Reviewer #2 (Public Review):
Gating of the CFTR chloride channel is controlled by its nucleotide binding domains (NBDs) where ATP binding-induced dimerization leads to channel opening and ATP hydrolysis in the catalytic ATP binding site terminates CFTR's opening burst. Mutations that diminish ATP hydrolysis, including Walker A mutation K1250A, Walker B mutation D1370N, and catalytic glutamate mutations E1371Q and E1371S, have been used extensively to trap the channel in the open state by researchers studying CFTR function. The E1371Q human CFTR (hCFTR) has an extremely longer burst duration than all the other hydrolysis-deficient mutants, including E1371S hCFTR. An unexpected finding that the E-to-Q and E-to-S mutants of zebrafish CFTR (zCFTR) have similar non-hydrolytic closing rates inspired Simon et al to investigate the underlying mechanism for this discrepancy between the human and zebrafish CFTR orthologs, and examine how hydrolysis deficient mutations have differential effects on the CFTR's burst duration. Their data support the idea that all the above mutations completely abolish ATP hydrolysis. The closing rate of K1250A and E1371S CFTR represents the true non-hydrolytic closing rate of wildtype CFTR, while the closing rate of D1370N is accelerated presumably due to the lack of interaction between the negatively charged aspartate and magnesium ion in the ATP binding site. On the other hand, an artificial H-bond between the G576-Q1371 of hCFTR, which is absent in zCFTR, stabilizes the NBD dimer and slowers non-hydrolytic closure.
The conclusions of this paper are mostly well supported by the data, but some additional experiments will strengthen the claim on the role of the artificial inter-NBD hydrogen bond (point 1 below). Some aspects of data interpretation need to be further clarified (point 2-5 below).
1) The author hypothesized that in hCFTR an artificial H-bond between the side-chain of glutamine at position 1371 (i.e., in E1371Q mutant) and the backbone carbonyl at G576 of the D-loop stabilizes the NBD dimer. Such H-bond is absent in E1372Q zCFTR. The authors employed mutant cycle analysis on the G576Δ-E1371S mutation pair to demonstrate an energetic coupling between the hG576 and hE1371Q. However, how the deletion of G576 might alter the local structure is unpredictable. The result does not directly address the discrepancy between zCFTR and hCFTR, either. The D-loop is highly conserved across species with a consensus sequence PFGYLD (residue 574-579 in hCFTR), but in zCFTR the analogous sequence is PFTHLD. The backbone carbonyl oxygen could therefore be harder to access in zCFTR. A simple yet critical experiment would have strengthened the authors' claim that the interaction between Q1371 and G576 stabilizes the dimer: introducing mutation in the D-loop of zCFTR to match the sequence of hCFTR (and vice versa). The authors' hypothesis would predict that zCFTR with hCFTR's D-loop sequence should recapitulate hCFTR's phenotype: the E-to-Q mutation on the catalytic glutamate would further lengthen the burst duration compared to the E-to-S mutation.
2) The authors speculated that the reason for D1370N's relatively fast closing rate compared to other non-hydrolytic mutants is the loss of interaction between Mg2+ and the negatively charged aspartate. However, this reasoning fails to explain why non-hydrolytic closure of wildtype CFTR in the absence of Mg2+ (e.g., Levring et al. 2023 Extended Data Fig. 7g) is even slower than the non-hydrolytic closure of D1370N CFTR opened by MgATP, where at least the Mg2+ is present. The authors should caution the readers that so far no definitive experimental evidence can explain the destabilizing effect of D1370N.
3) Based on the results that the double mutant E1371S/K1250A hCFTR has similar burst duration as single mutant E1371S and K1250A, the authors made a strong claim that both mutations completely abolish ATP hydrolysis. Similar reasoning was applied to D1370N. The limitations in such interpretations should be discussed. The authors made the assumption that the termination of a burst is solely controlled by site 2 (Figure 1C). However, when hydrolysis is significantly diminished, binding of ATP in site 2 is very stable, and thus dissociation of ATP from site 2 versus site 1 becomes hard to distinguish. Whether all hydrolysis-deficient mutants share the same open-to-close transition by releasing ATP from site 2 but retaining ATP in site 1 is still a question. As the authors have elaborated in the text, it is known that mutations in the degenerate site 1 can affect non-hydrolytic closing. When mutations are introduced to site 2, they might as well result in allosteric effects on the stability of ATP binding in site 1, which could subsequently alter the channel's closing rate. The authors might want to make the readers aware of the complicated relationship between channel closure and CFTR's two ATP binding sites, and that the estimation of the "true non-hydrolytic closing rate" is based on an oversimplified gating scheme shown in Figure 1C.
4) It is known that non-hydrolytic closing rate of CFTR is phosphorylation dependent, which the authors briefly mentioned in the Discussion. Vergani et al. (2003) documented that τburst of K1250A and D1370N in PKA is ~80 s and ~4 s respectively, but both are reduced by roughly twofold when PKA was removed. In this study the burst durations of K1250A (~30 s, Figure 4C) and D1370N (~2 s, Figure 4E) indicate that these channels are not strongly phosphorylated. Similarly, the τburst of E1371S in PKA is over 100 s (Bompadre et al. 2005), significantly longer than that in the current study. Although it is unclear how a different degree of R domain phosphorylation affects non-hydrolytic closing, the fact that it does again suggests that the simplified scheme used as the base for data interpretation may have its limitation. The Discussion would benefit from a more cautionary note on the oversimplification of the IB1↔B1 transition, and clarify that channels are not strongly phosphorylated in the current experimental condition.
5) The τburst of E1371Q CFTR is over 400 second while the τburst of K1250A-E1371Q double mutant is shortened to ~200 second (Figure 3B, black vs Figure 4C, black). The K1250A-E1371S CFTR also seems to have a shorter τburst than E1371S CFTR (Figure 4C, blue vs Figure 3B, blue). Although the effect of the K1250A mutation on shortening τburst of E1371Q and E1371S CFTR is not as dramatic as the D1370N mutation, the authors might want to clearly state if there is indeed a significant difference and address how K1250A mutation has such destabilizing effect.
Reference:<br /> Bompadre, S. G., Cho, J. H., Wang, X., Zou, X., Sohma, Y., Li, M., and Hwang, T. C. (2005) CFTRgating II: Effects of nucleotide binding on the stability of open states. J Gen Physiol 125, 377-394
Levring,J., Terry,D.S., Kilic,Z., Fitzgerald,G., Blanchard,S.C., and Chen,J. (2023). CFTR function,<br /> pathology and pharmacology at single-molecule resolution. Nature 616, 606-614.
Vergani,P., Nairn,A.C., and Gadsby,D.C. (2003). On the mechanism of MgATP-dependent gating of CFTR Cl- channels. J. Gen. Physiol 121, 17-36.