined, non-linked videos increased for the cTBS group, but not for the sham group, in frontal sensors. Coherence between fronto-parietal sensors decreased during the viewing of videos linked by imagination for the cTBS group, but not the sham group. Coherence between the same sensors increased while watching videos that were linked by observation in the cTBS group, but decreased for the sham group. The authors conclude that the angular gyrus is causally related to memory-insight reconfiguration.

      Strengths:<br /> The paper is nicely written, and the rigor of the experimental design is strong. The paper is pre-registered, and the authors used a double-blind sham-controlled design to eliminate the possibility of bias and non-specific effects of rTMS on their results. The behavioral results are striking and provide strong evidence that their intervention significantly decreased memory for details of linked events. The authors also took care to leave time between stimulation and recall to reduce the influence of carry-over rTMS effects on memory. There are also strong behaviorally-relevant neural changes.

      Weaknesses:<br /> My major criticism relates to the main claim of the paper regarding causality between the angular gyrus and the authors' behavior of interest. Specifically, I am not convinced by the evidence that the effects of stimulation noted in the paper are attributable specifically to the angular gyrus, and not other regions/networks.

    1. Reviewer #1 (Public Review):

      Microglia are increasingly recognized as playing an important role in shaping the synaptic circuit and regulating neural dynamics in response to changes in their surrounding environment and in brain states. While numerous studies have suggested that microglia contribute to sleep regulation and are modulated by sleep, there has been little direct evidence that the morphological dynamics of microglia are modulated by the sleep/wake cycle. In this work, Gu et al. applied a recently developed miniature two-photon microscope in conjunction with EEG and EMG recording to monitor microglia surveillance in freely-moving mice over extended period of time. They found that microglia surveillance depends on the brain state in the sleep/wake cycle (wake, non-REM, or REM sleep). Furthermore, they subjected the mouse to acute sleep deprivation, and found that microglia gradually assume an active state in response. Finally, they showed that the state-dependent morphological changes depend on norepinephrine (NE), as chemically ablating noradrenergic inputs from locus coeruleus abolished such changes; this is in agreement with previous publications. The authors also showed that the effect of NE is partially mediated by β2-adrenergic receptors, as shown with β2-adrenergic receptor knock-out mice. Overall, this study is a technical tour de force, and its data add valuable direct evidence to the ongoing investigations of microglial morphological dynamics and its relationship with sleep. Nevertheless, microglial morphodynamics likely reflect the integrated influence of neighboring neuronal activities and neuromodulatory factors; the pan-tissue β2AR knockout mouse model may also broadly affect the animal's physiology and sleep behavior. Therefore, future studies are needed to address the specific role of microglial β2AR on its morphodynamics in sleep.

    2. Reviewer #2 (Public Review):

      The MS describes an approach to monitor microglial structural dynamics and correlate it to ongoing changes in brain state during sleep-wake cycles. The main novelty here is the use of miniaturized 2p microscopy, which allows tracking microglia surveillance over long periods of hours, while the mice are allowed to freely behave. Accordingly, this experimental setup would permit to explore long-lasting changes in microglia in more naturalistic environment, which were previously not possible to identify otherwise. The findings provide key advances to the research of microglia during natural sleep and wakefulness, as opposed to anesthesia. The main findings of the paper are that microglia increase their process motility and surveillance during REM and NREM sleep as compared to the awake state. The authors further show that sleep deprivation induces opposite changes in microglia dynamics- limiting their surveillance and size. The authors then demonstrate potential causal role for norepinephrine secretion from the locus coeruleus (LC) which is driven by beta 2 adrenergic receptors (b2AR) on microglia. '

      The authors have nicely demonstrated and technically validated their main conclusions. In particular, they demonstrate the utility of miniaturized 2p imaging for long lasting imaging of microglia structural changes according to sleep state over the time course of hours. The authors have done a good job in addressing all my previous concerns and provide sound evidence for sleep state induced dynamics of microglia, which is modulated by NE and depends on b2AR.

      One impressive point is the ability to longitudinally track the same microglial cells in the field of view for many hours, which is highly valuable and was impossible to achieve with head fixed imaging.

      The authors support their observation by using a global b2AR KO mice, which ravel impaired microglial dynamics during sleep states.

      While previous evidence supports high expression and function of b2AR in microglia, these receptors are expressed throughout the brain and periphery. Therefore, the authors correctly state that the current data they show, using global b2AR KO mice, cannot be used to state a direct effect on microglia dynamics and this would warrant future experiments with cell-specific genomic manipulation.

      To summarize, the main conclusions of the paper are well validated and supported with the experimental layout and analysis.

    1. Reviewer #1 (Public Review):

      The authors performed an RNAi screen to identify epigenetic regulators involved in oxygen-glucose deprivation (OGD)-induced neuronal injury using immortalized mouse hippocampal neuronal cell line HT-22. They identified PRMT5 as a novel negative regulator of neuronal cell survival after OGD. Both in vitro and in vivo experiments were then performed to evaluate the roles of PRMT5 in OGD and ischemic stroke-induced injury. The authors found that genetic and pharmacological inhibition of PRMT5 protected against neuronal cell death in both in vitro and in vivo models. Furthermore, they found that in response to OGD and ischemia, PRMT5 was translocated from the cytosol to the nucleus, where PRMT5 bound to the chromatin and promoter regions of targeted genes to repress the expression of downstream genes. Further, they showed that silencing PRMT5 significantly altered the OGD-induced changes for a large-scale of genes. In a mouse model of middle cerebral artery occlusion (MCAO), PRMT5 inhibitor EPZ015666 protected against neuronal death in vivo. This study reveals a potential therapeutic target for the treatment of ischemic stroke. Overall, the authors have done elegant work showing the role of PRMT5 in neuronal cell survival. However, the essential mechanisms underlying PRMT5 nuclear translocation have not been investigated, and the in vivo animal studies should be further strengthened.

    2. Reviewer #2 (Public Review):

      Haoyang Wu et al. have shown that the symmetric arginine methyltransferase PRMT5 binds to the promoter region of several essential genes and represses their expression, leading to neuronal cell death. Knocking down PRMT5 in HT-22 cells by shRNA leads to pertinent improvement in cell survival after oxygen-glucose deprivation (OGD) conditions. In another set of experiments, inhibition of the catalytic activity of PRMT5 by a specific inhibitor, EPZ015666, in a middle cerebral artery occlusion (MCAO) mice model also showed protective effects against neuronal cell death. In this manuscript, the authors have established the negative role of PRMT5 in cerebral ischemia both in vitro and in vivo.

      However, my primary concern is the novelty of the manuscript. It has already been reported that inhibition of PRMT5 attenuates cerebral ischemia/reperfusion condition (Inhibition of PRMT5 attenuates cerebral ischemia/reperfusion-induced inflammation and pyroptosis through suppression of NF-κB/NLRP3 axis. Xiang Wu et al. Neuroscience Letters, Volume 776, 2022, 136576, ISSN 0304-3940, https://doi.org/10.1016/j.neulet.2022.136576.). Even these authors have also shown that treatment of PRMT5 specific catalytic inhibitor, LLY-283, could rescue ischemia-induced over-expression of inflammation-related factors.

      However, it would be better to verify the specificity of the inhibitor, EPZ015666, using other methyltransferases to be sure that the rescue is indeed mediated by PRMT5 catalytic inhibition.

    1. Reviewer #1 (Public Review):

      The present work establishes 14-3-3 proteins as binding partners of spastin and suggests that this binding is positively regulated by phosphorylation of spastin. The authors show evidence that 14-3-3 - spastin binding prevents spastin ubiquitination and final proteasomal degradation, thus increasing the availability of spastin. The authors measured microtubule severing activity in cell lines and axon regeneration and outgrowth as a prompt to spastin activity. By using drugs and peptides that separately inhibit 14-3-3 binding or spastin activity, they show that both proteins are necessary for axon regeneration in cell culture and in vivo models in rats.<br /> The following is an account of the major strengths and weaknesses of the methods and results.

      Major strengths<br /> -The authors performed pulldown assays on spinal cord lysates using GST-spastin, then analyzed pulldowns via mass spectrometry and found 3 peptides common to various forms of 14-3-3 proteins. In co-expression experiments in cell lines, recombinant spastin co-precipitated with all 6 forms of 14-3-3 tested. The authors could also co-immunoprecipitate spastin-14-3-3 complexes from spinal cord samples and from primary neuronal cultures.<br /> -By protein truncation experiments they found that the Microtubule Binding Domain of spastin contained the binding capability to 14-3-3. This domain contained a putative phosphorylation site, and substitutions that cannot be phosphorylated cannot bind to 14-3-3.<br /> -Overexpression of GFP-spastin shows a turn-over of about 12 hours when protein synthesis is inhibited by cycloheximide. When 14-3-3 is co-overexpressed, GFP-spastin does not show a decrease by 12 hours. When S233A is expressed, a turn-over of 9 hours is observed, suggesting that phosphorylation increases the stability of the protein. In support of that notion, the phospho-mimetic S233D makes it more stable, lasting as much as the over-expression of 14-3-3.<br /> -By combining FCA with Spastazoline, authors claim that FCA increased regeneration is due to increased spastin activity in various models of neurite outgrowth and regeneration in cell culture and in vivo, the authors show impressive results on the positive effect of FCA in regeneration, and that this is abolished when spastin is inhibited.

      Major weaknesses<br /> 1- The present manuscript suggests that 14-3-3 and spastin work in the same pathway to promote regeneration. Although the manuscript contains valuable evidence in support for a role of 14-3-3 and spasting in regeneration, the conclusive evidence is difficult to generate, and is missing in the present manuscript. For example, there are simpler explanations for the combined effect of FC-A and spastazoline. The FC-A mechanism of action can be very broad, since it will increase the binding of all 14-3-3 proteins with presumably all their substrates, hence the pathways affected can rise to the hundreds. The fact that spastazoline abolishes FC-A effect, may not be because of their direct interaction, but because spastin is a necessary component of the execution of the regeneration machinery further downstream, in line with the fact that spastazoline alone prevented outgrowth and regeneration, and in agreement with previous work showing that normal spastin activity is necessary for regeneration.<br /> With this in mind, I consider the title and most major conclusions of the manuscript related to these two proteins acting together for the observed effects are overstated.

      2- Authors show that S233D increases MT severing activity, and explain that it is related to increased binding to 14-3-3. An alternative explanation is that phosphorylation at S233 by itself could increase MT severing activity. The authors could test if purified spastin S233D alone could have more potent enzymatic activity.

      3- The interpretation of the authors cannot explain how Spastin can engage in MT severing while bound to 14-3-3 using its Microtubule Binding Domain.

      4- Also, the term "microtubule dynamics", which is present in the title and in other major conclusions, is overstated. Although authors show, in cell lines, changes in microtubule content, it is far from evidence for changes in "MT dynamics" in the settings of interest (i.e. injured axons).

      5- In the same lines, the manuscript lacks evidence for the changes of MT content and/dynamics as a function of the proposed 14-3-3 - Spastin pathway.

    2. Reviewer #2 (Public Review):

      Summary: The idea of harnessing small molecules that may affect protein-protein interactions to promote axon regeneration is interesting and worthy of study. In this manuscript Liu et al. explore a 14-3-3-Spastin complex and its role in axon regeneration.

      Strengths: Some of the effects of FC-A on locomotor recovery after spinal cord contusion look interesting

      Weaknesses: The manuscript falls short of establishing that a 14-3-3-Spastin complex is important for any FC-A-dependent effects and there are several issues with data quality that make it difficult to interpret the results. Importantly, the effects of the spastin inhibitor has a major impact on neurite outgrowth suggesting that cells simply cannot grow in the presence of the inhibitor and raising serious questions about any selectivity for FC-A - dependent growth. Aspects of the histology following spinal cord injury were not convincing.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The current manuscript shows that 14-3-3 are binding partners of spastin, preventing its degradation. It is additionally shown, using complementary methods, that both 14-3-3 and spastin are necessary for axon regeneration in vitro and in vivo. While interesting in vitro and vivo data is provided, some of the claims of the authors are not convincingly supported.

      Major strengths:<br /> Very interesting effect of FC-A in functional recovery after spinal cord injury.

      Major Weaknesses:<br /> Some of the in vitro data, including colocalizations, and analysis of microtubule severing fall short to support the claims of the authors.<br /> The in vivo selectivity of FC-A towards spastin is not adequately supported by the data presented.<br /> There are aspects of the spinal cord injury site histology that are unclear.

    1. Reviewer #1 (Public Review):

      Summary:

      Walsh and colleagues investigated how cued probabilistic expectations about future stimuli may influence different stages of decision-making as implemented in the human brain. In their study, participants were provided with cues that could correctly (or incorrectly) cue which visual stimulus would be presented. These cues also predicted the motor action that would likely produce a correct judgment for that trial. In addition, a 'neutral' cue was included that did not predict any particular stimulus. They report that measures of steady-state visual evoked potentials (SSVEPs, proposed to index the magnitude of visual neural activity in favour of the correct response) were smaller when the cue incorrectly predicted the upcoming image, compared to when an accurate cue or a neutral cue was presented. Their primary finding adds to an ongoing debate in the field of decision-making research about how cued expectations may influence how we make decisions.

      Strengths:

      This study uses a carefully constructed experiment design and decision-making task that allows separation of multiple electroencephalographic (EEG) signals thought to track different stages of decision-making. For example, the steady-state visual evoked potential measures can be cleanly dissociated from more anterior beta-band activity over the motor cortex. They also allow evaluation of how cued expectancy effects may unfold over a number of testing sessions. This is important because the most consistent evidence of expectation-related modulations of electrophysiological measures (using EEG, local field potentials, or single neuron firing rates) is from studies of non-human primates that involved many days of cue-stimulus contingency learning, and there is a lack of similar work using several testing sessions in humans. Although there were several experimental conditions included in the study, careful trial-balancing was conducted to minimise biases due to incidental differences in the number of trials included for analyses across each condition. Performance for each individual was also carefully calibrated to maximise the possibility of identifying subtle changes in task performance by expectation and avoid floor or ceiling effects.

      Weaknesses:

      Although the experiment and analysis methods are cohesive and well-designed, there are some shortcomings that limit the inferences that can be drawn from the presented findings.

      The first relates to the measures of SSVEPs and their relevance for decision-making in the task. In order to eliminate the influence of sporadic pulses of contrast changes that occurred during stimulus presentation, a time window of 680-975 ms post-stimulus onset was used to measure the SSVEPs. The mean response times for the valid and neutral cues were around 850-900 ms for correct responses, and within the same time window for errors in the invalid cue condition. In addition, a large portion of response times in perceptual decision-making tasks are substantially faster than the mean due to right-skewed response time distributions that are typically observed. As it has also been estimated to require 70-100 ms to execute a motor action (e.g., a keypress response) following the commitment to a decision. This raises some concerns about the proportion of trials in which the contrast-dependent visual responses (indexed by the SSVEPs) indexed visual input that was actually used to make the decision in a given trial. Additional analyses of SSVEPs that take the trial-varying pulses into account could be run to determine whether expectations influenced visual responses earlier in the trial. Presenting response time quantile plots may also help to determine the proportions of motor responses (used to report a decision) that occurred during or after the SSVEP measurement window.

      In addition, an argument is made for changes in the evidence accumulation rate (called the drift rate) by stimulus expectancy, corresponding to the observed changes in SSVEP measures and differences in the sensory encoding of the stimulus. This inference is limited by the fact that evidence accumulation models (such as the Diffusion Decision Model) were not used to test for drift rate changes as could be determined from the behavioural data (by modelling response time distributions). There appear to be ample numbers of trials per participant to test for drift rate changes in addition to the starting point bias captured in earlier models. Due to the very high number of trials, models could potentially be evaluated for each single participant. This would provide more direct evidence for drift rate changes than the findings based on the SSVEPs, particularly due to the issues with the measurement window relating to the response times as mentioned above.

    2. Reviewer #2 (Public Review):

      Summary:

      We often have prior expectations about how the sensory world will change, but it remains an open question as to how these expectations are integrated into perceptual decisions. In particular, scientists have debated whether prior knowledge principally changes the decisions we make about the perceptual world, or directly alters our perceptual encoding of incoming sensory evidence.

      The authors aimed to shed light on this conundrum by using a novel psychophysical task while measuring EEG signals that have previously been linked to either the sensory encoding or response selection phase of perceptual choice. The results convincingly demonstrate that both features of perceptual decision-making are modulated by prior expectations - but that these biases in neural process emerge over different time courses (i.e., decisional signals are shaped early in learning, but biases in sensory processing are slower to emerge).

      Another interesting observation unearthed in the study - though not strictly linked to this perceptual/decisional puzzle - is that neural signatures of focused attention are exaggerated on trials where participants are given neutral (i.e. uninformative) cues. This is consistent with the idea that observers are more attentive to incoming sensory evidence when they cannot rely on their expectations.

      In general, I think the study makes a strong contribution to the literature and does an excellent job of separating 'perceiving' from 'responding'. More perhaps could have been done though to separate 'perceiving' and 'responding' from 'deciding' (see below).

      Strengths:

      The work is executed expertly and focuses cleverly on two features of the EEG signals that can be closely connected to specific loci of the perceptual decision-making process - the SSVEP which connects closely to sensory (visual) encoding, and Mu-Beta lateralisation which connects closely to movement preparation. This is a very appropriate design choice given the authors' research question.

      Another advantage of the design is the use of an unusually long training regime (i.e., for humans) - which makes it possible to probe the emergence of different expectation biases in the brain over different timecourses, and in a way that may be more comparable to work with nonhuman animals (who are routinely trained for much longer than humans).

      Weaknesses:

      In my view, the principal shortcoming of this study is that the experimental task confounds expectations about stimulus identity with expectations about to-be-performed responses. That is, cues in the task don't just tell participants what they will (probably) see, but what they (probably) should do.

      In many respects, this feature of the paradigm might seem inevitable, as if specific stimuli are not connected to specific responses, it is not possible to observe motor preparation of this kind (e.g., de Lange, Rahnev, Donner & Lau, 2013 - JoN).

      However, the theoretical models that the authors focus on (e.g., drift-diffusion models) are models of decision (i.e., commitment to a proposition about the world) as much as they are models of choice (i.e., commitment to action). Expectation researchers interested in these models are often interested in asking whether predictions influence perceptual processing, perceptual decision, and/or response selection stages (e.g., Feuerriegel, Blom & Hoogendorn, 2021 - Cortex), and other researchers have shown that parameters like drift bias and start point bias can be shifted in paradigms where observers cannot possibly prepare a response (e.g., Thomas, Yon, de Lange & Press, 2020 - Psych Sci).

      The present paradigm used by Walsh et al makes it possible to disentangle sensory processing from later decisional processes, but it blurs together the processes of deciding about the stimulus and choosing/initiating the response. This ultimately limits the insights we can draw from this study - as it remains unclear whether rapid changes in motor preparation we see reflect rapid acquisition of new decision criterion or simple cue-action learning. I think this would be important for comprehensively testing the models the authors target - and a good avenue for future work.

    3. Reviewer #3 (Public Review):

      Observers make judgements about expected stimuli faster and more accurately. How expectations facilitate such perceptual decisions remains an ongoing area of investigation, however, as expectations may exert their effects in multiple ways. Expectations may directly influence the encoding of sensory signals. Alternatively (or additionally), expectations may influence later stages of decision-making, such as motor preparation, when they bear on the appropriate behavioral response.

      In the present study, Walsh and colleagues directly measured the effect of expectations on sensory and motor signals by making clever use of the encephalogram (EEG) recorded from human observers performing a contrast discrimination task. On each trial, a predictive cue indicated which of two superimposed stimuli would likely be higher contrast and, therefore, whether a left or right button press was likely to yield a correct response. Deft design choices allowed the authors to extract both contrast-dependent sensory signals and motor preparation signals from the EEG. The authors provide compelling evidence that, when predictive cues provide information about both a forthcoming stimulus and the appropriate behavioral response, expectation effects are immediately manifest in motor preparation signals and only emerge in sensory signals after extensive training.

      Future work should attempt to reconcile these results with related investigations in the field. As the authors note, several groups have reported expectation-induced modulation of sensory signals (using both fMRI and EEG/MEG) on shorter timescales (e.g. just one or two sessions of a few hundred trials, versus the intensive multi-session study reported here). One interesting possibility is that perceptual expectations are not automatic but demand the deployment of feature-based attention, while motor preparation is comparatively less effortful and so dominates when both sources of information are available, as in the present study. This hypothesis is consistent with the authors' thoughtful analysis showing decreased neural signatures of attention over posterior electrodes following predictive cues. Therefore, observing the timescale of sensory effects using the same design and methods (facilitating direct comparison with the present work), but altering task demands slightly such that cues are no longer predictive of the appropriate behavioral response, could be illuminating.

    1. Reviewer #1 (Public Review):

      Summary:

      The results in this manuscript show that after the same injury, axon regeneration of three types of sensory neurons and motor neurons differs. In addition, they analyzed their transcriptomic profiles with or without injury. Finally, they also pinpoint a molecular candidate that might regulate axon regeneration in PNS.

      Strengths:

      With four different transgenic lines to label different populations of PNS axons, the authors show that nociceptors have the greatest regeneration, followed by motoneurons, and then cutaneous mechanoreceptors and proprioceptors.

      These transgenic tools were further used in RNA profiling analysis. They identified signatures of these different populations in intact and injured states, implicating that differentially activated regenerative programs might be a contributing factor to different regenerative outcomes.

      They showed that Med12 is induced in proprioceptors and down-regulated in mechanoreceptors and nociceptors. Further, knockout down Med12 with shRNA increased neurite growth.

      Weaknesses:

      While in vivo injury was used to assess regeneration from subsets of PNS neurons, different in vitro neurite growth or explant assays were used for further assessments. However, the authors did not assess whether the differential "regenerative" responses in vivo could be recapitulated in vitro. Such results will be important in interpreting the results.

      Intriguingly, even in individual groups of PNS neurons, not all neurons regenerate to the same extent. It is known that the distance between the cell body and the lesion site affects neuronal injury responses. It would be interesting to test this in the observed regeneration.

      Fig 1: The authors quantified the number of regenerating axons at two different time points. However, the total numbers of neurons/axons in each subset are different. The authors should use these numbers to normalize their regenerative axons.

      Fig 2-5: In explaining differential regeneration of individual groups of neurons, there are at least two possibilities: (1). Each group of neurons has different injury/regenerative responses; (2). The same set of injury/regenerative responses are differentially activated. Some data in this manuscript suggested the latter possibility. But some other data point in the opposite direction. It would be informative for the authors to analyze/discuss this further.

      Fig 6: Is it possible to assess the regenerative effects of knockdown Med12 after in vivo injury?

    2. Reviewer #2 (Public Review):

      In this study, the researchers utilized ribotag-based RNA sequencing to examine the gene expression response, presumably involving actively translated RNAs, in dorsal root ganglia (DRGs) after an injury. They generated multiple lines of mice capable of expressing a fluorescent protein (FP) reporter, tdTomato, along with a ribotag marked by a modified Rpl22 allele (Rpl22-HA). These genetic constructs were controlled by specific promoters that selectively labeled four distinct cell types associated with axons in the peripheral nerve. Hence, the fluorescent protein (FP) will function to label the axons for the purpose of studying their regrowth potential, while the ribotag will be used for the selective isolation of ribosomes associated with the bound mRNAs. The experiments used four transgenic lines, each utilizing distinct gene promoters to target specific cell types: ChAT for motor neurons, Parvalbumin for proprioceptors, Npy2r for cutaneous mechanoreceptors, and TRPV1 for nociceptors.

      The authors effectively demonstrate the selectivity of their transgenic lines towards distinct subtypes of DRG neurons. Their utilization of Ribotag, primarily designed for investigating translational activity (translator) within specific cell types, offers a unique perspective on alterations in gene expression.

      The results can be categorized into two main types: firstly, a description of axon growth observed at 7 and 9 days following a sciatic nerve crush, and secondly, the RNA sequencing data obtained at 7 days post-crush, particularly concerning axon growth in specific cell types, followed by bioinformatic analysis. Finally, some in vitro experiments were conducted to explore potential causal relationships.

      It seems that the most intriguing outcome of this paper revolves around the role of Med12 in nerve regeneration. The authors should prioritize this finding. Drawing a conclusion regarding Med12's role in proprioceptor regeneration based solely on this in vitro model may be insufficient. This noteworthy result requires further investigation using more animal models of nerve regeneration.

      One critique revolves around the authors' examination of only a single time point within the dynamic and continuously evolving process of regeneration/reinnervation. Given that this process is characterized by dynamic changes, some of which may not be directly associated with active axon growth during regeneration, and encompasses a wide range of molecular alterations throughout reinnervation, concentrating solely on a single time point could result in the omission of critical molecular events.

    3. Reviewer #3 (Public Review):

      In their study, Bolivar et al. set out to explore whether four distinct neuronal subtypes within the peripheral nervous system exhibit varying potentials for axon regeneration following nerve injury. To investigate this question, they harnessed the power of four distinct reporter mouse models featuring fluorescent labeling of these neuronal subtypes. Their findings reveal that axons of nociceptor neurons exhibit faster regeneration than those of motor neurons, with mechanoreceptors, and proprioceptors displaying the slowest regeneration rate.

      To delve into the molecular mechanisms underlying this divergence in regeneration potential, the authors employed the Ribotag technique in mice. This approach enabled them to dissect the differential translatomes of these four neuronal populations after nerve injury, comparing them to uninjured neurons. Their comprehensive expression profiling data uncovers a remarkably heterogeneous response among these neuron subtypes to axon injury.

      To focus on one identified target with a mechanistic experiment as a proof of concept, their analysis highlights a striking upregulation of MED12 in proprioceptors, leading to the hypothesis that this molecule may play an inhibitory role, contributing to the comparatively slower regeneration of proprioceptor axons when compared to other neuronal subtypes. This hypothesis gains support from their in vitro model, where siRNA-mediated downregulation of MED12 results in a significant increase in neurite outgrowth in proprioceptive neurons after plating in cell culture dishes.

      Overall, this is an interesting study, and in conjunction with similar work from others will be highly valuable for neurobiologists studying how to modulate the regeneration of axons from distinct neuronal subtypes. The quality of data presentation appears to be very good in general, and the manuscript is appropriately written.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this paper, Weber et al. investigate the role of 4 dopaminergic neurons of the Drosophila larva in mediating the association between an aversive high-salt stimulus and a neutral odor. The 4 DANs belong to the DL1 cluster and innervate non-overlapping compartments of the mushroom body, distinct from those involved in appetitive associative learning. Using specific driver lines, they show that activation of the DAN-g1 is sufficient to mimic an aversive memory and it is also necessary to form a high-salt memory of full strength, although optogenetic silencing of this neuron only partially affects the performance index. The authors use calcium imaging to show that the DAN-g1 is not the only one that responds to salt. DAN-c1 and d1 also respond to salt, but they seem to play no role in the assays tested. DAN-f1, which does not respond to salt, is able to lead to the formation of memory (if optogenetically activated), but it is not necessary for the salt-odor memory formation in normal conditions. However, silencing of DAN-f1 together with DAN-g1, enhances the memory deficit of DAN-g1.

      Strengths:<br /> The paper therefore reveals that also in the Drosophila larva as in the adult, rewards and punishments are processed by exclusive sets of DANs and that a complex interaction between a subset of DANs mediates salt-odor association.<br /> Overall, the manuscript contributes valuable results that are useful for understanding the organization and function of the dopaminergic system. The behavioral role of the specific DANs is accessed using specific driver lines which allow for testing of their function individually and in pairs. Moreover, the authors perform calcium imaging to test whether DANs are activated by salt, a prerequisite for inducing a negative association with it. Proper genetic controls are carried across the manuscript.

      Weaknesses:<br /> The authors use two different approaches to silence dopaminergic neurons: optogenetics and induction of apoptosis. The results are not always consistent, and the authors could improve the presentation and interpretation of the data. Specifically, optogenetics seems a better approach than apoptosis, which can affect the overall development of the system, but apoptosis experiments are used to set the grounds of the paper.

      The physiological data would suggest the role of a certain subset of DANs in salt-odor association, but a different partially overlapping set seems to be necessary. This should be better discussed and integrated into the author's conclusion. The EM data analysis reveals a non-trivial organization of sensory inputs into DANs and it is hard to extrapolate a link to the functional data presented in the paper.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this work, the authors show that dopaminergic neurons (DANs) from the DL1 cluster in Drosophila larvae are required for the formation of aversive memories. DL1 DANs complement pPAM cluster neurons which are required for the formation of attractive memories. This shows the compartmentalized network organization of how an insect learning center (the mushroom body) encodes memory by integrating olfactory stimuli with aversive or attractive teaching signals. Interestingly, the authors found that the 4 main dopaminergic DL1 neurons act redundantly, and that single-cell ablation did not result in aversive memory defects. However, ablation or silencing of a specific DL1 subset (DAN-f1,g1) resulted in reduced salt aversion learning, which was specific to salt but no other aversive teaching stimuli were tested. Importantly, activation of these DANs using an optogenetic approach was also sufficient to induce aversive learning in the presence of high salt. Together with the functional imaging of salt and fructose responses of the individual DANs and the implemented connectome analysis of sensory (and other) inputs to DL1/pPAM DANs, this represents a very comprehensive study linking the structural, functional, and behavioral role of DL1 DANs. This provides fundamental insight into the function of a simple yet efficiently organized learning center which displays highly conserved features of integrating teaching signals with other sensory cues via dopaminergic signaling.

      Strengths:<br /> This is a very careful, precise, and meticulous study identifying the main larval DANs involved in aversive learning using high salt as a teaching signal. This is highly interesting because it allows us to define the cellular substrates and pathways of aversive learning down to the single-cell level in a system without much redundancy. It therefore sets the basis to conduct even more sophisticated experiments and together with the neat connectome analysis opens the possibility of unraveling different sensory processing pathways within the DL1 cluster and integration with the higher-order circuit elements (Kenyon cells and MBONs). The authors' claims are well substantiated by the data and clearly discussed in the appropriate context. The authors also implement neat pathway analyses using the larval connectome data to its full advantage, thus providing network pathways that contribute towards explaining the obtained results.

      Weaknesses:<br /> While there is certainly room for further analysis in the future, the study is very complete as it stands. Suggestions for clarification are minor in nature.

    3. Reviewer #3 (Public Review):

      The study of Weber et al. provides a thorough investigation of the roles of four individual dopamine neurons for aversive associative learning in the Drosophila larva. They focus on the neurons of the DL-1 cluster which already have been shown to signal aversive teaching signals. However, the authors go far beyond the previous publications and test whether each of these dopamine neurons responds to salt or sugar, is necessary for learning about salt, bitter, or sugar, and is sufficient to induce a memory when optogenetically activated. In addition, previously published connectomic data is used to analyze the synaptic input to each of these dopamine neurons. The authors conclude that the aversive teaching signal induced by salt is distributed across the four DL-1 dopamine neurons, with two of them, DAN-f1 and DAN-g1, being particularly important. Overall, the experiments are well designed and performed, support the authors' conclusions, and deepen our understanding of the dopaminergic punishment system.

      Strengths:<br /> 1. This study provides, at least to my knowledge, the first in vivo imaging of larval dopamine neurons in response to tastants. Although the selection of tastants is limited, the results close an important gap in our understanding of the function of these neurons.

      2. The authors performed a large number of experiments to probe for the necessity of each individual dopamine neuron, as well as combinations of neurons, for associative learning. This includes two different training regimens (1 or 3 trials), three different tastants (salt, quinine, and fructose) and two different effectors, one ablating the neuron, the other one acutely silencing it. This thorough work is highly commendable, and the results prove that it was worth it. The authors find that only one neuron, DAN-g1, is partially necessary for salt learning when acutely silenced, whereas a combination of two neurons, DAN-f1 and DAN-g1, are necessary for salt learning when either being ablated or silenced.

      3. In addition, the authors probe whether any of the DL-1 neurons is sufficient for inducing an aversive memory. They found this to be the case for three of the neurons, largely confirming previous results obtained by a different learning paradigm, parameters, and effector.

      4. This study also takes into account connectomic data to analyze the sensory input that each of the dopamine neurons receives. This analysis provides a welcome addition to previous studies and helps to gain a more complete understanding. The authors find large differences in inputs that each neuron receives, and little overlap in input that the dopamine neurons of the "aversive" DL-1 cluster and the "appetitive" pPAM cluster seem to receive.

      5. Finally, the authors try to link all the gathered information in order to describe an updated working model of how aversive teaching signals are carried by dopamine neurons to the larva's memory center. This includes important comparisons both between two different aversive stimuli (salt and nociception) and between the larval and adult stages.

      Weaknesses:<br /> 1. The authors repeatedly claim that they found/proved salt-specific memories. I think this is problematic to some extent.

      1a. With respect to the necessity of the DL-1 neurons for aversive memories, the authors' notion of salt-specificity relies on a significant reduction in salt memory after ablating DAN-f1 and g1, and the lack of such a reduction in quinine memory. However, Fig. 5K shows a quite suspicious trend of an impaired quinine memory which might have been significant with a higher sample size. I therefore think it is not fully clear yet whether DAN-f1 and DAN-g1 are really specifically necessary for salt learning, and the conclusions should be phrased carefully.

      1b. With respect to the results of the optogenetic activation of DL-1 neurons, the authors conclude that specific salt memories were established because the aversive memories were observed in the presence of salt. However, this does not prove that the established memory is specific to salt - it could be an unspecific aversive memory that potentially could be observed in the presence of any other aversive stimuli. In the case of DAN-f1, the authors show that the neuron does not even get activated by salt, but is inhibited by sugar. Why should activation of such a neuron establish a specific salt memory? At the current state, the authors clearly showed that optogenetic activation of the neurons does induce aversive memories - the "content" of those memories, however, remains unknown.

      2. In many figures (e.g. figures 4, 5, 6, supplementary figures S2, S3, S5), the same behavioural data of the effector control is plotted in several sub-figures. Were these experiments done in parallel? If not, the data should not be presented together with results not gathered in parallel. If yes, this should be clearly stated in the figure legends.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this study, the authors evaluated a novel eIF2B activator, DNL343, in two mouse models representing different forms of the integrated stress response (ISR). They first assessed the pharmacokinetics of DNL343, demonstrating its ability to cross the blood-brain barrier and exhibit good bioavailability. In an acute ISR model induced by optic nerve crush (ONC) injury, DNL343 treatment reduced ISR-induced transcriptional changes and neuronal loss, demonstrating neuroprotective effects. Next, the authors generated an eIF2B loss-of-function mice model by knocking in disease-causing Eif2b5 variants. The model presents a chronic ISR and mimics vanishing white matter disease (VWMD). DNL343 treatment from the pre-symptomatic stage improved body weight and motor functions corrected transcriptional changes, and reversed proteomic and metabolomic alterations in the brain and cerebrospinal fluid. DNL343 treatment initiated at an advanced disease stage also showed positive effects, restoring body weight gain, suppressing ISR, reducing neurodegeneration biomarkers, and extending lifespan. These findings highlight DNL343 as an effective ISR inhibitor with potential applications in treating VWMD and other neurodegenerative disorders involving ISR.

      Strengths:<br /> The study's findings regarding the novel compound DNL343 offer significant promise in addressing VWMD, a condition currently lacking disease-modifying treatment. DNL343 directly targets eIF2B, the disease-causing complex in VWMD, and demonstrates notable efficacy in reversing the integrated stress response (ISR) and mitigating neurodegeneration in a VWMD mouse model. These results raise hope for the potential application of DNL343 in VWMD treatment, a development eagerly anticipated by patients and the VWMD research community. Moreover, the study hints at the broader potential of DNL343 in treating other ISR-related neurodegenerative disorders, such as amyotrophic lateral sclerosis, a prospect that holds broader interest. Additionally, the study's identification of potential biomarkers for VWMD represents a notable strength, potentially leading to improved disease progression assessment pending further confirmation in future research.

      Weaknesses:<br /> There are a couple of notable concerns in this study. Firstly, while the in vivo evidence strongly supports the efficacy of DNL343 in mitigating ISR and neurodegeneration, there is a lack of direct biochemical evidence to confirm its activity in eIF2B activation. Secondly, the potential for cardiovascular toxicity, which has been reported for a related eIF2B activator in a canine model (as mentioned in the manuscript), has not been evaluated for DNL343 in this study. This data gap regarding toxicity could be crucial for informing the future development of DNL343 for potential human use. Further investigation into these areas would be valuable for a comprehensive understanding of the compound's mechanisms and safety profile.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors developed DNL343, a CNS-penetrant small molecule integrated stress response (ISR) inhibitor, to treat neurodegenerative diseases caused by ISR.

      Strengths:<br /> DNL343 is an investigational CNS-penetrant small molecule integrated stress response (ISR) inhibitor designed to activate the eukaryotic initiation factor 2B (eIF2B) and suppress aberrant ISR activation. The therapeutic efficacy of DNL343 has been extensively characterized in two animal models. Importantly, plasma biomarkers of neuroinflammation and neurodegeneration can be reversed with DNL343 treatment. Remarkably, several of these biomarkers show differential levels in CSF and plasma from patients with vanishing white matter disease (VWMD) upon DNL343 treatment. Overall, this is a very exciting study to target ISR for therapeutic interventions.

      Weaknesses:<br /> My main questions center around the characterization of DNL343.

      1. Is there any biochemical evidence showing DNL343 activates eIF2B, such as binding assays or in vitro biochemical activity assays? A conference presentation was cited - "Osipov, M. (2022). Discovery of DNL343: a Potent Selective and Brain-penetrant eIF2B Activator Designed for the Treatment of Neurodegenerative Diseases. Medicinal Chemistry Gordon Research Conference. New London, NH." However, there needs to be public information about this presentation.

      2. How was the selectivity of DNL343 demonstrated? What are the off-targets of DNL343, in particular when DNL343 is administered at a high dose? Thermal-proteasome profiling or photoaffinity labeling experiments could be considered.

      3. What are the total drug concentrations in the brain and plasma? What are the unbound ratios?

      4. If DNL343 is given intravenously, what are the concentrations in the brain and plasma after 5 minutes and 1 hour or longer time points? In other words, does DNL343 cross BBB through passive diffusion or an active process?

      5. What is the complete PK profile of DNL343 for intravenous and oral dosing?

      6. Are there any major drug metabolites that could be of concern?

    3. Reviewer #3 (Public Review):

      Summary:<br /> ISR contributes to the pathogenesis of multiple neurodegenerative diseases, such as ALS, FTD, VWMD, etc. Targeting ISR is a promising avenue for potential therapeutics. However, previously identified ways to target ISR present some challenges. PERK inhibitors suppress ISR by inhibiting eIF2alpha phosphorylation and cause pancreatic toxicity in mice. In order to bypass eIF2alpha, previous studies have identified ISR suppressors that target eIF2B, such as ISRIB and 2BAct. These molecules suppress neurodegeneration but do not cause detrimental effects in mouse models. However, ISRIB is water-insoluble, and 2BAct causes cardiovascular complications in dogs, preventing their use in clinics. Here, the authors showed that DNL343, a new ISR inhibitor targeting eIF2B, suppresses neurodegeneration in mouse models. Combined with their previous results of a clinical phase I trial showing the safety of DNL343, these findings suggest the promise of DNL343 as a potential drug for neurodegenerative diseases in which ISR contributes to pathogenesis.

      Strengths:<br /> The finding is important and has disease implications, and the conclusion is not surprising.

      Weaknesses:<br /> The experimental design and data are hard to comprehend for an audience with a basic research background. This reviewer suggests that the authors use the same way that previous studies on ISRIB and 2BAct (e.g., Wong et al; eLife, 2019) designed experiments and interpret data.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this work, the authors use an OT setup to measure the DNA gripping and DNA slipping dynamics of phage lambda terminase motor interaction with DNA. They discover major differences in the dynamics of these two events, in comparison to the phage T4 motor, which they previously investigated. They attribute these differences to the presence of the TerS (small terminase) subunit of the motor complex of phage lambda in addition to the TerL (large terminase) subunit in phage, while in T4 only the TerL subunit is present. By exposing the stalled phage lambda procapsid-DNA complex (stalled with ATP-gammaS) to solutions containing 1) no nucleotide, 2) poorly hydrolyzed ATP*, and 3) ADP, they found that the gripping persistence is strongest with ATP*, weaker with ADP, and weakest with no nucleotide. This demonstrates nucleotide-dependent DNA gripping and friction of the motor. However, both persistence of gripping and friction are dramatically stronger than in the T4 TerL motor, due to the presence of the TerS subunit. While TerS was believed to be essential for the initiation of packaging in vivo, its role during DNA translocation was unclear. This study reveals the key role played by TerS in DNA gripping and DNA-motor friction, highlighting its role in DNA translocation where TerS acts as a "sliding clamp".

      The study also provides a method to investigate factors affecting the stability of the initiation complex in viral packaging motors.

      Strengths:<br /> The experiments are well carried out and the conclusions are justified. These findings are of great significance and advance our understanding of viral motor function in the DNA packaging process and packaging dynamics.

      Weaknesses:<br /> While the collected OT data is quantitative, therefore is no further quantitative analysis of the motor packaging dynamics with regard to different motor subunit functions and the presence of nucleotides.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In their paper Rawson et al investigate the nanomechanical properties of the lambda bacteriophage packaging motor in terms of its ability to allow either the slippage of DNA out of the capsid or exerting a grip on the DNA, thereby preventing the slipping. They use a fascinatingly elegant single-molecule biophysics approach, in which gentle forces, generated and controlled by optical tweezers, are used to pull on the DNA molecule about to be packaged by the virus. A microfluidic device is then used to change the nucleotide environment of the reaction, so that the packaging motor can be investigated in its nucleotide-free (apo), ADP-, and non-hydrolyzable ATP-analog-bound states. The authors show that the apo state is dominated by DNA slippage which is impeded by friction. The slippage is stochastically halted by gripping stages. In ADP the DNA-gripped state becomes overwhelming, resulting in a much slowed DNA slippage. In non-hydrolyzable ATP analogs, the DNA slippage is essentially halted and the gripped state becomes exclusive. The authors also show that the slipping and gripping states are controlled not only by nucleotides but also by the force exerted on DNA. Altogether, DNA transport through/by the lambda-phage packaging motor is regulated by nucleotides and mechanical force. Furthermore, the authors document an intriguingly interesting DNA end-clamping mechanism that prevents the DNA from slipping entirely out of the capsid, which would make the packaging process inefficient even on the statistical level. The authors claim that their findings are likely related to the function of a small terminase subunit (TerS) in the lambda-phage motor, which may act as a sliding clamp.

      Strengths:<br /> Altogether this is a very elegantly executed, thought-provoking, and interesting work with numerous significant practical implications. The paper is well-written and nicely documented.

      Weaknesses:<br /> There are really no major weaknesses, apart from a few minor issues detailed below in my recommendations.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this study, Pan DY et al. discovered that the clearance of senescent osteoclasts can lead to a reduction in sensory nerve innervation. This reduction is achieved through the attenuation of Netrin-1 and NGF levels, as well as the regulation of H-type vessels, resulting in a decrease in pain-related behavior. The experiments are well-designed. The results are clearly presented, and the legends are also clear and informative. Their findings represent a potential treatment for spine pain utilizing senolytic drugs.

      Strengths:<br /> Rigorous data, well-designed experiments as well as significant innovation make this manuscript stand out.

      Weaknesses:<br /> Quantification of histology and detailed statistical analysis will further strengthen this manuscript.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript examined the underlying mechanisms between senescent osteoclasts (SnOCs) and lumbar spine instability (LSI) or aging. They first showed that greater numbers of SnOCs are observed in mouse models of LSI or aging, and these SnOCs are associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. Then, the deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. Finally, they also found that there is greater SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. The study is well conducted and data strongly support the idea. However, some minor issues need to be addressed.

    3. Reviewer #3 (Public Review):

      Summary:<br /> This research article reports that a greater number of senescent osteoclasts (SnOCs), which produce Netrin-1 and NGF, are responsible for innervation in the LSI and aging animal models.

      Strengths:<br /> The research is based on previous findings in the authors' lab and the fact that the IVD structure was restored by treatment with ABT263. The logic is clear and clarifies the pathological role of SnOCs, suggesting the potential utilization of senolytic drugs for the treatment of LBP. Generally, the study is of good quality and the data is convincing.

      Weaknesses:<br /> There are some points that can be improved:<br /> 1. Since this work primarily focuses on ABT263, it resembles a pharmacological study for this drug. It is preferable to provide references for the ABT263 concentration and explain how the administration was determined.<br /> 2. It would strengthen the study to include at least 6 mice per group for each experiment and analysis, which would provide a more robust foundation.<br /> 3. In Figure 4, either use "adult" or "young" consistently, but not both. Additionally, it's important to define "sham," "young," and "adult" explicitly in the methods section.<br /> 4. Assess the protein expression of Netrin 1 and NGF.

    1. Reviewer #1 (Public Review):

      In this article, the authors found a distinct fibroblast subpopulation named AG fibroblasts, which are capable of regulating myeloid cells, T cells and ILCs, and proposed that AG fibroblasts function as a previously unrecognized surveillant to orchestrate chronic gingival inflammation in periodontitis. Generally speaking, this article is innovative and interesting.

    2. Reviewer #2 (Public Review):

      This study proposed the AG fibroblast-neutrophil-ILC3 axis as a mechanism contributing to pathological inflammation in periodontitis. In this study single-cell transcriptomic analysis was performed. But the signal mechanism behind them was not evaluated.

      The authors achieved their aims, and the results partially support their conclusions.

      The mouse ligatured periodontitis models differ from clinical periodontitis in human, this study supplies the basis for future research in human.

    1. Reviewer #1 (Public Review):

      The manuscript by Lolicato and colleagues characterizes the role of FGF2 dimerization in unconventional secretion of this signaling molecule using a combination of cell-based and in vitro assays. FGF2 is a signaling molecule secreted from the cell via an unconventional mechanism because it lacks a signal sequence. Previous studies by the same group have established a compelling model in which FGF2 forms an oligomer in a PIP2 dependent manner at the plasma member, which drives its translocation to the cell exterior. The same group also reports two cysteine residues that are critical for FGF2 oligomerization and secretion.

      In this study, the authors analyzed the impact of single Cysteine to Alanine substitution on oligomerization and secretion of FGF2. They found that C95 but not C77 is required for PIP2 dependent membrane binding, FGF2 oligomerization and secretion. On the other hand, C77 is required for the interaction of FGF2 with the plasma membrane Na, K-ATPase, which is thought to enhance the FGF2-PIP2 interaction. Using a set of bi-functional crosslinkers, the authors were able to capture a fraction of the FGF2 homo-dimer, which is dependent on C95. They propose that FGF2 forms a disulfide-bridged dimer via C95, which serves as the building block for FGF2 oligomerization in the plasma membrane.

      The revised manuscript has carefully addressed my concerns. I should clarify that when I inquired about evidence for a disulfide-linked FGF2 dimer, I referred to in vivo evidence. I was aware of the authors' previous in vitro study, which demonstrated that FGF2 indeed can form a disulfide dimer under an in vitro condition. Although the new manuscript still contains no in vivo data on this issue, the authors have added numerous controls. In particular, the fact that the FGF2 C95S mutant is severely defective in secretion does provide strong support for the involvement of the thiol group of C95 in FGF2 secretion. The additional discussions on other examples of cytosolically-localized disulfide proteins and those in proximity to membranes further alleviates my concern.

    2. Reviewer #2 (Public Review):

      Unconventional secretion refers to the release of cargoes without a signal peptide and is performed independent of ER-Golgi trafficking. One essential type of unconventional secretion is type I, in which a cargo can translocate directly across the plasma membrane. FGF2 is one excellent mode to study type I translocation and the authors have focused on FGF2 secretion for decades. Many beautiful works have been performed to reveal the mechanism of FGF2 translocation step by step. And the picture is getting clearer which time a new work from the lab is published. In the current work, the authors characterized the importance of disulfate bond formation on C95 of FGF2 in lipid binding and translocation. In addition, they clearified the role of another C77 which is require for binding to the Na/K -ATPase that regulates the early step of FGF2 binding to the membrane. The authors also employed structural approaches and MD to provide mechanistic insights into the translocation process. In general it is an important advance regarding the translocation of FGF2 and data provided are brief, clear and convincing.

    3. Reviewer #3 (Public Review):

      In addition to ER-Golgi-dependent conventional protein secretion, a wide range of substrates lacking N-terminal signal peptides are secreted through diverse pathways collectively known as unconventional protein secretion (UPS). The translocation mechanism of these different substrates across the membrane remains a fascinating question in this field. In this manuscript, the authors employ a comprehensive combination of biochemistry, cell biology, and structural biology techniques to investigate the mechanism by which two crucial cystine residues, C77 and C95, facilitate the secretion of FGF2. The key finding is that the C95-C95 disulfide bond mediates the formation of an FGF2 dimer, which is essential for pore formation and translocation. Additionally, it is revealed that C77 promotes FGF2 secretion by interacting with a cell surface factor called Na-K ATPase. This observation provides valuable mechanistic insights into a critical step of FGF2 secretion. Overall, the experimental results presented in this study are both clear and convincing.

      The authors have well addressed my concern about the formation of disulfide bond in the revision. In addition, the cross-linking mass spectrometry identified an additional dimerization interface, which would be of interest for future studies on its role in regulating high-order FGF2 oligomer formation and secretion.

    1. Reviewer #1 (Public Review):

      Terzioglu and co-workers tested the provocative hypothesis that mitochondria maintain an internal temperature considerably higher than cytosolic/external environmental temperature due to the inherent thermodynamic inefficiency of mitochondrial oxidative phosphorylation. As a follow-up to a prior paper from some of the same authors, the goal of this study was to conduct additional experiments to assess mitochondrial temperature in cultured cells. Consistent with the prior work, the authors provide consistent evidence that the temperature of mitochondria in four different types of cultured mammalian cells, as well as cells from Drosophila (poikilotherms), is 15oC or more above the external temperature at which cells are maintained (e.g., 37oC). Additional evidence shows that mitochondria maintain higher temperatures under several different types of cellular metabolic stresses predicted to decrease the dependence on OxPhos, adding to the notion that natural thermodynamic inefficiency and heat generation may be an important, and potentially regulated, characteristic of mitochondrial metabolism.

      Strengths

      Demonstration that both a fluorescent (Mito Thermo Yellow) and a genetic-based (mito-gTEMP) mitochondrial targeted temperature probe elicit similar quantitative changes in mitochondrial temperature under different experimental conditions is a strength. The addition of the genetic probe to the current study supports prior findings using the fluorescent probe and thus achieves a primary objective of the study.

      The experiments are well designed and executed. Specific attention given to potential artifacts affecting probe signal and/or non-specific effects from the different experimental interventions is a strength.

      The use of different cultured cell lines from different organisms provides additional evidence of elevated temperature as a general property of functioning mitochondria, representing additional validation.

      Weakness:

      While the findings and potential interpretations put forward by the authors are intriguing, the severity of the interventions (e.g., mitochondrial complex-specific inhibitors, inhibition of protein synthesis) and the absence of simultaneous or parallel measurements of other key bioenergetic parameters (i.e., membrane potential, oxygen consumption rate, etc.) limits the ability to interpret potential cause and effect - whether the thermogenesis aspect of OxPhos is being sensed and regulated, or whether temperature changes are more of a biproduct of adjustments in OxPhos flux under the experimental circumstances. In other words, the physiological relevance of the findings remains unclear.

      Related, several of the interventions are employed to either increase or decrease dependence on OxPhos flux, but no outcome measures are reported to document whether the intended objective was achieved (e.g., increased OxPhos flux in low glucose plus galactose, decreased ATP demand-OxPhos flux with anisomycin, etc.).

    2. Reviewer #2 (Public Review):

      An important paper that confirms the validity of the initial findings of Chretien et al regarding the hot temperatures at which the mitochondrion is operating. The authors responded adequately to the reviewers' concerns.

    3. Reviewer #3 (Public Review):

      The goal of this study was to use a combination of fluorescent dyes and genetically encoded reporters to estimate the temperature of mitochondria. The authors provide additional evidence that they claim to support "hot" mitochondria.

      Strengths:<br /> 1. The authors use several methods, including a mitochondrial fluorescent reporter dye, as well as a genetically encoded gTEMP temperature probe, to estimate mitochondrial temperature.<br /> 2. The authors couple these measurements with other perturbation of mitochondria, such as OXPHOS inhibitors, to show consistency

      Weaknesses:<br /> 1. The methodology for inferring mitochondrial temperature is not well-established to begin with and requires additional controls for interpretation.<br /> a. Very little benchmarking is done of the "basal" fluorescence ratio, and whether that fluorescence ratio actually reflects true organelle temperature. For instance, the authors should in parallel compare between different organelles to see if only mitochondria appear "hot" or whether this is some calibration error. Another control is to use different incubator temperatures and see how mitochondrial (vs other organelle) temperature varies as a function of external temperature.<br /> b. The authors do not rigorously control for other factors that may also be changing fluorescence and may be confounders to the delta fluorescence (eg, delta calcium in response to mito inhibitors, membrane potential, redox status, ROS, etc.). There should be additional calibration for all potential confounders.<br /> c. Can these probes be used in isolated mitochondria and other isolated organelles. Such data would also help to clarify whether the high temperature is specific to mitochondria.<br /> 2. The authors should try to calibrate their fluorescence inference of temperature with an alternative method and benchmark to others in the field. For instance, Okabe et al Nat Comm 2012 used a polymeric thermometer to measure temperature and reported 33degC cytoplasm and 35degC nucleus. Can the authors also show a ~2degC difference in their hands between those two compartments, and under those conditions are mitochondria still 10degC hotter?

      Based on the aforementioned weaknesses, in my opinion, the authors did not achieve their Aims to accurately determine the temperature of mitochondria. The results, while interesting, are preliminary and require additional controls before conclusions can be drawn. Previous studies have indicated intra-organelle temperature variations within cells; typically, previous reports have estimated that the variation is within a few degrees (Okabe et al Nat Comm 2012). Only one report has previously suggested that mitochondria are at 50degC (Cretien, Plos biology 2018). The study does not substantially clarify the true temperature of mitochondria or resolve potential discrepancies in previous estimates of mitochondrial temperature.

    1. Reviewer #2 (Public Review):

      Tuller et al. first made the curious observation, that the first ∼30-50 codons in most organisms are encoded by scarce tRNAs and appear to be translated slower than the rest of the coding sequences (CDS). They speculated that this has evolved to pace ribosomes on CDS and prevent ribosome collisions during elongation - the "Ramp" hypothesis. Various aspects of this hypothesis, both factual and in terms of interpreting the results, have been challenged ever since. Sejour et al. present compelling results confirming the slower translation of the first ~40 codons in S. cerevisiae but providing an alternative explanation for this phenomenon. Specifically, they show that the higher amino acid sequence divergence of N-terminal ends of proteins and accompanying lower purifying selection (perhaps the result of de novo evolution) is sufficient to explain the prevalence of rare slow codons in these regions. These results are an important contribution in understanding how aspects of the evolution of protein coding regions can affect translation efficiency on these sequences and directly challenge the "Ramp" hypothesis proposed by Tuller et al.

      I believe the data is presented clearly and the results generally justify the conclusions.

    2. Reviewer #1 (Public Review):

      The manuscript by Sejour et al. is testing "translational ramp" model described previously by Tuller et al. in S. cerevisiae. Authors are using bioinformatics and reporter based experimental approaches to test whether "rare codons" in the first 40 codons of the gene coding sequences increase translation efficiency and regulate abundance of translation products in yeast cells. Authors conclude that "translation ramp" model does not have support using a new set of reporters and bioinformatics analyses. The strength of bioinformatic evidence and experimental analyses (even very limited) of the rare codons insertion in the reporter make a compelling case for the authors claims. However the major weakness of the manuscript is that authors do not take into account other models that previously disputed "rare or slow codon" model of Tuller et al. and overstate their own results that are rather limited. This maintains to be the weak part of the manuscript even in the revised form.

      The studies that authors do not mention argue with "translation ramp" model and show more thorough analyses of translation initiation to elongation transition as well as early elongation "slow down" in ribosome profiling data. Moreover several studies have used bioinformatical analyses to point out the evolution of N-terminal sequences in multiple model organisms including yeast, focusing on either upstream ORFs (uORFs) or already annotated ORFs. The authors did not mention multiple of these studies in their revised manuscript and did not comment on their own results in the context of these previous studies. As such the authors approach to data presentation, writing and data discussion makes the manuscript rather biased, focused on criticizing Tuller et al. study and short on discussing multiple other possible reasons for slow translation elongation at the beginning of the protein synthesis. This all together makes the manuscript at the end very limited.

    1. Reviewer #1 (Public Review):

      This manuscript by Xu and colleagues addresses the important question of how multi-modal associations are encoded in the rodent brain. They use behavioral protocols to link stimuli to whisker movement and discover that the barrel cortex can be a hub for associations. Based on anatomical correlations, they suggest that structural plasticity between different areas can be linked to training. Moreover, they provide electrophysiological correlates that link to behavior and structure. Knock-down of nlg3 abolishes plasticity and learning.

      This study provides an important contribution as to how multi-modal associations can be formed across cortical regions.

    2. Reviewer #2 (Public Review):

      This manuscript by Xu et al. explores the potential joint storage/retrieval of associated signals in learning/memory and how that is encoded by some associative memory neurons using a mouse model. The authors examined mouse associative learning by pairing multimodal mouse learning including olfactory, tactile, gustatory, and pain/tail heating signals. The key finding is that after associative learning, barrel neurons respond to other multi-model stimulations. They found these barrel cortical neurons interconnect with other structures including piriform cortex, S1-Tr and gustatory cortical neurons. Further studies showed that Neuroligin 3 mediated the recruitment of associative memory neurons during paired stimulation group. The authors found that knockdown Neuroligin 3 in the barrel cortex suppressed the associative memory cell recruitment in the paired stimulation learning. Overall, this is an interesting study that reveals novel modalities associative learning involving multiple functionally connective cortical regions. Data presented are in general supporting their conclusions after revision.

    1. Reviewer #1 (Public Review):

      Soudi, Jahani et al. provide a valuable comparative study of local adaptation in four species of sunflowers, and investigate the repeatability of observed genomic signals of adaptation and their link to haploblocks, known to be numerous and important in this system. The study builds on previous work in sunflowers that have investigated haploblocks in those species and on methodologies developed to look at repeated signals of local adaptations. The authors provide solid evidence of both genotype-environment associations (GEA) and genome-wide association study (GWAS), as well as phenotypic correlations with the environment, to show that part of the local adaptation signal is repeatable and significantly co-occur in regions harboring haploblocks. Results also show that part of the signal is species specific and points to high genetic redundancy. This work will be of interest to evolutionary biologists in general and population geneticists in particular, and constitutes a good example of comparative local adaptation. Importantly, this study helps in advancing our understanding of the genetic architecture implicated in the adaptation process.

      Strenghts: The authors take great care in acknowledging and investigating the multiple biases inherent to the used methods (GEA and GWAS) and use conservative and well thought statistical approaches to draw their conclusions. Additionally, I appreciated the nuanced discussion and can only agree with the authors that the adaptation process is complex and does not fully fit the classic simplified genetics models of either few large effect genes or only infinitesimal quantitative traits. I find the added Summary figure of this revised version (S1) extremely helpful in better understanding the different analysis steps and how they relate to the different questions.

      Weaknesses: After those revisions, I did not find any major weakness and am satisfied with the authors responses.

    2. Reviewer #2 (Public Review):

      In this study the authors sought to understand the extent of similarity among species in intraspecific adaptation to environmental heterogeneity at the phenotypic and genetic levels. A particular focus was to evaluate if regions that were associated with adaptation within putative inversions in one species were also candidates for adaptation in another species that lacked those inversions. This study is timely for the field of evolutionary genomics, due to recent interest surrounding how inversions arise and become established in adaptation.

      Major strengths-

      Their study system was well suited to addressing the aims, given that the different species of sunflower all had GWAS data on the same phenotypes from common garden experiments as well as landscape genomic data, and orthologous SNPs could be identified. Organizing a dataset of this magnitude is no small feat. The authors integrate many state-of-the-art statistical methods that they have developed in previous research into a framework for correlating genomic Windows of Repeated Association (WRA, also amalgamated into Clusters of Repeated Association based on LD among windows) with Similarity In Phenotype-Environment Correlation (SIPEC). The WRA/CRA methods are very useful and the authors do an excellent job at outlining the rationale for these methods.

      Weaknesses-

      The authors did an excellent job responding to the first set of reviews and overall I found the manuscript more streamlined and easier to read. The main weakness in the manuscript is that correlations among environmental variables were not controlled for in their results, and is a source of potential pseudoreplication. The authors are clear about the results that are affected by pseudoreplication.

      The manuscript shows how to integrate many recent methods to study the repeatability of adaptation, and the methods and data are likely to be used in similar studies.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The manuscript of Davidsen and Sullivan describes an improved tRNA-seq protocol to determine aminoacyl-tRNA levels. The improvements include: (i) optimizing the Whitfeld or oxidation reaction to select aminoacyl-tRNAs from oxidation-sensitive non-acylated tRNAs; (ii) using a splint-assisted ligation to modify the tRNAs' ends for the following RT-PCR reaction; (iii) using an error-tolerating mapping algorithm to map the tRNA sequencing reads that contain mismatches at modified nucleotides.

      Strengths:<br /> The two steps, the oxidation, and the splint-assisted ligation are yield-diminishing steps, thus the protocol of Davidsen and Sullivan is an important improvement of the current protocols to enhance the quantification of aminocyl-tRNAs.

      Weaknesses:<br /> The oxidation and the selection of aminoacyl-tRNA is the first step in all protocols. Thereafter they differ on whether blunt ligation, hairpin (DM-tRNA-seq, YAMAT-seq, QuantM-seq, mim tRNA-seq, LOTTE tRNA-seq), or splint ligation is used and finally what detection method is applied (i-tRAP, tRNA microarrays). What is the correlation to those alternative approaches (e.g. i-tRAP (PMID 36283829), tRNA microarrays (PMID: 31263264) etc.)? What is the correlation with other approaches with which this improved protocol shares some steps (DM-tRNA-seq, mim-tRNA-seq)?

    2. Reviewer #2 (Public Review):

      Davidsen and Sullivan present an improved method for quantifying tRNA aminoacylation levels by deep sequencing. By combining recent advances in tRNA sequencing with lysine-based chemistry that is more gentle on RNA, splint oligo-based adapter ligation, and full alignment of tRNA reads, they generate an interesting new protocol. The lab protocol is complemented by a software tool that is openly available on Github. Many of the points highlighted in this protocol are not new but have been used in recent protocols such as Behrens et al. (2021) or McGlincy and Ingolia (2017). Nevertheless, a strength of this study is that the authors carefully test different conditions to optimize their protocol using a set of well-designed controls.

      The conclusions of the manuscript appear to be well supported by the data presented. However, there are a few points that need to be clarified.

      1) One point that remains unsatisfactory is a better benchmarking against the state of the art. It is currently impossible to estimate how much the results of this new protocol differ from alternative methods and in particular from Behrens et al. (2021). Here it will be helpful to perform experiments with samples similar to those used in the mim-tRNAseq study and not with H1299 cells.

      2) While the protocol aims to implement an improved method for quantification of tRNA aminoacylation, it can also be used for tRNA quantification and analysis of tRNA modifications. It will increase the impact of this study if the authors benchmark the outcomes of their protocol with other tRNA sequencing protocols with samples similar to these papers, which will be important for certain research teams that are unlikely to implement two different tRNA sequencing methods. Are there any possible adaptations that would allow the analysis of tRNA fragments?

      3) Like Behrens et al. (2021), Davidsen and Sullivan use TGIRT-III RT for their analyses. The enzyme is not currently available in a form suitable for tRNA-seq. It would be very helpful to test different new RT enzymes that are commercially available. The example of Maxima RT - Figure 2 Supp 6 - shows significantly lower performance than the presented TGIRT-III RT data. In lines 296-298, the authors mention improvements to the protocol by using ornithine. Why are these improvements not included?

      4) A technical concern: The samples are purified multiple times using a specific RNA purification kit. Did the authors test different methods to purify the RNA and does this influence the result of the method?

      5) The study would benefit from an explicit step-by-step protocol, including the choice of adapters that are shown to work best in the protocol.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors present a neural network (NN)-based approach to computationally cheaper emulation of simulations of biophysically relatively detailed cardiac cell models based on systems of ordinary differential equations. Relevant case studies are used to demonstrate the performance in the prediction of standard action potentials, as well as action potentials manifesting early depolarizations. Application to the "reverse problem" (inferring the effect of pharmacological compounds on ion channels based on action potential data before and after drug treatment) is also explored, which is a task of generally high interest.

      Strengths:<br /> This is a well-designed study, which explores an area that many in the cardiac simulation community will be interested in. The article is well written and I particularly commend the authors on transparency of methods description, code sharing, etc. - it feels rather exemplary in this regard and I only wish more authors of cardiac simulation studies took such an approach. The training speed of the network is encouraging and the technique is accessible to anyone with a reasonably strong GPU, not needing specialized equipment.

      Weaknesses:<br /> Below are several points that I consider to be weaknesses and/or uncertainties of the work:

      1. I am not convinced by the authors' premise that there is a great need for further acceleration of cellular cardiac simulations - it is easy to simulate tens of thousands of cells per day on a workstation computer, using simulation conditions similar to those of the authors. I do not really see an unsolved task in the field that would require further speedup of single-cell simulations.

      At the same time, simulations offer multiple advantages, such as the possibility to dissect mechanisms of the model behaviour, and the capability to test its behaviour in a wide array of protocols - whereas a NN is trained for a single purpose/protocol, and does not enable a deep investigation of mechanisms. Therefore, I am not sure the cost/benefit ratio is that strong for single-cell emulation currently.

      An area that is definitely in need of acceleration is simulations of whole ventricles or hearts, but it is not clear how much potential for speedup the presented technology would bring there. I can imagine interesting applications of rapid emulation in such a setting, some of which could be hybrid in nature (e.g. using simulation for the region around the wavefront of propagating electrical waves, while emulating the rest of the tissue, which is behaving more regularly/predictable, and is likely to be emulated well), but this is definitely beyond of the scope of this article.

      2. The authors run a cell simulation for 1000 beats, training the NN emulator to mimic the last beat. It is reported that the simulation of a single cell takes 293 seconds, while emulation takes only milliseconds, implying a massive speedup. However, I consider the claimed speedup achieved by emulation to be highly context-dependent, and somewhat too flattering to the presented method of emulation. Two specific points below:

      First, it appears that a not overly efficient (fixed-step) numerical solver scheme is used for the simulation. On my (comparable, also a Threadripper) CPU, using the same model ("ToR-ORd-dyncl"), but a variable step solver ode15s in Matlab, a simulation of a cell for 1000 beats takes ca. 50 seconds, rather than 293 of the authors. This can be further sped up by parallelization when more cells than available cores are simulated: on 32 cores, this translates into ca. 2 seconds amortized time per cell simulation (I suspect that the NN-based approach cannot be parallelized in a similar way?). By amortization, I mean that if 32 models can be simulated at once, a simulation of X cells will not take X*50 seconds, but (X/32)*50. (with only minor overhead, as this task scales well across cores).

      Second, and this is perhaps more important - the reported speed-up critically depends on the number of beats in the simulation - if I am reading the article correctly, the runtime compares a simulation of 1000 beats versus the emulation of a single beat. If I run a simulation of a single beat across multiple simulated cells (on a 32-core machine), the amortized runtime is around 20 ms per cell, which is only marginally slower than the NN emulation. On the other hand, if the model was simulated for aeons, comparing this to a fixed runtime of the NN, one can get an arbitrarily high speedup.

      Therefore, I'd probably emphasize the concrete speedup less in an abstract and I'd provide some background on the speedup calculation such as above, so that the readers understand the context-dependence. That said, I do think that a simulation for anywhere between 250 and 1000 beats is among the most reasonable points of comparison (long enough for reasonable stability, but not too long to beat an already stable horse; pun with stables was actually completely unintended, but here it is...). I.e., the speedup observed is still valuable and valid, albeit in (I believe) a somewhat limited sense.

      3. It appears that the accuracy of emulation drops off relatively sharply with increasing real-world applicability/relevance of the tasks it is applied to. That said, the authors are to be commended on declaring this transparently, rather than withholding such analyses. I particularly enjoyed the discussion of the not-always-amazing results of the inverse problem on the experimental data. The point on low parameter identifiability is an important one and serves as a warning against overconfidence in our ability to infer cellular parameters from action potentials alone. On the other hand, I'm not that sure the difference between small tissue preps and single cells which authors propose as another source of the discrepancy will be that vast beyond the AP peak potential (probably much of the tissue prep is affected by the pacing electrode?), but that is a subjective view only. The influence of coupling could be checked if the simulated data were generated from 2D tissue samples/fibres, e.g. using the Myokit software.

      Given the points above (particularly the uncertain need for further speedup compared to running single-cell simulations), I am not sure that the technology generated will be that broadly adopted in the near future. However, this does not make the study uninteresting in the slightest - on the contrary, it explores something that many of us are thinking about, and it is likely to stimulate further development in the direction of computationally efficient emulation of relatively complex simulations.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This study provided a neural network emulator of the human ventricular cardiomyocyte action potential. The inputs are the corresponding maximum conductances and the output is the action potential (AP). It used the forward and inverse problems to evaluate the model. The forward problem was solved for synthetic data, while the inverse problem was solved for both synthetic and experimental data. The NN emulator tool enables the acceleration of simulations, maintains high accuracy in modeling APs, effectively handles experimental data, and enhances the overall efficiency of pharmacological studies. This, in turn, has the potential to advance drug development and safety assessment in the field of cardiac electrophysiology.

      Strengths:<br /> (1) Low computational cost: The NN emulator demonstrated a massive speed-up of more than 10,000 times compared to the simulator. This substantial increase in computational speed has the potential to expedite research and drug development processes

      (2) High accuracy in the forward problem: The NN emulator exhibited high accuracy in solving the forward problem when tested with synthetic data. It accurately predicted normal APs and, to a large extent, abnormal APs with early afterdepolarizations (EADs). High accuracy is a notable advantage over existing emulation methods, as it ensures reliable modeling and prediction of AP behavior

      Weaknesses:<br /> (1) Input space constraints: The emulator relies on maximum conductances as inputs, which explain a significant portion of the AP variability between cardiomyocytes. Expanding the input space to include channel kinetics parameters might be challenging when solving the inverse problem with only AP data available.

      (2) Simplified drug-target interaction: In reality, drug interactions can be time-, voltage-, and channel state-dependent, requiring more complex models with multiple parameters compared to the oversimplified model that represents the drug-target interactions by scaling the maximum conductance at control. The complex model could also pose challenges when solving the inverse problem using only AP data.

      (3) Limited data variety: The inverse problem was solved using AP data obtained from a single stimulation protocol, potentially limiting the accuracy of parameter estimates. Including AP data from various stimulation protocols and incorporating pacing cycle length as an additional input could improve parameter identifiability and the accuracy of predictions.

      (4) Larger inaccuracies in the inverse problem using experimental data: The reasons for this result are not quite clear. Hypotheses suggest that it may be attributed to the low parameter identifiability or the training data set were collected in small tissue preparation.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Grandits and colleagues were trying to develop a new tool to accelerate pharmacological studies by using neural networks to emulate the human ventricular cardiomyocyte action potential (AP). The AP is a complex electrical signal that governs the heartbeat, and it is important to accurately model the effects of drugs on the AP to assess their safety and efficacy. Traditional biophysical simulations of the AP are computationally expensive and time-consuming. The authors hypothesized that neural network emulators could be trained to predict the AP with high accuracy and that these emulators could also be used to quickly and accurately predict the effects of drugs on the AP.

      Strengths:<br /> One of the study's major strengths is that the authors use a large and high-quality dataset to train their neural network emulator. The dataset includes a wide range of APs, including normal and abnormal APs exhibiting EADs. This ensures that the emulator is robust and can be used to predict the AP for a variety of different conditions.

      Another major strength of the study is that the authors demonstrate that their neural network emulator can be used to accelerate pharmacological studies. For example, they use the emulator to predict the effects of a set of known arrhythmogenic drugs on the AP. The emulator is able to predict the effects of these drugs, even though it had not been trained on these drugs specifically.

      Weaknesses:<br /> One weakness of the study is that it is important to validate neural network emulators against experimental data to ensure that they are accurate and reliable. The authors do this to some extent, but further validation would be beneficial. In particular for the inverse problem, where the estimation of pharmacological parameters was very challenging and led to particularly large inaccuracies.

      Additional context:<br /> The work by Grandits et al. has the potential to revolutionize the way that pharmacological studies are conducted. Neural network emulation has the promise to reduce the time and cost of drug development and to improve the safety and efficacy of new drugs. The methods and data presented in the paper are useful to the community because they provide a starting point for other researchers to develop and improve neural network emulators for the human ventricular cardiomyocyte AP. The authors have made their code and data publicly available, which will facilitate further research in this area.

      It is important to note that neural network emulation is still a relatively new approach, and there are some challenges that need to be addressed before it can be widely adopted in the pharmaceutical industry. For example, neural network emulators need to be trained on large and high-quality datasets. Additionally, it is important to validate neural network emulators against experimental data to ensure that they are accurate and reliable. Despite these challenges, the potential benefits of neural network emulation for pharmacological studies are significant. As neural network emulation technology continues to develop, it is likely to become a valuable tool for drug discovery and development.

    1. Reviewer #1 (Public Review):

      In this study, the authors demonstrated a new model that B cell contraction after antigen encountering was dependent on N-WASP-branched actin polymerization. This statement is achieved by a systemic comparison of genetic modified mice vs wild type mice or inhibitor treated cells vs control cells. By imaging how B cells interact with antigen-coated planar lipid bilayer, the authors further suggested that the contraction event may provide B cells a channel to dismiss downstream kinase for a purpose to attenuate B cell activation signaling.

      In this revised version, the authors have fully addressed my concerns raised against the initial submission of their studies.

    2. Reviewer #2 (Public Review):

      Bhanja et al have examined how actin polymerization switch B-cell receptor (BCR) signaling from amplification to attenuation. The authors have examined B cell spreading and contraction using lipid bilayers to assess the molecular regulation of BCR signalling during the contraction phase. Their data provide evidence for that N-WASP activated Arp2/3 generates centripetally moving actin foci and contractile actomyosin from lamellipodia actin networks. This generates BCR dense foci that pushes out both stimulatory kinases and inhibitory phosphatases. The study provides novel insight into how B cells upon activation attenuate BCR signalling by contraction of the actin cytoskeleton and clustering of BCR foci and this dynamic response is mediated by N-WASP and Arp2/3.

      Strengths: The manuscript is well written and results, methods, figures and legends described in detail making it easy to follow the experimental setup, analysis, and conclusions. The authors achieved their aims, and the results support their conclusions.

      Weaknesses: Minor. The working hypothesis of molecular crowding as a way to push out signalling molecules from the BCR dense foci is interesting. The authors provide evidence for that this is an active process mediated by N-WASP - Arp2/3 induced actin foci. Another possibility discussed in the revised version is that BCR dense foci formation is an indirect consequence of lamellipodia retraction. Future works should define the specific role of N-WASP, Arp2/3 and actin in the process to form BCR dense foci, especially as the BCR continue to signal in the cytoplasm.

    3. Reviewer #3 (Public Review):

      This work shows how, in the formation of the immune synapse, the B cell controls the contraction phase, the formation and retraction of actin structures concentrating the antigen (actin foci), and, ultimately, global signal attenuation. The authors use a combination of TIRF microscopy and original image quantification to show that Arp2/3 activated by N-WASP controls a pool of actin concentrated in foci (situated in the synapse), formed and transported centripetally towards the center of the synapse through myosin II mediated contractions. These contractions concentrate the B cell receptors (BCR) in the center, promote disassembly of the stimulatory kinase Syk as well as the the disassociation from the BCR of the inhibitory phosphatase SHIP, process which entails the attenuation of the BCR signal.

      The author prove their claims by mean of thorough image analysis, mainly observing and quantifying the fluorescence and the dynamics of single clusters of antigen and actin foci and analyzing two-colors dynamical images. They perform their observation in control cells, on pharmacologically perturbed cells where the action of Arp2/3 or N-WASP is inhibited, and on modified primary cells (primary derived from genetically engineered mice) to silence N-WASP or WASP. The work is sound and complete, the experiments technically excellent and well explained.

      In the reviewed manuscript the authors answer to all referees' suggestions and add new data and comments to the manuscript. In particular by suppressing NMII activation (with Blebbistatin), they show that NMII contraction plays a role (in coordination with N-WASP mediated actin polymerization) in the generation of actin foci ring-like structures.

      This work adds an important information to the current view of B cell activation, in particular it links the contraction phase to the actin foci that have been recently characterized. Moreover, the late phase of the immune synapse formation is poorly investigated, but it is crucial for the fate of the cell: this work provides an explanation for the attenuation of the signal that might lead to the termination of the synapse.

    1. Reviewer #1 (Public Review):

      Summary:

      The investigators sought to determine whether Marco regulates the levels of aldosterone by limiting uptake of its parent molecule cholesterol in the adrenal gland. Instead, they identify an unexpected role for Marco on alveolar macrophages in lowering the levels of angiotensin-converting enzyme in the lung. This suggests an unexpected role of alveolar macrophages and lung ACE in the production of aldosterone.

      Strengths:

      The investigators suggest an unexpected role for ACE in the lung in the regulation of systemic aldosterone levels.<br /> The investigators suggest important sex-related differences in the regulation of aldosterone by alveolar macrophages and ACE in the lung.<br /> Studies to exclude a role for Marco in the adrenal gland are strong, suggesting an extra-adrenal source for the excess Marco observed in male Marco knockout mice.

      Weaknesses:

      While the investigators have identified important sex differences in the regulation of extrapulmonary ACE in the regulation of aldosterone levels, the mechanisms underlying these differences are not explored.<br /> The physiologic impact of the increased aldosterone levels observed in Marco -/- male mice on blood pressure or response to injury is not clear.<br /> The intracellular signaling mechanism linking lung macrophage levels with the expression of ACE in the lung is not supported by direct evidence.

    2. Reviewer #2 (Public Review):

      Summary:

      Tissue-resident macrophages are more and more thought to exert key homeostatic functions and contribute to physiological responses. In the report of O'Brien and Colleagues, the idea that the macrophage-expressed scavenger receptor MARCO could regulate adrenal corticosteroid output at steady-state was explored. The authors found that male MARCO-deficient mice exhibited higher plasma aldosterone levels and higher lung ACE expression as compared to wild-type mice, while the availability of cholesterol and the machinery required to produce aldosterone in the adrenal gland were not affected by MARCO deficiency. The authors take these data to conclude that MARCO in alveolar macrophages can negatively regulate ACE expression and aldosterone production at steady-state and that MARCO-deficient mice suffer from secondary hyperaldosteronism.

      Strengths:

      If properly demonstrated and validated, the fact that tissue-resident macrophages can exert physiological functions and influence endocrine systems would be highly significant and could be amenable to novel therapies.

      Weaknesses:

      The data provided by the authors currently do not support the major claim of the authors that alveolar macrophages, via MARCO, are involved in the regulation of a hormonal output in vivo at steady-state. At this point, there are two interesting but descriptive observations in male, but not female, MARCO-deficient animals, and overall, the study lacks key controls and validation experiments, as detailed below.

      Major weaknesses:

      1) According to the reviewer's own experience, the comparison between C57BL/6J wild-type mice and knock-out mice for which precise information about the genetic background and the history of breedings and crossings is lacking, can lead to misinterpretations of the results obtained. Hence, MARCO-deficient mice should be compared with true littermate controls.

      2) The use of mice globally deficient for MARCO combined with the fact that alveolar macrophages produce high levels of MARCO is not sufficient to prove that the phenotype observed is linked to alveolar macrophage-expressed MARCO (see below for suggestions of experiments).

      3) If the hypothesis of the authors is correct, then additional read-outs could be performed to reinforce their claims: levels of Angiotensin I would be lower in MARCO-deficient mice, levels of Antiotensin II would be higher in MARCO-deficient mice, Arterial blood pressure would be higher in MARCO-deficient mice, natremia would be higher in MARCO-deficient mice, while kaliemia would be lower in MARCO-deficient mice. In addition, co-culture experiments between MARCO-sufficient or deficient alveolar macrophages and lung endothelial cells, combined with the assessment of ACE expression, would allow the authors to evaluate whether the AM-expressed MARCO can directly regulate ACE expression.

    1. Joint Public Review:

      This paper aimed to assess the link between genetic and environmental factors on psychotic-like experiences and the potential mediation through cognitive ability. This study was based on data from the ABCD cohort, including 6,602 children aged 9-10 years. The authors report a mediating effect, suggesting that cognitive ability is a key mediating pathway in linking several genetic and environmental (risk and protective) factors to psychotic-like experiences.

      Strengths of the methods: The authors use a wide range of validated (genetic, self- and parent-reported, and cognitive) measures in a large dataset with a 2-year follow-up period. The statistical methods have the potential to address key limitations of previous research.

      Weaknesses of the methods: Not the largest or most recent GWASes were used to generate PGSes.

      Strengths of the results: The authors included a comprehensive array of analyses.

      Weaknesses of the results: Results are only sometimes clearly described and presented.

      Appraisal: The authors suggest that their findings provide evidence for policy reforms (e.g., targeting residential environments, family SES, parenting, and schooling).

      Impact: Immediate impact is limited given the short follow-up period (2 years), possibly concerns for selection bias and attrition in the data, and some methodological concerns. The authors are transparent about most of these limitations.

    1. Reviewer #1 (Public Review):

      Summary:

      The study conducted on mice establishes a noteworthy connection between dietary protein intake and resistance exercise impact on metabolic health and muscle development. In sedentary mice, a diet rich in protein resulted in excessive fat accumulation and compromised blood sugar regulation in comparison to a diet low in protein. Intriguingly, when mice followed the high protein diet alongside progressive resistance training, they exhibited protection against surplus fat gain, though blood glucose regulation remained impaired. The research also revealed that resistance training notably enhanced muscle hypertrophy induced by exercise, particularly in mice on the high protein diet. Although the maximum strength achieved was similar across diets, this highlights the potential synergy between high protein consumption and resistance exercise in promoting skeletal muscle growth.

      Strengths:

      The study possesses several significant strengths. Firstly, it combines controlled dietary manipulations with resistance exercise, providing a comprehensive understanding of their combined effects on metabolic health and muscle growth. The use of mouse models, while not directly translatable to humans, offers a controlled experimental environment, enabling precise measurements and observations. Moreover, the study reveals nuanced outcomes such as the differential impact of high protein intake on adiposity and muscle hypertrophy. The emphasis on both positive and negative findings lends balance to the conclusions, enhancing the overall credibility of the study. Additionally, the clear delineation of diet-exercise interactions contributes to the broader understanding of dietary and exercise recommendations for metabolic health and muscle development.

      Weaknesses:

      Certain limitations warrant consideration. Firstly, the study's exclusive reliance on mice might limit the generalizability of the findings to humans due to inherent physiological differences. Additionally, the absence of direct investigation into the underlying molecular mechanisms responsible for the observed outcomes leaves room for speculation. Moreover, the research's concentration on male and young mice raises questions about the applicability of these findings to female and older subjects. Lastly, the study's duration and the specific resistance exercise protocol utilized might not fully reflect long-term human scenarios, underscoring the need for further research in more diverse populations and over extended timeframes.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Trautman et al. set out to test the hypothesis that increased intake of dietary protein is deleterious to health when uncoupled from resistance training.

      Strengths:

      The experimental design is well crafted and the experiments provide useful information supporting the hypothesis. The authors take into account the limitations of their study in the discussion, and guide the reader through their results and the interpretation in a fair and measured way, without overstating claims.

      Weaknesses:

      As acknowledged by the authors in the discussion section, this study only features a small sample of male mice from a single strain. Thus the results may not hold when female mice and diverse genetic backgrounds are analyzed. The lack of repeated measures of physiological parameters is also a limitation of the study. Measurements of body weight, body composition, food (calorie) consumption, and locomotor/strength assays could have been provided throughout the study and compared to a baseline value for each animal.

    1. Reviewer #1 (Public Review):

      The paper from Hsu and co-workers describes a new automated method for analyzing the cell wall peptidoglycan composition of bacteria using liquid chromatography and mass spectrometry (LC/MS) combined with newly developed analysis software. The work has great potential for determining the composition of bacterial cell walls from diverse bacteria in high-throughput, allowing new connections between cell wall structure and other important biological functions like cell morphology or host-microbe interactions to be discovered. A downside to the method is that it does require some prior knowledge of an organisms peptidoglycan composition to generate the database for automated analysis. Nevertheless, the automation will allow rapid analysis of peptidoglycan composition under a variety of conditions and/or between closely related organisms once the general peptidoglycan structure is known. The methodology described will therefore be useful for the field.

      The potential connection between the structure of different cell walls from bifidobacteria and cell stiffness proposed in the report is weak. The cells analyzed are from different strains such that there are many possible reasons for the change in physical measurements made by AFM. Conclusions relating cell wall composition to stiffness would be best drawn from a single strain of bacteria genetically modified to have an altered content of 3-3 crosslinks.

    2. Reviewer #2 (Public Review):

      The authors introduce "HAMA", a new automated pipeline for architectural analysis of the bacterial cell wall. Using MS/MS fragmentation and a computational pipeline, they validate the approach using well-characterized model organisms and then apply the platform to elucidate the PG architecture of several members of the human gut microbiota. They discover differences in the length of peptide crossbridges between two species of the genus Bifidobacterium and then show that these species also differ in cell envelope stiffness, resulting in the conclusion that PG "compactness" determines stiffness.

      The pipeline is solid and revealing the poorly characterized PG architecture of the human gut microbiota is worthwhile and significant. However, it is unclear if or how their pipeline is superior to other existing techniques - PG architecture analysis is routinely done by many other labs; the only difference here seems to be that the authors chose gut microbes to interrogate.

      I do not agree with their conclusions about the correlation between compactness and cell envelope stiffness. These experiments are done on two different species of bacteria and their experimental setup therefore does not allow them to isolate crossbridge length (which they propose indicates more or less compact PG) as the only differential property that can influence stiffness. These two species likely also differ in other ways that could modulate stiffness, e.g. turgor pressure, overall PG architecture (not just crossbridge length), membrane properties, teichoic acid composition etc.

    1. Reviewer #1 (Public Review):

      The manuscript describes that cultured mammalian cells adapt to chronic stress by increasing their size and protein translation through Hsp90. The authors extensively use Hsp90 knockout cells and mass spectrometry to provide solid evidence that chronic heat shock response is accompanied by cell size changes and stress resistance in large cells. The major strength of the work is the authors ability to document the heat shock response in detail. The increased stress resistance of large cells is conceptually important and provides one potential explanation why cells need to control their size. This work adds to our understanding of how cellular stress is managed, and while stress responses have been observed previously in relation to cell size, this work provides evidence for increased stress resistance in larger cells.

    2. Reviewer #2 (Public Review):

      The authors have done a number of additional experiments and textual changes to address referee comments from the first round of review that have improved some aspects of the manuscript. However, they did not fully address two major issues brought up in my previous public review, reiterated below.

      1) What is the specific role for HSP90a/b in regulating protein translation during chronic stress through the ISR or related pathways? The authors indicate that the induction of the eIF2a phosphatase GADD34 is not impacted in HSP90-deficient cells, so what role does HSP90 have in this process. Is HSP90 required for proper folding of GADD34? Would you see similar effects in protein translation recovery if other ISR activators are used in HSP90-deficient cells?

      2) Are similar effects observed in non-dividing cells?' Does chronic stress lead to increases of size and regulation of protein translation in primary cell models that are not undergoing division.

      This leaves the study as an interesting observational study that correlates increases in cell size and protein translation. However, it doesn't really answer some of the most important questions related to mechanisms defining this correlation. Regardless, this remains an interesting jumping off point to continue exploring this interesting finding correlating cell size and stress signaling that will be further pursued in subsequent manuscripts, which will likely continue to reveal the importance and mechanistic basis of this 'rewiring stress response' during stress and in disease.

    1. Reviewer #1 (Public Review):

      Zhang et al. investigate the hypothesis that tRNA methyl transferase 1 (TRMT1) is cleaved by NSP5 (nonstructural protein 5 or MPro), the SARS-CoV-2 main protease, during SARS-CoV-2 infection. They provide solid evidence that TRMT1 is a substrate of Nsp5, revealing an Nsp5 target consensus sequence and evidence of TRMT1 cleavage in cells. Their conclusions are exceptionally strong given the co-submission by D'Oliveira et al showing cleavage of TRMT1 in vitro by Nsp5. Separately, the authors convincingly demonstrate widespread downregulation of RNA modifications during CoV-2 infection, including a requirement for TRMT1 in efficient viral replication. This finding is congruent with the authors' previous work defining the impact of TRMT1 and m2,2g on global translation, which is most likely necessary to support infection and virion production. What still remains unclear is the functional relevance of TRMT1 cleavage by Nsp5 during infection. Based on the data provided here, TRMT1 cleavage may be an act by CoV-2 to self-limit replication, as the expression of a non-cleavable TRMT1 (versus wild-type TRMT1) supports enhanced viral RNA expression at certain MOIs. Theoretically, TRMT1 cleavage should inactivate the modification activity of TRMT1, which the authors thoroughly and elegantly investigate with rigorous biochemical assays. However, only a minority of TRMT1 undergoes cleavage during infection in this study and thus whether TRMT1 cleavage serves an important functional role during CoV-2 replication will be an important topic for future work. The authors fairly assess their work in this regard. This study pushes forward the idea that control of tRNA expression and functionality is an important and understudied area of host-pathogen interaction.

      Weaknesses noted:<br /> The detection of the N-terminal TRMT1 fragment by western blot is not robust. The polyclonal antibody used to detect TRMT1 in this work cross-reacts with a non-specific protein product. Unfortunately, this obstructs the visualization of the predicted N-terminal TRMT1 fragment. It is unclear how the authors were able to perform densitometry, given the interference of the non-specific band. Additionally, the replicates in the source data make it clear that the appearance of the N-terminal fragment "wisp" under the non-specific band is not seen in every replicate. Though the disappearance of this wisp with mutant Nsp5 and uncleavable TRMT1 is reassuring, the detection of the N-terminal fragment with the TRMT1 antibody should be assessed critically. Considering this group has strong research interests in TRMT1, I assume that attempts to make other antibodies have proved unfruitful. Additionally, N-terminal tagging of TRMT1 is predicted to disrupt the mitochondrial targeting signal, eliminating the potential for using alternative antibodies to see the N-terminal fragment. These technical issues reiterate the fact that the functional significance of TRMT1 cleavage during CoV-2 infection remains unclear. However, this study demonstrates an important finding that the tRNA modification landscape is altered during CoV-2 infection and that TRMT1 is an important host factor supporting CoV-2 replication.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The manuscript titled 'Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease' from K. Zhang et al. demonstrates that several RNA modifications are downregulated during SARS-CoV-2 infection including the widespread m2,2G methylation, which potentially contributes to changes in host translation. To understand the molecular basis behind this global hypomodification of RNA during infection, the authors focused on the human methyltransferase TRMT1 that catalyzes the m2,2G modification. They reveal that TRMT1 not only interacts with the main SARS-CoV-2 protease (Nsp5) in human cells but is also cleaved by Nsp5. To establish if TRMT1 cleavage by Nsp5 contributes to the reduction in m2,2G levels, the authors show compelling evidence that the TRMT1 fragments are incapable of methylating the RNA substrates due to loss of RNA binding by the catalytic domain. They further determine that expression of full-length TRMT1 is required for optimal SARS-CoV-2 replication in 293T cells. Nevertheless, the cleavage of TRMT1 was dispensable for SARS-CoV-2 replication hinting at the possibility that TRMT1 could be an off-target or fortuitous substrate of Nsp5. Overall, this study will be of interest to virologists and biologists studying the role of RNA modification and RNA modifying enzymes in viral infection.

      Strengths:<br /> • The authors use a state-of-the-art mass spectrometry approach to quantify RNA modifications in human cells infected with SARS-CoV-2.<br /> • The authors go to great length to demonstrate that SARS-CoV-2 main protease, Nsp5, interacts, and cleaves TRMT1 in cells and perform important controls when needed. They use a series of overexpression with strategically placed tags on both TRMT1 and Nsp5 to strengthen their observations.<br /> • The use of an inactive Nsp5 mutant (C145A) strongly supports the claim of the authors that Nsp5 is solely responsible for TRMT1 cleavage in cells.<br /> • Although the direct cleavage was not experimentally determined, the authors convincingly show that TRMT1 Q530N is not cleaved by Nsp5 suggesting that the predicted cleavage site at this position is most likely the bona fide region processed by Nsp5 in cells.<br /> • To understand the impact of TRMT1 cleavage on its RNA methylation activity, the authors rigorously test four protein constructs for their capacity not only to bind RNA but also to introduce the m2,2G modification. They demonstrate that the fragments resulting from TRMT1 cleavage are inactive and cannot methylate RNA. They further establish that the C-terminal region of TRMT1 (containing a zinc-finger domain) is the main binding site for RNA.<br /> • While 293T cells are unlikely an ideal model system to study SARS-CoV-2 infection, the authors use two cell lines and well-designed rescue experiments to uncover that TRMT1 is required for optimal SARS-CoV-2 replication.

      Weaknesses:<br /> • Immunoblotting is extensively used to probe for TRMT1 degradation by Nsp5 in this study. Regretfully, the polyclonal antibody used by the authors shows strong non-specific binding to other epitopes. This complicates the data interpretation and quantification since the cleaved TRMT1 band migrates very closely to a main non-specific band detected by the antibody (for instance Fig 3A). While this reviewer is concerned about the cross-contamination during quantification of the N-TRMT1, the loss of this faint cleaved band with the TRMT1 Q530N mutant is reassuring. Nevertheless, the poor behavior of this antibody for TRMT1 detection was already reported and the authors should have taken better precautions or designed a different strategy to circumvent the limitation of this antibody by relying on additional tags.

      • While 293T cells are convenient to use, it is not a well-suited model system to study SARS-CoV-2 infection and replication. Therefore, some of the conclusions from this study might not apply to better-suited cell systems such as Vero E6 cells or might not be observed in patient-infected cells.

      • The reduction of bulk TRMT1 levels is minor during infection of MRC5 cells with SARS-CoV-2 (Fig 1). This does not seem to agree with the more dramatic reduction in m2,2G modification levels. Cellular Localization experiments of TRMT1 would help clarify this. While TRMT1 is found in the cytoplasm and nucleus, it is possible that TRMT1 is more dramatically degraded in the cytoplasm due to easier access by Nsp5.

      • In Fig 6, the authors show that TRMT1 is required for optimal SARS-CoV-2 replication. This can be rescued by expressing TRMT1 (Fig 7). Nevertheless, it is unknown if the methylation activity of TRMT1 is required. The authors could have expressed an inactive TRMT1 mutant (by disrupting the SAM binding site) to establish if the RNA modification by TRMT1 is important for SARS-CoV-2 replication or if it is the protein backbone that might contribute to other processes.

      • Fig 7, the authors used the Q530N variant to rescue SARS-CoV-2 replication in TRMT1 KO cells. This is an important experiment and unexpectedly reveals that TRMT1 cleavage by Nsp5 is not required for viral replication. To strengthen the claim of the authors that TRMT1 is required to promote viral replication and that its cleavage inhibits RNA methylation, the authors could express the TRMT1 N-terminal construct in the TRMT1 KO cells to assess if viral replication is restored or not to similar levels as WT TRMT1. This will further validate the potential biological importance of TRMT1 cleavage by Nsp5.

      • Fig 7 shows that the TRMT1 Q530N variant rescues SARS-CoV-2 replication to greater levels then WT TRMT1. The authors should discuss this in greater detail and its possible implications with their proposed statement. For instance, are m2,2G levels higher in Q530N compared to WT? Does Q530N co-elute with Nsp5 or is the interaction disrupted in cells?

    3. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, the authors have used biochemical approaches to provide compelling evidence for the cleavage of TRMT1 by SARS-CoV-2 Nsp5 protease. This work is of wide interest to biochemists, cell biologists, and structural biologists in the coronavirus (CoV) field. Furthermore, it substantially advances the understanding of how CoV's interact with host factors during infection and modify cellular metabolism.

      Strengths:<br /> The authors provide multiple lines of biochemical evidence to report a TRMT1-Nsp5 interaction during SARS-CoV-2 infection. They show that the host enzyme TRMT1 is cleaved at a specific site and that it generates fragments that are incapable of functioning properly. This is an important result because TRMT1 is a critical player in host protein synthesis. This also advances our understanding of virus-host interactions during SARS-CoV-2 infections.

      Weaknesses:<br /> The major weakness is the lack of mechanistic insights into TRMT1-Nsp5 interactions. The authors have provided commendable biochemical data on proving the TRMT1-Nsp5 interaction but without clear mechanistic insights into when this interaction takes place in the context of SARS-CoV-2 propagation, what are the functional consequences of this interaction on host biology, and does this somehow benefit the infecting virus? I feel that the authors played it a bit safe despite having access to several reagents and an extremely promising research direction.

    1. Reviewer #1 (Public Review):

      In this study, the structural characteristics of plant AlaDC and SerDC were analyzed to understand the mechanism of functional differentiation, deepen the understanding of substrate specificity and catalytic activity evolution, and explore effective ways to improve the initial efficiency of theanine synthesis.

      On the basis of previous solid work, the authors successfully obtained the X-ray crystal structures of the precursors of theanine synthesis-CsAlaDC and AtSerDC, which are key proteins related to ethylamine synthesis, and found a unique zinc finger structure on these two crystal structures that are not found in other Group II PLP- dependent amino acid decarboxylases. Through a series of experiments, it is pointed out that this characteristic zinc finger motif may be the key to the folding of CsAlaDC and AtSerDC proteins, and this discovery is novel and prospective in the study of theine synthesis.

      In addition, the authors identified Phe106 of CsAlaDC and Tyr111 of AtSerDC as key sites of substrate specificity by comparing substrate binding regions and identified amino acids that inhibit catalytic activity through mutation screening based on protein structure. It was found that the catalytic activity of CsAlaDCL110F/P114A was 2.3 times higher than that of CsAlaDC. At the same time, CsAlaDC and AtSerDC substrate recognition key motifs were used to carry out evolutionary analysis of the protein sequences that are highly homologous to CsAlaDC in embryos, and 13 potential alanine decarboxylases were found, which laid a solid foundation for subsequent studies related to theanine synthesis.

      In general, this study has a solid foundation, the whole research idea is clear, the experimental design is reasonable, and the experimental results provide strong evidence for the author's point of view. Through a large number of experiments, the key links in the theanine synthesis pathway are deeply studied, and an effective way to improve the initial efficiency of theanine synthesis is found, and the molecular mechanism of this way is expounded. The whole study has good novelty and prospectivity, and sheds light on a new direction for the efficient industrial synthesis of theanine.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The manuscript focuses on the comparison of two PLP-dependent enzyme classes that perform amino acyl decarboxylations. The goal of the work is to understand the substrate specificity and factors that influence the catalytic rate in an enzyme linked to theanine production in tea plants.

      Strengths:<br /> The work includes x-ray crystal structures of modest resolution of the enzymes of interest. These structures provide the basis for the design of mutagenesis experiments to test hypotheses about substrate specificity and the factors that control catalytic rate. These ideas are tested via mutagenesis and activity assays, in some cases both in vitro and in plants.

      Weaknesses:<br /> The manuscript could be more clear in explaining the contents of the x-ray structures and how the complexes studied relate to the reactant and product complexes. The structure and mechanism section would also be strengthened by including a diagram of the reaction mechanism and including context about reactivity. As it stands, much of the structural results section consists of lists of amino acids interacting with certain ligands without any explanation of why these interactions are important or the role they play in catalysis. The experiments testing the function of a novel Zn(II)-binding domain also have serious flaws. I don't think anything can be said at this point about the function of the Zn(II) due to a lack of key controls and problems with experimental design.

    3. Reviewer #3 (Public Review):

      In the manuscript titled "Structure and Evolution of Alanine/Serine Decarboxylases and the Engineering of Theanine Production," Wang et al. solved and compared the crystal structures of Alanine Decarboxylase (AlaDC) from Camellia sinensis and Serine Decarboxylase (SerDC) from Arabidopsis thaliana. Based on this structural information, the authors conducted both in vitro and in vivo functional studies to compare enzyme activities using site-directed mutagenesis and subsequent evolutionary analyses. This research has the potential to enhance our understanding of amino acid decarboxylase evolution and the biosynthetic pathway of the plant-specialized metabolite theanine, as well as to further its potential applications in the tea industry.

    1. Reviewer #1 (Public Review):

      D'Oliviera et al. have demonstrated cleavage of human TRMT1 by the SARS-CoV-2 main protease in vitro. Following this, they solved the structure of Mpro-C145A bound to TRMT1 substrate peptide, revealing binding conformation distinct from most viral substrates. Overall, this work enhances our understanding of substrate specificity for a key drug target of CoV2. The paper is well-written and the data is clearly presented. It complements the companion article by demonstrating the interaction between Mpro and TRMT1 and TRMT1 cleavage under isolated conditions in vitro. Importantly, the revelation of flexible substrate binding of Nsp5 is fundamental for understanding Nsp5 as a drug target. Trmt1 cleavage assays revealed similar kinetics for TRMT1 cleavage as compared to the nsp8/9 viral polyprotein cleavage site, however, it would have been more rigorous for the authors to independently reproduce the kinetics reported for nsp8/9 using their specific experimental conditions. The finding that murine TRMT1 lacks a conserved consensus sequence is interesting, but is not experimentally tested here and is reported elsewhere. I am unable to comment critically on the structural analyses as it is outside of my expertise. Overall, I think that these findings are important for confirming TRMT1 as a substrate of Mpro and defining substrate binding and cleavage parameters for an important drug target of SARS-CoV-2.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The manuscript 'Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease' from Angel D'Oliviera et al., uncovers that TRMT1 can be cleaved by SARS-CoV-2 main protease (Mpro) and defines the structural basis of TRMT1 recognition by Mpro. They use both recombinant TRMT1 and Mpro as well as endogenous TRMT1 from HEK293T cell lysates to convincingly show cleavage of TRMT1 by the SARS-CoV-2 protease. To understand how Mpro recognizes TRMT1, they solved a co-crystal structure of Mpro bound to a peptide derived from the predicted cleavage site of TRMT1. This structure revealed important protein-protein interfaces and highlights the importance of the conserved Q530 for cleavage by Mpro. They then compared their structure with previous X-ray crystal structures of Mpro bound to substrate peptides derived from the viral polyprotein and proposed the concept of two distinct binding conformations to Mpro: P3´-out and P3´-in conformations (here P3´ stands for the third residue downstream of the cleavage site). It remains unknown what is the physiological role of these two binding conformations on Mpro function, but the authors established that Mpro has dramatically different cleavage efficiencies for three distinct substrates. In an effort to rationalize this observation, a series of mutations in Mpro's active site and the substrate peptide were tested but unexpectedly had no significant impact on cleavage efficiency. While molecular dynamic simulations further confirmed the propensity of certain substrates to adopt the P3´-out or P3´-in conformation, they did not provide additional insights into the dramatic differences in cleavage efficiencies between substrates. This led the authors to propose that the discrimination of Mpro for preferred substrates might occur at a later stage of catalysis after binding of the peptide. Overall, this work will be of interest to biologists studying proteases and substrate recognition by enzymes as well as help efforts to target Mpro with peptide-like drugs.

      Strengths:<br /> • The authors' statements are well supported by their data, and they used relevant controls when needed. Indeed, they used the Mpro C145A inactive variant to unambiguously show that the TRMT1 cleavage detected in vitro is solely due to Mpro's activity. Moreover, they used two distinct polyclonal antibodies to probe TRMT1 cleavage.

      • Their 1.9 Å crystal structure is of high quality and increases the confidence in the reported protein-protein contacts seen between TRMT1-derived peptide and Mpro.

      • Their extensive in vitro kinetic assay was performed in ideal conditions although it is unclear how many replicates were performed.

      • The authors test multiple hypotheses to rationalize the preference of Mpro for certain substrates.

      • While this reviewer is not able to comment on the rigor of the MD simulations, the interpretations made by the authors seem reasonable and convincing.

      • The concept of two binding conformations (P3´-out or P3´-in) for the substrate in the active site of Mpro is significant and can guide drug design.

      Weaknesses:<br /> • While the authors convincingly show that TRMT1 is cleaved by Mpro, the exact cleavage site was never confirmed experimentally. It is most likely that the predicted site is the main cleavage site as proposed by the authors (region 527-534). Nevertheless, in Fig 1C (first lane from the right) there are two bands clearly observed for the cleavage product containing the MT Domain. If the predicted site was the only cleavage site recognized by Mpro, then a single band for the MT domain would be expected. This observation suggests that there might be two cleavage sites for Mpro in TRMT1. Indeed, residues RFQANP (550-555) in TRMT1 might be a secondary weaker cleavage site for Mpro, which would explain the two observed bands in Fig 1C. A mass spectrometry analysis of the cleaved products would clarify this.

      • A control is missing in Fig 1D. Since the authors use western blots to show the gradual degradation of endogenous TRMT1, a control with a protein that does not change in abundance over the course of the measurement is important. This is required to show that the differences in intensity of TRMT1 by western blotting are not due to loading differences etc.

      • The two polyclonal antibodies used by the authors seem to have strong non-specific binding to proteins other than TRMT1 but did not impact the author's conclusions. This is a limitation of the commercially available antibodies for TRMT1, and unless the authors select a new monoclonal antibody specific to TRMT1 (costly and lengthy process), this limitation seems out of their control.

      • The recombinantly purified TRMT1 seems to have some non-negligible impurities (extra bands in Fig 1C). This does not impact the conclusions of the authors but might be relevant to readers interested in working with TRMT1 for biochemical, structural, or other purposes.

      • Despite the reasonable efforts of the authors, it remains unknown why Mpro shows higher cleavage efficiency for the nsp4/5 sequence compared to TRMT1 or nsp8/9 sequences.

      • The peptide cleavage kinetic assay used by the authors relies on a peptide labelled with a fluorophore (MCA) on the N-terminus and a quencher (Dpn) on the C-terminus. This design allows high-throughput measurements compatible with plate readers and is a robust and convenient tool. Nevertheless, the authors did not control for the impact of the labels (MCA and Dpn) on the activity of Mpro. It is possible that the differences in cleavage efficiencies between peptides are due to unexpected conformational changes in the peptide upon labelling. Moreover, the TRMT1 peptide has an E at the N-terminus and an R at the C-terminus (while the nsp4/5 peptide has an S and M, respectively). It is possible that these two terminal residues form a salt bridge in the TRMT1 peptide that might constrain the conformation of the peptide and thus reduce its accessibility and cleavage by Mpro. Enzymatic assays in the absence of labels and MD simulations with the bona fide peptides (including the labels) used in the kinetic measurements are needed to prove that the cleavage efficiencies are not biased by the fluorescence assay.

      • The authors used A431S variant in TRMT1-derived peptide to disrupt the P3´-in conformation. While this reviewer agrees with the rationale behind A431S design, it is important to confirm experimentally that the mutation disrupted the P3´-in conformation in favor of the P3´-out conformer. The authors could use their MD simulations to determine if the TRMT1 A431S variant favors the P3´-out conformation.

      • An unanswered question not addressed by the authors is if the peptides undergo conformational changes upon Mpro binding or if they are pre-organized to adopt the P3´-out and P3´-in conformations.

      • While the authors describe at great length the hydrogen bonds involved in the substrate recognition by Mpro, they occluded to highlight important stacking interactions in this interface. For instance, Phe533 from TRMT1 stacks with Met49 while L529 from TRMT1 packs against His41 of Mpro. Both hydrogen bonding and stacking interactions seem important for TRMT1-derived peptide recognition by Mpro.

    3. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, the authors have used a combination of enzymatic, crystallographic, and in silico approaches to provide compelling evidence for substrate selectivity of SARS-CoV-2 Mpro for human TRMT1.

      Strengths:<br /> In my opinion, the authors came close to achieving their intended aim of demonstrating the structural and biochemical basis of Mpro catalysis and cleavage of human TRMT1 protein. The combination of orthogonal approaches is highly commendable.

      Weaknesses:<br /> It would have been of high scientific impact if the consequences of TRMT1 cleavage by Mpro on cellular metabolism were provided. Furthermore, assays to investigate the effect of inhibition of this Mpro activity on SARS-CoV-2 propagation and infection would have been extremely useful in providing insights into host- SARS-CoV-2 interactions.

    1. Joint Public Review:

      This study investigates the role of Ikaros, a zinc finger family transcription factor related to Helios and Eos, in T-regulatory (Treg) cell functionality in mice. Through genome-wide association studies and chromatin accessibility studies, the authors find that Ikaros shares similar binding sites to Foxp3. Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibits Th1-like gene expression with abnormal expression of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signalling. Further, two models of inflammatory/ autoimmune diseases - Inflammatory Bowel Disease (IBD) and organ transplantation - are employed to examine the functional role of Ikaros in Treg-mediated immune suppression. The authors provide a detailed analysis of the epigenome and transcriptome of Ikaros-deficient Treg cells.

      These studies establish Ikaros as a factor required in Treg for tolerance and the control of inflammatory immune responses. The data are of high quality. Overall, the study is well organized, and reports new data consolidating mechanistic aspects of Foxp3 mediated gene expression program in Treg cells.

      Strengths:<br /> The authors have performed biochemical studies focusing on mechanistic aspects of molecular functions of the Foxp3-mediated gene expression program and complemented these with functional experiments using two models of autoimmune diseases, thereby strengthening the study. The studies are comprehensive at both the cellular and molecular levels. The manuscript is well organized and presents a plethora of data regarding the transcriptomic landscape of these cells.

      Weakness:<br /> The authors claim that the mice have no pathologic signs of autoimmune disease even at a relatively old age, yet mice have an increased number of activated CD4+ T cells and T-follicular helper cells (even at the age of 6 weeks) as well as reduced naïve T-cells. Thus, immune homeostasis is perturbed in these mice even at a young age and the effect of inflammatory microenvironments on cellular functions cannot be ruled out. Further, clear conclusions from the genome-wide studies are lacking.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The Notch signaling pathway plays an important role in many developmental and disease processes. Although well-studied there remain many puzzling aspects. One is the fact that as well as activating the receptor through trans-activation, the transmembrane ligands can interact with receptors present in the same cell. These cis-interactions are usually inhibitory, but in some cases, as in the assays used here, they may also be activating. With a total of 6 ligands and 4 receptors, there is potentially a wide array of possible outcomes when different combinations are co-expressed in vivo. Here the authors set out to make a systematic analysis of the qualitative and quantitative differences in the signaling output from different receptor-ligand combinations, generating sets of "signaling" (ligand expressing) and "receiving" (receptor +/- ligand expressing cells).

      The readout of pathway activity is transcriptional, relying on the fusion of GAL4 in the intracellular part of the receptor. Positive ligand interactions result in the proteolytic release of Gal4 that turns on the expression of H2B-citrine. As an indicator of ligand and receptor expression levels, they are linked via TA to H2B mCherry and H2B mTurq expression respectively. The authors also manipulate the expression of the glycosyltransferase Lunatic-Fringe (LFng) that modifies the EGF repeats in the extracellular domains impacting their interactions. The testing of multiple ligand-receptor combinations at varying expression levels is a tour de force, with over 50 stable cell lines generated, and yields valuable insights although as a whole, the results are quite complex.

      Strengths:<br /> Taking a reductionist approach to testing systematically differences in the signaling strength, binding strength, and cis-interactions from the different ligands in the context of the Notch1 and Notch 2 receptors (they justify well the choice of players to test via this approach) produces a baseline understanding of the different properties and leads to some unexpected and interesting findings. Notably:

      - Jag1 ligand expressing cells failed to activate Notch1 receptor although were capable of activating Notch2. Conversely, Jag2 cells elicited the strongest activation of both receptors. The results with Jag1 are surprising also because it exhibits some of the strongest binding to plate-bound ligands. The failure to activate Notch1 has major functional significance and it will be important in the future to understand the mechanistic basis.

      - Jagged ligands have the strongest ciis-inhibitory effects and the receptors differ in their sensitivity to cis-inhibition by Dll ligands. These observations are in keeping with earlier in vivo and cell culture studies. More referencing of those would better place the work in context but it nicely supports and extends previous studies that were conducted in different ways.

      - Responses to most trans-activating ligands showed a degree of ultrasensitivity but this was not the case for cis-interactions where effects were more linear. This has implications for the way the two mechanisms operate and for how the signaling levels will be impacted by ligand expression levels.

      - Qualitatively similar results are obtained in a second cell line, suggesting they reflect fundamental properties of the ligands/receptors.

      Weaknesses:<br /> One weakness is that the methods used to quantify the expression of ligands and receptors rely on the co-translation of tagged nuclear H2B proteins. These may not accurately capture surface levels/correctly modified transmembrane proteins. In general, the multiple conditions tested partly compensate for the concerns - for example, as Jag1 cells do activate Notch2 even if they do not activate Notch1 some Jag1 must be getting to the surface. But even with Notch2, Jag1 activities are on the lower side, making it important to clarify, especially given the different outcomes with the plated ligands. Similarly, is the fact that all ligands "signalled strongest to Notch2" an inherent property or due to differences in surface levels of Notch 2 compared to Notch1? The results would be considerably strengthened by calibration of the ligand/receptor levels (and ideally their sub-cellular localizations). Assessing the membrane protein levels would be relatively straightforward to perform on some of the basic conditions because their ligand constructs contain Flag tags, making it plausible to relate surface protein to H2B, and there are antibodies available for Notch1 and Notch2.

      Cis-activation as a mode of signaling has only emerged from these synthetic cell culture assays raising questions about its physiological relevance. Cis-activation is only seen at the higher ligand (Dll1, Dll4) levels, how physiological are the expression levels of the ligands/receptors in these assays? Is it likely that this would make a major contribution in vivo? Is it possible that the cells convert themselves into "signaling" and "receiving" sub-populations within the culture by post-translational mechanism? Again some analysis of the ligand/receptors in the cultures would be a valuable addition to show whether or not there are major heterogeneities.

      It is hard to appreciate how much cell-to-cell variability in the "output" there is. For example, low "outputs" could arise from fewer cells becoming activated or from all cells being activated less. As presented, only the latter is considered. That may be already evident in their data, but not easy for the reader to distinguish from the way they are presented. For example, in many of the graphs, data have been processed through multiple steps of normalization. Some discussion/consideration of this point is needed.

      Impact:<br /> Overall, cataloguing the outcomes from the different ligand-receptor combinations, both in cis and trans, yields a valuable baseline for those investigating their functional roles in different contexts. There is still a long way to go before it will be possible to make a predictive model for outcomes based on expression levels, but this work gives an idea about the landscape and the complexities. This is especially important now that signaling relationships are frequently hypothesised based on single-cell transcriptomic data. The results presented here demonstrate that the relationships are not straightforward when multiple players are involved.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors extend their previous studies on trans-activation, cis-inhibition (PMID: 25255098), and cis-activation (PMID: 30628888) of the Notch pathway. Here they create a large number of cell lines using CHO-K1 and C2C12 cells expressing either Notch1-Gal4 or Notch2-Gal4 receptors which express a fluorescent protein upon receptor activation (receiver cells). For cis-inhibition and cis-activation assays, these cells were engineered to express one of the four canonical Notch ligands (Dll1, Dll4, Jag1, Jag2) under tetracycline control. Some of the receiver cells were also transfected with a Lunatic fringe (Lfng) plasmid to produce cells with a range of Lfng expression levels. Sender cells expressing all of the canonical ligands were also produced. Cells were mixed in a variety of co-culture assays to highlight trans-activation, cis-activation, and cis-inhibition. All four ligands were able to trans-activate Notch1 and Notch 2, except Jag1 did not transactivate Notch1. Lfng enhanced trans-activation of both Notch receptors by Dll1 and Dll2, and inhibited Notch1 activation by Jag2 and Notch2 activation by both Jag 1 and Jag2. Cis-expression of all four ligands was predominantly inhibitory, but Dll1 and Dll4 showed strong cis-activation of Notch2. Interestingly, cis-ligands preferentially inhibited trans-activation by the same ligand, with varying effects on other trans-ligands.

      Strengths:<br /> This represents the most comprehensive and rigorous analysis of the effects of canonical ligands on cis- and trans-activation, and cis-inhibition, of Notch1 and Notch2 in the presence or absence of Lfng so far. Studying cis-inhibition and cis-activation is difficult in vivo due to the presence of multiple Notch ligands and receptors (and Fringes) that often occur in single cells. The methods described here are a step towards generating cells expressing more complex arrays of ligands, receptors, and Fringes to better mimic in vivo effects on Notch function.

      In addition, the fact that their transactivation results with most ligands on Notch1 and 2 in the presence or absence of Lfng were largely consistent with previous publications provides confidence that the author's assays are working properly.

      Weaknesses:<br /> It was unusual that the engineered CHO cells expressing Notch1-Gal4 were not activated at all by co-culture with Jag1-expressing CHO cells. Many previous reports have shown that Jag1 can activate Notch1 in co-culture assays, including when Notch1 was expressed in CHO cells. Interestingly, when the authors used Jag1-Fc in a plate coating assay, it did activate Notch1 and could be inhibited by the expression of Lfng.

      The cell surface level of the ligands was determined by flow cytometry of a co-translated fluorescent protein. Some calibration of the actual cell surface levels with the fluorescent protein would strengthen the results.

    3. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript reports a comprehensive analysis of Notch-Delta/Jagged signaling inclusive of the human Notch1 and Notch2 receptors and DLL1, DLL4, JAG1, and JAG2 ligands. Measurements encompassed signaling activity for ligand trans-activation, cis-activation, cis-inhibition, and activity modulation by Lfng. The most striking observations of the study are that JAG1 has no detectable activity as a Notch1 ligand when presented on a cell (though it does have activity when immobilized on a surface), even though it is an effective cis-inhibitor of Notch1 signaling by other ligands, and that DLL1 and DLL4 exhibit cis-activating activity for Notch1 and especially for Notch2. Notwithstanding the artificiality of the system and some of its shortcomings, the results should nevertheless be a valuable resource for the Notch signaling community.

      Strengths:<br /> 1) The work is systematic and comprehensive, addressing questions that are of importance to the community of researchers investigating mammalian Notch proteins, their activation by ligands, and the modulation of ligand activity by LFng.<br /> 2) A quantitative and thorough analysis of the data is presented.

      Weaknesses:<br /> 1) The manuscript is primarily descriptive and does not delve into the underlying, mechanistic origin or source of the different ligand activities.

      2) The amount of ligand or receptor expressed is inferred from the flow cytometry signal of a co-translated fluorescent protein-histone fusion, and is not directly measured. The work would be more compelling if the amount of ligand present on the cell surface were directly measured with anti-ligand antibodies, rather than inferred from measurements of the fluorescent protein-histone fusion.

      3) It would be helpful to see plots of the raw activity data before transformation and normalization, because the plots present data after several processing steps, and it is not clear how the processed data relate to the original values determined in each measurement.

      4) The authors use sparse plating of engineered cells with parental (no ligand or receptor-expressing cell to measure cis activation). However, the cells divide within the cultured period of 22-24 h and can potentially trans-activate each other.