Joint Public Review:
In this manuscript, the authors challenge the fundamental concept that all neurons are derived from ectoderm. The key points of the authors argument are as follows:
1) Roughly half of the cells in the small intestinal longitudinal muscle-myenteric plexus (LM-MP) that express a pan-neuronal marker do not, by lineage tracing, appear to be derived from the neural crest.
2) Lineage tracing and marker gene imaging suggest that these non-neural crest derived neurons originate in the mesoderm, leading to their designation as mesodermal-derived enteric neurons (MENs).
3) Single-cell sequencing of LM-MP tissues confirms the mesodermal origin of MENs.
4) MENs progressively replace neural crest derived enteric neurons as mice age, eventually representing the bulk of the EN population.
There is broad agreement among the reviewers that the identification and description of this cell population is important, and that the failure of these cells to be labeled by neural crest lineage tracers is not artifactual. The work with transgenic lines is convincing that some presumptive neurons in the enteric nervous system (ENS) likely originate from an alternative source in the postnatal intestine and that this population increases in aging mice.
There is, however, ongoing disagreement between the authors and reviewers about whether the authors' provocative and potentially paradigm-changing proposal that these are neurons of mesodermal origin has been established. While the authors believe they have addressed the reviewers' concerns in multiple rounds of review (much of this prior to submission), the reviewers remain unconvinced and continue to request additional data and analyses.
A key premise of the preprint review system is that the best interests of science are not served by endlessly litigating disagreements around papers by either compelling the authors to do extensive and expensive additional experiments that they do not believe to be necessary or by treating the authors' claim as established in the face of continued skepticism. Accordingly the editor believes it is time to present this work, which everyone agrees contains important observations and valuable data, along with the following editor's synthesis of the reviewers' concerns and author responses about the question of these cells' origins. We encourage anyone interested in the details to review the already posted reviews and authors' response.
The following key issues have been raised during review:
* Is the lineage tracing and marker gene expression data definitive as to mesodermal origin?
* Are the cells analyzed in the genomic experiments the same as those identified in the lineage tracing experiments?
* Does the genomic data establish that the sub-population of cells the authors focus on are of mesodermal origin?
* Are there alternative explanations for the lineage tracing and genomic observations than a mesodermal origin?
* Is the lineage tracing and marker gene expression data definitive as to mesodermal origin? *
The proximal evidence that the authors present for a mesodermal origin of the non-NC derived cells is presented in Figure 2, which establishes the presence, via lineage tracing of Tek+ and Mesp1+ (and therefore mesoderm derived) and Hu+ (and therefore neuronal) cells. The fraction of lineage labeled cells in each case (~50%) corresponds roughly to the fraction of cells that do not appear to be NC derived.
The reviewers raise several technical questions about the lineage tracing experiments, including issues of incomplete labeling, ectopic labeling and toxicity. The authors have addressed each of these with data and/or citations, and the editor believes they have demonstrated, subject to the broader limits of lineage tracing experiments, that there are Hu+ cells in the tissue that are derived from cells that do not express NC markers and that do express mesodermal markers.
One reviewer raised the question of whether these cells are neurons. This appears to the editor to be a valid question, in that specific neuronal activity of these cells has not been established. But the authors' argument is persuasive that their Hu+ state would have led them to be designated neurons and that changing that designation based on not being derived from NC is circular. However the possibility that, despite this accepted designation, these cells are not functionally neurons should be noted by readers.
* Are the cells analyzed in the genomic experiments the same as those identified in the lineage tracing experiments, and does this data establish mesodermal origin? *
To provide orthogonal evidence for the presence of mesodermally derived enteric neurons, the authors carried out single-cell sequencing of dissociated cells from hand-dissected longitudinal muscle - myenteric plexus (LM-MP) tissue. They use standard methods to identify clusters of cells with similar transcriptomes, and designate, based on marker gene expression, two clusters to be neural crest derived enteric neurons (NENs) and mesoderm derived enteric neurons (MENs). However the reviewers raised several issues about the designation of the cells MENs, and therefore their equation with the cells identified in lineage tracing.
While the logic behind specific choices made in the single-cell analysis is not always clear in the manuscript, such as why genes not-specific to MENs were used to identify the MEN cluster and how genes were selected for subsequent analysis (although both issues are explained better in the authors' response to reviewers), they in the end identify a single large cluster that has the characteristics of MENs (it expresses both neuronal and mesodermal markers) that is (by immunohistochemistry) broadly associated with the previously described tissue MENs.
The standard methods for the delineation of clusters in single-cell sequencing data (which the authors use) are stochastic and defy statistical interpretation, and the way these data and analyses are used is often subjective. The editor shares the reviewers' confusion about aspects of the analysis, but also finds the authors' assertions that they have described a cluster of cells that express both neuronal and mesodermal genes, and that this cluster corresponds to the tissue MENs described in lineage tracing, to be broadly sound.
The biggest weakness in the single-cell data and analysis - identified by all reviewers - is the massive overrepresentation of MENs relative to NENs. The authors' explanation - that some cells are more sensitive to manipulations required to prepare cells for sequencing - is certainly well-represented in the literature and is therefore plausible. But it isn't fully satisfactory, especially because it undermines the notion that the MENs and NENs are functionally equivalent (though one could argue in response that increased fragility of NENs is why they are progressively replaced by MENs).
There are many additional questions about the single cell analysis that are difficult to resolve with the data in hand. I think everyone would agree that an ideal analysis would have more cells, deeper sequencing, and comprehensive validation of the identity of each cluster of cells. But given the time and expense required to carry out such experiments, we cannot demand them, and must take the data for what they are rather than what they could be. And in the end, it is the editors' view that these data and analyses bolster the authors' claims, without conclusively establishing them. That is, these data should neither be dismissed nor, on their own, considered definitive.
* Are there alternative explanations for the data than that they are mesodermally derived neurons? *
As discussed above, the reviewers generally agree that the lineage tracing experiments are careful and well-executed, and the authors have provided data that demonstrates that the data are highly unlikely to be due to either incomplete or ectopic lineage marking. The reviewers raise several possible alternative hypotheses, some based on the literature and some based on the genomic data. The authors discuss each in detail in their response. The editor would note that, at this stage in the history of single-cell analysis, the criteria for using single cell sequencing data to establish cell type and cell origin is are not well established, and that neither the presence nor absence of specific sets of genes in single cells should not, for both technical and biological reasons, be considered dispositive as to identity.
* Additional aspects of paper: *
There are additional intriguing aspects of the paper, especially the increase in the number of MENs relative to NENs over time, suggesting functional replacement of one population with the other, and some evidence for and speculation about what might be regulating this evolution. However these are somewhat secondary points relative to the central question at hand of whether the authors have discovered a population of mesodermally derived neurons.
* Editor's summary and comment: *
The editor believes it is a fair summary to say that the authors believe they have gone to great lengths to provide multiple lines of evidence that support their hypothesis, but that these reviewers, while appreciating the potential importance of the authors' discovery of an unusual cell type, are not yet convinced of its origin.
In an ideal world, the authors, reviewers and editor would all ultimately agree on what claims the data presented in a paper supports, and indeed this is what the traditional journal publishing system tries to achieve. But the system fails in cases like this where no consensus between authors and reviewers can be reached, as it neither makes sense to "accept" the paper and imply that it has been endorsed by the reviewers, nor to "reject" it and keep the work in peer review limbo.
There is certainly enough here to warrant the idea and the data and arguments behind it being digested and considered by people in the field. It may very well be that the authors - who have spent years working on this problem and likely know more about this population of cells than anyone on Earth - are right that they have discovered something that changes how we think about the development of the nervous system. To the extent the reviewers are representative, people are likely to need additional data to be convinced. But it is time to put that to the test.