Reviewer #3 (Public review):
Summary:
In this manuscript, the investigators identified LMOD1 as one of a subset of cytoskeletal proteins that levels increase in early stages of myogenic differentiation. Lmod1 is understudied in striated muscle and in particular in myogenic differentiation. Thus, this is an important study. It is also a very thorough study, with perhaps even too much data presented. Importantly, the investigators observed that LMOD1 appears to be important for skeletal regeneration, myogenic differentiation and that it interacts with SIRT1. Both primary myoblast differentiation and skeletal muscle regeneration were studied. Rescue experiments confirmed these observations: SIRT1 can rescue perturbations of myogenic differentiation as a result of LMOD1 knockdown.
Strengths:
Particular strengths include: an important topic, the use of primary skeletal cultures, the use of both cell culture and in vivo approaches, careful biomarker analysis of primary mouse myoblast differentiation, the use of two methods to probe the function of the Lmod1/SIRT1 pathway via using depletion approaches and inhibitors, and the generation of six independent myoblast cultures. Results support their conclusions.
Weaknesses:
(1) Figure 1. Images of cells in Figure 1A are too small to be meaningful (especially in comparison to the other data presented in this figure). Perhaps make graphs smaller?
(2) Line 148 "We found LMOD2 to be the most abundant Lmod in whole skeletal muscle." This is confusing since most, if not all, prior studies have shown that Lmod3 is the predominant isoform in skeletal muscle. The two papers that are cited are incorrectly cited. Clarification to resolve this discrepancy is needed.
(3) Figure 2. Immunofluorescence (IF) panels are too small to be meaningful. Perhaps the graphs could be made smaller and more space allocated for the IF panels? This issue is apparent for just about all IF panels - they are simply too small to be meaningful. Additionally, in many of the immunofluorescence figures, the colors that were used make it difficult to discern the stained cellular structures. For example, in Figure S1, orange and purple are used - they do not stand out as well as other colors that are more commonly used.
(4) There is huge variability in many experiments presented - as such, more samples appear to be required to allow for meaningful data to be obtained. For example, Figure S2. Many experimental groups, only have 3 samples - this is highly problematic - I would estimate that 5-6 would be the minimum.
(5) Ponceau S staining is often used as a loading control in this manuscript for western blots. The area/molecular weight range actually used should be specified. Not clear why in some experiments GAPDH staining is used, in other experiments Ponceau S staining is used, and in some, both are used. In some experiments the variability of total protein loaded from lane-to-lane is disconcerting. For example, in Figure S4C there appears to be more than normal variability. Can the protein assay be redone and the samples run again?
(6) Figure S3 - Lmod3 is included in the figure but no mention of it occurs in the title of the figure and/or legend.
(7) Abstract, line 25. "overexpression accelerates and improves the formation of myotubes". This is a confusing sentence. How is it improving the formation? A little more information about how they are different than developing myotubes in normal/healthy muscle would be helpful
(8) Impossible from IF figures presented to determine where Lmod1 localizes in the myocytes. Information on its subcellular localization is important. Does it localize with Lmod2 and Lmod3 at thin filament pointed ends?
Comments on revisions:
Many comments have been adequately addressed. However, some concerns remain.
Former Concern #2. The issue with the lack of detection of LMOD3 in their muscle samples is troublesome and has not been adequately resolved in the revised manuscript. It is a fact that most, if not all, studies on Lmod3 report that it is the most abundant isoform in skeletal muscle. This issue should be discussed in the manuscript. It is recognized that a different assay was utilized in this paper. The papers that are cited continue to remain incorrect. Specifically:
Tsukada et al., reports abundance of LMOD2 in cardiac muscle, not in skeletal muscle.
Nworu et al., 2015 reports on LMOD3 in skeletal muscle.
Kiss et al.,2020. While this paper reveals an important function for Lmod2 in thin filament length regulation, it is clearly shows many examples of high expression of Lmod3 in various skeletal muscles isolated from mice.
Former Concern #3. With respect to small sample numbers. Hopefully a statistical editor is available to comment. While this reviewer is happy that other assays were used to verify their data, the problem still remains that many experimental groups only have 3 samples (with high variability).
Former Concern #3. Many immunofluorescence panels are hard to evaluate because of their small size.