- Sep 2023
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors investigate the role of chirping in a species of weakly electric fish. They subject the fish to various scenarios and correlate the production of chirps with many different factors. They find major correlations between the background beat signals (continuously present during any social interactions) or some aspects of social and environmental conditions with the propensity to produce different types of chirps. By analyzing more specifically different aspects of these correlations they conclude that chirping patterns are related to navigation purposes and the need to localize the source of the beat signal (i.e. the location of the conspecific).
The study provides a wealth of interesting observation of behavior and much of this data constitute a useful dataset to document the patterns of social interactions in these fish. Some data, in particular the high propensity to chirp in cluttered environments, raises interesting questions. Their main hypothesis is a useful addition to the debate on the function of these chirps and is worth being considered and explored further. However, the data they provide does not support strong conclusion statements arguing that these chirps are used for localization purposes and is even less convincing at rejecting previously established hypotheses on the communication purpose of the chirps. I would suggest thoroughly revising the manuscript to provide a neutral description of the results and leaving any speculations and interpretations for the discussion where the authors should be careful to separate strongly supported hypotheses from more preliminary speculations. I detail below several instances where the argumentation and/or the analysis are flawed.
- They analyze chirp patterning and show that, most likely, a chirp by an individual is followed by a chirp in the same individual. They argue that it is rare that a chirp elicits a "response" in the other fish. Even if there are clearly stronger correlations between chirps in the same individual, they provide no statistical analysis that discards the existence of occasional "response" patterns. The fact that these are rare, and that the authors don't do an appropriate analysis of probabilities, leads to this unsupported conclusion.<br /> - One of the main pieces of evidence that chirps can be used to enhance conspecific localization is based on their "interference" measure. The measure is based on an analysis of "inter-peak-intervales". This in itself is a questionable choice. The nervous system encodes all parts of the stimulus, not just the peak, and disruption occurring at other phases of the beat might be as relevant. The interference will be mostly affected by the summed duration of intervals between peaks in the chirp AM. They do not explain why this varies with beat frequency. It is likely that the changes they see are simply an artifact of the simplistic measure. A clear demonstration that this measure is not adequate comes from the observation in Fig7E-H. They show that the interference value changes as the signal is weaker. This measure should be independent of the strength of the signal. The method is based on detecting peaks and quantifying the time between peaks. The only reason this measure could be affected by signal strength is if noisy recordings affect how the peak detection occurs. There is no way to argue that this phenomenon would happen the same way in the nervous system. Furthermore, they qualitatively argue that patterns of chirp production follow patterns of interference strength. No statistical demonstration is done. Even the qualitative appraisal is questionable. For example, they argue that there are relatively few chirps being produced for DFs of 60 or -60 Hz. But these are DF where they have only a very small sample size. The single pair of fish that they recorded at some of these frequencies might not have chirped by chance and a rigorous statistical analysis is necessary. Similarly, in Fig 5C they argue that the position of the chirps fall on areas of the graph where the interferences are strongest (darker blue) but this is far from obvious and, again, not proven.<br /> - They relate the angle at which one fish produces chirps relative to the orientation of the mesh enclosing. They argue that this is related to the orientation of electric field lines by doing a qualitative comparison with a simplified estimate of field lines. To be convincing this analysis should include a quantitative comparison using the exact same body position of the two fish when the chirps are emitted.<br /> -They show that the very vast majority of chirps in Fig 6 occur when the fish are within a few centimeters (e.g. very large first bin in Fig6E-Type2). This is a situation when the other fish signal will be strongest and localization will be the easiest. It is hard to understand why the fish would need a mechanism to enhance localization in these conditions (this is the opposite of difficult conditions e.g. the "cluttered" environment).<br /> - The argumentation aimed at rejecting the well-established role of chirp in communication is weak at best. First, they ignored some existing data when they argue that there is no correlation between chirping and behavioral interactions. Particularly, Hupe and Lewis (2008) showed a clear temporal correlation between chirps and a decrease in bites during aggressive encounters. It could be argued that this is "causal evidence" (to reuse their wording) that chirps cause a decrease in attacks by the receiver fish (see Fig 8B of the Hupe paper and associated significant statistics). Also, Oboti et al. argue that social interactions involve "higher levels of locomotion" which would explain the use of chirps since they are used to localize. But chirps are frequent in "chirp chamber" paradigms where no movement is involved. They also point out that social context covaries with beat frequency and thus that it is hard to distinguish which one is linked to chirping propensity and then say that it is hard to disentangle this from "biophysical features of EOD fields affecting detection and localization of conspecific fish". But they don't provide any proof that beat frequency affects detection and localization so their argument is not clear. Last, they argue that tests in one species shouldn't be extrapolated to other species. But many of the studies arguing for the role of chirps in communication was done on brown ghost. In conclusion of this point, they do not provide any strong argument that rejects the role of chirps as a communication signal. A perspective that would be better supported by their data and consistent with past research would be to argue that, in addition to a role in communication, chirps could sometimes be used to help localize conspecifics.<br /> -The discussion they provide on the possible mechanism by which chirps could help with localization of the conspecific is problematic. They imply that chirps cause a stronger response in the receptors. For most chirps considered here, this is not true. For a large portion of the beat frequencies shown in this paper, chirps will cause a de-synchronization of the receptors with no increase in firing rate. They cannot argue that this represents an enhanced response. They also discuss a role for having a broader frequency spectrum -during the chirp- in localization by making a parallel with pulse fish. There is no evidence that a similar mechanism could even work in wave-type fish.<br /> -They write the whole paper as if males and females had been identified in their experiments. Although EOD frequency can provide some guess of the sex the method is unreliable. We can expect a non-negligible percentage of error in assigning sex.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Numerous neurodegenerative diseases are thought to be driven by the aggregation of proteins into insoluble filaments known as "amyloids". Despite decades of research, the mechanism by which proteins convert from the soluble to insoluble state is poorly understood. In particular, the initial nucleation step is has proven especially elusive to both experiments and simulation. This is because the critical nucleus is thermodynamically unstable, and therefore, occurs too infrequently to directly observe. Furthermore, after nucleation much faster processes like growth and secondary nucleation dominate the kinetics, which makes it difficult to isolate the effects of the initial nucleation event. In this work Kandola et al. attempt to surmount these obstacles using individual yeast cells as microscopic reaction vessels. The large number of cells, and their small size, provides the statistics to separate the cells into pre- and post-nucleation populations, allowing them to obtain nucleation rates under physiological conditions. By systematically introducing mutations into the amyloid-forming polyglutamine core of huntingtin protein, they deduce the probable structure of the amyloid nucleus. This work shows that, despite the complexity of the cellular environment, the seemingly random effects of mutations can be understood with a relatively simple physical model. Furthermore, their model shows how amyloid nucleation and growth differ in significant ways, which provides testable hypotheses for probing how different steps in the aggregation pathway may lead to neurotoxicity.
In this study Kandola et al. probe the nucleation barrier by observing a bimodal distribution of cells that contain aggregates; the cells containing aggregates have had a stochastic fluctuation allowing the proteins to surmount the barrier, while those without aggregates have yet to have a fluctuation of suitable size. The authors confirm this interpretation with the selective manipulation of the PIN gene, which provides an amyloid template that allows the system to skip the nucleation event.
In simple systems lacking internal degrees of freedom (i.e., colloids or rigid molecules) the nucleation barrier comes from a significant entropic cost that comes from bringing molecules together. In large aggregates this entropic cost is balanced by attractive interactions between the particles, but small clusters are unable to form the extensive network of stabilizing contacts present in the larger aggregates. Therefore, the initial steps in nucleation incur an entropic cost without compensating attractive interactions (this imbalance can be described as a surface tension). When internal degrees of freedom are present, such as the conformational states of a polypeptide chain, there is an additional contribution to the barrier coming from the loss of conformational entropy required to the adopt aggregation-prone state(s). In such systems the clustering and conformational processes do not necessarily coincide, and a major challenge studying nucleation is to separate out these two contributions to the free energy barrier. Surprisingly, Kandola et al. find that the critical nucleus occurs within a single molecule. This means that the largest contribution to the barrier comes from the conformational entropy cost of adopting the beta-sheet state. Once this state is attained, additional molecules can be recruited with a much lower free energy barrier.
There are several considerations in interpreting this result. First, the height of the nucleation barrier(s) comes from the relative strength of the entropic costs compared to the binding affinities. This balance determines how large a nascent nucleus must grow before it can form interactions comparable to a mature aggregate. In amyloid nuclei the first three beta strands form immature contacts consisting of either side chain or backbone contacts, whereas the fourth strand is the first that is able to form both kinds of contacts (as in a mature fibril). This study used relatively long polypeptides of 60 amino acids. This is greater than the 20-40 amino acids found in amyloid-forming molecules like ABeta or IAPP. As a result, Kandola et al.'s molecules are able to fold enough times to create four beta strands and generate mature contacts intramolecularly. This authors make the plausible claim that these intramolecular folds explain the well-known length threshold (L~35) observed in polyQ diseases. The intramolecular folds reduce the importance of clustering multiple molecules together and increase the importance of the conformational states. Similarly, manipulating the sequence or molecular concentrations will be expected to manipulate the relative magnitude of the binding affinities and the clustering entropy, which will shift the relative heights of the entropic barriers.
The authors make an important point that the structure of the nucleus does not necessarily resemble that of the mature fibril. They find that the critical nucleus has a serpentine structure that is required by the need to form four beta strands to get the first mature contacts. However, this structure comes at a cost because residues in the hairpins cannot form strong backbone or zipper interactions. Mature fibrils offer a beta sheet template that allows incoming molecules to form mature contacts immediately. Thus, it is expected that the role of the serpentine nucleus is to template a more extended beta sheet structure that is found in mature fibrils.
A second point of consideration is the striking homogeneity of the nucleus structure they describe. This homogeneity is likely to be somewhat illusory. Homopolymers, like polyglutamine, have a discrete translational symmetry, which implies that the hairpins needed to form multiple beta sheets can occur at many places along the sequence. The asparagine residues introduced by the authors place limitations on where the hairpins can occur, and should be expected to increase structural homogeneity. Furthermore, the authors demonstrate that polyglutamine chains close to the minimum length of ~35 will have strict limitations on where the folds must occur in order to attain the required four beta strands.
A novel result of this work is the observation of multiple concentration regimes in the nucleation rate. Specifically, they report a plateau-like regime at intermediate regimes in which the nucleation rate is insensitive to protein concentration. The authors attribute this effect to the "self-poisoning" phenomenon observed in growth of some crystals. This is a valid comparison because the homogeneity observed in NMR and crystallography structures of mature fibrils resemble a one-dimensional crystal. Furthermore, the typical elongation rate of amyloid fibrils (on the order of one molecule per second) is many orders of magnitude slower than the molecular collision rate (by factors of 10^6 or more), implying that the search for the beta-sheet state is very slow. This slow conformational search implies the presence of deep kinetic traps that would be prone to poisoning phenomena. However, the observation of poisoning in nucleation during nucleation is striking, particularly in consideration of the expected disorder and concentration sensitivity of the nucleus. Kandola et al.'s structural model of an ordered, intramolecular nucleus explains why the internal states responsible for poisoning are relevant in nucleation.
To achieve these results the authors used a novel approach involving a systematic series of simple sequences. This is significant because, while individual experiments showed seemingly random behavior, the randomness resolved into clear trends with the systematic approach. These trends provided clues to build a model and guide further experiments.
There has been discussion in the review process about whether a monomeric nucleus is consistent with established properties of huntingtin aggregation. I do not see a problem with an energetically unfavorable conformational state preceding a concentration-dependent growth step. The authors make the case for this sequence using a schematic free energy landscape (Fig 6) that has many similarities to a free energy landscape derived from models of polyQ nucleation (Phan et al. 2022, see Fig. 6). The theory does not consider molecules large enough to form the conformational state described by Kandola et al., but the transition state is otherwise very similar.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The current manuscript provides a timely contribution to the ongoing discussion about the mechanism of the apical sodium/bile acid transporter (ASBT) transporters. Recent structures of the mammalian ASBT transporters exhibited a substrate binding mode with few interactions with the core domain (classically associated with substrate binding), prompting an unusual proposal for the transport mechanism. Early structures of ASBT homologues from bacteria also exhibit unusual substrate binding in which the core substrate binding domain is less engaged than expected. Due to the ongoing questions of how substrate binding and mechanism are linked in these transporters, the authors set out to deepen our understanding of a model ABST homolog from bacteria N. meningitidis (ABST-NM).
The premise of the current paper is that the bacterial ASBT homologs are probably not physiological bile acid transporters, and that structural elucidation of a natively transported substrate might provide better mechanistic information. In the current manuscript, the authors revisit the first BASS homologue to be structurally characterized, ABST-NM. Based on bacteriological assays in the literature, the authors identify the coenzyme A precursor pantoate as a more likely substrate for ABST-NM than taurocholate, the substrate in the original structure. A structure of ASBT-NM with pantoate exhibits interesting differences in structure. The structures are complemented with MD simulations, and the authors propose that the structures are consistent with a classical elevator transport mechanism.
The structural experiments are convincing. The binding and molecular dynamics experiments provide intriguing insights into the transporter's conformational changes. However, it is nonetheless a soft spot in the story that a transport assay is not readily available for this substrate. Mechanistic proposals, like the proposed role of T112 in unlocking the transporter, would be better supported by transport data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The manuscript proposes an alternative method by SDS-PAGE calibration of Halo-Myo10 signals to quantify myosin molecules at specific subcellular locations, in this specific case filopodia, in epifluorescence datasets compared to the more laborious and troublesome single molecule approaches. Based on these preliminary estimates, the authors developed further their analysis and discussed different scenarios regarding myosin 10 working models to explain intracellular diffusion and targeting to filopodia.
Strengths:<br /> Overall, the paper is elegantly written and the data analysis is appropriately presented.
Weaknesses:<br /> While the methodology is intriguing in its descriptive potential and could be the beginning of an interesting story, a good portion of the paper is dedicated to the discussion of hypothetical working mechanisms to explain myosin diffusion, localization, and decoration of filopodial actin that is not accompanied by the mandatory gain/loss of function studies required to sustain these claims.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: Bloodstream stages of the parasitic protist, Trypanosoma brucei, exhibit very high rates of constitutive endocytosis, which is needed to recycle the surface coat of Variant Surface Glycoproteins (VSGs) and remove surface immune complexes. While many studies have shown that the endo-lysosomal systems of T. brucei BF stages contain canonical domains, as defined by classical Rab markers, it has remained unclear whether these protists have evolved additional adaptations/mechanisms for sustaining these very high rates of membrane transport and protein sorting. The authors have addressed this question by reconstructing the 3D ultrastructure and functional domains of the T. brucei BF endosome membrane system using advanced electron tomography and super-resolution microscopy approaches. Their studies reveal that, unusually, the BF endosome network comprises a continuous system of cisternae and tubules that contain overlapping functional subdomains. It is proposed that a continuous membrane system allows higher rates of protein cargo segregation, sorting and recycling than can otherwise occur when transport between compartments is mediated by membrane vesicles or other fusion events.
Strengths: The study is a technical tour-de-force using a combination of electron tomography, super-resolution/expansion microscopy, immune-EM of cryo-sections to define the 3D structures and connectivity of different endocytic compartments. The images are very clear and generally support the central conclusion that functionally distinct endocytic domains occur within a dynamic and continuous endosome network in BF stages.
Weaknesses: The authors suggest that this dynamic endocytic network may also fulfil many of the functions of the Golgi TGN and that the latter may be absent in these stages. Although plausible, this comment needs further experimental support. For example, have the authors attempted to localize canonical makers of the TGN (e.g. GRIP proteins) in T. brucei BF and/or shown that exocytic carriers bud directly from the endosomes?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: Planar cell polarity core proteins Frizzled (Fz)/Dishevelled (Dvl) and Van Gogh-like (Vangl)/Prickle (Pk) are localized on opposite sides of the cell and engage in reciprocal repression to modulate cellular polarity within the plane of static epithelium. In this interesting manuscript, the authors explore how the anterior core proteins (Vangl/Pk) inhibit the posterior core protein (Dvl). The authors propose that Pk assists Vangl2 in sequestering both Dvl2 and Ror2, while Ror2 is essential for Dvl to transition from Vangl to Fz in response to non-canonical Wnt signaling. There are several points that affect the strength of the author's conclusions.
Strengths: The strengths of the manuscript are in the very interesting and new concept for a model of how non-canonical Wnt induces Dvl to transition from Vangl to Fz. Prickle and Vangl2 are proposed to play an opposing role to suppress Dvl activity during convergent extension movements, whereas Ror antagonizes Vangl and may be required for the transition.
Weaknesses: The weaknesses are in the clarity and resolution of the data that forms the basis of the model. In addition to whole embryo morphology that is used as evidence for convergent extension (CE) defects, two forms of data are presented, co-expression and IP, as well as a strong reliance on IF of exogenously expressed proteins. Thus, it is critical that both forms of evidence be very strong and clear, and this is where there are deficiencies; 1) For vast majority of experiments general morphology and LWR was used as evidence of effects on convergent extension movements rather than Keller explants or actual cell movements in the embryo. 2) The study would benefit from high or super resolution microscopy, since in many cases the differences in protein localization are not very pronounced. 3) The IP and Western analysis data often show subtle differences, and not apparent in some cases. 4) It is not clear how many biological repeats were performed or how and whether statistical analyses were performed.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
This paper's strengths are the interesting analysis of TLR signaling in hair follicle stem cell activation and the striking phenotype of the TLR2 cKO mice (but note below). The functional interrogation parts using HFSC-specific TLR2 genetic deletion are solid, and an endogenous regulator, CEP, is identified. The experiments reported in this manuscript are well-designed and presented. The authors provided extensive evidence supporting the roles of TLR2 signaling in regulating hair follicle stem cell functions. Importantly, the findings from this paper may have sustained impacts on our understanding of the roles of innate immunity in regulating tissue regeneration in the absence of inflammation.
The main evidence for the mechanistic analysis is based on fluorescence using immunohistochemistry, and here the expression analysis is not convincing. In addition, additional assays beyond immunolandscaping are needed to confirm the findings. The reviewers felt that your data substantiating the mechanism of interaction between TLR2 and BMP pathway needs bolstering.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Authors performed a meta-analysis of GC concentrations and metabolic rates in birds and mammals. They found close associations for all studies showing a positive association between these two traits. As GCs have been viewed with close links to "stress," authors suggest that this overlooks the importance of metabolism and perhaps GC variation does not relate to "stress" per se but an increase in metabolism instead.
This is an important meta-analysis, as most researchers acknowledge the link between GCs and metabolism, metabolism is often overlooked in studies. The field of conservation physiology is especially focused on GCs being a "stress" hormone, which overlooks the importance of GCs in mediating energy balance, i.e., an animal that has high GC concentrations may not be doing that poorly compared to an animal with low GC concentrations, it might just be expending more energy, e.g., caring for young. The results, with overwhelming directionality and strong effect sizes, support the link for a positive association with these two variables.
My main concern lies in that most of the studies come from a few labs, therefore there may be limited data to test this relationship. I would include lab as a random effect to see how strong this effect might be. Furthermore, I would like to see a test of the directionality of the two variables. Authors suggest that changes in metabolism affect GC levels but likely changes in GC levels would affect metabolism. Why not look into studies that have altered GC levels experimentally and see the effect on metabolism? Based on the close link, authors suggest that GCs may not play a role outside of "stress" beyond the stressor's effect on metabolic rate. However, if they were to investigate manipulations of GCs on metabolic rate, the link may or may not be there, which would be interesting to look at. I firmly believe that GCs are tightly linked to metabolism; however, I also think that GCs have a range of effects outside of metabolism as well, depending on the course and strength of the stressor.
This work helps in the thinking that GCs are not the same as a "stress" hormone or labelling hormones with only one function. As hormones are naturally pleiotropic, the view of any one hormone being X is overly simplistic.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: This work by Zhang et al. provides new strategies to improve the efficiency of precise Prime Editing (PE) in zebrafish embryos. The authors test how two simple changes impact PE efficiency: first, by refolding the pegRNA before complexing with Cas9 nickase-reverse transcriptase PE2, and second, by introducing mutations to the pegRNA intended to reduce its autoinhibitory activity by disrupting complementarity between the 5' spacer sequence and the 3' PBS-RTT (Primer Binding Site-Reverse Transcriptase Template).
Strengths: The authors tested multiple loci in the zebrafish genome to determine how pegRNA refolding and point mutations in the RTT would impact overall mutagenesis efficiency and precise PE at the target sites. The impact on efficiency was tested with three types of pegRNAs designed to introduce base substitutions, insertions or deletions. Next-generation sequencing of amplicons from pooled, injected embryos provided robust measurement of mutagenesis and editing. Insertion and deletion pegRNAs were overall more efficient than substitution pegRNAs, which may be useful information in considering experimental design strategy for introducing a specific variant. There is potential for further improvement by combining the authors' methods with previously published strategies to improve pegRNAs through design and chemical modification.
Weaknesses: The observed increases in the frequency of precise PE were relatively minor and inconsistent across the multiple pegRNAs tested. The substitution pegRNAs showed very low precise PE, at levels less than 1 percent, therefore the fold changes reported were still representative of 10 percent or less of overall edits. Overall mutagenesis frequency, as measured by indel formation, increased along with increased precise PE. The approach produces highly genetically mosaic embryos, therefore the utility for transient studies in injected zebrafish embryos is unclear. Data on improved germline transmission frequency of precise PE alleles would strengthen the study and be of wide interest in the zebrafish community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The preprint by Laganowsky and co-workers describes the use of mutant cycles to dissect the thermodynamic profile of specific lipid recognition by the ABC transporter MsbA. The authors use native mass spectrometry with a variable temperature source to monitor lipid binding to the native protein dimer solubilized in detergent. Analysis of the peak intensities (that is, relative abundance) of 1-3 bound lipids as a function of solution temperature and lipid concentration yields temperature-dependent Kds. The authors use these to then generate van't Hoff plots, from which they calculate the enthalpy and entropy contributions to binding of one, two, and in some cases, three lipids to MsbA.<br /> The authors then employ mutant cycles, in which basic residues involved in headgroup binding are mutated to alanine. By comparing the thermodynamic signatures of single and double (and in one instance triple) mutants, they aim to identify cooperativity between the different positions. They furthermore use inward and outward locking conditions which should control access to the different binding sites determined previously.<br /> The main conclusion is that lipid binding to MsbA is driven mainly by energetically favorable entropy increase upon binding, which stems from the release of ordered water molecules that normally coordinate the basic residues, which helps to overcome the enthalpic barrier of lipid binding. The authors also report an increase in lipid binding at higher temperatures which they attribute to a non-uniform heat capacity of the protein. Although they find that most residue pairs display some degree of cooperativity, particularly between the inner and outer lipid binding sites, they do not provide a structural interpretation of these results.
Strengths:<br /> The use of double mutant cycles and mass spectrometry to dissect lipid binding is novel and interesting. For example, the observation that mutating a basic residue in the inner and one in the outer binding site abolishes lipid binding to a greater extent than the individual mutations is highly informative even without having to break it down into thermodynamic terms (see "weaknesses" section). In this sense, the method and data reported here opens new avenues for the structure/activity relationship of MsbA. The "mutant cycle" approach is in principle widely applicable to other membrane proteins with complex lipid interactions.
Weaknesses:<br /> The use of double mutant cycles to dissect binding energies is well-established, and has, as the authors point out, been employed in combination with mass spectrometry to study protein-protein interactions. Its application to extract thermodynamic parameters is robust in cases where a single binding event is monitored, e.g. the formation of a complex with well-defined stoichiometry, where dissociation constants can be determined with high confidence. It is, however, complicated significantly by the fact that for MsbA-lipid interactions, we are not looking at a single binding event, but a stochastic distribution of lipids across different sites. Even if the protein is locked in a specific conformation, the observation of a single lipid adduct does not guarantee that the one lipid is always bound to a specific site. In some of the complexes detected by MS, the lipid is likely bound somewhere else. Lipid binding Kds from mass spectrometry, although helpful in some instances as a proxy for global binding affinities, should therefore be taken with a grain of salt.
The authors analyze the difference in binding upon mutating binding sites (ddG etc). Here, another complicating factor comes into play, the fact that mutation of a binding site (which the authors show reduces lipid binding) may instead allow the lipid to bind to a lower-affinity site elsewhere. Unfortunately, the authors do not specify the protein concentration, but assuming it is in the single-digit micromolar range, as common for native MS experiments, lipid and protein concentrations are almost equal for most of the data points, resulting in competition between binding sites for free lipids. As a rule of thumb, for Kd measurements, the concentration of the constant component, the protein, should be far below the Kd, to avoid working in the "titration" regime rather than the "binding" regime (see Jarmoskaite et al, eLife 2020). I cannot determine whether this is the case here. The way I understand the double mutant cycle approach, reliable Kd measurements are required to accurately determine dH and TdS, so I would encourage the authors to confirm their Kd values using complementary methods before in-depth interpretations of the thermodynamic components.
It is somewhat counterintuitive that for many double mutants, and the triple mutant, the entropic component becomes more favorable compared to the WT protein. If the increase in entropy upon lipid binding comes from the release of ordered water molecules around the basic residues (a reasonable assumption) why does this apply even more in proteins where several basic residues have been changed to alanine, which coordinate far fewer water molecules?
The authors could devote more attention to the fact that they use detergent micelles as a vehicle for lipid binding studies. To a limited extent, detergents compete with lipids for binding, and are present in extreme excess over the lipid. The micelle likely changes its behavior in response to temperature changes. For example, the packing around the protein loosens up upon heating, which may increase the chance for lipids to bind. In this case, the increase in binding at higher temperatures may not be related to a change in heat capacity. This question could be addressed by MD simulations, if it's not already in the literature.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The biogenesis of outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria is still not fully understood, particularly substrate recognition and insertion by beta-assembly machinery (BAM). In the studies, the authors present their studies that in addition to recognition by the last strand of an OMP, sometimes referred to as the beta-signal, an additional signal upstream of the last strand is also important for OMP biogenesis.
Strengths:<br /> 1. Overall the manuscript is well organized and written, and addresses an important question in the field. The idea that BAM recognizes multiple signals on OMPs has been presented previously, however, it was not fully tested.
2. The authors here re-address this idea and propose that it is a more general mechanism used by BAM for OMP biogenesis.
3. The notion that additional signals assist in biogenesis is an important concept that indeed needs fully tested in OMP biogenesis.
4. A significant study was performed with extensive experiments reported in an attempt to address this important question in the field.
5. The identification of important crosslinks and regions of substrates and Bam proteins that interact during biogenesis is an important contribution that gives clues to the path substrates take en route to the membrane.
Weaknesses:
Major critiques (in no particular order):
1. The title indicates 'simultaneous recognition', however no experiments were presented that test the order of interactions during OMP biogenesis.
2. Aspects of the study focus on the peptides that appear to inhibit OmpC assembly, but should also include an analysis of the peptides that do not to determine this the motif(s) present still or not.
3. The b-signal is known to form a b-strand, therefore it is unclear why the authors did not choose to chop OmpC up according to its strands, rather than by a fixed peptide size. What was the rationale for how the peptide lengths were chosen since many of them partially overlap known strands, and only partially (2 residues) overlap each other? It may not be too surprising that most of the inhibitory peptides consist of full strands (#4, 10, 21, 23).
4. It would be good to have an idea of the propensity of the chosen peptides to form b-stands and participate in b-augmentation. We know from previous studies with darobactin and other peptides that they can inhibit OMP assembly by competing with substrates.
5. The recognition motifs that the authors present span up to 9 residues which would suggest a relatively large binding surface, however, the structures of these regions are not large enough to accommodate these large peptides.
6. The authors highlight that the sequence motifs are common among the inhibiting peptides, but do not test if this is a necessary motif to mediate the interactions. It would have been good to see if a library of non-OMP related peptides that match this motif could also inhibit or not.
7. In the studies that disrupt the motifs by mutagenesis, an effect was observed and attributed to disruption of the interaction of the 'internal signal'. However, the literature is filled with point mutations in OMPs that disrupt biogenesis, particular those within the membrane region. F280, Y286, V359, and Y365 are all residues that are in the membrane region that point into the membrane. Therefore, more work is needed to confirm that these mutations are in parts of a recognition motif rather than on the residues that are disrupting stability/assembly into the membrane.
8. The title of Figure 3 indicates that disrupting the internal signal motif disrupts OMP assembly, however, the point mutations did not seem to have any effect. Only when both 280 and 286 were mutated was an effect observed. And even then, the trimer appeared to form just fine, albeit at reduced levels, indicating assembly is just fine, rather the rate of biogenesis is being affected.
9. In Figure 4, the authors attempt to quantify their blots. However, this seems to be a difficult task given the lack of quality of the blots and the spread of the intended signals, particularly of the 'int' bands. However, the more disturbing trend is the obvious reduction in signal from the post-urea treatment, even for the WT samples. The authors are using urea washes to indicate removal of only stalled substrates. However a reduction of signal is also observed for the WT. The authors should quantify this blot as well, but it is clear visually that both WT and the mutant have obvious reductions in the observable signals. Further, this data seems to conflict with Fig 3D where no noticeable difference in OmpC assembly was observed between WT and Y286A, why is this the case?
10. The pull down assays with BamA and BamD should include a no protein control at the least to confirm there is no non-specific binding to the resin. Also, no detergent was mentioned as part of the pull downs that contained BamA or OmpC, nor was it detailed if OmpC was urea solubilized.
11. The neutron reflectometry experiments are not convincing primarily due to the lack controls to confirm a consistent uniform bilayer is being formed and even if so, uniform orientations of the BamA molecules across the surface. Further, no controls were performed with BamD alone, or with OmpC alone, and it is hard to understand how the method can discriminate between an actual BamA/BamD complex versus BamA and BamD individually being located at the membrane surface without forming an actual complex. Previous studies have reported difficulty in preparing a complex with BamA and BamD from purified components. Additionally, little signal differences were observed for the addition of OmpC. However, an elongated unfolded polypeptide that is nearly 400 residues long would be expected to produce a large distinct signal given that only the C-terminal portion is supposedly anchored to BAM, while the rest would be extended out above the surface. The depiction in Figure 5D is quite misleading when viewing the full structures on the same scales with one another.
12. In the crosslinking studies, the authors show 17 crosslinking sites (43% of all tested) on BamD crosslinked with OmpC. Given that the authors are presenting specific interactions between the two proteins, this is worrisome as the crosslinks were found across the entire surface of BamD. How do the authors explain this? Are all these specific or non-specific?
13. The study in Figure 6 focuses on defined regions within the OmpC sequence, but a more broad range is necessary to demonstrate specificity to these regions vs binding to other regions of the sequence as well. If the authors wish to demonstrate a specific interaction to this motif, they need to show no binding to other regions.
14. The levels of the crosslinks are barely detectable via western blot analysis. If the interactions between the two surfaces are required, why are the levels for most of the blots so low?
15. Figure 7 indicates that two regions of BamD promote OMP orientation and assembly, however, none of the experiments appears to measure OMP orientation? Also, one common observation from panel F was that not only was the trimer reduced, but also the monomer. But even then, still a percentage of the trimer is formed, not a complete loss.
16. The experiment in Fig 7B would be more conclusive if it was repeated with both the Y62A and R197A mutants and a double mutant. These controls would also help resolve any effect from crowding that may also promote the crosslinks. Further, the mutation of R197 is an odd choice given that this residue has been studied previously and was found to mediate a salt bridge with BamA. How was this resolved by the authors in choosing this site since it was not one of the original crosslinking sites?
17. As demonstrated by the authors in Fig 8, the mutations in BamD lead to reduction in OMP levels for more than just OmpC and issues with the membrane are clearly observable with Y62A, although not with R197A in the presence of VCN. The authors should also test with rifampicin which is smaller and would monitor even more subtle issues with the membrane. Oddly, no growth was observed for the Vec control in the lower concentration of VCN, but was near WT levels for 3 times VCN, how is this explained?
18. While Fig 8I indeed shows diminished levels for FY as stated, little difference was observed for the trimer for the other mutants compared to WT, although differences were observed for the dimer. Interestingly, the VY mutant has nearly WT levels of dimer. What do the authors postulate is going on here with the dimer to trimer transition? How do the levels of monomer compare, which is not shown?
19. In the discussion, the authors indicate they have '...defined an internal signal for OMP assembly', however, their study is limited and only investigates a specific region of OmpC. More is needed to definitively say this for even OmpC, and even more so to indicate this is a general feature for all OMPs.
20. In the proposed model in Fig 9, it is hard to conceive how 5 strands will form along BamD given the limited surface area and tight space beneath BAM. More concerning is that the two proposal interaction sites on BamD, Y62 and R197, are on opposite sides of the BamD structure, not along the same interface, which makes this model even more unlikely. As evidence against this model, in Figure 9E, the two indicates sites of BamD are not even in close proximity of the modeled substrate strands.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The authors utilize fluid-structure interaction analyses to simulation fluid flow within and around the Cambrian cnidarian Quadrapyrgites to reconstruct feeding/respiration dynamics. Based on vorticity and velocity flow patterns, the authors suggest that the polyp expansion and contraction ultimately develop vortices around the organism that are like what modern jellyfish employ for movement and feeding. Lastly, the authors suggest that this behavior is likely a prerequisite transitional form to swimming medusae.
Strengths:<br /> While fluid-structure-interaction analyses are common in engineering, physics, and biomedical fields, they are underutilized in the biological and paleobiological sciences. Zhang et al. provide a strong approach to integrating active feeding dynamics into fluid flow simulations of ancient life. Based on their data, it is entirely likely the described vortices would have been produced by benthic cnidarians feeding/respiring under similar mechanisms. However, some of the broader conclusions require additional justification.
Weaknesses:
1. The claim that olivooid-type feeding was most likely a prerequisite transitional form to jet-propelled swimming needs much more support or needs to be tailored to olivooids. This suggests that such behavior is absent (or must be convergent) before olivooids, which is at odds with the increasing quantities of pelagic life (whose modes of swimming are admittedly unconstrained) documented from Cambrian and Neoproterozoic deposits. Even among just medusozoans, ancestral state reconstruction suggests that they would have been swimming during the Neoproterozoic (Kayal et al., 2018; BMC Evolutionary Biology) with no knowledge of the mechanics due to absent preservation.<br /> 2. While the lack of ambient flow made these simulations computationally easier, these organisms likely did not live in stagnant waters even within the benthic boundary layer. The absence of ambient unidirectional laminar current or oscillating current (such as would be found naturally) biases the results.<br /> 3. There is no explanation for how this work could be a breakthrough in simulation gregarious feeding as is stated in the manuscript.
Despite these weaknesses the authors dynamic fluid simulations convincingly reconstruct the feeding/respiration dynamics of the Cambrian Quadrapyrgites, though the large claims of transitionary stages for this behavior are not adequately justified. Regardless, the approach the authors use will be informative for future studies attempting to simulate similar feeding and respiration dynamics.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Precision guided sterile insect technology (pgSIT) is a means of mosquito vector control that aims to simultaneously kill females while generating sterile males for field release. These sterile males are expected to mate with 'wild' females resulting in very few eggs being laid or low hatching rates. Repeated releases are expected to result in the suppression of the mosquito population. This method avoids cumbersome sex-sorting while generating the sterile males. Importantly, until release, the two genetic elements that bring about female lethality and male sterility - the Cas9 and the gRNA carrying mosquitoes - are maintained as separate lines. They are crossed only prior to release, and therefore, this approach is considered to be more safe than gene drives.
The authors had made a version of this pgSIT in their 2021 paper where they targeted *β-Tubulin 85D*, which is only expressed in the male testes and its loss-of-function results in male sterility. In that pgSIT, they did not have female lethality, but generated flightless females by simultaneously targeted *myosin heavy chain,* which is expressed only in the female wings. Here the authors argue, that the survival of females is not ideal, and so modify their 2021 approach to achieve female lethality/sterility.
To do this, they target two genes - the female specific isoform of Dsx and intersex. They use multiple gRNAs against these genes and validate their ability to cause female lethality/sterility. Having verified that these do indeed affect female fertility, they combine gRNAs against Dsx and ix to generate female lethality/sterility and use *β-Tubulin 85D* to generate male sterility (previously validated). When these gRNA mosquitoes are crossed to Cas9 and the progeny crossed to WT (the set-up for pgSIT), they find that very few eggs are laid, larval death is high, and what emerges are males or intersex progeny that are sterile.
As this is the requirement for pgSIT, the authors then test if it is able to induce population suppression. To do this, they conduct cage trials and find that only when they use 20:1 or 40:1 ratio of pgSIT:WT cages, does the population crash in 4-5 generations. They model this pgSIT's ability to suppress a population in the wild. Unfortunately, I was not able to assess what parameters from their pgSIT were used in the model and therefore the predicted efficacy of their pgSIT, (though the range of 0-.1 is not great, given that the assessment is between 0-0.15).
Finally, they also develop a SENSR with a rapid fluorescence read-out for detecting the transgene in the field. They show that this sensor is specific and sensitive, detecting low copy numbers of the transgene. This would be important for monitoring any release.
Overall, the data are clear and well presented. The manuscript is well written (albeit likely dense for the uninitiated!). I had concerns about the efficacy of generating the pgSIT animals - the overall number of eggs hatched from the gRNA (X) Cas9 cross appears to be low, therefore, very large numbers of parental animals would have to be reared and crossed to obtain enough sterile males for the SIT. In addition to this, I was concerned about the intersex progeny that can blood-feed. These could potentially contribute to the population and it would be useful to see the data that suggest that these numbers are low and the animals will not be competent in the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Despite durable viral suppression by antiretroviral therapy (ART), HIV-1 persists in cellular reservoirs in vivo. The viral reservoir in circulating memory T cells has been well characterized, in part due to the ability to safely obtain blood via peripheral phlebotomy from people living with HIV-1 infection (PWH). Tissue reservoirs in PWH are more difficult to sample and are less well understood. In this small (n=3) autopsy study, Sun and colleagues use an advanced genetic sequencing technique to characterize HIV-1 that persists in human tissues despite antiretroviral therapy. The authors describe isolation and genetic characterization of HIV-1 reservoirs from a variety of tissues including the central nervous system (CNS) obtained from three recently deceased individuals at autopsy. They identified clonally expanded proviruses in the CNS in all three individuals.
Strengths of the work include the study of human tissues that are under-studied and difficult to access, and the sophisticated near-full length sequencing technique that allows for inferences about genetic intactness and clonality of proviruses. The small sample size (n=3) is a drawback. Furthermore, two individuals were on ART for just one year at the time of autopsy and had T cells compatible with AIDS, and one of these individuals had a low-level detectable viral load (Figure S1). This makes generalizability of these results to PWH who have been on ART for years or decades and have achieved durable viral suppression and immune reconstitution difficult.
While anatomic tissue compartment and CNS region accompany these PCR results, it is unclear which cell types these viruses persist in. As the authors point out, it is possible that these reservoir cells might have been infiltrating T cells from blood present at the time of autopsy tissue sampling. Cell type identification would greatly enhance the impact of this work. Overall, this small, thoughtful study contributes to our understanding of the tissue distribution of persistent HIV-1, and informs the ongoing search for viral eradication.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
In this manuscript, Xue and colleagues investigate the fundamental aspects of cellular fate decisions and differentiation, focusing on the dynamic behaviour of gene regulatory networks. It explores the debate between static (noise-driven) and dynamic (signal-driven) perspectives within Waddington's epigenetic landscape, highlighting the essential role of gene regulatory networks in this process. The authors propose an integrated analysis of fate-decision modes and gene regulatory networks, using the Cross-Inhibition with Self-activation (CIS) network as a model. Through mathematical modelling, they differentiate two logic modes and their effect on cell fate decisions: requires both the presence of an activator and absence of a repressor (AA configuration) with one where transcription occurs as long the repressor is not the only species on the promoter (OO configuration).
The authors establish a relationship between noise profiles, logic-motifs, and fate-decision modes, showing that defining any two of these properties allows the inference of the third. They also identify, under the signal-driven mode, two fundamental patterns of cell fate decisions: either prioritising progression or accuracy in the differentiation process. The authors apply this analysis to available high-throughput datasets of cell fate decisions in hematopoiesis and embryogenesis, proposing the underlying driving force in each case and utilising the observed noise patterns to nominate key regulators.
The paper makes a substantial contribution by rigorously evaluating assumptions in gene regulatory network modelling. Notably, it extensively compares two model configurations based on different integration logic, illuminating the consequences of these assumptions in a clear, understandable manner. The practical simulation results effectively bridge theoretical models with real biological systems, adding relevance to the study's insights. With its potential to enhance our understanding of gene regulatory networks across biological processes, the paper holds promise. Its implications extend practically to synthetic circuit design, impacting biotechnology. The conclusions stand out, addressing cell fate decisions and noise's role in gene networks, contributing significantly to our understanding. Moreover, the adaptable approach proposed offers versatility for broader applications in diverse scenarios, solidifying its relevance beyond its current scope.
However, the manuscript in its current form also has some important weaknesses, including the lack of clarity in the text and the questionable generality of specific observations. For instance, even when focusing on the CIS network, the effect of alternative model implementations is not discussed. Notably, the input signals are only considered as an additive effect over the differential equations, while signals can potentially affect each of the individual processes. The proposed model allows for a continuum of interactions/competition between transcription factors, yet only very restrictive scenarios are explored (strict AND/OR logic operations). Moreover, how the model parameters are chosen throughout the paper is not clear. Similarly, the concentration and time units are not clearly specified, making their comparison to experimental data troublesome.
Regarding clarity, how the general model (equations 1-2) transforms into the specific cases evaluated in the paper is not clearly stated in the main text, nor are the positive and negative effects of individual transcription factors adequately explained. Similarly, in the main text and Figure 2, the authors refer to a Boolean model. However, they do not clearly explain how this relates to the differential equation model, nor its relevance to understanding the paper. Additionally, the term "noise levels" is generally used to refer to noise introduced in the "noise-driven" analysis (i.e., as an input or parameter in the models). Nonetheless, it is later claimed to be evaluated as an intrinsic property of the network (likely referring to expression level variability measured by the coefficient of variation). Finally, some jargon is introduced without sufficient context about its meaning (e.g., "temporal fully-connected stage").
Additionally, proper discussion of previous work is also missing. For instance, the dynamics of the CIS network investigated by the authors have been extensively characterised (see e.g., Huang et al., Dev Biol, 2007), and how the author's results compare to this previous work should be discussed. In particular, the central assumptions behind the derivation of the model proposed in the manuscript must be assessed in the context of previous work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Gating of Kv10 channels is unique because it involves coupling between non-domain swapped voltage-sensing domains, a domain-swapped cytoplasmic ring assembly formed by the N- and C-termini, and the pore domain. Recent structural data suggests that activation of the voltage sensing domain relieves a steric hindrance to pore opening, but the contribution of the cytoplasmic domain to gating is still not well understood. This aspect is of particular importance because proteins like Calmodulin interact with the cytoplasmic domain to regulate channel activity. The effects of Calmodulin (CaM) in WT and mutant channels with disrupted cytoplasmic gating ring assemblies are contradictory, resulting in inhibition or activation, respectively. The underlying mechanism for these discrepancies is not understood. In the present manuscript, Reham Abdelaziz and collaborators use electrophysiology, biochemistry, and mathematical modeling to explore the mechanistic effects on gating of various mutations and deletions that disrupt inter-subunit interactions at the cytoplasmic gating ring assembly and the consequences for channel modulation by CaM. From the beginning, it becomes challenging for non-experts to grasp the structural basis of the perturbations that are introduced (ΔPASCap and E600R), because no structural data or schematic cartoons are provided to illustrate the rationale for those deletions or their potential mechanistic effects. In addition, the lack of additional structural information or illustrations, and a somewhat confusing discussion of the structural data, make it challenging for a reader to reconcile the experimental data and mathematical model with a particular structural mechanism for gating, limiting the impact of the work.
By expressing mutants in oocytes and recording currents using Two Electrode Voltage-Clamp (TEV), it is found that both ΔPASCap and E600R mutants have biphasic voltage-activation curves, with two clear components contributing to activation and deactivation kinetics. Notably, the first component involving activation occurs at voltages where WT channels are mostly closed. Larger deletions at the N-terminus that further disrupt the cytoplasmic gating ring assembly accentuate the first component by heavily disfavoring the second one. The data can be well described by three components involving a closed state and two open states O1 and O2, in which the second component O2 is the one affected by the mutations and deletions. Based on the structural data, the first component is hypothesized to be associated with voltage sensor activation, whereas the second component is associated with conformational changes at the cytoplasmic ring. Consistent with this interpretation, a deletion construct where the covalent link between the voltage sensor and pore has been severed is shown to primarily affect that first component. Also consistent with the first component involving voltage-sensor activation, it is found that divalent cations that are known to stabilize the voltage sensor in its most deactivated conformations, shift the occupancy of the first component to more depolarizing potentials. Activation towards and closure from the first component is slow, whereas channels close rapidly from O2. A rapid alternating pulse protocol is used to take advantage of the difference in activation and deactivation kinetics between the two open components in the mutants and thus drive an increasing number of channels toward state O1. Currents activated by the alternating protocol reached larger amplitudes than those elicited by a long depolarization to the same voltage. This finding is interpreted as an indication that the first component (O1) has a larger conductance than the second (O2). It is shown that conditioning pulses to very negative voltages results in currents that are larger and activate more slowly than those elicited at the same voltage but starting from less negative conditioning pulses. In voltage-activated curves, the component corresponding to state O1 is shown to be favored by increasingly negative conditioning voltages as compared to less negative ones. This is interpreted as indicating that the first open component O1 is primarily accessed from so-called 'deeply closed' states in which voltage sensors are in their most deactivated position(s). Consistently, a mutation that destabilizes these deactivated states is shown to largely suppress the first component in voltage-activation curves for both ΔPASCap and E600R channels. It is also shown that stimulating calcium entry into the oocytes with ionomycin and thapsigargin, which is assumed to enhance CaM-dependent modulation, results in preferential potentiation of the first component in ΔPASCap and E600R, and this potentiation is attenuated by including an additional mutation that disfavors deeply closed states where voltage sensors are (mostly) deactivated. Together, these results are interpreted as an indication that calcium-CaM preferentially stabilizes O1 in mutant channels, thus favoring activation, whereas in WT channels lacking occupancy of O1, CaM stabilizes closed states and is therefore inhibitory. Moreover, it is found that the potentiation of ΔPASCap and E600R by CaM is more strongly attenuated by mutations in the channel that disrupt interaction with the C-terminal lobe of CaM than mutations affecting interaction with the N-terminal lobe. Finally, a mathematical model is proposed consisting of two layers involving two activation steps for the voltage sensor, and one conformational change in the cytoplasmic gating ring - completion of both sets of conformational changes is required to access state O2, but accessing state O1 only requires completion of the first voltage-sensor activation step in the four subunits. The model qualitatively reproduces most major findings on the mutants.
There are several concerns associated with the analysis and interpretations that are provided. First, the conductance-voltage (G-V) relations for the mutants do not seem to saturate, and the absolute open probability is not quantified for any mutant under any condition. This makes it impossible to quantitatively compare the relative amplitudes of the two components because the amplitude of the second component remains undetermined. This makes it challenging to interpret results involving perturbations that affect the relative occupancy of O1 and O2, such as those in Figures 2, 6, and 7, and also raises concerns about the extent to which model parameters can be constrained. This issue is made even more serious by the observation that the currents in both key mutants (ΔPASCap and E600R) are extremely slow and do not appear to reach steady-state over the intervals that are studied. This reduces confidence in the parameters associated with G-V relations, as the shape and position of both components might change significantly if longer pulses were used. This is not addressed or acknowledged in the manuscript. Further, because the mutant channel currents do not saturate at the most positive potentials and time intervals examined, the kinetic characterization based on reaching 80% of the maximum seems inappropriate, because the 100% mark is arbitrary. Further, the kinetics for some of the other examined mutants (e.g. those in Fig. 2A) are not shown, making it difficult to assess the extent to which the data could be affected by having been measured before full equilibration. There are additional aspects associated with gating kinetics that are not appropriately explored. For example, I would expect that the enhanced current amplitudes from Figure 5 are only transient, ultimately reaching a smaller steady-state current magnitude that depends only on the stimulation voltage and is independent of the pre-pulse. The entire time course including the rise-time and decay is not examined experimentally. This raises concern on whether occupancy of state O1 might be overestimated under some experimental conditions if a fraction of the occupancy is only transient. The mathematical model is not utilized to examine some of these slower relaxations - this may be because the model does not reproduce these slow processes, which would represent a serious shortcoming given that the slow kinetics appear to be intrinsic to transitions around state O1. The significance of the results with the Δ2-10.L341Split is unclear. First, structural as well as functional data has established that the coupling of the voltage sensor and pore does not entirely rely on the S4-S5 linker, and thus the Split construct could still retain coupling through other mechanisms, which is consistent with the prominent voltage dependence that is observed. If both state O1 and O2 require voltage sensor activation, it is unclear why the Split construct would affect state O1 primarily, as suggested in the manuscript, as opposed to decreasing occupancy of both open states.
The figure legends and text do not describe which solutions exactly were utilized for each experiment, and the rationale for choosing some solutions over others is not properly explained. The reversal potential for solutions used to measure voltage-activation curves falls right at the spot where occupancy of the first component peaks (e.g. see Figure 1B). Because no zero-current levels are shown on the current traces, it becomes very hard to determine which voltages correspond to each of the currents (see Fig. 1A). It is unclear whether any artifacts could have been introduced to the mutant activation curves at voltages close to the reversal potential. One key assumption that is not well-supported by the data pertains to the difference in single-channel conductance between states O1 and O2 - no analysis or discussion is provided on whether the data could also be well described by an alternative model in which O1 and O2 have the same conductance. No additional experimental evidence is provided related to the difference in conductance, which represents a key aspect of the mathematical model utilized to interpret the data. The CaM experiments are potentially very interesting and could have wide physiological relevance. However, the approach utilized to activate CaM is indirect and could result in additional non-specific effects on the oocytes that could affect the results.
The description of the mathematical model that is provided is difficult to follow, and some key aspects are left unclear, such as the precise states from which state O1 can be accessed, and whether there is any direct connectivity between states O1 and O2 - different portions of the text appear to give contradictory information regarding these points. Several rate constants other than those explicitly mentioned to represent voltage sensor activation are also assigned a voltage dependence - the mechanistic basis of that voltage dependence is unclear. Finally, a clear mechanistic explanation for the full range of effects that the ΔPASCap and E600R mutants have on channel function is lacking, as well as a detailed description of how those newly uncovered transitions would influence the activity of the WT channel; this latter point is important when considering whether the findings in the manuscript advance our understanding of the gating mechanism of Kv10 channels in general, or are specific to the particular mutants that are studied. It is unclear, for example, how both the mutation or the deletion at the cytoplasmic gating ring enable conduction by state O1, especially when considering the hypothesis put forward in this study that transition to O1 exclusively involves transitions by the voltage sensor and not the cytoplasmic gating ring. It is also not clearly described whether a non-conducting state with the equivalent state-connectivity as O1 can be accessed in WT channels, or if a state like O1 can only be accessed in the mutant channels. Importantly, if a non-conducting state with the same connectivity to O1 were to be accessed in WT channels, it would be expected that an alternating pulse protocol as in Fig. 4 would result in progressively decreasing currents as the occupancy of the non-conducting state equivalent to O1 is increased. Because this is not the case, it means that mutation and deletion cause additional perturbations on the gating energetics relative to WT, which are not clearly fleshed out.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Human Abeta42 inhibits gamma-secretase activity in biochemical assays.
Strengths:<br /> Determination of inhibitory concentration human Abeta42 on gamma-secretase activity in biochemical assays.
Weaknesses:<br /> Human Abeta42 may concentrate up to microM order in endosomes. If so, production of Abeta42 would be attenuated then lead to less Abeta deposition in the brain. The authors finding is interesting but does not fit the physiological condition in the brain.<br /> It is not clear whether the FRET-based assay in living cells really reflect gamma-secretase activity.<br /> Processing of APP-CTF in living cells is not only the cleavage by gamma-secretase.
-
-
www.dropbox.com www.dropbox.com
-
CATEGORlf S OF JAZZ CUMPOSIT ION
-
MODAL JAZZ COMPOSlTlON G HARMONY
MODAL JAZZ COMPOSlTlON & HARMONY Miller, R 1996
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Tian et al. describe a novel modified version of the pro-drug triptolide, CK21, and provide evidence for its improved pharmacokinetics and its safety and efficacy in multiple xenograft models of pancreatic cancer. The authors performed transcriptomic analysis upon CK21 treatment which revealed that downregulation of NF-kB and mitochondrial dysfunction induce apoptosis and therefore lead to tumor regression. Downregulation of NF-kB and induction of apoptosis was then validated in vitro and in vivo. These findings have potential clinical significance as the efficacy of CK21 in preclinical PDAC models is compelling. However, there are also some limitations to their experiments and more validation studies are necessary to strengthen their findings regarding the mechanism of action of the drug. Specifically, the authors suggest that mitochondrial dysfunction is responsible for the observed apoptosis; however, this is not demonstrated. Additionally, side-by-side comparisons to other clinical triptolide analogs to show CK21 is at least as efficacious as other analogs in vivo would be valuable, especially since other analogs have been shown to synergize with conventional chemotherapy in PDAC mouse models, whereas CK21 does not appear to. Moreover, assessing whether CK21 is efficacious in syngeneic orthotopic PDAC models is critical, especially since CK21 was shown to have an impact on NF-KB which plays a major role in the immune compartment and triptolide has been shown to be immunosuppressive.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Ruesseler and colleagues combine careful paradigm design, psychophysical and EEG analyses to determine whether information leakage during decision formation is strategically adjusted to meet changing task demands. Participants made motion direction judgments that required monitoring a continuous stream of dot motion for 'response periods' characterised by a sustained period of coherent motion in a leftward or rightward direction. Coherence was modulated on a frame-to-frame basis throughout the task furnishing a parametric regressor that could be used to interrogate the longevity of sensory samples in the decision process and their influence on corresponding EEG signals. Participants completed the task under varying conditions of response period length and frequency. Psychophysical kernel analyses suggest that sensory samples had a more short-lived impact on the participants' choices when response periods were rare, suggestive of greater information leakage. When the stimulus perturbations were regressed against the EEG data, it highlighted a centro-parietal component that showed increased responsiveness to large shifts in evidence when those shifts were more rare, suggestive of a role in representing surprise. An additional triphasic component was found to correlate with the time constant of integration as estimated from the kernel analyses.
This is a very timely paper that addresses an important and difficult-to-address question in the decision-making field - the degree to which information leakage can be strategically adapted to optimise decisions in a task-dependent fashion. The authors apply a sophisticated suite of analyses that are appropriate and yield a range of very interesting observations. The paper centres on analyses of one possible model that hinges on certain assumptions about the nature of the decision process for this task which raises questions about whether leak adjustments are the only possible explanation for the current data. I think the conclusions would be greatly strengthened if they were supported by the application and/or simulation of alternative model structures.
The behavioural trends when comparing blocks with frequent versus rare response periods seem difficult to tally with a change in the leak. The greater leak should result in a reduction in the rate of false alarms yet no significant differences were observed between these two conditions. Meanwhile, false alarms did vary as a function of short/long target durations which did not show any leak effect in the psychophysical kernel analyses. Are there other models that could reproduce such effects? For example, could a model in which the drift rate varies between Rare and Frequent trials do a similar or better job of explaining the data? This ties in to a related query about the nature of the task employed by the authors. Due to the very significant volatility of the stimulus, it seems likely that the participants are not solely making judgments about the presence/absence of coherent motion but also making judgments about its duration (because strong coherent motion frequently occurs in the inter-target intervals). If that is so, then could the Rare condition equate to less evidence because there is an increased probability that an extended period of coherent motion could be an outlier generated from the noise distribution? Note that a drift rate reduction would also be expected to result in fewer hits and slower reaction times, as observed.
Some adjustment of the language used when discussing FAs seems merited. If I have understood correctly, the sensory samples encountered by the participants during the inter-response intervals can at times favour a particular alternative just as strongly (or more strongly) than that encountered during the response interval itself. In that sense, the responses are not necessarily real false alarms because the physical evidence itself does not distinguish the target from the non-target. I don't think this invalidates the authors' approach but I think it should be acknowledged and considered in light of the comment above regarding the nature of the decision process employed on this task.
The authors report that preparatory motor activity over central electrodes reached a larger decision threshold for RARE vs. FREQUENT response periods. It is not clear what identifies this signal as reflecting motor preparation. Did the authors consider using other effector-selective EEG signatures of motor preparation such as beta-band activity which has been used elsewhere to make inferences about decision bounds? Assuming that this central ERP signal does reflect the decision bounds, the observation that it has a larger amplitude at the response on Rare trials appears to directly contradict the kernel analyses which suggest no difference in the cumulative evidence required to trigger commitment.
P11, the "absolute sensory evidence" regressor elicited a triphasic potential over centroparietal electrodes. The first two phases of this component look to have an occipital focus. The third phase has a more centroparietal focus but appears markedly more posterior than the change in evidence component. This raises the question of whether it is safe to assume that they reflect the same process.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The paper first demonstrates that heat-killed bacteria show little DAF-16 activation compared to live food. Of note, daf-16 survival is longer than WT when fed HK bacteria, giving important insights into the lethality of these mutants. Leakiness of the gut is assessed, which is induced by age and exacerbated by daf-16 mutation. The authors then go on to identify indole as the causal bacterial compound to drive daf-16 nuclear localization. The indole effect is fully daf-16 dependent. In searching for the indole sensor in the worm, TRPA-1 is identified and the authors argue that indole is sensed in neurons to modulate gut DAF-16. Closing the circle, lys genes are identified whose expression is upregulated by daf-16 and indole, and which are required to control bacterial growth in the gut with aging.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The strongest aspect of the study is the identification of the probable Ric-8A/NCS-1 interface through the crystal structures of NCS-1 complexed with candidate peptide mimetics from Ric-8A. However, since the structures involve peptides, it is critical to validate this interface with mutational analysis of the full-length or truncated Ric-8A. Furthermore, the evidence for the complex structure based on cryo-EM reconstruction is weak. The low resolution does not allow for reliable modeling of the complex. Two analyses may support the authors' main conclusions: a) validation of the interface with mutational analysis of Ric-8A, and b) new optimized sample/grid preparation for cryo-EM data collection.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors characterize regulatory control of embryonic genome activation in the allotetraploid, Xenopus laevis. By characterizing transcription from its L and S subgenomes, they determine that homeologous genes are differentially activated in the early embryo. It has recently been appreciated that homeologs may be differentially expressed in later embryonic development (Session and Rokhsar, Nature 2016). However, an unanswered question is whether vertebrate tetraploid genomes undergo differential induction at the onset of the major wave of zygotic genome activation (ZGA). This is a fertile area for research, that enables the study of gene regulatory network adaptations to changes in ploidy, limited by the constraints of gene dosage and an essential early developmental transition. Xenopus laevis, which recently underwent a tetraploidization event, approximately 18 million years ago, provides a very useful model embryonic system for the study of homeologous gene activation during vertebrate ZGA.
To characterize differential subgenome activation the authors focused on the ~ 2600 maternally-regulated genes expressed in the first wave of widespread ZGA. They treated embryos with cycloheximide at Stage 8 to prevent the translation of zygotic factors that would further alter the transcriptome. They found a majority of these maternally-regulated genes have asymmetric expression between the two homeologs, with transcription often occurring from the L or S copy alone. This is a fascinating result from which to dig deeper into gene regulatory mechanisms. To understand whether cis-regulatory networks dictate the biased L/S homeolog expression in the late blastula, the authors performed CUT&RUN to map active chromatin marks, H3K4me3 and H3K27ac. However, they found no differences in promoter sequences of homeologs that would implicate differential recruitment of specific transcription factors. Instead, they focused on distal enhancers and additionally performed ATAC-seq on Stage 8 and 9 animal cap explants. Approximately 70% of enhancers for homeolog pairs exhibited differential H3K27ac enrichment and chromatin accessibility. The authors then searched for transcription factor binding motifs that distinguished active enhancers from their inactive homeolog. They found binding sequences for OCT4 and SOX2/3 were enriched in active L enhancers and active S enhancers. To assess the role of these pluripotency factors, they used antisense morpholinos to block their translation in the early embryo. MOs were complementary to both the L and S homeologs of pou5f3.3 and sox3, but not to their paralogs that are primarily expressed zygotically; pou5f3.1 and pou5f3.2. MO knockdown of both Pou5f3.3 and Sox3 was inhibited leading to significant downregulation of 62% of activated genes compared to embryos injected with a control morpholino. They also analyzed binding to the genome of V5-tagged, injected versions of these 2 transcription factors and found some evidence for differential binding around TSS of homeolog pairs and a correlation between binding and the overall level of transcription at ZGA. Finally, they compare enhancer marks and accessibility in tetraploid X.laevis subgenomes to homologous enhancers in the diploid X.tropicalis. They conclude conservation of active enhancers with X.tropicalis and even zebrafish when considering the combined data from X.laevis L and S subgenome.
There are many strengths of this manuscript. In this interesting study, the authors identify what appears to be an evolutionary divergence of enhancers in a vertebrate tetraploid, that may underlie the differential expression of homeologs during the first major wave of ZGA. They generate CUT&RUN datasets of active chromatin marks during the early and late blastula. Additionally, they provide binding data for pluripotency factors OCT4 and SOX2/3 and demonstrate that their MO knockdown leads to reduced expression at ZGA. Their analyses identify correlations between differential homeolog expression and active or accessible chromatin. Further, they identify that active enhancers are enriched in OCT4 and SOX2/3. Enthusiasm is somewhat dampened by a lack of direct perturbation to differential subgenome activation or an understanding of the functional impacts of differential homeolog expression on subsequent development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The study by Akter et al demonstrates that astrocyte-derived L-lactate plays a key role in schema memory formation and promotes mitochondrial biogenesis in the Anterior Cingulate Cortex (ACC).
The main tool used by the authors is the DREADD technology that allows to pharmacologically activate receptors in a cell-specific manner. In the study, the authors used the DREADD technique to activate appropriately transfected astrocytes, a subtype of muscarinic receptor that is not normally present in cells. This receptor being coupled to a Gi-mediated signal transduction pathway inhibiting cAMP formation, the authors could demonstrate cell-(astrocyte) specific decreases in cAMP levels that result in decreased L-lactate production by astrocytes.
Behaviorally this pharmacological manipulation results in impairments of schema memory formation and retrieval in the ACC in flavor-place paired associate paradigms. Such impairments are prevented by co-administration of L-lactate.
The authors also show that activation of Gi signaling resulting in L-lactate decreased release by astrocytes impairs mitochondrial biogenesis in neurons in an L-lactate reversible manner.
By using MCT 2 inhibitors and an NMDAR antagonist the authors conclude that the molecular mechanisms underlying the observed effects are mediated by L-lactate entering neurons through MCT2 transporters and involve NMDAR.
Overall, the article's conclusions are warranted by the experimental evidence, but some weak points could be addressed which would make the conclusions even stronger.
The number of animals in some of the experiments is on the low side (4 to 6).<br /> The use of CIN to inhibit MCT2 is not optimal. Authors may want to decrease MCT2 expression by using antisense oligonucleotides.<br /> The experiment using AVP to block NMDAR only partially supports the conclusions. Indeed, blocking NMDAR will knock down any response that involves these receptors, whether L-lactate is necessary or not.<br /> Is inhibition of glycogenolysis involved in the observed effects mediated by Gi signaling? Indeed, L-lactate is formed both by glycolysis and glycogenolysis. The authors could test whether the glycogen metabolism-inhibiting drug DAB would mimic the effects of Gi activation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Zou et al. employ single-cell RNA sequencing of healthy skin, actinic keratosis (AK), squamous cell carcinoma in situ (SCCIS), and cutaneous squamous cell carcinoma (cSCC) to unravel the molecular events driving the progression of AK into cSCC (n=13 samples from 6 patients), thereby filling a gap of knowledge in skin cancer research. The authors identified several previously unreported candidate genes (including ALDH3A1, IGFBP2, MAGEA4, ITGA6, and LGALS1) involved in different stages of malignant progression, the expression of which was validated in situ in a large cohort. Functional in vitro experiments confirm a possible role for these genes in the transformation from benign to malignant skin lesions.
Moreover, the authors identified epidermal cell subpopulations that may play an important role in the development from AK to cSCC, including an "early malignant cell" subpopulation within SCCIS basal cells with higher mutational load according to CNV analysis, which they characterized in more detail. For example, they found MAGEA4 strongly expressed in basal cells of (most) SCCIS and cSCC, as well as ITGA6. Functional assays in HaCaT and cSCC cell lines revealed that the knock-down of MAGEA4 and ITGA6 reduced proliferation, migration, and invasion but increased apoptosis in the cSCC cell lines.
Finally, they describe the tumor microenvironment of a poorly differentiated cSCC sample, and scATAC sequencing of this poorly differentiated cSCC revealed that the majority of differentially accessible chromatin regions (DARs) were located in basal epidermal cells.
Altogether, the authors provide a comprehensive transcriptional analysis of premalignant (AK, SCCIS) and malignant stages of cSCC. They suggest some key driver genes for each stage, the role of which are addressed in vitro and in situ in a large cohort. Thus, this study may provide novel biomarkers for tumor staging and diagnosis as well as potential targets for the prevention and treatment of cSCC.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Zhao et al. investigated the molecular nature of the binding site for carbohydrates within the UDP-sugars known to activate the P2Y14 receptor. In order to do so, they built a molecular model of the hP2Y14, docked the corresponding agonists, and performed MD simulation on the resulting complexes. The modeling was used to identify the key molecular interactions with a cluster of charged residues in the extracellular side of the TM region of the receptor, which they show are conserved within the P2Y receptors. The binding site of the UDP region was, not surprisingly, overlapping with the analogous ADP binding site experimentally observed for the P2Y12 receptor, and consequently, the region that recognizes the sugars could be anticipated. Nevertheless, the detailed modeling and simulation work shows the consistency of this hypothesis and provides a quantification of the particular interactions involved, pinpointing specifically the residues candidate to be involved in the recognition of sugars.
It follows the characterization, by functional assays, of the effect of single-point mutations of these residues in the efficacy of the different UDP-sugars. Here the results show a tendency to correlate with the molecular models, however some of the data has very low statistical significance and consequently the interpretation and conclusions extracted from this data should be taken with caution. This pertains to the particular role of the identified residues in the binding of the different sugars, which in some cases should be taken as a suggestion rather than a proof, though the general conclusion of the identification of the binding region for the sugar, its conservation among P2Y receptors and the role of some specific residues in sugar recognition seems convincing and the data are conveniently presented.
Finally, the design of ADP-sugars that activate the P2Y12 receptor, based on the transferability of the observations with the UDP-sugars for the P2Y14 receptor, is a first indication that such a recognition is possible and should happen in an analogous binding region. However, the low potencies exhibited by the ATP-sugars, in the micromolar range, are too far from the ATP agonist and the relevance of this mechanism remains to be proved. The difference between P2Y12 and P2T14, with the last one showing much higher potencies for UDP-sugar derivatives than P2Y12 for the corresponding ADP-sugars, remains an interesting question not explored in this manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Identifying compounds that can selectively inhibit protein kinases is of significant importance. Here, the authors describe a computational method to use existing kinome-wide profiling data to identify sets of compounds that, when combined, are more selective than any of the compounds on their own.
The authors explain the methodology well and the methodology is well-supported. The outcome of the methodology is assessed using an assay orthogonal to the original profiling assays. It is hard to assess whether the methodology works when a different assay is used.
The discussion of using this method for polypharmacology is naively discussed and under-supported.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review
In this manuscript, the authors develop a multi-scale agent-based model (ABM) capable of reproducing the self-organizing behavior observed in the intestinal crypt. By considering just the signaling pathways -previously reported as regulatory in the intestinal crypt- and local physical cell-to-cell interactions, the proposed model not only explains the emergence of the spatial organization, but also recapitulates cell composition dynamics in the crypt (proliferation, migration, and differentiation of cells), as previously characterized in the complex tissue of the small intestine epithelium in mice. The authors show that the self-organized system resulting from the model displays a stable composition over time. Additionally, the authors show how this model can be effectively used to test different conditions, such as biomedically relevant perturbations (e.g. stem cell ablation, cell cycle inhibition, and toxicity of particular drug treatments) and the posterior recovery, allowing to predict the safety of potential oncotherapies.
In summary, the authors provide a powerful and versatile model, which can be applied to better understand the formation and response of the intestinal crypt, as well as the functional heterogeneity of the intestinal epithelium at multiple scales. The proposed mathematical model simulates features across scales in the intestinal crypt such as multiple signaling pathways, the mechanical environment and its forces, and cell cycle regulation. The model demonstrates the stability of the homeostatic crypt and recovery following stem cell ablation. The model also simulates the cell cycle protein network and demonstrates that CDK1 inhibition creates oversized cells. In sum, the model generated by the authors increases the understanding of how these biological processes take place in vivo, exploring not only healthy cell behavior but also cell response to injury by oncotherapies or other external factors. Additionally, the authors provide a series of fascinating movies that show the spatial organization of the crypt during these processes, and the manuscript has clear applications for the clinics.
Nevertheless, in its current form, the manuscript has some weaknesses that are worth mentioning:
(1) The developed model considers the interaction of multiple signaling networks that are essential for morphogenesis and homeostasis in the intestinal tissue, as well as other elements that had been proposed as relevant in the literature. Nevertheless, the details of how these interactions are modeled couldn't be evaluated in the current revision as the model was not shared with the reviewers and it is not available yet online, nor specified in any detail in the current manuscript. Additionally, how quantitative information from Wnt and BMP signaling pathways is incorporated in a quantitative way in the model is not clear.
(2) Some conclusions by the authors are not properly justified in the text, as "Paneth cells are the main driver behind the differential mechanical environment in the niche", "Wnt-mediated feedback loop prevents the uncontrolled expansion of the niche", the specific effect of p27 in contrast with Wee1 phosphorylation over the cell cycle length, and "their recovery [absorptive progenitors] started before the end of the treatment, driven by a negative feedback loop from mature enterocytes to their progenitors".
(3) Only the results of the "main" model are shown, with no information about its sensitivity to parameter values, and how their conclusions depend on specific decisions on the model. For example, the authors said that "an optimal crypt cell composition is achieved when BMP and Wnt differentiation thresholds result in progenitors dividing approximately four times before differentiating into enterocytes", but the results of alternative scenarios are not shown.
(4) Regarding the construction of the model, the authors used "counts of Ki-67 positive cells recorded by position" while the original data reported "overall cell counts per crypt and villus". Some explanation about how this conversion was made, why it is valid, as well as any potential problems, is needed. Additionally, the model is based on experiments done by others in mouse models; the similarity to the response in human intestinal crypts is not discussed.
(5) The authors imply that their mathematical model of the intestinal crypt is an improvement over those already published but there is no direct comparison or review of the literature to substantiate this claim.
(6) The authors claim that the simulated data and the available mouse data match up. Nevertheless, the data vs the model still appear both quantitatively and qualitatively different (as presented in Figures 2E, F, and 5C, D). This puts in doubt how much the model can actually reproduce the experimental data. In conclusion, the model would benefit from further refinement, particularly if the goal is to use the model for predicting the dynamics of oncogenic drug candidates.
-
-
www.journals.uchicago.edu www.journals.uchicago.edu
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In their manuscript, Brischigliaro et al. show that the disruption of respiratory complex assembly results in Drosophila melanogaster results in the accumulation of respiratory supercomplexes. Further, they show that the change in the supercomplex abundance does not impact respiratory function suggesting that the main role of supercomplex formation is structural. Overall, the manuscript is well written and the results and conclusion are supported. The D. melanogaster system, in which the abundance of supercomplexes can be altered through the genetic disruption of the assembly of the individual complexes, will be important for the field to discover the role of the supercomplexes. This manuscript will be of broad interest to the field of mitochondrial bioenergetics. The findings are valuable and the evidence is convincing.
Strengths<br /> The system developed in which the relative levels of SCs can be varied will be extremely useful for studying SC physiology.
The experiments are clearly described and interpreted.
Weaknesses<br /> The previous weaknesses identified have been addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
DMRT1 is essential in testis development in different species. While Dmrt1 is the testis-determining factor in chicken and deletion encompassing this gene lead to gonadal dysgenesis in human, the role of DMRT1 in testis development remains to be clarified. Despite an early expression of Dmrt1 in the mouse gonad and a potential function as a pioneer factor, DMRT1 is only required for the maintenance of the Sertoli cell identity in the postnatal testis. The use of a new animal model could provide new insights into the role of this factor in humans. Here the authors have generated a knockout model of DMRT1 in rabbits. They show that the XY mutant gonads differentiate as ovary indicating that DMRT1 is required for testis differentiation in rabbits. In addition, most of the germ cells remain pluripotent as evidenced by the maintenance of POU5F1 in both XY and XX mutant gonads. These are very important results potentially explaining gonadal dysgenesis associated with the DMRT1 locus in disorders of sex development in humans.
The experiments are meticulous and convincing. I find the arguments of the authors about the role of DMRT1 in germ cells in addition to its function in Sertoli cell differentiation, both comprehensible and compelling. Clearly, this is an important insight in sex determination and gametogenesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study assesses the volatile profiles from the hair and bodies of 64 vertebrate species to compare odor constituents across taxa. Compared to a similar data set for floral volatiles, the study suggests that vertebrate odors are significantly less diverse and show little phylogenetic relationship regarding profile similarity. Human odors were particularly unique from other species. It is concluded that this may influence the odor coding of organisms (like vectors) who respond to these odors compared to plant-feeding organisms like most other insects. While the study is compelling, several methodological issues leave the conclusions less convincing. It is suggested that the paper be tempered accordingly with these issues mentioned.<br /> The study makes several assumptions about the methodology to be considered when interpreting the results:
Major Concerns:
1) Body hair as a proxy for animals. "Hair odour is likely a reasonable proxy for mammalian body odour, but may lose some volatile compounds during storage. Live-animal odour, on the other hand, can be contaminated with compounds from faeces or urine occasionally excreted during sampling." The study has addressed this by testing hair against the bodies of 4 humans, two rats, and one guinea pig (Figure S1). However, the results show that there are both quantitative and qualitative differences among all the samples. While the presence of waste accounts for some of this variation, this, too, is a natural response of the animal and could be present in natural settings. Also would not body heat in mammals have an impact on odors? The authors should support this. While this does not require reanalysis, the authors should address these differences, particularly when qualitative and quantitative differences are discussed heavily in the results.
2) Sampling medium: Tenax TA was used to sample the vertebrate odors. Please note that any sorbent will exhibit specificity regarding selectivity and sensitivity to VOCs. See https://www.eva.mpg.de/documents/Elsevier/Marcillo_Comparison_JChromA_2017_2452774.pdf for one comparison. For example, it is not surprising that "Aldehydes, ketones, alcohols, aromatics, terpenes, and hydrocarbons dominated" the samples given that these types of compounds are well retained by the Tenax polymer:<br /> https://www.sisweb.com/index/referenc/tenaxta.htm<br /> Many chemical ecology studies will employ multiple polar and non-polar polymers to retain different VOCs for better profile comparison.<br /> By itself, this limitation must be noted. However, it becomes even more relevant when compared to the floral volatile study, which used a different sorbent (Poropak) which is less hydrophobic and may retain more polar compounds than Tenax: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/2859526<br /> Such differences must be considered when comparing these two datasets, particularly when the study makes conclusions about their differences. Alternatively, a small set of experiments with poropak and a few species (like for the hair vs. body control experiments) could clarify the effect of sorbent type on VOC retention.
3) Sampling quantification: The methods note that " All extractions were run for 5-80 minutes depending on the expected odour concentration of the sample." What does this mean? Such differences in sampling timing in our lab have shown profound differences in the type and amount of volatiles collected. Generally, it is best to sample for as long as possible to ensure that the most volatiles are collected (up to 24 hours if possible). The compounds will eventually come into equilibrium with the sorbent. However, for quantification, the timing must be calibrated carefully, usually by using a representative set of likely compounds with different functional groups to determine the optimal length of sampling time. Was this done in this case? If not, how can one account for the significant variation in sampling time regarding quantification?<br /> A second issue with quantification is the need for an internal standard. Even with robotic assistance, slight variations in processing can significantly affect the quantity of volatile retained through detection at the MS. This is generally avoided by using an internal standard in the sampling arena. See this example with multiple sampling techniques (also employing TD-GCMS): https://www.frontiersin.org/articles/10.3389/fevo.2021.607555/full<br /> Without these methodological controls, it is unclear how effective quantification can be performed. It might be more prudent to confine the results to qualitative discussions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study seeks to understand how selective mRNA translation informs cellular identity using the Drosophila brain as a model. Using drivers specific for either neurons or glia, the authors express a tagged large ribosomal subunit protein, which they then use as a handle for isolating total mRNA and ribosome footprints. Throughout the study, they compare these data sets to transcriptional and ribosome profiles from the whole fly head, which contains multiple cell types including fat tissue, pigment cells, and others, in addition to neurons and glia. Using GO term analyses, they demonstrate the specificity of their cell-type-based ribosome profiling: known glial mRNAs are efficiently translated in glia and likewise in neurons as well. In further examining their RNAseq data set, they find that "neuronal" mRNAs, such as ion channels, are expressed in both neurons and glia, but are translated at higher rates in neurons. Based on this, they hypothesize that neuronal mRNAs are actively suppressed in glia, and next seek to determine the underlying mechanism. By meta-analysis of all mapped ribosome footprints, they find that glia have higher ribosome occupancies in the 5' leader of neuronal mRNAs. This is corroborated by individual ribosome occupancy profiles for several neuronal mRNAs. In 5'leaders containing upstream AUG codons, they find that the glial data sets show enrichment of ribosomes at these upstream start sites. They thus conclude that 5' leaders containing upstream AUGs confer translational suppression in glia.
Overall, the sequencing data sets generated in this study and their subsequent bioinformatic analyses seem robust and reliable. Their data echo the trends of cell-type specific translational profiles seen in previous studies (e.g. 27380875, 30650354), and making their data sets and analyses accessible to the broader scientific community would be quite helpful. The findings are presented in a logical and methodical manner, and the data are depicted clearly. The authors' results that 5' leaders facilitate translation suppression is well-supported in literature. However, they overinterpret their data by claiming that such suppression is key for maintaining glial/neuronal identity (it is even featured in their title), but do not present any evidence that loss of such regulation has any impact on cellular identity. In many places, the authors do not acknowledge possible biases in their analytical methods, or consider alternate explanations for their data. These weaken the manuscript in its current form, but many of these issues which I describe below, are rectifiable with modest effort.
1. The authors' data in Fig. 2-S1A-B shows substantial cell-to-cell variation in RpL3::FLAG expression. The authors do not consider that this variation may cause certain neuronal/glial types to be overrepresented in their datasets. A related point is that the authors do not discuss whether RpL3::FLAG is only present in the cell body or if it is also trafficked to the neuronal/glial processes where localized translation is known to occur (reviewed in 31270476).
2. The RNA-seq data set that they use to calculate translation efficiency (TE) only represents mRNAs associated with RpL3::FLAG, which is part of the large ribosome subunit. As the authors are likely aware, there are mRNAs on which the full ribosome moiety does not assemble and these are effectively excluded from this data set. Ideally, a more complete picture of the mRNA landscape can be obtained by 40S subunit profiling but I appreciate that this is technically very challenging. At a minimum, this caveat needs to be acknowledged.
How does the TPM of differentially regulated transcripts (such as those in Fig. 2H) compare between whole heads, neurons, and glia? Since the whole head RNA-seq data was not from an enriched sample, this might serve as a decent proxy for showing that the neuron/glia RNA-seq data sets are representative of RNA abundance.
3. The analysis in Fig. 2F shows that low abundance mRNAs in glia are further translationally suppressed, which the authors point out in lines 151-152. However, this data also shows that mRNAs with a 1:1 ratio in neuron:glia (which fall in the 0.5-1 and 1-2 bin) have a TE1; this suggests that on average, mRNAs that are equally abundant are translated equally efficiently. This is the opposite of the thesis presented in Fig. 2G-H where many mRNAs of equal abundance in neurons and glia are actually poorly translated in glia. How do the authors reconcile these observations?<br /> It is also unclear from the manuscript whether all mRNAs were considered for the analysis in Fig. 2F or if some cutoff was employed.
4. Throughout the manuscript the authors favor a "translation suppression" model wherein glia (for example) actively suppress neuronal mRNAs, and this is substantiated in Fig. 3C showing higher ribosome occupancy on 5' leaders than in coding regions. However, they show no evidence that glial mRNAs (such as those indicated in Fig. 2B and 2-S2B) present a different pattern, say that of higher ribosome occupancy in CDS vs. 5' leaders. This type of positive control is a glaring omission from many of their analyses, including ribosome occupancy at upstream AUG codons (Fig. 4).<br /> In order to make a broad case (as they do in the title) that differential translation regulation specifies multiple cell types, it is necessary to show the corollary: that glial mRNAs (repo, bnb, pnt, etc) are suppressed in neurons. There is an inkling of this evidence in Fig. 3-S1 where fat body mRNAs in neurons are shown to have low ribosome occupancy in the CDS regions and enhanced occupancy in the 5' leader region. This data is not quantified, nor is a control neuron mRNA shown as a reference for what the ribosome occupancy profile of an actively translated mRNA looks like in a neuron.
5. The cell-type specific ribosome profiling data sets in the manuscript are from mRNAs associated with 80s subunits that have been treated with cycloheximide during sample preparation. Cycloheximide, and many other translation inhibitors, are known to non-uniformly bias reads towards start codons (PMID: 22056041,22927429). This important caveat and its implications on the start-codon occupancy analysis in Fig. 4 are not acknowledged in the manuscript.<br /> Again, the ideal resolution would be a ribosome profiling data set from 40S footprinting or harringtonine-treated samples (PMIDs: 32589966, 27487212, 32589964) to show the true accumulation of ribosomes at AUG codons. In the absence of such a data set, a comparative meta-analysis of the ribosome distribution around upstream and initiation AUG codons of differentially translated transcripts from neurons would be a useful control.
6. The authors chose Rhodopsin 1 (Rh1) as a model mRNA which is translated efficiently in neurons but suppressed in glia. Though the data in Fig. 2-S3B shows higher TE for Rh1 in neurons, the data in 5A show lower ribosome occupancy in the Rh1 CDS in neuron samples (at least in the fragment of the CDS visible). These data are somewhat contradictory.<br /> Further, given that the neuron data are from all nsyb-positive cells but that Rh1 is expressed only in R1-R6 photoreceptors, it is unclear what motivated them to choose Rh1 as opposed to an mRNA that is more broadly expressed in neurons.
7. Similar to the heterogeneity in nsyb- and repo-GAL4 expression in Fig. 2-S1A-B, Fig. 5C shows substantial variation in the expression of the UAS-GFP reporter driven by tub-GAL4. This variable GAL4 activity makes the mRNA abundance data difficult to interpret. Also, since the authors presume that Rh1 mRNA is expressed in glia (it is not annotated in the RNA-seq analysis in Fig. 2-S2B), would Rh1-GAL4 not be a more apt driver?<br /> These issues are further compounded by the lack of a cellular compartment marker (repo marks glial nuclei) which makes it impossible to determine which cell the mRNA signal is in. There are also no negative controls presented for the mRNA probes.<br /> Most confoundingly though, the control reporter itself seems to show variable translation efficiencies from one cell to another, with high-GFP protein cells showing lower GFP mRNA and vice versa.<br /> The mRNA:protein ratio may be easier to examine by using repo-GAL4 to specifically drive the Rh1-reporter expression in glia (such as in Fig. 5-S1A) rather than simultaneous expression in both neurons and glia using tub-GAL4.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In the article "Temporal transcriptomic dynamics in developing macaque neocortex", Xu et al. analyze the cellular composition and transcriptomic profiles of the developing macaque parietal cortex using single-cell RNA sequencing. The authors profiled eight prenatal rhesus macaque brains at five timepoints (E40, E50, E70, E80, and E90) and obtained a total of around 53,000 high-quality cells for downstream analysis. The dataset provides a high-resolution view into the developmental processes of early and mid-fetal macaque cortical development and will potentially be a valuable resource for future comparative studies of primate neurogenesis and neural stem cell fate specification. Their analysis of this dataset focused on the temporal gene expression profiles of outer and ventricular radial glia and utilized pesudotime trajectory analysis to characterize the genes associated with radial glial and neuronal differentiation. The rhesus macaque dataset presented in this study was then integrated with prenatal mouse and human scRNA-seq datasets to probe species differences in ventricular radial glia to intermediate progenitor cell trajectories. Additionally, the expression profile of macaque radial glia across time was compared to those of mouse apical progenitors to identify conserved and divergent expression patterns of transcription factors.
The main findings of this paper corroborate many previously reported and fundamental features of primate neurogenesis: deep layer neurons are generated before upper layer excitatory neurons, the expansion of outer radial glia in the primate lineage, conserved molecular markers of outer radial glia, and the early specification of progenitors. Furthermore, the authors show some interesting divergent features of macaque radial glial gene regulatory networks as compared to mouse. Overall, despite some uncertainties surrounding the clustering and annotations of certain cell types, the manuscript provides a valuable scRNA-seq dataset of early prenatal rhesus macaque brain development. The dynamic expression patterns and trajectory analysis of ventricular and outer radial glia provide valuable data and lists of differentially expressed genes (some consistent with previous studies, others reported for the first time here) for future studies.
The major weaknesses of this study are the inconsistent dissection of the targeted brain region and the loss of more mature excitatory neurons in samples from later developmental timepoint due to the use of single-cell RNA-seq. The authors mention that they could observe ventral progenitors and even midbrain neurons in their analyses. Ventral progenitors should not be present if the authors had properly dissected the parietal cortex. The fact that they obtained even midbrain cells point to an inadequate dissection or poor cell classification. If this is the result of poor classification, it could be easily fixed by using more markers with higher specificity. However, if it is the result of a poor dissection, some of the cells in other clusters could potentially be from midbrain as well. The loss of more mature excitatory neurons is also problematic because on top of hindering the analysis of these neurons in later developmental periods, it also affects the cell proportions the authors use to support some of their claims. The study could also benefit from the validation of some of the genes the authors uncovered to be specifically expressed in different populations of radial glia.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The main goal of the study was to tease apart the associative and non-associative elements of cued fear conditioning that could influence which defensive behaviors are expressed. To do this, the authors compared groups conditioned with paired, unpaired, or shock only procedures followed by extinction of the cue. The cue used in the study was not typical; serial presentation of a tone followed by a white noise was used in order to assess switches in behavior across the transition from tone to white noise. Many defensive behaviors beyond the typical freezing assessments were measured, and both male and female mice were included throughout. The authors found changes in behavioral transitions from freezing to flight during conditioning as the tone transitioned into white noise, and a switch in freezing during extinction such that it became high during the white noise as flight behavior decreased. Overall, this was an interesting analysis of transitions in defensive behaviors to a serially presented cue consisting of two auditory stimuli during conditioning and then extinction. There are some concerns regarding the possibility that the white noise is more innately aversive than the tone, inducing more escape-like behaviors compared to a tone, especially since the shock only group also showed increased escape-like behaviors during the white noise versus tone. This issue would have been resolved by adding a control group where the order of the auditory stimuli was reversed (white noise->tone). While the more complete assessment of defensive behaviors beyond freezing is welcomed, the main conclusions in the discussion are overly focused on the paired group and the associative elements of conditioning, which would likely not be surprising to the field. If the goal, as indicated in the title, was to tease apart the associative and non-associative elements of conditioning and defensive behaviors, there needs to be a more emphasized discussion and explicit identification of the non-associative findings of their study, as this would be more impactful to the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The paper submitted by Yogesh and Keller explores the role of cholinergic input from the basal forebrain (BF) in the mouse primary visual cortex (V1). The study aims to understand the signals conveyed by BF cholinergic axons in the visual cortex, their impact on neurons in different cortical layers, and their computational significance in cortical visual processing. The authors employed two-photon calcium imaging to directly monitor cholinergic input from BF axons expressing GCaMP6 in mice running through a virtual corridor, revealing a strong correlation between BF axonal activity and locomotion. This persistent activation during locomotion suggests that BF input provides a binary locomotion state signal. To elucidate the impact of cholinergic input on cortical activity, the authors conducted optogenetic and chemogenetic manipulations, with a specific focus on L2/3 and L5 neurons. They found that cholinergic input modulates the responses of L5 neurons to visual stimuli and visuomotor mismatch, while not significantly affecting L2/3 neurons. Moreover, the study demonstrates that BF cholinergic input leads to decorrelation in the activity patterns of L2/3 and L5 neurons.
This topic has garnered significant attention in the field, drawing the interest of many researchers actively investigating the role of BF cholinergic input in cortical activity and sensory processing. The experiments and analyses were thoughtfully designed and conducted with rigorous standards, leading to convincing results which align well with findings in previous studies. In other words, some of the main findings, such as the correlation between cholinergic input and locomotor activity and the effects of cholinergic input on V1 cortical activity, have been previously demonstrated by other labs (Goard and Dan, 2009; Pinto et al., 2013; Reimer et al., 2016). However, the study by Yogesh and Keller stands out by combining cutting-edge calcium imaging and optogenetics to provide compelling evidence of layer-specific differences in the impact of cholinergic input on neuronal responses to bottom-up (visual stimuli) and top-down inputs (visuomotor mismatch).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, Nuria Martin-Flores, Marina Podpolny and colleagues investigate the role of Dickkopf-3 (DKK3), a Wnt antagonist in synaptic dysfunction in Alzheimer's disease. Loss of synapses is a feature of Alzheimer's and other forms of dementia such as frontotemporal dementia and linked amyotrophic lateral sclerosis (FTD). The authors utilise a broad range of experimental approaches. They show that DKK3 levels are increased in Alzheimer's disease and that this occurs early in disease. This is an important finding since early disease changes are believed to be the most important. They also show increases in DKK3 in transgenic mouse models of Alzheimer's disease and that DKK3 knockdown restores synapse number and memory in one such model. Finally, they link these DKK3 increases to loss of excitatory synapses via the blockade of the Wnt pathway and subsequent activation of GSK3B; GSK3B is strongly linked to both Alzheimer's disease and FTD. The quality of the data is good and the conclusions well supported by these data. There are no major weaknesses. The findings support studies that target the Wnt pathway as a potential therapeutic for Alzheimer's disease.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This paper describes the development and initial validation of an approach-avoidance task and its relationship to anxiety. The task is a two-armed bandit where one choice is 'safer' - has no probability of punishment, delivered as an aversive sound, but also lower probability of reward - and the other choice involves a reward-punishment conflict. The authors fit a computational model of reinforcement learning to this task and found that self-reported state anxiety during the task was related to a greater likelihood of choosing the safe stimulus when the other (conflict) stimulus had a higher likelihood of punishment. Computationally, this was represented by a smaller value for the ratio of reward to punishment sensitivity in people with higher task-induced anxiety. They replicated this finding, but not another finding that this behavior was related to a measure of psychopathology (experiential avoidance), in a second sample. They also tested test-retest reliability in a sub-sample tested twice, one week apart and found that some aspects of task behavior had acceptable levels of reliability. The introduction makes a strong appeal to back-translation and computational validity. The task design is clever and most methods are solid - it is encouraging to see attempts to validate tasks as they are developed. The lack of replicated effects with psychopathology may mean that this task is better suited to assess state anxiety, or to serve as a foundation for additional task development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript by He et al. explores the molecular basis of the different stinging behaviors of two related anemones. The freshwater Nematostella which only stings when a food stimulus is presented with mechanical stimulation and the saltwater Exaiptasia which stings in response to mechanical stimuli. The authors had previously shown that Nematostella stinging is calcium-dependent and mediated by a voltage-gated calcium channel (VGCC) with very pronounced voltage-dependent inactivation, which gets removed upon hyperpolarization produced by taste receptors.
In this manuscript, they show that Exaiptacia and Nematostella differing stinging behavior is near optimal, according to their ecological niche, and conforms to predictions from a Markov decision model.
It is also shown that Exaiptacia stinging is also calcium-dependent, but the calcium channel responsible is much less inactivated at resting potential and can readily induce nematocyte discharge only in the presence of mechanical stimulation. To this end, the authors record calcium currents from Exaipacia nematocysts and discover that the VGCCs in this anemone are not strongly inactivated and thus are easily activated by mechanical stimuli-induced depolarization accounting for the different stinging behavior between species. The authors further explore the role of the auxiliary beta subunit in the modulation of VGCC inactivation and show that different n-terminal splice variants in Exaiptacia produce strong and weak voltage-dependent inactivation.
The manuscript is clear and well-written and the conclusions are in general supported by the experiments and analysis. The findings are very relevant to increase our understanding of the molecular basis of non-neural behavior and its evolutionary basis. This manuscript should be of general interest to biologists as well as to more specialized fields such as ion channel biophysics and physiology.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
The authors have previously established that activation of dopamine inputs to prefrontal cortex during adolescence can drive increases in mPFC DA bouton number and enhanced mPFC activity in WT mice. The current study was designed to test the hypothesis that neural circuit plasticity during adolescence can be targeted to restore cortical function under conditions of developmental disruptions that are relevant to psychiatric disorders.
Specifically, the manuscript explores how transient adolescent stimulation of ventral midbrain neurons that project to the frontal cortex may help to improve performance on certain memory tasks. The authors used DREADDs to regulate the mesofrontal cortical dopamine system in two mouse models - one with a reporter replacing the Arc gene, and another with knockout of the schizophrenia-associated gene Disc1, both of which are thought to have reduced prefrontal cortical activity. The manuscript provides an interesting set of observations that DREADD-based activation over only 3 days during adolescence provides a fast-acting and long-lasting improvement in performance on Y-maze spontaneous alternation as well as aspects of neuronal function as assessed using in vivo imaging methods.
A strength of this study is that the authors performed key manipulations using age and dose/intensity as dependent variables to show that the level of neural circuit activation during adolescence follows an inverted U-shape pattern, though the precise postsynaptic mechanisms underlying the positive impact of adolescent mesofrontal dopamine neuron stimulation were not addressed.
One limitation discussed by the reviewers is that using TH-Cre mice (as compared with DAT-Cre) to drive transgene expression in VTA neurons could lead to expression outside the dopaminergic population of neurons, though in the revision the authors have provided additional lines of evidence to support their model of dopamine regulation of frontal cortex in this study.
Collectively, this is a well-design study with many strengths and novel findings that are likely to positively impact a widespread of disciplines within the biological psychiatry and neuroscience field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors present a comprehensive meta-analysis of Clostridioides difficile (CD) occurrence across 42,900 metagenomes from 253 public studies, largely representing stool samples from human adults, infants, and with a smaller fraction of samples from non-gut body sites and from environmental samples (e.g., non-human animals, wastewater, soil, etc.). In particular, the authors looked at adults who were healthy, diseased (but not with C. diff), and with diagnosed C. diff infection (CDI) and found that CD occurrence was fairly low: ~30% in adult CDI samples, ~2% in adult diseased samples, and ~1% in healthy samples. CD was much more prevalent in infants (15 and 40% in healthy and diseased infants, respectively). These findings, if they hold true, would be significant because they would suggest an over-diagnosis of CDI and an under-diagnosis of other putative enteric pathogens (also enriched in CDI samples) across the population. Furthermore, these results suggest that the asymptomatic carriage of CD in adults (~1-5%, depending on demographics) may be much lower than some prior estimates (some as high as ~30-40%).
Strengths:
The authors have done an admirable job pulling down an enormous data set for this CD-focused meta-analysis, which is a valuable service to the field. The results push against some common wisdom in the field, in terms of the prevalence of CD in CDI patients, which will be impactful if they hold up to further scrutiny. Furthermore, the identification of commensal bacteria that are positively or negatively associated with CD presence in both healthy and diseased people at different periods of the lifespan (infant, child, and adult), is a valuable synthesis with potential translational value. The manuscript is clearly written and the figures are presented well. The methodology is robust, although I have a few suggestions for improvement.
Weaknesses:
My main critique relates to detection limitations, both in terms of sequencing depth and read-mapping. Given that CD detection is the root of the main conclusions reported here, this deserves some additional care. The authors have already done some work to address this by including sequencing depth in their linear mixed effects model, which is great. Furthermore, they were conservative with how they labeled CD positive/negative individuals with multiple time points (i.e., if you had CD detected at any point, this sample was selected for the cross-sectional analysis, and that individual was labeled as CD positive). I have a few additional suggestions to explore this issue, which I outline in the recommendations for authors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The manuscript by Hussein et al. uses cryoEM structure, microscale thermophoresis (MST), and molecular dynamics simulations (conventional and CpHMD) to unravel the Zn2+ and proton role in the function of the Cation Diffusion Facilitator YiiP. First, they generate mutants that abolish each of the three Zn2+ models to study the role of each of them separately, both structurally and functionally. Next, they used a Monte Carlo approach refining the CpHMD data with the MST points to establish the Zn2+ or proton binding state depending on the pH. That predicted a stoichiometry of one Zn2+ to 2 or 3 protons (1:3 under lower pH values). Finally, they proposed a mechanism that involves first the binding of Zn2+ to one low-affinity site and then, after the Zn2+ migrates to the highest affinity site in the transmembrane portion of the protein. The lack of Zn2+ in the low-affinity site might induce occlusion of the transporter.
The manuscript is well-written it is of interest to the field of Cation Facilitator Transporters. It is also an excellent example of a combination of different techniques to obtain relevant information on the mechanism of action of a transporter.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
This study provides evidence of the ability of sublethal imidacloprid doses to affect growth and development of honeybee larva. While checking the effect of doses that do not impact survival or food intake, the authors found changes in the expression of genes related to energy metabolism, antioxidant response, and metabolism of xenobiotics. The authors also identified cell death in the alimentary canal, and disturbances in levels of ROS markers, molting hormones, weight and growth ratio. The study strengths come from exploring different aspects and impacts of imidacloprid exposure on honeybee juvenile stages and for that it demonstrates potential for assessing the risks posed by pesticides. The study weaknesses come from the lack of in depth investigation and an incomplete methodological design. For instance, many of the study conclusions are based on RT-qPCR, which show only a partial snapshot of gene expression, which was performed at a single time point and using whole larvae. There is no understanding of how different organs/tissues might respond to exposure and how they change over time. That creates a problem to understand the mechanisms of damage caused by the pesticide in the situation studied here. There is no investigation of what happens after pupation. The authors show that the doses tested have no impact on survival, food consumption and time to pupation, and the growth index drops from ~0.96 to ~0.92 in exposed larvae, raising the question of its biological significance. The origin of ROS are not investigated, nor do the authors investigate if the larvae recover from the damage observed in the gut after pupation. That is important as it could affect the adult workers' health. One of the study's central claims is that the reduced growth index is due to the extra energy used to overexpress P450s and antioxidant enzymes, but that is based on RT-qPCR only. Other options are not well explored and whether the gut damage could be causing nutrient absorption problems, or the oxidative stress could be impairing mitochondrial energy production is not investigated. These alternatives may also affect the growth index. The authors also state that the honeybee larvae has 7 instars, which is an incorrect as Apis mellifera have 5 larval instars. It is not clear from methods which precise stage of larval development was used for gut preparations. That information is important because prior to pupation larvae defecate and undergo shedding of gut lining. That could profoundly affect some of the results in case gut preparations for microscopy were made close to this stage. A more in-depth investigation and more complete methodological design that investigates the mechanisms of damage and whether the exposures tested could affect adult bees may demonstrate the damage of low insecticide doses to a vital pollinator insect species.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript deftly combines cryo-EM and electrophysiology to investigate the gating mechanisms of human CLC-2. Although another structure of CLC-2 was recently reported, this is the first structure to report density for the absolutely critical gating glutamate, and - an even more exciting result - the first structure to identify the N-terminal gating peptide that is the heart of this manuscript. There has been previous controversy over such a gating peptide in CLC-2, but the combined structural/functional approach appears to establish a role for this peptide in gating and sets up exciting future experiments to understand why its effects might change under different physiological scenarios. The experiments reported here are thoughtful and well-controlled and the data presentation is excellent. For the electrophysiology experiments, the use of inhibitor AK-42 (developed by the current senior author's lab) to establish a zero current level is a welcome advance and should become standard for electrophysiological studies of CLC-2.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
The manuscript by Aguirre et al. describes an elegant approach for developing selective inhibitors of inositol hexakisphosphate kinases (IP6Ks). There are 3 IP6K isozymes (IP6K1-3) in humans, which catalyze the synthesis of inositol pyrophosphates. The lack of isozyme-selective inhibitors has hampered efforts to understand their individual physiological roles. While several inhibitors of IP6Ks have been described, they either lack isozyme selectivity or inhibit other kinases. To address this gap, Aguirre et al. used an analog-sensitive approach, which involves the identification of a mutant that, in an ideal world, doesn't impact the activity of the enzyme but renders it sensitive to an inhibitor that is absolutely selective for the engineered (analog-sensitive) enzyme. Initially, they generated the canonical gatekeeper (Leu210 in IP6K1) mutations (glycine and alanine); unfortunately, these mutations had a deleterious effect on the enzymatic activity of IP6K1. Interestingly, mutation of Leu210 to a valine, a subtly smaller amino acid, didn't affect enzymatic activity. The authors then designed a clever high-throughput assay to identify compounds that show selectivity for L210V IP6K1 versus WT IP6K1. The assay monitors the reverse reaction catalyzed by IP6Ks, monitoring the formation of ATP using a luminescence-based readout. After validating the screen, the authors screened 54,912 compounds. After culling the list of compounds using several criteria, the authors focused on one particular compound, referred to as FMP-201300. FMP-201300 was ~10-fold more potent against L210V IP6K1 compared to WT IP6K1. This selectivity was maintained for IP6K2. Mechanistic studies showed that FMP-201300 is an allosteric inhibitor of IP6K1. The authors also did a small SAR campaign to identify key functional groups required for inhibition.
Overall, this manuscript describes a unique and useful strategy for developing isozyme-selective inhibitors of IP6Ks. The serendipitous finding that subtle changes to the gatekeeper position can sensitize the IP6K1 mutant to allosteric inhibitors will undoubtedly inspire other analog-sensitive inhibitor studies. The manuscript is well-written and the experiments are generally well-controlled.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In the "Drivers of species knowledge across the Tree of Life", Mammola and collaborators explore the determinants of scientific and societal interest across very wide taxonomic and spatial scales. Their work highlights our uneven knowledge of biodiversity and its potential causes.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
When the left-right asymmetry of an animal body is established, a barrier that prevents the mixing of signals or cells across the midline is essential. Such a midline barrier preventing the spreading of asymmetric Nodal signaling during early left-right patterning has been identified. However, midline barriers during later asymmetric organogenesis have remained largely unknown, except in the brain. In this study, the authors discovered an unexpected structure in the midline of the developing midgut in the chick. Using immunofluorescence, they convincingly show the chemical composition of this midline structure as a double basement membrane and its transient existence during the left-right patterning of the dorsal mesentery, which authors showed previously to be essential for forming the gut loop and guiding local vasculogenesis. Labelling experiments suggest a physical barrier function, to cell mixing and signal diffusion in the dorsal mesentery. Cell labelling and graft experiments rule out a cellular composition of the midline from dorsal mesenchyme or endoderm origin and rule out an inducing role by the notochord. Based on laminin expression pattern and Ntn4 resistance, the authors propose a model, whereby the midline basement membrane is progressively deposited by the descending endoderm.
Laterality defects encompass severe malformations of visceral organs, with a heterogenous spectrum that remains poorly understood, by a lack of knowledge of the different players of left-right asymmetry. This fundamental work significantly advances our understanding of left-right asymmetric organogenesis, by identifying an organ-specific and stage-specific midline barrier. The complexities of basement membrane assembly, maintenance, and function are of importance in several other contexts, as for example in the kidney and brain. Thus, this original work is of broad interest.
Overall, reviewers refer to a strong and elegant paper discovering a novel midline structure, combining classic but challenging techniques, to show the dynamics, chemical, and physical properties of the midline. However, reviewers also indicate that further work will be necessary to conclude on the origin and impact of the midline for asymmetric organogenesis. Three issues have been raised to strengthen the claims:
1) The function of the midline as a physical barrier requires clarification. Dextran injection here seems to label cells and not the extracellular space. By counting the proportion of dextran-labeled cells rather than dextran intensity itself, the authors do not measure diffusion per se, but rather cell mixing.
2) The descending endoderm zippering model for the formation of the midline lacks direct evidence. The claim of an endoderm origin is based on laminin expression, but the laminin observed in the midline with an antibody may not necessarily correspond to the same subtype assessed by in situ hybridization. The midline may be Ntn4 resistant until it is injected in the relevant source cells. Alternative origins could be considered, from the bilateral dorsal aortae or the paraxial mesoderm, which would explain the double layer as a meeting point of two lateral tissues.
3) The title implies a role of the midline in left-right asymmetric gut development. However, the importance of the midline is currently inferred from previously published data and stage correlations and will require more direct evidence.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This work is hugely significant in the context of the debates surrounding ancient Egyptian activity on the Red Sea and voyages to the Egyptian land of Punt. Using genetic studies to provenance baboon mummified baboons in Egypt with contemporary baboon populations in the Red Sea region, the study argues persuasively that Egyptians obtained Baboons from coastal Eritrea, and thus that Egyptian baboon trade involved this region. This of course brings up the larger issue of Egyptian trade with Punt and the southern Red Sea, a place known to have furnished Egyptians with baboons. The authors argue logically for the region of the ancient port-city of Adulis as being particularly important in this baboon trade, as the region around the harbour was said to have been a baboon habitat in the Graeco-Roman period.
Along with other previous geoprovenancing scientific studies relating to baboon isotopes and obsidian trace elements, this study provides a solid foundation for considering coastal Sudan and especially Eritrea as part of the land of Punt.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript describes conditions under which "Self-inactivating Rabies" (SiR) can be grown to limit mutations that would allow the virus to replicate in the absence of TEV protease. It is also shown that neurons directly infected with a non-mutated virus remain healthy and that the virus does not mutate in the brain in vivo. Remarkably there is nothing in the manuscript to address the obvious question that is raised by the observation that such mutations were occurring around the time of the initial description of circuit tracing with this virus. Can the transsynaptic tracing experiments in the absence of TEV expression (as described in their original Neuron paper) be replicated with SiR that is not mutated? This obvious omission suggests that the authors might have conducted such experiments and were unable to replicate their published results. It is imperative that the authors be forthcoming about whether they have conducted such experiments and what were the results. If they have not conducted such experiments, they should do them and include the results here. If they cannot replicate their results, then the reliability of the Neuron paper is in doubt.
How do the results presented here relate to the results published in the Neuron paper and why are they not definitive with respect to the utility of SiR? The original publication in Neuron presents results that do not appear to be plausible and are best explained by the possibility that some experiments described in that manuscript were conducted using mutated SiR. This became most apparent when shortly after the Neuron publication, the Tripodi lab shared SiR as well as TEV expressing cell lines for propagation with other labs. Several of those groups observed that when they progagated the SiR received from the Tripodi lab, there was a mutation that removed the linkage of the PEST targeting sequence to N. This would be expected to allow the virus to replicate and spread without the need for TEV protease to remove the PEST sequence - precisely the phenotype observed in the trans-synaptic tracing experiments described in the Neuron paper. In the Neuron paper, culture experiments showed that the N-PEST (SiR) rabies could not replicate in the absence of TEV. And additional experiments showed that the virus is not toxic to neurons directly infected. These are the same experiments that are replicated in this submission. But then (in the Neuron paper) comes the unlikely report that this virus can spread trans-synaptically in vivo, in the absence of TEV expression. An alternative explanation would be that the virus used for those experiments was mutated and that is why TEV expression was not needed. There are no experiments in the original Neuron paper that address this possibility. Specifically, the experiments in Neuron describing cell survival during trans-synaptic tracing are not adequate to rule this out. This is because the two timepoints during which neurons were counted correspond to an early time when labeled neurons would be expected to still be accumulating and a later time that might be past the peak and represent a time when many neurons have died. To quantify proportions of neurons that survive, it is necessary to follow the same neurons over time, as has been done to demonstrate that only about half of neurons infected with G-deleted rabies die (half survive). Until tests are conducted testing whether TEV expression is required to obtain trans-synaptic labeling with an SiR that is known to not be mutated, it is irrelevant whether mutations can be prevented under particular culture conditions. The utility of this virus depends on whether it can be used for trans-synaptic tracing without toxicity and this manuscript presents no experiments to address that. Further, the omission of such experiments is glaring, as it is difficult to imagine that they have not been attempted.
Other comments:
"A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, represents the first tool for open-ended genetic manipulation of neural circuits."<br /> It is not clear what the authors intend to be claiming with respect to "open-ended genetic manipulation of neural circuits" but it is clear that this assertion is overblown. There are numerous tools that are available for genetic manipulation of neural circuits. This is not the first, won't be the last, and it is arguably not the best.
"Interestingly, a fraction of tdTomato+ neurons survived in ΔG- Rab-CRE-injected brains, differing from what we observed when injecting ΔGRab-GFP, where no cells were detected at 3 weeks p.i. (Fig 3CD) (Ciabatti et al., 2017). " This is a known result (same as Chatterjee et al., 2018) with a known mechanism. GFP expression is not observed because the rabies virus transitions from transcription to replication resulting in the termination of GFP expression. But Cre-recombination of the genome permanently labels cells with TdTomato. This is how Chatterjee et al. demonstrated that half of the neurons infected with G-deleted rabies survive. They imaged cells and saw that the GFP disappeared but the cells marked by Cre-recombination and RFP expression remained healthy indefinitely. The consideration of this in the Introduction is strange. There is no reason to suppose that Cre expression would somehow protect cells from rabies infection and there is no need to propose any such mechanism to explain the observed results.
"Here we show that revertant-free SiR-CRE efficiently traces neurons in vivo without toxicity in cortical and subcortical regions for several months p.i.."<br /> This wording is disingenuous and appears to be intentionally misleading. "Trace" implies that circuits were traced by transynaptic labeling, which they were not.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Wang and colleagues show that tree shrews can detect optogenetic stimulation of the lateral geniculate nucleus (LGN) using an AAV2-CamKIIα-ChR2 construct after training detection of visual stimuli. Solid evidence links optogenetic stimulation to behavioural detection and neurophysiological responses in LGN and local field potentials in V1.
The major strength is the carefully conducted optogenetic detection experiments showing that training of a visual detection task can be transferred to the the detection of focal optogenetic stimulation in the LGN. The optogenetic stimulation can evoke responses in LGN that can be transmitted to V1.
However, the behavioural results are highly variable between individual animals and different optogenetic stimulation frequencies. The nature of this variability remains unclear. A weakness of this complex in vivo study lies in the underspecified description of some of the details and the links between the histology, the neurophysiology and optogenetic results, in order to understand this variability better. The neurophysiological results are clear and important, but the distribution of significant results across the different animals studied is missing. The expression patterns across layers of the optogenetic viruses appear to differ in the histology of three different animals shown, but it is unclear except for one animal from which experimental individuals these results stem. While the methods of the behavioural and neurophysiological results are well described, the methods section is incomplete with regards to the very nice histology presented (perfusion, sectioning, staining).
The detection of optogenetic activation of LGN in this visual animal model suggests that LGN is a potential target for a neuroprosthetic device. This paper is potentially of interest to neuroscientists and clinicians working on the visual system and visual prostheses.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Dolgova et al present a well-written manuscript focused on the mechanism of MEMO1 function in tumor cells. They use genome-wide analyses to predict function based on MEMO1 structure in yeast, identify MEMO1 expression in a screen of cancer cell lines, and demonstrate a correlation between MEMO1 expression and severity of disease in primary breast cancer cells. The authors focus on a breast cancer model as it overexpresses MEMO1 and melanoma as a control and uses CRISPR-Cas9 knockdown of MEMO1 in breast and melanoma cell lines and concurrently knockdown selected genes in the iron homeostasis pathway. In this data, MEMO1 appears to interact with elements involved in iron trafficking and sensing and its overexpression leads to possible hypersensitivity while knockout/knockdown leads to resistance to lipid oxidation. They also interrogate the effect of iron chelation on mitochondrial morphology and ferroptosis. In addition, they evaluate iron and copper binding loci and resolve MEMO1 structure. The work is of high quality. However, there are some inaccuracies regarding the known function of some iron-related elements. Furthermore, it is unresolved whether controlling iron per se (by modulating other importers and transporters or limiting iron availability in culture) recapitulates or ameliorates their findings, currently attributed specifically to the mechanism of action of MEMO1. In addition, the authors make claims that they have not substantiated about overexpression of MEMO1 by extrapolating from data about MEMO1 knockdown or knockout. Finally, the results show only indirect evidence for a central role for MEMO1 via regulation of iron trafficking and more targeted approaches are necessary to increase confidence in the claims.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
In this study, the authors investigate the biological function of the FK506-binding protein FKBP35 in the malaria-causing parasite Plasmodium falciparum. Like its homologs in other organisms, PfFKBP35 harbors peptidyl-prolyl isomerase and chaperoning activities, and has been considered a promising drug target due to its high affinity to the macrolide compound FK506. However, PfFKBP35 has not been validated as a drug target using reverse genetics, and the link between PfFKBP35-interacting drugs and their antimalarial activity remains elusive. The manuscript addresses the biological function of PfFKBP35 and the antimalarial activity of FK506.
The authors combine conditional genome editing, proteomics and transcriptomics analysis to investigate the effects of FKBP35 depletion in P. falciparum. The work is very well performed and clearly described. The data provide conclusive evidence that FKBP35 is essential for P. falciparum blood stage growth. Conditional knockout of PfFKBP35 leads to a delayed death-like phenotype, associated with defects in ribosome maturation as detected by quantitative proteomics and stalling of protein synthesis in the parasite. The authors clearly demonstrate that FKBP35 is essential for parasite growth and that ribosome biogenesis is disrupted, but further insights into the pathway itself would be more convincing that this is a direct consequence rather than a secondary feature of parasite death.
The knockdown of PfFKBP35 has no phenotypic consequence, showing that very low amounts of FKBP35 are sufficient for parasite survival and growth. In the absence of quantification of the protein during the course of the experiments, it remains unclear whether the delayed death-like phenotype in the knockout is due to the delayed depletion of the protein or to a delayed consequence of early protein depletion. This limitation also impacts the interpretation of the drug assays.
The authors investigate the activity of FK506 on P. falciparum, and conclude that FK506 exerts its antimalarial effects independently of FKBP35, based on the observation that FK506 has the same activity on FKBP35 wild type and knock-out parasites, indicating that FK506 activity is independent of FKBP35 levels. Using cellular thermal shift assays, the authors confirm the interaction between FK506 and FKBP35, and further identify candidate proteins bound by the compound, albeit at lower affinity. Further work is needed to validate whether these putative targets contribute to the FKBP35-independent antimalarial activity of FK506.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, Jiamin Lin et al. investigated the potential positive feedback loop between ZEB2 and ACSL4, which regulates lipid metabolism and breast cancer metastasis. They reported a correlation between high expression of ZEB2 and ACSL4 and poor survival of breast cancer patients, and showed that depletion of ZEB2 or ACSL4 significantly reduced lipid droplets abundance and cell migration in vitro. The authors also claimed that ZEB2 activated ACSL4 expression by directly binding to its promoter, while ACSL4 in turn stabilized ZEB2 by blocking its ubiquitination. While the topic is interesting, there are several concerns with the study:
1. My concern regarding the absence of appropriate thresholds or False Discovery Rate (FDR) adjustments for the RNA-seq analysis has not been addressed, leading to incorrect thresholds and erroneous identification of significant signals.
2. In Figure 3B and C, it appears that the knockdown efficiency of ACSL4 is inadequate in these cells, which contradicts the Western blot results presented in Figure 2F.
3. Regarding Figure 6, the discovery of consensus binding sequences (CACCT) for ZEB2 alone is insufficient evidence to support the direct binding of ZEB2 to the ACSL4 promoter.
4. For Figure 7E, there are multiple bands present, and it appears that ZEB2-HA has been cropped, which should ideally be presented with unaltered raw data. Please provide the uncropped raw data.
5. In Figure 7C, the author claimed to have used 293T cells for the ubiquitin assay, which are not breast cancer cells. Moreover, the efficiency of over-expression differs between ZEB2 and ACSL4 in 293T cell lines. Performing the experiment in an unrelated cell line to justify an important interaction is not acceptable.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Tiemann et al. have undertaken an original study on the availability of molecular dynamics (MD) simulation datasets across the Internet. There is a widespread belief that extensive, well-curated MD datasets would enable the development of novel classes of AI models for structural biology. However, currently, there is no standard for sharing MD datasets. As generating MD datasets is energy-intensive, it is also important to facilitate the reuse of MD datasets to minimize energy consumption. Developing a universally accepted standard for depositing and curating MD datasets is a huge undertaking. The study by Tiemann et al. will be very valuable in informing policy developments toward this goal.
Strengths:
The study presents an original approach to addressing a growing concern in the field. It is clear that adopting a more collaborative approach could significantly enhance the impact of MD simulations in modern molecular sciences.
The timing of the work is appropriate, given the current interest in developing AI models for describing biomolecular dynamics.
Weaknesses:
The study primarily focuses on one major MD engine (GROMACS), although this limitation is not significant considering the proof-of-concept nature of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Khaitova and co-workers present here an analysis of centromere composition and function during elevated temperatures in the plant Arabidopsis. The work relates to the ongoing climate change during which spikes in high temperatures will be found. Hence, the paper addresses a timely subject.
The authors start by confirming earlier studies that high temperatures reduce the fertility of Arabidopsis plants. Interestingly, a hypomorphic mutant of the centromeric histone variant CENH3 (CENP-A), which was previously described by the authors, sensitizes plants to heat and results in a drop in viable pollen and silique length. The drop in fertility coincides with the formation of micronuclei in meiosis and an extension of meiotic progression as revealed by live cell imaging. Based on this finding, the authors then show that at high temperatures, the fluorescence intensity of a YFP:CENH3 declines in meiosis but remarkably not in the surrounding cells (tapetum cells). In addition, the amount of BMF1 (a Bub1 homolog and part of the spindle assembly checkpoint) also appears to decline on the kinetochores of meiocytes as judged by BMF1 reporter line. However, whether this is dependent on a decline of CENH3 or represents a separate pathway is not clear. Finally, the authors measure the duration of the spindle checkpoint and find that it is extended under high temperatures from which they conclude that the attachment of spindle fibers to kinetochores is compromised under heat.
Strengths:<br /> This is an interesting and important paper as it links centromere organization/function to heat stress in plants. A major conclusion of the authors is that weakened centromeres, presumably by heat, may be less effective in establishing productive interactions with spindle microtubules.
Weaknesses:<br /> The paper does not explain the molecular reason why CENH3 levels in meiocyctes are reduced or why the attachment of spindle fibers to kinetochore is less efficient at high versus low temperatures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Su et al propose the existence of two mechanisms repressing SBF activity during entry into meiosis in budding yeast. First, a decrease in Swi4 protein levels by a LUTI-dependent mechanism where Ime1 would act closing a negative feedback loop. Second, the sustained presence of Whi5 would contribute to maintaining SBF inhibited under sporulation conditions. The article is clearly written and the experimental approaches used are adequate to the aims of this work. The results obtained are in line with the conclusions reached by the authors but, in my view, they could also be explained by the existing literature and, hence, would not represent a major advance in the field of meiosis regulation.
Regarding the first mechanism, Fig 1 shows that Swi4 decreases very little after 1-2h in sporulation medium, whereas G1-cyclin expression is strongly repressed very rapidly under these conditions (panel D and work by others). This fact dampens the functional relevance of Swi4 downregulation as a causal agent of G1 cyclin repression. The authors use overexpression of Swi4 in Figs 2 and 3 to test the relevance of Swi4 downregulation but the pATG8-SWI4 construct produces levels much higher (4-5 fold) than the wild-type gene at time 0, which may likely introduce artifactual effects in the resulting observations. In addition, the LUTI-deficient SWI4 mutant does not cause any noticeable relief in CLN2 repression, arguing against the relevance of this mechanism in the repression of G1-cyclin transcription during entry into meiosis.
The authors propose a second mechanism where Whi5 would maintain SBF inactive under sporulation conditions. The role of Whi5 as a negative regulator of the SBF regulon is well known. On the other hand, the double WHI5-AA SWI4-dLUTI mutant does not upregulate CLN2, the G1 cyclin with the strongest negative effect on sporulation, raising serious doubts on the functional relevance of this backup mechanism during entry into meiosis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: The authors use the innovative CRISPRi method to uncover regulators of cell density and volume in neutrophils. The results show that cells require NHE activity during chemoattractant-driven cell migration. Before migration occurs, cells also undergo a rapid cell volume increase. These results indicate that water flux, driven by ion channels, appears to play a central role in neutrophil migration. The paper is very well written and clear. I suggest adding some discussion about the role of actin in the process, but this is not essential.
Strengths: The novel use of CRIPSPi to uncover cell density regulators is very novel. Some of the uncovered molecules were known before, e.g. discussed in Li & Sun, Frontiers in Cell and Developmental Biology, 2021. Others are more interesting, for example PI3K-gamma. The use of caged fMLP is also nice.
Weaknesses: One area of investigation that seems to be absent is mentioned in the introduction. I.e., actin is expected to play a role in regulating cell volume increase. Did the authors perform any experiments with LatA? What was seen there? Do cells still migrate with LatA, or is a different interplay seen? The role of PI3K is interesting, and maybe somewhat related to actin. But this may be a different line of inquiry for the future.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this work, Vezina et al. present Bactabolize, a rapid reconstruction tool for the generation of strain-specific metabolic models. Similar to other reconstruction pipelines such as CarveMe, Bactabolize builds a strain-specific draft reconstruction and subsequently gap-fills it. The model can afterwards be used to predict growth on carbon sources. The authors constructed a pan-model of the Klebsiella pneumoniae species complex (KpSC) and used it as input for Bactabolize to construct a genome-sale reconstruction of K. pneumoniae KPPR1. They compared the generated reconstruction with a reconstruction built through CarveMe as well as a manually curated reconstruction for the same strain. They then compared predictions of carbon, nitrogen, phosphor, and sulfur sources and found that the Bactabolize reconstruction had the overall highest accuracy. Finally, they built draft reconstructions for 10 clinical isolates of K. pneumoniae and evaluated their predictive performance. Overall, this is a useful tool, the data is well-presented, and the paper is well-written.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Chartampila et al. describe the effect of early-life choline supplementation on cognitive functions and epileptic activity in a mouse model of Alzheimer's disease. The cognitive abilities are assessed by the novel object recognition test and the novel object location test, performed in the same cohort of mice at 3 months and 6 months of age. Neuronal loss was tested using NeuN immunoreactivity, and neuronal hyperexcitability was examined using FosB and video-EEG recordings.
Strengths:
The study was designed as a 6-month follow-up, with repeated behavioral and EEG measurements through disease development, providing valuable and interesting findings on AD progression and the effect of early-life choline supplantation. Moreover, the behavioral data that suggest an adverse effect of low choline in WT mice are interesting and important beyond the context of AD.
Weaknesses:
1. The multiple headings and subheadings, focusing on the experimental method rather than the narrative, reduce the readability.<br /> 2. Quantification of NeuN and FosB in WT littermates is needed to demonstrate rescue of neuronal death and hyperexcitability by high choline supplementation and also to gain further insights into the adverse effect of low choline on the performance of WT mice in the behavioral test.<br /> 3. Quantification of the discrimination ratio of the novel object and novel location tests can facilitate the comparison between the different genotypes and diets.<br /> 4. The longitudinal analyses enable the performance of multi-level correlations between the discrimination ratio in NOR and NOL, NeuN and Fos levels, multiple EEG parameters, and premature death. Such analysis can potentially identify biomarkers associated with AD progression. These can be interesting in different choline supplementation, but also in the standard choline diet.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, authors have investigated the effects of TMEM127 depletion on RET regulation and function that could potentially contribute to PCC pathogenesis. They have demonstrated that the loss of TMEM127 leads to cell surface accumulation and constitutive activation of RET due to membrane organization, leading to reduced efficiency of endocytosis, decreased internalization of RET, and a global impairment of membrane trafficking. TMEM127 depletion has contributed to increased RET half-life, constitutive RET-mediated signaling, increased membrane protein diffusibility, impaired normal membrane transitions, and inappropriate accumulation of actively signaling RET molecules at the cell membrane. Collectively, these findings have shown that the mis-localized RET is the pathogenic mechanism in TMEM127-mutant pheochromocytoma.
Experimental design and mechanistic studies are thorough and sound. The methodological weakness lies in the lack of pheochromocytoma cell line utility to reproduce novel findings observed in generated cell lines. This may represent a significant challenge that could undermine the inferred value of these potentially paradigm-changing findings. 3-dimensional patient-derived pheochromocytoma organoid in vitro model and/or patient-derived organoid xenograft in vivo model may aid in reconciling these exciting new findings and factoring in that the pheochromocytoma is a hormonally active tumor.
Fundamentally, the authors have successfully achieved all proposed aims supported by their conclusions.
These findings carry potentially significant clinical impact and may offer new therapeutic venues in patients with pheochromocytoma.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors aim to understand why decision formation during behavioural tasks is distributed across multiple brain areas. They hypothesize that multiple areas are used in order to implement an information bottleneck (IB). Using neural activity recorded from monkey DLPFC and PMd performing a 2-AFC task, they show that DLPFC represents various task variables (decision, color, target configuration), while downstream PMd primarily represents decision information. Since decision information is the only information needed to make a decision, the authors point out that PMd has a minimal sufficient representation (as expected from an IB). They then train 3-area RNNs on the same task and show that activity in the first and third areas resemble the neural representations of DLPFC and PMd, respectively. In order to propose a mechanism, they analyse the RNN and find that area 3 ends up with primarily decision information because feedforward connections between areas primarily propagate decision information.
The paper addresses a deep, normative question, namely why task information is distributed across several areas.
Overall, it reads well and the analysis is well done and mostly correct (see below for some comments). My major problem with the paper is that I do not see that it actually provides an answer to the question posed (why is information distributed across areas?). I find that the core problem is that the information bottleneck method, which is evoked throughout the paper, is simply a generic compression method. Being a generic compressor, the IB does not make any statements about how a particular compression should be distributed across brain areas - see major points (1) and (2).
If I ignore the reference to the information bottleneck and the question of why pieces of information are distributed, I still see a more mechanistic study that proposes a neural mechanism of how decisions are formed, in the tradition of RNN-modelling of neural activity as in Mante et al 2013. Seen through this more limited sense, the present study succeeds at pointing out a good model-data match. I point out some suggestions for improvement below.
Major points<br /> (1) It seems to me that the author's use of the IB is based on the reasoning that deep neural networks form decisions by passing task information through a series of transformations/layers/areas and that these deep nets have been shown to implement an IB. Furthermore, these transformations are also loosely motivated by the data processing inequality.
However, assuming as a given that deep neural networks implement an IB does not mean that an IB can only be implemented through a deep neural network. In fact, IBs could be performed with a single transformation just as well. More formally, a task associates stimuli (X) with required responses (Y), and the IB principle states that X should be mapped to a representation Z, such that I(X;Z) is minimal and I(Y,Z) is maximal. Importantly, the form of the map Z=f(X) is not constrained by the IB. In other words, the IB does not impose that there needs to be a series of transformations. I therefore do not see how the IB by itself makes any statement about the distribution of information across various brain areas.
A related problem is that the authors really only evoke the IB to explain the representation in PMd: Fig 2 shows that PMd is almost only showing decision information, and thus one can call this a minimal sufficient representation of the decision (although ignoring substantial condition independent activity). However, there is no IB prediction about what the representation of DLPFC should look like. Consequently, there is no IB prediction about how information should be distributed across DLPFC and PMd.
(2) Now the authors could change their argument and state that what is really needed is an IB with the additional assumption that transformations go through a feedforward network. However, even in this case, I am not sure I understand the need for distributing information in this task. In fact, in both the data and the network model, there is a nice linear readout of the decision information in dPFC (data) or area 1 (network model). Accordingly, the decision readout could occur at this stage already, and there is absolutely no need to tag on another area (PMd, area 2+3).
Similarly, I noticed that the authors consider 2,3, and 4-area models, but they do not consider a 1-area model. It is not clear why the 1-area model is not considered. Given that e.g. Mante et al, 2013, manage to fit a 1-area model to a task of similar complexity, I would a priori assume that a 1-area RNN would do just as well in solving this task.
I think there are two more general problems with the author's approach. First, transformations or hierarchical representations are usually evoked to get information into the right format in a pure feedforward network. An RNN can be seen as an infinitely deep feedforward network, so even a single RNN has, at least in theory, and in contrast to feedforward layers, the power to do arbitrarily complex transformations. Second, the information coming into the network here (color + target) is a classical xor-task. While this task cannot be solved by a perceptron (=single neuron), it also is not that complex either, at least compared to, e.g., the task of distinguishing cats from dogs based on an incoming image in pixel format.
(3) I am convinced of the author's argument that the RNN reproduces key features of the neural data. However, there are some points where the analysis should be improved.
(a) It seems that dPCA was applied without regularization. Since dPCA can overfit the data, proper regularization is important, so that one can judge, e.g., whether the components of Fig.2g,h are significant, or whether the differences between DLPFC and PMd are significant.
(b) I would have assumed that the analyses performed on the neural data were identical to the ones performed on the RNN data. However, it looked to me like that was not the case. For instance, dPCA of the neural data is done by restretching randomly timed trials to a median trial. It seemed that this restretching was not performed on the RNN. Maybe that is just an oversight, but it should be clarified. Moreover, the decoding analyses used SVC for the neural data, but a neural-net-based approach for the RNN data. Why the differences?
(4) The RNN seems to fit the data quite nicely, so that is interesting. At the same time, the fit seems somewhat serendipitous, or at least, I did not get a good sense of what was needed to make the RNN fit the data. The authors did go to great lengths to fit various network models and turn several knobs on the fit. However, at least to me, there are a few (obvious) knobs that were not tested.
First, as already mentioned above, why not try to fit a single-area model? I would expect that a single area model could also learn the task - after all, that is what Mante et al did in their 2013 paper and the author's task does not seem any more complex than the task by Mante and colleagues.
Second, I noticed that the networks fitted are always feedforward-dominated. What happens when feedforward and feedback connections are on an equal footing? Do we still find that only the decision information propagates to the next area? Quite generally, when it comes to attenuating information that is fed into the network (e.g. color), then that is much easier done through feedforward connections (where it can be done in a single pass, through proper alignment or misalignment of the feedforward synapses) than through recurrent connections (where you need to actively cancel the incoming information). So it seems to me that the reason the attenuation occurs in the inter-area connections could simply be because the odds are a priori stacked against recurrent connections. In the real brain, of course, there is no clear evidence that feedforward connections dominate over feedback connections anatomically.
More generally, it would be useful to clarify what exactly is sufficient:
(a) the information distribution occurs in any RNN, i.e., also in one-area RNNs<br /> (b) the information distribution occurs when there are several, sparsely connected areas<br /> (c) the information distribution occurs when there are feedforward-dominated connections between areas
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Funabiki et al, performed a co-evolutionary analysis of Lsh/HELLS and CDCA7, two factors with links to DNA methylation pathways in mammals, amphibia and fish. The authors suggest that conserved roles for the two factors in DNA methylation maintenance pathways can be traced back to the last eukaryotic common ancestor. Overall, the findings are important and the results could be useful for researchers studying DNA methylation pathways in many different organisms.
-
Reviewer #1 (Public Review):
Funabiki et al, performed a co-evolutionary analysis of Lsh/HELLS and CDCA7, two factors with links to DNA methylation pathways in mammals, amphibia and fish. The authors suggest that conserved roles for the two factors in DNA methylation maintenance pathways can be traced back to the last eukaryotic common ancestor. Overall, the findings are important and the results could be useful for researchers studying DNA methylation pathways in many different organisms.
Comments on current version:
In the revised version of this manuscript the authors addressed all previously raised issues. I would like to thank them for that. The data is now clearly presented and interpreted and more experimental detail has been added. Thus, the manuscript is much improved and provides an interesting basis for experimental follow-up and further functional investigations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This paper focuses on the effects of a L114P mutation in the TALK-1 channel on islet function and diabetes. This mutation is clinically relevant and a cause of MODY diabetes. This work employs a mouse model with heterozygous and homozygous mutants. The homozygous mice are homozygous lethal from severe hyperglycemia. The work shows that the mutation increases K+ currents and inhibits insulin secretion. This is a very nice paper with mechanistic insight and clear clinical importance. It is generally well-written and the data is well-presented.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, the authors are developing a new protocol that aims at expanding pancreatic progenitors derived from human pluripotent stem cells under GMP-compliant conditions. The strategy is based on hypothesis-driven experiments that come from knowledge derived from pancreatic developmental biology.
The topic is of major interest in the view of the importance of amplifying human pancreatic progenitors (both for fundamental purposes and for future clinical applications). There is indeed currently a major lack of information on efficient conditions to reach this objective, despite major recurrent efforts by the scientific community.
Using their approach that combines stimulation of specific mitogenic pathways and inhibition of retinoic acid and specific branches of the TGF-beta and Wnt pathways, the authors claim to be able, in a highly robust and reproducible manner) to amplify in 10 passages the number of pancreatic progenitors (PP) by 2,000 folds, which is really an impressive breakthrough.
The work is globally well-performed and quite convincing. I have however some technical comments mainly related to the quantification of pancreatic progenitor amplification and to their differentiation into beta-like cells following amplification.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
This study provides insights into the early detection of malignancies with noninvasive methods. The study contained a large sample size with an external validation cohort, which raises the credibility and universality of this model. The new model achieved high levels of AUC in discriminating malignancies from healthy controls, as well as the ability to distinguish tumor of origin. Based on these findings, prospective studies are needed to further confirm its predictive capacity.
-
-
52.53.155.43 52.53.155.43
-
Reviewer #1 (Public Review):
Summary: The ciliary photoreceptor cells and its downstream neurons of larval annelid must be orchestrated in a specific pattern to promote downward swimming in response to long duration of UV exposure. The authors first conducted neuroanatomical examination of the circuit to identify NOS-expression neurons (INNOS) that are immediately downstream to the ciliary photoreceptor cells. The INNOS is activated by UV and produces NO. The NOS is required for UV avoidance by Platynereis larvae and neural dynamics of the photoreceptor cells and their downstream circuit. Following up the RNA-seq data with in situ hybridization experiments, the authors found that two unconventional guanylate cyclases, NIT-GC1 and NIT-GC2, are expressed and localized in different subcellular domain of the photoreceptor cells. Experiments using the culture cells and genetically encoded sensors demonstrated that NIT-GC1 can generate cGMP in response to nitric oxide. Finally, authors build a mathematical model that fit the live imaging data and used it to predict how the magnitude of the photoreceptor activation varied by intensity and duration of UV light.
Strengths: The authors conducted comprehensive interrogations of the UV avoidance pathway at the molecular and circuit levels, and constructed a mathematical model. The main conclusions are supported by layers of evidence from different assays.
Weaknesses: Statistics are missing in both figure legends and methods. The perturbations of genes and molecules were not cell-type-specific and therefore the observed behavioral defect could be attributed to the malfunction of the circuit elsewhere not examined in this study. I suggest adding more explanation about the functions of other NOS-expressing cells and conducting a control experiment to test behavioral response to a non-visual stimulus.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary<br /> In this manuscript, the authors generate an AAV-deliverable tool that generates action potentials in response to red light, but not blue light, when expressed in neurons. To do this, they screen some red light-excitatory/blue light-inhibitory opsin pairs to find ones that are spectrally and temporally matched. They first show that this works with Chrimson and GtACR2, however, they expand their search after finding that the tau-off (inactivation after light cessation) kinetics of these two opsins are not well-matched. They directly examine a small set of options based on a literature search and settle on a variant of red light-excitatory Chrimson and blue light-inhibitory ZipACR. To more closely match the kinetics of this pair, the authors create a structure homology model of the ZipACR retinal binding pocket and use this to guide the generation of a small mutagenesis panel, leading to a more optimized ZipACR mutant. They then show that a bicistronically expressed fusion arrangement of these opsins, plus some functional peptides, can drive action potentials up to 20hz with red light and does not do so with blue light, in hippocampal cells transduced by AAV. They also show function in vivo, in a mouse, using a physiological readout. They conclude that their new tool may be useful for complex experimental designs requiring multiple optical channels for write-in/read-out.
The major advantage claimed by the authors over existing tools is the temporal time-locking of their inhibitory opsin - this is driven by the contrast between the tau-off kinetics of their ZipACR variant compared to gtACR2, which is used by the leading competitor tool (BiPOLES).
Big thoughts<br /> While the authors were carefully thoughtful about the potential influence of temporal kinetics on the efficiency of a tool such as this one, there were no experiments conducted that made use of the unique properties of this molecular strategy. To understand why they embarked on this engineering program, I was required to put on my neuroscientist hat and contemplate this question myself:
First, experimental designs where I require multiple optical channels of control. This appears to be aligned with the author's thoughts, as they state, correctly, that opsins utilizing retinal as a light-sensing chromophore are universally activated by blue light (the so-called 'blue shoulder'). Therefore, their tool may be useful for stimulating multiple populations using a blue excitatory opsin in neuron A and their tool for red excitation of neuron B - or, in the author's own words, "A potential solution to the problem of cross-talk...". Yet, there are no data presented that showcases their new tool for this purpose (e.g. Vierock, Johannes, et al. "BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons." Nature Communications 12.1 (2021): 4527. Figure 4f-I; 6). The same set-up could be imagined for green GECI (or equivalent) imaging of cells in the same volume that their tool is being used in - for instance, interleaving red stimulation light and blue imaging light, (perhaps) without the typical concern of imaging light bleed-through activating the opsin itself.
Second, for high-frequency temporal control over both excitation and inhibition in the same neuron. The red light turns the cell on, and blue light turns the cell off (see, for instance, Zhang, Feng, et al. "Multimodal fast optical interrogation of neural circuitry." Nature 446.7136 (2007): 633-639. Figure 2; Vierock as above, Figure 4a,b). Again, here the authors are long on theory ("The new system...can drive time-locked high-frequency action potentials in response to red pulses") and short on data. While they do show that red light = excitation and blue light = inhibition, they neither show 1) all-optical on/off modulation of the same cell; nor 2) high-frequency inhibition or excitation (max stim rate of 20hz, which is the same as the BiPOLES paper used for their LC stimulation paradigm; Vierock, as above, Figure 7a-d).
Despite these major shortcomings, the further development and characterization of tandem opsins, such as this one, is of interest to the community. There is ongoing work by the BiPOLES team to create new iterations (e.g. Wahid, J., et al. "P-15 BiPOLES2 is a bidirectional optogenetic tool with a narrow activation spectrum and low red-light excitability." Clinical Neurophysiology 148 (2023): e16.). To make the case that the tool described in this manuscript is worth the effort that the authors are requesting the neuroscience community invest in trialing it in their own hands, they must revise the manuscript to show that their approach is both 1) different in some way when compared to BiPOLES (it is my understanding that they did not do this, as per the supplementary alignment of the BiPOLES sequence and the sequence of the BiPOLES-like construct that they did test) and 2) that the properties that the investigators specifically tailored their construct to have confer some sort of experimental advantage when compared to the existing standard.
There are a number of additional concerns and clarifications that will strengthen the manuscript that are communicated directly to the authors through this peer-review process.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: By elevating Ca influx and inducing PTP, the authors have maximized the release probability. In this condition, the release probability is nearly one. Under such a condition, the release site can release another vesicle in a short time. By analyzing mean, variance, and covariance, the authors propose a release model that each release site contains a docking site and a replacement site. They excluded the LS-TS model (Neher and Brose) based on a discrepancy between the model and the data (mean and covariance).
Strengths: The authors have used minimal stimulation and modeling nicely to look into the stochastic nature of release sites with good resolution. This cannot be done at other synapses. Overall conclusions are reasonable and convincing.
Weaknesses: The interpretation is somewhat model-dependent, and it is unclear if the interpretation is unique. For example, it is unclear if the heterogeneous release probability among sites, silent sites, can explain the results. N estimates out of variance-mean analysis for example may be limited by the availability of postsynaptic receptors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study explores the relationship between the most common spatial patterns of neurodegeneration and the density of different cell types in the cerebral cortex. The authors present data showing that atrophy patterns in Alzheimer's disease and Frontotemporal dementia strongly associate with the abundance of astrocytes and microglia. While the results here may be considered preliminary, this work takes a step in the right direction by emphasizing the critical role that cells other than neurons play in the degeneration patterns observable with neuroimaging.
I have two main comments:
1) The authors make an important innovation by applying the cellular deconvolution approach to create brain-wide maps of cellular abundance, and then comparing these maps to atrophy patterns from the most common neurodegenerative diseases and dementia syndromes.
2) I would have preferred to see more figures with brain images showing the cellular abundance maps and the atrophy maps. Without being able to see these figures, it's difficult for the reader to 1) validate the atrophy patterns or 2) gain intuition about how the cellular abundance maps vary across the brain. The images in Figure 1C give a small preview, but I'd like to see these maps in their entirety on the brain surface or axial image slices.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In their manuscript, Chim et al. identify an association of rare loss-of-function (LOF) SLC39A5 variants with increased circulating zink levels and decreased T2D risk and complement these observations with a notably comprehensive analysis of metabolically challenged (genetically or diet-induced) Slc39a5-/- mice that demonstrate enhanced hepatic zinc levels, improved liver function, reduced hyperglycemia, partial resistance to NASH induction, and likely involvement of AMPK and AKT signaling.
Strengths:<br /> Overall, the work appears well designed, executed, clearly presented (although navigating the 16 supplementary figures and 6 supplementary tables can be a bit of a challenge), and supports the authors' main conclusions.
Weaknesses:<br /> Nevertheless, two major concerns pertain to the characterization of LOF SLC39A5 variants as well as the seeming absence of a "pancreatic phenotype" in Slc39a5-/- mice that contrasts with earlier reports including impaired glucose tolerance and glucose-stimulated insulin secretion in mice lacking Slc39a5 specifically in beta cells; these concerns should be addressed experimentally and by more extensive discussion of previously published Slc39a5-/- mouse models, respectively.
-
-
elifesciences.org elifesciences.org
-
RRID:ZDB-ALT-141218-1
DOI: 10.7554/eLife.86670
Resource: (ZFIN Cat# ZDB-ALT-090324-1,RRID:ZFIN_ZDB-ALT-090324-1)
Curator: @evieth
SciCrunch record: RRID:ZFIN_ZDB-ALT-090324-1
-
RRID:ZDB-ALT-090324-1
DOI: 10.7554/eLife.86670
Resource: (ZFIN Cat# ZDB-ALT-090324-1,RRID:ZFIN_ZDB-ALT-090324-1)
Curator: @evieth
SciCrunch record: RRID:ZFIN_ZDB-ALT-090324-1
-
RRID:ZDB-ALT-100402-1
DOI: 10.7554/eLife.86670
Resource: (ZFIN Cat# ZDB-ALT-100402-1,RRID:ZFIN_ZDB-ALT-100402-1)
Curator: @evieth
SciCrunch record: RRID:ZFIN_ZDB-ALT-100402-1
-
-
en.wikipedia.org en.wikipedia.org
-
protect bodily autonomy
...as long as one disregards the body of the unborn human being. 🙄
-
whether to continue one's own pregnancy
"Whether to murder your own defenseless offspring"
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Medwig-Kinney et al perform the latest in a series of studies unraveling the genetic and physical mechanisms involved in the formation of C. elegans gonad. They have paid particular attention to how two different cell fates are specified, the ventral uterine (VU) or anchor cell (AC), and the behaviors of these two cell types. This cell fate choice is interesting because the anchor cell performs an invasive migration through a basement membrane. A process that is required for correct C. elegans gonad formation and that can act as a model for other invasive processes, such as malignant cancer progression. The authors have identified a range of genes that are involved in the AC/VC fate choice, and that impart the AC cell with its ability to arrest the cell cycle and perform an invasive migration. Taking advantage of a range of genetic tools, the authors show that the transcription factor NHR-63 is strongly expressed in the AC cell. The authors also present evidence that NHR-63 is could function as a transcriptional repressor through interactions with a Groucho and also a TCF homolog, and they also suggest that these proteins are forming repressive condensates through phase separation.
The authors have produced an extensive dataset to support their two primary claims: that NHR-67 expression levels determine whether a cell is invasive or proliferative, and also that NHR-67 forms a repressive complex through interactions with other proteins. The authors should be commended for clearly and honestly conveying what is already known in this area of study with exhaustive references. Future data unambiguously linking the formation and dissolution of NHR-67 condensates with the activation of downstream genes that NHR-67 is actively repressing would be of great interest to the transcriptional research community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this work, the authors investigate an important question - under what circumstances should a recurrent neural network optimised to produce motor control signals receive preparatory input before the initiation of a movement, even though it is possible to use inputs to drive activity just-in-time for movement?
This question is important because many studies across animal models have shown that preparatory activity is widespread in neural populations close to motor output (e.g. motor cortex / M1), but it isn't clear under what circumstances this preparation is advantageous for performance, especially since preparation could cause unwanted motor output during a delay.
They show that networks optimised under reasonable constraints (speed, accuracy, lack of pre-movement) will use input to seed the state of the network before movement and that these inputs reduce the need for ongoing input during the movement. By examining many different parameters in simplified models they identify a strong connection between the structure of the network and the amount of preparation that is optimal for control - namely, that preparation has the most value when nullspaces are highly observable relative to the readout dimension and when the controllability of readout dimensions is low. They conclude by showing that their model predictions are consistent with the observation in monkey motor cortex that even when a sequence of two movements is known in advance, preparatory activity only arises shortly before movement initiation.
Overall, this study provides valuable theoretical insight into the role of preparation in neural populations that generate motor output, and by treating input to motor cortex as a signal that is optimised directly this work is able to sidestep many of the problematic questions relating to estimating the potential inputs to motor cortex.
However, there are a number of issues regarding framing and technical limitations that would be useful for readers to keep in mind when interpreting the conclusions.
1) It's important to keep in mind that this work involves simplified models of the motor system, and often the terminology for 'motor cortex' and 'models of motor cortex' are used interchangeably, which may mislead some readers. Similarly, the introduction fails in many cases to state what model system is being discussed (e.g. line 14, line 29, line 31), even though these span humans, monkeys, mice, and simulations, which all differ in crucial ways that cannot always be lumped together.<br /> 2) At multiple points in the manuscript thalamic inputs during movement (in mice) is used as a motivation for examining the role of preparation. However, there are other more salient motivations, such as delayed sensory feedback from the limb and vision arriving in motor cortex, as well as ongoing control signals from other areas such as premotor cortex.<br /> 3) Describing the main task in this work as a delayed reaching task is not justified without caveats (by the authors' own admission: line 687), since each network is optimised with a fixed delay period length. Although this is mentioned to the reader, it's not clear enough that the dynamics observed during the delay period will not resemble those in the motor cortex for typical delayed reaching tasks.<br /> 4) A number of simplifications in the model may have crucial consequences for interpretation.<br /> a) Even following the toy examples in Figure 4, all the models in Figure 5 are linear, which may limit the generalisability of the findings.<br /> b) Crucially, there is no delayed sensory feedback in the model from the plant. Although this simplification is in some ways a strength, this decision allows networks to avoid having to deal with delayed feedback, which is a known component of closed-loop motor control and of motor cortex inputs and will have a large impact on the control policy.<br /> 5) A key feature determining the usefulness of preparation is the direction of the readout dimension. However, all readouts had a similar structure (random gaussian initialization). Therefore, it would be useful to have more discussion regarding how the structure of the output connectivity would affect preparation, since the motor cortex certainly does not follow this output scheme.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors aimed to develop a whole-brain multivariate pattern predicting decisions to trust and to use this pattern to assess the construct validity of the concept of trust. To this end, they used machine learning to develop and validate a whole-brain pattern capable of predicting decisions to trust in three previously published fMRI datasets in which participants played an economic trust game. They then assessed how this pattern was expressed in several other published fMRI datasets operationalizing various psychological concepts. They observed that the trust pattern could discriminate between risky or safe economic decisions and different emotional states but could not discriminate between several other concepts such as reward/losses, famous/unfamiliar face perception, etc. Spatial similarity analyses across datasets showed converging results.
This study adopts a rigorous analytical approach, examining fMRI data from thousands of participants spanning fifteen datasets to investigate the relationship between the multivariate pattern of trust and other psychological concepts. Researchers interested in the concept of trust will find this work valuable. More importantly, it exemplifies the potential of using brain data to explore the construct validity of psychological concepts through this methodological approach.
Despite the strengths of this study, there are several points that, in my view, need further attention:
1. The trust pattern developed and validated by the authors is based on one type of task, the economic trust game. This means that the multivariate trust pattern developed by the authors is heavily dependent on how trust is specifically defined and operationalized within this task, which may limit its generalizability. Without evidence that the model generalizes to other operationalizations of trust, the authors should interpret their results more conservatively. Unless additional evidence is given, this should be presented as a pattern of the "decision to trust in an economic context".
2. In datasets 1-1 and 1-2, trust is operationalized as a form of social gambling, where participants choose to share money (trust) with someone else, hoping to triple their investment but risk losing it all, with the alternative being to keep the money (distrust). However, these datasets also include non-social control conditions (the lottery condition in Fareri et al., 2012, and the computer condition in Fareri et al., 2015), which are not discussed in this paper. Evaluating how the trust model behaves in these control conditions seems crucial, as they provide the closest comparison to similar tasks that exclude the trust component. If the trust model is not specific to social decisions in the original datasets (i.e., it cannot distinguish between gambling and not gambling), this significant limitation should be addressed and discussed.
3. The analytical strategy used to establish convergent and discriminant validity is based on the significance of the average group accuracy of forced-choice tests to assess the capacity of the model to discriminate between different concepts (e.g. rewards vs. loss, safety vs. risk). The model is assumed to be specific to trust when the accuracy is not significantly different from chance and related to the other construct when the accuracy is significantly above chance. However, the absence of an effect is related to the power of the test, and in several cases, the sample sizes were relatively small. The use of one-tailed tests also exacerbates this issue since only effects in the hypothesized directions can be significant. These analyses could be improved by adopting a different approach to evaluate support for the null effect, by setting a higher bar for what is considered a generalization of the model, or by interpreting the results more carefully to recognize that lack of evidence isn't necessarily evidence of absence.
-
-
psyarxiv.com psyarxiv.com
-
Reviewer #1 (Public Review):
It has been shown that there are relationships between a transdiagnostic construct of anxious-depression, and average confidence rating in a perceptual decision task. This study sought to investigate these results, which have been replicated several times but only in cross-sectional studies. This work applies a perceptual decision-making task with confidence ratings and a transdiagnostic psychometric questionnaire battery to participants before and after an iCBT course. The iCBT course reduced AD scores in participants, and their mean confidence ratings increased without a change in performance. Participants with larger AD changes had larger confidence changes. These results were also shown in a separate smaller group receiving antidepressant medication. A similar sized control group with no intervention did not show changes.
The major strength of the study is the elegant and well-powered data set. Longitudinal data on this scale is very difficult to collect, especially with patient cohorts, so this represents an exciting breakthrough. Analysis is straightforward and clearly presented. No multiple comparison correction is applied despite many different tests. While in general I am not convinced of the argument in the citation provided to justify this, I think in this case the key results are not borderline (p<0.001) and many of the key effects are replications, so there are not so many novel/exploratory hypothesis and in my opinion the results are convincing and robust as they are. The supplemental material is a comprehensive description of the data set, which is a useful resource.
The authors achieved their aims, and the results clearly support the conclusion that the AD and mean confidence in a perceptual task covary longitudinally.
I think this provides an important impact to the project of computational psychiatry, specifically, it shows the relationship between transdiagnostic symptom dimensions and behaviour is meaningful within as well as across individuals.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Secondary cell walls support vascular plants and conduct water throughout the plant body, but are also important resources for lignocellulosic feedstocks. Secondary cell wall synthesis is under complex transcriptional control, presumably because it must only be initiated after cell growth is complete. Here, the authors found that two Musashi-type RNA-binding proteins, MSIL2 and MSIL4 are redundantly required for secondary cell wall development in Arabidopsis. The plant phenotypes could be complemented by the wild-type version of either protein, but not by a MSIL4 version that carries mutations in the conserved RNA-binding domains, and the authors localized MSIL2 & 4 to stress granules, implicating the RNA-binding function of MSIL4 in the cell wall phenotype. Upon closer inspection, the secondary cell wall phenotypes included changes in vasculature morphology, and minor changes to lignin and hemicellulose (glucuronoxylan). While there were no changes to likely cell wall target genes in the transcriptome of msil2msil4 plants, proteomics experiments found glucuronoxylan biosynthesis components were upregulated in the mutants, and they detected an increase in substituted xylan via several methods. Finally, they documented MSIL4 binding to RNA encoding one of these targets, suggesting that MSIL2 and MSIL4 act to post-transcriptionally regulate glucuronoxylan modification. Altogether, this is a new mechanism by which cell wall composition could be regulated.
Overall, the manuscript is well-written, the data are generally high-quality, and the authors typically use several independent methods to support each claim. However, several important questions remain unanswered by this work in its current state and the model presented in Figure 7 is quite speculative. For example, the link between the striking plant phenotype and GXM misregulation is unclear since GXM overexpression doesn't alter plant phenotypes or lignin content (Yuan et al 2014 Plant Science), so misregulation of GXMs in msil2msil4 mutants clearly is not the whole story. It also remains to be determined why one particular secondary cell wall synthesis enzyme is regulated likely post-transcriptionally, while so much of the pathway is regulated at the transcriptional level. There are likely other targets for MSIL2- and MSIL4-mediated regulation since it seems that MSIL2 and MSIL4 are expressed in tissues that are not synthesizing secondary cell walls.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Authors propose mathematical methods for inferring evolutionary parameters of interest from bulk/single cell sequencing data in healthy tissue and hematopoiesis. In general, the introduction is well-written and adequately references the relevant and important previous literature and findings in this field (e.g. the power laws for well-mixed exponentially growing populations). The authors consider 3 phases of human development: early development, growth and maintenance, and mature phase. In particular, time-dependent mutation rates in Figure 2d is an intriguing and strong result, and the process underlying Figures 3 and 4 are generally well-explained and convincing.
Notes & suggestions:<br /> 1. The explanation of Figure 2 in Lines 101 - 111 should be expanded for clarity. First, is Figure 2a derived from stochastic simulation (line 101 suggests) or some theoretical analysis? Second, the gradual transition from f-2 to f-1 is appreciated, but the shape of the intermediates is not addressed in detail. The power laws are straight lines, and the simulations provide curved lines -- please expand in what range (low or high frequency variants) the power law approximations apply.
Additionally, I do not understand the claim in line 108, that the transition is fast for low frequency variants, as the low frequency (on the left of the graph) lines are all close together, whereas the high frequency lines are far apart.
It would be helpful to reiterate in this paragraph that these power laws are derived based on exponentially growing populations and are expected to break down under homeostatic conditions.
2. The sample vs population (blue vs orange) in Figure 3 is under-explained. How is it that the mutational burden and inferred mutation rate in A and B roughly match, but the VAF distributions in C are so different? How was the sampled set chosen? Perhaps this is an unimportant distinction based on the particular sample set, but the divergence of the two in C may serve as a distraction, here.
3. The comparison of results herein to claims by Mitchell (ref. 12) are quite important results within the paper. I appreciate the note in the final paragraph of the discussion, and I suggest adding a sentence referencing the result noted in line 248-249 to the abstract, as well.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The manuscript describes a study in which younger, normal-hearing adults listened to two concurrent speech streams (audio-visual presentation) while magnetoencephalography (MEG) was recorded. They were asked to attend to one and ignore the other speech stream. Speech materials were processed using natural language processing (NLP) model approaches to categorize speech chunks of about 3.5 s duration as being of either high or low probability based on topic modeling. MEG results show that decoding performance (reconstruction of speech) was high for the high-probability speech chunks under both the attend and ignore conditions, suggesting that semantic information in the unattended speech was still processed. The conclusions of this paper are mostly well supported by the data.
Strengths:<br /> 1) The authors use sophisticated analyses using natural language processing models - that are beyond the state-of-the-art - to make inferences about semantic speech processing in the brain. The analytic methods are well described, enabling readers to possibly implement the approach for their own analyses.
2) The study shows that highly salient semantic information of speech is processed in the brain even when a listener attends to something different. The work has implications for selective attention models that are concerned with how individuals process speech.
Weaknesses:<br /> 1) The title of the manuscript may be a bit misleading: "Get the gist of the story: Neural map of topic keywords in multi-speaker environment". The study was not about the gist of the story but about the gist of speech chunks of about 3.5 s. The study shows important evidence that neural activity is sensitive to the gist of short speech segments, even in unattended speech, but the gist of the story is a yet more abstract level that cannot be reduced to the gist of short speech chunks.
2) The calculations of t-values for the spatial maps showing significant clusters were non-standard, which makes interpreting the magnitude of the t-values difficult. Better motivation for why the specific approach was chosen would be important, or perhaps replacing it with a more standard approach. It further appears that the region of interest analyses were carried out without multiple comparison corrections, possibly suggesting a note of caution about some of the source-localization results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This is a clear account of some interesting work. The experiments and analyses seem well done and the data are useful. It is nice to see that VSDI results square well with those from prior extracellular recordings. But the work may be less original than the authors propose, and their overall framing strikes me as odd. Some additional clarifications could make the contribution more clear.
My reading is that this is primarily a study of surround suppression with results that follow pretty directly from what we already know from that literature, and although they engage with some of the literature they do not directly mention surround suppression in the text. Their major effect - what they repeatedly describe as a "paradoxical" result in which the responses initially show a stronger response to matched targets and backgrounds and then reverse - seems to pretty clearly match the expected outcome of a stimulus that initially evokes additional excitation due to increased center contrast followed by slightly delayed surround suppression tuned to the same peak orientation. Their dynamics result seems entirely consistent with previous work, e.g. Henry et al 2020, particularly their Fig. 3 https://elifesciences.org/articles/54264, so it seems like a major oversight to not engage with that work at all, and to explain what exactly is new here.
- In the discussion (lines 315-316), they state "in order to account for the reduced neural sensitivity with target-background similarity in the second phase of the response, the divisive normalization signal has to be orientation selective." I wonder whether they observed this in their modeling. That is, how robust were the normalization model results to the values of sigma_e and sigma_n? It would be useful to know how critical their various model parameters were for replicating the experimental effects, rather than just showing that a good account is possible.
- The majority of their target/background contrast conditions were collected only in one animal. This is a minor limitation for work of this kind, but it might be an issue for some.
- The authors point out (line 193-195) that "Because the first phase of the response is shorter than the second phase, when V1 response is integrated over both phases, the overall response is positively correlated with the behavioral masking effect." I wonder if this could be explored a bit more at the behavioral level - i.e. does the "similarity masking" they are trying to explain show sensitivity to presentation time?
- From Fig. 3 it looks like the imaging ROI may include some opercular V2. If so, it's plausible that something about the retinotopic or columnar windowing they used in analysis may remove V2 signals, but they don't comment. Maybe they could tell us how they ensured they only included V1?
- In the discussion (lines 278-283) they say "The positive correlation between the neural and behavioral masking effects occurred earlier and was more robust at the columnar scale than at the retinotopic scale, suggesting that behavioral performance in our task is dominated by columnar scale signals in the second phase of the response. To the best of our knowledge, this is the first demonstration of such decoupling between V1 responses at the retinotopic and columnar scales, and the first demonstration that columnar scale signals are a better predictor of behavioral performance in a detection task." I am having trouble finding where exactly they demonstrate this in the results. Is this just by comparison of Figs. 4E,K and 5E,K? I may just be missing something here, but the argument needs to be made more clearly since much of their claim to originality rests on it.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript by Leibinger et al describes their results from testing an interesting hypothesis that microtubule detyrosination inhibits axon regeneration and its inhibitor parthenolide could facilitate axon regeneration and perhaps functional recovery. Overall, the results from in vitro studies are largely well performed. However, the in vivo data are less convincing.
Interpretation of the findings in this study are limited by several gaps:<br /> 1. It is unclear whether microtubule detyrosination a primary effect of hIL-6 and PTEN deletion or secondary to the increased axon growth?
2. Is there any direct evidence for Akt and/or JAK/Stat3 to promote microtubule detyrosination?
3. What is the impact of parthenolide on cell soma of neurons and other cell types?
4. Direct evidence that parthenolide augments PTEN deletion in optic nerve or spinal cord is not provided.
5. Serotonergic neurotoxin DHT ablates both regenerating and non-regenerating serotonergic axons, which makes spinal cord findings it difficult to interpret.
6. DMAPT was given by i.p. injection. What happens to microtubule detyrosination in other cells within and outside of CNS?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In the manuscript entitled "A theory of hippocampal theta correlations", the authors propose a new mechanism for phase precession and theta-time scale generation, as well as their interpretation in terms of navigation and neural coding. The authors propose the existence of extrinsic and intrinsic sequences during exploration, which may have complementary functions. These two types of sequences depend on external input and network interactions, but differ on the extent to which they depend on movement direction. Moreover, the authors propose a novel interpretation for intrinsic sequences, namely to signal a landmark cue that is independent of direction of traversal. Finally, a readout neuron can be trained to distinguish extrinsic from intrinsic sequences.
The study puts forward novel computational ideas related to neural coding, partly based on previous work from the authors, including published (Leibold, 2020, Yiu et al., 2022) and unpublished (Ahmedi et al., 2022. bioRxiv) work. The manuscript will contribute to the understanding of the mechanisms behind phase precession, as well as to how we interpret hippocampal temporal coding for navigation and memory.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors present a study of visuo-motor coupling primarily using wide-field calcium imaging to measure activity across the dorsal visual cortex. They used different mouse lines or systemically injected viral vectors to allow imaging of calcium activity from specific cell-types with a particular focus on a mouse-line that expresses GCaMP in layer 5 IT (intratelencephalic) neurons. They examined the question of how the neural response to predictable visual input, as a consequence of self-motion, differed from responses to unpredictable input. They identify layer 5 IT cells as having a different response pattern to other cell-types/layers in that they show differences in their response to closed-loop (i.e. predictable) vs open-loop (i.e. unpredictable) stimulation whereas other cell-types showed similar activity patterns between these two conditions. Surprisingly, they find that presentation of a visual grating actually decreases the responses of L5 IT cells in V1. They interpret their results within a predictive coding framework that the last author has previously proposed. The response pattern of the L5 IT cells leads them to propose that these cells may act as 'internal representation' neurons that carry a representation of the brain's model of its environment. Though this is rather speculative. They subsequently examine the responses of these cells to anti-psychotic drugs (e.g. clozapine) with the reasoning that a leading theory of schizophrenia is a disturbance of the brain's internal model and/or a failure to correctly predict the sensory consequences of self-movement. They find that anti-psychotic drugs strongly enhance responses of L5 IT cells to locomotion while having little effect on other cell-types. Finally, they suggest that anti-psychotics reduce long-range correlations between (predominantly) L5 cells and reduce the propagation of prediction errors to higher visual areas and suggest this maybe a mechanism by which these drugs reduce hallucinations/psychosis.
This is a large study containing a screening of many mouse-lines/expression profiles using wide-field calcium imaging. Wide-field imaging has its caveats, including a broad point-spread function of the signal and susceptibility to hemodynamic artifacts, which can make interpretation of results difficult. The authors acknowledge these problems and directly address the hemodynamic occlusion problem. It was reassuring to see supplementary 2-photon imaging of soma to complement this data-set, even though this is rather briefly described in the paper. Overall the paper's strengths are its identification of a very different response profile in the L5 IT cells compared other layers/cell-types which suggests an important role for these cells in handling integration of self-motion generated sensory predictions with sensory input. The interpretation of the responses to anti-psychotic drugs is more speculative but the result appears robust and provides an interesting basis for further studies of this effect with more specific recording techniques and possibly behavioral measures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Bilgic et al aim to identify the progenitor types (and their specific progeny) that underlie the expanded nature of gyrencephalic brains. To do this, they take a comparative scRNAseq (single cell transcriptomics) approach between neurodevelopment of the gyrencephalic ferret, and previously published primary human brain and organoid data.
They first improve gene annotations of the ferret genome and then collect a time series of scRNAseq data of 6 stages of the developing ferret brain spanning both embryonic and post-natal development. Among the various cell types they identify are a small proportion of truncated radial glial cells (tRGs), a population known to be enriched in humans and macaques that emerges late in neurogenesis as the RGC scaffold splits into an oRGC that contact the pial surface and a tRG that contacts the ventricular surface. They find that the tRGs consist of three distinct subpopulations two of which are committed to ependymal and astroglial fates.
By integrating these data with publicly available data of developing human brains and human brain organoids they make some important observations. Human and ferret tRGs have very similar transcriptional states, suggesting that the human tRGs too give rise to ependymal and astroglial fates. They also find that the current culture conditions of human brain organoids seem to lack tRGs, something that will need to be addressed if they are to be used to study tRGs. While the primary human data set did contain tRGs, the stage or the region sampled were likely not appropriate, and therefore, the number of cells they could retrieve was low.
The authors have spent considerable efforts in improving gene modeling of the ferret genome, which will be important for the field. They've generated valuable time series data for the developing ferret brain, and have proposed the lineal progeny for the tRGs in the human brain. Whether tRGs actually do give rise to the ependymal and astrogial fates needs to be validated in future studies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In this work, the authors are trying to satisfy a real need in MR safety, when concerns can arise about the thermal increase due to metallic materials in patients carrying orthopedic implants. The "MR conditional" labeling of the implant obtained by ASTM in-vitro tests may help to plan the MR scan, but it is normally limited to a single specific MR sequence and a B0 value, and it is not always available. The adoption of an in-silico simulation testbed overcomes this limitation, providing a fast and reliable prediction of temperature increase from RF, in real-life scan conditions on human-like digital models. The FDA is pushing this approach.
Strengths:<br /> The presented in-silico testbed looks valuable and validated. It is based on the widely available Visible Human Project (VHP) datasets, and the testbed is available online. The approval of the testbed by the FDA as a medical device development tool (MDDT) is a good premise for the large-scale adoption of this kind of solution.
Weaknesses:<br /> There are a couple of limitations in the study that must be clearly highlighted to the readers.
While the RF-related heating is very well modeled, the gradients-related heating is out of the scope of this paper and not considered. Readers must be warned that RF causes only a part of the heating, and literature is reporting cases where also gradient switching can contribute, as correctly mentioned in this work. A cautious attitude should consider this as a significant limitation of the study.
Moreover, the way the implant is embedded in the VHP model is shortly documented in the materials and methods and mostly focuses on implant registration on bone tissue. It is not clear how to manage the empty space and the soft tissue stretching/reshaping generated by the simulated surgery (for example, by the cut of the femoral head in total hip arthroplasty). It is reported by literature that the level of accuracy in the simulated surgery can impact in some cases (RF vs. gradients heating, massive vs. thin or elongated implants) on temperature predictions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors investigate the roles of ACOT12/8 in the production of acetate by the liver. They observe that acetate concentration parallels ketone concentrations during fasting and T1DM. They show that acetate is produced from fatty acids in hepatocytes, but though described as a novel "ketone body", this acetate is not a product of ketogenesis or acetoacetate. They also provide serum acetate data from human subjects who were classified as either "healthy" or "diabetic,". These subjects are noted as T2DM patients, but there is no other characterization or description, making it difficult to ascertain the context in which they were studied or their relevance to the mouse studies. Although the function of ACOT12/8 is reported in the literature, they are not widely studied, and there also remains surprising uncertainties regarding the mechanism of acetate production by the liver. In this regard, the manuscript provides some important insight. The authors use ShACOT12/8 and ACOT12/8 knockout mice to demonstrate that these acetyl-CoA hydrolases are largely necessary for acetate production. Using a 3H-palmitate assay, the authors then find that loss of these ACOTs inhibit fatty acid oxidation and propose that the mechanism involves scavenging CoA, analogous to the canonical role of ketogenesis. The idea is plausible but not proven. A related finding is that loss of these ACOTs inhibit ketogenesis, which the authors attribute to the loss of function of HMGC2S, partially through acetylation. These mechanisms suffer some limitations based on the cytosolic and mitochondrial compartmentation of the two processes, but the observations appear sound. Interestingly, the loss of the ACOTs have a more profound effect on lowering ketones than acetate, which may have parallel effects but they are not investigated. Finally, the authors try to demonstrate that hepatic ACOT-mediated acetate production is necessary for normal motor function in STZ treated mice, ostensibly as compensation for impaired glucose utilization by the CNS. Injections of 13C acetate and 13C enrichment in downstream metabolites of brain are used to support the importance of acetate metabolism, but the experiment was not performed in loss of function models. In addition, the resulting 13C enrichment data is reported generically as "relative intensity" without further elaboration on how this data was generated and should not be taken at face value by the reader. Conceptually, one may also be skeptical of the rather dramatic loss of motor function in the context of a relatively minor circulating nutrient. Nevertheless, this finding may be important if more supporting evidence with proper controls for ketone concentrations can be provided. Overall, there are important data in the manuscript, but the reader may find it difficult to navigate the 20+ figure panels. The most important findings are that ACOT12/8 are critical for hepatic acetate production in mice, which will be helpful for the field, but the ramifications require more rigorous investigation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors aimed to establish a cell culture system to investigate muscle tissue development and homeostasis. They successfully developed a complex 3D cell model and conducted a comprehensive molecular and functional characterization. This approach represents a critical initial step towards using human cells, rather than animals, to study muscular disorders in vitro. Although the current protocol is time-consuming and the fetal cell model may not be mature enough to study adult-onset diseases, it nonetheless provides a valuable foundation for future disease modeling studies using isogenic iPSC lines or patient-derived cells with specific mutations. The manuscript does not explore whether or how this stem cell model can advance our understanding of muscular diseases, which would be an exciting avenue for future research. Overall, the detailed protocol presented in this paper will be useful for informing future studies and provide a valuable resource to the stem cells community. Future work could focus on disease modeling using isogenic iPSC lines or patient-derived cells.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> This is a follow-up study to the authors' previous report about the roles of an alpha-arrestin called protein thioredoxin interacting protein (Txnip) in cone photoreceptors and in the retinal pigment epithelium. The findings are important because they provide new information about the mechanism of glucose and lactate transport to cone photoreceptors and because they may become the basis for therapies for retinal degenerative diseases.
Strengths:<br /> Overall, the study is carefully done and, although the analysis is fairly comprehensive with many different versions of the protein analyzed, it is clearly enough described to follow. Figure 4 greatly facilitated my ability to follow, understand and interpret the study.
Weaknesses:<br /> I have just one concern that I would like the authors to address. It is about the text that begins at line 133: "We assayed their ability to clear GLUT1 from the RPE surface (Figure 2A)". Please provide more details about this. From the figure it appears that n = 1 for this experiment, but given how careful the authors are with these types of studies that seems unlikely. How did the authors quantify the ability to clear GLUT1 from the surface? Was it cleared from both the apical and basal surface? (It is hard to resolve the apical and basal surfaces in the images provided). The experiments shown in Fig. 1H and Fig. 1I of PMID 31365873 shows how GLUT1 disappears only from the apical surface (under the conditions of that experiment and through the mechanism described in their text). It would be helpful for the authors to discuss their current results in the context of that experiment.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study examines the role of host blood meal source, temperature, and photoperiod on the reproductive traits of Cx. quinquefasciatus, an important vector of numerous pathogens of medical importance. The host use pattern of Cx. quinquefasciatus is interesting in that it feeds on birds during spring and shifts to feeding on mammals towards fall. Various hypotheses have been proposed to explain the seasonal shift in host use in this species but have provided limited evidence. This study examines whether the shifting of host classes from birds to mammals towards autumn offers any reproductive advantages to Cx. quinquefasciatus in terms of enhanced fecundity, fertility, and hatchability of the offspring. The authors found no evidence of this, suggesting that alternate mechanisms may drive the seasonal shift in host use in Cx. quinquefasciatus.
Strengths:
Host blood meal source, temperature, and photoperiod were all examined together.
Weaknesses:
The study was conducted in laboratory conditions with a local population of Cx. quinquefasciatus from Argentina. I'm not sure if there is any evidence for a seasonal shift in the host use pattern in Cx. quinquefasciatus populations from the southern latitudes.
-
-
connect.apollo.roche.com connect.apollo.roche.com
-
Months Enrollment Coverage 19 (12, 28) 24.3 (17.2, 29.4
Hmm this seems strange. Can you explain how this was calculated?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The goal of this study was to develop and validate novel molecules to selectively activate a cell signaling pathway, the Wnt pathway in this case, in target cells expressing a specific receptor. This was achieved through a two-component system that the authors call BRAID, where each component simultaneously binds the target cell-specific marker BKlotho and a Wnt co-receptor. These components, called SWIFT molecules, bring together the Wnt co-receptors LRP and FZD, activating the pathway specifically in cells that express BKlotho. Results presented in the study demonstrate the desired activity of SWIFT molecules; the binding assays support the simultaneous association of SWIFT with BKlotho and a Wnt co-receptor, and the Wnt reporter and qPCR assays support pathway activation in cell lines and primary cells in a BKlotho-dependent manner. In the future, the BRAID approach could be applied to activate Wnt signaling or another pathway initiated by a co-receptor complex in a cell type-specific manner, and/or in a FZD subtype-specific manner to activate distinct branches of Wnt signaling.
Strengths:<br /> • This study successfully demonstrates a novel way to activate Wnt signaling in target cells expressing a specific marker. Given the role of the Wnt signaling pathway in key processes such as cell proliferation and tissue renewal and the value of modulating cell signaling in a cell type-specific manner, the cell targeting system developed here holds great therapeutic and research potential. It will be curious to see whether the BRAID design can be applied to other cell surface markers for Wnt activation, or for activation of other signaling pathways that require co-receptor association.
• Octet assay results show simultaneous binding of SWIFT molecules to both the Wnt co-receptor FZD/LRP and BKlotho, while negative control molecules without the FZD/LRP or BKlotho-binding module show neither receptor binding nor Wnt pathway activation. These results indicate that SWIFT molecules function through the intended mechanism.
Weaknesses:<br /> • Here, the activity of SWIFT molecules was assessed in single cell types with or without BKlotho expression. Ultimately, the ability of the SWIFT molecules to activate Wnt signaling in a cell type-specific manner should be tested in the context of many different cellular identities that express BKlotho to different extents. It would be good to demonstrate that Wnt activation by SWIFT correlates with BKlotho expression level in multiple cell types - such data would strengthen the claim of cell-type specificity.
• The study does not address whether the targeted cells express FGFR1c/2c/3c and whether the FGF21 full-length moiety or the 39F7 IgG moiety of SWIFT molecules could unintentionally activate FGF signaling in these cells.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This work continues a series of recent publications from the Grigorieff lab (https://doi.org/10.7554/eLife.25648, https://doi.org/10.7554/eLife.68946, https://doi.org/10.7554/eLife.79272, https://doi.org/10.1073/pnas.2301852120) showcasing the development of high-resolution 2D template matching (2DTM) for detection and reconstruction of macromolecules in cryo-electron microscopy (cryo-EM) images of crowded cellular environments. It is well known in the field of cryo-EM that searching noisy images with a template can result in retrieval of the template itself when averaging the candidate particles detected, an effect known as "Einstein-from-noise" (https://doi.org/10.1073/pnas.1314449110). Briefly, this occurs because it is statistically likely to find a match to an arbitrary motif over a large noisy dataset just by chance. The effect can be mitigated for example by limiting the resolution of the template, but this prevents the accurate detection of macromolecules in a crowded environment, as their "fingerprint" lies in the high-resolution range (https://doi.org/10.7554/eLife.25648). Here, the authors show through several experiments on in vitro and in situ data that features as small as drug compounds and water molecules can be reliably retrieved by 2DTM if they are searched by a template (the "bait") that contains expected neighboring features but not the targets themselves.
The ideas are generally clearly presented with appropriate references to related work, and claims are well supported by the data. In particular, the experiments for verifying the density of the ribosomal protein L7A as well as the systematic removal of residuals from the template model to assess bias are particularly clever.
One key point that could use further clarification is how to interpret densities in the reconstruction that do overlap with the template. If the omitted regions can be reliably reconstructed, and the density is smooth throughout, it implies the detected particles are not only (mostly) true positives but also their poses must be essentially correct. Therefore, why cannot the entire reconstruction be trusted, including portions overlapping with the template? In the "Future applications" section, the authors state that in order to obtain a reconstruction that is entirely devoid of template bias, it would be necessary to successively omit parts of the template structure through its entirety. I wonder if that is really necessary and if the presented approach of omitting template portions could be better framed as a "gold-standard" validation procedure.
In other words, given the compelling evidence provided by the reconstructions in the omitted areas, I find it hard to imagine how the procedure would be "hallucinating" features in the rest of the structure, as the entire reconstruction depends on the same pose and defocus parameters. A possible experiment to test this hypothesis would be to go the opposite way, deliberately adding an unrealistic feature to the bait and checking whether it comes up in the reconstruction, while at the same time checking how it behaves in omitted parts.
When assessing their approach to in situ data (the yeast ribosome), it is intriguing to see that the resolution downgraded from 3.1 to 8 Å when refinement of the particle poses against the current reconstruction was attempted. The authors do provide some possible explanations, such as the reduced signal of the reconstruction at high resolution and the crowded background, but it leaves one to wonder if this means that a 3.1 Å reconstruction could never be obtained from these data by conventional single-particle analysis procedures.
Furthermore, in the section "Quantifying template bias", the authors make the intriguing statement that there can still be some overfitting of noise even in true positives. I understand this overfitting would occur in the form of errors in the pose and defocus estimation, but a clarification would be helpful.
In the Discussion, the claim that "it is not necessary to use tomography to generate high-resolution reconstructions of macromolecular complexes in cells" is a misconception, at least in part. As demonstrated in works by the same group and others (https://doi.org/10.1016/j.xinn.2021.100166, https://doi.org/10.1038/s41467-023-36175-y, https://doi.org/10.1038/s41586-023-05831-0), 2D imaging of native cellular environments does offer a faster and better way to obtain high-resolution reconstructions compared to tomography. However, tomography provides the entire 3D context of the macromolecules, such as their localization to membranes and the cellular architecture, which can be readily visualized in a tomogram even at low resolution, so methods for structure determination from tilt series data such as subtomogram averaging remain of paramount importance. Most likely, a combination of 2D and 3D imaging approaches will be necessary to retrieve both the highest structural resolution and their cellular context to address biological questions.
The "Materials and Methods" section lacks a description of transmission electron microscopy data collection.
Finally, the preprint version of this work posted on bioRxiv (https://doi.org/10.1101/2023.07.03.547552) contains the following competing interests statement, which is missing from the submitted version:<br /> "The authors are listed as inventors on a closely related patent application named "Methods and Systems for Imaging Interactions Between Particles and Fragments", filed on behalf of the University of Massachusetts."
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Koesters and colleagues investigated the role of the presynaptic small GTPase Rab3A in homeostatic scaling of miniature synaptic transmission in primary mouse cortical cultures using electrophysiology and immunohistochemistry. The major finding is that TTX incubation for 48 hours does not induce an increase in the amplitude of excitatory synaptic miniature events in neuronal cultures derived from Rab3A KO and Rab3A Earlybird mutant mice. NASPM application had comparable effects on mEPSC amplitude in control and after TTX, implying that Ca2+-permeable glutamate receptors are unlikely modulated during synaptic scaling. Immunohistochemical analysis revealed an increase in GluA2 puncta size and intensity in wild type, but not Rab3A KO cultures. Finally, they provide evidence that loss of Rab3A in neurons, but not astrocytes, blocks homeostatic scaling. Based on these data, the authors propose a model in which presynaptic Rab3A is required for homeostatic scaling of synaptic transmission through GluA2-dependent and independent mechanisms.
While the title of the manuscript is mostly supported by data of solid quality, many conclusions, as well as the final model, cannot be derived from the results presented. Importantly, the results do not indicate that Rab3A modulates quantal size on both sides of the synapse. Moreover, several analysis approaches seem inappropriate.
The following points should be addressed:
1. The model shown in Figure 10 is not supported by the data. The authors neither provide evidence for two different functional states of Rab3A being involved in mEPSC amplitude modulation, nor for a change in glutamate content of vesicles. Furthermore, the data do not fully support the conclusion of a presynaptic role for Rab3A in homeostatic scaling.<br /> 2. The analysis of mEPSC data using quantile sampling followed by ratio calculation is not meaningful under the tested experimental conditions because of the following reasons: (i) The analysis implicitly assumes that all events have been detected. The prominent mEPSC frequency increase after TTX suggests that this is not the case, i.e., many (small) mEPSCs are likely missed under control conditions. (ii) The analysis is used to conclude how events of a certain size are altered by TTX treatment. However, this analysis compares the smallest mEPSCs of the TTX condition with the smallest control mEPSCs, but this is not a pre-post experimental design. Variation between cells and between coverslips will markedly affect the results and lead to misleading interpretations. (iii) The ratio (TTX/control) vs. control plots seem to suffer from a division by small value artifact (see Figure 6F). Correspondingly, ratio-analysis differs considerably for different control conditions (Fig. 1Giii, Fig. 2Giii, Fig. 6C, Fig. 9A).<br /> 3. As noted by the authors in a previous publication (Hanes et al. 2020), statistical analysis of CDFs suffers from n-inflation. In addition, the quantile sampling method chosen violates an important assumption of the K-S test. Indeed, p-values for these comparisons are typically several orders of magnitude smaller. Given that the statistical N most likely corresponds to the number of cultures (see, e.g., https://doi.org/10.1371/journal.pbio.2005282), CDF comparisons are not informative and should thus not be used to draw conclusions from the data. The plots can be informative, though.<br /> 4. How does recoding noise and the mEPSC amplitude threshold affect "divergent scaling"?<br /> 5. What is the justification for the line fits of the ratio data/how was the fit range chosen?<br /> 6. TTX application induces a significant increase in mEPSC amplitude in Rab3A-/- mice in two out of three data sets (Figs. 1 and 9). Hence, the major conclusion that Rab3A is required for homeostatic scaling is only partially supported by the data.<br /> 7. Line 289: A comparison of p-values between conditions does not allow any meaningful conclusions.<br /> 8. There is a significant increase in baseline mEPSC amplitude in Rab3AEbd/Ebd (15 pA) vs. Rab3Aebd/+ (11 pA) cultures, but not in Rab3A-/- (13.6 pA) vs. Rab3A+/- (13.9 pA). Although the nature of scaling was different between Rab3AEbd/Ebd vs. Rab3AEbd/+, and Rab3AEbd/Ebd with vs. without TTX, the question arises whether the increase in mEPSC amplitude in Rab3AEbd/Ebd is Rab3A dependent. Could a Rab3A independent mechanism occlude scaling?<br /> 9. Figure 4: NASPM appears to have a stronger effect on mEPSC frequency in the TTX condition vs. control (-40% vs. -15%). A larger sample size might be necessary to draw definitive conclusions on the contribution of Ca2+-permeable AMPARs.<br /> 10. The authors discuss previous papers showing changes in VGLUT1 intensity. Was VGLUT intensity altered in the stainings presented in the manuscript?<br /> 11. The change in GluA2 area or fluorescence intensity upon TTX treatment in controls is modest. How does the GluA2 integral change?<br /> 12. The quantitative comparison between physiology and microscopy data is problematic. The authors report a mismatch in ratio values between the smallest mEPSC amplitudes and smallest GluA2 receptor cluster sizes (l. 464; Figure 8). Is this comparison affected by the fluorescence intensity threshold? What was the rationale for a threshold of 400 a.u. or 450 a.u.? How does this threshold compare to the mEPSC threshold of 3 pA? The conclusion that an increase in AMPAR levels is not fully responsible for the observed mEPSC increase is mainly based on the rank-order analysis of GluA2 intensity, yielding a slope of ~0.9. There are several points to consider here: (i) GluA2 fluorescence intensity did increase on average, as did GluA2 cluster size. (ii) The increase in GluA2 cluster size is very similar to the increase in mEPSC amplitude (each approx. 18-20%). (iii) Are there any reports that fluorescence intensity values are linearly reporting mEPSC amplitudes (in this system)? Antibody labelling efficiency, and false negatives of mEPSC recordings may influence the results. The latter was already noted by the authors. (iv) It is not entirely clear if their imaging experiments will sample from all synapses. Other AMPAR subtypes than GluA2 could contribute, as could kainate or NMDA receptors.<br /> Furthermore, the statement "complete lack of correspondence of TTX/CON ratios" is not supported by the data presented (l. 515ff). First, under the assumption that no scaling occurs in Rab3A-/- , the TTX/CON ratios show a 20-30% change, which indicates the variation of this readout. Second, the two examples shown in Figure 8 for Rab3A+/+ are actually quite similar (culture #1 and #2), particularly when ignoring the leftmost section of the data, which is heavily affected by the raw values approaching zero.<br /> 13. Figure 7A: TTX CDF was shifted to smaller mEPSC amplitude values in Rab3A-/- cultures. How can this be explained?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This valuable study analyzes the contribution of fungal and bacterial microbiota species to the growth and development of Drosophila. The authors use bacterial and fungal species associated with Drosophila in the wild to analyze their respective contributions in promoting larval growth in a decaying banana, mimicking the natural niche of fruit flies. They found that some fungal species and some fungus/bacteria combinations effectively promote growth by supplementing key branched amino acids in the food substratum. Production of these amino acids by Drosophila itself is not sufficient, and only fungal species that secrete these amino acids into the medium can sustain Drosophila growth. Thus, the authors clarify how facultative symbionts contribute to host growth in a natural setting by changing the food substratum in a dynamic manner.
Strengths:
The natural setting developed by the authors to analyze the impact of the microbiota is clearly valuable, as is the focus on the role of fungal microbiota species. This complements studies of Drosophila microbiota that have previously focused on bacterial species and used a lab setting. While there has been an extensive focus on obligate endosymbionts or gut symbionts, this study analyzes how facultative symbionts shape the food substratum and influence host growth. A last strength of this study is that it analyzes the contribution of Drosophila microbiota over a dynamic timeframe, analyzing how microbial species change in decaying fruit over time.
Weaknesses:
1) The authors should better review what we know of fungal Drosophila microbiota species as well as the ecology of rotting fruit. Are the microbiota species described in this article specific to their location/setting? It would have been interesting to know if similar species can be retrieved in other locations using other decaying fruits. The term 'core' in the title suggests that these species are generally found associated with Drosophila but this is not demonstrated. The paper is written in a way that implies the microbiota members they have found are universal. What is the evidence for this? Have the fungal species described in this paper been found in other studies? Even if this is not the case, the paper is interesting, but there should be a discussion of how generalizable the findings are.
2) Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild? Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?
3) Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning. The authors described their microarray data in terms of fed/starved in relation to the Finke article. They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).
4) The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)? Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Taking advantage of a publicly available dataset, neuronal responses in both the visual and hippocampal areas to passive presentation of a movie are analyzed in this manuscript. Since the visual responses have been described in a number of previous studies (e.g., see Refs. 11-13), the value of this manuscript lies mostly on the hippocampal responses, especially in the context of how hippocampal neurons encode episodic memories. Previous human studies show that hippocampal neurons display selective responses to short (5 s) video clips (e.g. see Gelbard-Sagiv et al, Science 322: 96-101, 2008). The hippocampal responses in head-fixed mice to a longer (30 s) movie as studied in this manuscript could potentially offer important evidence that the rodent hippocampus encodes visual episodes.
The analysis strategy is mostly well designed and executed. A number of factors and controls, including baseline firing, locomotion, frame-to-frame visual content variation, are carefully considered. The inclusion of neuronal responses to scrambled movie frames in the analysis is a powerful method to reveal the modulation of a key element in episodic events, temporal continuity, on the hippocampal activity. The properties of movie fields are comprehensively characterized in the manuscript.
Comments on latest version:
The new analysis on how behavioral states and hippocampal ripples impacted the tuning of movie fields makes the main finding substantially more convincing. Other relatively minor concerns on the methodology and interpretation are also improved. I do not have further concerns.
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #1 (Public Review):
With this work, the authors address a central question regarding the potential consequences of post-translational modifications for the pathogenesis of neurodegenerative diseases. Phosphorylation and mislocalization of the RNA binding protein TDP43 are characteristic of ~50% of frontotemporal lobar degeneration (FTLD), as well as >95% of amyotrophic lateral sclerosis (ALS). To determine if acetylation is a primary, disease-driving event, they generated a TDP-43 mutant harboring an acetylation-mimicking mutation (K145Q). Animals carrying the acetylation-mimic mutation (K145Q) displayed key pathological features of disease, including more cytoplasmic TDP43 and impaired TDP43 splicing activity, together with behavioral phenotypes reminiscent of FTLD.
This is a well-written and well-illustrated manuscript, with clear and convincing findings. The observations are significant and emphasize the importance of post-translational modifications to TDP-43 function and disease phenotypes. In addition, the TDP43(K145Q) mice may prove to be a valuable model for studying TDP-43-related mechanisms of neurodegeneration and therapeutic strategies.
Comments on the latest version:
The authors have addressed most concerns. The additional analysis demonstrating a lack of neuron loss is quite different from the original study -- it is good that the authors pursued this question. In addition, new data focusing on native TDP-43 splice targets, rather than the splicing reporter, are excellent.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This is an important study that tests the effects of using neurofeedback, in the form of reward delivery when large sharp wave-ripples (SWRs) are detected, on neurophysiological and behavioral measures. The authors report that the rate of SWRs ripples increased prior to reward delivery, but this increased rate of SWRs had no significant effect on memory performance. They also found that compensatory decreases in SWR rate occurred in the period after reward delivery such that the overall SWR rate remained stable.
Strengths:
The study has many strengths. The paradigm of closed loop detection of SWRs and reward delivery is powerful and provides an innovative way to causally test the effects of increasing SWR rates. Other studies could adopt this method to test other hypotheses or to assess the effects of increasing SWR rates prior to reward delivery in rodent models of brain disorders. The methods and results are clearly explained. The results are presented in a transparent way.
Weaknesses:
In the linear mixed effects model analysis used in Figure 2, and statistics reported in the figure legend, an interaction effect showing that neurofeedback differentially affected the SWR rate and count pre- and post-award seems to be missing in the reported statistics.
In the Discussion, the authors write, "Further, because subjects learn to modulate SWR rate, rather than simply generating a single suprathreshold event on command, it is likely that they learn to engage a SWR-permissive state during the targeted interval in which brain-wide neural activity and neuromodulatory tone also enter a SWR-permissive realm". This seems to imply that the neurofeedback is directly modulating neural activity. However, it is unclear from the paper exactly how the neurofeedback is modulating the SWR rate. Considering that SWRs occur during immobility, is it possible that the animals are learning to remain more immobile and modulating the SWR rate in that way?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The paper presents a nice study investigating differences in biological motion perception in participants with ADHD in comparison with controls. Motivated by the idea that there is a relationship between biological motion perception and social capabilities, the authors investigated local and global (holistic) biological motion perception, the group, and several additional behavioral variables that are affected in ADHS (IQ, social responsiveness, and attention/impulsivity). As well as local global biological motion perception is reduced in ADHD participants. In addition, the study demonstrates a significant correlation between local biological motion perception skills and the social responsiveness score in the ADHD group, but not the controls. A path analysis in the ADHD data suggests that general performance in biological motion perception is influenced mainly by global biological motion perception performance and attentional and perceptual reasoning skills.
Strengths:<br /> It is true that there exists not much work on biological motion perception and ADHD. Therefore, the presented study contributes an interesting new result to the biological motion literature and adds potentially also new behavioral markers for this clinical condition. The design of the study is straightforward and technically sound, and the drawn conclusions are supported by the presented results.
Weaknesses:<br /> Some of the claims about the relationship between genetic factors and ADHD and the components of biological motion processing have to remain speculative at this point because genetic influences were not explicitly tested in this paper.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This work describes a new and powerful approach to a central question in ecology: what are the relative contributions of resource utilisation vs interactions between individuals in the shaping of an ecosystem? This approach relies on a very original quantitative experimental set-up whose power lies in its simplicity, allowing an exceptional level of control over ecological parameters and of measurement accuracy.
In this experimental system, the shared resource corresponds to 10^12 copies of a fixed single-stranded target DNA molecule to which 10^15 random single-stranded DNA molecules (the individuals populating the ecosystem) can bind. The binding process is cycled, with a 1000x-PCR amplification step between successive binding steps. The composition of the population is monitored via high-throughput DNA sequencing. Sequence data analysis describes the change in population diversity over cycles. The results are interpreted using estimated binding interactions of individuals with the target resource, as well as estimated binding interactions between individuals and also self-interactions (that can all be directly predicted as they correspond to DNA-DNA interactions). A simple model provides a framework to account for ecosystem dynamics over cycles. Finally, the trajectory of some individuals with high frequency in late cycles is traced back to the earliest cycles at which they are detected by sequencing. Their propensities to bind the resource, to form hairpins, or to form homodimers suggest how different interaction modes shape the composition of the population over cycles.
The authors report a shift from selection for binding to the resource to interactions between individuals and self-interactions over the course of cycles as the main drivers of their ecosystem. The outcome of the experiment is far from trivial as the individual-resource binding energy initially determines the relative enrichment of individuals, and then seems to saturate. The richness of the population dynamics observed with this simple system is thus comparable to that found in some natural ecosystems. The findings obtained with this new approach will likely guide the exploration of natural ecosystems in which parameters and observables are much less accessible.
My review focuses mainly on the experimental aspects of this work given my own expertise. The introduction exposes very convincingly the scientific context of this work, justifying the need for such an approach to address questions pertaining to ecology. The manuscript describes very clearly and rigorously the experimental set-up. The main strengths of this work are (i) the outstanding originality of the experimental approach and (ii) its simplicity. With this setup, central questions in ecology can be addressed in a quantitative manner, including the possibility of running trajectories in parallel to generalize the findings, as reported here. Technical aspects have been carefully implemented, from the design of random individuals bearing flanking regions for PCR amplification, binding selection and (low error) amplification protocols, and sequencing read-out whose depth is sufficient to capture the relevant dynamics. One missing aspect in the data analysis is the quantification of the effect of PCR amplification steps in shaping the ecosystem (to be modeled if significant). In addition, as it stands the current work does not fully harness the power of the approach. For instance, with this setup, one can tune the relative contributions of binding selection vs amplification for instance (to disentangle forces that shape the ecosystem). One can also run cycles with new DNA individuals, designed with arbitrarily chosen resource binding vs self-binding, that are predicted to dominate depending on chosen ecological parameters.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors obtained multiple, novel and compelling datasets to better understand the relationship between histone H1 and RNA-directed DNA methylation in plants. Most of the authors' claims concerning H1 and RNA polymerase V (Pol V) are backed by convincing and independent lines of evidence. However, the authors also make some overly broad conclusions, for which additional experiments/data analyses should be explored to improve confidence in their findings. Furthermore, Pol V produces noncoding transcripts that act as scaffold RNAs, which AGO4-bound siRNAs recognize in plant chromatin to mediate RNA-directed DNA methylation. Detection of Pol V transcript products at sites of Pol V redistribution in h1 mutants would significantly enhance the impact of this manuscript. Below I have listed several strengths and weaknesses of the manuscript.
Strengths<br /> 1. The authors report high-quality NRPE1 ChIP-seq data, allowing them to directly test how and where Pol V occupancy depends on histone H1 function in Arabidopsis.<br /> 2. nrpe1 mutants generated via CRISPR/Cas9 in the h1 mutant background (nrpe1 h1.1-1 h1.2-1 triple mutants), allow the authors to study the role of Pol V in ectopic DNA methylation in H1-deficient plants.<br /> 3. Pol V recruitment via ZincFinger-DMS3 expression (a modified version of Pol V's DMS3 recruitment factor) sends Pol V to new genomic loci and thus provides the authors with an innovative dataset for understanding H1 function at these sites.
Weaknesses<br /> 1. The manuscript does not include detection or quantification of Pol V transcripts generated at ectopic sites in the h1 mutant background.<br /> 2. Statistical tests are missing throughout and are needed to support several of the authors' claims.<br /> 3. The SUVH1-3xFLAG ChIP-seq analyses in Fig. 6 require additional controls and are not fully explained in the results. The broad conclusions drawn (based on those experiments) are thus not convincing.
Previous studies have charted the relationship between H1 function and RNA-directed DNA methylation (RdDM) via analyses of Pol IV-dependent 24 nt siRNAs and factors that recruit Pol IV (Choi et al., 2021 and Papareddy et al., 2020). Harris and colleagues have extended this work and shown that histone H1 function also antagonizes Pol V occupancy in the context of constitutive heterochromatin. The authors thus provide important evidence to show that H1 limits the encroachment of both polymerases Pol IV and Pol V into plant heterochromatin.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
People can perform a wide variety of different tasks, and a long-standing question in cognitive neuroscience is how the properties of different tasks are represented in the brain. The authors develop an interesting task that mixes two different sources of difficulty, and find that the brain appears to represent this mixture on a continuum, in the prefrontal areas involved in resolving task difficulty. While these results are interesting and in several ways compelling, they overlap with previous findings and rely on novel statistical analyses that may require further validation.
Strengths<br /> 1. The authors present an interesting and novel task for combining the contributions of stimulus-stimulus and stimulus-response conflict. While this mixture has been measured in the multi-source interference task (MSIT), this task provides a more graded mixture between these two sources of difficulty.
2. The authors do a good job triangulating regions that encoding conflict similarity, looking for the conjunction across several different measures of conflict encoding. These conflict measures use several best-practice approaches towards estimating representational similarity.
3. The authors quantify several salient alternative hypothesis and systematically distinguish their core results from these alternatives.
4. The question that the authors tackle is important to cognitive control, and they make a solid contribution.
Concerns<br /> 1. The evidence from this previous work for mixtures between different conflict sources makes the framing of 'infinite possible types of conflict' feel like a strawman. The authors cite classic work (e.g., Kornblum et al., 1990) that develops a typology for conflict which is far from infinite. I think few people would argue that every possible source and level of difficulty will have to be learned separately. This work provides confirmatory evidence that task difficulty is represented parametrically (e.g., consistent with the n-back, MOT, and random dot motion literature).
2. The degree of Stroop vs Simon conflict is perfectly negatively correlated across conditions. This limits their interpretation of an integrated cognitive space, as they cannot separately measure Stroop and Simon effects. The author's control analyses have limited ability to overcome this task limitation. While these results are consistent with parametric encoding, they cannot adjudicate between combined vs separated representations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The authors developed computational models that capture the electrical and Ca2+ signaling behavior in mesenteric arterial cells from male and female mice. A baseline model was first formulated with eleven transmembrane currents and three calcium compartments. Sex-specific differences in the L-type calcium channel and two voltage-gated potassium channels were then tuned based on experimental measurements. To incorporate the stochastic ion channel openings seen in smooth muscle cells under physiological conditions, noise was added to the membrane potential and the sarcoplasmic Ca2+ concentration equations. Finally, the models were assembled into 1D vessel representations and used to investigate the tissue-level electrical response to an L-type calcium channel blocker.
Strengths:<br /> A major strength of the paper is that the modeling studies were performed on three different scales: individual ionic currents, whole-cell, and 1D tissue. This comprehensive computational framework can help provide mechanistic insight into arterial myocyte function that might be difficult to achieve through traditional experimental methods.
The authors aimed to develop sex-specific computational models of mesenteric arterial myocytes and demonstrate their use in drug-testing applications. Throughout the paper, model behavior was both validated by experimental recordings and supported by previously published data. The main findings from the models suggested that sex-specific differences in membrane potential and Ca2+ handling are attributable to variability in the gating of a small number of voltage-gated potassium channels and L-type calcium channels. This variability contributes to a higher Ca2+ channel blocker sensitivity in female arterial vessels. Overall, the study successfully met the aims of the paper.
Weaknesses:<br /> A main weakness of the paper, as addressed by the authors, is the simplicity of the 1D vessel model; it does not take into account various signaling pathways or interactions with other cell types which could impact smooth muscle electrophysiology. Another potential shortcoming is the use of mouse data for optimizing the model, as there could be discrepancies in signaling behavior that limit the translatability to human myocyte predictions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors previously showed in cell culture that Su(H), the transcription factor mediating Notch pathway activity, was phosphorylated on S269 and they found that a phospho-deficient Su(H) allele behaves as a moderate gain of Notch activity in flies, notably during blood cell development. Since a downregulation of Notch signaling was proposed to be important for the production of a specialized blood cell types (lamellocytes) in response to wasp parasitism, the authors hypothesized that Su(H) phosphorylation might be involved in this cellular immune response.
Consistent with their hypothesis, the authors show that Su(H)S269A knock-in flies display a reduced response to wasp parasitism and that Su(H) is phosphorylated upon infestation. Using in vitro kinase assays and a genetic screen, they identify the PKCa family member Pkc53E as the putative kinase involved in Su(H) phosphorylation and they show that Pkc53E can bind Su(H). They further show that Pkc53E deficit or its knock-down in larval blood cells results in similar blood cell phenotypes as Su(H)S269A, including a reduced response to wasp parasitism, and their epistatic analyses indicate that Pkc53E acts upstream of Su(H).
Strengths<br /> The manuscript is well presented and the experiments are sound, with a good combination of genetic and biochemical approaches and several clear phenotypes which back the main conclusions. Notably Su(H)S269A mutation or Pkc53E deficiency strongly reduces lamellocyte production and the epistatic data are convincing.
Weaknesses<br /> The phenotypic analysis of larval blood cells remains rather superficial. Looking at melanized cells is a crude surrogate to quantify crystal cell numbers as it is biased toward sessile cells (with specific location) and does not bring information concerning the percentage of blood cells differentiated along this lineage.
In Su(H)S269A knock-in or Pkc53E zygotic mutants, the increase in crystal cells in uninfected conditions and the decreased capacity to induce lamellocytes following infection could have many origins which are not investigated. For instance, premature blood cell differentiation could promote crystal cell differentiation and reduce the pool of lamellocytes progenitors. These mutations could also affect the development and function of the posterior signaling center in the lymph gland, which plays a key role in lamellocyte induction. Similarly, the mild decrease on resistance to wasp infestation (Fig. 2A) could reflect a constitutive reduction in blood cell numbers in Su(H)S269A larvae rather than a defective down-regulation of Notch activity.<br /> Whereas the authors also present targeted-knock down/inhibition of Pkc53E suggesting that this enzyme is required in blood cells to control crystal cell fate (Fig. 6), it is somehow misleading to use lz-GAL4 as a driver in the lymph gland and hml-GAL4 in circulating hemocytes as these two drivers do not target the same blood cell populations/steps in the crystal cell development process.
In addition, the authors do not present evidence that Pkc55E function (and Su(H) phosphorylation) is required specifically in blood cells to promote lamellocyte production in response to infestation.
Finally, the conclusion that Pkc53E is (directly) responsible for Su(H) phosophorylation needs to be strengthened. Most importantly, the authors do not demonstrate that Pkc53E is required for Su(H) phosphorylation in vivo (i.e. that Su(H) is not phosphorylated in the absence of Pkc53E following infestation). In addition, the in vitro kinase assays with bacterially purified Pkc53E (in the presence of PMA or using an activated variant of Pkc53E) only reveal a weak activity on a Su(H) peptide encompassing S269 (Fig. 4). Moreover, while the authors show a coIP between an overexpressed Pkc53E and endogenous Su(H) (Fig. 7) (in the absence of infestation), it has recently been reported that Pkc53E is a cytoplasmic protein in the eye (Shieh et al. 2023), calling for a direct assessment of Pkc53E expression and localization in larval blood cells under normal conditions and upon infestation. Furthermore, the effect of the PKCa agonist PMA on Su(H)-induced reporter gene expression in cell culture and crystal cell number in vivo is somehow consistent with the authors hypothesis, but some controls are missing (notably western blots to show that PMA/Staurosporine treatment does not affect Su(H)-VP16 level) and it is unclear why STAU treatment alone promotes Su(H)-VP16 activity (in their previous reports, the authors found no difference between Su(H)S269A-VP16 and Su(H)-VP16) or why PMA treatment still has a strong impact on crystal cell number in Su(H)S269A larvae.
-
-
www.medrxiv.org www.medrxiv.org
-
Joint Public Review:
The study has many limitations which need to be addressed and there is a lack of functional explanation of carriage. These limitations are: a) the lack of inclusion of non-Black patients; and b) the lack of appropriate explanation if results are false-positive since APOL1 provides risk for chronic renal disease (CRD) and patients with CRD are predisposed to sepsis. Sepsis occurred in 565 Black subjects, of whom 105 (29% ) had APOL1 high-risk genotype and 460 had-low risk genotype. Importantly, the risk for sepsis associated with APOL1 HR variants was no longer significant after adjusting for subjects pre-existing severe renal disease or after excluding these subjects. Thus, the susceptibility pathway seems to be: APOL1 variants > CKD > sepsis diathesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, Fang H et al. describe a potential pathway, ITGB4-TNFAIP2-IQGAP1-Rac1, that may involve in the drug resistance in triple negative breast cancer (TNBC). Mechanistically, it was demonstrated that TNFAIP2 bind with IQGAP1 and ITGB4 activating Rac1 and the following drug resistance. The present study focused on breast cancer cell lines with supporting data from mouse model and patient breast cancer tissues. The study is interesting. The experiments were well controlled and carefully carried out. The conclusion is supported by strong evidence provided in the manuscript. The authors may want to discuss the link between ITGB4 and Rac 1, between IQGAP1 and Rac1, and between TNFAIP2 and Rac1 as compared with the current results obtained. This is important considering some recent publications in this area (Cancer Sci 2021, J Biol Chem 2008, Cancer Res 2023). In addition, some key points need to be addressed in order to support their conclusion in full.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Proposed significance: Targeted therapy in general has miraculous results.<br /> Good and detailed study of molecular characteristics and microenvironment of tumor of PCCs .However molecular classification system based on limited number of cases is not acceptable.<br /> Early diagnosis is of utmost importance in patient care and the next important is classification of tumor for treatment purposes.<br /> Further research is needed to develop Molecular signature of tumor types . This will help in targeted therapy and precision medicine.
Strength: Molecular characterisation of tumor
Weakness: The sample size is very small from a statistical point of view to derive a conclusion. Only Observations can be recorded<br /> Transcriptome profiles of 11 tumor tissues were studied but they belong to the same 5 patients.
Validation of tumor tissue: comparison is made with adjacent normal tissue (n=5 )<br /> Chromogranin IHC marker is used for identifying tumor cells. However, chromogranin marker positivity is also seen in normal adrenal medulla /chromaffin cells.<br /> Any better evidence of Validation of tumor tissue?
Tumor microenvironment:<br /> CD8+T cells: it is mentioned in the article that there is lack of CD8+ Tcells in both types of PCC, (Page 5, line 16)
However Figures 7 D, E and F show presence of CD8+T cells. Needs clarification or quantification.
Tumor heterogeneity : Page 7 Line 5<br /> PASS system is used by authors for predicting malignant potential and tumor heterogeneity.<br /> Molecular methods need to be used for evaluating tumor heterogeneity rather than histomorphology.
Ground of comparision is not valid. PASS system is based on histomorphology and present study/attempt at classification is based on molecular studies. So they cannot be compared .
Page 5 ,Line 18: HLA downregulation is observation and its regulation by RET is a possibility. Its involvement in tumor progression needs solid proof. So targeting kinase pathway for therapy is only a possibility.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript proposes a complex unclear model involving Ca2+ signaling in inflammasome activation. The experimental approaches used to study the calcium dynamics are problematic and the results shown are of inadequate quality. The major claims of this manuscript are not adequately substantiated.
Major concerns:
1. The analysis of lysosomal Ca2+release is being carried out after many hours of treatment. Such evidence is not meaningful to claim that PA activates Ca2+ efflux from lysosome and even if this phenomenon was robust, it is not doubtful that such kinetics are meaningful for the regulation of inflammasome activation. Furthermore, the evidence for lysosomal Ca2+ release is indirect and relies on a convoluted process that doesn't make any conceptual sense to me. In addition to these major shortcomings, the indirect evidence of perilysosomal Ca2+ elevation is also of very poor quality and from the standpoint of my expertise in calcium signaling, the data are incredulous. The use of GCaMP3-ML1, *transiently transfected* into BMDMs is highly problematic. The efficiency of transfection in BMDMs is always extremely low and overexpression of the sensor in a few rare cells can lead to erroneous observations. The overexpression also results in gross mislocalization of such membrane-bound sensors. The accumulation of GCaMP3-ML1 in the ER of these cells would prevent any credible measurements of perilysosomal Ca2+ signals. A meaningful investigation of this process in primary macrophages requires the generation of a mouse line wherein the sensor is expressed at low levels in myeloid cells, and shown to be localized almost exclusively in the lysosomal membrane. The mechanistic framework built around these major conceptual and technical flaws is not especially meaningful and since these are foundational results, I cannot take the main claims of this study seriously.
2. The cytosolic Ca2+ imaging shown in Figure 1C doesn't make any sense. It looks like a snapshot of basal Ca2+ many hours after PA treatment - calcium elevations are highly dynamic. Snapshot measurements are not helpful and analyses of Calcium dynamics requires a recording over a certain timespan. Unfortunately, this technical approach has been used throughout the manuscript. Also, BAPTA-AM abrogates IL-1b secretion because IL-1b transcription is Ca2+ dependent - the result shown in figure 1D does not shed light on anything to do with inflammasome activation and it is misleading to suggest that.
3. Trpm2-/- macrophages are known to be hyporesponsive to inflammatory stimuli - the reduced secretion of IL-1b by these macrophages is not novel. From a mechanistic perspective, this study does not add much to that observation and the proposed role of TRPM2 as a lysosomal Ca2+ release channel is not substantiated by good quality Ca2+ imaging data (see point 3 above). Furthermore, the study assumes that TRPM2 is a lysosomal ion channel. One paper reported TRPM2 in the lysosomes but this is a controversial claim, with no replication or further development in the last 14 years. This core assumption can be highly misleading to readers unfamiliar with TRPM2 biology and it is necessary to present credible evidence that TRPM2 is functional in the lysosomal membrane of macrophages. Ideally, this line of investigation should rest on robust demonstration of TRPM2 currents in patch-clamp electrophysiology of lysosomes. If this is not technically feasible for the authors, they should at least investigate TRPM2 localization on lysosomal membranes of macrophages.
4. Apigenin and Quercetin are highly non-specific and their effects cannot be attributed to CD38 inhibition alone. Such conclusions need strong loss of function studies using genetic knockouts of CD38 - or at least siRNA knockdown. Importantly, if indeed TRPM2 is being activated downstream of CD38, this should be easily evident in whole cell patch clamp electrophysiology. TRPM2 currents can be resolved using this technique and authors have Trpm2-/- cells for proper controls. Authors attempted these experiments but the results are of very poor quality. If the TRPM2 current is being activated through ADPR generated by CD38 (in response to PA stimulation), then it is very odd that authors need to include 200 uM cADPR to see TRPM2 current (Fig. 3A). Oddly, even these data cast great doubt on the technical quality of the electrophysiology experiments. Even with such high concentrations of cADPr, the TRPM2 current is tiny and Trpm2-/- controls are missing. The current-voltage relationship is not shown, and I feel that the results are merely reporting leak currents seen in measurements with substandard seals. Also 20 uM ACA is not a selective inhibitor of TRPM2 - relying on ACA as the conclusive diagnostic is problematic.
5. TRPM2 is expressed in many different cell lines. The broad metabolic differences observed by the authors in the Trpm2-/- mice cannot be attributed to macrophage-mediated inflammation. Such a conclusion requires the study of mice wherein Trpm2 is deleted selectively in macrophages or at least in the cells of the myeloid lineage.
6. The ER-Lysosome Ca2+ refilling experiments rely on transient transfection of organelle-targeted sensors into BMDMs. See point #1 to understand why I find this approach to be highly problematic. Furthermore, the data procured are also not convincing and lack critical controls (localization of sensors has not been demonstrated and their response to acute mobilization of Ca2+ has not been shown to inspire any confidence in these results).
7. Authors claim that SCOE is coupled to K+ efflux. But there is no credible evidence that SOCE is activated in PA stimulated macrophages. The data shown in Fig 4 supp 1 do not investigate SOCE in a reliable manner - the conclusion is again based on snapshot measurements and crude non-selective inhibitors. The correct way to evaluate SOCE is to record cytosolic Ca2+ elevations over a period of time in absence and presence of extracellular Ca2+. However, even such recordings can be unreliable since the phenomenon is being investigated hours after PA stimulation. So, the only definitive way to demonstrate that Orai channels are indeed active during this process is through patch clamp electrophysiology of PA stimulated cells.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The authors of this manuscript characterize new anion conducting that is more red-shifted in its spectrum than prior variants called MsACR1. An additional mutant variant of MsACR1 that is renamed raACR has a 20 nm red-shifted spectral response with faster kinetics. Due to the spectral shift of these variants, the authors proposed that it is possible to inhibit the expression of MsACR1 and raACR with lights at 635 nm in vivo and in vitro. The authors were able to demonstrate some inhibition in vitro and in vivo with 635 nm light. Overall the new variants with unique properties should be able to suppress neuronal activities with red-shifted light stimulation.
Strengths:<br /> The authors were able to identify a new class of anion conducting channelrhodopsin and have variants that respond strongly to lights with wavelength >550 nm. The authors were able to demonstrate this variant, MsACR1, can alter behavior in vivo with 635 nm light. The second major strength of the study is the development of a red-shifted mutant of MsACR1 that has faster kinetics and 20 nm red-shifted from a single mutation.
Weaknesses:<br /> The red-shifted raACR appears to work much less efficiently than MsACR1 even with 635 nm light illumination both in vivo (Figure 4) and in vitro (Figure 3E) despite the 20 nm red-shift. This is inconsistent with the benefits and effects of red-shifting the spectrum in raACR. This usually would suggest raACR either has a lower conductance than MsACR1 or that the membrane/overall expression of raACR is much weaker than MsACR1. Neither of these is measured in the current manuscript.
There are limited comparisons to existing variants of ACRs under the same conditions in the manuscript overall. There should be more parallel comparison with gtACR1, ZipACR, and RubyACR in identical conditions in cultured cell lines, cultured neurons, and in vivo. This should be in terms of overall performance, efficiency, and expression in identical conditions. Without this information, it is unclear whether the effects at 635 nm are due to the expression level which can compensate for the spectral shift.
There should be more raw traces from the recordings of the different variants in response to short pulse stimulation and long pulse stimulation to different wavelengths. It is difficult to judge what the response would be like when these types of information are missing.
Despite being able to activate the channelrhodopsin with 635 nm light, the main utility of the variant should be transcranial stimulation which was not demonstrated here.
Figure 3B is not clearly annotated and is difficult to match the explanation in the figure legend to the figure. The action potential spikings of neurons expressing raACR in this panel are inhibited as strongly as MsACR1.
For many characterizations, the number of 'n's are quite low (3-7).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this paper, the authors attempt to overcome the "fundamental limitations" of Lempel-Ziv complexity by developing and testing a complexity estimator based on state-space modelling (CSER) that they argue allows higher temporal resolution and spectral decomposition of entropy directly. They test the performance of this approach using MEG, EEG, and ECoG data from monkeys and humans. Although in principle, these developments might be useful for those already using LZ complexity in their analyses, these developments ignore much of the non-LZ entropy community which has already developed related solutions to the same issues. It is thus not clear currently whether this approach is necessary or unique per se:
• As the authors intimate, LZ is a relatively crude but efficient estimator; it leverages a simple binarization of time points above and below the time series mean to look at patterns (in turn disregarding the magnitude of the signal itself). The unique benefit of LZ in and of itself is not at all clear to this reviewer. It is nearly guaranteed that LZ will be extremely highly correlated with various other common measures of "discrete" entropy (especially permutation entropy, which ranks all time-series points prior to computing motifs/patterns rather than anchor anything by the mean (as does LZ), but nevertheless ignores the value range of the signal). The general appeal of the authors' intended developments to further improve LZ specifically would dramatically boost should they be able to make a case that LZ is somehow special, to begin with.
• Beyond this, we can now turn to the authors' rationale for the LZ developments proposed. Despite the authors' statement in the abstract that LZ complexity is "the most widely used approach complexity of neural dynamics," to my knowledge, sample entropy (and its multiscale variant, MSE) is much more commonly used in cognitive neuroscience. Such measures of entropy already enjoy several benefits over LZ. First, the continuous magnitude of the signal is relevant in sample entropy (i.e., it is not discrete in the same way as LZ because the values of each data point matter prior to the estimation of patterns). This is important for people in that community because electrophysiologists/neuroimagers often assume the values of the signal to matter (e.g., for ERPs, the magnitude of power, etc.). Ignoring the magnitude of signal values altogether, as in LZ, is a somewhat dramatic choice, especially if the authors then end up arguing that the spectral decomposition of entropy itself is valuable (after signal value ranges have been ignored!). In any case, as far as I know, LZ has never been shown the be more sensitive than e.g., sample entropy/MSE in relation to any outcome variable, but perhaps the authors can provide evidence for this and argue what LZ should practically do that is unique. Second, the use of MSE more easily allows (although not without its challenges) to directly compare spectral power and single/multiscale entropy straight away, which has been done in quite some depth already without the need for a state-space model of any kind (e.g., Kosciessa et al., 2020, PLOS CB). Instead of using a standard spectral power approach and comparing to entropy, the authors propose the spectrally decompose CSER entropy time series directly. Why? What should this do over standard multi-scale entropy approaches (like MSE, which estimate "fast" and "slow" complexity dynamics), which do not require a Fourier? And if they already believe that the spectrum cannot capture entropy (hence rationalizing the use of LZ-type measures in general), why do they want to invoke spectral estimation assumptions into the estimation of entropy when they could just compare the standard spectrum to entropy to begin with, without any complex modelling in between? I just don't see the need for a lot of what is proposed here; the authors provide solutions to problems that (at least for several in this community) may not exist at all.
• Figure 2: the authors show results descriptively comparing LZ and CSER, but without comparing the two measures directly. The patterns overall look extremely similar; why not correlate the values from the two measures in each dataset to make a case for what CSER is adding here? By eye test, it appears they will be extremely highly correlated, which leaves the reader wondering what CSER (with all of its model complexities and assumptions) has added.
• On the logic of and evidence for the use of CSER: The use of a state space model to allow estimation of "prediction errors" appears to be akin to a latent autocorrelation model with a lag/step size of 1 time-point, and trained only on prestim baseline data. When a successive time point is "deviant" from that autocorrelative function, the authors argue that this provides a measure of instantaneous entropy. This seems simple at first glance, but it is very difficult for this reviewer to wrap their head around. This approach anchors stim-related entropy estimation to prestim entropy for every subject, disallowing the direct comparison of values across subjects during the stimulus phase itself. This does not directly provide a measure of instantaneous task-related entropy, but a mixture of pre and post stim sources based on a state-space model. Does it need to be this complicated? Why does a simple window-based function not suffice to generate temporal dynamics of entropy without coupling the task-based signal to the prestim period? There are many such approaches already existing in the field.
• Figure 3: The authors show that gamma-band CSER is the most sensitive. Isn't it true that this is the exact inverse of the dominance of typical spectral effects under such conditions (that across the literature in psychedelics, sleep, and anaesthesia, there are dominant shifts in low-frequency spectral power)? Although low-frequency power is expected to be a dominant determinant of entropy in the entire signal (see Kosciessa et al., 2020, PLOS CB), something else appears to be happening here. At face value, because gamma is the spectral band with the lowest power in every imaging modality we know of, there is inherently less repeatability/autocorrelation in that same signal, which necessarily should produce more "prediction error/instantaneous entropy" in any condition. When the authors then take the "mean difference" of gamma-based entropy values from each of the two conditions in each sample, any condition-based shift in entropy should inherently be easier to detect. In any case, why not simply show these CSER spectral results next to a standard spectrum over the same conditions and then directly compare the unique utility of e.g., gamma power to CSER gamma? And if you compute something like the percent change between conditions for each spectral band, do you maintain gamma dominance?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
DeKraker et al. propose a new method for hippocampal registration using a novel surface-based approach that preserves the topology of the curvature of the hippocampus and boundaries of hippocampal subfields. The surface-based registration method proved to be more precise and resulted in better alignment compared to traditional volumetric-based registration. Moreover, the authors demonstrated that this method can be performed across image modalities by testing the method with seven different histological samples. This work has the potential to be a powerful new registration technique that can enable precise hippocampal registration and alignment across subjects, datasets, and image modalities.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, "Diminishing neuronal acidification by channelrhodopsins with low proton conduction" by Hayward and colleagues, the authors report on the properties of novel optogenetic tools, PsCatCh2.0 and ChR2-3M, that minimize photo-induced acidification. The authors point out that acidification is an undesirable side-effect of many optogenetic approaches that could be minimized using the new tools. ChRs are known to acidify cells, while Arch are known to alkalize cells. This becomes particularly important when optical stimulation is prolonged and pH changes can become significant. pH is known to affect neuronal excitability, vesicular release, and more. To develop novel optogenetic tools with minimal proton conductances, the authors combined channelrhodopsin stimulation with a red-shifted pH sensor to measure pH during optogenetic stimulation. The authors report that optogenetic activation of CheRiff caused slow cellular acidification. 150 seconds of illumination caused a 3-fold increase in protons or approximately a 0.6 unit pH change that returned to baseline very slowly. They also found that pH changes occurred more rapidly, and recovered more rapidly, in dendrites. The authors go on to robustly characterize PsCatCh2.0 and ChR2-3M in terms of their proton conductances, photocurrent, kinetics, and more. They convincingly show that these constructs induced reduced acidification while maintaining robust photocurrents. In sum, this manuscript shows important findings that convincingly characterizes 2 optogenetic tools that have reduced pH artifacts that may be of broad interest to the field of neuroscience research and optogenetic therapies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The work studies functional connectivity gradients using advanced resting-state analyses in fetuses and sheds light on pre-existing functional topographies and their continued development during the third trimester of gestation.
Strengths:
The work is novel, and applies state of the art connectomic mapping techniques to study fetal brain organization. The work capitalizes on the existence of large, open access datasets, and shows interesting and impactful findings on the presence of functional topographies from 25GW onwards.
Weaknesses:
To better understand underlying factors in cortical functional organization, the authors could add additional exploratory analyses to assess the role of cortical microstructure/myelin and thalamic connectivity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: Direction selectivity (DS) in the visual system is first observed in the radiating dendrites of starburst amacrine cells (SACs). Studies over the last two decades have aimed to understand the mechanisms that underlie these unique properties. Most recently, a 'space-time' model has garnered special attention. This model is based on two fundamental features of the circuit. First, distinct anatomical types of bipolar cells (BCs) are connected to proximal/distal regions of each of the SAC dendritic sectors (Kim et al., 2014). Second, that input across the length of the starburst is kinetically diverse, a hypothesis that has been only recently demonstrated experimentally using iGluSnFR imaging (Srivastava et al., 2022). However, the stark kinetic distinctions, i.e., the sustained/transient nature of BC input to SACs dendrites appear to be present mainly in responses to stationary stimuli. When BC receptive field properties are probed using white noise stimuli, the kinetic differences between BCs are relatively subtle or nonexistent (Gaynes et al., 2022; Strauss et al., 2022, Srivastava et al., 2022). Thus, if and how BCs contribute to direction selectivity driven by moving spots that are commonly used to probe the circuit remains to be clarified. To address this issue, Gaynes et al., combine evolutionary computational modeling (Ankri et al., 2020) with two-photon iGluSnFR imaging to address to what degree BCs contribute to the generation of direction selectivity in the starburst dendrites in response to stimuli that are commonly used experimentally.
Strengths:
Combining theoretical models and iGluSnFR imaging is a powerful approach as it first provides a basic intuition on what is required for the generation of robust DS, and then tests the extent to which the experimentally measured BC output meets these requirements.
The conclusion of this study builds on the previous literature and comprehensively considers the diverse BC receptive field properties that may contribute to DS (e.g. size, lag, rise time, decay time).
By 'evolving' bipolar inputs to produce robust DS in a model network, these authors provide a sound framework for understanding which kinetic properties could potentially be important for driving downstream DS. They suggest that response delay/decay kinetics, rather than the center/surround dynamics are likely to be most relevant (albeit the latter could generate asymmetric responses to radiating/looming stimuli).
Weaknesses: Finally, these authors report that the experimentally measured BC responses are far from optimal for generating DS. Thus, the BC-based DS mechanism does not appear to explain the robust DS observed experimentally (even with mutual inhibition blocked). Nevertheless, I feel the comprehensive description of BC kinetics and the solid assessment of the extent to which they may shape DS in SAC dendrites, is a significant advancement in the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Guglielmo et al. characterized addiction-like behaviors in more than 500 outbred heterogeneous stock (HS) rats using extended access to cocaine self-administration (6 h/daily) and analyzed individual differences in escalation of intake, progressive-ratio (PR) responding, continued use despite adverse consequence (contingent foot shocks), and irritability-like behavior during withdrawal. By principal component analysis, they found that escalation of intake, progressive ratio responding, and continued use despite adverse consequences loaded onto the same factor, whereas irritability-like behaviors loaded onto a separate factor. Characterization of rats in four categories of resilient, mild, moderate, and severe addiction-like phenotypes showed that females had higher addiction-like behaviors, particularly due to a lower number of resilient individuals, than males. The authors suggest that escalation of intake, continued use despite adverse consequences, and progressive ratio responding are highly correlated measures of the same psychological construct and that a significant proportion of males, but not females may be resilient to addiction-like behaviors. The amount of work in this study is impressive, and the results are interesting. However, there are several issues that need to be addressed to improve their manuscript. In particular, the language should be toned down and the statistical analysis approach could be improved.
Strengths: Large dataset. Males and females included.
Weaknesses: Language and statistical analysis can be improved.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The present work establishes 14-3-3 proteins as binding partners of Spastin and suggests that this binding is positively regulated by phosphorylation of Spastin. The authors show evidence that 14-3-3 - Spastin binding prevents Spastin ubiquitination and final proteasomal degradation, thus increasing the availability of Spastin. The authors measured microtubule severing activity in cell lines and axon regeneration and outgrowth as a prompt to Spastin activity. By using drugs and peptides that separately inhibit 14-3-3 binding or Spastin activity, they show that both proteins are necessary for axon regeneration in cell culture and in vivo models in rats.
The following is an account of the major strengths and weaknesses of the methods and results.
Major strengths<br /> -The authors performed pulldown assays on spinal cord lysates using GST-spastin, then analyzed pulldowns via mass spectrometry and found 3 peptides common to various forms of 14-3-3 proteins. In co-expression experiments in cell lines, recombinant Spastin co-precipitated with all 6 forms of 14-3-3 tested.<br /> -By protein truncation experiments they found that the Microtubule Binding Domain of Spastin contained the binding capability to 14-3-3. This domain contained a putative phosphorylation site, and substitutions that cannot be phosphorylated cannot bind to Spastin.<br /> -Spastin overexpression increased neurite growth and branching, and so did the phospho null spastin. On the other hand, the phospho mimetic prevents all kinds of neurite development.<br /> -Overexpression of GFP-Spastin shows a turn-over of about 12 hours when protein synthesis is inhibited by cycloheximide. When 14-3-3 is co-overexpressed, GFP-Spastin does not show a decrease by 12 hours. When S233A is expressed, a turn-over of 9 hours is observed, indicating that the ability to be phosphorylated increases the stability of the protein.<br /> -In support of that notion, the phospho-mimetic S233D makes it more stable, lasting as much as the over-expression of 14-3-3.<br /> -Authors show that Spastin can be ubiquitinated, and that in the presence of ubiquitin, Spastin-MT severing activity is inhibited.<br /> -By combining FCA with Spastazoline, the authors claim that FCA increased regeneration is due to increased Spastin Activity in various models of neurite outgrowth and regeneration in cell culture and in vivo, the authors show impressive results on the positive effect of FCA in regeneration, and that this is abolished when Spastin is inhibited.
Major weaknesses<br /> -However convincing the pull-downs of the expressed proteins, the evidence would be stronger if a co-immunoprecipitation of the endogenous proteins were included.<br /> -To better establish the impact of Spastin phosphorylation in the interaction, there is no indication that the phosphomimetic (S233D) can better bind Spastin, and this result is contradicting to the conclusion of the authors that Spastin-14-3-3 interaction is necessary for (or increases) Spastin function<br /> -To fully support the authors' suggestion that 14-3-3 and Spastin work in the same pathway to promote regeneration, I believe that some key observations are missing.<br /> 1-There is no evidence showing that 14-3-3 overexpression increases the total levels of Spastin, not only its turnover.<br /> 2- There is no indication that increasing the ubiquitination of Spastin decreases its levels. To suggest that proteasomal activity is affecting the levels of a protein, one would expect that proteasomal inhibition (with bortezomib or epoxomycin), would increase its levels.<br /> 3- Authors show that S233D increases MT severing activity, and explain that it is related to increased binding to 14-3-3. An alternative explanation is that phosphorylation at S233 by itself could increase MT severing activity. The authors could test if purified Spastin S233D alone could have more potent enzymatic activity.<br /> -Finally, I consider that there are simpler explanations for the combined effect of FC-A and spastazoline. FC-A mechanism of action can be very broad, since it will increase the binding of all 14-3-3 proteins with presumably all their substrates, hence the pathways affected can rise to the hundreds. The fact that spastazoline abolishes FC-A effect, may not be because of their direct interaction, but because Spastin is a necessary component of the execution of the regeneration machinery further downstream, in line with the fact that spastizoline alone prevented outgrowth and regeneration, and in agreement with previous work showing that normal Spastin activity is necessary for regeneration.
In summary, the evidence of the interaction of 14-3-3 and Spastin is solid, but it is weak with respect to showing evidence for the binding of endogenous proteins in neurons. Another strength of the manuscript is the important recovery of function after spinal cord injury after stimulation of 14-3-3 interactions. Although it is experimentally difficult to demonstrate that the effect of FC-A is due to the prevention of Spastin ubiquitination, the effect itself is very robust and remarkable in vivo.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: In this study, Franke et al. explore and characterize the color response properties across the primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The authors use awake-behaving 2P imaging to define the spectral response properties of visual interneurons in Layer 2/3. They find that opponent responses are more prominent at photopic light levels, and diversity in color opponent responses exists across the visual science, with green ON/ UV OFF responses being stronger represented in the upper visual field. This is argued to be relevant for detecting certain features that are more salient when the chromatic space is used, possibly due to noise reductions.
Strengths: The work is well crafted and written and provides a thorough characterization that reveals an uncharacterized diversity of visual properties in V1. I find this characterization important because it reveals how strongly chromatic information can modulate the response properties in V1. In the upper visual field, 25% of the cells differentially relay chromatic information, and one may wonder how this information will be integrated and subsequently used to aid vision beyond the detection of color per see. I personally like the last paragraph of the discussion that highlights this fact.
Weaknesses:
One major point highlighted in this paper is the fact that Green ON/UV OFF responses are not generated in the retina. But glancing through the literature, I saw this is not necessarily true. Fig 1. of Joesch & Meister, a paper cited, shows this can be the case. Thus, I would not emphasize that this wasn't present in the retina. This is a minor point, but even if the retina could not generate these signals, I would be surprised if the diversity of responses would only arise through feed-forward excitation, given the intricacies of cortical connectivity. Thus, I would argue that the argument holds for most of the responses seen in V1; they need to be further processed by cortical circuitries. This takes me to my second point, defining center and surround. The center spot is 37.5 deg of visual angle, more than 1 mm of the retinal surface. That means that all retinal cells, at least half and most likely all of their surrounds will also be activated. Although 37.5 deg is roughly the receptive field size previously determined for V1 neurons, the one-to-one comparison with retinal recording, particularly with their center/surround properties, is difficult. This should be discussed. I assume that the authors tried a similar approach with sparse or dense checker white noise stimuli. If so, it would be interesting if there were better ways of defining the properties of V1 neurons on their complex/simple receptive field properties to define how much of their responses are due to an activation of the true "center" or a coactivation of the surround. Interestingly, at least some of the cells (Fig. 1d, cells 2 and 5) don't have a surround. Could it be that in these cases, the "center" and "surround" are being excited together? How different would the overall statistics change if one used a full-filed flicker stimulus instead of a center/surround stimulus? How stable are the results if the center/surround flicker stimulus is shifted? These results won't change the fact that chromatic coding is present in the VC and that there are clear differences depending on their position, but it might change the interpretation. Thus, I would encourage you to test these differences and discuss them.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this work, Dasguta et al. have dissected the role of Sema7a in fine tuning of a sensory microcircuit in the posterior lateral line organ of zebrafish. They attempt to also outline the different roles of a secreted verses membrane-bound form of Sema7a in this process. Using genetic perturbations and axonal network analysis, the authors show that loss of both Sema7a isoforms causes abnormal axon terminal structure with more bare terminals and fewer loops in contact with presynaptic sensory hair cells. Further, they show that loss of Sema7a causes decreased number and size of both the pre- and post-synapse. Finally, they show that overexpression of the secreted form of Sema7a specifically can elicit axon terminal outgrowth to an ectopic Sema7a expressing cell. Together, the analysis of Sema7a loss of function and overexpression on axon arbor structure is fairly thorough and revealed a novel role for Sema7a in axon terminal structure. However, the connection between different isoforms of Sema7a and the axon arborization needs to be substantiated. Furthermore, an autocrine role for Sema7a on the presynaptic cell is not ruled out as a contributing factor to the synaptic and axon structure phenotypes. Finally, critical controls are absent from the overexpression paradigm. These issues weaken the claims made by the authors including the statement that they have identified differential roles for the GPI-anchored verses secreted forms of Sema7a on synapse formation and as a chemoattractant for axon arborization respectively. The manuscript itself would benefit from the inclusion of details in the text to help the reader interpret the figures, tools, data, and analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The authors report an fMRI investigation of the neural mechanisms by which selective attention allows capacity-limited perceptual systems to preferentially represent task-relevant visual stimuli. Specifically, they examine competitive interactions between two simultaneously-presented items from different categories, to reveal how task-directed attention to one of them modulates the activity of brain regions that respond to both. The specific hypothesis is that attention will bias responses to be more like those elicited by the relevant object presented on its own, and further that this modulation will be stronger for more dissimilar stimulus pairs. This pattern was confirmed in univariate analyses that measured the mass response of a priori regions of interest, as well as multivariate analyses that considered the patterns of evoked activity within the same regions. The authors follow these neuroimaging results with a simulation study that favours a "tuning" mechanism of attention (enhanced responses to highly effective stimuli, and suppression for ineffective stimuli) to explain this pattern.
Strengths:<br /> The manuscript clearly articulates a core issue in the cognitive neuroscience of attention, namely the need to understand how limited perceptual systems cope with complex environments in the service of the observer's goals. The use of a priori regions of interest, and the inclusion of both univariate and multivariate analyses as well as a simple model, are further strengths. The authors carefully derive clear indices of attentional effects (for both univariate and multivariate analyses) which makes explication of their findings easy to follow.
Weaknesses:<br /> There are some relatively minor weaknesses in presentation, where the motivation behind some of the procedural decisions could be clearer. There are some apparently paradoxical findings reported -- namely, cases in which the univariate response to pairs of stimuli is greater than to the preferred stimulus alone -- that are not addressed. It is possible that some of the main findings may be attributable to range effects: notwithstanding the paradox just noted, it seems that a floor effect should minimise the range of possible attentional modulation of the responses to two highly similar stimuli. One possible limitation of the modelled results is that they do not reveal any attentional modulation at all under the assumptions of the gain model, for any pair of conditions, implying that as implemented the model may not be correctly capturing the assumptions of that hypothesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Jafarinia et al. have made an interesting contribution to unravelling the molecular mechanisms underlying pathological phenotypes of repeat expansion of the C9orf72 gene. The repeat expression leads to the expression of polyPR proteins. Using coarse-grained molecular dynamics simulations, the authors identify putative binding partners involved in nucleocytoplasmic transport (NCT), and that conjecture that polyPR affects essential processes by binding to NCT-related proteins. The results are well-reported, but only putative, and need experimental support to be more conclusive. Also, a comparison with results from all-atom MD simulations in explicit water could help verify the results. But even without these, the work is very useful as a first step to unravel the role of polyPR and related peptides.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The goal of the current study was to evaluate the effect of neuronal activity on blood-brain barrier permeability in the healthy brain, and to determine whether changes in BBB dynamics play a role in cortical plasticity. The authors used a variety of well-validated approaches to first demonstrate that limb stimulation increases BBB permeability. Using in vivo-electrophysiology and pharmacological approaches, the authors demonstrate that albumin is sufficient to induce cortical potentiation and that BBB transporters are necessary for stimulus-induced potentiation. The authors include a transcriptional analysis and differential expression of genes associated with plasticity, TGF-beta signaling, and extracellular matrix were observed following stimulation. Overall, the results obtained in rodents are compelling and support the authors' conclusions that neuronal activity modulates the BBB in the healthy brain and that mechanisms downstream of BBB permeability changes play a role in stimulus-evoked plasticity. These findings were further supported with fMRI and BBB permeability measurements performed in healthy human subjects performing a simple sensorimotor task. While there are many strengths in this study, there is literature to suggest that there are sex differences in BBB dysfunction in pathophysiological conditions. The authors only used males in this study and do not discuss whether they would also expect to sex differences in stimulation-evoked BBB changes in the healthy brain. Another minor limitation is the authors did not address the potential impact of anesthesia which can impact neurovascular coupling in rodent studies. The authors could have also better integrated the RNAseq findings into mechanistic experiments, including testing whether the upregulation of OAT3 plays a role in cortical plasticity observed following stimulation. Overall, this study provides novel insights into how neurovascular coupling, BBB permeability, and plasticity interact in the healthy brain.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Exposure to cranial irradiation (IR) leads to cognitive deficits in the survivors of brain cancer. IR upregulates miR-206-3p, which in turn reduces the PAK3-LIMK1 axis leading to the loss of F and G-actin ratio and, thereby, mature dendritic spine loss. Silencing miR-206-3p reverses these degenerative consequences.
Strengths:<br /> The authors show compelling data indicating a clear correlation between PAK3 knockdown and the loss of mature dendritic spine density. In contrast, overexpression of PAK3 in the irradiated neurons restored mature spine types and recovered the F/G ratio. These in vitro results support the authors' hypotheses that PAK3 and LIMK1-mediated downstream signaling impact neuronal structure and reorganization in vitro. These data were supported by similar experiments using differentiated human neurons. Importantly, silencing miR-206-30 using antagonist miR also reverses IR-induced downregulation of the PAK3-LIMK1 axis, preventing spine loss and cognitive deficits.
Weaknesses:
All the miR-206-3p data are presented from in vitro cortical neurons or human stem cell-derived neuron cultures. This data (IR-induced elevation of miR-206-3p) should also be confirmed in vivo using an irradiated mouse brain to correlate the cognitive dysfunction timepoint.
Antago-miR-206-3p reversed Ir-induced upregulation of miR-206 (in vitro), and prevent reductions in PAK3 and downstream markers. Importantly, it reversed cognitive deficits induced by IR. This data should be supported by in vivo staining for important dendritic markers, including cofillin, p-cofilin, PSD-95, F- and G-actin within the hippocampal and PFC regions.
Other neuronal and non-neuronal targets of miR-206-3p should be discussed and looked into as a downstream impact of IR-induced functional and physiological impairments in the brain.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
The authors investigate pleiotropy in the genetic loci previously associated to a range of neuropsychiatric disorders: Alzheimer's disease, amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson's disease, and schizophrenia. The local statistical fine-mapping and variant colocalisation approaches they use have the potential to uncover not only shared loci but also shared causal variants between these disorders. There is existing literature describing the pleiotropy between ALS and these other disorders but here the authors apply state of the art, local genetic correlation approaches to further refine any relationships.
Complex disease and GWAS is not my area of expertise but the authors managed to present their methods and results in a clear, easy to follow manner. Their results statistically support several correlations between the disorders and, for ALS and AD, a shared variant in the vicinity of the lead SNP from the original ALS GWAS. Such findings could have important implications for our understanding of the mechanisms of such disorders and eventually the possibility of managing and treating them.
The authors have built a useful pipeline that plugs together all the gold-standard, existing software to perform this analysis and made it openly available which is commendable. However, there is little discussion of what software is available to perform global and local correlation analysis and, if there are multiple tools available, why they consider the ones they selected to be the gold-standard.
There is some mention of previous findings of genetic pleiotropy between ALS and these other disorders in the introduction, and discussion of their improved ALS-AD evidence relative to previous work. However, detailed comparisons of their other correlations to what was described before for the same pairs of disorders (if any) is missing. Adding this would strengthen the impact of this paper.
Finally, being new to this approach I found the abstract a little confusing. Initially, the shared causal variant between ALS and AD is mentioned but immediately in the following sentence they describe how their study "suggested that disease- implicated variants in these loci often differ between traits". After reading the whole paper I understood that the ALS-AD shared variant was the exception but it may be best to restructure this part of the abstract. Additionally, in the abstract the authors state that different variants "suggests the role of distinct mechanisms across diseases despite shared loci". Is it not possible that different variants in the same regulatory region or protein-coding parts of a gene could be having the same effect and mechanism? Or does the methodology to establish that different variants are involved automatically mean that the variants are too distant for this to be possible?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: Chang et al. provide glutamate co-expression profiles in the central noradrenergic system and test the requirement of Vglut2-based glutamatergic release in respiratory and metabolic activity under physiologically relevant gas challenges. Their experiments show that conditional deletion of Vglut2 in NA neurons does not impact steady-state breathing or metabolic activity in room air, hypercapnia, or hypoxia. Their observations challenge the importance of glutamatergic signaling from Vglut2 expressing NA neurons in normal respiratory homeostasis in conscious adult mice.
Strengths: The comprehensive Vglut1, Vglut2, and Vglut3 co-expression profiles in the central noradrenergic system and the combined measurements of breathing and oxygen consumption are two major strengths of this study. Observations from these experiments provide previously undescribed insights into (1) expression patterns for subtypes of the vesicular glutamate transporter protein in the noradrenergic system and (2) the dispensable nature of Vglut2-dependent glutamate signaling from noradrenergic neurons to breathing responses to physiologically relevant gas challenges in adult conscious mice.
Weaknesses: Although the cellular expression profiles for the vesicular glutamate transporters are provided, the study fails to document that glutamatergic-based signaling originating from noradrenergic neurons is evident at the cellular level under normal, hypoxic, and/or hypercapnic conditions. This limits the reader's understanding of why conditional Vglut2 knockdown is dispensable for breathing under the conditions tested.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Qin et al., demonstrate, convincingly, that plasticity of ocular dominance of binocular neurons in the visual thalamus persists in adulthood. The adult plasticity is similar to that described in critical period juveniles in that it is absent in transgenic mice with the deletion of the GABA a1 receptor in thalamus, which also blocks ocular dominance plasticity in primary visual cortex. However, the adult plasticity is not dependent on feedback from primary visual cortex, an important difference from juveniles. These findings are an important contribution to a growing body of work identifying plasticity in the adult visual system, and identifies the visual thalamus as a potential target for therapies to reverse adult amblyopia.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript by Xu and colleagues addresses the important question of how multi-modal associations are encoded in the rodent brain. They use behavioral protocols to link stimuli to whisker movement and discover that the barrel cortex can be a hub for associations. Based on anatomical correlations, they suggest that structural plasticity between different areas can be linked to training. Moreover, they provide electrophysiological correlates that link to behavior and structure. Knock-down of nlg3 abolishes plasticity and learning.
This study provides an important contribution as to how multi-modal associations can be formed across cortical regions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Meta-cognition, and difficulty judgments specifically, is an important part of daily decision-making. When facing two competing tasks, individuals often need to make quick judgments on which task they should approach (whether their goal is to complete an easy or a difficult task).
In the study, subjects face two perceptual tasks on the same screen. Each task is a cloud of dots with a dominating color (yellow or blue), with a varying degree of domination - so each cloud (as a representation of a task where the subject has to judge which color is dominant) can be seen an easy or a difficult task. Observing both, the subject has to decide which one is easier.
It is well-known that choices and response times in each separate task can be described by a drift-diffusion model, where the decision maker accumulates evidence toward one of the decisions ("blue" or "yellow") over time, making a choice when the accumulated evidence reaches a predetermined bound. However, we do not know what happens when an individual has to make two such judgments at the same time, without actually making a choice, but simply deciding which task would have stronger evidence toward one of the options (so would be easier to solve).
It is clear that the degree of color dominance ("color strength" in the study's terms) of both clouds should affect the decision on which task is easier, as well as the total decision time. Experiment 1 clearly shows that color strength has a simple cumulative effect on choice: cloud 1 is more likely to be chosen if it is easier and cloud 2 is harder. Response times, however, show a more complex interactive pattern: when cloud 2 is hard, easier cloud 1 produces faster decisions. When cloud 2 is easy, easier cloud 1 produces slower decisions.
The study explores several models that explain this effect. The best-fitting model (the Difference model is the paper's terminology) assumes that the decision-maker accumulates evidence in both clouds simultaneously and makes a difficulty judgment as soon as the difference between the values of these decision variables reaches a certain threshold. Another potential model that provides a slightly worse fit to the data is a two-step model. First, the decision maker evaluates the dominant color of each cloud, then judges the difficulty based on this information.
Importantly, the study explores an optimal model based on the Markov decision processes approach. This model shows a very similar qualitative pattern in RT predictions but is too complex to fit to the real data. Possibly, the fact that simple approaches such as the Difference model fit the data best could suggest the existence of some cognitive constraints that play a role in difficulty judgments and could be explored in future research.
The Difference model produces a well-defined qualitative prediction: if the dominant color of both clouds is known to the decision maker, the overall RT effect (hard-hard trials are slower than easy-easy trials) should disappear. Essentially, that turns the model into the second stage of the two-stage model, where the decision maker learns the dominant colors first. The data from Experiment 2 impressively confirms that prediction and provides a good demonstration of how the model can explain the data out-of-sample with a predicted change in context.
Overall, the study provides a very coherent and clean set of predictions and analyses that advance our understanding of meta-cognition. The field would benefit from further exploration of differences between the models presented and new competing predictions (for instance, exploring how the sequential presentation of stimuli or attentional behavior can impact such judgments). Finally, the study provides a solid foundation for future neuroimaging investigations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors focused on genetic variability in relation to insulin resistance. They used genetically different lines of mice and exposed them to the same diet. They found that genetic predisposition impacts the overall outcome of metabolic disturbances. This work provides a fundamental novel view on the role of genetics and insulin resistance.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The authors measured the oxygen stable isotope ratios in six orangutan teeth using a state-of-the-art micro-sampling technique (SHRIMP SI) to gather substantial multi-year isotopic data for six modern and five fossil orangutan individuals from Borneo and Sumatra. This fine-scale sampling technique allowed them to address the fundamental question of whether breastfeeding affects the oxygen isotope ratios in teeth forming in the first one to two years of life, during which orangutans are assumed to largely depend on breastmilk. The authors provide compelling evidence that the consumption of milk does not appear to affect the overall isotopic profile in early-forming teeth. They conclude that this allows us to use these teeth as terrestrial/arboreal isotopic proxies in paleoenvironmental research, which would provide an invaluable addition to otherwise largely marine climate records in these regions.
Strengths:<br /> The overall large sample size of orangutan dental isotope records as well as the rigorous dating of the fossil specimens provide a strong dataset for addressing the outlined questions. The direct comparison of modern and fossil orangutan specimens provides a valuable evaluation of the use of these modern and past environmental proxies, with some discussion of the implications for the environmental conditions during the expansion of early modern humans into this region of the world.
Weakness:<br /> Although the overall conclusions of this paper are well supported and discussed, one important aspect could have more detailed consideration: the ecology and behavior of orangutans. As one example, orangutans are almost exclusively (~96%) arboreal creatures foraging for plant foods in the forest canopy, and as such they mostly meet their water requirements from the plants they eat, only very rarely drinking surface water (Ashbury et al. 2015). As a result, all orangutan water and foods are strongly affected by the so-called canopy effect, which could have found stronger consideration in this study. The canopy effect in primate plant foods has been demonstrated to easily exceed 5‰ within the same forest canopy and even within the same tree, mainly depending on stratigraphy/height (Lowry et al. 2021). This variation may explain the noise in the isotopic data within a given orangutan tooth, which lies well within this 5% range, and could easily obscure any possible breastfeeding effect in dental isotope ratios. If the canopy effect may indeed introduce so much noise in the oxygen isotope data, this should be also considered in the use of the data as a climate proxy. The question arises if a terrestrial long-lived mammal species may be a more suitable proxy than an arboreal one.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Radial spokes (RS) are made of >20 proteins and are believed to be a transducer to coordinate axonemal dyneins to enable the beating motion of motile cilia. While the atomic structure of RS from green algae Chlamydomonas and H. Sapience has been solved by single particle cryo-EM recently, this work by Bicka et al. provided the atomic structure of RS from ciliate Tetrahymena. They identified component proteins of Tetrahymena RS, which correspond to those in the atomic structure of Chlamydomonas and human RS. These proteins were likely already guessed as RS components, based on sequence similarity, but in this work experimentally identified for the first time. Furthermore, they discovered novel isoforms of RS proteins and characterized them structurally and functionally. RSP3 has three isoforms (A, B, and C). They are distributed specifically in the three radial spokes within the repeating unit as proved by mutant analysis, cryo-EM, and proteomics. By high-speed video microscopy, they proved the essential roles of RSP3B for ciliary beating. These isoforms have never been reported in past works and this demonstrates the novelty of this work.
Strength:<br /> Their discovery of RSP3 isoforms is unexpected and, although it is still not clear why Tetrahymena needs to have these isoforms, will evoke future research. The authors characterized the multi-facet aspects of these proteins precisely, structurally by cryo-EM, functionally by waveform and velocity analysis, and in terms of protein networking by co-IP and bioID studies.
Weakness:<br /> While the first half of this manuscript about RSP3 isoforms is very well organized and described (this reviewer still has some advice to make this story convincing and attractive), the later part has room for improvement. Some results are presented in the current manuscript without mentioning figures or tables, for example in "250: The components of the Tetrahymena radial spoke stalks" no figure/table is cited. There is also inconsistency - in 327 RSP9 is mentioned as a MORN protein, but in Fig.6 Sup.3 Table.1, it is mentioned as "unknown".
-
-
docdrop.org docdrop.org
-
Melodic composition
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors aim to theoretically explain the wide range of time scales observed in cortical circuits in the brain -- a fundamental problem in theoretical neuroscience. They propose that the variety of time scales arises in recurrent neural networks with heterogeneous units that represent neuronal assemblies of different sizes that transition through sequences of high- and low-activity metastable states. When transitions are driven by intrinsically generated noise, the heterogeneity leads to a wide range of escape times (and hence time scales) across units. As a mathematically tractable model, they consider a recurrent network of heterogeneous bistable rate units in the chaotic regime. The model is an extension of the previous model by Stern et al (Phys. Rev. E, 2014) to the case of heterogeneous self-coupling parameters. Biologically, this heterogeneous parameter is interpreted as different assembly sizes. The chaoticity acts as intrinsically generated noise-driving transitions between bistable states with escape times that are indeed widely distributed because of the heterogeneity. The distribution is successfully fitted to experimental data. Using previous dynamic mean-field theory, the self-consistent auto-correlation function of the driving noise in the mean-field model is computed (I guess numerically). This leaves the theoretical problem of calculating escape times in the presence of colored noise, which is solved using the unified colored-noise approximation (UCNA). They find that the log of the correlation time of a given unit increases quadratically with the self-coupling strength of that unit, which nicely explains the distribution of time scales over several orders of magnitude. As a biologically plausible implementation of the theory, they consider a spiking neural network with clustered connectivity and heterogeneous cluster sizes (extension of the previous model by Mazzucato et al. J Neurosci 2015). Simulations of this model also exhibit a quadratic increase in the log dwell time with cluster size. Finally, the authors demonstrate that heterogeneous assemblies might be useful to differentially transmit different frequency components of a broadband stimulus through different assemblies because the assembly size modulates the gain.
I found the paper conceptually interesting and original, especially the analytical part on estimating the mean escape times in the rate network using the idea of probe units and the UCNA. It is a nice demonstration of how chaotic activity serves as noise-driving metastable activity. Calculating the typical time scales of such metastable activity is a hard theoretical problem, for which the authors made considerable advancement. The conclusions of this paper are mostly well supported by simulations and mathematical analysis, but some aspects need to be clarified and extended, especially concerning the biological plausibility of the rate network model and its relation to the spiking neural network model as well as the analytical calculation of the mean dwell time.
1) The theory is based on a somewhat unbiological network of bistable rate units. It seems to only loosely apply to the implementation with a spiking neural network with clustered architecture, which is used as a biological justification of the rate model. In the spiking model, a wide distribution of time scales also emerges as a consequence of noise-induced escapes in combination with heterogeneity. Apart from this analogy, however, the mechanisms for metastability seem to be quite different: firstly, the functional units in the spiking neural network are presumably not bistable themselves but multistability only emerges as a network effect, i.e. from the interaction with other assemblies and inhibitory neurons. (This difference yields anti-correlations between assemblies in the spiking model, in marked contrast to the independence of bistable rate units (if N is large).) Secondly, transitions between metastable states are presumably not driven by chaotic dynamics but by finite-size fluctuations (e.g. Litwin-Kumar & Doiron 2012). The latter is also strongly dependent on assembly size. More precisely, the mechanism of how assembly size shapes escape times T seems to be different: in the rate model the self-coupling ("assembly size") predominantly affects the effective potential, whereas in the spiking network, the assembly size predominantly affects the noise.
Furthermore, the prediction of the rate model is a quadratic increase of log(T), however, the data shown in Fig.5b do not seem to strongly support this prediction. More details and evidence that the data "was best fit with a quadratic polynomial" would be necessary to test the theoretical prediction. Therefore, the correspondence between the rate model and the spiking model should probably be regarded in a looser sense than presented in the paper.
2) The time scale of a bistable probe unit driven by network-generated "noise" is taken to be the mean dwell time T (mean escape time) in a metastable state. It seems that the expressions Eq.4 and Eq.21 for this time are incorrect. The mean dwell time is given by the mean first-passage time (MFPT) from one potential minumum to the opposite one including the full passage across the barrier. At least, the final point for the MFPT should be significantly beyond the barrier to complete the escape. However, the authors only compute the MFPT to a location -x_c slightly before the barrier is reached, at which point the probe unit has not managed to escape yet (e.g. it could go back to -x_2 after reaching -x_c instead of further going to +x_2). It is not clear whether the UCNA can be applied to such escape problems because it is valid only in regions, where the potential is convex, and thus the UCNA may break down near the potential barrier. Indeed, the effective potential is not defined near the barrier (see forbidden zone in Fig.4b), and hence it is not clear how to calculate the mean escape time. Nonetheless, the incomplete MFPT computed by the authors seems to qualitatively predict the dependence on the self-coupling parameter s, at least in the example of Fig.4c. However, if the incomplete MFPT is taken as a basis, then the incomplete MFPT should also be used for the white-noise case for a fair comparison. It seems that the corresponding white-noise case is given by Eq.4 with tau_1=0, which still has the same dependence on the self-coupling s_2, contrary to what is claimed in the paper (it is unclear how the curve for the white-noise case in Fig.4 was obtained). Note that the UCNA has been designed such that it is valid for both small and large tau_1 (thus, it is also unclear why the assumption of large tau_1 is needed).
3) The given argument that the time-scale separation arises as network effect is not very clear. Apart from the issue of a fair comparison of colored and white noise raised in point 1 above, an external colored noise with matched statistics that drives a single bistable unit would yield the same MFPT and thus would be an alternative explanation independent of the network dynamics.
4) The UCNA has assumptions and regimes of validity that are not stated in the paper. In particular, it assumes an Ornstein-Uhlenbeck noise, which has an exponential auto-correlation function, and local stability (region where potential is convex). Because the self-consistent auto-correlation function is generally not exponential and the probe unit also visits regions where the potential is concave, the validity of the UCNA is not clear. On the other hand, the assumption of large correlation time might be dropped as the UCNA's main feature is that it works for both large and small correlation times.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this work, the authors were aiming to probe why enhancers tend to have multiple binding sites for the same transcription factor (TF). As a test bed, they use the snail distal enhancer, which drives a band of expression in the early Drosophila embryo and is composed of multiple, generally weak binding sites for several activating TFs. Using the MS2-MCP reporter system, the authors characterize the live mRNA dynamics driven by the wild-type and mutant enhancers, in which individual or pairs of binding sites have been deleted. They complement these experimental measurements with two computational models - a simple thermodynamic model to explore the cooperativity of TF binding to enhancers and a Hidden Markov Model to analyze the kinetic parameters of their dynamic measurements. The key finding from the experiments is that ablating any of several TF binding sites individually or in pairs dramatically reduces the expression levels, though not the spatial extent, of the snail distal enhancer. This effect holds true in a ~600 bp minimal enhancer and a ~1800 bp extended enhancer. The bulk of this effect is due to a marked decrease in transcriptional amplitude. A simple thermodynamic model confirms the intuition that synergy between the TF binding sites can explain the experimental results and further analysis shows that the modest decline in transcriptional burst duration in mutant enhancers is likely due to more frequent dissociation of the enhancer-promoter complex.
The paper's strengths include the use of well-established measurement and analysis techniques to uncover the surprisingly dramatic effect of single TF binding site mutations, even in the extended enhancer which contains ~20 TF binding sites. This work starts to chip away at the question of why multiple TF binding sites are so frequently observed in enhancers and complement studies of other similar enhancers. It is likely to be of interest to the enhancer biology community. It also sets the stage to explore whether this observation will generalize to other enhancers with different properties, e.g. those with stronger TF binding sites or whose activity is more strongly shaped by repressive TFs.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, the authors investigated plausible circuit mechanisms for their recently reported effect of NMDAR antagonists on the synchrony of prefrontal neurons in a cognitive task. On the basis of previously proposed computational network models of spiking excitatory and inhibitory neurons and their mean-field and linear stability analysis descriptions, they show that a specific network configuration set close to the onset of instability of the asynchronous state can replicate qualitatively key empirical observations. For such a network, a small increase in external drive causes a large increase in neuronal synchrony, and this is not happening if NMDAR-dependent transmission is reduced. This shows parallelism with the empirical data thus representing its first neural network explanation.
The paper provides valuable insights into possible mechanisms related to cortical dysfunction under NMDAR hypofunction, a topic of importance for several neuropsychiatric disorders. However, the fact that the manuscript remains at a rather abstract level and does not attempt a closer match to the experimental data is a limitation of the study.
1) The manuscript is strongly based on state diagrams and parametric descriptions of neural dynamics in a computational model that has been extensively studied before (Brunel, Wang 2003). Many of the parametric dependencies of this model shown here were already reported before, although not specifically altering concurrently external inputs and NMDAR-dependent transmission as done now. The main novelty of the study is the application of this framework to a specific empirical dataset of great scientific relevance. However, the manuscript emphasizes the model exploration in relation to a limited set of effects in the data (changes in synchrony immediately before motor response) and not so much the comparison to the neural recordings more generally (for instance, firing rates, other time periods in the task, etc.)
2) As discussed in the introduction, empirical data available suggests that 0-lag synchrony in prefrontal networks is affected by manipulations that reduce NMDAR function (Zick et al. 2018) and by manipulations that enhance NMDAR function (Zick et al. 2021). The computational model presented in this manuscript does not show this U-shaped behavior and the discussion does not mention this. It should be discussed whether the model can accommodate this or not.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Esmaily and colleagues report two experimental studies in which participants make simple perceptual decisions, either in isolation or in the context of a joint decision-making procedure. In this "social" condition, participants are paired with a partner (in fact, a computer), they learn the decision and confidence of the partner after making their own decision, and the joint decision is made on the basis of the most confident decision between the participant and the partner. The authors found that participants' confidence, response times, pupil dilation, and CPP (i.e. the increase of centro-parietal EEG over time during the decision process) are all affected by the overall confidence of the partner, which was manipulated across blocks in the experiments. They describe a computational model in which decisions result from a competition between two accumulators, and in which the confidence of the partner would be an input to the activity of both accumulators. This model qualitatively produced the variation in confidence and RTs across blocks.
The major strength of this work is that it puts together many ingredients (behavioral data, pupil and EEG signals, computational analysis) to build a picture of how the confidence of a partner, in the context of joint decision-making, would influence our own decision process and confidence evaluations. Many of these effects are well described already in the literature, but putting them all together remains a challenge. However, the construction is fragile in many places: the causal links between the different variables are not firmly established, and it is not clear how pupil and EEG signals mediate the effect of the partner's confidence on the participant's behavior.
Finally, one limitation of this setting is that the situation being studied is very specific, with a joint decision that is not the result of an agreement between partners, but the automatic selection of the most confident decisions. Thus, whether the phenomena of confidence matching also occurs outside of this very specific setting is unclear.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review
This manuscript utilizes Drosophila melanogaster as a model system to functionally characterize the role of genes previously associated with obstructive pulmonary disease (COPD) in epithelial barrier function. Using genetic and imaging approaches, the authors characterised a previously unrecognised role of intestinal Acetylcholine receptor (AchR) signalling, in the regulation of epithelial barrier function. The working model proposes that Acetylcholine (Ach) produced by enteroendocrine cells (EEs) and enteric neurons signals to AchR in enterocytes (ECs). This signalling activates the secretion of the Peritrophic membrane (PM) through the regulation of the exocytic protein Syt4. In this way, Ach/AchR signalling works to protect epithelial barrier function and organismal tolerance to ingested damaging agents, such as those causing oxidative stress.
Overall, the data presented support the main model of the paper: EC AchR activation is necessary to maintain epithelial barrier function. The evidence, however, on the mechanisms downstream of AchR, namely, the involvement of this signalling pathway in the regulation of Syt4 is weak.
The work in this manuscript represents an important proof of concept for the use of the Drosophila midgut as a model to functionally interrogate genes from human genetic association studies in pathologies affecting epithelial homeostasis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Mano et. al. use a combination of behavioral, genetic silencing, and functional imaging experiments to explore the temporal properties of the optomotor response in Drosophila. They find a previously unreported inversion of the behavior under high contrast and luminance conditions and identify potential pathways mediating the effect.
Strengths:<br /> Quantifications of optomotor behavior have been performed for many decades. Despite a large number of previous studies, the authors still find something fundamentally novel: under high contrast conditions and extended stimulation periods, the behavior becomes dynamic over time. The turning response shows an initial transient positive following response. The amplitude of the behavior then decreases and even inverts such that animals show an anti-directional rotation response. The authors systematically explore the stimulation feature space, including large ranges of spatial and temporal frequencies and conditions with high and low contrast. They also test two wild-type fly species and even compare experiments across two different labs and setups. From these data, it seems clear that the behavior is robust and largely depends on the brightness of the stimulation, rearing conditions, and genetic background. The authors discuss that these effects have not clearly been reported elsewhere beforehand, and convincingly argue why this may be the case.
In general, the presented behavioral quantifications illustrate the importance of further experimental studies of the temporal dynamics of behavior in response to dynamically varying stimulus features, across different stimulus types, genetic backgrounds, and model animal systems. It also illustrates the importance of relating the conditions that animals experience in the laboratory to the ones they would experience in the wild. As the authors mention, the brightness during a sunny day can reach values as high as 4000 cd/m2, while experimental stimulation in the lab has so far often been orders of magnitude below that.
The study then systematically explores potential neural elements involved in the behavior. Through a set of silencing experiments, they find that T4 and T5 neurons, as expected, are required for motion behaviors. On the other hand, silencing HS cells largely abolishes the 'classical' syn-directional response but leaves anti-directional turning intact. On the other hand, silencing CH cells abolishes the anti-directional response but leaves the syn-directional behavior intact. Through functional imaging in T4, T5, HS, and CH neurons, the authors could show that none of these neurons shows a response inversion depending on contrast level. Together, these experiments nicely illustrate that the dynamics do not seem to be computed within the early parts of visual processing, but they must happen on the level of the lobula plate or further downstream.
Weaknesses:<br /> While the authors have already explored various parameters of the experiment, it would have been nice to see additional experiments regarding the initial adaptation phase. The experiments in Figure 2e, where the authors show front-to-back or back-to-front gratings before the rotation phase, are a good start. What would the behavioral dynamics look like if they had exposed animals to long periods of static high or low contrast gratings, whole field brightness, or darkness? Such experiments would surely help to better understand the stimulus features on which the adaptation elements operate. It would be interesting to explore to what degree such static stimuli impact the subsequent behavioral dynamics.
Given the dynamics of the behavior, it would probably also be worth looking at the turning dynamics after the stimulus has stopped. If direction-selective adaptation mechanisms are regulating the turning response, one may find long-lasting biases even in the absence of stimulation. If the authors have more data after the stimulus end, it would be good to further expand the time range by a few seconds to show if this is the case or not (for example, in Figure 1b).
Another important experiment could be to initially perform experiments in a closed-loop configuration, and then quickly switch to open-loop. The closed-loop configuration should allow the motion computing circuitry to adapt to the chosen environmental conditions. Explorations of the changes in turning response dynamics after such treatments should then enable further dissections of the mechanisms of adaptation. Closed-loop experiments under different contrast conditions have already been performed (for example, Leonhardt et al. 2016), which also showed complex response dynamics after stimulus on- and offset. It would be great to discuss the current open-loop experiments, and maybe some new closed-loop results, in relation to the previous work.
The authors mention the different rearing conditions, and there is one experiment in Figure S2 which mentions running experiments at 25 deg C. But it is not clear from the Methods at which temperature all other experiments have been performed. It is also not clear at which temperature the shibire block experiments were performed. As such experiments require elevated temperatures, I assume that all behavioral experiments have been performed at such levels? How high were those?
What does the fly see before and after the stimulus (i.e. the gray boxes in all figures)? Are these periods of homogenous gray levels or are these non-moving gratings with the luminance and contrast of the subsequent stimulus? It would be important to add this information to the methods and to the figure illustrations or legends.
It would be nice to discuss the potential location where the motion adaptation may be implemented in the brain. A small model scheme as an additional figure could further help to discuss how such computations may be mechanistically implemented, helping readers to think about future experimental dissections of the behavior.
For setting up similar experiments in other labs, the authors need to better describe how they measured the luminance of the arena. Do they simply report the brightness delivered by the Lightcrafter system, or did they measure this with a lux-meter? If so, at which distance was the measurement performed and with which device? Given that the behavior is sensitive to the specific properties of the stimulus, it will be important to report these numbers carefully to enable other groups to reproduce effects.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this work, Cheikh et al. develop a novel method to probe tissue mechanics in vivo, with particular application to the early Drosophila embryo. The method is based on filling a pulled micropipette with a mixture of fluorescent dye and PDMS, which is cured and allowed to harden. Etching away the tip of the glass micropipette leaves exposed the PDMS core, which, like the bristles held in a brush handle, is easily deformed. Calibration of the stiffness of the PDMS tip allows for direct measurement of forces through the tip displacement. Apart from the particular application here, this method should prove to be widely useful in biological physics.
The authors then inserted this force probe into Drosophila embryos at the stage when cellularization has occurred, and demonstrate the ability to deform the tissue (visualized by fluorescently labelled cell walls). Crucially, the time course of the deformation can be controlled by the rate at which the pipette is translated, allowing for the study of potential viscous or viscoelastic effects.
The authors find from their experiments and extensive computational analysis of mechanical models of the embryo that there must be a significant difference between the mechanical properties of the apical and basal sides of the tissue.
This is a very well executed paper that provides compelling evidence for the utility of the experimental method and the particular issues in Drosophila mechanics. A strength of the paper is the clear and simple focus on a particular deformation and its experimental and theoretical analysis. The computational section is a bit less clearly connected to the observations, in the sense that some kind of very simplified model incorporating the apicobasal differences is lacking.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors investigate the interactions between Plasmodium falciparum RH5, an essential ligand mediating erythrocyte invasion by the malaria parasite, and its cognate receptor basigin. Based on published observations that basigin forms complexes with the plasma membrane Ca2+-ATPase PMCA1/4 or monocarboxylate transporter MCT1, the authors asked whether RH5 can interact with basigin complexed with PMCA or MCT1, whether this modulates the function of PMCA and whether these interactions may explain the mechanism of action of neutralising antibodies targeting RH5. The objectives and rationale of the study are very clear.
Using size exclusion chromatography, 2D blue native PAGE, antibody shift, and depletion assays, the authors demonstrate that native basigin in human erythrocytes is essentially found in heteromeric complexes with either PMCA4 or MCT1. They measured the binding of PfRH5 to purified basigin-PMCA and basigin-MCT1 complexes by surface plasmon resonance and found that RH5 interacts with complexed basigin with higher affinity than with isolated basigin. RH5 did not alter the ATPase activity of PMCA, either in purified PMCA-basigin complexes or in CHO cells expressing human basigin and PMCA4, leading the authors to rule out RH5-mediated alteration of PMCA-mediated calcium export as a mechanism underlying the changes in calcium flux at the interface between the erythrocyte and the invading parasite. Finally, the authors used structural modelling to show that growth-inhibitory antibodies sterically block the binding of RH5 to basigin-PMCA and basigin-MCT1 complexes, providing a molecular explanation for why most potent anti-RH5 neutralising antibodies do not prevent RH5 binding to isolated basigin.
The paper is well-written and the claims are well-supported by the data. The study provides new insight into an essential interaction during blood-stage malaria and reveals the mode of action of growth-inhibitory antibodies, with potential implications for the design of RH5-based malaria vaccines. The study does not address whether PMCA and MCT1 are required during erythrocyte invasion by P. falciparum merozoites, and does not provide direct evidence to completely rule out a role of RH5-PMCA interaction in calcium flux modulation in the context of erythrocyte invasion by the parasite.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The study assesses the impact of testing contacts of cases in school classes when identified, rather than at the end of quarantine, on various outcomes such as secondary infections, tracing delay, and identification of the possible source of infection. The authors find that the intervention likely reduced tracing delay and increased the number of possible infection sources. However, due to unmeasured confounding, it remains unclear if secondary transmission actually decreased. The analysis requires clarification and further explanation in parts.
Major strengths and weaknesses:<br /> The study benefits from the assessment of various outcomes in contact tracing in addition to changes in transmission, such as tracing delay, and the identification of putative infectors; however the assumption that other cases found in households are infectors of the index case rather than putative infectees, may introduce significant bias, but this is not mentioned in the Discussion despite being significant. It is difficult to understand the intervention in Figure 1 due to unclear labelling and incomplete descriptions in the caption. The authors mention that the same school class could be included multiple times for multiple outbreaks - was there a time cutoff for inclusion? I had a lot of trouble interpreting or reproducing the values given in Table 1. Firstly, the methods used to produce the RRs given are not described in the methods section of the paper. What are the outcomes - "classes" and "indexes" are poroly defined. Is this output from univariate or multivariate regression model, and what is the link function? I was also unable to reproduce the RRs listed in the table despite attempting several methods. The closest numbers I achieved were by crudely dividing the risks (e.g. for the RR for known infection source I took the ratio of indexes for which a school contact was suspected pre and post-intervention (644/1175)/(146/429) = 1.61), but if this is the case then the unknown class is by definition not the reference category. This is the same for the other RRs stated in the table. The methods used should be clarified and results updated if erroneous. The mediation analysis components and their relevance to the study could be better explained in the methods and results.
Achievement of aims and support for conclusions:<br /> The authors partially achieved their aims by demonstrating a likely decrease in tracing delay and an increase in possible infection sources. However, the study's inability to determine if secondary transmission decreased due to unmeasured confounding limits the conclusiveness of the findings. The authors should reiterate the main numerical results in the first few paragraphs of the discussion.
Impact on the field and utility of methods and data:<br /> This study has the potential to impact the field by highlighting the benefits of testing contacts earlier in school classes. The findings on reduced tracing delay and increased identification of infection sources can inform future strategies and interventions. However, clarity on the analysis methods, as well as the results, are necessary to ensure the utility and reliability of the findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Briggs et al use a combination of mathematical modelling and experimental validation to tease apart the contributions of metabolic and electronic coupling to the pancreatic beta cell functional network. A number of recent studies have shown the existence of functional beta cell subpopulations, some of which are difficult to fully reconcile with established electrophysiological theory. More generally, the contribution of beta cell heterogeneity (metabolism, differentiation, proliferation, activity) to islet function cannot be explained by existing combined metabolic/electrical oscillator models. The present studies are thus timely in modelling the islet electrical (structural) and functional networks. Importantly, the authors show that metabolic coupling primarily drives the islet functional network, giving rise to beta cell subpopulations. The studies, however, do not diminish the critical role of electrical coupling in dictating glucose responsiveness, network extent as well as longer-range synchronization. As such, the studies show that islet structural and functional networks both act to drive islet activity, and that conclusions on the islet structural network should not be made using measures of the functional network (and vice versa).
Strengths:
- State-of-the-art multi-parameter modelling encompassing electrical and metabolic components.
- Experimental validation using advanced FRAP imaging techniques, as well as Ca2+ data from relevant gap junction KO animals.
- Well-balanced arguments that frame metabolic and electrical coupling as essential contributors to islet function.
- Likely to change how the field models functional connectivity and beta cell heterogeneity.
Weaknesses:
- Limitations of FRAP and electrophysiological gap junction measures not considered.
- Limitations of Cx36 (gap junction) KO animals not considered.
- Accuracy of citations should be improved in a few cases.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Notwithstanding that the molecular underpinnings of the mechanistic target of rapamycin complex 1 (mTORC1) signaling are relatively well understood, quantitative data pertinent to mTORC1-dependent integration of a variety of stimuli is lacking. To address this question, Sparta et al., developed a series of fluorescent reporters that in combination with live cell microscopy allowed them to determine responses of mTORC1 to several stimuli including glucose, amino acids, and insulin at the single cell resolution. Considering the central role of mTORC1 in homeostasis and its dysregulation across a variety of pathological states, it was thought that this study should be of broad interest to a wide spectrum of biomedical disciplines ranging from biochemistry, molecular and cellular biology to neurobiology and cancer research.
Strengths: This study employs powerful approach based on use of live cell imaging of multiple fluorescent reports that are indicative of alterations in mTORC1 activity. In contrast to traditional approaches based on querying phosphorylation status of mTORC1 substrates by Western blotting this approach allows time-resolved measurement of mTORC1 activity at the single cell resolution. Using this approach, the authors provide solid evidence to corroborate a model of graded activation of mTORC1 by amino acids, insulin, and combination thereof.
Weaknesses: The major weaknesses were thought to be related to the interpretation of the current model of mTORC1 regulation as AND gate and reliance on a single cell line. Some minor technical issues were also observed pertinent to the lack of controls demonstrating the effectiveness of manipulations of nutrients and/or insulin as well as the effects of such manipulation on the expression of reporters used to monitor mTORC1 activity.
-
-
socialsci.libretexts.org socialsci.libretexts.org
-
There are multiple degrees/levels of communication that any one person will run into within every day of their lives. First, and most importantly, is intrapersonal communication. Intrapersonal communication is a broad concept of communicative phenoms that occur within the individual mind. For many, it can resemble traditonal forms of external communication where a "voice" is acting as a guide to understanding and internalizing the world around us. Intrapersonal communication is hard to conceptualize, and can vary due to biological factors effecting each individuals brains to create unique mental environments. Interpersonal communication, which is the next most intimate form of communication, is when two people exchange messages or share a dialogue. This only occurs with one other person, as the dynamic within a conversation completely changes on a psychological level when more people are there. Then there are multiple interactions of group communication, going from small, to public settings, and larger. All of these, albeit intrapersonal, can be done through verbal, nonverbal, and mediated communication.
-
-
socialsci.libretexts.org socialsci.libretexts.org
-
Communication Competence refers to the values that differentiate successful, and non successful speakers. it involves a balance of both appropriate and effective communication, where omitting one or the other characteristics could damage peoples perceptions of your communication skills. Gauging these aspects to tailor to certain people and situations is the most effective strategy; communication that is successful in one context may go awfully in another dependent on culture, personal morals of your listener, etc. The way you successfully communicate with a child would not bode well if used during a college conference.
Although general applications of communication vary; individuals who have a degree of communication competence generally share similar personal values and skills that help achieve greater communication. Skillfullness, or the ability to take note of and work around/correctly use situational cues to approach a conversation the best they can, is one of these characteristics. The ability to work and adapt under stressful and pressured situations is another important skill to a competent communicator. Having a general idea of possible sources of error, and being able to switch on the fly to make light of those failed situations can be just as important as having a line of communication go exactly as planned. Involvement and understanding the audience tend to go hand in hand, where involvement ties into persuasiveness and excitability of the audience, and understanding is more of an emotional tie-in that creates a deeper, empathetic bond between speaker and audience to tap into their feelings to attempt to seem as genuine and "human" as possible. The last two characteristics, cognitive complexity and self-monitoring, both are skills that typically take practice and a lot of inward thinking to achieve. Cognitive complexity means saying the same thing in different ways. It can either mean changing verbiage to different synonyms, or completely altering a sentence while still maintaining the original meaning. Providing different way to comprehend the same message opens a wider range of people to interact and find your message valuable. Self Monitoring is the hardest of these characteristics to get, as it means turning inwards to focus on your behaviors and manipulate said behavior for your advantage. This can mean having pre-meditated points of conversation to follow, being very aware of the flow of the conversation, having a "meta" sense of your self and paying attention to things like body language, etc.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This paper presents extensive numerical simulations using a model that incorporates up to second-order epistasis to study the joint effects of microscopic epistasis and clonal interference on the evolutionary dynamics of a microbial population. Previous works that explicitly modeled microscopic epistasis typically assumed strong selection & weak mutation (SSWM), a condition that is generally not met in real-life evolutionary processes. Alternatively, another class of models coarse-grained the effects of microscopic epistasis into a generic distribution of fitness effects. The framework introduced in this paper represents an important advance with respect to these previous approaches, allowing for the explicit modeling of microscopic epistasis in non-SSWM scenarios. The modeling framework presented promises to be a valuable tool to study microbial evolution in silico.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This article is interested in how butterfly, or more precisely, butterfly wing scale precursor cells, each make precisely patterned ultrastructures made of chitin.
To do this, the authors sought to use the butterfly Parides eurimedes, a papilionid swallowtail, that carries interesting, unusual structures made of 1) vertical ridges, that lack a typical layered stacking arrangement; and 2) deep honeycomb-like pores (rather than. These two features make the organism chosen a good point of comparison with previous studies, including classic papers that relied on electronic microscopy (SEM/TEM), and more recent confocal microscopy studies.
The article shows good microscopy data, including detailed, dense developmental series of staining in the Parides eurimedes model. The mix of cell membrane staining, chitin precursor, and F-actin staining is well utilized and appropriately documented with the held of 3D-SIM, a microscopy technique considered to provide super-resolution (here needed to visualize sub-cellular processes).
The key message from this article is that F-actin filaments are later repurposed, in papilionid butterflies, to finish the patterning of the inter-ridge space, elaborating new structures (this was not observed so far in other studies and organisms). The model proposed in Figure 6 summarized these findings well, with F-actin reshaping itself into a tulip that likely pulls down a chitin disk to form honeycombs. These interpretations of the microscopy data are interesting and novel.
There are two other points of interest, that deserve future investigation:
1) The authors performed immunolocalizations of Arp2 and pharmacological inhibitions of Arp2/3, and found some possible effect on honeycomb lattice development. The inter-ridge region of the butterfly Papilio polytes, which lacks these structures, did not seem to be affected by drug treatments. Effects were time-dependent, which makes sense. These data provide circumstantial evidence that Arp2/3 is involved in the late role of F-actin formation or re-organisation.
2) The authors perform a comparative study in additional papilionids (Fig. 6 in particular). I find these data to be quite limited without a dense sampling, but they are nonetheless interesting and support a second-phase role of F-actin re-organisation.
The article is dense, well produced and succinctly written. I believe this is an interesting and insightful study on a complex process of cell biology, that inspires us to look at basic phenomena in a broader set of organisms.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In chicken embryos, the counter-rotating migration of epiblast cells on both sides of the forming primitive streak (PS), a process referred to as polonaise movements, has attracted longstanding interest as a paradigm of morphogenetic cell movements. However, the association between these cell movements and PS development is still controversial. This study investigated PS development and polonaise movements separately at their initial stage, showing that both could be uncoupled (at least at the initial phase), being activated via Vg1 signaling.
Strengths of this study
Polonaise movements, i.e., the circular cell migration of epiblast cells on both sides of the forming PS in avian embryos, have been the subject of research through live imaging and promoted the development of new tools to analyze quantitatively such movements. However, conclusions from previous studies remain controversial, at least partly due to the nature of perturbations to PS development and polonaise movements.
This study performed the challenging technique of electroporation to successfully mark and manipulate Wnt/PCP pathways in unincubated chicken embryo cells at the initiation phase of these two processes. In addition, the authors separately altered PS development and polonaise movements: PS development was perturbed by inhibiting either the Wnt/PCP pathway or DNA synthesis using aphidicolin, while polonaise movements were modified by the development of a second PS after engrafting Vg1-expressing COS cells located at the opposite end of the blastoderm. The study concluded that Vg1 elicits both PS development and polonaise movements, which occur in a parallel and are not inter-dependent.
To support these conclusions, particle image velocimetry (PIV) of cell trajectories captured by live imaging was performed. These tools delineated visually appealing cell movements and gave rise to vorticity profiles, adding more value to this study.
Weaknesses of this study
Engrafted Vg1-expressing COS cells located at the anterior end of the blastoderm elicited both the development of a second PS and marked bilateral polonaise movements while perturbing these movements along the original PS. How do polonaise movements along the second PS dominate over those along the normal PS? The authors suggested a model in which Vg1 acts in a graded or dose-dependent manner since engrafted COS cells over-expressed Vg1. This model can be tested by reducing the mass of engrafted COS cells. Although the authors propose performing this analysis in further investigations, it would be preferable to incorporate into this study for better consistency.
The authors claim that chicken embryo development is representative of "amniotes," but it does not hold for all groups. Avian and mammal species are exceptional among amniotes in the sense they develop a PS (e.g., Coolen et al. 2008). Moreover, in certain mammalian embryos like mouse embryos, cells laterally to the PS do not move much (Williams et al. 2012). The authors should avoid the generalization that chicken embryos unequivocally represent amniotes as opposed to the observed in non-amniote embryos. The observations in chicken embryos as they stand are significant enough.
References:<br /> Coolen M, et al. (2008). Molecular characterization of the gastrula in the turtle Emys orbicularis: an evolutionary perspective on gastrulation. PLoS One. 3(7):e2676. doi: 10.1371/journal.pone.0002676
Williams M, et al. (2012). Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn. 241(2):270-283. doi: 10.1002/dvdy.23711
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> The authors explored correlations between taste features of botanical drugs used in ancient times and therapeutic uses, finding some potentially interesting associations between intensity and complexity of flavors and therapeutic potential, plus some more specific associations described in the discussion sections. I believe the results could be of potential benefit to the drug discovery community, especially for those scientists working in the field of natural products.
Strengths:<br /> Owing to its eclectic and somehow heterodox nature, I believe the article might be of interest to a general audience. In fact, I have enjoyed reading it and my curiosity was raised by the extensive discussion.
The idea of revisiting a classical vademecum with new scientific perspectives is quite stimulating.
The authors have undertaken a significant amount of work, collecting 700 botanical drugs and exploring their taste and association with known uses via eleven trained panelists.
Weaknesses:<br /> I have some methodological concerns. Was subjective bias within the panel of participants explored or minimized in any manner? Were the panelists exposed to the drugs blindly and on several occasions to assess the robustness of their perceptions? Judging from the total number of taste assessments recorded and from Supplementary Material, it seems that not every panelist tasted every drug. Why? It may be a good idea to explore the similarity in the assessments of the same botanical drug by different volunteers. If a given descriptor was reported by a single volunteer, was it used anyway for the statistical analysis or filtered out?
The idea of "versatility" is repeatedly used in the manuscript, but the authors do not clearly define what they call "versatile".
The introduction should be expanded. There are plenty of studies and articles out there exploring the evolution of bitter taste receptors, and associating it with a hypothetical evolutionary advantage since bitter plants are more likely to be poisonous. Since plant secondary metabolites are one of the most important sources of therapeutic drugs and one of their main functions is to protect plants from environmental dangers (e.g., animals), this evolutionary interplay should be at least briefly discussed in the introductory section. Since the authors visit some classical authors, Parecelsus' famous quote "All things are poison and nothing is without poison. Solely the dose determines that a thing is not a poison" may be relevant here. Also note that some authors have explored the relationship between taste receptors and pharmacological targets (e.g., Bioorg Med Chem Lett. 2012 Jun 15;22(12):4072-4).
-
-
www.researchsquare.com www.researchsquare.com
-
Reviewer #1 (Public Review):
Summary:<br /> The overall analysis and discovery of the common motif are important and exciting. Very few human/primate ribozymes have been published and this manuscript presents a relatively detailed analysis of two of them. The minimized domains appear to be some of the smallest known self-cleaving ribozymes.
Strengths:<br /> The manuscript is rooted in deep mutational analysis of the OR4K15 and LINE1 and subsequently in modeling of a huge active site based on the closely-related core of the TS ribozyme. The experiments support the HTS findings and provide convincing evidence that the ribozymes are structurally related to the core of the TS ribozyme, which has not been found in primates prior to this work.
Weaknesses:<br /> 1. Given that these two ribozymes have not been described outside of a single figure in a Science Supplement, it is important to show their locations in the human genome, present their sequence and structure conservation among various species, particularly primates, and test and discuss the activity of variants found in non-human organisms. Furthermore, OR4K15 exists in three copies on three separate chromosomes in the human genome, with slight variations in the ribozyme sequence. All three of these variants should be tested experimentally and their activity should be presented. A similar analysis should be presented for the naturally-occurring variants of the LINE1 ribozyme. These data are a rich source for comparison with the deep mutagenesis presented here. Inserting a figure (1) that would show the genomic locations, directions, and conservation of these ribozymes and discussing them in light of this new presentation would greatly improve the manuscript. As for the biological roles of known self-cleaving ribozymes in humans, there is a bioRxiv manuscript on the role of the CPEB3 ribozyme in mammalian memory formation (doi.org/10.1101/2023.06.07.543953), and an analysis of the CPEB3 functional conservation throughout mammals (Bendixsen et al. MBE 2021). Furthermore, the authors missed two papers that presented the discovery of human hammerhead ribozymes that reside in introns (by de la PeÃ{plus minus}a and Breaker), which should also be cited. On the other hand, the Clec ribozyme was only found in rodents and not primates and is thus not a human ribozyme and should be noted as such.
2. The authors present the story as a discovery of a new RNA catalytic motif . This is unfounded. As the authors point out, the catalytic domain is very similar to the Twister Sister (or "TS") ribozyme. In fact, there is no appreciable difference between these and TS ribozymes, except for the missing peripheral domains. For example, the env33 sequence in the Weinberg et al. 2015 NCB paper shows the same sequences in the catalytic core as the LINE1 ribozyme, making the LINE1 ribozyme a TS-like ribozyme in every way, except for the missing peripheral domains. Thus these are not new ribozymes and should not have a new name. A more appropriate name should be TS-like or TS-min ribozymes. Renaming the ribozymes to lanterns is misleading.
3. In light of 2) the story should be refocused on the fact the authors discovered that the OR4K15 and LINE1 are both TS-like ribozymes. That is very exciting and is the real contribution of this work to the field.
4. Given the slow self-scission of the OR4K15 and LINE1 ribozymes, the discussion of the minimal domains should be focused on the role of peripheral domains in full-length TS ribozymes. Peripheral domains have been shown to greatly speed up hammerhead, HDV, and hairpin ribozymes. This is an opportunity to show that the TS ribozymes can do the same and the authors should discuss the contribution of peripheral domains to the ribozyme structure and activity. There is extensive literature on the contribution of a tertiary contact on the speed of self-scission in hammerhead ribozymes, in hairpin ribozyme it's centered on the 4-way junction vs 2-way junction structure, and in HDVs the contribution is through the stability of the J1/2 region, where the stability of the peripheral domain can be directly translated to the catalytic enhancement of the ribozymes.
5. The argument that these are the smallest self-cleaving ribozymes is debatable. LÃ1/4nse et al (NAR 2017) found some very small hammerhead ribozymes that are smaller than those presented here, but the authors suggest only working as dimers. The human ribozymes described here should be analyzed for dimerization as well (e.g., by native gel analysis) particularly because the authors suggest that there are no peripheral domains that stabilize the fold. Furthermore, Riccitelli et al. (Biochemistry) minimized the HDV-like ribozymes and found some in metagenomic sequences that are about the same size as the ones presented here. Both of these papers should be cited and discussed.
6. The authors present homology modeling of the OR4K15 and LINE1 ribozymes based on the crystal structures of the TS ribozymes. This is another point that supports the fact that these are not new ribozyme motifs. Furthermore, the homology model should be carefully discussed as a model and not a structure. In many places in the text and the supplement, the models are presented as real structures. The wording should be changed to carefully state that these are models based on sequence similarity to TS ribozymes. Fig 3 would benefit from showing the corresponding structures of the TS ribozymes.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors have performed extensive work generating reporter mice and performing single-cell analysis combined with in situ hybridization to arrive at 14 clusters of enterochromaffin (EC) cells. Then, they focus on Piezo channel expression in distal EC cells and find that these channels might play a role in regulating colonic motility. Overall, this is an informative study that comprehensively classifies EC cells in different regions of the small and large intestine. From a functional point of view, however, the authors seem to ignore the fact that the expression of Piezo-2-IRES-Cre is broad, which would raise concerns regarding their physiological conclusions.
The authors may wish to consider the following specific points:
It is surprising that the number of ileal EC cells is less than that of the distal colon, and it would be interesting to know whether the authors can comment about ileal EC cells. It is unclear why ileal ECs were not included in the study, even though they are mentioned in the diagram (Fig. 2c).
Based on their analysis, there are 10 EC cell clusters in SI while there are only 4 clusters in the colon. The authors should comment on whether this is reflective of lesser diversity among colonic ECs or due to the smaller number of colonic ECs collected.
The authors previously described that distal colonic EC cells exhibit various morphologies (Kuramoto et al., 2021). Do Ascl1(+) EC cells particularly co-localize with EC cells with long basal processes? Also, to validate the RNA seq data, the authors might show co-localization between Piezo2/Ascl1/Tph1 in distal EC cells. It would be interesting to see whether Ascl1-CreER (which is available in Jax) specifically labels distal colonic EC cells as this could provide a good genetic tool to specifically manipulate distal colonic EC cells.
The authors used Piezo2-IRES-Cre mice, whose expression is rather broad. They might examine the distribution of Chrm3-mCitrine in the intestine (IF/IHC would be straightforward). And if the expression is in other cell types (which is most likely the case), they should justify that the observed phenotype derives from Piezo2-expressing EC cells. Alternatively, they could use Piezo2-Cre;ePetFlp (or Vil-Flp);Chrm3 to specifically express DREADD receptors in distal colonic EC cells. Also, what does 5HT release look like in jejunal EC cells in Piezo-CHRM3 mice?
For the same reasons as above, DTR experiments may also be non-specific. For example, based on the IF staining (Fig. 6b,d), there seems to be a loss of Tph1+ cells in the proximal colon of Piezo2-DTR mice, so the effects of the Piezo2-DTR likely extend beyond the distal colon.
It is unclear why the localized loss of Piezo2 in Piezo2-DTR mice alters small intestinal transit (Fig. 6g,h). The authors should discuss the functional differences observed between Piezo2-DTR (intraluminal app) and Vil1-Piezo2 KO mice i.e., small intestinal transit, 5HT release, etc. Are these differences due to the residual Piezo2 expression in Piezo2 KO mice? In this context, the authors may want to discuss their findings in the context of recent papers, such as those from the Patapoutian and Ginty groups.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> This study aims to further resolve the history of speciation and introgression in Heliconius butterflies. The authors break the data into various partitions and test evolutionary hypotheses using the Bayesian software BPP, which is based on the multispecies coalescent model with introgression. By synthesizing these various analyses, the study pieces together an updated history of Heliconius, including a multitude of introgression events and the sharing of chromosomal inversions.
Strengths:<br /> Full-likelihood methods for estimating introgression can be very computationally expensive, making them challenging to apply to datasets containing many species. This study provides a great example of how to apply these approaches by breaking the data down into a series of smaller inference problems and then piecing the results together. On the empirical side, it further resolves the history of a genus with a famously complex history of speciation and introgression, continuing its role as a great model system for studying the evolutionary consequences of introgression. This is highlighted by a nice Discussion section on the implications of the paper's findings for the evolution of pollen feeding.
Weaknesses:<br /> The analyses in this study make use of a single method, BPP. The analyses are quite thorough so this is okay in my view from a methodological standpoint, but given this singularity, more attention should be paid to the weaknesses of this particular approach. Additionally, little attention is paid to comparable methods such as PhyloNet and their strengths and weaknesses in the Introduction or Discussion. BPP reduces computational burden by fixing certain aspects of the parameter space, such as the species tree topology or set of proposed introgression events. While this approach is statistically powerful, it requires users to make informed choices about which models to test, and these choices can have downstream consequences for subsequent analyses. It also might not be as applicable to systems outside of Heliconius where less previous information is available about the history of speciation and introgression. In general, it is likely that most modelling decisions made in the study are justified, but more attention should be paid to how these decisions are made and what the consequences of them could be, including alternative models.
• Co-estimating histories of speciation and introgression remains computationally challenging. To circumvent this in the study, the authors first estimate the history of speciation assuming no gene flow in BPP. While this approach should be robust to incomplete lineage sorting and gene tree estimation, it is still vulnerable to gene flow. This could result in a circular problem where gene flow causes the wrong species tree to be estimated, causing the true species tree to be estimated as a gene flow event. This is a flaw that this approach shares with summary-statistic approaches like the D-statistic, which also require an a-priori species tree. Enrichment of particular topologies on the Z chromosome helps resolve the true history in this particular case, but not all datasets will have sex chromosomes or chromosome-level assemblies to test against.
• The a-priori specification of network models necessarily means that potentially better-fitting models to the data don't get explored. Models containing introgression events are proposed here based on parsimony to explain patterns in gene tree frequencies. This is a reasonable and common assumption, but parsimony is not always the best explanation for a dataset, as we often see with phylogenetic inference. In general, there are no rigorous approaches to estimating the best-fitting number of introgression events in a dataset. Likewise, the study estimates both pulse and continuous introgression models for certain partitions, though there is no rigorous way to assess which of these describes the data better.
• Some aspects of the analyses involving inversions warrant additional consideration. Fewer loci were able to be identified in inverted regions, and such regions also often have reduced rates of recombination. I wonder if this might make inferences of the history of inverted regions vulnerable to the effects of incomplete lineage sorting, even when fitting the MSC model, due to a small # of truly genealogically independent loci. Additionally, there are several models where introgression events are proposed to explain the loss of segregating inversions in certain species. It is not clear why these scenarios should be proposed over those in which the inversion is lost simply due to drift or selection.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This is a very well written and performed study describing a TOPBP1 separation of function mutation, resulting in defective MSCI maintenance but normal sex body formation. The phenotype differs from that of a previous TOPBP1 null allele, in which both MSCI and sex body formation were defective. Additional defects in CHK phosphorylation and SETX localization are also described.
Strengths:
The study is very rigorous, with a remarkably large number of MSCI marks assayed, phosphoproteomics (leading to the interesting SETX discovery) and 10X RNAseq, allowing the MSCI phenotype to be further deconvolved. The approaches in most cases are robust.
Weaknesses:
There aren't many; please find list below:
1. The authors are committed to the idea that maintenance of MSCI is the major defect here. However, based on the data, an alternative would be that some cells achieve sex body formation and MSCI normally, while others do not. It would only take a small percentage of cells exhibiting MSCI failure to kill all the cells in the same germinal epithelium, so this could still explain the complete pachytene block. This isn't a major point...this phenotype is clearly different to the TOPBP1 KO, but a broader discussion of possibilities in the discussion would help. I raise this in the context of both the cytology and 10X analysis:
a) The assessment that sex body formation is normal is based on cytology in Supp 8 and 9, but a more rigorous approach would be to assess condensation of the XY pair in stage-matched spread cells (maybe they have that data already) by measuring distances between the X and Y centromere, or looking at stage IV of the seminiferous cycle, where all cells should have oval sex bodies but sex body mutants have persistent elongated XY pairs (see work of Namekawa and Turner). The authors do actually mention that gH2AX spreading is defective in many cells....and if this is true, condensation to form a sex body would almost certainly not have taken place in those cells.
b) Regarding the 10X data, the finding that expression of some XY genes is elevated and others are not is also consistent with a "partial" phenotype (some cells have normal XY bodies and MSCI, others fail in both). In Fig 6E, X expression looks to be elevated in B5 vs wt at all stages...if this were a maintenance issue, shouldn't it be equal to that in wt and then elevate later?
2. How is the quantitation showing impaired localization of select markers (e.g. SETX) normalized? How do we know that the antibody staining simply didn't work as well on the mutant slides?
3. Is testis TOPBP1 protein expression reduced in the B5 mutant?
4. 10X analysis: how were the genes on the y-axis in Supp 24 arranged? Is this by location on the X chromosome?
5. The final analyses in Fig 7: X-genes are subdivided based on their behavior (up, down, unchanged). What isn't clear to me is whether the authors have considered the fact that there are global changes in gene expression during meiosis (very low in lep , zyg and early pach, then ramps up hugely from mid pach). In other words, is this normalized to autosomal gene expression?
6. Again regarding the 10X analysis, my prediction would be that not ALL X and Y gene would increase in pach if MSCI were ablated...we should remember that XY genes have been subject to MSCI for some 160 million years of evolution, and this will mean that many enhancers that originally drove their expression prior to the evolution of MSCI will now be lost. This has been our experience: many XY genes aren't elevated at pach even in mutants in which MSCI is totally defective. I'd urge the authors to consider this possibility when they use XY gene expression patterns to diagnose the severity or timing of the MSCI phenotype. This could be a discussion point.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The study by Kahraman et al describes the application of a reaction-based probe "diacetylated Zinpyr1" (DA-ZP1) that was developed for the enrichment of human islet beta cells (Lee et al. 2020 to purify human cadaveric alpha cells. The probe binds zinc with high enough affinity to allow the authors to separate beta cells from alpha cells based on the fluorescence intensity; beta cells had high intensity and alpha cells had medium intensity. FACs sorting of cells with intermediate fluorescent intensity were enriched for glucagon expression indicating they were alpha cells. They went on to reaggregate the purified alpha cells into pseudo-islets to test for viability, proliferation, ability to secrete glucagon and transcriptome analysis. These studies demonstrated that the pseudo-alpha cell islets were able to be maintained in culture for up to 10 days without losing their function and with only minor changes in gene expression.
The strengths of the manuscript include:<br /> 1. The description and characterization of a novel tool with which to purify human islet alpha cells<br /> 2. The ability to use the same DA-ZP1 probe to purify both human alpha and beta cells<br /> 3. The functional analysis to show that purified alpha cells retain their identity and maintain function even after in vitro culturing.<br /> 4. Providing a comparison of the transcriptome between whole islets, unsorted islets and sorted alpha cell pseudo-islets. The data is strengthened by the use of four donor islets and several timepoints for the transcriptomic analysis.<br /> 5. The quality of the data and data presentation
Weaknesses include:<br /> 1. Lack of a comparison with other published methods to purify human alpha cells<br /> 2. Unbiased transcriptome analysis of the sorted "high" vs. "medium" fluorescent populations to assess the degree of cross contamination between the 2 populations<br /> 3. Use of only one donor islet for functional analyses
Overall, this study represents a solid characterization of a new tool for purifying cadaveric human alpha cells that will be useful to researchers in the islet biology and diabetes fields.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
The authors primary objective in this study was to identify differences between patients with preeclampsia and normal patients with respect to the placental syncytiotrophoblast extracellular vesicle proteome.
One of the strengths of this study is that it is one of only a few studies that investigated the difference in proteome between patients with preeclampsia and those with normal pregnancies using placental extracellular vesicles obtained by an ex-vivo dual lobe placenta perfusion technique.
The main weaknesses of this study are:
1. The small sample size in that there were only 12 cases.<br /> 2. The study patients and control population of normal pregnancies were not matched for gestational age at delivery.
The authors were able to achieve their study aims and the results support their conclusions.
These findings could be used in future studies of the disease mechanisms and as biomarkers for prediction of preeclampsia. As such, they may be very useful for the identification of women at risk for preeclampsia well before the onset of disease.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
How plants perceive their environment and signal during growth and development is of fundamental importance for plant biology. Over the last few decades, nano domain organisation of proteins localised within the plasma-membrane has emerged as a way of organising proteins involved in signal pathways. Here, the authors addressed how a non-surface localised signal (viral infection) was resisted by PM localised signalling proteins and the effect of nano domain organisation during this process. This is valuable work as it describes how an intracellular process affects signalling at the PM where most previous work has focused on the other way round, PM signalling effecting downstream responses in the plant. They identify CPK3 as a specific calcium dependent protein kinase which is important for inhibiting viral spread. The authors then go on to show that CPK3 diffusion in the membrane is reduced after viral infection and study the interaction between CPK3 and the remorins, which are a group of scaffold proteins important in nano domain organisation. The authors conclude that there is an interdependence between CPK3 and remorins to control their dynamics during viral infection in plants.
Strengths:
The dissection of which CPK was involved in the viral propagation was masterful and very conclusive. Identifying CPK3 through knockout time course monitoring of viral movement was very convincing. The inclusion of overexpression, constitutively active and point mutation non functioning lines further added to that.
Weaknesses:
My main concerns with the work are twofold.<br /> 1) Firstly, the imaging described and shown is not sufficient to support the claims made. The PM localisation and its non-PM localised form look similar and with no PM stain or marker construct used to support this. The sptPALM data conclusions are nice and fit the narrative. However, no raw data or movie is shown, only representative tracks. Therefore the data quality cannot be verified and in addition, the reporting of number of single particle events visualised per experiment is absent, only number of cells imaged is reported. Therefore it is impossible for the reader to appreciate the number of single molecule behaviours obtained and hence the quality of the data.
2) Secondly, remorins are involved in a lot of nano domain controlled processes at the PM. The authors have not conclusively demonstrated that during viral infection the remorin effects seen are solely due to its interaction with CPK3. The sptPALM imaging of REM1.2 in a cpk3 knockout line goes part way to solve this but more evidence would strengthen it in my opinion. How do we not know that during viral infection the entire PM protein dynamics and organisation are altered? Or that CPK3 and REM are at very distant ends of a signalling cascade. Negative control experiments are required here utilising other PM localised proteins which have no role during viral infection. In addition, if the interaction is specific, the transiently expressed CPK3-CA construct (shown to from nano domains) should be expressed with REM1.2-mEOS to show the alterations in single particle behaviour occur due to specific activations of CPK3 and REM1.2 in the absence of PIAMV viral infection and it is not an artefact of whole PM changes in dynamics during viral infection.
In addition, displaying more information throughout the manuscript (such as raw particle tracking movies and numbers of tracks measured) on the already generated data would strengthen the manuscript further.
Overall, I think this work has the potential to be a very strong manuscript but additional reporting of methods and data are required and additional lines of evidence supporting interaction claims would significantly strengthen the work and make it exceptional.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary of the major findings -
1. The authors used saturation mutagenesis and directed evolution to mutate the highly conserved fusion loop (98 DRGWGNGCGLFGK 110) of the Envelope (E) glycoprotein of Dengue virus (DENV). They created 2 libraries with parallel mutations at amino acids 101, 103, 105-107, and 101-105 respectively. The in vitro transcribed RNA from the two plasmid libraries was electroporated separately into Vero and C6/36 cells and passaged thrice in each of these cells. They successfully recovered a variant N103S/G106L from Library 1 in C6/36 cells, which represented 95% of the sequence population and contained another mutation in E outside the fusion loop (T171A). Library 2 was unsuccessful in either cell type.
2. The fusion loop mutant virus called D2-FL (N103S/G106L) was created through reverse genetics. Another variant called D2-FLM was also created, which in addition to the fusion loop mutations, also contains a previously published, evolved, and optimized prM-furin cleavage sequence that results in a mature version of the virus (with lower prM content). Both D2-FL and D2-FLM viruses grew comparably to wild type virus in mosquito (C6/36) cells but their infectious titers were 2-2.5 log lower than wildtype virus when grown in mammalian (Vero) cells. These viruses were not compromised in thermostability, and the mechanism for attenuation in Vero cells remains unknown.
4. Next, the authors probed the neutralization of these viruses using a panel of monoclonal antibodies (mAbs) against fusion loop and domain I, II and III of E protein, and against prM protein. As intended, neutralization by fusion loop mAbs was reduced or impaired for both D2-FL and D2-FLM, compared to wild type DENV2. D2-FLM virus was equivalent to wild type with respect to neutralization by domain I, II, and III antibodies tested (except domain II-C10 mAb) suggesting an intact global antigenic landscape of the mutant virion. As expected, D2-FLM was also resistant to neutralization by prM mAbs (D2-FL was not tested in this batch of experiments).
5. Finally, the authors evaluated neutralization in the context of polyclonal serum from convalescent humans (n=6) and experimentally infected non-human primates (n=9) at different time points (27 total samples). Homotypic sera (DENV2) neutralized D2-FL, D2-FLM, and wild type DENV similarly, suggesting that the contribution of fusion loop and prM epitopes is insignificant in a serotype-specific neutralization response. However, heterotypic sera (DENV4) neutralized D2-FL and D2-FLM less potently than wild type DENV2, especially at later time points, demonstrating the contribution of fusion loop- and prM-specific antibodies to heterotypic neutralization.
Impact of the study-
1. The engineered D2-FL and D2-FLM viruses are valuable reagents to probe antibodies targeting the fusion loop and prM in the overall polyclonal response to DENV.
2. Though more work is needed, these viruses can facilitate the design of a new generation of DENV vaccine that does not elicit fusion loop- and prM-specific antibodies, which are often poorly neutralizing and lead to antibody-dependent enhancement effect (ADE).
3. This work can be extended to other members of the flavivirus family.
4. A broader impact of their work is a reminder that conserved amino acids may not always be critical for function and therefore should not be immediately dismissed in substitution/mutagenesis/protein design efforts.
Appraisal of the results -
The data largely support the conclusions, but some improvements and extensions can benefit the work.
1. In Figure 3A, the authors concluded that the engineered dengue virus fusion loop mutant viruses are insensitive to monoclonal antibodies (mAbs) targeting the fusion loop. However, the reduction in neutralization sensitivity varied depending on the mAb tested. The contribution of the optimized prM cleavage site (D2-FLM) to sensitivity to fusion loop mAbs also varied.
a) Are the epitopes known for these mAbs? It would be useful to discuss how the epitope of 1M7 differs from the other mAbs. What are the critical residues?<br /> d) Maybe the D2-FL mutant can be further evolved with selection pressure with fusion loop mAbs 1M7 +/-1N5 and/or other fusion loop mAbs.
2. It would have been useful to include D2-M for comparison (with evolved furin cleavage sequence but no fusion loop mutations).
3. Data for polyclonal serum can be better discussed. Table 1 is not discussed much in the text.
Suggestions for further experiments-
1. It would be interesting to see the phenotype of single mutants N103S and G106L, relative to double mutant N103S/G106L (D2-FL).<br /> 2. The fusion capability of these viruses can be gauged using liposome fusion assay under different pH conditions and different lipids.<br /> 3. Correlative antibody binding vs neutralization data would be useful.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study investigated an important question in human reproduction: why most fully aneuploid embryos is incompatible with normal fetal development. Specifically, the authors investigated the cellular responses to aneuploidy through analysis of gene expression in a set of donated human blastocysts. The samples included uniform aneuploid embryos of meiotic origin and mosaic aneuploid embryos from the SAC inhibitor reversine treatment. The authors relied mainly on low-input RNA sequencing and immunofluorescence staining. Pathway analysis with RNA-seq data of trophectoderm cells suggested activation of p53 and possibly apoptosis, and this cellular signature appeared to be stronger in TE cells with a higher degree of aneuploidy. Immunostaining also found some evidence of apoptosis, increased expression of HSP70 and autophagy in some aneuploid cells. With combinational OCT4 and GATA4 as lineage markers, it appeared that aneuploidy could alter the second lineage segregation and primitive endoderm formation in particular.
Although this study is largely descriptive, it generated valuable RNA-seq data from a set of aneuploid TE cells with known karyotypes. Immunostaining results in general were consistent with findings in mouse embryos and human gastruloids.
While there is a scarcity of human embryo materials for research, the lack of single cell level data limits further extension of the presented data on the consequences of mosaic embryos. A major concern is that the gene list used for pathway analysis is not FDR controlled. It is also unclear how the many plots generated with the "supervised approach" were actually performed. The authors also appear to have ignored the possibility that high-dosage group could have a higher mitotic defects. Assuming a fully aneuploid embryo, why do only some cells display p53 and autophagy marker? The conclusion about proteotoxic stress was largely based on staining of HSP70. It appears from Figure 3 d,h that the same cells exhibited increased HSP70 and CASP8 staining. Since HSP70 is known to have anti-apoptotic effect, could the increased expression of Hsp70 be an anti-apoptotic response?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Chen et al. describe the bacterial and fungal composition of cervical samples from women with/without Cesarean-section scar diverticulum (CSD) using whole metagenomic sequencing. Also, they report the metabolomic profile associated with CSD and built correlation networks at the taxonomical and taxonomic-metabolic levels to establish potential bacteria-fungi interactions. These interactions could be used, long-term, as therapeutic options to treat or prevent CSD.
Strengths:<br /> - The authors have used advanced techniques in shotgun sequencing which is a powerful tool able to characterize the microbiome at the species (or lower) level and metabolomics.<br /> - These are novel results showing the interaction of bacteria and fungi and present a wider view of the role of the microbiome in female infertility.
Weaknesses:<br /> - This is a pilot study with only 24 cases and 24 controls. Because the human microbiota entails individual variability, this work should be confirmed with a higher sample size to achieve enough statistical power.<br /> - The authors do not report here the use of blank controls. The use of this type of control is important to "subtract" the potential background from plasticware, buffer or reagents from the real signal. Lack of controls may lead to microbiome artefacts in the results. This can be seen in the results presented where the authors report some bacterial contaminants (Agrobacterium tumefaciensis, Aequorivita lutea, Chitinophagaceae, Marinobacter vinifirmus, etc) as part of the most common bacteria found in cervical samples.<br /> - Samples used for this study were collected from the cervix. Why not collect samples from the uterine cavity and isthmocele fluid (for cases)? In their previous paper using samples from the same research protocol ((IRB no. 2019ZSLYEC-005S) they used endometrial tissue from the patients, so access to the uterine cavity was guaranteed.<br /> - Through the use of shotgun genomics, results from all the genomes of the organisms present in the sample are obtained. However, the authors have only used the metagenomic data to infer the taxonomical annotation of fungi and bacteria.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Understanding the ecology including the dietary ecology of enantiornithines is challenging by all means. This work explores the possible trophic diversity of the "opposite-bird" enantiornithines by referring to the body mass, jaw mechanical advantage, finite element analysis of the jaw bones, and morphometrics of the claws and skull of both fossil and extant avian species. By incorporation of the dietary information of longipterygids and pengornithinds, the authors predicted a wide variety of foods for enantiornithine ancestors. This indicates the evolutionary successes of enantiornitine during Cretaceous is very likely to have been driven by the wide range of recipes. I believe this work represented the most comprehensive analysis of enantiornithines' diet and trophic diversity by far and the first systematic dietary analysis of bohaiornithids, though the analysis themselves are largely based on the indirect evidence including jaw bone morphologies and claw and skull morphometrics. Anyway, I believe the authors did most the paleontologists could do, and I do not know whether the conclusions could be further supported by incorporating some geochemical data, as most of the specimens the authors analyzed were recovered from a small geographic area. The results also indicate that the developmental trajectories of enantiornithines, at least for jaw bones, might also have been diverse to some extent in response to the diverse ecological niches they adapted. My only concern regarding the analysis is to what extent the conclusions are convincing by comparing specimens representing various ontogenetic stages.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this work, Veseli et al. present a computational framework to infer the functional diversity of microbiomes in relation to microbial diversity directly from metagenomic data. The framework reconstructs metabolic modules from metagenomes and calculates the per-population copy number of each module, resulting in the proportion of microbes in the sample carrying certain genes. They applied this framework to a dataset of gut microbiomes from 109 inflammatory bowel disease (IBD) patients, 78 patients with other gastrointestinal conditions, and 229 healthy controls. They found that the microbiomes of IBD patients were enriched in a high fraction of metabolic pathways, including biosynthesis pathways such as those for amino acids, vitamins, nucleotides, and lipids. Hence, they had higher metabolic independence compared with healthy controls. To an extent, the authors also found a pathway enrichment suggesting higher metabolic independence in patients with gastrointestinal conditions other than IBD indicating this could be a signal for a general loss in host health. Finally, a machine learning classifier using high metabolic independence in microbiomes could predict IBD with good accuracy. Overall, this is an interesting and well-written article and presents a novel workflow that enables a comprehensive characterization of microbiome cohorts.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study by Sokač et al. entitled "GENIUS: GEnome traNsformatIon and spatial representation of mUltiomicS data" presents an integrative multi-omics approach which maps several genomic data sources onto an image structure on which established deep-learning methods are trained with the purpose of classifying samples by their metastatic disease progression signatures. Using published samples from the Cancer Genome Atlas the authors characterize the classification performance of their method which only seems to yield results when mapped onto one out of four tested image-layouts.
A few remaining issues are unclear to me:
1) While the authors have now extended the documentation of the analysis script they refer to as GENIUS, I assume that the following files are not part of the script anymore, since they still contain hard-coded file paths or hard-coded gene counts:
- https://github.com/mxs3203/GENIUS/blob/master/GenomeImage/make_images_by_chr.py
- https://github.com/mxs3203/GENIUS/blob/master/GenomeImage/randomize_normal_imgs.py
- https://github.com/mxs3203/GENIUS/blob/master/GenomeImage/utils.py
If these files are indeed not part of the script anymore, then I would recommend removing them from the GitHub repo to avoid confusion. If, however, they are still part of the script, the authors failed to remove all hard-coded file paths and the software will fail when users attempt to use their own datasets.
2) The authors leave most of the data formatting to the user when attempting to use datasets other than their own presented for this study:
Script arguments:
- a. clinical_data: Path to CSV file that must contain ID and label column we will use for prediction
- b. ascat_data: Path to output matrix of ASCAT tool. Check the example input for required columns
- c. all_genes_included: Path to the CSV file that contains the order of the genes which will be used to create Genome Image
- d. mutation_data: Path CSV file representing mutation data. This file should contain Polyphen2 score and HugoSymbol
- e. gene_exp_data: Path to the csv file representing gene expression data where columns=sample_ids and there should be a column named "gene" representing the HugoSymbol of the gene
- f. gene_methyl_data: Path to the csv file representing gene methylation data wherecolumns=sample_ids and there should be a column named "gene1" representing the HugoSymbol of the gene
While this suggests that users will have a difficult time adjusting this analysis script to their own data, this issue is exacerbated by the fact that their analysis script has almost no internal checks whether data format standards were met. Thus, the user will be left with cryptic error messages and will likely give up soon after. I therefore strongly recommend adding internal data format checks and helpful error or warning messages to their script to guide users in the input data adoption process.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Using a pharmacological and knock-down approach, the authors could demonstrate that ROCK activity is required for the normal development of the larval skeleton. The presence of ROCK in the pluteus stage depends on the activity of VEGF that is responsible for the formation of the tubular syncytial sheath of the calcifying primary mesenchyme cells in which the skeleton forms. The importance of ROCK in skeleton formation was confirmed in cell culture experiments, demonstrating that ROCK inhibition leads to decreased elongation and abnormal branching of spicules. µCT analyses underline this finding demonstrating that the inhibition of ROCK mainly affects the elongation of spicules while growth in girth is little affected. F-actin labeling experiments could demonstrate that ROCK inhibition interferes with the organization of the actomyosin network in the early phase of skeleton formation, while f-actin organization in the tips of the elongating spicule is unaffected by the pharmacological inhibition of ROCK. Finally, ROCK inhibition strongly affects the expression of major regulatory and calcification-related genes in the calcifying cells. Based on these findings the authors propose a model for the regulatory interaction between the skeletogenic GRN, ROCK, and the f-actin system relevant for skeletogenesis.
I reviewed this paper previously for submission to another Journal. I emphasize again, that this is an interesting and important work that aims to uncover the interaction between the Rho-associated Kinase, ROCK, the actomyosin network, and its relevance for the formation of the calcitic skeleton of the sea urchin larva. I carefully went through the revised manuscript. In their new version, the authors rearranged the figures to provide a more direct comparison between the in vivo and cell culture experiments which mitigates the criticism of collateral effects by the inhibitors on the whole organism. The authors also performed an additional experiment localizing the F-Actin signal in spicules of PMC cell cultures under ROCK inhibition. This experiment strengthens the concept that ROCK activity is important for tip dominance rather than CaCO3 deposition rates. The results section was substantially reorganized and only very minor changes were made to the introduction and discussion.
I think that this work has great potential to provide seminal insights into an understudied aspect of the biomineralization process - the role and regulation of the cytoskeleton in calcifying cells. As I mentioned in my previous review there are some gaps in this work that need to be answered to provide a conclusive dataset on the role of ROCK and the actomyosin system in the mineralization process. The manuscript in its current form provides evidence for the interaction of ROCK with the actomyosin system in the sea urchin larva and that perturbation of this system affects skeletogenesis. However, it is missing an explanation regarding the mechanism by which ROCK affects skeleton formation. No difference in f-actin localization was found at the spicule tips in control and ROCK-inhibited larvae. A slight hint was found in the difference in vesicle size and f-actin organization within calcifying cells, but it remains unresolved if ROCK activity impacts the trafficking of calcification vesicles. The authors provide an interesting discussion on the involvement of f-actin and ROCK on vesicular trafficking, and exocytosis based on existing knowledge from animal and plant models. But for the sea urchin larva, this important link between ROCK, f-actin, and the biomineralization process remains unanswered. In their previous work by Winter et al. 2021, the authors demonstrated excellent technologies to monitor vesicular dynamics in the calcifying cells. This tool would be ideal to investigate the role of ROCK and the actomyosin network on the trafficking dynamics of Ca2+-rich vesicles. These experiments (among others suggested in the following review) may help to uncover the critical mechanism to resolve the missing gap in this manuscript.
Major comments<br /> One MASO led to reduced skeleton formation while the other one additionally induced ectopic branching. How was the optimum concentration for the MASOs determined? Did the authors perform a dose-response curve? What is the reason for this difference? Which of the two MASOs can be validated by reduced ROCK protein abundance? Since the ROCK antibody works, I would like to see a control experiment on Rock protein abundance in control and ROCK MO injected larvae which is the gold-standard for validating the knock-down.
L212 "Together, these measurements show that ROCK is not required for the uptake of calcium into cells." But what about trafficking and exocytosis? As mentioned earlier, I think this is a really important point that needs to be confirmed to understand the function of ROCK in controlling calcification. In their previous study (reference 45) the authors demonstrated that they have superior techniques in measuring vesicle dynamics in vivo. Here an acute treatment with the ROCK inhibitor would be sufficient to test if calcein-positive vesicle motion, including the observed reduction in velocity close to the tissue skeleton interface, is affected by the inhibitor.
Is there a colocalization of ROCK and f-actin in the tips of the spicules? This would support the mechano-sensing-hypothesis by ROCK.
L 283. "F-actin is enriched at the tips of the spicules independently of ROCK activity" The results of this paragraph clearly demonstrate that ROCK inhibition has no effect on the localization of f-actin at the tips of the growing spicules. In addition, the new cell culture experiments underline this observation. Still, the central question that remains is, what is the interaction between ROCK, f-actin, and the mineralization process, that leads to the observed deformations? What does the f-actin signal look like in a branched phenotype or in larvae that failed to develop a skeleton (inhibition from Y20)?
Immunohistochemical analyses on f-actin localization and abundance should be additionally performed with ROCK knock-down phenotypes to confirm the pharmacological inhibition.
L 365 "...supporting its role in mineral deposition..." "...Overall, our studies indicate that ROCK activity....is essential for the formation of the spicule cavity......which could be essential for mineral deposition..." I think the authors need to do a better job in clearly separating between the potential processes impacted by ROCK perturbation. Is it stabilization and mechano-sensing in the spicule tip or the intracellular trafficking and deposition of the ACC? If the dataset does not allow for a definite conclusion, I suggest clearly separating the different possibilities combined with thorough discussion-based findings from other mineralizing systems where the interaction between ROCK and F-actin has been described.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> This study applied pattern similarity analyses to intracranial EEG recordings to determine how neural drift is related to memory performance in a free recall task. The authors compared neural similarity within and across lists, in order to contrast signals related to contextual drift vs. the onset of event boundaries. They find that within-list neural differentiation in the lateral temporal cortex correlates with the probability of word recall; in contrast, across-list pattern similarity in the medial parietal lobe correlates with recall for items near event boundaries (early-list serial positions). This primacy effect persists for the first three items of a list. Medial parietal similarity is also enhanced across lists for end-of-list items, however, this effect then predicts forgetting. The authors do not find that within- or across-list pattern similarity in the hippocampus is related to recall probability.
Strengths:<br /> The authors use a large dataset of human intracranial electrophysiological recordings, which gives them high statistical power to compare neural activity and memory across three important memory encoding regions. In so doing, the authors also address a timely and important question about the neural mechanisms that underlie the formation of memories for events.
The use of both within and across event pattern similarity analyses, combined with linear mixed effects modeling, is a marriage of techniques that is novel and translatable in principle to other types of data.
Weaknesses:<br /> In several instances the paper does not address apparent inconsistencies between the prior literature and the findings. For example, the first main finding is that recalled items have more differentiated lateral temporal cortex representations within lists than not recalled items. This seems to be the opposite of the prediction from temporal context models that are used to motivate the paper-context models would predict that greater contextual similarity within a list should lead to greater memory through enhanced temporal clustering in recall. This is what El-Kalliny et al (2019) found, using a highly similar design (free recall, intracranial recordings from the lateral temporal lobe). The authors never address this contradiction in any depth in order to reconcile it with the previous literature and with the motivating theoretical model.
The way that the authors conduct the analysis of medial parietal neural similarity at boundaries leads to results that cannot be conclusively interpreted. The authors report enhanced similarity across lists for the first item in each list, which they interpret as reflecting a qualitatively distinct boundary signal. However, this finding can readily be explained by contextual drift if one assumes that whatever happens at the start of each list is similar or identical across lists (for example, a get ready prompt or reminder of instructions). The authors do not include analyses to rule this out, which undermines one of the main findings.
Although several previous studies have linked hippocampal fMRI and electrophysiological activity at event boundaries with memory performance, the authors do not find similar relationships between hippocampal activity, event boundaries, and memory. There are potential explanations for why this might be the case, including the distinction between item vs. associative memory, which has been a prominent feature of previous work examining this question. However, the authors do not address these potential explanations (or others) to explain their findings' divergence from prior work -this makes it difficult to interpret and to draw conclusions from the data about the hippocampus' mechanistic role in forming event memories.
There is a similar absence of interpretation with respect to the previous literature for the data showing enhanced boundary-related similarity in the medial parietal cortex. The authors' interpretation seems to be that they have identified a boundary-specific signal that reflects a large and abrupt change in context, however, another plausible interpretation is that enhanced similarity in the medial parietal cortex is related to a representation of a schema for the task structure that has been acquired across repeated instances.
The authors do not directly compare their model to other models that could explain how variability in neural activity predicts memory. One example is the neural fatigue hypothesis, which the authors mention, however there are no analyses or data to suggest that their data is better fit by a boundary/contextual drift mechanism as opposed to neural fatigue.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary
This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):
- Women are less likely to submit their papers to highly influential journals (*e.g.*, Nature, Science and PNAS).<br /> - Women are more likely to cite the demands of co-authors as a reason why they didn't submit to highly influential journals.<br /> - Women are also more likely to say that they were advised not to submit to highly influential journals.
Recommendation
This paper highlights an important point, namely that the submissions' behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists' careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates---or a lack thereof---should not be automatically interpreted as as evidence of for or against discrimination (broadly defined) in the peer review process. I do, however, make a few suggestions below that the authors may (or may not) wish to address.
Major comments
## What do you mean by bias?
In the second paragraph of the introduction, it is claimed that "if no biases were present in the case of peer review, then 'we should expect the rate with which members of less powerful social groups enjoy successful peer review outcomes to be proportionate to their representation in submission rates." There are a couple of issues with this statement.<br /> - First, the authors are implicitly making a normative assumption that manuscript submission and acceptance rates *should* be equalised across groups. This may very well be the case, but there can also be important reasons why not -- e.g., if men are more likely to submit their less ground-breaking work, then one might reasonably expect that they experience higher rejection rates compared to women, conditional on submission.<br /> - Second, I assume by "bias", the authors are taking a broad definition, i.e., they are not only including factors that specifically relate to gender but also factors that are themselves independent of gender but nevertheless disproportionately are associated with one gender or another (e.g., perhaps women are more likely to write on certain topics and those topics are rated more poorly by (more prevalent) male referees; alternatively, referees may be more likely to accept articles by authors they've met before, most referees are men and men are more likely to have met a given author if he's male instead of female). If that is the case, I would define more clearly what you mean by bias. (And if that isn't the case, then I would encourage the authors to consider a broader definition of "bias"!)
## Identifying policy interventions is not a major contribution of this paper
In my opinion, the survey evidence reported here isn't really strong enough to support definitive policy interventions to address the issue and, indeed, providing policy advice is not a major -- or even minor -- contribution of your paper, so I would not mention policy interventions in the abstract. (Basically, I would hope that someone interested in policy interventions would consult another paper that much more thoughtfully and comprehensively discusses the costs and benefits of various interventions!)
Minor comments
- What is the rationale for conditioning on academic rank and does this have explanatory power on its own---i.e., does it at least superficially potentially explain part of the gender gap in intention to submit?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> This paper addresses the mechanisms positioning microtubule asters in Drosophila explants. Taking advantage of a genetic mutant, blocking the cell cycle in early embryos, the authors generate embryos with centrosomes detached from nuclei and then study the positioning mechanisms of such asters in explants. They conclude that asters interact via pushing forces. While this is an artificial system, understanding the mechanics of asters positioning, in particular, whether forces are pushing or pulling is an important one.
Strengths:<br /> The major strength of this paper is the series of laser cutting experiments supporting that asters position via pushing forces acting both on the boundary (see below for a relevant comment) and between asters. The combination of imaging, data analysis and mathematical modeling is also powerful.
Weaknesses:<br /> This paper has weaknesses, mainly in the presentation but also in the quality of the data which do not always support the conclusions satisfactorily (this might in part be a presentation issue).
In Figure 2, it is difficult for me to understand what is being tracked. I believe that the authors track the yolk granules (visible as large green blobs) and not lipid droplets. There is some confusion between the text, legends and methods so I could not tell. If the authors are tracking yolk granules as a proxy for hydrodynamics flows it seems appropriate to cite previous papers that have used and verified these methods. More notably, this figure is somewhat disconnected with the rest of the paper. I find the analysis interesting in principle but would urge the authors to propose some interpretation of the experiments in the context of their big-picture message. At this point, I cannot understand what the Figure adds.
In Figure 3, it is not surprising that the aster-aster interactions are different from interactions with the boundary which is likely more rigid. It is also hard to understand why the force and thus velocity should scale as microtubule length. This Figure should be better conceptualized. I think that it becomes clear at the end of the paper that the authors are trying to derive an effective potential to use in a mathematical model in Figure 5 to test their hypotheses. I think that should be told from the start, so a reader understands why these experiments are being shown.
The experiments in Figure 4 are very nice in supporting a pushing model. However, it would help if the authors could speculate what the single aster is pushing against in this experiment. The experiments reported in Figure 1 seemed to suggest that the aster mainly pushed against the boundary. In the experiments in Figure 4 do the individual asters touch the boundary on both sides? I think that readers need more information on what the extract looks like for those experiments.
Figure 4F could use some statistics. I doubt that the acceleration in the pink curves would be significant. I believe that the deceleration is and that is probably the most crucial result. Since the authors present only 3 asters pairs it is important to be sure that these conclusions are solid.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors use a previously established reporter comprising a slow- and a fast-folding fluorescent protein fused to a randomly-generated library of penta-peptides at its amino-terminus and a signal sequence for import into the endoplasmic reticulum (ER). They then determine the stability of these constructs in a high throughput FACS-sorting procedure and identify a set of peptides that route the construct to proteasomal degradation. Increasing the copy number of one of these peptides further decreases the stability of the construct. This polypeptide resembles a "degron" for ER proteins, because it also targets other ER proteins with different topological and folding properties for degradation. It only works when placed at the amino-terminus of a protein and utilizes components of the Hrd1 ubiquitin ligase complex, a well-established quality control ubiquitin ligase in the ER membrane. Importantly, the degron also targets ER-proteins in mammalian cells.
The authors convincingly show that fusion of their newly identified degron to the amino terminus of ER-resident proteins with different topology suffices to target them for proteasomal degradation. The data for this are well-founded and contain appropriate controls. While technically sound, the study does only give superficial information on general properties of the degron and its recognition by cellular factors. Further simple experiments would have addressed a number of important points. The authors only provide data about the composition of the identified amino acid sections from the high-throughput approach and the statistical preference for certain amino acids at individual positions. They do not study degron composition experimentally by substituting individual amino acids with other residues and analyzing protein stability. Increasing the numbers of the initially identified degron pentamer increases substrate turnover, but the basis for this remains unclear. Each copy may be actively involved in better recognition, elongation of the degron may facilitate accessibility by recognition factors or multiplying the short amino acid stretch may generate new signatures at the amino-terminus that are more readily recognized by a quality control machinery. Consequently, this study does not allow conclusions to be drawn about general properties of degron composition and/or structure. The degron also functions with cytoplasmic proteins, suggesting that similar characteristics of a polypeptide attract the attention of quality control systems also in other cellular compartments. However, the authors did not pursue this finding further, e.g. by identifying factors for degron recognition in the cytoplasm. It would have been particularly interesting to test whether the degron would initiate degradation when placed at cytoplasmically-exposed amino termini of membrane-bound ER proteins. Information on degron properties is required to better understand principles of substrate recognition by protein quality control pathways and to design constructs for targeting endogenous proteins via proteolysis targeting chimeras (PROTACs).
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
This study by Park et al. describes an interesting approach to disentangle gene-environment pathways to cognitive development and psychotic-like experiences (PLEs) in children. They have used data from the ABCD (Adolescent Brain Cognitive Development) study and have included phenotypes polygenic scores (PGS) of educational attainment (EA) and cognition, environmental exposure data, cognitive performance data and self-reported PLEs. The study has several strengths, including its large sample size, interesting approach and comprehensive statistical model,
One remaining concern is the authors' conflation of PLEs and schizophrenia. They stated, for example, that it is necessary to adjust for schizophrenia PGS. Even though studies have found a statistical relationship between schizophrenia PGS and PLEs, this relationship is not very strong (although statistically significant) and other studies have found no relationship. Similarly, having PLEs increases the risk of developing psychosis, but that does not necessarily mean that this risk is substantial or specific. I think this needs more nuance in the manuscript and the term 'schizophrenia' should be used sparsely and very carefully as the paper has focused on PLEs.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> This Research Advance is an extension of this group's prior paper published in 2022 on the conserved roles of the Hippo pathway effector Yorkie in C. owczarzaki (PMID: 35659869). This species is an amoeba that holds an important phylogenetic position as a close relative of multicellular animals. The prior study used genome editing to delete the C. owczarzaki Yki (termed coYki) and found that Yki is not required for proliferation but instead regulates cell contractility and cell aggregation. In the current study, the authors wanted to address whether Hippo pathway kinases - coHippo (coHpo) and coWarts (coWts) - regulate coYki and whether they are dispensable for proliferation but instead regulate cell contractility and cell aggregation. They used genome editing to delete coHpo and coWts singly in C. owczarzaki. Both mutant strains had increased nuclear location of transfected coYki (tagged with Scarlet), suggesting that Hippo kinase pathway regulation of Yki is conserved in this organism. Neither kinase is required for proliferation. Either kinase mutant strain had a significantly increased percentage of cells that were elongated, which was relatively rare in a control population. The incident of elongation could be enhanced in both kinase-mutant and in control cells when myosin inhibitors were added to the media. coHpo and coWts-mutant aggregates were more tightly packed than control cell aggregates, which they hypothesize is due to the increased contractility seen in kinase-mutant cells. They could reduce the density of packing in kinase-mutant aggregates when they treated the cells with myosin or F-actin inhibitors. To test whether the effects observed in kinase-mutant strains were due to increased Yki activation, they generated a coYki with four S to A substitutions (termed coYki4SA), which should produce a dominant-active Yki impervious to phosphorylation and hence inactivation by Hippo kinases. Control C. owczarzaki cells transfected with coYki4SA had increased cell density in aggregates and elongation in adherent cells. These results support their conclusions that coHpo and coWts regulate cell contractility and cell packing through coYki.
Strengths:<br /> The major strengths of the paper include high quality data, robust analyses of the data, and a well-written manuscript. The combination of genome editing in C. owczarzaki, transfection of C. owczarzaki, and time-lapse movies of adherent cells generally support the conclusions (1) that control of cell density is an ancient function of the Hippo pathway; (2) that Hippo pathway control of cytoskeletal properties and contractile behavior underlie its regulation of cell density, and (3) that Hippo kinase control of Yki localization is likely an ancient function of the pathway.
Weaknesses:<br /> There are only minor weaknesses. (1) Fig. 3C needs the "still" for the movie of control C. owczarzaki (in Movie S1). (2) The elongated cell shape is seen infrequently in control cells, and I wonder whether these events are transient inactivation of coHpo or coWts in these cells. Perhaps the authors could comment on this in the discussion. (3) Does C. owczarzaki normally aggregate or this is a lab-specific phenotype? For example, the slime mold Dictyostelium discoideum forms aggregates during its life cycle. Could some additional information about C. owczarzaki be added to the introduction?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, the authors aimed to provide information about the likely function of uncharacterised genes in fission yeast. The authors highlight the bias in the literature to well-studied genes/proteins and the fact that the functions of many proteins that are conserved from yeast to humans remain unknown. Initial functional characterisation could provide the impetus for researchers to dedicate time and resources to detailed investigations of protein function. The authors subject the fission yeast deletion set to a battery of perturbations (drug treatments etc) and measured the resultant colony size. In total, 131 conditions were analysed for nearly 3,500 mutants, representing a rich dataset. Clustering analysis was then used to identify common phenotype patterns and thereby infer protein functions using a "guilt by association approach. To assign potential GO terms to uncharacterised proteins, the authors developed a new computational approach (NET-FF) which combined two previous approaches, which they validated against curated annotations on the S. pombe database Pombase. Finally, the authors chose a group of genes which their analysis predicted to be involved in cellular ageing for experimental validation, cross-validating a priority unstudied novel gene (SPAC23C4.09c) to be involved in this process. Overall, the functional analysis performed in this manuscript is rigorous, thorough and incorporates some novel approaches leading to new insights and predicted protein functions. It will be an important resource for the fission yeast community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this paper, Jeong et al. investigate the prevalence and cause of TADs that are preserved in eukaryotic cells after cohesin depletion. The authors perform an extensive analysis of previously published Hi-C data, and find that roughly 15% of TADs are preserved in both mouse liver cells and in HCT-116 cells. They confirm previous findings that epigenetic mismatches across the boundaries of TADs can cause TAD preservation. However, the authors also find that not all preserved TADs can be explained this way. Jeong et al. provide an argument based on polymer simulations that "physical boundaries" in 3D structures provide an additional mechanism that can lead to TAD preservation. However, in its current form, we do not find the argumentation and evidence that leads to this claim to be fully compelling.
Strengths:
We appreciate the extensive statistical analysis performed by the authors on the extent to which TAD's are preserved; this does seem like a novel and valuable contribution to the field.
Weaknesses:
1. As the authors briefly note, the fact that compartmentalization due to epigenetic mismatches can cause TAD-like structures upon cohesin depletion has already been discussed in the literature; see for example Extended Data Figure 8 in (Schwarzer et al., 2017) or the simulation study (Nuebler et al., 2018). We are hence left with the impression that the novelty of this finding is somewhat overstated in this manuscript.<br /> 2. It is not quite clear what the authors conceptually mean by "physical boundaries" and how this could offer additional insight into preserved TADs. First, the authors use the CCM model to show that TAD boundaries correlate with peaks in the single cell boundary probability distribution of the model. This finding is consistent with previous reports that TAD-like structures are present in single cells, and that specific TAD boundaries only arise as a population average. The finding based on the CCM simulations hence seems to be that preserved TADs also arise as a population average in cohesin-depleted cells, but we do not follow what the term "physical boundaries" refers to in this context. The authors then use the Hi-C data to infer a maximum-entropy-based HIPPS model. They find that preserved TADs often have boundaries that correspond to peaks in the single cell boundary probabilities of the inferred model. The authors seem to imply that these peaks in the boundary probability correspond to "physical boundaries" that cause the preservation of TADs. This argument seems circular; the model is based on inferring interaction strengths between monomers, such that the model recreates the input Hi-C map. This means that the ensemble average of the model should have a TAD boundary where one is present in the input Hi-C data. A TAD boundary in the Hi-C data would then seem to imply a peak in the model's single-cell boundary probability. (The authors do display two examples where this is not the case in Fig.3h, but looking at these cases by eye, they do not seem to correspond to strong TAD boundaries.) "Physical boundaries" in the model are hence a consequence of the preserved TADs, rather than the other way around, as the authors seem to suggest. At the very least the boundary probability in the HIPPS model is not an independent statistic from the Hi-C map (on which their model is constrained), so we have concerns about using the physical boundaries idea to understand where some of the preserved TADs come from.
References:<br /> Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N., & Mirny, L. A. (2018). Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proceedings of the National Academy of Sciences of the United States of America, 115(29), E6697-E6706. https://doi.org/10.1073/PNAS.1717730115/SUPPL_FILE/PNAS.1717730115.SAPP.PDF
Schwarzer, W., Abdennur, N., Goloborodko, A., Pekowska, A., Fudenberg, G., Loe-Mie, Y., Fonseca, N. A., Huber, W., Haering, C. H., Mirny, L., & Spitz, F. (2017). Two independent modes of chromatin organization revealed by cohesin removal. Nature 2017 551:7678, 551(7678), 51-56. https://doi.org/10.1038/nature24281
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
This paper by Castello-Serrano et al. addresses the role of lipid rafts in trafficking in the secretory pathway. By performing carefully controlled experiments with synthetic membrane proteins derived from the transmembrane region of LAT, the authors describe, model and quantify the importance of transmembrane domains in the kinetics of trafficking of a protein through the cell. Their data suggest affinity for ordered domains influences the kinetics of exit from the Golgi. Additional microscopy data suggest that lipid-driven partitioning might segregate Golgi membranes into domains. However, the relationship between the partitioning of the synthetic membrane proteins into ordered domains visualised ex vivo in GPMVs, and the domains in the TGN, remain at best correlative. Additional experiments that relate to the existence and nature of domains at the TGN are necessary to provide a direct connection between the phase partitioning capability of the transmembrane regions of membrane proteins and the sorting potential of this phenomenon.
The authors have used the RUSH system to study the traffic of model secretory proteins containing single-pass transmembrane domains that confer defined affinities for liquid ordered (lo) phases in Giant Plasma Membrane derived Vesicles (GPMVs), out of the ER and Golgi. A native protein termed LAT partitioned into these lo-domains, unlike a synthetic model protein termed LAT-allL, which had a substituted transmembrane domain. The authors experiments provide support for the idea that ER exit relies on motifs in the cytosolic tails, but that accelerated Golgi exit is correlated with lo domain partitioning.
Additional experiments provided evidence for segregation of Golgi membranes into coexisting lipid-driven domains that potentially concentrate different proteins. Their inference is that lipid rafts play an important role in Golgi exit. While this is an attractive idea, the experiments described in this manuscript do not provide a convincing argument one way or the other. It does however revive the discussion about the relationship between the potential for phase partitioning and its influence on membrane traffic.
Our detailed comments are listed below:
ER exit:<br /> The experiments conducted to identify an ER exit motif in the C-terminal domain of LAT are straightforward and convincing. This is also consistent with available literature. The authors should comment on whether the conservation of the putative COPII association motif (detailed in Fig. 2A) is significantly higher than that of other parts of the C-terminal domain. One cause of concern is that addition of a short cytoplasmic domain from LAT is sufficient to drive ER exit, and in its absence the synthetic constructs are all very slow. However, the argument presented that specific lo phase partitioning behaviour of the TMDs do not have a significant effect on exit from the ER is a little confusing. This is related to the choice of the allL-TMD as the 'non-lo domain' partitioning comparator. Previous data has shown that longer TMDs (23+) promote ER export (eg. Munro 91, Munro 95, Sharpe 2005). The mechanism for this is not, to my knowledge, known. One could postulate that it has something to do with the very subject of this manuscript- lipid phase partitioning. If this is the case, then a TMD length of 22 might be a poor choice of comparison. A TMD 17 Ls' long would be a more appropriate 'non-raft' cargo. It would be interesting to see a couple of experiments with a cargo like this.
Golgi exit:<br /> For the LAT constructs, the kinetics of Golgi exit as shown in Fig. 3B are surprisingly slow. About half of the protein remains in the Golgi at 1 h after biotin addition. Most secretory cargo proteins would have almost completely exited the Golgi by that time, as illustrated by VSVG in Fig. S3. There is a concern that LAT may have some tendency to linger in the Golgi, presumably due to a factor independent of the transmembrane domain, and therefore cannot be viewed as a good model protein. For kinetic modeling in particular, the existence of such an additional factor would be far from ideal. A valuable control would be to examine the Golgi exit kinetics of at least one additional secretory cargo.
Comments about the trafficking model<br /> 1. In Figure 1E, the export of LAT-TMD from the ER is fitted to a single-exponential fit that the authors say is "well described". This is unclear and there is perhaps something more complex going on. It appears that there is an initial lag phase and then similar kinetics after that - perhaps the authors can comment on this?
2. The model for Golgi sorting is also complicated and controversial, and while the authors' intention to not over-interpreting their data in this regard must be respected, this data is in support of the two-phase Golgi export model (Patterson et al PMID:18555781). Furthermore contrary to the statement in lines 200-202, the kinetics of VSVG exit from the Golgi (Fig. S3) are roughly linear and so are NOT consistent with the previous report by Hirschberg et al. Moreover, the kinetics of LAT export from the Golgi (Fig. 3B) appear quite different, more closely approximating exponential decay of the signal. These points should be described accurately and discussed.
Relationship between membrane traffic and domain partitioning:<br /> 1. Phase segregation in the GPMV is dictated by thermodynamics given its composition and the measurement temperature (at low temperatures 4degC). However at physiological temperatures (32-37degC) at which membrane trafficking is taking place these GPMVs are not phase separated. Hence it is difficult to argue that a sorting mechanism based solely on the partitioning of the synthetic LAT-TMD constructs into lo domains detected at low temperatures in GPMVs provide a basis (or its lack) for the differential kinetics of traffic of out of the Golgi (or ER). The mechanism in a living cell to form any lipid based sorting platforms naturally requires further elaboration, and by definition cannot resemble the lo domains generated in GPMVs at low temperatures.
2. The lipid compositions of each of these membranes - PM, ER and Golgi are drastically different. Each is likely to phase separate at different phase transition temperatures (if at all). The transition temperature is probably even lower for Golgi and the ER membranes compared to the PM. Hence, if the reported compositions of these compartments are to be taken at face value, the propensity to form phase separated domains at a physiological temperature will be very low. Are ordered domains even formed at the Golgi at physiological temperatures?
3. The hypothesis of 'lipid rafts' is a very specific idea, related to functional segregation, and the underlying basis for domain formation has been also hotly debated. In this article the authors conflate thermodynamic phase separation mechanisms with the potential formation of functional sorting domains, further adding to the confusion in the literature. To conclude that this segregation is indeed based on lipid environments of varying degrees of lipid order, it would probably be best to look at the heterogeneity of the various membranes directly using probes designed to measure lipid packing, and then look for colocalization of domains of different cargo with these domains.
4. In the super-resolution experiments (by SIM- where the enhancement of resolution is around two fold or less compared to optical), the authors are able to discern a segregation of the two types of Golgi-resident cargo that have different preferences for the lo-domains in GPMVs. It should be noted that TMD-allL and the LATallL end up in the late endosome after exit of the Golgi. Previous work from the Bonafacino laboratory (PMID: 28978644) has shown that proteins (such as M6PR) destined to go to the late endosome bud from a different part of the Golgi in vesicular carriers, while those that are destined for the cell surface first (including TfR) bud with tubular vesicular carriers. Thus at the resolution depicted in Fig 5, the segregation seen by the authors could be due to an alternative explanation, that these molecules are present in different areas of the Golgi for reasons different from phase partitioning. The relatively high colocalization of TfR with the GPI probe in Fig 5E is consistent with this explanation. TfR and GPI prefer different domains in the GPMV assays yet they show a high degree of colocalization and also traffic to the cell surface.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> This important study from Godneeva et al. establishes a Drosophila model system for understanding how the activity of Tif1 proteins is modified by SUMO. The authors nicely show that Bonus, like homologous mammalian Tif1 proteins, is a repressor, and that it interacts with other co-repressors Mi-2/NuRD and setdb1 in Drosophila ovaries and S2 cells. They also show that Bonus is SUMOylated by Su(var)2-10 on at least one lysine at its N-terminus to promote its interaction with setdb1. By combining nice biochemistry with an elegant reporter gene approach, they show that SUMOylation is important for Bonus interaction with setdb1, and that this SUMO-dependent interaction triggers high levels of H3K9me3 deposition and gene silencing. While there are still major questions of how SUMO molecularly promotes this process, this study is a valuable first step that opens the door for interesting future experimentation.
Major Point:<br /> The RNAseq and ChIPseq data is not available. This is critical for the review of the paper and would help the readers and reviewers interpret the Bonus mutant phenotype and its mechanism of repressing genes.
1) The author's conclusion that Bonus SUMOylation is "essential for its chromatin localization" is not supported by the data. Figure 5F shows less 3KR mutant in the chromatin fraction but there is still significant signal.<br /> 2) The author's conclusion that Bonus is SUMOylated at a single site close to its N-terminus is not necessarily true. In several SUMO and Bonus blots throughout the paper (5B, 6C, S4A), there are >2 differentially migrating species that could represent more than one SUMO added to Bonus. While the single K20R mutation eliminates all of these species in Fig 5C, it is possible that K20R SUMOylation is required for additional SUMOylation events on other residues. One way to determine if Bonus is SUMOylated on multiple sites is to add recombinant SUMO protease to the extract and see if multiple higher molecular weight bands collapse into a single migrating species (implying multiple SUMOs) or multiple migrating species (implying something else is altering gel migration).<br /> 3) The authors state that most upregulated genes in BonusGLKD are not highly enriched in H3K9me3. The heatmap in figure 3D is not an ideal presentation of this argument. The authors should show an example of what the signal on a highly enriched gene looks like for comparison. The authors also argue that because most upregulated genes in BonusGLKD are not highly enriched in H3K9me3, they must be indirectly repressed. Another possibility is that bonus-mediated H3K9me3 is only important (and present) during early nurse cell differentiation and is later lost and dispensable during the rapid endocycles. After bonus establishes repression though H3K9me3, it might be maintained through bonus-Mi2/Nurd, something else, or nothing at all. The authors could discuss this possibility or perform H3K9me3 ChIP during cyst formation and early nurse cell differentiation rather than in whole ovaries, which are enriched for later stages.<br /> 4) The BonusGLKD RNAseq analysis is underwhelming. The conclusion that "Bonus represses tissue-specific genes" has limited value. Every gene that is not expressed in ovaries is "tissue-specific." What subset of tissue-specific genes does Bonus repress? What common features do these genes have and how do they compare to other sets of tissue-specific genes, such as those reportedly repressed by setdb1, Polycomb proteins, small ovary, l(3)mbt, and stonewall (among others in female germ cells). Comparing these available data sets could help the authors understand the mechanism of Bonus repression and how BonusGLKD leads to sterility. The authors could also further analyze the differences between nos-Gal4 and MT-Gal4 to better understand why nos- but not MT-driven knockdown is sterile.
Main Study Limitations:<br /> 1) It is unclear which genes are directly vs indirectly regulated by bonus, which makes it difficult to understand Bonus's repressive mechanism. Several lines of experiments could help resolve this issue. 1) Bonus ChIPseq, which the authors mentioned was difficult. 2) RNAseq of BonusGLKD rescued with KR3 mutation. This would help separate SUMO/setdb1-dependent regulation from Mi-2 dependent regulation. Similarly, comparing differentially expressed genes in Su(var)2-10GLKD, setdb1GLKD, 3KR rescue, and MI-2 GLKD could identify overlapping targets and help refine how bonus represses subsets of genes through these different corepressors.
2) The paper falls short in discussing how SUMO might promote repression. This is important when considering the conservation (of lack thereof) of SUMOylation sites in Tif1 proteins in distantly related animals. One piece of data that was not discussed is the apparent localization of SUMOylated bonus in the cytoplasmic fraction of the blot in Figure 5F. Su(var)2-10 is mostly a nuclear protein, so is bonus SUMOylated in the nucleus and then exported to the cytoplasm? Also, setdb1 is a nuclear protein, so it is unlikely that the SUMOylated bonus directly interacts with setdb1 on target genes. Together with Fig 5E (unSUMOylatable Bonus aggregates in the nucleus), one could make a model where SUMO solubilizes bonus (perhaps by disassembling aggregates) and indirectly allows it to associate with setdb1 and chromatin. It is also important to note that in Figure 5I, the K3R mutation appears to lessen but not eliminate Bonus interaction with setdb1. This data again disfavors a model where SUMO establishes an interaction interface between setdb1 and Bonus. To determine which form of Bonus interacts with setdb1, the authors could perform a setdb1 pulldown and monitor the SUMOylation state of coIPed Bonus through mobility shift. If mostly unSUMOylated bonus interacts with setdb1, and SUMO indirectly promotes Bonus interaction with setdb1 (perhaps by disassembling Bonus aggregates), then the precise locations of Bonus SUMOylation sites could more easily shift during evolution, disfavoring the author's convergent evolution hypothesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In the study by Venkat et al. the authors expand the current knowledge of allosteric diversity in the human kinome by c-terminal splicing variants using as a paradigm DCLK1. In this work, the authors provide evolutionary and some mechanistic evidence about how c-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as interfering with protein-protein interacting interfaces that altogether provides evidence of c-terminal isoform specific regulation of the catalytic activity in protein kinases.
The paper is overall well written, the rationale and the fundamental questions are clear and well explained, the evolutionary and MD analyses are very detailed and well explained. Overall I think this is a study that brings some new aspects and concepts that are important for the protein kinase field, in particular the allosteric regulation of the catalytic core by c-terminal segments, and how evolutionary cues generate more sophisticated mechanisms of allosteric control in protein kinases.
Current submission: I have read and gone through the revised manuscript and the rebuttal letter and I confirm that the authors did an excellent job answering all the comments satisfactorily.
-
-
socialsci.libretexts.org socialsci.libretexts.org
-
Communication Is Symbolic/Arbitrary * symbols, which are marks/objects that represent something else by association, are something that are taught and can be highly subjective depending on multiple aspects. words are visual symbols, and thus can have major forms of differential meanings. Meaning can change from contextual changes, cultural changes, physical body language, etc. Symbols are arbitrary; there is no reason why dog means the large quadrapedal canine creature. You can change the symbol and the true nature would not be affected.
Communication Is Shared Meaning * Symbols many be "meaningless" in a conceptual and disconnected sense, but they carry heavy meaning when individuals have an agreed sense and deliberate identity to it. Culture is a major form of how important group consensus ties to meaning both linguistically and socially. Beyond culture a major part of communication deals with experiences from an abstract intimate sense of self. Even members of the same culture will have different perceptions of an experience, which can make sharing difficult. human interpretation lends to answers objectively "correct" in one persons mind, but false in another. These are connotative definitions vs denotative definitions.
Communication Involves Intentionality
- we are in a constant state of communication, whether intended or not, but verbal communication almost always comes with a premediate sense of conviction and intention. Direct intention towards a shared topic makes communication more effective. Body language, is inversely related in that many times it can be an unconscious decision without intention.
Dimensions of Communication
- there are dimensions, or levels of interpretation during communication. Relational dimension describes how different relationships allow for specific tones, like friendship, cordial business, etc, and using specific tones for wrong situations could be seen as inappropriate. without having a clear understanding of the relationship you have with a person could make the reception of a message clouded or confusing. Content dimension refers to explicit information and the wordage used to convey a certain message.
Communication Is a Process
- communication is ongoing and dynamic, and even if a relationship with an individual start at one level of communication can mean it cant grow to be a "deeper" level where you can communicate more freely. Think of inside jokes.
Communication Is Culturally Determined
- Culture is learned and alters our perceptions of the world and what is considered "normal". Religion is a major aspect of culture that defines morality, values, etc. These perceptions are hard to pinpoint until interacting with someone who doesn't share those values.
Communication Occurs in a Context
- external forces are a major influence in how we interact/commun. yelling out "fire!" at a movie theatre vs yelling that as a lyric at a concert carry two very context dependent results.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This carefully done research paper presents a fundamental model of techniques that are useful for the elucidation of kinase substrates. The paper utilizes state-of-the-art approaches to define a kinetic phosphoproteome and how to integrate that data with complementary approaches using a chemical probe (in this case KTPyS, a triphosphate) to find these substrates. Using these approaches TgCDPK1 was demonstrated to affect microneme secretion via a direct interaction with a HOOK complex (defined as a HOOK protein TGG1_289100, an FTS TGGT1_264050 and 2 other proteins TGGT1_316650 and 306920).
This work is carefully controlled and the analysis pathways are logical and provide paradigms for how to approach the question of identifying substrates of kinases using proteomic approaches employing genetic and chemical strategies.
The authors succeeded in the identification of candidate substrates for TgCDPK1. Validation of the results was provided by previous studies in the literature that characterized some of these substrates as well as the experiments in this manuscript on the characterization of the HOOK complex that is phosphorylated by CDPK1.
The HOOK complex (defined as a HOOK protein TGG1_289100, an FTS TGGT1_264050, and 2 other proteins TGGT1_316650 and 306920) was clearly demonstrated to be involved in invasion via its role in microneme trafficking.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this nice study, the authors set out to investigate the role of the canonical circadian gene Clock in the rhythmic biology of the basal metazoan Nematostella vectensis, a sea anemone, which might illuminate the evolution of the Clock gene functionality. To achieve their aims the team generated a Clock knockout mutant line (Clock-/- ) by CRISPR/Cas9 gene deletion and subsequent crossing. They then compared wild-type (WT) with Clock-/- animals for locomotor activity and transcriptomic changes over time in constant darkness (DD) and under light/dark cycles to establish these phenotypes under circadian control and those driven by light cycles. In addition, they used Hybridization Chain Reaction-In situ Hybridization (HCR-ISH) to demonstrate the spatial expression of Clock and a putative circadian clocl-controlled gene Myh7 in whole-mounted juvenile anemones.
The authors demonstrate that under LD both WT and Clock-/- animals were behaviourally rhythmic but under DD the mutants lost this rhythmicity, indicating that Clock is necessary for endogenous rhythms in activity. With altered LD regimes (LD6:6) they show also that Clock is light-dependent. RNAseq comparisons of rhythmic gene expression in WT and Clock-/- animals suggest that clock KO has a profound effect on the rhythmic genome, with very little overlap in rhythmic transcripts between the two phenotypes; of the rhythmic genes in both LD and DD in WT animals (220- termed clock-controlled genes, CCGS) 85% were not rhythmic in Clock-/- animals in either light condition. In silico gene ontology (GO) analysis of CCGS reflected process associated with circadian control. Correspondingly, those genes rhythmic in KO animals under DD (here termed neoCCGs) were not rhythmic in WT, lacked upstream E-box motifs associated with circadian regulation, and did not display any GO enrichment terms. 'Core' circadian genes (as identified in previous literature) in WT and Clock-/- animals were only rhythmic under entrainment (LD) conditions whilst Clock-/- displayed altered expression profiles under LD compared to WT. Comparing CCGs with previous studies of cycling genes in Nematostellar, the authors selected a gene from 16 rhythmic transcripts. One of these, Myh7 was detectable by both RNAseq and HCR-ISH and considered a marker of the circadian clock by the authors.
The authors claim that the study reveals insights into the evolutionary origin of circadian timing; Clock is conserved across distant groups of organisms, having a function as a positive regulator of the transcriptional translational feedback loop at the heart of daily timing, but is not a central element of the core feedback loop circadian system in this basal species. Their behavioural and transcriptomic data largely support the claims that Clock is necessary for endogenous daily activity but that the putative molecular circadian system is not self-sustained under constant darkness (this was known already for WT animals)- rather it is responsive to light cycles with altered dynamics in Clock-/- specimens in some core genes under LD. In the main, I think the authors achieved their aims and the manuscript is a solid piece of important work. The Clock-/- animal is a useful resource for examining time-keeping in a basal metazoan.
The work described builds on other transcriptomic-based works on cnidaria, including Nematostellar, and does probe into the molecular underpinnings with a loss-of-function in a gene known to be core in other circadian systems. The field of chronobiology will benefit from the evolutionary aspect of this work and the fact that it highlights the necessity to study a range of non-model species to get a fuller picture of timing systems to better appreciate the development and diversity of clocks.
Strengths:<br /> The generation of a line of Clock mutant Nematostellar is a very useful tool for the chronobiological community and coupled with a growing suite of tools in this species will be an asset. The experiments seem mostly well conceived and executed (NB see 'weaknesses'). The problem tackled is an interesting one and should be an important contribution to the field.
Weaknesses:<br /> I think the claims about shedding light on the evolutionary origin of circadian time maintenance are a little bold. I agree that the data do point to an alternative role for Clock in this animal in light responsiveness, but this doesn't illuminate the evolution of time-keeping more broadly in my view. In addition, these are transcriptomic data and so should be caveated- they only demonstrate the expression of genes and not physiology beyond that. The time-course analysis is weakened by its low resolution, particularly for the RAIN algorithm when 4-hour intervals constrain the analysis. I accept that only 24h rhythms were selected in the analysis from this but, it might be that detail was lost - I think a preferred option would be 2 or 3-hour resolution or 2 full 24h cycles of analysis.
The authors discount the possibility of the observed 12h rhythmicity in Clock-/- animals by exposing them to LD6:6 cycles before free-running them in DD. I suggest that LD cycles are not a particularly robust way to entrain tidal animals as far as we know. Recent papers show inundation/mechanical agitation are more reliable cues (Kwiatkowski ER, et al. Curr Biol. 2023, 2;33(10):1867-1882.e5. doi: 10.1016/j.cub.2023.03.015; Zhang L., et al Curr Biol. 2013, 23;19, 1863-1873 doi.org/10.1016/j.cub.2013.08.038.) and might be more effective in revealing endogenous 12h rhythms in the absence of 24h cues.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In their manuscript, Laporte et al. analyze the process of formation of the quiescent-cell nuclear microtubule (Q-nMT) bundle, a set of parallel MTs that emanate from the nuclear side of the spindle pole bodies (SPBs) upon the entry of Saccharomyces cerevisiae cells in quiescence. Based on their results, the authors propose that Q-nMT bundle formation is a multistep process that comprises three distinct sequential phases. The authors further evaluate the role of different factors during the growth of the Q-nMT bundle upon quiescence entry, as well as during the disassembly of this structure once cells resume their proliferation.
The Q-nMT is an interesting cellular structure whose physiological function is still widely unknown. Hence, providing new insights into the dynamics of Q-nMT bundle formation and identifying new factors involved in this process is an interesting topic of relevance in the field. The authors made a substantial effort in order to evaluate Q-nMT bundle formation and provide a considerable amount of data, mainly obtained from microscopy analyses. Overall, the experiments are well described and properly executed, and the data in the manuscript are clearly presented.
Despite the interest in the study, there are important issues that could affect the validity of the conclusions drawn in the manuscript. In this way, regarding the analysis of the dynamics of Q-nMT bundle formation, the experimental set up described in some of the experiments raises certain concerns, which mostly derive from the nocodazole treatments and the use of this microtubule-depolymerizing agent as the only approach to evaluate the stability of the Q-nMT bundle. On the other hand, regarding the factors involved in Q-nMT formation, the differences in microtubule length with the wild-type strain, despite being statistically significant, are really subtle for many of the mutants analyzed (e.g., bir1, slk19, etc.). Additionally, there are proteins that are proposed to participate in the process of Q-nMT formation and whose expression during quiescence needs to be demonstrated. Finally, although the cell viability defects observed for some of the mutants in these factors could be certainly associated with the lack of expression or mutation of the specific gene under evaluation, in none of the cases can they be directly attributed to a defect in aberrant Q-nMT bundle formation.
Based on the aforementioned reasons, and despite the considerable effort by the authors, it is my impression that many of the conclusions of the manuscript are not sufficiently justified by the data provided. Additional evidence, including the incorporation of key experimental controls that are currently missing, would be required in order to more strongly support the conclusions of the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In their study, Aman et al. utilized single cell transcriptome analysis to investigate wild-type and mutant zebrafish skin tissues during the post-embryonic growth period. They identified new epidermal cell types, such as ameloblasts, and shed light on the effects of TH on skin morphogenesis. Additionally, they revealed the important role of the hypodermis in supporting pigment cells and adult stripe formation. Overall, I find their figures to be of high quality, their analyses to be appropriate and compelling, and their major claims to be well-supported by additional experiments. Therefore, this study will be an important contribution to the field of vertebrate skin research.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Polymorphisms in genes in the human leukocyte antigen (HLA) class II region comprise the most important inherited risk factors for many autoimmune diseases including type 1 diabetes (T1D) and celiac disease (CD). The paper focuses on the novel triad ((SNPs): rs3135394, rs9268645, and rs3129877) finding quite interesting results. The paper suggests further studies at the molecular and structural level to increase our fundamental knowledge of the etiology of autoimmune deceases.
-
- Aug 2023
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Parkinson and colleagues address an interesting and important question, i.e., whether the bumblebee Bombus terrestris can perceive field-realistic concentrations of different pesticides in a sugar solution mimicking nectar. The study directly follows up on a previous study conducted by the same team (Kessler et al. 2015, Nature), which was partly questioned by another more recent study (Arce et al. 2018, Proc. R. Soc. B). The authors apply a combination of electrophysiological measurements and behavioral feeding tests to answer this question. Their results strongly suggest that B. terrestris workers are not able to perceive field-realistic doses of pesticides in a sugar solution. They additionally show that B. terrestris can physiologically differentiate between solutions varying in sugar composition.
Strengths:
Sophisticated methodology, a combination of approaches, clear and precise language
Weaknesses:
Topic and study implications could be discussed more broadly, the statistical approach is not fully clear to me.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This work investigates the function of the PTB domain containing adaptor protein Numb in skeletal muscle structure and function. In particular, the effects of reduced Numb expression in aging muscle is proposed as a mechanism for reduced contractile function associated with sarcopenia. Using ex-vivo analysis of conditional Numb and Numblike knockout muscle the authors demonstrate that loss of Numb but not the related Numblike expression perturbs muscle muscle force generation. In order to explore the molecular mechanisms involved, Numb interacting proteins were identified in C2C12 cell cultured myotubes by immunoprecipitation and LC-MS/MS. The authors identify Septin 7 as a Numb binding protein and demonstrate that loss of Numb/Numblike in myofibers causes changes in Septin 7 subcellular localization. Several questions remain. The authors could provide further clarity on the expression of Numb and Numb-like proteins and the specificity of antibodies used in this study since some Numb antibodies recognize both Numb and Numblike. The authors focus on septin 7 amongst the list of potential Numb interactions identified by AP-MS. Of note, septin 2, 9 and 10 were also identified in the AP-MS experiment. Whether these septins form a complex or are also disrupted by Numb/Numblike loss remains an interesting area for further investigation. Additional investigation of the specificity and mapping of the Numb-Septin 7 (or another Septin) interaction would be of interest and provide an approach for future studies to demonstrate the biological relevance and specificity of the Numb-Septin 7 interaction in skeletal muscle.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Pineda et al investigate the association of the hypothesis that Dux4, an embryonic transcription factor, expression in tumor cells is associated with immune evasion and resistance to immunotherapy. They analyze existing cohorts of bulk RNAseq sequenced tumors across cancer types to identify Dux4 expression and association with survival. They find that Dux4 expression is detected in a higher proportion of metastatic tumors compared to primary tumors, is associated with decreased immune infiltrate and a variety of immune metrics and previously nominated immune signatures, and do an in depth evaluation of a cohort of metastatic urothelial cell carcinoma, finding that Dux4 expression is associated with a more immunodeficient tumor microenvironment (desert or excluded microenvironment) and worse survival in this aPDL1 treated cohort. They then find that Dux4 expression is a major independent predictor of survival in this cohort using different types of survival analyses (KM, Cox PH, and random survival forests). With prior existing biological data supporting the hypothesis (in prior work, the senior author has demonstrated Dux4 expression causally suppresses MHC-I expression in interferon-gamma treated cell lines), the current work links Dux4 expression with less immune activity in clinical tumor samples and with survival in ICI treated urothelial carcinomas, and demonstrates that Dux4 expression provides independent information towards survival including other molecular and clinical characteristics (TMB, ECOG PS as the other strongest markers), and provides interesting resolution on landmark analyses with TMB and Dux4 expression providing greater informativeness at later survival landmarks (e.g. 1 year and later), while ECOG PS has strong informativeness already at earlier time points. This work provides impetus towards more mechanistic and functional dissection of the mechanism of Dux4-associated changes with the tumor microenvironment (e.g. in vivo mouse studies) as well as potential interventional studies (e.g. Dux4 as a target in combination therapies). What the work does not provide is additional resolution on the mechanism of how Dux4 may be associated with a more immunodeficient microenvironment.
The conclusions are generally well supported, but there are issues that would benefit from clarification and extension:
- The finding that Dux4 expression is detected in a higher proportion of metastatic tumors and at higher levels compared to primaries (Fig 1BC) is striking. However, at least for one tumor type (melanoma), the "primary" samples are sourced as n=400+ tumors from TCGA, but the TCGA melanoma cohort is comprised of mostly metastatic (n=81 primary and 367 metastatic tumors in the PanCan Atlas), so it is unclear whether this is correctly interpreted. The analysis of tumors with matched FFPE and flash frozen samples with hybrid probe capture and polyA sequencing, respectively is a nice validation to show that the difference in Dux4 expression is not due to differences in preservation of starting material/sequencing in the metastatic samples vs primary samples (S1BC). However, the cited work from which this data arises (D. Robinson et al 2015) is a study of a cohort of prostate cancers with polyA bulk RNAseq sequencing and at least in that work does not seem to have matched FFPE sequencing, making the provenance of this data unclear at a minimum.
- The findings that Dux4 expression in the metastatic urothelial carcinoma setting is associated with a more immunodeficient microenvironment (Figure 2) is clear and unambiguous using multiple lines of data and analyses (bulk RNAseq, DUX4-positive vs DUX4-negative tumors, different immune cell and cytokine signatures; IHC showing an association with immune deserts and immune excluded phenotypes). However, this is an association and does not demonstrate causality.
- The survival analyses (Fig 3,4,5) show fairly convincingly that Dux4 provide independent predictive information beyond clinical variables and TMB towards survival in the aPDL1 treated metastatic urothelial carcinoma cohort, however, there are different choices of Dux4 expression categorization where the rationale is not clearly justified (e.g. Dux4 expression < 0.5 TPM and > 1 TPM in Fig 3, < 0.25 TPM and > 1 TPM in Fig 4 and 5) by either the underlying distribution (e.g. a bimodal distribution) or some type of percentile split.
- The authors demonstrate that adding Dux4 to clinical markers and TMB results in an improved predictive model for survival, but there are a few questions regarding this model as a clinical biomarker<br /> o Is Dux4 expression better than other correlated immune signatures/markers (e.g. interferon gamma, T effector signature, overall immune infiltrate) in providing additional information?<br /> o Since Dux4 expression is categorized to < 0.25 TPM and > 1 TPM, not all patients are included in the model (i.e. between 0.25 TPM and 1 TPM). How many patients this excludes is unclear, and is important to know if this is to be a clinically relevant biomarker.
- The use of random survival forests to quantify the (predictive) marginal effect of Dux4+ vs Dux4- expression on survival in a non-parametric model as well as shed light on association with survival at different landmark times using Shapley values is quite interesting and well conducted.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the researchers aimed to investigate the cellular landscape and cell-cell interactions in cavernous tissues under diabetic conditions, specifically focusing on erectile dysfunction (ED). They employed single-cell RNA sequencing to analyze gene expression patterns in various cell types within the cavernous tissues of diabetic individuals. The researchers identified decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in several cell types, including fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. They also discovered a newly identified marker, LBH, that distinguishes pericytes from smooth muscle cells in mouse and human cavernous tissues. Furthermore, the study revealed that pericytes play a role in angiogenesis, adhesion, and migration by communicating with other cell types within the corpus cavernosum. However, these interactions were found to be significantly reduced under diabetic conditions. The study also investigated the role of LBH and its interactions with other proteins (CRYAB and VIM) in maintaining pericyte function and highlighted their potential involvement in regulating neurovascular regeneration. Overall, the manuscript is well-written and the study provides novel insights into the pathogenesis of ED in patients with diabetes and identifies potential therapeutic targets for further investigation.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
In this manuscript, the authors proposed an approach to systematically characterise how heterogeneity in a protein signalling network affects its emergent dynamics, with particular emphasis on drug-response signalling dynamics in cancer treatments. They named this approach Meta Dynamic Network (MDN) modelling, as it aims to consider the potential dynamic responses globally, varying both initial conditions (i.e., expression levels) and biophysical parameters (i.e., protein interaction parameters). By characterising the "meta" response of the network, the authors propose that the method can provide insights not only into the possible dynamic behaviours of the system of interest but also into the likelihood and frequency of observing these dynamic behaviours in the natural system.
The authors studied the Early Cell Cycle (ECC) network as a proof of concept, specifically focusing on PI3K, EGFR, and CDK4/6, with particular interest in identifying the mechanisms that cancer could potentially exploit to display drug resistance. The biochemical reaction model consists of 50 equations (state variables) with 94 kinetic parameters, described using SBML and computed in Matlab. Based on the simulations, the authors concluded the following main points: a large number of network states can facilitate resistance, the individual biophysical parameters alone are insufficient to predict resistance, and adaptive resistance is an emergent property of the network. Finally, the authors attempt to validate the model's prediction that differential core sub-networks can drive drug resistance by comparing their observations with the knock-out information available in the literature. The authors identified subnetworks potentially responsible for drug resistance through the inhibition of individual pathways. Importantly, some concerns regarding the methodology are discussed below, putting in doubt the validity of the main claims of this work.
While the authors proposed a potentially useful computational approach to better understand the effect of heterogeneity in a system's dynamic response to a drug treatment (i.e., a perturbation), there are important weaknesses in the manuscript in its current form:
(1) It is unclear how the random parameter sets (i.e., model instances) and initial conditions are generated, and how this choice biases or limits the general conclusions for the case studied. Particularly, it is not evident how the kinetic rates are related to any biological data, nor if the parameter distributions used in this study have any biological relevance.<br /> (2) Related to this problem, it is not clear whether the considered 100,000 random parameter samples sufficiently explore parameter space due to the combinatorial explosion that arises from having 94 free parameters, nor 100,000 random initial conditions for a system with 50 species (variables).<br /> (3) Moreover, the authors filter out all the cases with stiff behaviour. This filtering step appears to select model parameters based on computational convenience, rather than biological plausibility.<br /> (4) Also, it is not clear how exactly the drug effect is incorporated into the model (e.g., molecular inhibition?), nor how it is evaluated in the dynamic simulations (e.g., at the beginning of the simulation?). Moreover, in a complex network, the results may differ depending on whether the inhibition is applied from the start or after the network has reached a stable state.<br /> (5) On the same line, the conclusions need to be discussed in the context of stability, particularly when evaluating the role of initial conditions. As stable steady states are determined by the model parameters, once again, the details of how the perturbation effect is evaluated on the simulation dynamics are critical to interpret the results.<br /> (6) The presented validation of the model results (Fig. 7) is only qualitative, and the interpretation is not carefully discussed in the manuscript, particularly considering the comparison between fold-change responses without specifying the baseline states.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Wang and all present an interesting body of work focused on the effects of high altitude and hypoxia on erythropoiesis, resulting in erythrocytosis. This work is specifically focused on the spleen, targeting splenic macrophages as central cells in this effect. This is logical since these cells are involved in erythrophagocytosis and iron recycling. The results suggest that hypoxia induces splenomegaly with decreased number of splenic macrophages. There is also evidence that ferroptosis is induced in these macrophages, leading to cell destruction. However, additional data demonstrates that RBC clearance is increased, aka shortening the RBC lifespan, calling into question whether splenic function is impaired in hypoxia or whether the spleen enlargement is compensatory, leading to increased erythropoiesis; similarly, increased iron in the spleen provides potential evidence of enhanced erythrophagocytosis with iron release. Many of the reviewers' prior comments are not addressed or only superficially addressed and the additional experimental results and text to the background and discussion sections in the revised manuscript does not increase enthusiasm or clarity. Taken together, there are many issues with the presented results, with somewhat superficial data, with overstated conclusions, decreasing confidence that the hypotheses and observed results are directly causally related to hypoxia in the way that the authors propose.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
It is well established that tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is a leading cause of mortality and morbidity worldwide. However, the only vaccine licensed against tuberculosis is Bacille Calmette Guerin (BCG), has been around for nearly a century, and has limited efficacy in adults. Herein, the authors sought to investigate the effectiveness of a nanoparticle-based formulation of a subunit vaccine composed of Mtb lipid and protein antigens. The authors found that they were able to load the lipid, mycolic acid, into their nanoparticles without disrupting the architecture and that the loaded particles activated T cells both in vitro and in vivo. Moreover, when they vaccinated with particles loaded with both lipid and protein antigens, they found that the lipid antigen persisted, and mycolic acid-specific T cells were able to be activated 6 weeks post-vaccination, in contrast to peptide-specific T cells. The authors investigated further and found that persistence required the nanoparticle encapsulation, rather than free lipid, and that it was independent of route (intratracheal, intravenous, or subcutaneous) of administration. To address the mechanisms underlying antigen persistence, the authors loaded the nanoparticles with a dye and demonstrated that the nanoparticle encapsulated lipid antigen was primarily stored in lung alveolar macrophages and that CD1b+ dendritic cells presented the antigen to mycolic acid specific T cells. Finally, the authors conducted mixed bone marrow chimera studies to examine the phenotype of the mycolic acid specific T cells and found that the memory T cell population phenotypically resembled T follicular helper, regulatory T cells, and exhausted T cells. Interestingly, while a large percentage of these lipid antigen specific T cells in the lymph nodes, lung and spleen were CXCR5+PD1+, the cells were still proliferating (Ki67+). Overall, this is a comprehensive study that has the potential to significantly enhance the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Murphy, Fancy and Skene performed a reanalysis of snRNA-seq data from Alzheimer Disease (AD) patients and healthy controls published previously by Mathys et al. (2019), arriving at the conclusion that many of the transcriptional differences described in the original publication were false positives. This was achieved by revising the strategy for both quality control and differential expression analysis. I believe the authors' intention was to show the results of their reanalysis not as a criticism of the original paper (which can hardly be faulted for their strategy which was state-of-the-art at the time and indeed they took extra measures attempting to ensure the reliability of their results), but primarily to raise awareness and provide recommendations for rigorous analysis of sc/snRNA-seq data for future studies.
STRENGTHS:
The authors demonstrate that the choice of data analysis strategy can have a vast impact on the results of a study, which in itself may not be obvious to many researchers.
The authors apply a pseudobulk-based differential expression analysis strategy (essentially, adding up counts from all cells per individual and comparing those counts with standard RNA-seq differential expression tests), which is (a) in line with latest community recommendations, (b) different from the "default options" in most popular scRNA-seq analysis suites, and (c) explains the vastly different number of DEGs identified by the authors and the original publication. The recommendation of this approach together with a detailed assessment of the DEGs found by both methodologies could be a useful finding for the research community. Unfortunately, it is currently not fully substantiated and is confounded with concurrent changes in QC measures (see weaknesses).
The authors show a correlation between the number of DEGs and the number of cells assessed, which indicates a methodological shortcoming of the original paper's approach (actually, the authors of the original paper already acknowledged that the lesser number of DEGs for rare cell types was a technical artefact). To be educational for the reader it would be important to provide more information about the DEGs that were "found" and those that were "lost". Given vast inter-individual heterogeneity in humans, it is likely that the study was underpowered to find weaker differences using the pseudobulks (Fig. 1B shows that only genes with more than 4-fold change were found "significant").
All code and data used in this study are publicly available to the readers.
WEAKNESSES:
The authors interpret the fact that they found fewer DEGs with their method than the original paper as a good thing by making the assumption that all genes that were not found were false positives. However, they do not prove this, and it is likely that at least some genes were not found due to a lack of statistical power and not because they were actually "incorrect". The original paper also performed independent validations of some genes that were not found here.
I am concerned that the only DEGs found by the authors are in the rare cell types, foremost the rare microglia (see Fig. 1f). It is unclear to me how many cells the pseudo-bulk counts were based on for these cells types, but it seems that (a) there were few and (b) there were quite few reads per cells. If both are the case, the pseudobulk counts for these cell populations might be rather noisy and the DEG results are liable to outliers with extreme fold changes.
The authors claim they improved the quality control of the dataset. While I do not think they did anything wrong per se, the authors offer no objective metric to assess this putative improvement. This is another major weakness of the paper as it confounds the results of the improved (?) differential analysis strategy and dilutes the results. I detail this weakness in the two following points:
Removing low-quality cells: The authors apply a new QC procedure resulting in the removal of some 20k more cells than in the original publication. They state "we believe the authors' quality control (QC) approach did not capture all of these low quality cells" (l. 26). While all the QC metrics used are very sensible, it is unclear whether they are indeed "better". For instance, removal with a mitochondrial count of <5% seems harsh and might account for a large proportion of additional cells filtered out in comparison to the original analysis. There is no blanket "correct cutoff" for this percentage. For instance, the "classic" Seurat tutorial https://satijalab.org/seurat/articles/pbmc3k_tutorial.html uses the 5% threshold chosen by the authors, an MAD-based selection of cutoff arrived at 8% here https://www.sc-best-practices.org/preprocessing_visualization/quality_control.html, another "best practices" guide choses by default 10% https://bioconductor.org/books/3.17/OSCA.basic/quality-control.html#quality-control-discarded, etc. Generally, the % of mitochondrial reads varies a lot between datasets. As far as I can tell, the original paper did not use a fixed threshold but instead used a clustering approach to identify cells with an "abnormally high" mitochondrial read fraction. That also seems reasonable. Overall, I cannot assess whether the new QC is really more appropriate than the original analysis and the authors do not provide any evidence in favor of their strategy.
Batch correction: "Dataset integration has become a standard step in single-cell RNA-Seq protocols" (l. 29). While it is true that many authors now choose to perform an integration step as part of their analysis workflow, this is by no means uncontroversial as there is a risk of "over-integration" and loss of true biological differences. Also, there are many different methods for dataset integration out there, which will all have different results. More importantly, the authors go on "we found different cell type proportions to the authors (Fig. 1a) which could be due to accounting for batch effects" but offer no support for the claim that the batch effects are indeed related to the observed differences. An alternative explanation would be a selective loss/gain of certain cell types during quality control. The original paper stated concerns about losing certain cell types (microglia, which do not seem to be differentially abundant in the original paper / new analysis).
Relevant literature is incompletely cited. Instead of referring to reviews of best practices and benchmarks comparing methods for batch correction and or differential analysis, the authors only refer to their own previous work.
Due to a lack of comparison with other methods and due to the fact that the author's methodology was only applied to a single dataset, the paper presents merely a case study, which could be useful but falls short of providing a general recommendation for a best practice workflow.
APPRAISAL:
The manuscript could help to increase awareness of data analysis choices in the community, but only if the superiority of the methodology was clearly demonstrated. The recommended pseudobulk differential expression approach along with the indication of drastic differences that this might have on the results is the main output of the current manuscript, but it is difficult to assess unequivocally how this influenced the results because the differential analysis comes after QC and cell type annotation, which have also been changed in comparison to the original publication. In my opinion, the purpose of the paper might be better served by focusing on the DE strategy without changing QC and instead detailing where/how DEGs were gained/lost and supporting whether these were false positives.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: Cullinan et al. explore the hypothesis that the cytoplasmic N- and C-termini of ASIC1a, not resolved in x-ray or cryo-EM structures, form a dynamic complex that breaks apart at low pH, exposing a C-terminal binding site for RIPK1, a regulator of necrotic cell death. They expressed channels tagged at their N- and C-termini with the fluorescent, non-canonical amino acid ANAP in CHO cells using amber stop-codon suppression. Interaction between the termini was assessed by FRET between ANAP and colored transition metal ions bound either to a cysteine reactive chelator attached to the channel (TETAC) or metal-chelating lipids (C18-NTA). A key advantage to using metal ions is that they are very poor FRET acceptors, i.e. they must be very close to the donor for FRET to occur. This is ideal for measuring small distances/changes in distance on the scales expected from the initial hypothesis. In order to apply chelated metal ions, CHO cells were mechanically unroofed, providing access to the inner leaflet of the plasma membrane. At high pH, the N- and C- termini are close enough for FRET to be measured, but apparently too far apart to be explained by a direct binding interaction. At low pH, there was an apparent increase in FRET between the termini. FRET between ANAP on the N-and C-termini and metal ions bound to the plasma membrane suggests that both termini move away from the plasma membrane at low pH. The authors propose an alternative hypothesis whereby close association with the plasma membrane precludes RIPK1 binding to the C-terminus of ASIC1a.
Strengths: The findings presented here are certainly valuable for the ion channel/signaling field and the technical approach only increases the significance of the work. The choice of techniques is appropriate for this study and the results are clear and high quality. Sufficient evidence is presented against the starting hypothesis.
Weaknesses: I have a few questions about certain controls and assumptions that I would like to see discussed more explicitly in the manuscript.
--My biggest concern is with the C-terminal citrine tag. Might this prevent the hypothesized interaction between the N- and C-termini? What about the serine to cysteine mutations? The authors might consider a control experiment in channels lacking the C-terminal FP tag.
--Figure 2 supplement 1 shows apparent read-through of the N-terminal stop codons. Given that most of the paper uses N-terminal ANAP tags, this figure should be moved out of the supplement. Do N-terminally truncated subunits form functional channels? Do the authors expect N-terminally truncated subunits to co-assemble in trimers with full-length subunits? The authors should include a more explicit discussion regarding the effect of truncated channels on their FRET signal in the case of such co-assembly.
--As the epitope used for the western blots in Figure 2 and supplements is part of the C-terminal tag, these blots do not provide an estimate of the fraction of C-terminally truncated channels (those that failed to incorporate ANAP at the stop codon). What effect would C-terminally truncated channels have on the FRET signal if incorporated into trimers with full-length subunits?
--Some general discussion of these results in the context of trimeric channels would be helpful. Is the putative interaction of the termini within or between subunits? Are the distances between subunits large enough to preclude FRET between donors on one subunit and acceptor ions bound on multiple subunits?
--The authors conclude that the relatively small amount of FRET between the cytoplasmic termini suggests that the interaction previously modeled in Rosetta is unlikely. Is it possible that the proposed structure is correct, but labile? For example, could it be that the FRET signal is the time average of a state in which the termini directly interact (as in the Rosetta model) and one in which they do not?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Nagel et al. sought to comprehensively characterize the composition of urinary compounds, some of which are putative chemosignals. They used urines from adult males and females in three different strains, including one wild-derived strain. By performing mass spectrometry of two classes of compounds: volatile organic compounds and proteins, they found that urines from inbred strains are qualitatively similar to those of a wild strain. This finding is significant because there is a high degree of genetic diversity in wild mice, with chemosensory receptor genes harboring many polymorphisms.
In the second part of this work, the authors used calcium imaging to monitor the pattern of vomeronasal neuron responses to these urines. By performing pairwise comparisons, the authors found a large degree of strain-specific response and a relatively minor response to sex-specific urinary stimuli. This is a finding generally in agreement with previous calcium imaging work by Ron Yu and colleagues in 2008. The authors extend the previous work by using urines from wild mice. They further report that the concentration diversity of urinary compounds in different urine batches is largely uncorrelated with the activity profiles of these urines. In addition, the authors found that the patterns of vomeronasal neuron response to urinary cues are not identical when measured using different recipient strains. This fascinating finding, however, requires an additional control to exclude the possibility that this is not due to sampling error.
There are several weaknesses in this manuscript, including the lack of analysis of the compositions of sulfated steroids and other steroids, which have been proposed to be the major constituents of vomeronasal ligands in urines and the indirect (correlational) nature of their mass spectrometry data and activity data.
Overall, the major contribution of this work is the identification of specific molecules in mouse urines. This work is likely to be of significant interest to researchers in chemosensory signaling in mammals and provides a systematic avenue to exhaustively identify vomeronasal ligands in the future.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors build upon previous research that utilized non-invasive EEG and MEG by analyzing intracranial human ECoG data with high spatial resolution. They employed a receptive field mapping task to infer the retinotopic organization of the human visual system. The results present compelling evidence that the spatial distribution of human alpha oscillations is highly specific and functionally relevant, as it provides information about the position of a stimulus within the visual field.
Using state-of-the-art modeling approaches, the authors not only strengthen the existing evidence for the spatial specificity of the human dominant rhythm but also provide new quantification of its functional utility, specifically in terms of the size of the receptive field relative to the one estimated based on broad band activity.
The present manuscript currently omits the complementary view that the retinotopic map of the visual system might be related to eye movement control. Previous research in non-human primates using microelectrode stimulation has clearly shown that neuronal circuits in the visual system possess motor properties (e.g. Schiller and Styker 1972, Schiller and Tehovnik 2001). More recent work utilizing Utah arrays, receptive field mapping, and electrical stimulation further supports this perspective, demonstrating that the retinotopic map functions as a motor map. In other words, neurons within a specific area responding to a particular stimulus location also trigger eye movements towards that location when electrically stimulated (e.g. Chen et al. 2020).
Similarly, recent studies in humans have established a link between the retinotopic variation of human alpha oscillations and eye movements (e.g., Quax et al. 2019, Popov et al. 2021, Celli et al. 2022, Liu et al. 2023, Popov et al. 2023). Therefore, it would be valuable to discuss and acknowledge this complementary perspective on the functional relevance of the presented evidence in the discussion section.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study investigates the impact of recurrent connections on grid fields generated in networks trained by adjusting the strength of feedforward spatial inputs. The main result is that if the recurrent connections in the network are given a 1D continuous attractor architecture, then aligned grid firing patterns emerge in the network following training. Detailed analyses of the low dimensional dynamics of the resulting networks are then presented. The simulations and analyses appear carefully carried out.
The feedforward model investigated by the authors (previously introduced by Kropff & Treves, 2008) is an interesting and important alternative to models that generate grid firing patterns through 2-dimensional continuous attractor network (CAN) dynamics. However, while both classes of model generate grid fields, in making comparisons the manuscript is insufficiently clear about their differences. In particular, in the CAN models grid firing is a direct result of their 2-D architecture, either a torus structure with a single activity bump (e.g. Guanella et al. 2007, Pastoll et al. 2013), or sheet with multiple local activity bumps (Fuhs & Touretzky, Burak & Fiete, 2009). In these models, spatial input can anchor the grid representations but is not necessary for grid firing. By contrast, in the feedforward models neurons transform existing spatial inputs into a grid representation. Thus, the two classes of model implement different computations; CANs path integrate, while the feedforward models transform spatial representations. A demonstration that a 1D CAN generates coordinated 2D grid fields would be surprising and important, but it's less clear why coordination between grids generated by the feedforward mechanism would be surprising. As written, it's unclear which of these claims the study is trying to make. If the former, then the conclusion doesn't appear well supported by the data as presented, if the latter then the results are perhaps not so unexpected, and the imposed attractor dynamics may still not be relevant.
Whichever claim is being made, it could be helpful to more carefully evaluate the model dynamics given predictions expected for the different classes of model. Key questions that are not answered by the manuscript include:
- At what point is the 1D attractor architecture playing a role in the models presented here? Is it important specifically for training or is it also contributing to computation in the fully trained network?
- Is an attractor architecture required at all for emergence of population alignment and gridness? Key controls missing from Figure 2 include training on networks with other architectures. For example, one might consider various architectures with randomly structured connectivity (e.g. drawing weights from exponential or Gaussian distributions).
- In the trained models do the recurrent connections substantially influence activity in the test conditions? Or after training are the 1D dynamics drowned out by feedforward inputs?
- What is the low dimensional structure of the input to the network? Can the apparent discrepancy between dimensionality of architecture and representation be resolved by considering structure of the inputs, e.g. if the input is a 2 dimensional representation of location then is it surprising that the output is too?
- What happens to representations in the trained networks presented when place cells remap? Is the 1D manifold maintained as expected for CAN models, or does it reorganise?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Mitochondria is the power plant of the cells including neurons. Thomas et al. characterized the distribution of mitochondria in dendrites and spines of L2/3 neurons from the ferret visual cortex, for which visually driven calcium responses of individual dendritic spines were examined. The authors analyzed the relationship between the position of mitochondria and the morphology or orientation selectivity of nearby dendrite spines. They found no correlation between mitochondrion location and spine morphological parameters associated with the strength of synapses, but correlation with the spine-somatic difference of orientation preference and local heterogeneity in preferred orientation of nearby spines. Moreover, they reported that the spines that have a mitochondrion in the head or neck are larger in size and have stronger orientation selectivity. Therefore, they proposed that "mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs."
Strengths:<br /> This paper attempted to address a fundamental question: whether the distribution of the mitochondria along the dendrites of visual cortical neurons is associated with the functions of the spines, postsynaptic sites of excitatory synapses. Two state of the art techniques (2 photon Ca imaging of somata and spines and EM reconstructions of cortical pyramidal neurons) had been used, which provides a great opportunity to examine and correlate the function of spine ultrastructure and spatial distribution of dendritic mitochondria.
Weaknesses:<br /> Overall, the findings are interesting. However, the study lacks the data providing insights into either the mechanisms or the functional meaning of the pattern of mitochondrion distribution along the dendrites, which restricts the significance of the study. It also suffers from small correlation coefficients and small sample sizes (60-121 spines in 4 neurons) as well as missing some important analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary<br /> In this manuscript, Hagihara et al. characterized the relationship between the changes in lactate and pH and the behavioral phenotypes in different animal models of neuropsychiatric disorders at a large-scale level. The authors have previously reported that increased lactate levels and decreased pH are commonly observed in the brains of five genetic mouse models of schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD). In this study, they expanded the detection range to 109 strains or conditions of animal models, covering neuropsychiatric disorders and neurodegenerative disorders. Through statistical analysis of the first 65 strains/conditions of animal models which were set as exploratory cohort, the authors found that most strains showed decreased pH and increased lactate levels in the brains. There was a significant negative correlation between pH and lactate levels both at the strain/condition level and the individual animal level. Besides, only working memory was negatively correlated with brain lactate levels. These results were successfully duplicated by studying the confirmative cohort, including 44 strains/conditions of animal models. In all strains/conditions, the lactate levels were not correlated with age, sex, or storage duration of brain samples.
Strengths<br /> 1. The manuscript is well-written and structured. In particular, the discussion is really nice, covering many potential mechanisms for the altered lactate levels in these disease models.<br /> 2. Tremendous efforts were made to recruit a huge number of various animal models, giving the conclusions sufficient power.
Weaknesses<br /> 1. The biggest concern of this study is the limited novelty. The point of "altered pH and/or lactate levels in the brains from human and rodent animals of neuropsychiatric disorders" has been reported by the same lab and other groups in many previous papers.<br /> 2. This study is mostly descriptive, lacking functional investigations. Although a larger cohort of animal models were studied which makes the conclusion more solid, limited conceptual advance is contributed to the relevant field, as we are still not clear about what the altered levels of pH and lactate mean for the pathogenesis of neuropsychiatric disorders.<br /> 3. The experiment procedure is also a concern. The brains from animal models were acutely collected without cardiac perfusion in this study, which suggests that resident blood may contaminate the brain samples. The lactate is enriched in the blood, making it a potential confounded factor to affect the lactate levels as well as pH in the brain samples.<br /> 4. The lactate and pH levels may also be affected by other confounded factors, such as circadian period, and locomotor activity before the mice were sacrificed. This should also be discussed in the paper.<br /> 5. Another concern is the animal models. Although previous studies have demonstrated that dysfunctions of these genes could cause related phenotypes for certain disorders, many of them are not acknowledged by the field as reliable disease models. Besides, gene deficiency could also cause many known or unknown unrelated phenotypes, which may contribute to the altered levels of lactate and pH, too. In this circumstance, the conclusion "pH and lactate levels are transdiagnostic endophenotype of neuropsychiatric disorders" is somewhat overstated.<br /> 6. The negative correlationship between pH and lactate is rather convincing. However, how much the contribution of lactate to pH is not tested. In addition, regarding pH and lactate, which factor contributes most to the pathogenesis of neuropsychiatric disorders is also unclear. These questions may need to be addressed in the future study.<br /> 7. The authorship is open to question. Most authors listed in this paper may only provide mice strains or brain samples. Maybe it is better just to acknowledge them in the acknowledgments section.<br /> 8. The last concern is about the significance of this study. Although the majority of strains showed increased lactate, some still showed decreased lactate levels in the brains. These results suggested that lactate or pH is an endophenotype for neuropsychiatric disorders, but it is hard to serve as a good diagnostic index as the change is not unidirectional in different disorders. In other words, the relationship between lactate level and neuropsychiatric disorders is not exclusive.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This study by Hormigo et al. examines the relationship between activity in the zona incerta (ZI) and behavior. The authors aim to assess the hypothesis that the ZI might mediate a general behavioral function, namely the distribution of information about ongoing movement to other brain areas that regulate behavior. Given the heterogeneity of prior literature on the ZI, this topic is important and interesting. The study employs a strong diversity of technical approaches, spanning electrophysiological recordings, calcium imaging, optogenetics, virally-mediated cell-type ablation, and several behavioral assays. The output is a large dataset where each experiment is useful and interesting, and together, the results could be interpreted as consistent with the prospect of the ZI mediating a general function. However, there are notable weaknesses in the current version of this paper. First, it is unclear whether the experiments and analyses were set up to be able to rule out more specific candidate functions of the ZI. Second, many important details of the experiments and their results are hard to decipher given the current descriptions and presentations of the data.
The paper could be significantly strengthened by including more details from each experiment, stronger justifications for the limited behaviors and experimental analyses performed, and, finally, a broader analysis of how the recorded activity in the ZI relates to behavioral parameters.
(1) Anatomical specification: The ZI contains many distinct subdivisions--each with its own topographically organized inputs/outputs and putative functions. The current manuscript doesn't reference these known divisions or their behavioral distinctions, and one cannot tell exactly which portion(s) of the ZI was included in the current study.
Moreover, the elongated structure of the ZI makes it very difficult to specifically or completely infect virally. The data could be better interpreted if the paper included basic information on the locations of recordings, the extent of the AAV spread in the ZI in each viral experiment, and what fraction of infected neurons were inside versus outside ZI.
(2) Electrophysiological recording on the treadmill: The authors are commended for this technically very difficult experiment. The authors do not specify, however, how they knew when they were recording in ZI rather than surrounding structures, particularly given that recording site lesions were only performed during the last recording session. A map of the locations of the different classes of units would be valuable data to relate to the literature.
(3) The rationale of the analysis of activity with respect to "movement peak": It is unclear why the authors did not assess how ZI activity correlates with a broad set of movement parameters, but rather grouped heterogeneous behavioral epochs to analyze firing with respect to "movement peaks".
(4) The display of mean categorical data in various figures is interesting, however, the reader cannot gather a very detailed view of ZI firing responses or potential heterogeneity with so little information about their distributions.
(5) Somatosensory firing responses in ZI: It is unclear why the authors chose the specific stimuli used in the study. How often did they evoke reflexive motor responses? What was the latency of sensory-evoked responses in ZI activity and the latency of the reflexive movement?
(6) It would be valuable to see example traces in Figure 3 to get a better sense of the time course and contexts under which Ca signals in ZI tracks movement. What is the typical latency? What is the typical range of magnitudes of responses? Does the Ca signal track both fast and slow movements? How are the authors sure that there are no movement artifacts contributing to the calcium imaging? It seems there is more information in the dataset that could be valuable.
(7) Figure 4: The rationale for quantifying the F/Fo responses over a 6-second window, rather than with respect to discrete movement parameters, is not well explained. What types of movement are binned in this approach and might this broad binning hinder the ability to detect more specific relationships between activity and movement?
(8) Separation of sensory and motor responses in Figure 5: The current data do not adequately differentiate whether the responses are sensory or motor given the high correlation of the sensory inputs driving motor responses. Because isoflurane can diminish auditory responses early in the auditory pathway, this reviewer is not convinced the isoflurane experiments are interpretable.
(9) Given the broad duration of the mean avoidance response (Fig. 6 C, bottom), it would be useful to know to what extent this plot reflects a prolonged behavior or is the result of averaging different animals/trials with different latencies. Given that the shapes of the F/Fo responses in ZI appear similar across avoids and escapes (Fig. 6D), despite their apparent different speeds and movement durations (Fig 6C), it would be valuable to know how the timing of the F/Fo relates to movement on a trial-by-trial basis.
(10) Lesion quantification: One cannot tell what rostral-caudal extent of ZI was lesioned and quantified in this experiment. It would be easier to interpret if also plotted for each animal, so the reader can tell how reliable the method is. The mean ablation would be better shown as a normalized fraction of cells. Although the authors claim the lesions have little impact on behavior, it appears the incompleteness of the lesions could warrant a more conservative interpretation.
(11) Optogenetics: the location of infected neurons is poorly described, including the rostral-caudal extent and the fraction of neurons inside and outside of ZI. Moreover, it is unclear how strongly the optogenetic manipulations in this study are expected to affect neuronal activity in ZI.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this paper, the interocular/binocular combination of temporal luminance modulations is studied. Binocular combination is of broad interest because it provides a remarkable case study of how the brain combines information from different sources. In addition, the mechanisms of binocular combination are of interest to vision scientists because they provide insight into when/where/how information from two eyes is combined.
This study focuses on how luminance flicker is combined across two eyes, extending previous work that focused mainly on spatial modulations. The results appear to show that temporal modulations are combined in different ways, with additional differences between subcortical and cortical pathways.
The manuscript has been revised to address prior reviewers' comments. It now provides more justification for the empirical choices made by the authors, and a better illustration of the methods. That said, the paper would still benefit from an expanded rationale for significance beyond this specific area. There were no substantive changes made to the abstract or introduction, and only little to the discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript Rubin and Aso provide important new tools for the study of learning and memory in Drosophila. In flies, olfactory learning and memory occurs at the Mushroom Body (MB) and is communicated to the rest of the brain through Mushroom Body Output Neurons (MBONs). Previously, typical MBONs were thoroughly studied. Here, atypical MBONs that have dendritic input both within the MB lobes and in adjacent brain regions are studied. The authors describe new cell-type-specific GAL4 drivers for the majority of atypical MBONs (and other MBONs) and using an optogenetic activation screen they examined their ability to drive behaviors and learning.
The experiments in this manuscript were carefully performed and the results are clear. The tools provided in this manuscript are of great importance to the field.
-