Reviewer #2 (Public Review):
Summary:<br />
Zung et al. use a comparative approach to examine the volatile headspace of diverse mammals and host species to understand the differences in chemical profiles that may provide mosquitoes with signatures of appropriate hosts. The authors collect the volatiles from hair samples and conduct qualitative analyses of the headspace composition. The authors' results suggest that mammals share overlapping volatile signatures, although the sampling method and statistical approaches reduce the veracity of the authors' findings. Additional comparisons between mammalian and floral odours were conducted, although the datasets were limited.
The inter-species comparisons will be helpful in the field, although the data pipeline and approaches may underestimate the headspace chemical diversity, and sampling artifacts and contaminants occur in the datasets, which further weakens the study's findings.
Strengths:<br />
The comparative approach is a strength of the manuscript. The authors identify an important gap in mosquito natural history by attempting to characterize the odours from various mammalian, bird, and reptile species that mosquitoes may use as blood hosts. Although others have compared the skin volatiles of humans, apes, and ungulates (Verhulst et al., 2018, not cited in the current manuscript), Zung and coworkers expand this sampling by using hair samples from collections and zoos. Unfortunately, the sampling approach leads to potential artifacts associated with the collected volatiles and statistical analyses.
Weaknesses:<br />
There are three major points of weakness associated with the manuscript: (1) sampling approach and analysis pipeline; (2) statistical analyses; and (3) premise and prior work.
1. Sampling approach and pipeline<br />
A. The authors have described their sampling and analysis as quantitative, but they use a qualitative approach by not quantifying their samples and using a low-res MS. I outline several approaches that would allow the authors to quantitate their samples. The authors must run synthetic standards for peak verification (the mass spectra alone are insufficient for compound identification). The authors are also encouraged to run the standards in a concentration curve to allow quantification of the compounds. The authors have only tentatively identified 120 compounds. Using an autosampler and standard analyses in the software, the authors could easily quantify their samples which would take less than a week's time (this is not impossible, as the authors state in the methods). Based on the volatile fragmentation and the MS detector, the compounds will differ in their relative abundances - running calibration curves, co-injection of authentic standards, and using multiple column types are necessary for the resulting statistical analyses to prevent mischaracterization of the abundances in the hair samples. Using an internal standard, by spiking the Tenax before collection, would also allow determination if column conditions change over the course of the experiment. These measurements would provide some quantitative measures to explore the differences in host odors. Details on these approaches can be found in Methods in Chemical Ecology, Techniques in Pheromone Research, and article reviews that describe more recent approaches and analyses (Tholl and Rose, 2006; Stashenko and Martínez, 2008; Spicer et al., 2017; Tholl et al., 2020; Eisen et al., 2021; Schulz and Mollerke, 2022).
B. Abundant contaminants in the samples. In the supplemental table of partially identified compounds, many contaminants are associated with the headspace collection method and environmental contaminants. Under thermal deadsorption, Tenax degradation produces many compounds, including quinolones and benzenoid compounds. Phenyl-substituted carbonyl compounds (benzaldehyde, acetophenone, benzene acetaldehyde) are formed as artifacts from the oxidation of Tenax with environmental contaminants. Other compounds, like phenol or -ethyl and methylated benzene compounds, are known to be released from the Tenax traps. The authors' pipeline and blank subtraction should have identified these compounds.
C. Hair and live headspace volatiles. I appreciate the authors' experiments comparing the composition and abundance of volatiles from live collections and hair samples. However, the results demonstrate that the hair does not always match the volatiles from the live animal. Humans 1, 3, and 4 differ significantly in their aldehyde abundances, especially nonanal. The hamster and mice samples also differ significantly. The matrix of the hair will adsorb and modify the emissions and ratios of compounds, which makes the inter-species comparisons difficult if not impossible if the headspace collection approaches differ. The authors need to change their phrasing of the host odours to "hair odours", and soften their statements associated with the complete host odour profile, and use hair samples as a standard matrix for the headspace collections. The comparison of human odour collections relative to hair samples is like the comparison of apples and oranges.
D. The authors need to use another column type to characterize their peaks further. Some of the compounds are enantiomers or closely elute from the column. Although the authors suggest their methods may separate these compounds, they may be misidentified without a different GC temperature ramp or column.
E. The authors should replace their retention indices with KRI values to further identify their compounds. The methods section does not describe whether the alkane standards were run parallel to the hair samples, and the manuscript's retention indices do not match published KRI values.
F. The number of compounds across species (including flower compounds) is very low (approximately 120 compounds) and surprising. This suggests that the analysis pipeline and thresholding may miss many compounds in the headspace. I would encourage the authors to lower their threshold to 10^-5 AU, or to perform a sensitivity analysis on their ability to identify the peaks. Running authentic standards would also allow the identification of compounds missed in the analysis.
G. I understand the difficulty in obtaining these samples across the different species. However, additional information is needed for those species that are limited in the number of replicates (individuals). Sampling the individual multiple times may indicate the variability in the hair volatiles. Although the authors and many others have shown the reproducibility of human skin volatiles through time, additional sampling would indicate this also occurs for other mammals while strengthening the authors' approach.
H. An important measure of natural odour statistics is the odor emission rates, and normalizing across samples by the sample mass. More information on the methods would have clarified these aspects. It needs to be clarified why the samples were collected for different time periods (5 to 80 minutes). The sample mass for each specimen should also be included as this would allow normalization by time and mass, and should be described in the methods. This would allow quantitative measurements of the samples.
I. A critical missing component in the headspace is the acids. Tenax does not perform well at collecting these compounds. However, Gerstel Twisters and other collection matrices can capture those compounds. The authors must use these other collection methods to sample the hair specimens and identify those compounds to include in their table and analyses. Without this information, the manuscript lacks a critical dimension in the human odour landscape that is critical for mosquito attraction.
2. Statistical Analyses<br />
A. Sampling effort and the replicate numbers used in the analyses is an important consideration that the authors do not address, but should be discussed in more detail. In many subfields of chemical ecology, a minimum of ten replicates per species has been suggested to accurately identify the composition of compounds, and even with ten samples, this may not be enough to characterize the volatile profile (Raguso and Pellmyr, 1998; Campbell et al 2019). The authors could perform a power analysis, or an accumulation curve to represent the needed sample number to identify the number of compounds in the hair headspace accurately.
B. It would be worthwhile for the authors to provide more detail on their supervised and unsupervised approaches, and how their data fits the assumptions of the analyses. The PCA parametric method may require log or square root transformation of the data to make residuals fit the normality assumption, but it's unclear if this was the case with the authors' datasets.
C. PCA is also not appropriate when many samples have zero values in the data matrix, which occurs in the authors' data. In such a case, the approaches of NMDS or canonical analysis of principal coordinates would be more appropriate, and allow distance measures (the Bray-Curtis distance) to define dissimilarity of different groups. An analysis of similarity (ANOSIM) could be used to determine if the data clustered significantly by species or by mosquito host.
D. The authors are encouraged to use alternate approaches, such as random forest (ML) approach, to determine if the odor classification is based on host or non-host. This method has been used for the last fifteen years in chemical ecology and human odor analysis (Cutler et al, 2007, Kwak et al 2008).
E. The authors use a phylogenetic framework for their analyses. Multivariate methods are now available to test evolutionary hypotheses about scent composition in a phylogenetic framework (Goolsby, 2017), and the authors are encouraged to use these approaches.
F. Comparison to floral odour space section. I would encourage the authors to examine other datasets of plant headspace samples, including plants used by mosquitoes. There are many datasets out there that the authors could use (El-Sayed 2021, Farré-Armengol et al 2020). Expanding the authors' dataset would provide more statistical power, and provide control of differences in plant visitor and plant phylogenetic relatedness.
G. Adding context related to mosquito olfaction. The authors describe how their work could provide insight into the coding of olfactory information by the mosquito. I would encourage the authors to analyze their data further by collapsing the host volatiles into groups based on biochemical pathways, or knowledge of the detection of the volatiles by the mosquitoes (such as using electroantennogram responses) to filter and identify only those responsive volatiles to keep in their dataset.
Premise and Background Knowledge<br />
A. Analyses of odour headspace have been known for the last three decades, e.g. (Methods in Chemical Ecology, Techniques in Pheromone Research, George Petri's work, Tholl and Rose, 2006; Stashenko and Martínez, 2008; Spicer et al., 2017; Tholl et al., 2020; Eisen et al., 2021; Schulz and Mollerke, 2022). But in many places, the paper conveys the impression that these are new discoveries and analyses. For example,<br />
-"Yet we remain remarkably ignorant of the composition of the chemical world."<br />
-"Our work provides one of the first quantitative descriptions of a natural odour space"<br />
-"Progress in understanding natural odours has also been hindered by the technical challenges of capturing and analyzing odour, especially the complex blends that constitute most natural odours"<br />
The Introduction and Discussion are rife with these overblown statements. I found this frustrating as the authors were not giving due credit to prior work on that topic while (maybe unintentionally) giving an impression that this specific idea was a new contribution. More care is needed to delineate which aspects of the study are 1) based on prior understanding, or 2) totally new). The authors are adding to an already extensive field of chemical ecology and olfactory processing of mixtures, and are contributing to this knowledge by adding datasets related to mammalian odor. I plead that the authors clearly describe these gaps, and place their results into proper context.
B. Similarly to the above statements relating to chemical ecology, the authors have numerous statements about gaps in odour processing. Mixture processing has been an important topic of study for the last forty years (Shorey, 1973, Caprio, 1988, Riffell et al 2009, Su et al 2009, Rokni et al 2014, Mathis et al 2016), which is based on encoding the temporal and concentration-dependent statistics of the odour.<br />
-"Yet compared to visual and auditory scenes, we know very little about the statistics of natural olfactory scenes"<br />
As described above, this is surprising and frustrating because of the rich literature on these topics (searching for "odour mixtures" provides 32,000 articles). In their manuscript, the authors are providing a strawman argument for their analyses by focusing on single odorant signatures, when the literature has repeatedly demonstrated the importance of odour mixtures for behavior and combinatorial processing.
C. There are increasing studies examining the mosquito behavioral and electrophysiological responses to hosts and other odours. However, this literature is not cited or included in the authors' analyses. The chemical ecology of mosquito attractants and natural odours has been studied in the Carde, Leal, Ignell, Carlson, Kline, Riffell, Takken, Torto, Verlhurst, Vosshall labs, and many others. The authors could use this information in their analyses and cite the literature.