5,600 Matching Annotations
  1. Mar 2023
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2023-01819

      Corresponding author(s): Gernot Längst and Harald Wodrich

      Full revision of the manuscript

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      2. Point-by-point description of the revisions

      Dear Reviewers, thank you very much for your appreciation of our study and your input. In this point-to-point response, we amended our text marked in blue colour.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors have addressed the nucleoprotein structure of human adenovirus during the very early stages of infection, and its relationship to onset of expression of viral genes, using a combination of RNA-seq, MNase-seq, ChIP-seq and single genome imaging. They show that in the virion and the newly-infecting DNA, protein VII is precisely position at specific sites on the viral DNA, with greater accessibility at early gene promoters compared to other regions. Nucleosomes containing H3.3 replace specific protein VII at distinct positions at the transcription start sites of genes, which are then acetylated. Association with histones and nucleosomes occurs prior to transcription. These studies confirm and greatly expand on results already in the literature, and also elucidate a novel role for protein VII in orchestrating positioning of nucleosomes prior to initiation of transcription.

      The authors provide excellent data in support of their conclusions and, in many instances, use alternative experiments (i.e. two different approaches) to support their claims. The details of methods are adequate (with small exceptions outlined below) and statistical methods appropriate.

      Minor comments:

      Line 561 "Protein VII molecules were exchanged for positioned nucleosomes at the +1 site of actively transcribed genes". This statement seems to suggest that the +1 position almost acts as a nucleating site, where replacement of a single, specific protein VII molecule at +1 is an initiating event, which then spreads from that site and into the rest of the gene. Data shown in Figure 6G and 6H shows that H3.3 appears to be found equally along the full length of E1A as early as 1 hr post infection (with no real "enhancement" at the +1 position), and that the overall levels simply increase over the next 4 hrs.

      As the reviewer pointed out, the histone ChIP-seq peaks are broader than the +1 nucleosome region, extending into the transcribed regions of the gene. This is expected, as the mean length of the immunoprecipitated DNA is about 400bp long. Still, ChIP-seq peaks are in proximity to the transcription start site and overlap with the position of the +1 nucleosome. As we do not have the required resolution, we toned done our statement. The text now reads as follows: “Protein VII molecules were exchanged for nucleosomes downstream of the transcription start site, overlapping the +1 nucleosome site, of actively transcribed genes“ (line 568 ff).

      Curiously, the authors chose not to use a wildtype virus for their studies - the virus contains a deletion in the E3 region. For clarity, I suggest that the authors should preferentially use an alternative designation for their virus rather than HAd-C5. Perhaps HAd-C5delE3 to differentiate this work from studies that truly use wildtype virus.

      As requested by the reviewer we have updated the nomenclature to HAd-C5dE3 throughout the text and the figures.

      The obvious limitation of the studies using the fluorescent TAF1-beta to label Ad genomes is that as protein VII is replaced by nucleosomes, the genomes would have declining detection by this method. Genomes devoid of protein VII would be "invisible".

      Our MNase data show that within the first 4h only a fraction of pVII is removed from the viral genome e.g. at early genes, while most of the genome remains bound by protein VII. This should provide enough binding sites for TAF1-beta to label Ad genomes without a significant drop in the signal. Furthermore, our recent work (PMID:29997215, Fig. 1D) compared the TAF1-beta labelling system with a second in vivo detection system (AnchOR3) that directly labels the viral DNA independently of protein VII in the same cells. This direct comparison of two technically non-related methods to detect individual incoming adenoviral genomes in living cells showed the equivalence of both methods, at least for the first hours of infection showing that partial removal of protein VII does not affect the fluorescent TAF1-beta staining.

      Line 275 "Interestingly, a central region of the viral genome (Late3) and a region between the E3 and E4 genes exhibited almost no peaks" for protein VII. The virus utilized in this study lacked at least part of the E3 region. Did this deletion "cause" this region to be devoid of protein VII? Is the same absence of protein VII peaks observed in a fully wildtype virus? Also, can the authors provide any speculation as to why the Late3 region also lacks protein VII?

      We confirm the reviewer's observation. The region marked as Late3 and the region between E3 and E4 is present in the genome and is, as the reviewer observed, not chromatinized in our analysis. At this point, we can only speculate. We have two not mutually exclusive hypotheses. First, both regions could be involved in the proper packaging of the viral genome into the capsid. Physical constraints during packaging may preclude this region from being packaged into pVII. Second, as we observed that pVII positioning correlates with distinct DNA sequence patterns (revised Fig.4 D and E, see response to reviewer 3 for details), it might be that the sequence composition at the pVII depleted regions disfavour pVII assembly to keep those regions available for cellular factors that drive processes post genome delivery, such as transcription. Our time-resolved MNase analysis shows that indeed post genome delivery, this site in the Late3 region becomes protected (Fig. 5C), suggesting the binding of one or more cellular factors. As shown in Figure S6 we find conserved binding sites for several transcription factors at this MNase protected site.

      Whether the chromatinization devoid regions would shift in position, remain in place or be chromatinized in a wildtype virus has to be addressed in the future and cannot be answered at this point. To address the comment, we have expanded the discussion (line 620 ff)

      Line 569 "Reasons could be that the few genomes undergoing nucleosome assembly and active transcription produce the replication enzymes, whereas the bulk of genomes enters replication without activation as an elegant way to avoid repeated chromatinization." This argument may make sense in the context of a high MOI infection, but would certainly limit virus function during normal, pathogenic infection where the MOI is likely extremely low. Essentially, the authors data predicts that 80% of normal, low MOI infections don't progress to gene expression (at least during the first 4 hrs analyzed in this study).

      We follow the argument of the reviewer. The high MOI in our study was necessary to perform the combined ‘omics’ approach to arrive at meaningful data within reasonable sequencing depth. To have equivalence we also used high MOI for the imaging approach. A detailed analysis for the effect of low MOI as well as positioning effects (see reviewer comment below) on transcriptional activation is an important question and will be addressed in future studies that require different techniques in addition. To address this comment, we have updated the discussion to emphasize the importance of MOI and positioning effects (line 587 ff).

      Line 576 "This observation is in agreement with recent pVII-ChIP experiments showing transcription and replication independent pVII removal in early infection (Giberson et al., 2018; Komatsu and Nagata, 2012; Komatsu et al., 2011)." The authors can also state that histone and nucleosome deposition is also independent of transcription and replication, as has been alluded to in the same cited studies but proven more directly in this study.

      We have changed the text accordingly (line 576 and 598).

      Line 672 - the authors should be more definitive in the MOI that are used in all of their experiments. Line 672 states that an MOI of 3000 physical particles are applied per cell. There can be great variation between cell lines in how much virus binds to (and enters) a cell based on the surface levels of Ad receptors on different cell types. However, in general, 3000 is very high. Work by Wang et al. (PMID:24139403) showed that at an MOI of 200 or below most Ad will traffic correctly to the nucleus, whereas at an MOI above 200 there is a significant defect in Ad trafficking within the cell. How is this expected to affect all of the results in this study?

      We agree with this and the other reviewer that this is an important issue. The actual dose of virus that enters a given cell is dependent on the concentration of virus particles in the inoculum and the time and temperature this inoculum is in contact with the cells and the cells respective susceptibility to the virus. We applied an infection dose of 3000 physical particles per cell in a defined volume (1ml) at 37˚C for 30min followed by inoculum removal. We prefer this description because with these infection conditions, we find on average well below 100 virus particles that enter the cell (=> This is e.g., reflected in the number of accumulating genomes shown in figure 2A). In contrast, this permits to have enough viruses inside the cell to perform the different “omics” techniques applied in our study to obtain meaningful results at reasonable sequencing depths. This experimental setting was carefully chosen in full awareness of the work by Wang et al., cited by the reviewer, to avoid e.g., overloading the nuclear import rate. Thus, our experimental conditions do not exceed the “MOI of >200” that would affect nuclear import rates. The number (>200) in the Wang et al. study refers to the number of virus particles inside the cell, the infection condition used in the Wang study was an MOI of 30 bound to Hela cells in the cold for 30min and warmed for 150min which is significantly more virus than we have used in our study. We have expanded the information on the MOI used in the material and methods section to clarify this point (line 685 ff).

      Figure 5 is of low resolution and was difficult to read.

      We thank the reviewer for spotting it. It seems that the Figure quality was compromised during the PDF conversion. We updated the Figures and checked the resolution after PDF conversion.

      Figure S3 is missing a box from the top set of images indicating the region that is expanded in the detail picture.

      We updated Figure S3

      While I realize it is supplemental data, the difference in quality between the agarose gels shown in Figure S4A and S5A is shocking.

      The nature of the experiments is very different and therefore the expected MNase digestion profiles on agarose gels look different. In Figure S5 viral particles were digested with MNase, resulting in a smeary decrease in DNA size. This looks very different from the regular MNase pattern of whole cells that is dominated by the regularly spaced nucleosomes in the heterochromatic regions of the genome. As pVII protects only about 70bp of DNA and its spacing is not as homogenous as the nucleosomal spacing, the pictures shown in Figure S5A were expected as they are.

      Figure S7 is of low resolution.

      We updated the Figures and checked the resolution after PDF conversion.

      Reviewer #1 (Significance (Required)):

      At least in the field of adenovirus research, this is a very important study. There has been considerable debate in the field regarding the timing and degree of protein VII removal and histone deposition, and the necessity of active transcription for these two events. The data provided in this manuscript clearly shows that some protein VII is removed from early active genes and replaced by nucleosomes, and that these events occur prior to initiation of transcription. The authors speculate that the specific placement of protein VII, a protamine-like protein, on the Ad genome prescribes where nucleosomes are placed. This finding should be of interest to a broad general audience, as it provides novel information on chromatin assembly within mammalian cell. Key words for this reviewer: adenovirus research, HAdV nucleoprotein structure

      Reviewer #2 (Evidence, reproducibility and clarity (Required))

      The submitted manuscript presents a detailed and comprehensive analysis of the adenoviral nucleoprotein complexes as infection progresses, starting with the "adenosome" assembled with pVII which are then progressively replaced with H3.3.-containing nucleosomes as the infection progresses. The submission presents a combination of in situ and populational analyses of the viral DNA accessibility and complexes through infection. I brief, the infecting viral genomes are assembled in some 250 adenosomes with pVII, which become progressively replaced as infection progresses with nucleosomes containing H3.3 and acetylated H3K17, starting at the active promoters of the E genes. Chromatin remodeling precedes transcription, and the accessibility differs for genes of different kinetic classes at differ times after infection, although there is no correlation between accessibility and H3.3. or acetylation content. Only about 20% of the genomes become transcriptionally active, though, which somewhat complicates the analyses of the populational studies of accessibility and occupancy. Overall, the study is well conceived, performed and presented. A few issues that deserve further analyses and discussion, as described below.

      Major issues.

      As figure 2 nicely shows, only about 20% of the intranuclear genomes become transcriptionally active. However, MNase and ChIP analyses cannot differentiate these genomes from the 80% that are transcriptionally inactive. The interpretation of the positioning of pVII (figure 4) or the changes in compaction of the adenoviral chromatin at different loci (figure 5) does not appear to consider this heterogeneity other than for a brief comment about the stringent MNase digestion in page 11. The authors favor a model in which the changes in compaction shown in figure 5, at mild MNase digestions, directly correlate with transcription of the respective genes. This could well be correct, and in fact the correlation may be underestimated as 80% of the genomes may not undergo any changes, but it may also be incorrect. The analyses presented cannot differentiate whether the changes in chromatin compaction occur in only a subset of genomes or in all the genomes, regardless of whether they are transcribed or not, or even only in the non-transcribed genomes (which appears extremely unlikely). This intrinsic limitation to the methods used (and I know of no better alternative) should be acknowledged and discussed for the benefit of the reader. This limitation also impacts the analyses of the lack of correlation between H3.3 and acetylated H3K27 occupancy and compaction.

      A discussion is amended and located starting from line 571 in the text. “The heterogeneity of 80% inactive genomes and 20% activated genomes complicates the analysis of the MNase-seq data. High MNase concentrations do not differentiate between both states, and we suggest that low MNase conditions capture the dynamic viral proportion, changing and preparing its genome for gene activation. The data nicely suggest such a scenario, but there is the caveat that we catch an effect of the mixed population that we cannot differentiate.”

      The analysis of the histone ChIP is discussed below.

      Perhaps out of necessity to reach the required sensitivity, a high multiplicity of infection was used (although the actual moi is not stated, there are about 25-30 pVII foci/ per nuclei). The presentation, analyses and discussion of the results should emphasize this context. For example, one would presume that at low moi, when only one genome enters each cell, the percentage of transcriptionally active genomes in a given cell will be either 0 or 100%, but the "system" becomes saturated as more and more genomes enter the nucleus at higher moi resulting in only a subset of them being transcriptionally active. Along this line of reasoning, it is intriguing that the percentage of genomes estimated to be in nucleosomes at 4 hpi (14%) approaches the percentage of transcribed genomes.

      This issue was also raised by reviewer 1 (see detailed comment above). The reviewer is correct that we chose to use a higher MOI to reach the required sensitivity in our different “Omics” assays. The imaging approach was adapted to reach the morphological equivalence to fit this analysis. We agree that it would be interesting to also study the MOI effect on transcriptional activation (as well as positioning effects, see comment below) but this requires different approaches and will be addressed in a future study. To address this comment (and others in this review) we revised the text in the discussion to emphasize the importance of MOI and possible other effects such as positioning (line 587 ff).

      The changes in chromatin compaction presented in figure 5 are in some respect puzzling. The compaction of most of the late genes increases as infection progresses, at least for the first four hours, as the authors discuss. However, the L genes appear to be at least as accessible as the E ones at the early times, when only the E are transcribed to high levels. This appears counterintuitive, and may not be consistent with the main conclusion that increase accessibility to a given gen directly correlates to its transcriptional activity level. The data presented in Figure 5C deserves a more nuanced analysis and discussion, parsing out the changes in accessibility to each given gene at different times from the different accessibility to the different genes at any given time. The later does not appear to support the main conclusion reached by the authors that accessibility to each individual gen correlates with its transcriptional level.

      We thank the reviewer for raising this point. While the viral genomes enter the nucleus, the viral chromatin structure is tightly condensed. Therefore, it is unlikely that after nuclear entry the viral chromatin undergoes further compaction. With our analysis, we expect to detect only decompaction of genomic sites relative to 0 hpi, when the virus has not entered the nucleus yet. At some sites and particularly at the Late genes the signal is decreasing, most likely due to normalization to sequencing depth and the variation in the number of viral genomes but not due to changes in compaction. We realized that the negative accessibility scores we used in the study are misleading and give a false impression. Therefore, we changed the analysis in that way, that negative values were not permitted and converted to zeros.

      Additionally, we raised the temporal resolution of the analysis and compared the accessibility at all available timepoints against 0 hpi as suggested by the reviewer. Now, we clearly observe, that most accessibility changes are accomplished rapidly after nuclear import, already at 1 hpi and do not change much after, until 4 hpi. Regions of decompaction coincide with early expressed genes and occur before transcription, underscoring the conclusions made in the study. Nevertheless, while most genomic regions covering late genes do not show decompaction, we observed some local sites showing a high accessibility score. As transcription at those sites appears later in the life cycle of the virus, we can only speculate about the function e.g. as enhancer elements.

      The Text and Figures were changed accordingly (line 347 ff).

      New legend:

      __C) __Profile illustrates HAd-C5dE3 genome coverage by low MNase-seq fragments. The average of two replicates is shown, except at timepoint 0 hpi where only one replicate was available. The accessibility score was calculated as the log(fold-change) between the indicated timepoint and 0 hpi. The score was assessed for each pVII peak (orange bars) and negative scores were set to 0. A new accessibility peak arising during infection in the Late3 region is marked by an asterisk. __D) __Boxplot showing the accessibility score distribution in each domain at each tested timepoint after infection.

      Minor comments

      The authors may wish to highlight in the discussion that the analyses are so far limited to a single adenovirus.

      We have taken up the suggestion of the reviewer and included it in the discussion part, starting at line 607:

      “The structural analysis is still limited to a single adenovirus genotype and it will be interesting to test whether these dynamic changes are conserved among other adenoviruses. Furthermore, reproducing such organization in adenoviral vectors could result in efficient and sustained transgene expression.”

      The y-axes in the transcriptome figures (figure 1 B, S2) could be presented in Log(2) scale, such that transcript levels at all times can be appreciated in the same graph (the earlier times are just not visible in a linear scale)

      As requested by the reviewer we changed the data to log2 scale. As there is no qualitative difference to the log10 scale, presented in the original version, we would like to keep the figure as it is. To highlight changes at early time points we generated the average expression of early genes in Fig1C.

      As an information for the reviewer, we provide here the data plotted as log2 scale.

      The (lack of) phenotype of the 24xMS2 binding site recombinant adenovirus used should be shown.

      We observed no difference in phenotype between the parental and the MS2 modified virus. We updated Figure S3 and included a gel analysis and specific infectivity data to show this absence of difference.

      The kymograph analyses presented in figure 3B appear to show that there are some sites of transcript accumulation sites which do not harbor viral genomes (i.e., green only tracks). Moreover, the interpretation of the TAF1beta-mCherry signal is complicated by the (fully expected) significant "background" signal. Although these results are consistent with those obtained by RNAscope/pVII staining, there appears to be intrinsic limitations to the system, which preclude reaching strong conclusions from it. These confirmatory analyses should probably be moved to the supplementary information section and removed from the main text and figures. The longer evaluation data mentioned as not shown in page 8 is critical to the conclusions and should be shown.

      Here we disagree with the reviewer and prefer to keep the data as main figure. All (immobile) transcript accumulation sites are identified by the kymograph analysis and coincide with a genome while free transcripts show a high mobility that is not picked up in the kymograph analysis. This is independently verified in the provided supplemental movies. Depending on the positioning of the genome inside the living cell, accumulating transcripts can appear adjacent to or on top of a genome. This explains the slight shift between RNA and DNA signal for some genomes in the merged image of the kymograph. This is expected as only fully transcribed transcripts and not nascent transcripts are marked by MS2 (the MS2 loops are positioned in the 3’UTR). Also, all genomes (transcribing and non-transcribing) can be identified in the kymograph above background level. To clarify the representation, we have added labels to the kymograph to show which signal is DNA and RNA and a merge respectively. We are convinced that this data set is in strong support of our study, as it is the only technique that permits the discrimination of transcribing and non-transcribing genomes in living cells at real time.

      As requested, we have also added two additional examples for a longer observation period (10min) into the supplemental data Fig. S3C.

      Although the plot of cleavage frequency presented in figure S5 is clear, it would be beneficial to the reader if the actual peaks were also presented to compare their distribution (if any) in gDNA and virus particle.

      In Figure S5 we wanted to test whether the regions lacking pVII peaks are resulting from the absence of pVII, protecting the DNA, and therefore being fully hydrolyzed by MNase, or whether this region is tightly packed by pVII thereby protecting DNA from MNase digestion. To test both possibilities we used a very limited MNase digestion approach, where even free DNA is not fully hydrolyzed, allowing the capture of DNA fragments. Therefore, the sequenced fragments comprise a mixture of protected and un-protected fragments. In this assay, the pVII protected fragments are not fully digested to the monomeric state, but a mix of mono-, di- and other multimers are present. As reflected by the fragment size distribution with the peak between 100-200 bp (Fig S5B), pVII dimers are predominantly enriched when compared to the high MNase digestion used to map pVII positions (compare to Fig4 B). Therefore, the peaks in the S5 data set have a low resolution and do not provide exact pVII positions (see below). Therefore, we would like to keep S5 as it is. We clarified this point in the text (line 279 ff)

      Legend:

      Fragment coverage plot of MNase digestions of gDNA (black) or Ad chromatin in virus particles (purple).

      The mRNA analyses of selected transcription factors provides little information, as there is no context, there is variability between experiments, and in most cases the changes appear modest. As these results are not critical to the conclusions or analyses, perhaps the authors may wish to remove them from the manuscript. Alternatively, more in-depth analyses would be required.

      We agree with the reviewer, that more information for the reader is needed. Therefore, we performed a statistical analysis of expression changes between 0 hpi and 4 hpi of the shown transcription factors using DESeq2. We added the corresponding log2(fold-change) and p-values to the figure. And adapted the text (line 471) and figure accordingly.

      Legend:

      Gene expression changes of transcription factors over the infection time course. P-values and log2(fold-changes) from differential gene expression analysis between 4 hpi and 0 hpi using DESeq2 are indicated. ns = not significant

      It is unclear why the even distribution of H3.1-flag signal across the genome is considered indicative of no specific recruitment. The results presented are equally consistent with equal incorporation across the genome. Perhaps the authors have some additional information, such as an irrelevant antibody, input DNA, or the like, to support the conclusion. If so, that evidence should be presented and discussed. If not, the interpretation should be revisited. As an added complexity, endogenous H3.1 is normally expressed during S-phase. It is possible that Adenovirus infection may induce higher levels of expression of (untagged)endogenous H3.1, which would outcompete the tagged ectopically expressed histone. These analyses deserve a more nuanced and in-depth analysis.

      We have taken several measures in the study to address the concern of the reviewer. We consider timepoint 0 hpi as background control as the viral genome has not entered the nucleus yet. Consistently, we observe very few reads mapped to the Ad genome regardless of antibody and construct used (Fig 6B). Additionally, all samples at 0 hpi cluster together in PCA (Fig 6C) and correlation analysis (Fig S7D)

      H3.1 Flag tagged samples show at later timepoints (1 - 4hpi) slightly higher percentages of mapped reads to Ad, but plateau already at 1 hpi (Fig 6B) and cluster together in PCA (Fig 6C) and correlation analysis (Fig S7D) with 0 hpi samples. The low background signal starting at 1 hpi for H3.1 might arise due to the change of Ad genome location to the nucleus.

      Even though, the number of Ad mapped reads at later timepoints was low in H3.1 Flag tagged samples, it could still be that they accumulate at few sites on the Ad genome indicating a specific deposition. We tested this by plotting the signal across the whole Ad genome (Fig S7E) and zooming into the data (compare scale of H3.3 and H3.1 plot), but we could not detect any reproducible local enrichments. To enable the reader a better comparison between the levels of H3.1 incorporation with H3.3 we put now both on the same scale (Fig 6D and Fig S7D) clearly showing that we cannot detect H3.1 incorporation at Ad genomes in the first 4 hours of infection. The H3.1 signal corresponds to the background noise. We think for two reasons, that it is very unlikely that endogenous H3.1 outcompetes the tagged H3.1:

      • The time scale for the cells to transition into S-Phase and upregulate endogenous H3.1 would be only 1-2 hours in our timeseries experiments and therefore too short. To also show these experimentally we amended an experiment for the reviewer that is not included in the manuscript. The Western blots below show that the protein amount of H3 does not increase in the first 4hours of infection. Cells were infected and whole cell extracts were prepared 4hpi.
      • As most cells are not in S-phase in our experiments, the expression levels of H3.3 variant is higher than H3.1. With the Flag ChIPs we can clearly show that the tagged H3.3 are not outcompeted by endogenous H3.3. As there is a high sequence similarity between H3.3 and H3.1 it is very unlikely that they behave in that regard differently.

        It is highly unlikely that the somewhat higher H3K27ac signal observed in the H3.3 than in the H3.1 expressing cells may result from higher H3.3. occupancy in the viral genome as speculated in page 13. The total levels of H3.3. are unlikely to increase by the ectopically expressed one, and even if they did it is not likely that the occupancy of the viral genome would be limited by the levels of H3.3. This speculation should be removed.

      We removed the speculation.

      Materials and methods are too concise. A longer more detailed version, as supplementary information, would be highly desirable.

      We extended the materials and methods part.

      Reviewer #2 (Significance (Required)):

      The major strengths of this manuscript lie on its comprehensiveness, using several in situ and populational approaches to address biologically critical questions regarding the regulation of viral replication by chromatin and epigenetics. Experiments appears very well designed and performed and are mostly clearly presented. The interpretation analyses and discussion of the results may benefit from a more nuanced analysis of the issues posed by the existence of different populations of viral genomes in the cells infected at high moi and the accessibility across different genes at any given time versus the levels of transcription of the different genes, which appears not to be fully consistent with one of the main conclusions reached.

      This study makes a very significant contribution, describing the dynamic changes in the adenoviral nucleoprotein complexes at the early times of infection and providing a full description of both the adenosomes and the nucleosomes in more and less transcribed loci. The results are properly analyzed in context of what is known about the regulation of viral gene transcription by chromatin dynamics in other systems, including similarities and differences. This study is likely to be of high interest to a wide audience, ranging from virologist to epigeneticists, to those working in gene therapy and vectored vaccines.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript "Adenoviral chromatin organization primes for early gene activation" combines RNA-seq, MNase-seq, ChIP-seq, and single genome and transcript imaging (immunofluorescence, RNA-scope, and live cell techniques) during early Adenovirus infection in vitro to characterise the spatiotemporal dynamics of viral chromatin organisation and association with gene transcription. The manuscript is an interesting read and the authors have combined multiple complimentary techniques to make a substantial contribution to understanding the early events occurring after nuclear import of viral genomes. Adenoviruses are important causes of human and animal pathology, are a useful model of non-integrating extra-chromosomal DNA virus infection in mammalian cells, and are useful vectors for vaccination and the discoveries may influence gene therapy DNA vector design. The chromatin organisation in adenovirus infection is distinct from other DNA viruses, and is relatively poorly understood compared to, for example, SV40 or herpesviruses. The manuscript describes an early transition from purely viral chromatin with Adenovirus protein pVII packaging the virus in virions, to a viral-human hybrid chromatin pattern with apparently strategically positioned H3.3 nucleosomes and viral pVII "Adenosomes" in the early hours after nuclear import of the viral genome. The data shows that packaged Adenoviruses are in a transcriptionally accessible form and gene expression occurs rapidly after infection, the combination of the MNase-seq data with ChIP-seq data is particularly interesting demonstrating and average ~238 adenosomes positioned by specific DNA code protecting 60-70bp of DNA, and that the genome is accessible at loci that also decondense on infection, with adenosomes being replaced by cellular H3.3 containing nucleosomes at distinct sites. Particularly they show that +1 H3K27 acetylated nucleosomes are acquired at the TSS of key early genes. The authors argue that their spatiotemporal data imply that this chromatin transition "primes" for early gene transcription. The manuscript is well written, uncovers important viral chromatin biology by combining multiple experimental techniques, and the data is generally very clearly presented. A few comments follow. Major concerns: • Abstract and Title: o the abstract and title suggest that because the chromatin changes are observed coincidentally or before transcriptional changes, and that this means that these chromatin changes "prime" (title) or are "required" and play a "central role" (abstract) in early gene expression. The temporal relationship would be consistent with chromatin changes being required for transcriptional changes, but do not imply necessity. Experiments to demonstrate the necessity of these changes for early gene transcription are lacking, and I recommend amending the text or additional experiments to provide this evidence directly.

      We observe a clear timing of events, with chromatin opening, nucleosome assembly at the 5’ end of the gene followed by transcriptional activation, suggesting that these structural changes are essential for gene activation. Still, we cannot prove the direct dependency. Therefore we toned down the title of our manuscript and formulate the findings more conservatively.

      The title now reads: “Changes in adenoviral chromatin organization precede early gene activation”

      Results:o The IF data in Fig S1 is convincing, showing viral particles are accessible quickly in the nucleus. Although no statistics are provided for S1B and C, pVII foci appear at 0.5hpi and appear to mostly accumulate between 0.5hpi and 1hpi with further import between 1hpi and 4hpi. Can the authors be sure that a single pVII IF focus represents a single genome? If genomes tend to aggregate as they accumulate the number of foci per nucleus may not increase linearly with the number of genomes imported. Have the authors considered analysing the intensity of the individual pVII foci over the time points? A related question is whether the authors assume that all packaged virions contain intact complete viral genomes? Many viruses comprise some mixture of complete and incomplete packaged genomes, and the subsequent analyses determine the proportion of transcriptionally active copies with RNA-Scope to a single transcript E1A which lies at one end of the viral genome. Please comment explicitly on whether this is assumed and whether this assumption is realistic in light of known Adenovirus biology.

      We appreciate the reviewer's concern. Several studies in the adenovirus field have shown equivalence between protein VII nuclear foci and individual genomes, including our own (PMID: 26332038). Probably the most accurate study was performed by Daniel Engels lab PMID: 19406166, who used nuclear protein VII foci to titrate viral as well as vector genomes. In contrast, a different study from Patrick Hearings lab PMID: 21345950 showed that past 4hpi, the number of nuclear protein VII foci gradually declines. Based on our experience and because our study is limited to 4 hpi we are confident that protein VII foci accurately reflect individual viral genomes.

      Concerning genome packaging, adenovirus particles contain a single viral genome that is protected at each end by a covalently attached protein preventing its degradation. The packaging of adenoviruses is extremely efficient and only complete genomes are packaged into fully assembled particles. All viruses used in this study have been purified by double CsCl gradient purification. This density gradient based purification protocol removes all particles that are either empty or damaged or would contain partial genomes.

      o The RNA-Seq data in Fig 1 and Fig S2 and Table S1 demonstrates transcription of early genes is barely observable at 1hpi but is observable by 2hpi and is clearly much increased by 4hpi. Fig 2C, visualising pVII foci directly within single cells, suggests that approximately 80% of foci are observed by 1hpi and a further 20% between 1hpi and 2hpi and little thereafter. These data convincingly demonstrate that nuclear import is rapid, typically occurring in the first hour. The E1A RNA-Scope data in figure 2, visualising individual mRNA transcripts of E1A, is more sensitive than the bulk RNA-Seq, and shows transcripts at 1hpi with clearly discernible transcription by 2hpi (2A&D) which suggests that transcription occurs early, by 2hpi. Thus transcription lags nuclear genome import by approximately one hour by these methods. However, the conclusions of the subsequent analyses depend on the chromatin changes clearly preceding, rather than being approximately coincident with transcription, therefore transcription being evident by 2hpi is relevant as figure 6A and D suggest that the chromatin remodelling is subtle before 2hpi on the bulk sequencing analyses. The authors should comment on this given the importance to their argument.

      As stated by the reviewer we observe a clear lag between nuclear import and transcriptional activation. And we do also observe the largest changes in nucleosome occupancy (ChIP-seq data) between 1 and 2 hpi (Fig6A and D). Compared to 0hpi, we observe the strongest increase of nucleosome occupancy between 1hpi and 2hpi (4-8fold effect), whereas depending on the area a 2-3fold increase in occupancy can be observed from 2hpi to 4hpi (Fig6D). An effect that one would expect with chromatin structure preceding gene activation. Furthermore, the timing of nucleosome assembly perfectly matches the increase of MNase accessibility at 1 hpi, supporting our conclusions.

      o The validation of the E1A probe specificity in Fig 2B looks convincing, but there are no data presented for multiple cells to reassure that this image is representative. The equivalent figure for 2D for the Ad5-GFP control would address this.

      We include a large field overview with multiple cells for virus and vector control as new supplemental figure S2B showing that the RNAscope detection of the E1A transcript is highly specific.

      o Figure 2E is presented as a colocalization analysis but appears to be a ratio of mRNA foci to pVII foci per cell. If this is an incorrect interpretation then some clarification in the figure legend would be helpful. If this interpretation of these data is correct, then it is not truly a colocalization analysis, as a single genome may give rise to multiple transcripts and so a ratio We apologize that this figure was not clear. The data are based on real colocalizations and represent the number of pVII dots positive for E1A normalized with the total number of nuclear pVII. We have clarified the figure legend accordingly.

      o The live cell imaging experiments are elegant and convincing, but the agreement in Fig 3D of the % colocalization in MS2-BP data with the RNA-scope data is potentially misleading for the reasons outlined in the prior comment. Is the data in Fig 2E the same as the data in the right hand panel of Fig 3D. If so please comment on the n discrepancy (n=30 in 2E vs n=22 in 3D). The observation that 20% of genomes are transcriptionally active, via bursting or otherwise, is interesting, and would be consistent with the Suomalainen et al reference. The authors discuss two hypotheses to explain these findings: transcriptional bursting or a subset ~20% of genomes being transcriptionally active. This is an interesting and begs the question as to why this may occur. Assuming all imported genomes are intact (previous comment), it appears from the presented images that the foci at the radial periphery of the nucleus may be more frequently transcriptionally active, despite the nuclear periphery being enriched for heterochromatin. The authors might consider analysing the radial position of their TAF1B-mCherry genomes (active and inactive) as this might support position effect variegation rather than bursting as an explanation and they appear to already have the data to perform such analyses.

      o In the presented images (Fig 3A and Fig S3) it appears a higher proportion of genomes than 20% appear to be transcriptionally active, particularly in the low MOI experiment. The authors may wish to comment on this and quantify whether the proportion of transcribing genomes was affected by the input MOI.

      This and the previous comment concerning the influence of MOI, transcriptional bursting and the positioning effect of the genome on the transcriptional activity have also been in part raised above. As stated in our response to reviewer 1 we have used a high MOI in our experiments to have equivalence between all experimental approaches. We agree with the reviewers that all aspects (dose, bursting and positioning) merit a detailed investigation, which we plan in future studies. To be consistent and comparable in our comprehensive approach we decided to not include such studies here as they would address a different question. Nevertheless, to address this (and the above) comments we now mention positioning effects in the results (line 214) and enlarged the discussion (line 587 ff) where we especially raised awareness that such pertinent questions can be addressed with the tools presented in our study.

      We also decided to visually separate the comparison of MS2 and RNAscope data to avoid misleading the reader. Furthermore, the RNAscope data have been replaced. The RNAscope data are indeed from Fig. 2. The difference in n was due to our mistake showing two different normalized data sets. Data were either normalized using total amount of nuclear protein VII (Fig. 2E) or the total amount of nuclear E1A signals (Fig 3D), which due to the more heterogenous signal did not include all cells. In the updated version both figures display data normalized by total amount of nuclear protein VII

      o Fig 4C suggests that there is a large GC preference (or bias) in the pVII occupied regions. The authors may wish to comment on this and present a track with Adenovirus GC composition in Fig 4D.

      We thank the reviewer for raising this point. As suggested by the reviewer we analysed the GC content under pVII peaks and in the linker DNA. Indeed, pVII occupied regions have a significant higher GC content indicating that pVII preferentially positions at GC rich regions. We included this analysis as an additional Figure 4E (line 302 f).

      Legend:

      Boxplot showing GC content of pVII occupied (pVII) or free (linker) regions. Two biological replicates are shown side by side and the p-value of a students t-test of the corresponding pairs is indicated above.

      o Figure 6 presents convincing data showing H3.3. nucleosome positioning and acetylation at E1A and the data is nicely presented showing these changes occur early being observable by 2 and 4 hpi. Again, these changes are not convincingly prior to early gene activation but are certainly occurring early, and may occur prior to early gene activation at the level of individual foci, however, this is not demonstrated definitively.

      This question belongs to the same context addressed by the reviewer above. Please refer to the answer given above.

      Minor comments:

      Introduction: o Paragraph 1 - Introduction for DNA viruses in general, but the authors appear to be talking about Adenoviruses specifically, "little is known about the structural organization of the genome" and "nuclear viral genomes could undergo different parallel fates", arguably these statements are not accurate for other DNA viruses (e.g. Epstein Barr Virus) suggest amending the wording for clarity.

      The manuscript text was updated as suggested.

      o paragraph 2 - Why do the authors say that Adenoviruses are prototypic DNA viruses?

      We removed the term prototypic.

      o Paragraph 3 - A recent study is referenced but multiple references are given.

      The references were updated

      o "Protein VII stays associated with the viral genome imported to the nucleus, while pV dissociates from the viral DNA following ubiquitylation (Puntener et al., 2011). The fate of the μ-peptide is not known". - The reference suggests that pV dissociates on entry to the cytoplasm and during capsid disassembly at the nuclear pore. I find this sentence confusing as it doesn't make it clear that pV is lost before nuclear entry which is important for interpreting the data.

      We clarified this in the manuscript text

      Results:

      o Figure 5 is almost unreadable due to low resolution.

      We updated the Figures and checked the resolution after PDF conversion.

      o Reference to Fig 4C in text comes after Fig4D.

      The order of Figure panels was changed accordingly.

      Reviewer #3 (Significance (Required)):

      The manuscript is well written, uncovers important viral chromatin biology by combining multiple experimental techniques, and the data is generally very clearly presented

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The manuscript "Adenoviral chromatin organization primes for early gene activation" combines RNA-seq, MNase-seq, ChIP-seq, and single genome and transcript imaging (immunofluorescence, RNA-scope, and live cell techniques) during early Adenovirus infection in vitro to characterise the spatiotemporal dynamics of viral chromatin organisation and association with gene transcription. The manuscript is an interesting read and the authors have combined multiple complimentary techniques to make a substantial contribution to understanding the early events occurring after nuclear import of viral genomes.

      Adenoviruses are important causes of human and animal pathology, are a useful model of non-integrating extra-chromosomal DNA virus infection in mammalian cells, and are useful vectors for vaccination and the discoveries may influence gene therapy DNA vector design. The chromatin organisation in adenovirus infection is distinct from other DNA viruses, and is relatively poorly understood compared to, for example, SV40 or herpesviruses. The manuscript describes an early transition from purely viral chromatin with Adenovirus protein pVII packaging the virus in virions, to a viral-human hybrid chromatin pattern with apparently strategically positioned H3.3 nucleosomes and viral pVII "Adenosomes" in the early hours after nuclear import of the viral genome. The data shows that packaged Adenoviruses are in a transcriptionally accessible form and gene expression occurs rapidly after infection, the combination of the MNase-seq data with ChIP-seq data is particularly interesting demonstrating and average ~238 adenosomes positioned by specific DNA code protecting 60-70bp of DNA, and that the genome is accessible at loci that also decondense on infection, with adenosomes being replaced by cellular H3.3 containing nucleosomes at distinct sites. Particularly they show that +1 H3K27 acetylated nucleosomes are acquired at the TSS of key early genes.

      The authors argue that their spatiotemporal data imply that this chromatin transition "primes" for early gene transcription. The manuscript is well written, uncovers important viral chromatin biology by combining multiple experimental techniques, and the data is generally very clearly presented. A few comments follow.

      Major concerns:

      • Abstract and Title:
        • the abstract and title suggest that because the chromatin changes are observed coincidentally or before transcriptional changes, and that this means that these chromatin changes "prime" (title) or are "required" and play a "central role" (abstract) in early gene expression. The temporal relationship would be consistent with chromatin changes being required for transcriptional changes, but do not imply necessity. Experiments to demonstrate the necessity of these changes for early gene transcription are lacking, and I recommend amending the text or additional experiments to provide this evidence directly.
      • Results:
        • The IF data in Fig S1 is convincing, showing viral particles are accessible quickly in the nucleus. Although no statistics are provided for S1B and C, pVII foci appear at 0.5hpi and appear to mostly accumulate between 0.5hpi and 1hpi with further import between 1hpi and 4hpi. Can the authors be sure that a single pVII IF focus represents a single genome? If genomes tend to aggregate as they accumulate the number of foci per nucleus may not increase linearly with the number of genomes imported. Have the authors considered analysing the intensity of the individual pVII foci over the time points? A related question is whether the authors assume that all packaged virions contain intact complete viral genomes? Many viruses comprise some mixture of complete and incomplete packaged genomes, and the subsequent analyses determine the proportion of transcriptionally active copies with RNA-Scope to a single transcript E1A which lies at one end of the viral genome. Please comment explicitly on whether this is assumed and whether this assumption is realistic in light of known Adenovirus biology.
        • The RNA-Seq data in Fig 1 and Fig S2 and Table S1 demonstrates transcription of early genes is barely observable at 1hpi but is observable by 2hpi and is clearly much increased by 4hpi. Fig 2C, visualising pVII foci directly within single cells, suggests that approximately 80% of foci are observed by 1hpi and a further 20% between 1hpi and 2hpi and little thereafter. These data convincingly demonstrate that nuclear import is rapid, typically occurring in the first hour. The E1A RNA-Scope data in figure 2, visualising individual mRNA transcripts of E1A, is more sensitive than the bulk RNA-Seq, and shows transcripts at 1hpi with clearly discernible transcription by 2hpi (2A&D) which suggests that transcription occurs early, by 2hpi. Thus transcription lags nuclear genome import by approximately one hour by these methods. However, the conclusions of the subsequent analyses depend on the chromatin changes clearly preceding, rather than being approximately coincident with transcription, therefore transcription being evident by 2hpi is relevant as figure 6A and D suggest that the chromatin remodelling is subtle before 2hpi on the bulk sequencing analyses. The authors should comment on this given the importance to their argument.
        • The validation of the E1A probe specificity in Fig 2B looks convincing, but there are no data presented for multiple cells to reassure that this image is representative. The equivalent figure for 2D for the Ad5-GFP control would address this.
        • Figure 2E is presented as a colocalization analysis but appears to be a ratio of mRNA foci to pVII foci per cell. If this is an incorrect interpretation then some clarification in the figure legend would be helpful. If this interpretation of these data is correct, then it is not truly a colocalization analysis, as a single genome may give rise to multiple transcripts and so a ratio <1 could be expected even if all pVII foci were transcribing genomes. In addition, the text suggests that because there is no statistically significant difference between 2hpi and 4hpi a plateau has been reached. However, the difference between 1h and 2h is barely significant (p=0.04) and the mean is increased between 2h and 4h, albeit non-significantly, so the plateau is not convincingly demonstrated. If the authors wish to perform a colocalization analysis rather than a ratio, they might assign each transcript to the nearest pVII IF focus within the nucleus and count the proportion of pVII foci with any transcripts assigned over time. Alternatively, they can amend the description of this analysis in the figure and text.
        • The live cell imaging experiments are elegant and convincing, but the agreement in Fig 3D of the % colocalization in MS2-BP data with the RNA-scope data is potentially misleading for the reasons outlined in the prior comment. Is the data in Fig 2E the same as the data in the right hand panel of Fig 3D. If so please comment on the n discrepancy (n=30 in 2E vs n=22 in 3D). The observation that 20% of genomes are transcriptionally active, via bursting or otherwise, is interesting, and would be consistent with the Suomalainen et al reference. The authors discuss two hypotheses to explain these findings: transcriptional bursting or a subset ~20% of genomes being transcriptionally active. This is an interesting and begs the question as to why this may occur. Assuming all imported genomes are intact (previous comment), it appears from the presented images that the foci at the radial periphery of the nucleus may be more frequently transcriptionally active, despite the nuclear periphery being enriched for heterochromatin. The authors might consider analysing the radial position of their TAF1B-mCherry genomes (active and inactive) as this might support position effect variegation rather than bursting as an explanation and they appear to already have the data to perform such analyses.
        • In the presented images (Fig 3A and Fig S3) it appears a higher proportion of genomes than 20% appear to be transcriptionally active, particularly in the low MOI experiment. The authors may wish to comment on this and quantify whether the proportion of transcribing genomes was affected by the input MOI.
        • Fig 4C suggests that there is a large GC preference (or bias) in the pVII occupied regions. The authors may wish to comment on this and present a track with Adenovirus GC composition in Fig 4D.
        • Figure 6 presents convincing data showing H3.3. nucleosome positioning and acetylation at E1A and the data is nicely presented showing these changes occur early being observable by 2 and 4 hpi. Again, these changes are not convincingly prior to early gene activation but are certainly occurring early, and may occur prior to early gene activation at the level of individual foci, however, this is not demonstrated definitively.

      Minor comments:

      • Introduction:
        • Paragraph 1 - Introduction for DNA viruses in general, but the authors appear to be talking about Adenoviruses specifically, "little is known about the structural organization of the genome" and "nuclear viral genomes could undergo different parallel fates", arguably these statements are not accurate for other DNA viruses (e.g. Epstein Barr Virus) suggest amending the wording for clarity.
        • paragraph 2 - Why do the authors say that Adenoviruses are prototypic DNA viruses?
        • Paragraph 3 - A recent study is referenced but multiple references are given.
        • "Protein VII stays associated with the viral genome imported to the nucleus, while pV dissociates from the viral DNA following ubiquitylation (Puntener et al., 2011). The fate of the μ-peptide is not known". - The reference suggests that pV dissociates on entry to the cytoplasm and during capsid disassembly at the nuclear pore. I find this sentence confusing as it doesn't make it clear that pV is lost before nuclear entry which is important for interpreting the data.
      • Results:
        • Figure 5 is almost unreadable due to low resolution.
        • Reference to Fig 4C in text comes after Fig4D.

      Significance

      The manuscript is well written, uncovers important viral chromatin biology by combining multiple experimental techniques, and the data is generally very clearly presented

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The submitted manuscript presents a detailed and comprehensive analysis of the adenoviral nucleoprotein complexes as infection progresses, starting with the "adenosome" assembled with pVII which are then progressively replaced with H3.3.-containing nucleosomes as the infection progresses. The submission presents a combination of in situ and populational analyses of the viral DNA accessibility and complexes through infection. I brief, the infecting viral genomes are assembled in some 250 adenosomes with pVII, which become progressively replaced as infection progresses with nucleosomes containing H3.3 and acetylated H3K17, starting at the active promoters of the E genes. Chromatin remodeling precedes transcription, and the accessibility differs for genes of different kinetic classes at differ times after infection, although there is no correlation between accessibility and H3.3. or acetylation content. Only about 20% of the genomes become transcriptionally active, though, which somewhat complicates the analyses of the populational studies of accessibility and occupancy. Overall, the study is well conceived, performed and presented. A few issues that deserve further analyses and discussion, as described below.

      Major issues.

      As figure 2 nicely shows, only about 20% of the intranuclear genomes become transcriptionally active. However, MNase and ChIP analyses cannot differentiate these genomes from the 80% that are transcriptionally inactive. The interpretation of the positioning of pVII (figure 4) or the changes in compaction of the adenoviral chromatin at different loci (figure 5) does not appear to consider this heterogeneity other than for a brief comment about the stringent MNase digestion in page 11. The authors favor a model in which the changes in compaction shown in figure 5, at mild MNase digestions, directly correlate with transcription of the respective genes. This could well be correct, and in fact the correlation may be underestimated as 80% of the genomes may not undergo any changes, but it may also be incorrect. The analyses presented cannot differentiate whether the changes in chromatin compaction occur in only a subset of genomes or in all the genomes, regardless of whether they are transcribed or not, or even only in the non-transcribed genomes (which appears extremely unlikely). This intrinsic limitation to the methods used (and I know of no better alternative) should be acknowledged and discussed for the benefit of the reader. This limitation also impacts the analyses of the lack of correlation between H3.3 and acetylated H3K27 occupancy and compaction.

      Perhaps out of necessity to reach the required sensitivity, a high multiplicity of infection was used (although the actual moi is not stated, there are about 25-30 pVII foci/ per nuclei). The presentation, analyses and discussion of the results should emphasize this context. For example, one would presume that at low moi, when only one genome enters each cell, the percentage of transcriptionally active genomes in a given cell will be either 0 or 100%, but the "system" becomes saturated as more and more genomes enter the nucleus at higher moi resulting in only a subset of them being transcriptionally active. Along this line of reasoning, it is intriguing that the percentage of genomes estimated to be in nucleosomes at 4 hpi (14%) approaches the percentage of transcribed genomes.

      The changes in chromatin compaction presented in figure 5 are in some respect puzzling. The compaction of most of the late genes increases as infection progresses, at least for the first four hours, as the authors discuss. However, the L genes appear to be at least as accessible as the E ones at the early times, when only the E are transcribed to high levels. This appears counterintuitive, and may not be consistent with the main conclusion that increase accessibility to a given gen directly correlates to its transcriptional activity level. The data presented in Figure 5C deserves a more nuanced analysis and discussion, parsing out the changes in accessibility to each given gene at different times from the different accessibility to the different genes at any given time. The later does not appear to support the main conclusion reached by the authors that accessibility to each individual gen correlates with its transcriptional level.

      Minor comments

      The authors may wish to highlight in the discussion that the analyses are so far limited to a single adenovirus.

      The y-axes in the transcriptome figures (figure 1 B, S2) could be presented in Log(2) scale, such that transcript levels at all times can be appreciated in the same graph (the earlier times are just not visible in a linear scale)

      The (lack of) phenotype of the 24xMS2 binding site recombinant adenovirus used should be shown.

      The kymograph analyses presented in figure 3B appear to show that there are some sites of transcript accumulation sites which do not harbor viral genomes (i.e., green only tracks). Moreover, the interpretation of the TAF1beta-mCherry signal is complicated by the (fully expected) significant "background" signal. Although these results are consistent with those obtained by RNAscope/pVII staining, there appears to be intrinsic limitations to the system, which preclude reaching strong conclusions from it. These confirmatory analyses should probably be moved to the supplementary information section and removed from the main text and figures. The longer evaluation data mentioned as not shown in page 8 is critical to the conclusions and should be shown.

      Although the plot of cleavage frequency presented in figure S5 is clear, it would be beneficial to the reader if the actual peaks were also presented to compare their distribution (if any) in gDNA and virus particle.

      The mRNA analyses of selected transcription factors provides little information, as there is no context, there is variability between experiments, and in most cases the changes appear modest. As these results are not critical to the conclusions or analyses, perhaps the authors may wish to remove them from the manuscript. Alternatively, more in-depth analyses would be required.

      It is unclear why the even distribution of H3.1-flag signal across the genome is considered indicative of no specific recruitment. The results presented are equally consistent with equal incorporation across the genome. Perhaps the authors have some additional information, such as an irrelevant antibody, input DNA, or the like, to support the conclusion. If so, that evidence should be presented and discussed. If not, the interpretation should be revisited. As an added complexity, endogenous H3.1 is normally expressed during S-phase. It is possible that Adenovirus infection may induce higher levels of expression of (untagged)endogenous H3.1, which would outcompete the tagged ectopically expressed histone. These analyses deserve a more nuanced and in-depth analysis.

      It is highly unlikely that the somewhat higher H3K27ac signal observed in the H3.3 than in the H3.1 expressing cells may result from higher H3.3. occupancy in the viral genome as speculated in page 13. The total levels of H3.3. are unlikely to increase by the ectopically expressed one, and even if they did it is not likely that the occupancy of the viral genome would be limited by the levels of H3.3. This speculation should be removed.

      Materials and methods are too concise. A longer more detailed version, as supplementary information, would be highly desirable.

      Significance

      The major strengths of this manuscript lie on its comprehensiveness, using several in situ and populational approaches to address biologically critical questions regarding the regulation of viral replication by chromatin and epigenetics. Experiments appears very well designed and performed and are mostly clearly presented. The interpretation analyses and discussion of the results may benefit from a more nuanced analysis of the issues posed by the existence of different populations of viral genomes in the cells infected at high moi and the accessibility across different genes at any given time versus the levels of transcription of the different genes, which appears not to be fully consistent with one of the main conclusions reached.

      This study makes a very significant contribution, describing the dynamic changes in the adenoviral nucleoprotein complexes at the early times of infection and providing a full description of both the adenosomes and the nucleosomes in more and less transcribed loci. The results are properly analyzed in context of what is known about the regulation of viral gene transcription by chromatin dynamics in other systems, including similarities and differences. This study is likely to be of high interest to a wide audience, ranging from virologist to epigeneticists, to those working in gene therapy and vectored vaccines.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The authors have addressed the nucleoprotein structure of human adenovirus during the very early stages of infection, and its relationship to onset of expression of viral genes, using a combination of RNA-seq, MNase-seq, ChIP-seq and single genome imaging. They show that in the virion and the newly-infecting DNA, protein VII is precisely position at specific sites on the viral DNA, with greater accessibility at early gene promoters compared to other regions. Nucleosomes containing H3.3 replace specific protein VII at distinct positions at the transcription start sites of genes, which are then acetylated. Association with histones and nucleosomes occurs prior to transcription. These studies confirm and greatly expand on results already in the literature, and also elucidate a novel role for protein VII in orchestrating positioning of nucleosomes prior to initiation of transcription.

      The authors provide excellent data in support of their conclusions and, in many instances, use alternative experiments (i.e. two different approaches) to support their claims. The details of methods are adequate (with small exceptions outlined below) and statistical methods appropriate.

      Minor comments:

      1. Line 561 "Protein VII molecules were exchanged for positioned nucleosomes at the +1 site of actively transcribed genes". This statement seems to suggest that the +1 position almost acts as a nucleating site, where replacement of a single, specific protein VII molecule at +1 is an initiating event, which then spreads from that site and into the rest of the gene. Data shown in Figure 6G and 6H shows that H3.3 appears to be found equally along the full length of E1A as early as 1 hr post infection (with no real "enhancement" at the +1 position), and that the overall levels simply increase over the next 4 hrs.
      2. Curiously, the authors chose not to use a wildtype virus for their studies - the virus contains a deletion in the E3 region. For clarity, I suggest that the authors should preferentially use an alternative designation for their virus rather than HAd-C5. Perhaps HAd-C5delE3 to differentiate this work from studies that truly use wildtype virus.
      3. The obvious limitation of the studies using the fluorescent TAF1-beta to label Ad genomes is that as protein VII is replaced by nucleosomes, the genomes would have declining detection by this method. Genomes devoid of protein VII would be "invisible".
      4. Line 275 "Interestingly, a central region of the viral genome (Late3) and a region between the E3 and E4 genes exhibited almost no peaks" for protein VII. The virus utilized in this study lacked at least part of the E3 region. Did this deletion "cause" this region to be devoid of protein VII? Is the same absence of protein VII peaks observed in a fully wildtype virus? Also, can the authors provide any speculation as to why the Late3 region also lacks protein VII?
      5. Line 569 "Reasons could be that the few genomes undergoing nucleosome assembly and active transcription produce the replication enzymes, whereas the bulk of genomes enters replication without activation as an elegant way to avoid repeated chromatinization." This argument may make sense in the context of a high MOI infection, but would certainly limit virus function during normal, pathogenic infection where the MOI is likely extremely low. Essentially, the authors data predicts that 80% of normal, low MOI infections don't progress to gene expression (at least during the first 4 hrs analyzed in this study).
      6. Line 576 "This observation is in agreement with recent pVII-ChIP experiments showing transcription and replication independent pVII removal in early infection (Giberson et al., 2018; Komatsu and Nagata, 2012; Komatsu et al., 2011)." The authors can also state that histone and nucleosome deposition is also independent of transcription and replication, as has been alluded to in the same cited studies but proven more directly in this study.
      7. Line 672 - the authors should be more definitive in the MOI that are used in all of their experiments. Line 672 states that an MOI of 3000 physical particles are applied per cell. There can be great variation between cell lines in how much virus binds to (and enters) a cell based on the surface levels of Ad receptors on different cell types. However, in general, 3000 is very high. Work by Wang et al. (PMID:24139403) showed that at an MOI of 200 or below most Ad will traffic correctly to the nucleus, whereas at an MOI above 200 there is a significant defect in Ad trafficking within the cell. How is this expected to affect all of the results in this study?
      8. Figure 5 is of low resolution and was difficult to read.
      9. Figure S3 is missing a box from the top set of images indicating the region that is expanded in the detail picture.
      10. While I realize it is supplemental data, the difference in quality between the agarose gels shown in Figure S4A and S5A is shocking.
      11. Figure S7 is of low resolution.

      Significance

      At least in the field of adenovirus research, this is a very important study. There has been considerable debate in the field regarding the timing and degree of protein VII removal and histone deposition, and the necessity of active transcription for these two events. The data provided in this manuscript clearly shows that some protein VII is removed from early active genes and replaced by nucleosomes, and that these events occur prior to initiation of transcription.

      The authors speculate that the specific placement of protein VII, a protamine-like protein, on the Ad genome prescribes where nucleosomes are placed. This finding should be of interest to a broad general audience, as it provides novel information on chromatin assembly within mammalian cell.

      Key words for this reviewer: adenovirus research, HAdV nucleoprotein structure

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      *Summary: This paper illustrates the role of GDF15 in ganglionic eminence featuring the influence on neurogenesis and progenitor proliferation. Using the conventional knockout GDF-15 mouse lines, the authors provide a series of counting data indicating that GDF15 controls neurogenesis in the late embryonic or adult neural stem cells in the ventral forebrain. *

      We would like to thank the reviewer to reading our manuscript and providing comments. As the reviewer highlights, we have used a conventional GDF15 knock-in knock-out model since the growth factor is expressed not only at tissue levels but also at a systemic level. Therefore, targeted ablation of GDF15 would be complicated and the results difficult to interpret. Moreover, GDF15 and its receptor GFRAL in normal conditions are expressed at very low levels in adult mice and mutant mice do not display any obvious developmental phenotype. However, GDF15 is characteristically expressed during development and our previous data have shown that its expression is particularly increased at later developmental ages and particularly in neural precursors, which are both the focus of our analysis. Although these previous analyses have long highlighted that GDF15 is particularly expressed in the V-SVZ and in the choroid plexus, its physiological role in this system remains to the best of our knowledge unknown. It is important to investigate this issue because, as we mention below, GDF15 expression is increased, including in NSCs, upon brain injury and aging. As the reviewer rightly mentions, using this conventional approach and straightforward quantitative analyses, instruments available and normally used for the investigation of biological phenomena, we have discovered that GDF15 directly affects the number of ependymal cells and neural stem cells thereby providing a first function for the expression of the growth factor in this region.

      Major comments:

      The entire story in this manuscript seems similar to the previous findings where the authors demonstrated the role of GDF15 in the hippocampal neural stem cells in relation to EGF and CXCR4.

      As the reviewer rightly mentions we have in a previous paper investigated the effect of GDF15 on the stem cells of the hippocampus. However, we would like respectfully to disagree with the reviewer that our current manuscript describes similar findings. Whereas we have previously shown that the effect of GDF15 in hippocampal stem cells and neurogenesis is a transient inhibition of proliferation due to reduced EGFR expression, we here found that absence of GDF15 leads instead to increased proliferation and a permanent increase of stem cell number, besides of ependymal cells. As the reviewer rightly mentions, on the basis of our previous observations, also in this study we have analyzed EGFR expression and signalling. However, although our data clearly show that EGFR expression and more importantly signalling are altered also in this niche, we could show that the effect of GDF15 is more complex than altering EGFR signalling. Since we show for the first time in this study, that besides GDF15, neural progenitors also express GFRAL, our data point at a selective effect of GDF15 in the development of neural stem cell in the GE and in the deriving adult niche, which include change in EGFR signalling.

      *The data and the conclusion presented here sound reasonable to me. The current manuscript, however, gave me the impression that the story is less impactful and rather descriptive. To improve the quality of the current draft, the authors may wish to clearly highlight the novelty of the findings, not simply apply the previous strategy to the other anatomical brain regions. Alternatively, the draft could emphasize the similarity of utilising the same biological strategies to control the number of adult stem cells in the distinct stem cell niche. *

      We would like to thank again the reviewer for the positive consideration of our quantitative analyses, although we cannot agree with the referee’s conclusion about the impact of our current study. In particular, we would like to focus here not only on the specific findings of the two studies that, as we mentioned above, reach different conclusions, but also on the general meaning of our new study in the context of understanding the role of GDF15. Besides during development and aging, GDF15 expression is promptly upregulated in several pathologies including, cancer, injury and neurodegeneration. Indeed, a growing body of evidence has highlighted the possible role of GDF15 as stress hormone and mitokine, which could be part of a conserved mechanism of the body to signal and respond to stress. Within this context, it would be very important to understand the effect of GDF15 on stem cells, as it may prompt not only understanding of the physiological role of GDF15 but also of the mechanism underlying the response and contribution of stem cell to stress and injury. Supporting this view, it was recently shown that GDF15 is upregulated in quiescent neural stem cells following brain injury (Llorens-Bobadilla et al., 2015). However, the main problem in investigating the physiological role of GDF15 is that the expression of its recently discovered receptor is very limited in the brain. Therefore, our data here are important not only because of the novel effect that they describe for GDF15 in NSC development, but also because they show that GDF15 directly affects stem cell behavior. We have now followed the suggestion of the reviewer and re-edited several parts of the manuscript including editorial changes to highlight the relevance of our findings and the figures to better illustrate them. In particular, we have added also additional analyses to support our conclusions. These include data illustrated in Fig.1B, C; Fig. 4B, G and Fig. 5G.

      *I also have two concerns which may help to improve the current draft. Firstly, I would suggest considering the data presentation as many of the counting data are not accompanied by representative images or a detailed description of the methods, which could impede the credibility of the data. For instance, it is not clear to me how the authors judged the apical vs subapical progenitor counting as neither the pictures nor the methods clearly specified how these are distinguished. Same to the Figures 3 and 8. *

      We thank the reviewer for these suggestions, which we have now implemented in our revised manuscript. These changes include addition of representative images to Figs. 1, 2, 3, 4, 5, 6, as well as an illustration of how apical vs subapical cells were counted in Fig. 2A, an illustration showing how ependymal and single-ciliated cells were determined in Fig. 8A, and more detailed descriptions in the materials and methods section.

      *I would also suggest the authors may wish to carefully review the text as many abbreviations are not properly stated (for example, what are P+ progenitors?), or not properly explained why the particular gene expression is analysed (EGF, Sox2, CXCR4). This is also applied to the anatomical jargon (like apical, subapical etc), which can be specified in the figure by introducing the cartoons or point-on images. *

      We thank the reviewer for pointing these shortcomings out. We have now done a careful proofreading of the text and implemented changes in the relative figures.

      The changes include: Explanation of Prominin-1-expressing (P+) progenitors (p. 10, line 35) and apical and subapical progenitors (p.3, line 11-23), as well as more detailed reasoning for the analysis of gene expression for EGFR, Sox2 and CXCR4 (p. 9, line 5-7; p.12, line 44 and following)

      *Last not least, I should point out that the author uses less commonly used terminology. To my knowledge, the SVZ progenitors in the GE are now called basal progenitors (Bandler et al 2017 for example) and the word intermediate progenitors is used for the Tbr2+ IP cells in the developing cortex. MASH-1 is an old gene name as it is revised as Ascl1 (please refer to any recent papers and web databases such as Mouse Genome Informatics, and NCBI, for instance). The use of prevailed wording will help the readers to understand the presented story. *

      We have now revised the terminology according to the reviewer’s suggestion.

      Minor comments:

      Abstract Line 12-15 is confusing: What does "genotype" means?

      We used the term to refer to the genetic differences between WT and GDF15 mutant mice with respect to GDF15 expression. We apologize for the lack of clarity. We have now modified the paragraph in an effort to improve its clarity.

      Introduction Despite the focus of this paper being on the proliferation in GE, the introduction mixed up the references describing the dorsal telencephalon. It's better to cite the ventral GE as some progenitor behaviours are different from the ones in the dorsal. Maybe it's better to dedicate more to describing the lineage trajectory in the ventral GE and the molecular players (such as EGF), which makes it harder to understand the rationales of the several experiments.

      We would like to thank the reviewer for making this helpful comment. In the introduction we have tried to make two points: firstly, to clarify how the different progenitor types in the VZ can be distinguished based on the localization of their site of mitosis and secondly the importance of studying GDF15 in the context of NSCs in the subependymal zone of the lateral ventricle. For the first point we have several studies referring to dividing dynamics of radial glia in the developing cortex. This reflect the fact that many papers have studied both apical and subapical radial glia within the context of the developing cortex, unlike subapical progenitors, which were first discovered in the developing ganglionic eminence. A similar problem applies to the analysis of EGFR expression in the context of VZ progenitors, although we agree with the reviewer that it should introduced for a better understanding of our analyses. Therefore, we have now introduced several changes in our introduction to eliminate the shortcomings and to offset the imbalance in terms of citations.

      Results

      Fig1: V/SVZ -> VZ? I think V means ventricles while VZ is for the ventricular zone. Single-channel images should be presented to demonstrate the positive or negative cells for each antigen. Only a subset of progenitors in the adult SVZ is GDF15 positive although this is not described in the text.

      We have now replaced V/SVZ with V-SVZ, meaning ventricular-subventricular zone, throughout the manuscript and added single channel images to all figures where it is relevant.

      *Why the GDP15 staining was performed only in the adult sections, but not in E18 while the GFRAL is shown in both stages? The text claims "GDF15 is particularly expressed in the germinal region of the GE" but I did not find the data shown in this draft. *

      The fact that GDF15 is expressed in the choroid plexus and in the subependymal region of the lateral ventricle was first observed in the neonatal rat brain and prompted us to investigate the hypothesis that GDF15 may affect NSCs. Moreover, in our previous manuscript we have confirmed that GDF15 is expressed in neural progenitors of the embryonic murine GE (Carrillo-Garcia et al., 2014). In this new manuscript, we have complemented these data by adding the missing information concerning the expression of the protein in the adult V-SVZ. Notably, we also investigate for the first time the expression of the receptor in this area. This is key issue in the field, since the expression of GFRAL has been reported only in few regions of the brain, which is in apparent contrast with the growing list of effects in which GDF15 has been involved. For completeness of information and to further strengthen our conclusions we have now added new set of images in figure 1B, C showing co-expression of GFRAL and EGFR.

      *Line 24-25: I did not understand this statement. *

      The sentence refers to the results published in our previous paper, as mentioned in our reply above, which illustrate expression of GDF15 in the GE at different ages of development and in the adult V-SVZ. In an effort to improve its clarity, we have now modified the sentence into: “Consistent with these observations, we have previously reported that in the GE, Gdf15 transcripts increase at late developmental age and remain high in the adult V-SVZ.”

      Fig. 2 Line 33: what are apical P+ progenitors?

      We apologize for this shortcoming. P+ is the abbreviation for Prominin-1 immunopositive progenitors. This information has been now added to the text.

      *Fig. 2A: The total analysed cells are not described in M&M. *

      We have now added this information in the relevant section of the manuscript (p. 7, lines 36-43).

      *Fig 2 C and D. While the counting of apical or subapical progenitors has been done respectively, the representative images of which regions are judged as apical or subapical are not shown. This comment also applies to Line 41: I did not get the logic of how this analysis will be able to distinguish apical or subapical cell division. *

      Mitotic apical and subapical progenitors have been detected on the basis of the position of their nuclei. Namely, mitosis was considered apical if the nucleus of the dividing cell was within two nuclei distance (~ 10 µm) of the apical surface, and considered subapical if the nuclei of the dividing cells was at a greater distance from the apical surface. Besides adding this information to the manuscript, see “Image analysis” in the “Materials and Methods” section, we have now illustrated our approach in the new Fig. 2B.

      *Fig. 2 E and F: I am not sure why the proliferation was assessed in vitro whole mount cultures. IP injection in vivo animals would be more convincing. *

      We have used the same whole mount preparation to determine changes in proliferation upon acute fixation of the tissue. We have then determined the effect of growth factors and pharmacological modulators in whole-mount explants preparation as this would allow us to test their effect in standardized conditions. For the sake of consistency, we have then used the same whole mount explant setting to investigate proliferation by means of IdU incorporation. We selected this mean of analysis because changes in proliferation were already detected upon tissue fixation, and direct exposure of the tissue to the pharmacological modulators allowed us to investigate the direct effect of the drugs on proliferation behavior. Using this setting, we have obtained data that are compatible and consistent with our analysis on acutely fixed preparations. We agree with the reviewer that these experiments could be also repeated by injecting the IdU in vivo, however this would be against the current animal 3R guidelines that prompt to minimize the use of animal in vivo experiments and only when they cannot be replaced by alternative approaches in vitro or ex vivo.

      *Fig. 3 I am not sure the mitotic spindle orientation analysis is very informative to stand out as one independent figure. In some contexts (Noctor et al 2008), it does not correlate to the asymmetric or symmetric division modes. *

      We would like to like to respectfully disagree on this issue. The reason why we think this data set is important is twofold. Firstly, previous papers pointing at changes in the number of NSCs in the GE, have established that this was caused by a change in the spindle orientation leading to the generation of extra SNP (Falk et al., 2017), indicating a role for the orientation of the mitotic spindle in this context. Since we observed that GDF15 promotes not only progenitor proliferation but also apical divisions, it is important to show that this effect does not reflect a change in spindle orientation. Secondly, these data set highlights an age-dependent effect on the orientation of the mitotic spindle that is fully consistent with previously published data supporting the solidity of our findings. However, since we did not see any significant differences between the WT and Gdf15-/- animals, we have decided to move this data to a supplementary figure (new supplementary figure S3).

      *Fig. 4 I am not convinced by this data since how the fluorescent intensity is measured is not described. If the internal controls to adjust the staining variation among samples are not used, the data is not convincing to me. The representative pictures are not convincing either to claim the substantial differences. Perhaps immunoblotting is better to be employed to quantify the protein expression difference. *

      We have now added additional pictures with higher magnification to show the difference in EGFR intensity, including a calibration bar (Fig. 4). Quantitative analysis showed a trend decrease at E18 which is strongly significant in the adult V-SVZ. We now also show analysis of phEGFR and modified extensively the relative result section (see also our reply to the comment on Evidence, reproducibility and clarity of reviewer 2). Furthermore, we have added the following paragraph to the methods section:

      “For fluorescence intensity measurements of EGFR, slices stained at the same time with the same antibody solutions, and imaged on the same day with constant confocal microscope settings (laser intensity, gain, pixel dwell time), were measured using Fiji/ImageJ. Raw immunofluorescence intensity was normalized by subtracting background fluorescence levels, i.e. fluorescence in cells considered negative for EGFR. To rule out any unspecific secondary antibody binding, fluorescence was compared to slices incubated with secondary, but not primary antibodies (2nd only control); no difference was found between 2nd only control and cells considered negative in EGFR-labelled samples, or between 2nd only controls of different genotypes.”

      *Fig. 5 This is very busy figure composed of mainly counting graphs of different experiments. I think at least it is better to separate the data in vivo or culture. *

      We have now rearranged the figure according to the reviewer’s suggestion. We have moved, also according to Reviewer 2’s suggestions, some less relevant data to supplementary figure S4 (that is, previous panels G-J) and added confocal images to illustrate the results of previous panels C-E. We hope that this improved the focus and clarity of this figure.

      *Fig. 6. Pictures of Day 2 and Day 7 should be presented to highlight the difference between them. *

      We have now added pictures showing the cell culture at DIV2 and DIV7, as well as the different treatments, in Fig. 6A.

      *Fig. 7 Mash-1 should be rephrased as Ascl1. *

      We have now changed the name of the gene throughout the manuscript.

      Fig. 8 A: I am not sure why these pictures are B&W even though the two antigens are stained. The main text needs more description since no explanation of FOP, b-catenin etc. The picture of GFD15 KO looks having massive numbers of FOP+ cells, which is not correlated to the counting, I guess?

      We apologize for the lack of clarity. We have now added additional panels (Fig. 8A) to illustrate the rationale behind the analysis and to demonstrate how ependymal and single-ciliated cells were counted. We have added the following sections to the manuscript text:

      Materials and methods:

      “Both the β-catenin and fibroblast growth factor receptor 1 oncogene partner (FOP) primary antibodies are mouse monoclonal antibodies of the same immunoglobulin class. Therefore, for this double immunostaining both antigens were revealed using the same secondary antibody and each was distinguished based on the localization and morphology of the labelling, which is lining the cell boundaries or at the basal body of the cilia for β-catenin and FOP, respectively.”

      Results:

      “We here used β-catenin to label cell-cell contacts, thereby visualizing cell boundaries, and fibroblast growth factor receptor 1 oncogene partner (FOP), a centrosomal protein, to visualize the basal body of the cilia. As both β-catenin and FOP-antibodies where derived from the same host species, the antigens were labelled in a single fluorescent channel and differentiated based on label localisation and intensity (Fig. 8A). Cells with a single centrosome or centrosome pair (one to two FOP+ dots) were counted as single-ciliated (SC), whereas cells with more than two centrosomes, i.e. multiciliated cells, were counted as ependymal (Epen; Fig. 8A).”

      We have also added the following paragraph to the figure legend:

      “(A) Schematic showing counting of ependymal (Epen) and single-ciliated (SC) cells using FOP and β-catenin as markers. (a’) Closeup of WT image in (B), showing β-catenin, indicating cell-cell-contacts, and FOP, indicating ciliary basal bodies/centrosomes, in a single channel. Scale bar = 10 µm. (a’’) β-catenin and FOP labels are distinguished by location, morphology and label intensity, with FOP being single dots that are more intense than β-catenin and located within the cell boundaries. (a’’’) Cells containing one or two centrosomes were considered SC cells (red), while cells with more than two centrosomes were considered multiciliated and therefore Epen (blue).”

      We would also like to point out to the reviewer that since FOP was used as a label for the ciliary base, the “massive numbers of FOP+ cells” (i.e., multiciliated cells) were indeed quantified in Fig. 8B (now 8C) as ependymal cells (Epen).

      ** Referees cross-commenting**

      I agree with Reviewer #2's comment that despite the amount of data presented, they are not presented in a coherent manner. I would suggest revising carefully before submitting to any journals. As detailed above the manuscript has been revised to improve clarity and coherence according the reviewer’s suggestions.

      Reviewer #1 (Significance (Required)):

      *The presented finding of the role of GDF15 in the ventral progenitors are evident and a new finding has not been reported. Since the same effects and signalling pathways involved in adult hippocampus neurogenesis are previously published by the same authors, the impact of the current manuscript is limited. I think heightening the role of GDF15 in the biological context of ventral progenitors, or alternatively, making a comparison to the previous finding would greatly improve the quality of the draft. In my opinion, this work would be appealing to the community of neural stem cells but maybe not to the broad audience. My expertise is neurodevelopmental biology focusing on neuronal lineages and neurogenesis. *

      We have already clarified that the effect that we report here of GDF15 on NSCs is not only novel, but is also very different from what we have previously observed in the hippocampus (see also our reply above to the comment on evidence, reproducibility and clarity of reviewer 1). Although many environmental signals and growth factors have been implicated in the regulation of NSC proliferation and self-renewal, GDF15 is, to our knowledge, one of the few factors directly regulating the number of apical NSCs. Following the suggestion of the reviewer, we have now revised our manuscript in order to highlight the difference between the two studies. Besides being important within the field of NSCs, we believe that our data are also important for understanding the physiological role of GDF15, whose expression is increased during development and in the response to a growing list of stressors. For such an understanding, it is essential to identify target cell populations which can directly respond to the growth factor. Our finding that the GDF15 receptor is expressed in NSCs provide first evidence that GDF15 can directly modulate stem cell development, providing a first function for the increase in its expression. Moreover, our observation that GFRAL continues to be expressed in adult NSCs opens up to the possibility that the increase in the expression of the growth factor in the stress response is to recruit/modulate stem cell behavior. Consistent with this scenario, it was recently observed that brain injury promoted and increase of GDF15 expression in NSCs (Llorens-Bobadilla et al., 2015).

      • Reviewer #2 (Evidence, reproducibility and clarity (Required)): *

      * Here the authors explore the role of GDF15 during development of the adult neural stem cell niche at the lateral wall of the lateral ventricle using GDF15 knock-out mice. They find increased progenitor proliferation at neonatal stages and at 8weeks, compensated by neuronal death. Further they report that EGFR+ cells are arranged differently in the GDF15 mutants (in clusters rather than columns) with also lower levels of EGFR. This is surprising to me, as the authors observe an increase in proliferation. They then report that addition of EGF leads to an increase in prominin+ progenitors in the GDF15KO, but not the WT, but there is lower levels of EGFR in the KOs. They then block CXCR4, which is allegedly required for GDF15 to modulate EGFR expression, and they find that this blocking reduces proliferation mostly in WT cells. As can be seen from this summary, to me, the model of how GDF15 loss is supposed to increase proliferation is not clear. Even less so, when in adult SVZ, EGFR+ progenitors were increased, while EGFR was reduced at postnatal stages. Beyond this, the authors show convincingly that ependymal cells are increased at adult stages, while I see no data supporting their claim of NSCs to be increased (at least not reaching levels of significance).*

      • Taken together, this manuscript contains a lot of data, but to me no coherent picture emerges. If the picture is that the higher proliferation rate of apical progenitors at E18 generates more ependymal cells, then this should be shown (by including analysis e.g. at P5 when ependymal cells emerge). How GDF15 would affect proliferation in general is also not clear to me - maybe an unbiased analysis by RNA-seq could help to separate the main effects from diving into known candidates that seem not to explain the main aspects.*

      The reviewer mentions multiple aspects of our study that we would like to clarify. Therefore, we apologize for our lengthy reply.

      Firstly, the apparent contradiction between the increase in progenitor proliferation despite the concomitant decrease in EGFR levels. It is long known activation of EGFR regulates multiple aspects of progenitor behavior including proliferation, migration and differentiation. It is also known that responsiveness of NSCs to EGF increases during development, a process that is paralleled by an increase in expression of EGFR expression increase with developmental age, peaking around the perinatal age. However, since NSCs start to slow their cell cycle and enter quiescence exactly at the same time in which the increase in responsiveness to EGF and in EGFR expression in NSCs during this same period, it is clear that there is not a linear correlation between NSC proliferation and EGFR expression. A possible explanation for this apparently counterintuitive observation is that the increase in EGFR expression is paralleled by an increase in the expression of Lrig1, a developmental negative regulator of EGFR (Jeong et al., 2020). Moreover, in our study we report that lack of GDF15 leads to a decrease in the expression of EGFR protein and not in the levels of EGFR mRNA. In light of the well-known feedback mechanism by which in the presence of high EGFR activation the receptor transits to late endosome for degradation, a decrease in the protein levels could actually represent a higher level of activation EGFR signalling in the mutant progenitors than in the wild type counterpart. This is consistent with the characteristics of punctuate EGFR immunostaining we see in the mutant tissue and our analysis of EGFR activation. Our data show that despite difference in activation kinetics, wild type and mutant progenitors similarly respond to exogenous stimulation with EGF. Moreover, there is no difference between the two genotypes in the expression of EGFR in mitotic cells, and blockade of EGFR more dramatically affects the proliferation of mutant than WT progenitors. Finally, exposure to exogenous EGF promotes the proliferation of WT but not mutant progenitors. Taken together, these observations suggest that endogenous activation of EGFR driving proliferation is higher in mutant than WT progenitors. Consistent with this hypothesis, our new data illustrated in Fig. 5A-G of the revised manuscript, show that EGFR is similarly phosphorylated in mutant and in WT progenitors and that levels of Phospho-EGFR are observed in regions with low levels of EGFR expression, especially in the postnatal V-SVZ.

      With respect to the effect of CXCR4, we have investigated its effect with respect to the ability of GDF15 to promote EGFR expression at the cell surface and secondly with respect to affect proliferation in vivo and in vitro. Both experiments reveal a permissive role of the receptor, whose activity is necessary for GDF15 to promote EGFR expression at the cell surface and for cell to undergo proliferation. While these observations confirm in part our previously published data, the molecular mechanisms underlying these effects remain unclear. However, since AMD on its own does not affect EGFR expression in either WT or mutant progenitors, the two effects are not related. Despite the absence of a clear mechanism by which CXCR4 affects proliferation, our data indicate that the permissive effect of CXCR4 is more important for the proliferation of TAPs rather than for NSCs. Therefore, the different effect of CXCR4 inhibition between WT and mutant progenitors likely reflect the fact that the latter are enriched in NSCs.

      Finally, the evidence that NSCs are significantly increased in the mutant V-SVZ is reported in Fig. 8. In this figure, it is clearly reported that compared to the WT counterpart at early postnatal stages, only the multiciliated ependymal cells are significantly increased in the mutant niche, whereas uniciliated progenitors display only a trend increase (Panel C). However, the total number of apical cells is increased in the mutant V-SVZ, indicating that the number of both cell types are likely increased. Consistent with this hypothesis, in panel G of the same figure we show that in the adult V-SVZ, when the ependymal cells are fully differentiated, also apical GFAP+ NSCs are significantly increased. Notably, in this figure we show that GFAP+ NSCs also display a primary cilium, an elongated morphology and lack multiple cilia, and therefore are not atypical ependymal cells. Finally, in supplementary table S6, we show no difference in terms of % of clone forming cells between dissociated cell preparations of the WT and mutant V-SVZ. These observations and our finding of increased Ki67 apical expression in the adult V-SVZ, illustrated in supplementary figure S2B, clearly show that apical NSCs are increased.

      We have now introduced multiple modification in text and figures to clarify the mechanisms underlying the effect of GDF15 ablation on EGFR expression and activation and the differential effect of CXCR4 on WT and mutant progenitors. The new data set illustrating phosphoEGFR are illustrated in figure 4B, G. We have also modified figure 8 in an effort to illustrate more clearly the effect of lack of GDF15 on NSC number.

      *Major comments: *

      *1) Inconsistencies start already in Figure 1: The authors show expression of the receptor at neonatal stages (much higher) and adult stages, but GDF15 is shown only in adult stages and the citations of their previous work suggests that indeed it may not be present at this early stage in the GE VZ (p.8, line 10). If it is, please show. If it isn't, could it be that it is in the CSF and signals only to apical cells? *

      As the reviewer rightly mentions, GDF15 is present in the CSF and signals mainly to apical cells, as it is known to be secreted by the choroid plexus (Böttner et al., 1999; Schober et al., 2001). However, we would like to respectfully disagree with the reviewer. In our previous work, we clearly showed that GDF15 expression increases at E16 and is highest at E18 in the GE, which is the reason we specifically chose this timepoint for analysis (compare Carrillo-Garcia et al. (2014), Fig. 1A). In this manuscript we have also shown that EGFR expressing progenitors in the GE express GDF15. As the expression of GDF15 at embryonic and neonatal ages has already been investigated by us and others for two decades (see also Schober et al. (2001)), we refrained from showing expression of GDF15 at these ages again. However, we have now modified the relevant result section to clearly highlight the existence of this previous findings.

      *2) An overview of the KO phenotype by lower power pictures would be helpful. For example an overview over the GE and PH3 immunostaining WT and KO at comparable section levels. *

      Our analysis is based on whole-mount preparation of the whole GE. To standardize our analysis the same number of pictures were taken at similar locations to obtain a quantification representative of the apical surface of the whole GE. Therefore, the areas of interest were not selected on the basis of the number of mitotic cells and the differences observed do not reflect a positional effect. Lower power pictures illustrating the whole GE, are unlikely to be helpful, because they would not show the nuclear immunostaining. However, we have now modified the relevant Material and Methods section as follows to describe the standardization of our quantitative analysis: “Whole mounts were imaged using a Leica TCS SP8 confocal microscope with a 40x or 63x oil immersion objective and LASX software (Leica). For the quantification, an average of three different regions of interest were chosen at fixed rostral, dorsal and ventral position of the GE or V-SVZ and averaged for the collection of a single data set.”

      * 3) Figure 2B- where is the apical surface, where are we in the GE? Where was quantification done? *

      We have now added images detailing the localization of apical and subapical cells in new Fig. 2A, as well as further clarifications of the imaging and quantification in the materials and methods section.

      * 4) Clarify the part with EGF signaling and/or take a more comprehensive view by a proteomic or transcriptomic approach, as EGFR and CXCR4 which were already investigated previously, may not explain the phenotype. *

      We agree with the reviewer that our data should prompt a more comprehensive approach. However, this is surely a work worthy of a separate manuscript, since we agree with the reviewer that changes in EGFR and CXCR4 do not fully explain the effect of GDF15 on proliferation. We have now clarified our conclusions about EGF signalling, modifying the relevant part in the result section. We have also modified the abstract as follows:

      “From a mechanistic point of view, we show that active EGFR is essential to maintain proliferation in the developing GE and that GDF15 affects EGFR trafficking and signal transduction. Consistent with a direct involvement of GDF15, exposure of the GE to the growth factor normalized proliferation and EGFR expression and it decreased the number of apical progenitors. A similar decrease in the number of apical progenitors was also observed upon exposure to exogenous EGF. However, this effect was not associated with reduced proliferation, illustrating the complexity of the effect of GDF15.”

      *5) Do the authors actually think that the effects on EGFR are in the cells expressing the GDF15 receptor? Then please show co-localization. *

      As both EGFR and GFRAL are widely expressed in the embryonic GE (see Figs 1B and 4B), making overlap inevitable, we did previously not assume the need to show co-localization. We have now added images showing co-localization of EGFR and GFRAL in E18 and adult brain sections in Fig. 1B.

      *6) Figure 5D shows virtually no apical mitosis in WT, but indeed there are apical mitosis in WT E18 GE as one can also see in panel 5A. *

      We apologize for the confusion. In the manuscript, we use Ki67 and analysis of nuclear morphology to determine the number of cells undergoing cell division, i.e. in meta-, ana- or telophase and immunostaining with antibody with phH3+, which stains additionally cells also at late G2 and early mitotic stages. Consistent with this, the number of mitotic cells scored with Ki67 and quantified in Fig. 5D is smaller than the number of phH3+ cells that is illustrated in Fig. 5A. Throughout the manuscript, cells labeled by phH3 immunoreactivity are named “phH3+ cells”, as quantified in Fig. 5B, whereas with “dividing cells” we refer to cells with Ki67 labeling that show nuclear morphology of meta-, ana- or telophase. We have, also according to the suggestions of reviewer 1, added images of the whole mounts analyzed for Fig. 5D, as well as the following text in the materials and methods section: “Cells were considered dividing if the nuclei were labelled with Ki67 and the nuclear morphology showed signs of division, i.e. meta-, ana- or telophase, in DAPI and Ki67-channels. For the sake of clarity, “dividing cells” only refers to this way of detection, while cells positive for phH3 are termed “phH3+ cells”, as phH3 also labels cells in interphase and prophase, as well as late G2 phase.”

      *7) For the effect on ependymal cell generation it could be good to include an intermediate age, such as P5-7, when ependymal cells differentiate, staining e.g. for Lynkeas or Mcidas, known fate determinants regulating ependymal cell differentiation at that time. *

      Most of our research was performed in either E18 or adult animals, where ependymal cells are either not yet present or already fully differentiated. Since ependymal cell differentiation starts at birth, we used P2 animals to look at ependymal cell differentiation. As shown in Fig. 8B, C this age is appropriate to study early ependymal differentiation, as a lot of multiciliated ependymal cells are already present at this age, and the difference between WT and Gdf15-/- animals is clearly visible and significant. While another age or additional markers might be interesting, we argue that it would not add to the conclusion or significance of this paper, as we can see this phenotype already at age P2 and it can still be detected it in adult animals.

      *Minor comments: *

      *-) p. 8, subapical progenitors are mentioned in line 42 without explaining how they are defined. *

      We have now added more detailed definitions of apical and subapical progenitors to the introduction.

      *-) p.8, line 44: the word increased in mentioned 2x *

      We have removed the additional word.

      *-) In the description of Figure 8 C and D seem to have been mixed up. *

      We have changed the description of Fig. 8.

      * ** Referees cross-commenting***

      *I also fully agree with the point that this manuscript is very difficult to read. I think that anyhow the results have to be reorganized to focus on the most important data, so rewriting will have to be done for clarity either way. *

      We apologize for the lack of clarity we have now extensively modified and re-edited the manuscript in an effort to improve its clarity.

      * Reviewer #2 (Significance (Required)): *

      * Exploring signmalling factors important for the stem cell niche is important, and the GDF15 indeed seems to have an effect there. The problem is, that much has been done with this factor already, but of course a mechanistic understanding of whats going on is important and could be the strength of this manuscript. However, it is really not clear, which mechanisms causes what. What is clear, is that the increased proliferation of neuronal progenitors is counterbalanced by death. Its also clear that ependymal cells are increased, which is an interesting effect. But how and why is not clear and may be the best to focus in this paper. *

      As the reviewer mentions, several publications focus on GDF15. However, there is only one publication investigating the effect of GDF15 on neural stem cells and this focuses on the hippocampus. Therefore, we would like to respectively disagree with the conclusion of the reviewer “that much has been done with this factor”. Moreover, a serious problem with previous studies investigating GDF15 is the fact that its receptor is scarcely expressed and therefore it is not clear if these studies investigate direct or indirect effects of the growth factor. Since we here for the first time show that neural stem cells in the GE and V-SVZ express GDF15-receptor GFRAL, our study for the first time show a direct involvement of GDF15 on proliferation, number of ependymal cells and, as detailed in our reply above, apical NSCs. This knowledge is not only relevant to the field of normal and cancer stem cells, but also within the context of the role of GDF15 as mitokine and as stress hormone (see also our reply to major comments 2 of reviewer 1). Therefore, although we agree with the reviewer that the molecular mechanisms underlying the effect of GDG15 need further investigation, our data are novel and of relevance to the general scientific community.

      References:

      Böttner, M., Suter-Crazzolara, C., Schober, A., Unsicker, K., 1999. Expression of a novel member of the TGF-beta superfamily, growth/differentiation factor-15/macrophage-inhibiting cytokine-1 (GDF-15/MIC-1) in adult rat tissues. Cell Tissue Res 297, 103-110.

      Carrillo-Garcia, C., Prochnow, S., Simeonova, I.K., Strelau, J., Hölzl-Wenig, G., Mandl, C., Unsicker, K., von Bohlen Und Halbach, O., Ciccolini, F., 2014. Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice. Development 141, 773-783.

      Falk, S., Bugeon, S., Ninkovic, J., Pilz, G.A., Postiglione, M.P., Cremer, H., Knoblich, J.A., Gotz, M., 2017. Time-Specific Effects of Spindle Positioning on Embryonic Progenitor Pool Composition and Adult Neural Stem Cell Seeding. Neuron 93, 777-791 e773.

      Jeong, D., Lozano Casasbuenas, D., Gengatharan, A., Edwards, K., Saghatelyan, A., Kaplan, D.R., Miller, F.D., Yuzwa, S.A., 2020. LRIG1-Mediated Inhibition of EGF Receptor Signaling Regulates Neural Precursor Cell Proliferation in the Neocortex. Cell Rep 33, 108257.

      Llorens-Bobadilla, E., Zhao, S., Baser, A., Saiz-Castro, G., Zwadlo, K., Martin-Villalba, A., 2015. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell 17, 329-340.

      Schober, A., Böttner, M., Strelau, J., Kinscherf, R., Bonaterra, G.A., Barth, M., Schilling, L., Fairlie, W.D., Breit, S.N., Unsicker, K., 2001. Expression of growth differentiation factor-15/ macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in the perinatal, adult, and injured rat brain. J Comp Neurol 439, 32-45.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Here the authors explore the role of GDF15 during development of the adult neural stem cell niche at the lateral wall of the lateral ventricle using GDF15 knock-out mice. They find increased progenitor proliferation at neonatal stages and at 8weeks, compensated by neuronal death. Further they report that EGFR+ cells are arranged differently in the GDF15 mutants (in clusters rather than columns) with also lower levels of EGFR. This is surprising to me, as the authors observe an increase in proliferation. They then report that addition of EGF leads to an increase in prominin+ progenitors in the GDF15KO, but not the WT, but there is lower levels of EGFR in the KOs. They then block CXCR4, which is allegedly required for GDF15 to modulate EGFR expression, and they find that this blocking reduces proliferation mostly in WT cells. As can be seen from this summary, to me, the model of how GDF15 loss is supposed to increase proliferation is not clear. Even less so, when in adult SVZ, EGFR+ progenitors were increased, while EGFR was reduced at postnatal stages. Beyond this, the authors show convincingly that ependymal cells are increased at adult stages, while I see no data supporting their claim of NSCs to be increased (at least not reaching levels of significance). Taken together, this manuscript contains a lot of data, but to me no coherent picture emerges. If the picture is that the higher proliferation rate of apical progenitors at E18 generates more ependymal cells, then this should be shown (by including analysis e.g. at P5 when ependymal cells emerge). How GDF15 would affect proliferation in general is also not clear to me - maybe an unbiased analysis by RNA-seq could help to separate the main effects from diving into known candidates that seem not to explain the main aspects.

      Major comments:

      1. Inconsistencies start already in Figure 1: The authors show expression of the receptor at neonatal stages (much higher) and adult stages, but GDF15 is shown only in adult stages and the citations of their previous work suggests that indeed it may not be present at this early stage in the GE VZ (p.8, line 10). If it is, please show. If it isn't, could it be that it is in the CSF and signals only to apical cells?
      2. An overview of the KO phenotype by lower power pictures would be helpful. For example an overview over the GE and PH3 immunostaining WT and KO at comparable section levels.
      3. Figure 2B- where is the apical surface, where are we in the GE? Where was quantification done?
      4. Clarify the part with EGF signaling and/or take a more comprehensive view by a proteomic or transcriptomic approach, as EGFR and CXCR4 which were already investigated previously, may not explain the phenotype.
      5. Do the authors actually think that the effects on EGFR are in the cells expressing the GDF15 receptor? Then please show co-localization.
      6. Figure 5D shows virtually no apical mitosis in WT, but indeed there are apical mitosis in WT E18 GE as one can also see in panel 5A.
      7. For the effect on ependymal cell generation it could be good to include an intermediate age, such as P5-7, when ependymal cells differentiate, staining e.g. for Lynkeas or Mcidas, known fate determinants regulating ependymal cell differentiation at that time.

      Minor comments:

      • p. 8, subapical progenitors are mentioned in line 42 without explaining how they are defined.
      • p.8, line 44: the word increased in mentioned 2x
      • In the description of Figure 8 C and D seem to have been mixed up.

      ** Referees cross-commenting**

      I also fully agree with the point that this manuscript is very difficult to read. I think that anyhow the results have to be reorganized to focus on the most important data, so rewriting will have to be done for clarity either way.

      Significance

      Exploring signmalling factors important for the stem cell niche is important, and the GDF15 indeed seems to have an effect there. The problem is, that much has been done with this factor already, but of course a mechanistic understanding of whats going on is important and could be the strength of this manuscript. However, it is really not clear, which mechanisms causes what. What is clear, is that the increased proliferation of neuronal progenitors is counterbalanced by death. Its also clear that ependymal cells are increased, which is an interesting effect. But how and why is not clear and may be the best to focus in this paper.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      This paper illustrates the role of GDF15 in ganglionic eminence featuring the influence on neurogenesis and progenitor proliferation. Using the conventional knockout GDF-15 mouse lines, the authors provide a series of counting data indicating that GDF15 controls neurogenesis in the late embryonic or adult neural stem cells in the ventral forebrain.

      Major comments:

      The entire story in this manuscript seems similar to the previous findings where the authors demonstrated the role of GDF15 in the hippocampal neural stem cells in relation to EGF and CXCR4.

      The data and the conclusion presented here sound reasonable to me. The current manuscript, however, gave me the impression that the story is less impactful and rather descriptive. To improve the quality of the current draft, the authors may wish to clearly highlight the novelty of the findings, not simply apply the previous strategy to the other anatomical brain regions. Alternatively, the draft could emphasize the similarity of utilising the same biological strategies to control the number of adult stem cells in the distinct stem cell niche.

      I also have two concerns which may help to improve the current draft.

      Firstly, I would suggest considering the data presentation as many of the counting data are not accompanied by representative images or a detailed description of the methods, which could impede the credibility of the data. For instance, it is not clear to me how the authors judged the apical vs subapical progenitor counting as neither the pictures nor the methods clearly specified how these are distinguished. Same to the Figures 3 and 8.

      I would also suggest the authors may wish to carefully review the text as many abbreviations are not properly stated (for example, what are P+ progenitors?), or not properly explained why the particular gene expression is analysed (EGF, Sox2, CXCR4). This is also applied to the anatomical jargon (like apical, subapical etc), which can be specified in the figure by introducing the cartoons or point-on images.

      Last not least, I should point out that the author uses less commonly used terminology. To my knowledge, the SVZ progenitors in the GE are now called basal progenitors (Bandler et al 2017 for example) and the word intermediate progenitors is used for the Tbr2+ IP cells in the developing cortex. MASH-1 is an old gene name as it is revised as Ascl1 (please refer to any recent papers and web databases such as Mouse Genome Informatics, and NCBI, for instance). The use of prevailed wording will help the readers to understand the presented story.

      Minor comments:

      Abstract Line 12-15 is confusing: What does "genotype" means?

      Introduction Despite the focus of this paper being on the proliferation in GE, the introduction mixed up the references describing the dorsal telencephalon. It's better to cite the ventral GE as some progenitor behaviours are different from the ones in the dorsal.

      Maybe it's better to dedicate more to describing the lineage trajectory in the ventral GE and the molecular players (such as EGF), which makes it harder to understand the rationales of the several experiments.

      Results

      Fig1: V/SVZ -> VZ? I think V means ventricles while VZ is for the ventricular zone

      Single-channel images should be presented to demonstrate the positive or negative cells for each antigen. Only a subset of progenitors in the adult SVZ is GDF15 positive although this is not described in the text. Why the GDP15 staining was performed only in the adult sections, but not in E18 while the GFRAL is shown in both stages? The text claims "GDF15 is particularly expressed in the germinal region of the GE" but I did not find the data shown in this draft.

      Line 24-25: I did not understand this statement.

      Fig. 2 Line 33: what are apical P+ progenitors ?

      Fig. 2A: The total analysed cells are not described in M&M.

      Fig 2 C and D. While the counting of apical or subapical progenitors has been done respectively, the representative images of which regions are judged as apical or subapical are not shown. This comment also applies to Line 41: I did not get the logic of how this analysis will be able to distinguish apical or subapical cell division.

      Fig. 2 E and F: I am not sure why the proliferation was assessed in vitro whole mount cultures. IP injection in vivo animals would be more convincing.

      Fig. 3 I am not sure the mitotic spindle orientation analysis is very informative to stand out as one independent figure. In some contexts (Noctor et al 2008), it does not correlate to the asymmetric or symmetric division modes.

      Fig. 4 I am not convinced by this data since how the fluorescent intensity is measured is not described. If the internal controls to adjust the staining variation among samples are not used, the data is not convincing to me. The representative pictures are not convincing either to claim the substantial differences. Perhaps immunoblotting is better to be employed to quantify the protein expression difference.

      Fig. 5 This is very busy figure composed of mainly counting graphs of different experiments. I think at least it is better to separate the data in vivo or culture.

      Fig. 6. Pictures of Day 2 and Day 7 should be presented to highlight the difference between them.

      Fig. 7 Mash-1 should be rephrased as Ascl1.

      Fig. 8 A: I am not sure why these pictures are B&W even though the two antigens are stained. The main text needs more description since no explanation of FOP, b-catenin etc. The picture of GFD15 KO looks having massive numbers of FOP+ cells, which is not correlated to the counting, I guess? written

      ** Referees cross-commenting**

      I agree with Reviewer #2's comment that despite the amount of data presented, they are not presented in a coherent manner. I would suggest revising carefully before submitting to any journals.

      Significance

      The presented finding of the role of GDF15 in the ventral progenitors are evident and a new finding has not been reported. Since the same effects and signalling pathways involved in adult hippocampus neurogenesis are previously published by the same authors, the impact of the current manuscript is limited. I think heightening the role of GDF15 in the biological context of ventral progenitors, or alternatively, making a comparison to the previous finding would greatly improve the quality of the draft. In my opinion, this work would be appealing to the community of neural stem cells but maybe not to the broad audience. My expertise is neurodevelopmental biology focusing on neuronal lineages and neurogenesis.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General comments:

      We thank the reviewers for recognizing the importance of our work and for their supportive and insightful comments.

      Our planned revisions focus on addressing all the comments and especially in further elucidating the molecular mechanism underpinning our observations, their consequences for cell phenotypes and reproducing our observations in an additional cell line. Our revision plan is backed up in many cases by preliminary data.

      Our submitted manuscript demonstrated that DNMT3B’s recruitment to H3K9me3-marked heterochromatin was mediated by the N-terminal region of DNMT3B. Data generated since submission suggest that DNMT3B binds indirectly to H3K9me3 nucleosomes through an interaction mediated by a putative HP1 motif in its N-terminal region.

      Specifically, we have found that DNMT3B can pull down HP1a and H3K9me3 from cell extracts and that this interaction is abrogated when we remove the N-terminal region of DNMT3B (revision plan, figure 1a). Using purified proteins in vitro, we have shown binding of DNMT3B to HP1a that is dependent on the presence of DNMT3B’s N-terminus suggesting that the interaction with HP1a is direct and that this mediates DNMT3B’s recruitment to H3K9me3 (revision plan, figure 1b). Alphafold multimer modelling identified that DNMT3B's N-terminus binds the interface of a HP1 dimeric chromoshadow domain through a putative HP1 motif. Two point mutations in this motif ablate DNMT3B’s interaction with HP1a in vitro (revision plan, figure 1b - DNMT3B L166S I168N).

      We propose to further characterize DNMT3B’s interaction with HP1a in vitro and determine the significance of these observations in cells by microscopy in a revised manuscript. Together with the other proposed experiments and analyses, we believe the extra detail regarding the molecular mechanisms through which DNMT3B is recruited to H3K9me3 heterochromatin will help address the reviewer’s comments.

      Point by point response:

      We have reproduced the reviewer’s comments in their entirety and highlighted them in blue italics.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)): Summary:

      This paper by Francesca Taglini, Duncan Sproul, and their coworkers, examines the mechanisms of DNA methylation in a human cancer cell line. They use the human colorectal cancer line HCT116, which has been very widely used to look at epigenetics in cancer, and to dissect the contribution of different proteins and chromatin marks to DNA methylation.

      The authors focus on the role of the de novo methyltransferase DNMT3B. It has been shown in ES cells in 2015 that its PWWP domain directs it to H3K36me3, typically found in gene bodies. More recently, the authors showed similar conclusions in colorectal cancer (Masalmeh Nat Comm 2021). Here they examine, more specifically, the role of the PWWP. The conclusions are described below.

      Major comments:

      • *1-I feel that this paper has several messages that are somewhat muddled. The main message, as expressed in the title and in the model, is that the PWWP domain of DNMT3B actively drags the protein to H3K36me3-marked regions. Inactivation of this domain by a point mutation, or removal of the Nter altogether, causes DNMT3B to relocate to other genomic regions that are H3K9me3-rich, and that see their DNA methylation increase in the mutant conditions. This first message is clear.

      We thank the reviewer for their positive comments on our observations. However, we note that our results suggest that removal of the N-terminal region has a different effect to point mutations in the PWWP domain. The data we present suggest that the N-terminus facilitates recruitment to H3K9me3 regions.

      The second message has to do with ICF. A mutant form of DNMT3B bearing a mutation found in ICF, S270P, is actually unstable and, therefore, does not go to H3K9me3 regions. I feel that here the authors go on a tangent that distracts from message #1. This could be moved to the supp data. At any rate, HCT116 are not a good model for ICF. In addition, a previous paper has looked at the S270P mutant, and it did not seem unstable in their hands (Park J Mol Med 2008, PMID: 18762900). So I really feel the authors do not do themselves a favor with this ICF angle.

      While we agree with the reviewer that HCT116 cells as a cancer cell line are not a good model for ICF1 syndrome, our observation that S270P destabilizes DNMT3B is important to consider in the context of this disease. In addition, the S270P mutant was reported to abrogate the interaction between DNMT3B and H3K36me3 (Baubec et al 2015 Nature PMID: 25607372) making it important to compare it to the other mutations we examine. In our revised version of the manuscript, we propose to move these data to the supplementary materials and add a statement to the discussion noting the caveat that HCT116 cells are likely not to model many aspects of ICF1.

      With regard to the differences between our results and that of Park et al, we note that stability of the S270P mutant was not assessed in that study whereas we directly assess stability in vitro and in cells. We propose to add discussion of this previous study to the revised manuscript.

      2-I feel that some major confounders exist that endanger the conclusions of the work. The most worrisome one, in my opinion, is the amount of WT or mutant DNMT3B in the cells. It is clear in figure 4C that the WT rescue construct is expressed much more than the W263A mutant (around 3 or 4 times more). Unless I am mistaken, we are never shown how the level of exogenous rescue protein compares to the level of DNMT3B in WT cells. This bothers me a lot. If the level is too low, we may have partial rescue. If it is too high, we might have artifactual effects of all that DNMT3B. I would also like to see the absolute DNA methylation values (determined by WGBS) compared to the value found in WT. From figure S1A, it looks like WT is aroun 80% methylation, and 3BKO is around 77% or so. I wonder if the rescue lines may actually have more methylation than WT?

      The rescue cell lines do express DNMT3B to a greater level than observed endogenously. In our manuscript we controlled for this effect by generating the knock-in W263A cells and, as reported in the manuscript, we observe similar effects to the rescue cells (manuscript, figure 2d) suggesting that our observations are not driven by the overexpression.

      We also expressed ectopic DNMT3B from a weaker promoter (EF1a) in DNMT3B KO cells but did not include these data in the submitted manuscript. We have previously shown that this promoter expresses DNMT3B at lower levels than the CAG promoter used in the submitted manuscript (Masalmeh et al 2021 Nature Communications PMID: 33514701). Bisulfite PCR of representative non-repetitive loci within heterochromatic H3K9me3 domains show that we observe similar gains of methylation with DNMT3BW263A (revision plan, figure 2).

      Revision plan figure 2. Expression of DNMT3BW236A from a weaker promoter leads to increased DNA methylation at selected H3K9me3 loci. Barplot of mean methylation by BS-PCR at H3K9me3 loci alongside the H3K4me3-marked BRCA2 promoter in DNMT3B mutant cells were DNMT3B is expressed from the EF1 promoter. P-values are from two-sided Wilcoxon rank sum tests.

      To reinforce that our conclusions are not solely a result of the level of DNMT3B expression, we propose to include these data in the revised manuscript.

      The reviewer is also correct that by WGBS, the rescue cell lines have higher levels of overall DNA methylation than HCT116 cells. We will note this in revised manuscript and include HCT116 cells in a revised version of Figure S1e.

      3-I guess the unarticulated assumption is that the gain of DNA methylation seen at H3K9me3 region upon expression of a mutant DNMT3B is due to DNMT3B itself. But we do not know this for sure, unless the authors test a double mutant (PWWP inactive, no catalytic activity). I am not necessarily asking that they do it, but minimally they should mention this caveat.

      The hypothesis that the gains in DNA methylation at H3K9me3 loci result from the direct catalytic activity of DNMT3B is supported by our observation that a catalytic dead DNMT3B does not remethylate heterochromatin (manuscript, figures 1d and e). However, we acknowledge that we have not formally shown that the additional DNA methylation seen with DNMT3BW263A are a direct result of its catalytic activity. We will conduct an analysis of the effect of catalytically dead DNMT3BW263A on DNA methylation at Satellite II and selected H3K9me3 loci and include this in the revised manuscript.

      4-I am confused as to why the authors look at different genomic regions in different figures. In figure 1 we are looking at a portion of the "left" arm of chr 16. But in figure 2B, we now look at a portion of the "right" arm of the same chromosome, which has a large 8-Mb block of H3K9me3, and is surprisingly lowly methylated in the 3BKO. This seems quite odd, and I wonder if there is a possible artifact, for instance mapping bias, deletion, or amplification in HCT116. Showing the coverage along with the methylation values would eliminate some of these concerns.

      By choosing different regions of the genome for different figures, we intended to reassure the reader that our results were not specific to any one region of the genome. In the revised manuscript, we propose to display a consistent genomic region between these figures.

      With regard to the low levels of DNA methylation in H3K9me3 domains in DNMT3B KO cells, H3K9me3 domains are partially methylated domains which have reduced methylation in HCT116 cells (see page 5 of the manuscript):

      … we found that hidden Markov model defined H3K9me3 domains significantly overlapped with extended domains of overall reduced methylation termed partially methylated domains (PMDs) defined in our HCT116 WGBS (Jaccard=0.575,p=1.07x10-6, Fisher’s test).

      These domains lose further DNA methylation in DNMT3B KO cells leading to the low methylation level noted by the reviewer. The methylation percentages calculated from WGBS are based on the ratio of methylated to total reads. Thus, a lack of coverage generates errors from division by zero rather than the low values observed in this domain in DNMT3B KO cells.

      We include a modified version of figure 2b from the manuscript below. This includes coverage for the 3 cell lines (revision plan, figure 3). Although WGBS coverage is slightly reduced in H3K9me3 domains, reads are still present and overall coverage equal between different cell lines.

      While we could potentially include the coverage tracks in revised versions of figures, we note that doing so for multiple cell lines would make these figures extensively cluttered and it would likely be difficult to observe the differences in DNA methylation in these figure panels due to shrinkage of the other tracks.

      Minor comments:

      1-The WGBS coverage is not very high, around 2.5X on average, occasionally 2X. I don't believe this affects the findings, as the authors look at large H3K9me3 regions. But the info in table S2 was hard to find and it is important. I would make it more accessible.

      In the revised manuscript we will specify the mean coverage in the text to ensure this is clearer.

      2-It would be nice to have a drawing showing exactly what part of the Nter was removed.

      We will add this in the figure in the revised manuscript.

      3-some figures could be clearer. I was not always sure when we were looking at a CRISPR mutant clone (W263A) versus a piggyBac rescue.

      In the revised manuscript we will clarify in the figure labels to ensure it is clear which data were generated using CRISPR clones.

      4-unless I am mistaken, all the ChIP-seq data (H3K9me3, H3K36me3 etc) come from WT cells. It is not 100% certain that they remain the same in the 3BKO, is it? This should be discussed.

      We performed ChIP-seq on both HCT116 and 3BKO cell lines and used ChIP-seq data from the 3BKO cell line for the rescue experiments where DNMT3Bs were expressed in 3BKO cells. We will ensure this is clearer in the revised version.

      Reviewer #1 (Significance (Required)):

      Strengths:

      The experiments are for the most part well done and well interpreted (save for the limitations mentioned above). The techniques are appropriate and well mastered by the team. The paper is well written, the figures are nice. The authors know the field well, which translates into a good intro and a good discussion. The bioinformatics are convincing.

      Limitations:

      All the work is done in a single cancer cell line. One might assume the conclusions will hold in other systems, but there is no certainty at this point.

      We acknowledge this limitation. To demonstrate that our results are applicable beyond HCT116 cells, we will include analysis of experiments on an independent cell line in the revised manuscript.

      HCT116 are not the best model system to study ICF, which mostly affects lymphocytes

      At present, I feel that the biological relevance of the findings is fairly unclear. The authors report what happens when DNMT3B has no functional PWWP domain. I am convinced by their conclusions, but what do they tell us, biologically? Are there, for instance, mutant forms of DNMT3B expressed in disease that have a mutant PWWP? Are there isoforms expressed during development or in certain cell types that do not have a PWWP? In these cell types, does the distribution of DNA methylation agree with what the authors predict?

      As stated in response to point 1, although we acknowledge the limitations of HCT116 cells as a model of ICF, we believe are finding that the S270P mutation results in unstable DNMT3B are still important to consider for ICF syndrome.

      We are not aware of reports of mutations affecting the residues of DNMT3B’s PWWP domain we have studied. Our preliminary analysis suggests that although mutations in DNMT3B’s PWWP domain are frequent, residues in the aromatic cage such as W263 and D266 are absent from the gnomAD catalogue (Karczewski et al 2020 Nature, PMID: 32461654). This suggests that they are incompatible with healthy human development.

      A number of different DNMT3B splice isoforms have been reported. These include DDNMT3B4 which lacks the PWWP domain and a portion of the N-terminal region (Wang et al 2006 International Journal of Oncology, PMID: 16773201). DDNMT3B4 is proposed to be expressed in non-small cell lung cancer (Wang et al 2006 Cancer Research, PMID: 16951144).

      We will include analysis of gnomAD and discussion of these points in the revised manuscript.

      In its present state, I feel the appeal of the findings is towards a semi-specialized audience, that is interested in aberrant DNA methylation in cancer and other diseases. This is not a small audience, by the way.

      We thank the reviewer for their comments and the suggestion that our findings are of interest to a cross-section of researchers.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Note, we have added numbers to the comments made by reviewer 2 to aid cross-referencing.

      In this manuscript, Taglini et al., describe an increased activity of DNMT3B at H3K9me3-marked regions in HCT cells. They first identify that DNA methylation at K9me3-marked regions is strongly reduced in absence of DNMT3B. Next, the authors re-express DNMT3B and DNMT3B mutant variants in the DNMT3B-KO HCT cells and assess DNA methylation by WGBS where they identify a strong preference for re-methylation of K9me3 sites. Based on genome-wide binding maps for DNMT3B, including the mutant variants, they address how the localization of DNMT3B relates to the observed changes in methylation.

      Major points:

      • The authors show increased reduction of mCG at H3K9me3 (and K27me3) sites in absence of DNMT3B. This is based on correlating delta %mCG with histone modifications in 2kb bins. I find this approach to not fully support the major claim. First, the correlation coefficients are very small -0.124 for K9me3 and -0.175 for K27me3, and just marginally better compared to, for example, K36me3 that does not seem to have any influence on mCG according to Sup Fig S1b. While I agree that mCG seems more reduced at K9me3 in absence of DNMT3B (e.g. in Fig 1a), is there a better way to visualize the global effect? The delta mCG Boxplots based on bins are not ideal (this applies to many figures using the same approach in the current manuscript).*

      Our choice to examine the global effects using correlations in windows across the genome was motivated by similar previous analyses in other studies (for example: Baubec et al. 2015 Nature PMID 25607372, Weinberg at al 2021 Nature PMID:33986537, Neri et al 2017 Nature PMID: 28225755). These global analyses result in modest correlation coefficients because the vast majority of genomic windows are negative for a given mark. For this reason, we included specific analyses of H3K36me3, H3K9me3 and H3K27me3 domains in the manuscript (eg manuscript figure 1b, c and d) which reinforce the conclusions drawn from our global analyses.

      However, we acknowledge that while our data support a specific activity at H3K9me3 marked heterochromatin, these are not the only changes in DNMT3B KO cells as DNMTs are promiscuous enzymes that are localized to multiple genomic regions. We will add discussion of this point to the revised manuscript.

      2. Second, the calculation based on delta mCpG does not allow to see how much methylation was initially there. For example, S1b shows a median decrease of ~ 10% in K9me3 and ~7-8% in H3K4me3. What does this mean given that the starting methylation for both marks is completely different?

      Following this point, the authors mention that mCG is already low at K9me3 domains in HCT cells (compared to other sites in the genome). I am curious if this may influence the accelerated loss of methylation in absence of DNMT3B? Any comments on this?

      The observation that there is a greater loss at H3K9me3 domains than H3K27me3-only domains which also have low DNA methylation levels in HCT116 argue that the losses are not solely driven by the lower initial level of methylation in H3K9me3 domains. Our analyses later in the manuscript also support a specific activity at H3K9me3. In addition, we propose to reinforce this point through further data on exploring how DNMT3B interacts with HP1a (see general comments, revision plan figure 1).

      However, we acknowledge the possibility that part of the loss seen at H3K9me3 domains in DNMT3B KO cells could be in part a result of their low initial level of methylation. In the revised manuscript we propose to include discussion of this possibility.

      3. One issue is the lack of correlation in DNMT3B binding to H3K9me3 sites in WT cells (Fig 3). How does this explain the requirement for DNMT3B for maintenance of methylation at H3K9me3? While some of the tested mutants show some weak increase at K9me3 sites, these are not comparable to the strong binding preferences observed at K36me3 for the wt or delta N- term version.

      Using ChIP-seq we cannot say that DNMT3BWT does not bind at H3K9me3, only that it binds here to a lower level than at K36me3-marked loci. The normalized DNMT3BWT signal at H3K9me3 domains is higher than the background signal from DNMT3B KO cells (manuscript figure 3d) supporting the hypothesis that DNMT3BWT localizes to H3K9me3. This hypothesis is also supported by the observation that the correlation between DNMT3BDN and H3K9me3 is reduced compared to that of DNMT3BWT (manuscript figure 6c compared to figure 3c).

      There are several reasons why the apparent enrichment of DNMT3B at H3K9me3 may appear weaker than at H3K36me3 by ChIP-seq. Previous work has also suggested that formaldehyde crosslinking fails to capture transient interactions in cells (Schmiedeberg et al. 2009 PLoS One PMID: 19247482). H3K9me3-marked heterochromatin is also resistant to sonication (Becker et al. 2017 Molecular Cell PMID: 29272703) and this could further affect our ability to detect DNMT3B in these regions using ChIP-seq. Our new data also suggest that DNMT3B binds to H3K9me3 indirectly through HP1a (see general comments, revision plan figure 1) and this may also lead to weaker ChIP-seq enrichment at H3K9me3 compared to the direct interaction with H3K36me3 through DNMT3B’s PWWP domain.

      We propose to add discussion of these issues to the revised manuscript.

      4. Following the above comment, what about other methyltransferases in HCT cells? Could DNMT1 or DNMT3A function be altered in absence of DNMT3B, and the observed methylation changes could be indirectly influenced by DNMT3B? The authors could create a DNMT-TKO HCT cell line and re-introduce DNMT3B in this background and measure methylation to exclude that DNMT1 or DNT3A could have an influence. In this case, only H3K9me3 should gain DNA methylation.

      As discussed in response to reviewer 1 (point 3), we propose to examine the changes in DNA methylation upon expression of catalytically dead DNMT3BW263A to further strengthen the evidence that DNMT3BW263A is directly responsible for the increased DNA methylation at H3K9me3-marked loci.

      5. DNMT3B lacking N-terminal shows reduced K9me3 methylation & some localization by imaging. While the presented experiments show some support for this conclusion, I suggest to re-introduce a W263A mutant lacking the N-terminal part and measure changes in DNA methylation at H3K9. This should help to test the requirement for the N-terminal regions and further indicate which protein part (PWWP or N-term) is more important in regulating the balance between K9me3 and K36me3.

      We have performed this experiment and the data are shown in manuscript figure S6c and d. The results of these experiments show that DNMT3BΔN+W263A cells showed less methylation at H3K9me3 loci than DNMT3BW263A cells, supporting a role for the N-terminus in recruiting DNMT3B to H3K9me3-marked heterochromatin. In the revised version, we will ensure that these data are more clearly indicated.

      In the first paragraph of the discussion, the authors state: "Our results demonstrate that DNMT3B is recruited to and methylates heterochromatin in a PWWP- independent manner that is facilitated by its N-terminal region." Same statement is found in the abstract. This contradicts the ChIP-seq results that do not indicate a recruitment of DNMT3B to heterochromatin, and the N- terminal deletions are not fully supporting a role in this targeting since there is no localization to K9me3 to begin with. While changes in methylation are observed, it remains to be determined if this is indeed through direct DNMT3B delocalization or indirectly through influencing the remaining DNMTs.

      As discussed above, there are several potential reasons why DNMT3B ChIP-seq signal at H3K9me3 is weak (reviewer 2, point 3). The additional experiments we propose to include in the revised manuscript could reinforce this statement by clarifying whether DNMT3B is directly responsible for methylating H3K9me3-marked regions (reviewer 1, point 3) and by delineating the role of the putative HP1a motif in DNMT3B’s N-terminal region (general comments, revision plan figure 1).

      Reviewer #2 (Significance (Required)):

      Advance: detailed analysis of DNMT3B mutants in relation to K9me3. Builds up on previous studies. Audience: specialised audience

      We thank the reviewer for their insights.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      • *In this work, Taglini et al. examine how the de novo DNA methyltransferase DNMT3B localizes to constitutive heterochromatin marked by the repressive histone modification H3K9me3. The authors utilize a previously generated DNMT3B KO colorectal carcinoma cell line, HCT116 to study recruitment and activity of DNMT3B at constitutive H3K9me3 heterochromatin. The authors noted preferential decrease of DNA methylation (DNAme) at regions of the genome marked with H3K9me3 in DNMT3B KOs. The authors then rescued the deficiency through overexpression of WT and catalytic dead DNMT3A/B and confirmed that DNA methylation increase at H3K9me3+ region in the WT DNMT3B, but not catalytically inactive mutant nor DNMT3A. To examine which protein domains may be mediating DNMT3B's recruitment to H3K9me3 regions, the authors designed a series of mutants, primarily focusing on the PWWP domain which normally recognizes H3K36me3. In the PWWP mutants, DNMT3B binding to the genome is altered, showing depletion at some H3K36me3-marked regions and gain at H3K9me3 heterochromatin, which coincides with DNAme increase at satellites. In contrast, the clinically relevant ICF1 mutation S270P, shows DNMT3B protein destabilization and no such loss of DNAme at heterochromatin. Finally, the authors truncate the N-terminal portion of DNMT3B, and saw that this region of the protein is necessary for heterochromatin localization and subsequent DNAme of H3K9me3+ regions.

      The experiments are well done with extensive controls, and the results are interesting and convincing. The structure of the manuscript could be improved for clarity and flow - for example, the PWWP mutations and truncations should be mentioned and compared together. I also found the section on ICF1 mutant to be out-of-place.

      As described above (reviewer 1, point 1), we propose to move these data to the supplementary materials in the revised manuscript.

      • *

      More emphasis should be placed on the N- terminal mutant as this region seems to be critical to heterochromatin recruitment, and this may address whether the interaction to H3K9me3 is direct or indirect.

      As described above (general comments), the revised manuscript will include experiments clarifying the nature of DNMT3B’s interaction with H3K9me3. Our preliminary data support that it is an indirect interaction mediated through HP1a (revision plan figure 1).

      Finally, while the epigenetic crosstalk is well-examined in this work, I would strongly urge the authors to add RNA-seq data to determine the transcriptional consequence of such chromatin disruptions (e.g. are repetitive sequences up-regulated in DNMT3B KOs?).

      As suggested by the reviewer, we propose to generate and analyse RNA-seq data in the revised manuscript to understand the impact of DNMT3B on transcriptional programs.

      Comments

      1. A potential caveat to the study is the use of a single cell line - colorectal cancer cell HCT116 - to draw major conclusions on the function of DNMT3B. It is worth noting the Baubec et al. study examining DNMT3B recruitment to H3K36me3 was mainly performed in murine embryonic stem cells (mESCs). It would greatly strengthen the study if the authors could perform similar type of data analysis on an independent DNMT3B KO cell line. For example, does DNMT3B localize to H3K9me3 regions in WT mESCs?

      As described above in response to reviewer 1, we will include analysis in an additional cell line in the revised manuscript to demonstrate that our results are generalizable beyond HCT116 cells.

      2. Did the PWWP mutant W263A show the expected loss of DNAme at H3K36me3-marked regions? In other words, was there evidence of DNAme redistribution in loss at H3K36me3+ regions and inappropriate gain at H3K9me3+ regions? Please perform intersection analysis of DMRs with other epigenomic marks (e.g. H3K27me3, H3K36me3, CpG shores) in the PWWP mutants.

      Our analysis of DNMT3B KO cells (manuscript figure s1d) show that losses of DNA methylation in these cells are not correlated with H3K36me3 in gene bodies suggesting that DNMT3A and DNMT1 are sufficient to compensate in maintaining their methylation in DNMT3B KO cells. To clarify this point for the DNMT3BW263A knock in clones, in the revised manuscript we will directly examine whether these cells show loss of methylation at H3K36me3 marked gene bodies in a similar analysis and add discussion of these results.

      The study would also be strengthen greatly with the in addition of biochemical studies to confirm direct loss of binding, and possibly gain of H3K9me3 binding, in the DNMT3B PWWP mutants.

      As detailed above (general comments, revision plan figure 1), our data suggest that DNMT3B interacts indirectly with H3K9me3 through an HP1 motif in its N-terminal region. We will undertake further biochemical studies on this interaction which will be included in the revised manuscript. Specifically we will focus on using EMSAs with synthetic nucleosomes to clarify the degree to which the HP1a interaction is responsible for binding of DNMT3B to H3K9me3 modified nucleosomes.

      We also propose to undertake in vitro biochemical characterization of the effect of DNMT3B PWWP mutations on interaction with H3K36me3 using synthetic nucleosomes. However, we note that in the manuscript we have shown similar effects using two independent point mutations that are predicted to affect H3K36me3 binding (W263A and D266A) and deletion of the entire PWWP domain.

      3. Examining the tracks in Figure 3A,B, the PWWP mutants showed almost indiscriminate increase across the genome, and not specifically to H3K9me3-marked regions. Would ask the authors to speculate as to why the ChIP-seq of DNMT3B mutants do not recapitulate the heterochromatin co-localization shown by immunofluorescence.

      As discussed in response to reviewer 2 (point 3) we believe that the weak DNMT3B ChIP-seq signal at H3K9me3 loci is likely due to the nature of the interaction that DNMT3B has with chromatin in these regions. We will add discussion of these points to the revised manuscript.

      4. It's a shame that the ICF1 mutation S270P was not characterized to the same extent as the PWWP mutants. Would consider adding WGBS for this clinically relevant mutation.

      We have shown that this mutant does not produce stable protein in vitro or in our cells and we observe little difference in DNA methylation at selected loci. As WGBS is expensive, we believe that carrying out this experiment is not an efficient use of limited research resources.

      5. Figure 7 - please draw in the ICF1 and the N-terminal mutations in the model figure. Also provide legends.

      We will modify the manuscript to include these details in the revised manuscript.

      Reviewer #3 (Significance (Required)):

      This is an intersting study on a timely subject. It will be of interest to multiple fields from epigenetics to development and cancer. My expertise is in cancer, epigenetics, development.

      We thank the reviewer for highlighting the broad interest of our study.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this work, Taglini et al. examine how the de novo DNA methyltransferase DNMT3B localizes to constitutive heterochromatin marked by the repressive histone modification H3K9me3. The authors utilize a previously generated DNMT3B KO colorectal carcinoma cell line, HCT116 to study recruitment and activity of DNMT3B at constitutive H3K9me3 heterochromatin. The authors noted preferential decrease of DNA methylation (DNAme) at regions of the genome marked with H3K9me3 in DNMT3B KOs. The authors then rescued the deficiency through overexpression of WT and catalytic dead DNMT3A/B and confirmed that DNA methylation increase at H3K9me3+ region in the WT DNMT3B, but not catalytically inactive mutant nor DNMT3A. To examine which protein domains may be mediating DNMT3B's recruitment to H3K9me3 regions, the authors designed a series of mutants, primarily focusing on the PWWP domain which normally recognizes H3K36me3. In the PWWP mutants, DNMT3B binding to the genome is altered, showing depletion at some H3K36me3-marked regions and gain at H3K9me3 heterochromatin, which coincides with DNAme increase at satellites. In contrast, the clinically relevant ICF1 mutation S270P, shows DNMT3B protein destabilization and no such loss of DNAme at heterochromatin. Finally, the authors truncate the N-terminal portion of DNMT3B, and saw that this region of the protein is necessary for heterochromatin localization and subsequent DNAme of H3K9me3+ regions.

      The experiments are well done with extensive controls, and the results are interesting and convincing. The structure of the manuscript could be improved for clarity and flow - for example, the PWWP mutations and truncations should be mentioned and compared together. I also found the section on ICF1 mutant to be out-of-place. More emphasis should be placed on the N-terminal mutant as this region seems to be critical to heterochromatin recruitment, and this may address whether the interaction to H3K9me3 is direct or indirect. Finally, while the epigenetic crosstalk is well-examined in this work, I would strongly urge the authors to add RNA-seq data to determine the transcriptional consequence of such chromatin disruptions (e.g. are repetitive sequences up-regulated in DNMT3B KOs?).

      Comments

      1. A potential caveat to the study is the use of a single cell line - colorectal cancer cell HCT116 - to draw major conclusions on the function of DNMT3B. It is worth noting the Baubec et al. study examining DNMT3B recruitment to H3K36me3 was mainly performed in murine embryonic stem cells (mESCs). It would greatly strengthen the study if the authors could perform similar type of data analysis on an independent DNMT3B KO cell line. For example, does DNMT3B localize to H3K9me3 regions in WT mESCs?
      2. Did the PWWP mutant W263A show the expected loss of DNAme at H3K36me3-marked regions? In other words, was there evidence of DNAme redistribution in loss at H3K36me3+ regions and inappropriate gain at H3K9me3+ regions? Please perform intersection analysis of DMRs with other epigenomic marks (e.g. H3K27me3, H3K36me3, CpG shores) in the PWWP mutants. The study would also be strengthen greatly with the in addition of biochemical studies to confirm direct loss of binding, and possibly gain of H3K9me3 binding, in the DNMT3B PWWP mutants.
      3. Examining the tracks in Figure 3A,B, the PWWP mutants showed almost indiscriminate increase across the genome, and not specifically to H3K9me3-marked regions. Would ask the authors to speculate as to why the ChIP-seq of DNMT3B mutants do not recapitulate the heterochromatin co-localization shown by immunofluorescence.
      4. It's a shame that the ICF1 mutation S270P was not characterized to the same extent as the PWWP mutants. Would consider adding WGBS for this clinically relevant mutation.
      5. Figure 7 - please draw in the ICF1 and the N-terminal mutations in the model figure. Also provide legends.

      Significance

      This is an intersting study on a timely subject. It will be of interest to multiple fields from epigenetics to development and cancer.

      My expertise is in cancer, epigenetics, development.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this manuscript, Taglini et al., describe an increased activity of DNMT3B at H3K9me3-marked regions in HCT cells. They first identify that DNA methylation at K9me3-marked regions is strongly reduced in absence of DNMT3B. Next, the authors re-express DNMT3B and DNMT3B mutant variants in the DNMT3B-KO HCT cells and assess DNA methylation by WGBS where they identify a strong preference for re-methylation of K9me3 sites. Based on genome-wide binding maps for DNMT3B, including the mutant variants, they address how the localization of DNMT3B relates to the observed changes in methylation.

      Major points:

      The authors show increased reduction of mCG at H3K9me3 (and K27me3) sites in absence of DNMT3B. This is based on correlating delta %mCG with histone modifications in 2kb bins. I find this approach to not fully support the major claim.

      First, the correlation coefficients are very small -0.124 for K9me3 and -0.175 for K27me3, and just marginally better compared to, for example, K36me3 that does not seem to have any influence on mCG according to Sup Fig S1b. While I agree that mCG seems more reduced at K9me3 in absence of DNMT3B (e.g. in Fig 1a), is there a better way to visualize the global effect? The delta mCG Boxplots based on bins are not ideal (this applies to many figures using the same approach in the current manuscript).

      Second, the calculation based on delta mCpG does not allow to see how much methylation was initially there. For example, S1b shows a median decrease of ~ 10% in K9me3 and ~7-8% in H3K4me3. What does this mean given that the starting methylation for both marks is completely different?

      Following this point, the authors mention that mCG is already low at K9me3 domains in HCT cells (compared to other sites in the genome). I am curious if this may influence the accelerated loss of methylation in absence of DNMT3B? Any comments on this?

      One issue is the lack of correlation in DNMT3B binding to H3K9me3 sites in WT cells (Fig 3). How does this explain the requirement for DNMT3B for maintenance of methylation at H3K9me3? While some of the tested mutants show some weak increase at K9me3 sites, these are not comparable to the strong binding preferences observed at K36me3 for the wt or delta N-term version.

      Following the above comment, what about other methyltransferases in HCT cells? Could DNMT1 or DNMT3A function be altered in absence of DNMT3B, and the observed methylation changes could be indirectly influenced by DNMT3B? The authors could create a DNMT-TKO HCT cell line and re-introduce DNMT3B in this background and measure methylation to exclude that DNMT1 or DNT3A could have an influence. In this case, only H3K9me3 should gain DNA methylation.

      DNMT3B lacking N-terminal shows reduced K9me3 methylation & some localization by imaging. While the presented experiments show some support for this conclusion, I suggest to re-introduce a W263A mutant lacking the N-terminal part and measure changes in DNA methylation at H3K9. This should help to test the requirement for the N-terminal regions and further indicate which protein part (PWWP or N-term) is more important in regulating the balance between K9me3 and K36me3.

      In the first paragraph of the discussion, the authors state: "Our results demonstrate that DNMT3B is recruited to and methylates heterochromatin in a PWWP- independent manner that is facilitated by its N-terminal region." Same statement is found in the abstract. This contradicts the ChIP-seq results that do not indicate a recruitment of DNMT3B to heterochromatin, and the N-terminal deletions are not fully supporting a role in this targeting since there is no localization to K9me3 to begin with. While changes in methylation are observed, it remains to be determined if this is indeed through direct DNMT3B delocalization or indirectly through influencing the remaining DNMTs.

      Significance

      Advance: detailed analysis of DNMT3B mutants in relation to K9me3. Builds up on previous studies.

      Audience: specialised audience

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      This paper by Francesca Taglini, Duncan Sproul, and their coworkers, examines the mechanisms of DNA methylation in a human cancer cell line. They use the human colorectal cancer line HCT116, which has been very widely used to look at epigenetics in cancer, and to dissect the contribution of different proteins and chromatin marks to DNA methylation.

      The authors focus on the role of the de novo methyltransferase DNMT3B. It has been shown in ES cells in 2015 that its PWWP domain directs it to H3K36me3, typically found in gene bodies. More recently, the authors showed similar conclusions in colorectal cancer (Masalmeh Nat Comm 2021). Here they examine, more specifically, the role of the PWWP. The conclusions are described below.

      Major comments:

      1. I feel that this paper has several messages that are somewhat muddled. The main message, as expressed in the title and in the model, is that the PWWP domain of DNMT3B actively drags the protein to H3K36me3-marked regions. Inactivation of this domain by a point mutation, or removal of the Nter altogether, causes DNMT3B to relocate to other genomic regions that are H3K9me3-rich, and that see their DNA methylation increase in the mutant conditions. This first message is clear.

      The second message has to do with ICF. A mutant form of DNMT3B bearing a mutation found in ICF, S270P, is actually unstable and, therefore, does not go to H3K9me3 regions. I feel that here the authors go on a tangent that distracts from message #1. This could be moved to the supp data. At any rate, HCT116 are not a good model for ICF. In addition, a previous paper has looked at the S270P mutant, and it did not seem unstable in their hands (Park J Mol Med 2008, PMID: 18762900). So I really feel the authors do not do themselves a favor with this ICF angle. 2. I feel that some major confounders exist that endanger the conclusions of the work. The most worrisome one, in my opinion, is the amount of WT or mutant DNMT3B in the cells. It is clear in figure 4C that the WT rescue construct is expressed much more than the W263A mutant (around 3 or 4 times more). Unless I am mistaken, we are never shown how the level of exogenous rescue protein compares to the level of DNMT3B in WT cells. This bothers me a lot. If the level is too low, we may have partial rescue. If it is too high, we might have artifactual effects of all that DNMT3B. I would also like to see the absolute DNA methylation values (determined by WGBS) compared to the value found in WT. From figure S1A, it looks like WT is aroun 80% methylation, and 3BKO is around 77% or so. I wonder if the rescue lines may actually have more methylation than WT? 3. I guess the unarticulated assumption is that the gain of DNA methylation seen at H3K9me3 region upon expression of a mutant DNMT3B is due to DNMT3B itself. But we do not know this for sure, unless the authors test a double mutant (PWWP inactive, no catalytic activity). I am not necessarily asking that they do it, but minimally they should mention this caveat.<br /> 4. I am confused as to why the authors look at different genomic regions in different figures. In figure 1 we are looking at a portion of the "left" arm of chr 16. But in figure 2B, we now look at a portion of the "right" arm of the same chromosome, which has a large 8-Mb block of H3K9me3, and is surprisingly lowly methylated in the 3BKO. This seems quite odd, and I wonder if there is a possible artifact, for instance mapping bias, deletion, or amplification in HCT116. Showing the coverage along with the methylation values would eliminate some of these concerns.

      Minor comments:

      1. The WGBS coverage is not very high, around 2.5X on average, occasionally 2X. I don't believe this affects the findings, as the authors look at large H3K9me3 regions. But the info in table S2 was hard to find and it is important. I would make it more accessible.
      2. It would be nice to have a drawing showing exactly what part of the Nter was removed.
      3. some figures could be clearer. I was not always sure when we were looking at a CRISPR mutant clone (W263A) versus a piggyBac rescue.
      4. unless I am mistaken, all the ChIP-seq data (H3K9me3, H3K36me3 etc) come from WT cells. It is not 100% certain that they remain the same in the 3BKO, is it? This should be discussed.

      Significance

      Strengths:

      The experiments are for the most part well done and well interpreted (save for the limitations mentioned above). The techniques are appropriate and well mastered by the team. The paper is well written, the figures are nice. The authors know the field well, which translates into a good intro and a good discussion. The bioinformatics are convincing.

      Limitations:

      All the work is done in a single cancer cell line. One might assume the conclusions will hold in other systems, but there is no certainty at this point.

      HCT116 are not the best model system to study ICF, which mostly affects lymphocytes

      At present, I feel that the biological relevance of the findings is fairly unclear. The authors report what happens when DNMT3B has no functional PWWP domain. I am convinced by their conclusions, but what do they tell us, biologically? Are there, for instance, mutant forms of DNMT3B expressed in disease that have a mutant PWWP? Are there isoforms expressed during development or in certain cell types that do not have a PWWP? In these cell types, does the distribution of DNA methylation agree with what the authors predict?

      In its present state, I feel the appeal of the findings is towards a semi-specialized audience, that is interested in aberrant DNA methylation in cancer and other diseases. This is not a small audience, by the way.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We thank all the reviewers for their time and effort in the peer-review process. We appreciate the positive reflections on the study and the feedback comments which were well thought-out and articulated. Considering these comments has led us to deeper reflections on the conceptualization of the mechanisms at play, and we hope that our responses here and revisions of the manuscript have improved the presentation of the data and our interpretation of these complex matters. As a result, we have now incorporated a new supplementary figure 5 and present a new model figure with the corresponding comments in the text.

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript Sanchez-Martinez et al investigated the function of ntc, a Drosophila homologue of FBXO7. The mechanisms by which mutations in this protein cause autosomal recessive PD are poorly understood. The protein has previously been implicated in PINK1/Parkin mitophagy however the mechanistic detail is lacking. The data presented here provide an important insight into the molecular functions of ntc as well as mitophagy in vivo in general. Ntc was found to promote ubiquitination of mitochondrial proteins which is counteracted by USP30. The basal ubiquitination regulated by these two enzymes is proposed to act as a permissive factor for the initiation of Pink1/Parkin mitophagy. The conclusions are based on strong data in vivo and there is a lot to like about this paper. The analyses are done rigorously, conclusions are balanced and well supported and there is a lot of conceptual novelty in the dataset. At the same time the paper raises some questions with regard to the role of mitophagy, at least in Drosophila. Not all of these could be answered during revisions but it would be useful to address the points outlined below.

      1. The functional measurements such as climbing, flight and lifespan are used to complement the data on mitophagy and mitochondrial health. However, it is clear that these do not correlate. Ntc KOs and Pink1/Parkin flies have reduced climbing and flight ability, however ntc KO does not affect mitochondrial function. In case of Pink1/Parkin the assumption is that impaired fly functionality is due to damaged mitochondria. This is clearly not the case with Ntc. How relevant is climbing/flight/lifespan to the role of Ntc in mitophagy?
      • The reviewer raises a very good point, and we agree that there isn’t a strict, linear connection between the cellular process of mitophagy and the presentation of organismal neuromuscular phenotypes such as motor behaviours and lifespan. Considering this point further, starts to highlight the complexity of the situation at hand: it is becoming clear that there are many different forms of mitophagy, and these perform different functions in cellular remodelling and homeostasis. And, of course, there are many ways to interfere with neuromuscular function (as well as lifespan). So, it follows that some forms of mitophagy may dramatically impact neuromuscular homeostasis when disrupted, while others may not. We and others have described that basal mitophagy is minimally by loss of Pink1/parkin in vivo, so the organismal phenotypes clearly do not relate to this biology. But it is currently unclear how the phenotypes may relate to physiologically relevant stress-induced mitophagy as the precise nature of this, as well as the methods to experimentally manipulate it, are lacking.

      Here, we are initially documenting new phenotypes for ntc, with no bias for the mechanistic cause, all of which are worthy of description to gain a holistic view of the overall contribution of this gene function to organismal integrity. It is clear from the literature that ntc/FBXO7 has multiple functions, for instance, regulating proteasome function and caspase activation, so it follows that genetic loss is likely to impinge on multiple cellular functions causing pleiotropic effects.

      We have always been careful not to consider (or claim) that the organismal phenotypes, such as motor function or lifespan, are specifically due to defective mitophagy but are an overall readout of the health and functioning of the neuromuscular system. Nevertheless, these phenotypes are useful in investigating manipulations that improve or worsen the effect of Pink1/parkin (or ntc) mutants, which, a priori, may or may not also modulate mitophagy. While we have documented these new organismal phenotypes of ntc mutants and analysed the impact on basal and stress- induced mitophagy, we have not drawn a cause-effect link between the two but a correlation at least. Nevertheless, this issue raises some important considerations for the field in terms of the different kinds of mitophagy, and when they may be needed, and the impact on cells, systems or whole-organisms when they are defective. This issue is explored more in answer to Q3 below.

      1. Fig 3 is somewhat patchy, mitophagy is shown for USP30 and ntc KO epistasis but climbing index used in OE setting. These data do not match, and it feels like experiments that are shown are the ones that worked. The relevance of climbing index to mitophagy is unclear as mentioned above. Does KO/OE of ntc and USP30 affect levels of mitochondria, e.g. Marf used as a maker for mitochondria in Fig. 1? And if not why not, considering that ntc/USP30 but not PINK/Parkin control basal mitophagy?
      • The main purpose of the data in Figure 3 was to document the impact of ntc manipulation on basal mitophagy, and by extension to link this to the known mitophagy regulator, USP30, whose loss of function has been documented to promote stress-induced mitophagy. Here, we successfully demonstrated USP30 RNAi and ntc OE cause an increase in mitophagy, and established their genetic relationship. However, it is very important to our modus operandi that we have orthogonal evidence for this relationship and understand the impact at an organismal level. As the reviewer indicates, the obvious choice that would align with the mitophagy data would be to assess whether loss of ntc prevents a USP30 RNAi phenotype. However, in our hands USP30 knockdown using the same RNAi line had no discernible impact on viability or behaviour in adult flies, precluding this experiment. Of note, we did observe a detrimental impact of USP30 knockdown on adult viability using a different RNAi line (KK) but this has 2 known off-targets so this result is unreliable. An alternative approach to genetically test the antagonistic relationship between USP30 and ntc, and equally valid in our view, is to assess whether ntc OE can counteract a USP30 OE phenotype. Here, we were fortunate that USP30 OE does indeed provoke an organismal phenotype, and this was suppressed by ntc OE consistent with the mitophagy data. It is unfortunate that the more obvious option was not workable on this occasion, but we hold that the genetic relationship was nevertheless substantiated as expected, albeit with alternative manipulations. Importantly, we established the validity of this approach by demonstrating the known genetic interaction between USP30 and parkin, whereby USP30 OE locomotor phenotype is suppressed by parkin OE (now, Fig. S3D). To substantiate this approach more clearly, we have now added to the text (lines 200-201) and figure (Fig. S3C) the lack of observable effect by USP30 knockdown as noted above.

      As to the second point, assessing whether levels of mitochondria are changed by ntc/USP30 manipulations; according to the immunoblot presented in new Supplementary Figure 5A (and replicates), the levels of ATP5a are not notably changed by ntc O/E or USP30 RNAi. Marf levels are also unchanged though this is not shown. This is in line with our expectations since, as discussed above, ntc/USP30 are only one set of regulators of one type of mitophagy and several others exist. The reviewer will likely be aware that the levels of mitochondria are tightly regulated and fine-tuned for the specific need in different tissue types, and that substantial changes to mitochondrial content can be catastrophic for cell and tissue viability. While this is relatively straightforward to achieve in cultured cells, substantial reductions in mitochondrial content are non-viable in an in vivo context. Of course, in physiological conditions, rates of degradation are kept in fine-balance with biogenesis and proliferation so non-catastrophic alterations in mitochondrial content are usually counteracted by compensatory changes in proliferation or degradation.

      1. What is the role of mitophagy in the maintenance of mitochondrial function in Drosophila in general? Pink1/Parkin KO assumed to result in dysfunctional mitochondria due to impairment of damage-induced mitophagy which is a minor contributor to mitophagy as has previously been published by the authors and confirmed in this dataset using mitophagy reporter. At the same time ntc is clearly required for mitophagy, but mitochondria remains structurally and functionally intact in ntc KO. The most straightforward interpretation of these data is that Pink1/Parkin contribute little to mitophagy in flies and their effect on mitochondria and fly function is independent of mitophagy. Instead ntc (and USP30) strongly regulate mitophagy but mitophagy is not important for the maintenance of mitochondrial function. The effect of ntc on fly function is also independent of its role in mitophagy/mitochondria. Unless there is an alternative explanation the entire dataset would need to be reinterpreted and discussed differently.
      • We agree that this is an important point raised by the study findings and needs to be clearly articulated in the text, but we don’t think it is as simple as whether ‘mitophagy’ contributes to mitochondrial and organismal integrity. First, as mentioned above, it is becoming apparent that it is crucial for the field to clearly and consciously distinguish between basal and induced forms of mitophagy. Basal mitophagy is likely, though not yet proven, to be an important component of mitochondrial quality control in metazoans and largely act in a house-keeping manner providing continual surveillance of mitochondrial quality and quantity. As such, like many other critical biological processes, it is likely to be supported in a ‘belt-and-braces’ manner by several mechanisms working in parallel with a degree of functional redundancy. In contrast, induced mitophagy is presumed to be quiescent until stimulated into action at specific times for specific purposes. For instance, it is assumed, though not yet proven, that PINK1/Parkin stress-induced mitophagy is stimulated in response to some kind of physiological stress or damage to mitochondria that may be catastrophic if left unchecked.

      We and others have shown before that PINK1/Parkin are minimally involved in basal mitophagy in vivo but they are well-established to promote stress-induced mitophagy. In contrast, we have found that ntc regulates basal mitophagy and, we posit, facilitates PINK1/Parkin mitophagy by providing the initiating ubiquitination. How does this map onto the mitochondrial/organismal phenotypes? There are clear disruptions to energy-intensive, mitochondria-rich tissues inPink1/parkin mutants which are not grossly affected in ntc mutants. On the other hand, ntc mutants show a dramatically short lifespan, much shorter than Pink1/parkin mutants, while other measures of mitochondrial integrity are fine.

      The Pink1/parkin phenotypes are consistent with a catastrophic loss of tissue integrity caused by the lack of a crucial protective measure (induced mitophagy) for a specific circumstance (we think, mitochondrial ‘damage’ arising from a huge metabolic burst). In contrast, while loss of ntc causes a partial (but not complete) loss of basal mitophagy, these same tissues appear to be able to cope with this impact on house-keeping QC but importantly are also able to mount a stress-induced response via Pink1/parkin still being present. On the other hand, it should be remembered that ntc is known to perform other important cellular functions, such as regulating proteasome function and caspase activation, and it is perhaps loss of these functions that causes the dramatic loss of vitality.

      Importantly, although Pink1/parkin do not contribute to basal (steady-state) mitophagy, we think it is not appropriate to think of Pink1/parkin mitophagy as a ‘minor’ contribution. Since, under the particular triggering conditions of damage or stress that stimulate Pink/parkin mitophagy, apparently only Pink1/parkin can perform this role in certain Drosophila tissues, and this stress- induced mitophagy is crucial to tissue integrity, as exemplify by the fact that increasing basal mitophagy via ntc O/E still is not sufficient to rescue Pink1 mutants. In this specific context, this is a major mitophagy pathway.

      In summary, the connection between mitochondrial autophagic degradation and mitochondrial/organismal health is not a simple one and we would avoid conflating different aspects of mitochondrial QC with the expectation that the consequences of their dysfunction would be the same. Nevertheless, these well-considered feedback comments have crystallised the need to elaborate these ideas in the Discussion where we have added a new section (lines 359-387).

      Reviewer #1 (Significance (Required)):

      Very strong genetic data presented; novel functions for human Park15 homologue in Drosophila; mechanistic insight into the ubiquitination of mitochondria by two opposing enzymes. Overall very interesting paper but interpretation is less clear which needs to be addressed.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this ms. Sanchez-Martinez and colleagues study the role of the ub ligase FBXO7, in regulating mitophagy - highlighting that mutations in FBXO7 associate with Parkinson's disease and defects in mitochondrial homeostasis. Using the fly as model, they carry out a series of expts. investigating ntc (Drosophila ortholog of FBX07) demonstrating that it can functionally rescue Parkin but not PINK1 deficiency. Expanding on this, they propose a model whereby ntc/FBX07 regulates basal mitophagy and also acts as a priming Ub-ligase for Parkin mediated mitophagy, finding that the dub USP30 counteracts these ntc function. Overall the data are robust and support the authors' conclusions and model, the manuscript is well written and I think can be accepted as is.

      • We thank the reviewer for their appreciation of the work and the time taken to provide supportive feedback.

      While outside the scope of this study to understand why, I find it very interesting that ntc cannot rescue the PINK1 deficient phenotype, argues that PINK1 may be having additional effects beyond regulating mitochondrial ubiquitylation.

      • We entirely agree with the reviewer, this is a very intriguing finding. Indeed, there are several examples in the literature showing that PINK1 performs additional functions than just triggering mitophagy. But in the current context we interpret these data as further support for a clear mechanistic distinction between basal mitophagy and stress-induced mitophagy as discussed at length to the other reviewers’ comments.

      Reviewer #2 (Significance (Required)):

      Importance for understanding the role of FBX07 function - relevant for Parkinson's disease, also demonstrates a role for it in priming for PINK1/Parkin dependent mitophagy.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Sanchez-Martinez et al characterise the role of nutracker (ntc), the presumed Drosophila orthologue of human FBXO7 (whose gene is mutated in autosomal recessive PD), in mitophagy and phenotypes associated with neurodegeneration in flies (climbing index, dopaminergic neuron loss, rough eye phenotype, and others). FBXO7 (human) has been previously shown to restore parkin (not Pink1) phenotypes and mitochondrial morphology in Drosophila and implicated in Pink1-parkin mitophagy, however the role of ntc in basal mitophagy and its genetic interaction with USP30 has not been previously reported. Key findings include: evidence for functional homology between ntc and FBXO7, and that Ntc/FBXO7 is required for basal mitophagy (and reverses USP30 function) in a Pink1-parkin independent manner.

      FBXO7/ntc is clearly an important regulator of mitophagy and its overexpression can suppress Parkin phenotypes, however FBX07/ntc has not been studied as intensively as Parkin and Pink1, therefore this work represents important insight into mitophagy regulators (broad interest to many overlapping fields).

      However, in addition to minor points and controls requested below, some further characterisation of the signals on the mitochondria induced by ntc/FBXO7 would improve the novelty of the study and the mechanistic insight provided. For example, the authors look at total ubiquitin and pS65- Ub, whereas if they looked at specific substrates that they mention in the discussion (e.g. OMM and translocon proteins) it would allow a less speculative discussion.

      Figure 1: The authors show that overexpression of ntc can rescue Parkin null phenotypes but not Pink1 phenotypes. In very similar experiments, overexpression of FBXO7 (human) has been shown to rescue Parkin phenotypes but not pink1 phenotypes (Burchell), appropriately mentioned by the authors.

      The western blots are not terribly clear and would benefit from quantification (particularly H).

      • We had previously performed the quantification on replicate experiments but had considered that the result was clear enough without quantification, and that including a quantification may make the figure too crowded. However, we have now added the quantification to the figure to support these results.

      Specific ubiquitylated substrates like translocon proteins would be very interesting (alternatively, this could be provided in figure 7).

      • We agree that this would be a very interesting aspect to investigate, but we feel that since the emphasis of the current study is clearly on the regulation of mitophagy, and not on specific substrates as has been published elsewhere (Phu et al., Mol Cell, 2020 (Ref. 42); Ordureau et al., Mol Cell, 2020 (Ref. 39)), investigating the impact of ntc and USP30 on the ubiquitination of the translocon would be a distraction to the focus of the study.

      If the rough eye phenotype is highly homogenous, state in text otherwise, a relative roughness quantification would be more informative.

      • The rough eye phenotype described here is indeed highly stereotyped and homogeneous. We have added this comment to the text for clarity (lines 124-126).

      Figure 2: Although mainly in agreement with Burchell et al findings (that there is no disruption of mito morphology or dopaminergic neuron loss caused by ntc loss), the loss flight ability in the ntc mutant is partially discrepant with Burchell et al (results not shown in Burchell et al). Can the authors explain the discrepancy? It is important finding that the ntc functionally orthogue of FBXO7 and differs from the Burchell et al conclusions.

      • The reviewer raises a good point regarding discrepant interpretations with earlier preliminary work that we didn’t specifically elaborate in the current manuscript. For the Burchell et al study we performed a series of non-exhaustive analyses with reagents that were most readily available at the time. The flight data described in Burchell et al (as ‘data not shown’) were done with what we now know to be a hypomorphic allele, which did not give a strong flight defect that we were expecting to see as a phenocopy of parkin mutants. Moreover, experiments aimed at testing the functional homology sought to rescue the only reported ntc phenotype at that time – male sterility – which did not work. It is worth noting that GAL4/UAS-mediated expression is known to be very inefficient in the male germline, so we originally interpreted the lack of rescue with this caveat in mind. It is also worth adding that, subsequent to the Burchell et al study, we have seen that expression of FBXO7 can rescue the caspase-3 activation in ntc mutant spermatocytes, supporting their functional homology. Importantly, during the Burchell et al study we did not have reagents to test the effects of ntc overexpression, obtained subsequently, which have provided compelling data that support a functional homology between ntc and FBXO7. At the time of writing the current manuscript we did not specifically revisit the Burchell et al text to note this strongly stated conclusion. We realise that this requires unequivocal clarification and thank the reviewer for pointing this out. We have amended the text to clarify this important point (lines 285-293).

      Figure 7: A,B. It is not clear that mitochondria have been enriched - can the authors show on mitochondria or show the fractionation quality?

      • Mitochondrial enrichment is a standard procedure in our lab, with consistently acceptable results, so we apologize for omitting a demonstration of this. We have now added these data to a new supplementary figure S5A. The corresponding information has also been added to the text (line 253). We have also extended this analysis to now show that total ubiquitination is not changed in ntc OE or USP30 RNAi, highlighting the specificity for accumulated ubiquitination on the mitochondria. This has been added to supplementary figure S5Band text lines 253-254.

      C/D. The text that accompanies these figures needs further explanation and clarification and I found this result hard to understand without referring to the discussion. I think the authors are concluding that pS65 is ubiquitylated by FBXO7? I think this should be re-written in the results section. If it is a major point that the authors want to make, a complementary approach would be advised - possibly human cells/mass spectrometry.

      • We apologise that this was confusing and have simplified the text accordingly to improve the clarity (lines 260-262). While this specific analysis is not a major point of the study, it provides a useful additional measure of how ntc/USP30 contributes to mitochondrial ubiquitination which *is* a key focus of the study so we have revised the Discussion to better highlight this point (lines359- 387).

      As for Figure 1, specific ubiquitylated substrates at the OMM such as the translocon subunits would be informative.

      • As discussed above, the role of USP30, at least, on ubiquitination of protein import in the translocon has been documented elsewhere and further specific analysis on this here would be a distraction from the main focus of the study.

      Minor points

      Figure 8 model and discussion: Nice discussion. However, unless protein import/ubiquitylation of translocon factors/localisation of FBXO7 to the translocon is shown in the manuscript, I would recommend more clarity in the figure legend to emphasise what is speculation based on other papers and what are new findings from the paper.

      • This is a fair point and we agree that it is good to be clear about which aspects of the working model are reflections of the data presented here and which are extrapolation/speculation from the literature. We have modified the figure and the figure legend accordingly.

      Reviewer #3 (Significance (Required)):

      FBXO7/ntc is clearly an important regulator of mitophagy however its mechanism of action has not been studied as intensively as Parkin and Pink1, therefore this work contains important insight into mitophagy regulators.

      It will be of broad interest to many overlapping fields, and has translational impact in that mitophagy is disrupted in many diseases and FBXO7 itself is mutated in Parkinson's disease.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this manuscript, Sanchez-Martinez et al characterise the role of nutracker (ntc), the presumed Drosophila orthologue of human FBXO7 (whose gene is mutated in autosomal recessive PD), in mitophagy and phenotypes associated with neurodegeneration in flies (climbing index, dopaminergic neuron loss, rough eye phenotype, and others). FBXO7 (human) has been previously shown to restore parkin (not Pink1) phenotypes and mitochondrial morphology in Drosophila and implicated in Pink1-parkin mitophagy, however the role of ntc in basal mitophagy and its genetic interaction with USP30 has not been previously reported. Key findings include: evidence for functional homology between ntc and FBXO7, and that Ntc/FBXO7 is required for basal mitophagy (and reverses USP30 function) in a Pink1-parkin independent manner.

      FBXO7/ntc is clearly an important regulator of mitophagy and its overexpression can suppress Parkin phenotypes, however FBX07/ntc has not been studied as intensively as Parkin and Pink1, therefore this work represents important insight into mitophagy regulators (broad interest to many overlapping fields).

      However, in addition to minor points and controls requested below, some further characterisation of the signals on the mitochondria induced by ntc/FBXO7 would improve the novelty of the study and the mechanistic insight provided.

      For example, the authors look at total ubiquitin and pS65-Ub, whereas if they looked at specific substrates that they mention in the discussion (e.g. OMM and translocon proteins) it would allow a less speculative discussion.

      Figure 1: The authors show that overexpression of ntc can rescue Parkin null phenotypes but not Pink1 phenotypes. In very similar experiments, overexpression of FBXO7 (human) has been shown to rescue Parkin phenotypes but not pink1 phenotypes (Burchell), appropriately mentioned by the authors.

      The western blots are not terribly clear and would benefit from quantification (particularly H). Specific ubiquitylated substrates like translocon proteins would be very interesting (alternatively, this could be provided in figure 7).

      If the rough eye phenotype is highly homogenous, state in text otherwise, a relative roughness quantification would be more informative.

      Figure 2: Although mainly in agreement with Burchell et al findings (that there is no disruption of mito morphology or dopaminergic neuron loss caused by ntc loss), the loss flight ability in the ntc mutant is partially discrepant with Burchell et al (results not shown in Burchell et al). Can the authors explain the discrepancy? It is important finding that the ntc functionally orthogue of FBXO7 and differs from the Burchell et al conclusions.

      Figure 7: A,B. It is not clear that mitochondria have been enriched - can the authors show on mitochondria or show the fractionation quality? C/D. The text that accompanies these figures needs further explanation and clarification and I found this result hard to understand without referring to the discussion. I think the authors are concluding that pS65 is ubiquitylated by FBXO7? I think this should be re-written in the results section. If it is a major point that the authors want to make, a complementary approach would be advised - possibly human cells/mass spectrometry.

      As for Figure 1, specific ubiquitylated substrates at the OMM such as the translocon subunits would be informative.

      Minor points

      Figure 8 model and discussion: Nice discussion. However, unless protein import/ubiquitylation of translocon factors/localisation of FBXO7 to the translocon is shown in the manuscript, I would recommend more clarity in the figure legend to emphasise what is speculation based on other papers and what are new findings from the paper.

      Significance

      FBXO7/ntc is clearly an important regulator of mitophagy however its mechanism of action has not been studied as intensively as Parkin and Pink1, therefore this work contains important insight into mitophagy regulators.

      It will be of broad interest to many overlapping fields, and has translational impact in that mitophagy is disrupted in many diseases and FBXO7 itself is mutated in Parkinson's disease.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this ms. Sanchez-Martinez and colleagues study the role of the ub ligase FBXO7, in regulating mitophagy - highlighting that mutations in FBXO7 associate with Parkinson's disease and defects in mitochondrial homeostasis. Using the fly as model, they carry out a series of expts. investigating ntc (Drosophila ortholog of FBX07) demonstrating that it can functionally rescue Parkin but not PINK1 deficiency. Expanding on this, they propose a model whereby ntc/FBX07 regulates basal mitophagy and also acts as a priming Ub-ligase for Parkin mediated mitophagy, finding that the dub USP30 counteracts these ntc function. Overall the data are robust and support the authors' conclusions and model, the manuscript is well written and I think can be accepted as is.

      While outside the scope of this study to understand why, I find it very interesting that ntc cannot rescue the PINK1 deficient phenotype, argues that PINK1 may be having additional effects beyond regulating mitochondrial ubiquitylation.

      Significance

      Importance for understanding the role of FBX07 function - relevant for Parkinson's disease, also demonstrates a role for it in priming for PINK1/Parkin dependent mitophagy.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript Sanchez-Martinez et al investigated the function of ntc, a Drosophila homologue of FBXO7. The mechanisms by which mutations in this protein cause autosomal recessive PD are poorly understood. The protein has previously been implicated in PINK1/Parkin mitophagy however the mechanistic detail is lacking. The data presented here provide an important insight into the molecular functions of ntc as well as mitophagy in vivo in general. Ntc was found to promote ubiquitination of mitochondrial proteins which is counteracted by USP30. The basal ubiquitination regulated by these two enzymes is proposed to act as a permissive factor for the initiation of Pink1/Parkin mitophagy. The conclusions are based on strong data in vivo and there is a lot to like about this paper. The analyses are done rigorously, conclusions are balanced and well supported and there is a lot of conceptual novelty in the dataset. At the same time the paper raises some questions with regard to the role of mitophagy, at least in Drosophila. Not all of these could be answered during revisions but it would be useful to address the points outlined below. 1. The functional measurements such as climbing, flight and lifespan are used to complement the data on mitophagy and mitochondrial health. However, it is clear that these do not correlate. Ntc KOs and Pink1/Parkin flies have reduced climbing and flight ability, however ntc KO does not affect mitochondrial function. In case of Pink1/Parkin the assumption is that impaired fly functionality is due to damaged mitochondria. This is clearly not the case with Ntc. How relevant is climbing/flight/lifespan to the role of Ntc in mitophagy? 2. Fig 3 is somewhat patchy, mitophagy is shown for USP30 and ntc KO epistasis but climbing index used in OE setting. These data do not match, and it feels like experiments that are shown are the ones that worked. The relevance of climbing index to mitophagy is unclear as mentioned above. Does KO/OE of ntc and USP30 affect levels of mitochondria, e.g. Marf used as a maker for mitochondria in Fig. 1? And if not why not, considering that ntc/USP30 but not PINK/Parkin control basal mitophagy? 3. What is the role of mitophagy in the maintenance of mitochondrial function in Drosophila in general? Pink1/Parkin KO assumed to result in dysfunctional mitochondria due to impairment of damage-induced mitophagy which is a minor contributor to mitophagy as has previously been published by the authors and confirmed in this dataset using mitophagy reporter. At the same time ntc is clearly required for mitophagy, but mitochondria remains structurally and functionally intact in ntc KO. The most straightforward interpretation of these data is that Pink1/Parkin contribute little to mitophagy in flies and their effect on mitochondria and fly function is independent of mitophagy. Instead ntc (and USP30) strongly regulate mitophagy but mitophagy is not important for the maintenance of mitochondrial function. The effect of ntc on fly function is also independent of its role in mitophagy/mitochondria. Unless there is an alternative explanation the entire dataset would need to be reinterpreted and discussed differently.

      Significance

      Very strong genetic data presented; novel functions for human Park15 homologue in Drosophila; mechanistic insight into the ubiquitination of mitochondria by two opposing enzymes. Overall very interesting paper but interpretation is less clear which needs to be addressed.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      To the Editor,

      We thank the reviewers for their generous efforts on behalf of our manuscript. We were very pleased to see that reviewer #1 considered our manuscript a “very detailed, high quality paper” that “serves as an important resource for the field.” And that Reviewer #2 concurred, writing that our manuscript is “valuable because it generates large datasets on the NK/ILC family from human blood that can be deposited in repositories”, and that it is of “special relevance to the HIV field because it examines viral infection effects on these subsets.”

      We believe the revisions made in response to the reviewers suggestions have improved the presentation of our data. Our responses to each reviewer comment are listed below in bold font. References mentioned here are listed in a bibliography at the end of this document.Changes to the text are also highlighted in the manuscript.






      1. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Wang and colleagues present a very detailed, high quality paper describing phenotyping, transcriptional, epigenetic and functional differences between NK cells and ILCs in human peripheral blood. They overlay these studies which descriptions of differences in these populations in healthy and HIV infected (viremia, ART-treated, controllers), extending a their previous 2020 study.

      Overall, this paper serves as an important resource for the field. There are areas in which the manuscript could be modified to improve clarity and detail regarding rigor.

      My comments below are all addressable and therefore I class them all as 'major'.

      1. The authors describe ILCs as being 'permanently deleted' in HIV infection. As written, this can be misinterpreted to suggest complete ablation of this cell subset. This is clearly not the case. Moreover, there looks to be some restoration of ILCs in ART-treated participants. I suggest revising text to quantify the level of cell loss or replace the word deleted with reduced. The reviewer is correct that ILCs are not completely ablated. In response to this important point we have clarified the text, as follows:

      - As indicated on page 5, we have changed the text to, “ILCs are decreased in the blood and intestinal lamina propria in people living with HIV-1, even after viremia has been suppressed by antiviral therapy”.

      - In the Results on page 13, we have changed the text to “ILCs were decreased in all subgroups of people living with HIV-1”.

      __- The text on page 18 was changed to, “The percentage of ILCs in the Lin–CD56– population decreased from 37.5% in HIV-1– controls to 7.34% in people living with HIV-1 who are viremic; the reduction in ILCs was not fully restored by ART (24.38%) or in spontaneous controllers (18.16%)” __

      - As indicated on page 26 in the Discussion, we have changed the text to “HIV-1 infection permanently reduces ILCs but not NK cells”.

      1. The HIV EC are not clearly discussed in the paper and are not distinguished from viremic controllers. If ILCs are permanently reduced in this group, what does this suggest for the role of this cell subset in HIV control? Plasticity between ILC and NK cells is described. Is this plasticity relevant at all for HIV control, elite or otherwise? We thank the reviewer for asking us to clarify these important points in the manuscript:

      2. Though elite controllers suppress HIV-1 viremia to undetectable levels, ILC numbers are still decreased in these individuals. Additionally, we do not detect an inverse correlation between ILC numbers and viremia. Further, our previous publication showed that ILC reductions in HIV-1 infection correlate inversely with markers of systemic inflammation, for example sCD14 _(Wang et al_, 2020b)_. Like other people living with HIV-1 infection, elite controllers have elevated microbial translocation, suggestive of disturbed gut homeostasis (Brenchley _et al, 2006)_. Some studies have even reported higher rates of cardiovascular disease in elite controllers, presumably as a result of higher levels of systemic inflammation_ (Crowell et al. 2015; Caetano et al. 2022).____ Taken together, these observations suggest that ILCs play no direct role in control of HIV-1 replication. These points are discussed on page 26-27. __

      3. The fascinating question of plasticity between ILCs and NK cells is one we have explored extensively, both in our previous work and in the current manuscript. Plasticity has been reported between intraepithelial ILC1s and NK cells from tumor tissue, and between ILC3s and NK cells in tonsil _(Moreno-Nieves et al_, 2021; Raykova _et al, 2017; Cortez _et al, 2017)_. When ILC2s are cultured in vitro with IL-12, IFN-γ and TBX21 expression are upregulated to the levels of CD56hiNK cell (Lim _et al, 2016)_, indicating possible plasticity between ILC2 and CD56hiNK cells under certain inflammatory conditions. In HIV-1 infection, we do not detect correlations between the decrease in ILCs and increase in NK cells. In fact, the total NK cells did not change in HIV-1+ people who are viremic, on ART, or viremic controllers [(Figure 2A and 2B in (Wang _et al, 2020b)____]. Our transcriptome analysis indicates that, during HIV-1 infection, ILCs are likely depleted by inflammation-induced apoptosis (Figure 4I and Supplemental Table 6). However, whether blood ILCs (ILCPs or ILC2s) can upregulate TBX21 and EOMES to give rise to NK cells during HIV-1 infection is an interesting question worth further investigation. We now discuss the reviewer’s question on pages 27. __ III. The authors write that ILCs have a primary role in cytokine secretion and then distinguish the ILCs from NKs....but NKs also secrete cytokines. Can the authors please clarify their text?

      __The reviewer is correct that, in this context, our statement is confusing. We have therefore deleted the sentence “Typical of cells with a primary role in secretion of cytokines…” on page 10. This change helps to focus the text on the specific genes that distinguish these subsets. __

      1. Discussion (an also Results) - The authors use pseudotime analysis to show that CD56+NK cells sit between the ILCs and CD56-NKs. When initially described in the Discussion they don't really interpret this in terms of their (and others' observations) that CD56-NKs are increased in disease. Other groups have suggested CD56-NKs are dysfunctional. Here you show different granzyme profiles between CD56+ and CD56- NKs. Elsewhere you distinguish CD56dim and CD56- NKs in terms of functionality in HIV+ donors, though these cells cluster on the pseudotime analysis. The IL-2 and CD4+ T cell data add another layer of complexity.
      2. Altogether, I am unclear on the authors' interpretation of their collective data.
      3. Can you please clarify whether you are suggesting that CD56dimNKs are a distinct from CD56+ NKs but functional as opposed to CD56-NKs that are dysfunctional? __It would be best to respond to these two questions together. It is important to remember that our manuscript describes the characterization of these cells using several techniques. __

      - By flow cytometry, NK cells can be separated into CD56hi, CD56dim, and CD56neg populations (Figure 1F). Pseudotime analysis of our single cell RNA-Seq data showed that, at the transcriptional level, CD56dim and CD56neg NK cells are very similar to each other and cluster together (Figures 3A and 3F). Nonetheless, as compared with CD56dim NK cells, CD56neg NK cells express lower levels of GZMA and PRF1 (Supplemental Figure 4A), and produce less IFN-γ upon cytokine stimulation (Figures 8H and 8J). And when CD56neg NK cells are sorted and assessed by Bulk RNA-Seq, which gives deeper coverage than single cell RNA-Seq, metabolic gene expression is altered with respect to CD56dim NK cells (Figure 9).

      __- Our pseudotime analysis based on single cell RNA-Seq showed that CD56hiNK cells form a distinct cluster, but that they share some transcriptional features with both the ILC cluster and the CD56dim/CD56–NK cell cluster (Figures 3A-3C and 3F). __

      - In people living with HIV-1, as assessed by flow cytometry, CD56neg NK cells increase in number at the expense of CD56dim NK cells (Figure 7C). And yes, we show here that CD56neg NK cells expand in tissue culture if CD4+ T cells are depleted from the PBMCs, and addition of exogenous IL-2 prevents the switch from CD56dimNK cells to CD56–NK cells (Figures 8A-8C). These points are covered in the Results and Discussion on pages 11 and page 29-30.

      1. Are CD56-NKs end-stage or can they be rescued? IL-2 treatment of CD56–NK cells from people living with HIV-1 can be converted back to CD56dimNK cells, though function is not fully restored to the level of CD56dimNK cells ____(Mavilio ____et al_, 2005)_. ____In our manuscript, we showed that IL-2 or IL-15 treatment can prevent CD56dimNK cells from becoming dysfunctional CD56–NK cells, and that these cytokines maintain mTOR activity (Figure 8A-D, 8G, 8I and Figure 10). Taking together our data with the published data, CD56–NK cells appear to be an end-stage dysfunctional cell. Whether conditions can be found for full restorage of function is an important question that is worth pursuing. This point is now stated on page 30.

      2. CD8 T cell number remain high post ART and very much drive the ongoing inverted CD4:CD8 ratio. Have the authors consider how and if the need of these cells for IL-2 impact recovery of NK cell populations? __Two orthogonal experiments indicate that IL-2 secreted by CD4+ T cells, but not from CD8+ T cells, is responsible for the recovery of CD56dimNK cells after treatment with ART. In our ex vivo culture of PBMCs, depletion of CD4+ T cells , but not of CD8+ T cells, was associated with increased numbers of CD56–NK cells (Supplemental Figure 6A). Additionally, the IL-2 concentration in plasma from people living with HIV-1 correlated with CD4+ T cell numbers, but not with CD8+ T cell numbers (Figures 8N and 8O). __

      3. Discussion: It would be very helpful if the authors can pull this large volume of data together in a summary paragraph and possibly also a graphic. __We thank the reviewer for the suggestion. We have now summarized our data in the discussion (page 31). Additionally, we have added bullet points with a 2 sentence summary to accompany our graphic abstract (page 3). __

      4. "Thus, GZMK+CD8+T cells appear to be the adaptive counterpart of CD56hiNK cells, representing an intermediate state between cytokine producing CD4+T cells and cytotoxic CD8+T cells" For me, the 'cytokine-producing CD4+ T cells' comes from in from left field here. Can the authors please clarify or was the intent to write cytokine-producing CD8+ T cells? To clarify what we meant we need to discuss two points:

      First, NK cells can be considered as the innate immune counterparts of CD8+T cells, in that both cell types are cytotoxic killer cells. In contrast, ILCs may be considered as the innate counterparts of non-cytotoxic CD4+ T helper cells. For example, like Th1 cells, ILC1 cells are TBX21+ producers of IFN-γ. And like Th2 cells, ILC2s are GATA3+ producers of IL-13. The relationship between ILCs and NK cells is similar to the relationship between CD4+T help cells and CD8+ cytotoxic T cells _(Vivier et al_, 2018)____. __

      Second, previous studies showed that GZMK+CD8+T cells are distinguished from other CD8+T cells by higher expression of IL7R, TCF7, IFN-γ and TNF-α, and by decreased cytotoxic activity ____(Jonsson ____et al_, 2022)_. Thus, the relationship between GZMK+CD8+T cells and GZMK–CD8+T cells may be similar to the relationship between CD56hiNK cells (GZMK+, IL7R+, TCF7+, higher IFN-γ production and lower cytotoxicity) and cells from the CD56dim and CD56–NK cell cluster (GZMK–, IL7R–, TCF7–, lower IFN-γ production and higher cytotoxicity). In response to this comment we have modified the text on page 25-26 to make these points more clear.

      VII. Methods: Were Pearson correlations applied because of the large 'n' or were data first tested for normality?

      After checking the normality, nonparametric spearman correlation was performed for panels that failed the normality test. For panels with smaller n, the normality test may be not applicable, and Pearson correlation was performed.

      VIII. Methods: Please clearly justify the use of t-tests throughout the manuscript rather than non-parametric based tests.

      We tested the normality before performing parametric or nonparametric test. The t-test, Wilcoxon test or Mann-Whitney test used in our analysis was now specified for each panel in the legend. For panels that calculate cell percentage or numbers with smaller n, normality test may be not applicable, t-test was performed as done previously in these papers, Figure 7C and 7D in _(Wang et al_, 2020a)_, and in Figure 3 and 4 in (Xue _et al, 2022)____. We confirmed these analyses with two statisticians in our institute. __

      1. Methods: How many cells were acquired in flow cytometry? How many ILCs were acquired in healthy/HIV+ donors for these studies? Did this create limitations on interpretation of phenotypic data? ILCs constitute roughly 1,000 cells per million PBMCs. To assess ILCs, we acquired data from 500,000 PBMCs, or roughly 500 ILCs per sample. NK cells constitute roughly 100,000 cells per million PBMCs, we acquired data from 200,000 PBMCs, or roughly 20,000 NK cells per sample. For each patient group, whether HIV-1-negative, HIV-1 viremic, etc, we analyzed PBMCs from at least 19 blood donors. This information is now stated in the “Flow cytometry” section in “Methods”, on page 35.

      2. Methods: How was the cytokine concentrations used for in vitro assays determined? The cytokine concentrations were determined according to previous publication and our previous studies ____(Romee ____et al_, 2016, 2012; Wang _et al_, 2020b; Silverstein _et al_, 2022)_. We have added the related references to the “Stimulation conditions” section in “Method”, on page 36.

      3. Figure: In Figure 4A, should it be '+ILC- ' or '+ILC' (no negative symbol)? __Yes, the reviewer is correct. We have deleted the typo “-”. __

      XII. It's unclear from you single cell analysis how many cells were acquired for each of the 4 subsets. I assume less ILCs were analyzed. If so, can you please clarify for the non-bioinformatician how your bioinformatic analysis took these differences into account?

      Indeed, we were concerned that we might have too few ILCs and therefore set up conditions so that similar numbers of each cell type were assessed. To accumulate enough ILCs for single cell analysis, ILCs were sorted from 3 donors. ILCs, CD56hi, CD56dim and CD56–NK cells were sorted in parallel from the same 3 donors. The sorting strategy is shown in Supplemental Figure 1D. Equal numbers of ILCs, CD56hi, CD56dim and CD56–NK cells were sorted and then mixed together before library preparation. In total, libraries were generated from 5,210 single cells using 10 x genomics. 1,478 ILC2s, 897 ILCPs, 1,116 CD56hiNK cells, and 1,486 CD56dim and CD56–NK cells were shown in UMAP. We have added this information in Figure 3 legend.

      Reviewer #1 (Significance (Required)):

      Overall, this paper serves as an important resource for the field.

      There are areas in which the manuscript could be modified to improve clarity and detail regarding rigor (see above). The overall message of this work for understanding HIV pathogenesis is unclear but can be addressed.

      __We appreciate the reviewer’s efforts on behalf of our manuscript. By carefully addressing the reviewer’s questions and comments, we believe that the rigor of our manuscript is improved and that the message regarding HIV-1-induced abnormalities of ILCs and NK cells are clarified. __

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: This manuscript makes use of RNA sequencing, ATAC-Seq and single cell sequencing to compare transcriptomes and identify relationships between various ILC/NK cell subsets in blood from uninfected controls. The authors describe differences in genes and pathways between subsets and determine that CD56high NK cells are an intermediate-connecting cell type between ILC progenitors and CD56dim NK cells. The authors show how HIV infection (viremic, ART+ or controllers) effect ILC/NK cell gene expression and pathways. One of the genes enhanced in NK cells is AREG which the authors demonstrate to be upregulated in IL/NK subsets in response to PMAI/I stimulation or stimulation with IL-2 or IL-15. The authors demonstrate that TGFB1 or knockout of RUNX3 modulates the frequency of AREG+ NK cells, implicating the Wnt signaling pathway in AREG regulation. Authors show that in PLWH, the frequency of AREG+ NK cells is altered. Authors also report that with HIV infection there is an increase in CD56neg NK cells with corresponding loss of CD56dim cells. Using healthy control PBMCs, the authors suggest differentiation of CD56dim into CD56neg is prevented by CD4 T cell production of IL-2 but promoted by TGFB1. Also in healthy controls, the authors run metabolomics to describe how CD56dim are more metabolically functional than CD56neg and link this to MTOR activity.

      Major:

      • Which population(s) of NK cells (high, dim or negative for CD56) are responding to stimulation with IL-2 and IL-15 by upregulating AREG in Figure 5? Does this NK population have higher expression of receptors for IL-2 and IL-15 (in single cell seq data or by flow) and if so how does receptor expression change in PLWH? We thank the reviewer for these excellent questions. In response, we have added the new figure below to Supplemental Figure 4E. In general, CD56hi NK cells have higher AREG RNA and protein than do the other NK cell subsets. After IL-2 or IL-15 stimulation, all three NK cell populations upregulate AREG, though CD56hiNK cells produce significantly higher levels of AREG than do either CD56dim or CD56negNK cells.





      __Consistent with the above results, the expression of IL2RB, IL2RG and IL15RA was higher in CD56hiNK cells than in CD56dimNK cells (new Supplemental Figure 4F). __






      We examined IL2RA, IL2RB, IL2RG, and IL15RA expression in the different NK cell subsets from the three groups of people living with HIV-1, ART, viremic, and controllers. As compared with cells from HIV-1-negative people, the only clearly significant difference for these four genes was a reduction in IL2RB expression in CD56– and CD56dim NK cells from viremic people. These points are now mentioned on page 15.

      • Does signaling through IL-2 or IL-15 converge on the TCF7/Wnt signaling pathway? For example, is it possible to knockdown TCF7 then stimulate with IL-2 or IL-15 and measured AREG+ cells with the idea that loss of TCF7 would result in reduced cytokine-induced activation of AREG if mediated through the Wnt pathway? Indeed, this question was very important to us and we attempted to answer it with lentiviral vector-mediated knockdown with shRNA and with electroporation of Cas9 ribonucleoprotein complexes (RNPs). Though we were successful in decreasing TCF7 protein, to render NK cells competent for lentiviral transduction or for electroporation with the Cas9 RNPs, NK cells must first be cultured for at least 7 days in high concentration IL-2. This treatment with IL-2 activates AREG production before TCF7 protein is decreased. These points are now discussed in the manuscript on page 29.

      • In Figure 8 the authors demonstrate that CD4 T cells promote the maintenance of CD56dim NK cells likely through production of IL-2. Was AREG expression examined in these studies and if so could you conclude that CD4 T cells also promote AREG expression in this population? Yes, indeed, CD4+T cells, or IL-2, promote AREG production by CD56dimNK cells. Depletion of CD4+T cells from PBMCs decreased AREG production and addition of exogenous IL-2 was sufficient to restore AREG production by NK cells when CD4+ T cells were depleted (see figure below, left panel). Additionally, IL-2 neutralizing antibodies decreased AREG production by NK cells in total PBMC cultures (right panel). These results are now included as Supplemental Figure 6G and 6H in the revised manuscript.

      • In Figure 8D, although significant, the increase in percentage from 2-4% of the CD56neg is a minimal change. Could a higher dose of IL-2 be tested to see more substantial changes? Similar comment for Figure 10D, although significant, the increase in percentage from 2-4% of the NK population to CD56neg is not a large change with rapamycin. Could a higher dose be tested (that does not kill the cells) or a different inhibitor be used to see more substantial changes? More robust changes would strengthen the conclusions. First to clarify, as concerns figure 8D, we believe the reviewer is referring to IL-2 neutralizing antibody, not IL-2. Regarding Figure 8D, which used IL-2 neutralizing antibody at 4 ug/ml, we tried a higher dose (10 ug/ml) but this caused cell death. We also tried longer culture time with 4 ug/ml IL-2 neutralizing antibody, and found the cell viability decreases after 7 days culture. Similarly, the limited in vitro culture time in the presence of anti-IL-2 antibody restricted experimental conditions in Figure 10D.

      • In Figure 10, was the increase in pmTOR with IL-2/IL-15 stimulation specifically observed in CD56dim cells (rather than total NK cells or CD56neg cells)? This would strength the conclusion that CD56dim is more metabolically functional than CD56neg. Our data indicate that the mTOR response to IL2 in CD56–NK cells was similar to that in CD56+NK cells (including CD56dim and CD56hi) (see figure below). This result is consistent with a previous report showing that, when stimulated with exogenous IL-2, sorted CD56– NK cells become CD56dimNK cells ____(Mavilio ____et al_, 2005)_. Our data extend this observation by showing that upregulation of CD56 on CD56neg NK cells by IL-2 correlates with mTOR upregulation.






      Minor

      • Approximately how many ILC from PLWH were submitted for single cell sequencing: Since this cell population was depleted in HIV+, was there a sufficient number of cells to interpret/publish DEG results in Figure 4? In Figure 4, ILCs were sorted from HIV-1 negative donors and different groups of PLWH, and then these cells were subjected to bulk-RNA seq using CEL-Seq2. In Figure 4, for most blood donors, whether HIV-1 negative or PLWH, well over 1,000 ILCs were sorted and used to construct high quality libraries (see figure below, was included as new Supplemental Figure 3C). PCA plots also showed that all ILC libraries clustered together as a distinct population (Figure 4A), indicating the quality of all ILC libraries was comparable.






      • On page 13 of text, it is a bit disconcerting to jump to Figure 7 then back to Figure 4. Would recommend reorganizing text or figure panels to flow better. __We have deleted the premature mention of Figure 7A. __

      • Supplemental Figure 1 and 2: Dots for ILC population are purple in color but legend is mislabeled as pink color.

      • Supplemental Figure 4: Dots for HIV+ controller are purple in color, but legend is mislabeled as pink in color. Thank you, these mistakes in the labeling of the colors have been corrected.

      • Would recommend adding quantification of Figure 5A for all donors tested. In fact, the AREG production by CD56hi, CD56dim, CD56–NK cells and ILCs from HIV-1 negative donors were quantified in Figure 6A.

      • Figure 5B for IFNg it appears that part of the positive population is not gated on and thus percentages are likely higher if the gate is adjusted. We thank the reviewer for the suggestion. The gating for IFN-γ has been adjusted in the revised manuscript, as suggested. The original Figure 5B and associated histogram Figure 5C were replaced accordingly. Please see the newly gated figure below:















      • For Figure 5F, need to add to text and panel that PMA/I was used to stimulate as described in figure legend. Current figure and text read that the Wnt agonist alone was responsible for levels depicted in NK subsets. We now state that PMA+ionomycin was used to stimulate the cells in Figure 5F and 5G, and in the text (page 16 and 28).

      • On the x-axis of Figure 6F-J does "Lin-TBX21+" refer to Total NK cells? If so then would recommend sticking with nomenclature "Total NK" as in Figure 6A-B. The x-axis of Figure 6F-J was changed to “total NK (Lin–TBX21+)”.

      • Would recommend labeling gates for populations of interest in Supplemental Figure 5B-C, Supplement Figure 6A, Figure 8A. The populations of interest (CD56dimNK, CD56–NK, and ILCs) were labeled as suggested.

      • Other groups have shown that CD56neg are increased in HIV, functionally impaired and correlate with loss of CD4 T cells. Would recommend citing their studies. The original manuscript had mentioned only Mavilio et al. The revised manuscript now has a more complete list of references ____(Cao ____et al_, 2021; Mavilio _et al_, 2005; Cocker _et al_, 2022; Alter _et al_, 2005; Barker _et al_, 2007)_. These references are cited in the Introduction (page 5) and in the Results (page 20).

      • Would recommend adding quantification of Figure 8A for all donors tested. Also, for the 3rd flow plot does "NK+CD4" mean purified NK cells + autologous CD4 T cells? If so, then would clarify in figure legend. It may strengthen conclusion for IL-2/IL-15 to show differentiation of NK cells is not contact dependent with T cell via transwell assay. __Quantification for all donors in Figure 8A has been added to the revised manuscript (Figure 8A, right panel). The figure legend has been modified accordingly. As far as the comment about contact-dependence, the fact that CD56dimNK cells were maintained by IL-2 in the absence of CD4+ T cells demonstrates that direct contact with CD4+ T cells is not required. __

      Reviewer #2 (Significance (Required)):

      Significance: This study is valuable because it generates large datasets on the NK/ILC family from human blood that can be deposited in repositories and of special relevance to the HIV field because it examine show viral infection (controlled or not) effects these subsets.

      The strengths of the study are the cohort of PBMC samples utilized (HIV-, HIV+ viremic, HIV+ ART+ and HIV+ controlled), the multi-omics approach for transcriptome and epigenetics and the in vitro mechanistic studies identifying key regulators of NK cell differentiation/function.

      The study advances the field "mechanistically" by providing key targets that may be subject to therapeutic modulation in PLWH such as AREG, IL-2 signaling, IL-15 signaling, Wnt signaling, and mTOR activity (although more work will need to be done to examine these pathways using PBMCs from HIV+). This study advances the field "conceptually" by providing large datasets for others to mine if deposited.

      The audience for this study "basic research" such as immunologists in the HIV field or immunologist interested in ILC/NK biology.

      My field of expertise is infectious disease (HIV, SARS-CoV-2), basic immunology (ILC, NK, B cell) and autoimmune disease. Would recommend additional reviewers for assessment of metabolic genes/pathways in Figure 9-10.

      __We were very pleased to see that the reviewer thought our manuscript makes a valuable contribution to HIV-1 immunology and ILC/NK biology, that it advances mechanistic understanding of pathogenesis in people living with HIV-1, and that it provides a valuable data resource. __

      - In Figure 9, the metabolism related genes were defined as canonical targets of, or regulated by, MTOR signaling, in previous publications ____(Saxton & Sabatini, 2017; Bayeva ____et al_, 2012)_.

      - In Figure 10, we used pMTOR, pAKT, p4EBP1, pS6 and CD71 to monitor MTOR pathway activation as reported previously by others ____(Marçais ____et al_, 2014)_. We have cited this paper on pages 23 and 24.


      References for Response to Reviewers

      Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, Streeck H, Johnston MN, Staller KD, Zaman MT, et al (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106: 3366–3369

      Barker E, Martinson J, Brooks C, Landay A & Deeks S (2007) Dysfunctional natural killer cells, in vivo, are governed by HIV viremia regardless of whether the infected individual is on antiretroviral therapy. AIDS 21: 2363–2365

      Bayeva M, Khechaduri A, Puig S, Chang H-C, Patial S, Blackshear PJ & Ardehali H (2012) mTOR regulates cellular iron homeostasis through tristetraprolin. Cell Metab 16: 645–657

      Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12: 1365–1371

      Caetano DG, Ribeiro-Alves M, Hottz ED, Vilela LM, Cardoso SW, Hoagland B, Grinsztejn B, Veloso VG, Morgado MG, Bozza PT, et al (2022) Increased biomarkers of cardiovascular risk in HIV-1 viremic controllers and low persistent inflammation in elite controllers and art-suppressed individuals. Sci Rep 12: 6569

      Cao W-J, Zhang X-C, Wan L-Y, Li Q-Y, Mu X-Y, Guo A-L, Zhou M-J, Shen L-L, Zhang C, Fan X, et al (2021) Immune Dysfunctions of CD56neg NK Cells Are Associated With HIV-1 Disease Progression. Front Immunol 12: 811091

      Cocker ATH, Liu F, Djaoud Z, Guethlein LA & Parham P (2022) CD56-negative NK cells: Frequency in peripheral blood, expansion during HIV-1 infection, functional capacity, and KIR expression. Front Immunol 13: 992723

      Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, Wang Q, White AJ, Gilfillan S, Cella M & Colonna M (2017) SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol 18: 995–1003

      Crowell TA, Gebo KA, Blankson JN, Korthuis PT, Yehia BR, Rutstein RM, Moore RD, Sharp V, Nijhawan AE, Mathews WC, et al (2015) Hospitalization Rates and Reasons Among HIV Elite Controllers and Persons With Medically Controlled HIV Infection. J Infect Dis 211: 1692–1702

      Jonsson AH, Zhang F, Dunlap G, Gomez-Rivas E, Watts GFM, Faust HJ, Rupani KV, Mears JR, Meednu N, Wang R, et al (2022) Granzyme K+ CD8 T cells form a core population in inflamed human tissue. Sci Transl Med 14: eabo0686

      Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, Casanova J-L, Yssel H & Di Santo JP (2016) IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med 213: 569–583

      Marçais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, Rabilloud J, Mayol K, Tavares A, Bienvenu J, et al (2014) The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 15: 749–757

      Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E, Angeline O’Shea M, Kinter A, Kovacs C, Moretta A, et al (2005) Characterization of CD56–/CD16+ natural killer (NK) cells: A highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A 102: 2886–2891

      Moreno-Nieves UY, Tay JK, Saumyaa S, Horowitz NB, Shin JH, Mohammad IA, Luca B, Mundy DC, Gulati GS, Bedi N, et al (2021) Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. Proc Natl Acad Sci U S A 118

      Raykova A, Carrega P, Lehmann FM, Ivanek R, Landtwing V, Quast I, Lünemann JD, Finke D, Ferlazzo G, Chijioke O, et al (2017) Interleukins 12 and 15 induce cytotoxicity and early NK-cell differentiation in type 3 innate lymphoid cells. Blood Adv 1: 2679–2691

      Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, et al (2016) Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 8: 357ra123

      Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, Cooper MA & Fehniger TA (2012) Cytokine activation induces human memory-like NK cells. Blood 120: 4751–4760

      Saxton RA & Sabatini DM (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell 169: 361–371

      Silverstein NJ, Wang Y, Manickas-Hill Z, Carbone C, Dauphin A, Boribong BP, Loiselle M, Davis J, Leonard MM, Kuri-Cervantes L, et al (2022) Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection. Elife 11

      Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, et al (2018) Innate Lymphoid Cells: 10 Years On. Cell 174: 1054–1066

      Wang J, Xu Y, Chen Z, Liang J, Lin Z, Liang H, Xu Y, Wu Q, Guo X, Nie J, et al (2020a) Liver Immune Profiling Reveals Pathogenesis and Therapeutics for Biliary Atresia. Cell 183: 1867–1883.e26

      Wang Y, Lifshitz L, Gellatly K, Vinton CL, Busman-Sahay K, McCauley S, Vangala P, Kim K, Derr A, Jaiswal S, et al (2020b) HIV-1-induced cytokines deplete homeostatic innate lymphoid cells and expand TCF7-dependent memory NK cells. Nat Immunol 21: 274–286

      Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, et al (2022) Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612: 141–147

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      This manuscript makes use of RNA sequencing, ATAC-Seq and single cell sequencing to compare transcriptomes and identify relationships between various ILC/NK cell subsets in blood from uninfected controls. The authors describe differences in genes and pathways between subsets and determine that CD56high NK cells are an intermediate-connecting cell type between ILC progenitors and CD56dim NK cells. The authors show how HIV infection (viremic, ART+ or controllers) effect ILC/NK cell gene expression and pathways. One of the genes enhanced in NK cells is AREG which the authors demonstrate to be upregulated in IL/NK subsets in response to PMAI/I stimulation or stimulation with IL-2 or IL-15. The authors demonstrate that TGFB1 or knockout of RUNX3 modulates the frequency of AREG+ NK cells, implicating the Wnt signaling pathway in AREG regulation. Authors show that in PLWH, the frequency of AREG+ NK cells is altered. Authors also report that with HIV infection there is an increase in CD56neg NK cells with corresponding loss of CD56dim cells. Using healthy control PBMCs, the authors suggest differentiation of CD56dim into CD56neg is prevented by CD4 T cell production of IL-2 but promoted by TGFB1. Also in healthy controls, the authors run metabolomics to describe how CD56dim are more metabolically functional than CD56neg and link this to MTOR activity.

      Major:

      • Which population(s) of NK cells (high, dim or negative for CD56) are responding to stimulation with IL-2 and IL-15 by upregulating AREG in Figure 5? Does this NK population have higher expression of receptors for IL-2 and IL-15 (in single cell seq data or by flow) and if so how does receptor expression change in PLWH?
      • Does signaling through IL-2 or IL-15 converge on the TCF7/Wnt signaling pathway? For example, is it possible to knockdown TCF7 then stimulate with IL-2 or IL-15 and measured AREG+ cells with the idea that loss of TCF7 would result in reduced cytokine-induced activation of AREG if mediated through the Wnt pathway?
      • In Figure 8 the authors demonstrate that CD4 T cells promote the maintenance of CD56dim NK cells likely through production of IL-2. Was AREG expression examined in these studies and if so could you conclude that CD4 T cells also promote AREG expression in this population?
      • In Figure 8D, although significant, the increase in percentage from 2-4% of the CD56neg is a minimal change. Could a higher dose of IL-2 be tested to see more substantial changes? Similar comment for Figure 10D, although significant, the increase in percentage from 2-4% of the NK population to CD56neg is not a large change with rapamycin. Could a higher dose be tested (that does not kill the cells) or a different inhibitor be used to see more substantial changes? More robust changes would strengthen the conclusions.
      • In Figure 10, was the increase in pmTOR with IL-2/IL-15 stimulation specifically observed in CD56dim cells (rather than total NK cells or CD56neg cells)? This would strength the conclusion that CD56dim is more metabolically functional than CD56neg.

      Minor

      • Approximately how many ILC from PLWH were submitted for single cell sequencing: Since this cell population was depleted in HIV+, was there a sufficient number of cells to interpret/publish DEG results in Figure 4?
      • On page 13 of text, it is a bit disconcerting to jump to Figure 7 then back to Figure 4. Would recommend reorganizing text or figure panels to flow better.
      • Supplemental Figure 1 and 2: Dots for ILC population are purple in color but legend is mislabeled as pink color.
      • Supplemental Figure 4: Dots for HIV+ controller are purple in color, but legend is mislabeled as pink in color.
      • Would recommend adding quantification of Figure 5A for all donors tested.
      • Figure 5B for IFNg it appears that part of the positive population is not gated on and thus percentages are likely higher if the gate is adjusted.
      • For Figure 5F, need to add to text and panel that PMA/I was used to stimulate as described in figure legend. Current figure and text read that the Wnt agonist alone was responsible for levels depicted in NK subsets.
      • On the x-axis of Figure 6F-J does "Lin-TBX21+" refer to Total NK cells? If so then would recommend sticking with nomenclature "Total NK" as in Figure 6A-B.
      • Would recommend labeling gates for populations of interest in Supplemental Figure 5B-C, Supplement Figure 6A, Figure 8A.
      • Other groups have shown that CD56neg are increased in HIV, functionally impaired and correlate with loss of CD4 T cells. Would recommend citing their studies.
      • Would recommend adding quantification of Figure 8A for all donors tested. Also, for the 3rd flow plot does "NK+CD4" mean purified NK cells + autologous CD4 T cells? If so, then would clarify in figure legend. It may strengthen conclusion for IL-2/IL-15 to show differentiation of NK cells is not contact dependent with T cell via transwell assay.

      Significance

      This study is valuable because it generates large datasets on the NK/ILC family from human blood that can be deposited in repositories and of special relevance to the HIV field because it examine show viral infection (controlled or not) effects these subsets.

      The strengths of the study are the cohort of PBMC samples utilized (HIV-, HIV+ viremic, HIV+ ART+ and HIV+ controlled), the multi-omics approach for transcriptome and epigenetics and the in vitro mechanistic studies identifying key regulators of NK cell differentiation/function.

      The study advances the field "mechanistically" by providing key targets that may be subject to therapeutic modulation in PLWH such as AREG, IL-2 signaling, IL-15 signaling, Wnt signaling, and mTOR activity (although more work will need to be done to examine these pathways using PBMCs from HIV+). This study advances the field "conceptually" by providing large datasets for others to mine if deposited.

      The audience for this study "basic research" such as immunologists in the HIV field or immunologist interested in ILC/NK biology.

      My field of expertise is infectious disease (HIV, SARS-CoV-2), basic immunology (ILC, NK, B cell) and autoimmune disease. Would recommend additional reviewers for assessment of metabolic genes/pathways in Figure 9-10.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Wang and colleagues present a very detailed, high quality paper describing phenotyping, transcriptional, epigenetic and functional differences between NK cells and ILCs in human peripheral blood. They overlay these studies which descriptions of differences in these populations in healthy and HIV infected (viremia, ART-treated, controllers), extending a their previous 2020 study.

      Overall, this paper serves as an important resource for the field. There are areas in which the manuscript could be modified to improve clarity and detail regarding rigor.

      My comments below are all addressable and therefore I class them all as 'major'.

      1. The authors describe ILCs as being 'permanently deleted' in HIV infection. As written, this can be misinterpreted to suggest complete ablation of this cell subset. This is clearly not the case. Moreover, there looks to be some restoration of ILCs in ART-treated participants. I suggest revising text to quantify the level of cell loss or replace the word deleted with reduced.
      2. The HIV EC are not clearly discussed in the paper and are not distinguished from viremic controllers. If ILCs are permanently reduced in this group, what does this suggest for the role of this cell subset in HIV control? Plasticity between ILC and NK cells is described. Is this plasticity relevant at all for HIV control, elite or otherwise?
      3. The authors write that ILCs have a primary role in cytokine secretion and then distinguish the ILCs from NKs....but NKs also secrete cytokines. Can the authors please clarify their text?
      4. Discussion (an also Results) - The authors use pseudotime analysis to show that CD56+NK cells sit between the ILCs and CD56-NKs. When initially described in the Discussion they don't really interpret this in terms of their (and others' observations) that CD56-NKs are increased in disease. Other groups have suggested CD56-NKs are dysfunctional. Here you show different granzyme profiles between CD56+ and CD56- NKs. Elsewhere you distinguish CD56dim and CD56- NKs in terms of functionality in HIV+ donors, though these cells cluster on the pseudotime analysis. The IL-2 and CD4+ T cell data add another layer of complexity.
        • a. Altogether, I am unclear on the authors' interpretation of their collective data.
        • b. Can you please clarify whether you are suggesting that CD56dimNKs are a distinct from CD56+ NKs but functional as opposed to CD56-NKs that are dysfunctional?
        • c. Are CD56-NKs end-stage or can they be rescued?
        • d. CD8 T cell number remain high post ART and very much drive the ongoing inverted CD4:CD8 ratio. Have the authors consider how and if the need of these cells for IL-2 impact recovery of NK cell populations?
      5. Discussion: It would be very helpful if the authors can pull this large volume of data together in a summary paragraph and possibly also a graphic.
      6. "Thus, GZMK+CD8+T cells appear to be the adaptive counterpart of CD56hiNK cells, representing an intermediate state between cytokine producing CD4+T cells and cytotoxic CD8+T cells" For me, the 'cytokine-producing CD4+ T cells' comes from in from left field here. Can the authors please clarify or was the intent to write cytokine-producing CD8+ T cells?
      7. Methods: Were Pearson correlations applied because of the large 'n' or were data first tested for normality?
      8. Methods: Please clearly justify the use of t-tests throughout the manuscript rather than non-parametric based tests.
      9. Methods: How many cells were acquired in flow cytometry? How many ILCs were acquired in healthy/HIV+ donors for these studies? Did this create limitations on interpretation of phenotypic data?
      10. Methods: How was the cytokine concentrations used for in vitro assays determined?
      11. Figure: In Figure 4A, should it be '+ILC- ' or '+ILC' (no negative symbol)?
      12. It's unclear from you single cell analysis how many cells were acquired for each of the 4 subsets. I assume less ILCs were analyzed. If so, can you please clarify for the non-bioinformatician how your bioinformatic analysis took these differences into account?

      Significance

      Overall, this paper serves as an important resource for the field.

      There are areas in which the manuscript could be modified to improve clarity and detail regarding rigor (see above). The overall message of this work for understanding HIV pathogenesis is unclear but can be addressed.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):


      Summary:

      In this manuscript, Roberts et al. hypothesised that the 5:2 diet (a popular form of IF, a dietary strategy within the Intermittent fasting that is thought to increase adult hippocampal neurogenesis - AHN) would enhance AHN in a ghrelin-dependent manner. To do this, the Authors used immunohistochemistry to quantify new adult-born neurons and new neural stem cells in the hippocampal dentate gyrus of adolescent and adult wild-type mice and mice lacking the ghrelin receptor, following six weeks on a 5:2 diet. They report an age-related decline in neurogenic processes and identify a novel role for ghrelin-receptor in regulating the formation of new adult

      born neural stem cells in an age-dependent manner. However, the 5:2 diet did not affect new neuron or neural stem cell formation in the dentate gyrus, nor did alter performance on a spatial learning and memory task. They conclude that the 5:2 diet used in their study does not increase AHN or improve associated spatial memory function.

      Major comments:

      One criticism might be the fact that many aspects are addressed at the same time. For instance it is not fully clear the role of ghrelin with respect to testing the DR effects on AHN. Although the link between ghrelin, CR and AHN is explained by citing several previous studies, it is difficult to identify the main focus of the study. Maybe this is due to the fact that the Authors analyse and comment throughout the paper the different experimental approaches used by different

      Authors to study effect of DR to AHN. This is not bad in principle, since I think the Authors have a deep knowledge of this complex matter, but all this results in a difficulty to follow the flow of the rationale in the manuscript.

      We appreciate the reviewer’s critique regarding the rationale of the studies presented in the manuscript.

      The role of ghrelin in the regulation of AHN by dietary interventions such as CR and IF is a major interest of our lab and is the main focus of the study. We, and others, have shown that ghrelin mediates the beneficial effects of CR on AHN. It is often assumed that ghrelin will elicit similar effects in other DR paradigms. We selected the 5:2 diet since it is widely practiced by humans, but it has not been well tested experimentally.

      We sought to empirically test how the neurogenic response to 5:2 differed between mice with functional and impaired ghrelin signaling.

      Given that plasma ghrelin levels and AHN are reduced during ageing, we also wanted to determine if 5:2 diet could slow or even prevent neurogenic decline in ageing mice.

      We will re-write the manuscript to ensure that our primary aim is clearly presented. We will also reanalyze the data, with genotype and 5:2 diet as key variables. To help maintain focus, the variable of age will be analyzed separately. This amendment will, we hope, help the reader follow the narrative of our manuscript.

      Another major point: the Discussion is too long. The Authors analyse all the possible reasons why different studies obtained different results concerning the effectiveness of DR in stimulating adult neurogenesis. Thus, the Discussion seems more as a review article dealing with different methods/experimental approaches to evaluate DR effects. We know that sometimes different results are due to different experimental approaches, yet, when an effect is strong and clear, it occurs in different situations. Thus, I think that the Authors must be less shy in expressing their conclusions, also reducing the methodological considerations. It is also well known that sometimes different results can be due to a study not well performed, or to biases from the Authors.

      In our discussion, we felt that it was particularly important to be as rigorous as possible in contextualizing our findings with other published data, whilst highlighting methodological differences. Our aim was to be as precise as possible when comparing findings across studies, however, this resulted in the narrative drifting from the key objectives of our study – namely, to determine the effect of 5:2 diet on neurogenesis and whether or not ghrelin-signalling regulated the process. We will amend the text of the discussion to ensure that the key points of our study are only compared and contrasted with relevant studies in the field. We thank the reviewer for their candid comment.


      Minor comments:

      • This sentence: "There is an age-related decline in adult hippocampal neurogenesis" cannot be put in the HIGHLIGHTS, since is a well known aspect of adult hippocampal neurogenesis

      The reviewer is correct to state this. Our study replicates this interesting age-related phenomenon. However, we will remove it from the ‘Highlights’ section.

      • Images in Figure 5 are not good quality.

      We apologise for this oversight. We will review each figure and panel to ensure that high-resolution images, that are appropriately annotated, are used throughout the manuscript.

      • In general, there are not a lot of images referring to microscopic/confocal photographs across the entire manuscript.

      We structured the manuscript with a limited number of figures and associated microscope captured panels, with the aim of presenting representative images to illustrate the nature and quality of the IHC protocols. However, we will amend the figures for the revised manuscript to provide representative microscopy images, with each group included and clearly annotated.

      • The last sentence of the Discussion "These findings suggest that distinct DR regimens differentially regulate neurogenesis in the adult hippocampus and that further studies are required to identify optimal protocols to support cognition during ageing" is meaningless in the context of the study, and in contrast with the main results. Honestly, my impression is that the Authors do not want to disappoint the conclusions of the previous studies; an alternative is that other Reviewers asked for this previously.

      We do not believe that this statement is contradictory to our findings, as distinct DR paradigms do appear to regulate AHN in different ways. However, we agree that we can be more explicit with regards to our own study findings and will prioritize the conclusions of our study over those of the entire field during revision.

      Reviewer #1 (Significance (Required)):

      value the significance of publishing studies that will advance the field.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):


      In this manuscript, Roberts et al. investigate the effect of the 5:2 diet on adult hippocampal neurogenesis (AHN) in mice via the ghrelin receptor. Many studies have reported benefits of dietary restriction (DR) on the brain that include increasing neurogenesis and enhancing cognitive function. However, neither the mechanisms underlying the effects of the 5:2 diet, nor potential benefits on the brain, are well understood. The authors hypothesize that the 5:2 diet enhances AHN and cognitive function via ghrelin-receptor signaling. To test this, they placedadolescent and adult ghrelin receptor knockout or wild type mice on either the 5:2 or ad libitum (AL) diet for 6 weeks, followed by spatial memory testing using an object in place (OIP) task. The authors also assessed changes in AHN via IHC using multiple markers for cell proliferation and neural stem cells. The authors observed a decrease in AHN due to age (from adolescent to adult), but not due to diet or ghrelin-receptor signaling. While loss of the ghrelin-receptor impaired spatial memory, the 5:2 diet did not affect cognitive function. The authors conclude that the 5:2 diet does not enhance AHN or spatial memory.

      We thank the reviewer for this summary. We note that there was a significant reduction in new neurones (BrdU+/NeuN+) cells in GHS-R null animals, regardless of age or diet (3 way ANOVA of age, genotype and diet (sexes pooled): Genotype P = 0.0290). These data suggest that the loss of ghrelin receptor signalling does impair AHN. However, we will re-analyse our data in light of reviewer 1 comments to remove ‘age’ as a variable. The new analyses and associated discussion will be presented in our revised manuscript.

      The authors use a 5:2 diet but fail to provide a basic characterization of this dietary intervention. For example, was the food intake assessed? In addition to the time restriction of the feeding, does this intervention also represent an overall caloric restriction or not? According to the provided results, the 5:2 diet does not appear to regulate adult hippocampal neurogenesis contrary to the authors' original hypothesis. Did the authors measure the effects of the 5:2 diet on any other organ system? Do they have any evidence that the intervention itself resulted in any well documented benefits in other cell types? Such data would provide a critical positive control for their intervention.

      This is an important point raised by the reviewer. Currently, we carefully quantified weight change across the duration of the study. However, we do not know whether the 5:2 diet reduced overall food intake or whether it impacted the timing of feeding events. To overcome this limitation, we will now test what impact the 5:2 dietary regime has on food intake and the timing of feeding. This study will allow us to correlate any changes with 5:2 diet. In addition, we have collected tibiae to quantify skeletal growth and have collected both liver and plasma (end point) samples which will be used to assess changes in the GH-IGF-1 axis. These additional studies will allow us to characterise the effects of the 5:2 paradigm on key indicators of physiological growth. These new data will be incorporated into the revised manuscript.

      Based on the effects of ghrelin in other dietary interventions, the authors speculate that the effect of the 5:2 diet is similarly mediated through ghrelin. However, the authors do not provide any basic characterization of ghrelin signaling to warrant this strong focus on the GSH-R mice. While the GSH-R mice display changes in NSC homeostasis and neurogenesis, none of these effects appear to be modified by the 5:2 diet. Thus, the inclusion of the GSH-R mice does not seem warranted and detracts from the main 5:2 diet focus of the manuscript.

      The role of ghrelin signalling via its receptor, GHSR, is a central tenet of our hypothesis. The loxTB-GHS-R null mouse is a well validated model of impaired ghrelin signalling, in which insertion of a transcriptional blocking cassette prevents expression of the ghrelin receptor (ZIgman et al.2005 JCI). We have previously shown that this mouse model is insensitive to calorie restriction (CR) mediated stimulation of AHN, in contrast to WT mice (Hornsby et al. 2016), justifying its suitability as a model for assessing the role of ghrelin signalling in response to DR interventions, such as the 5:2 paradigm. Whilst our findings do not support a role for ghrelin signalling in the context of the 5:2 diet studied, we did follow the scientific method to empirically test the stated hypothesis. While critiques of experimental design are welcome, the removal of these data may perpetuate publication bias in favour of positive outcomes and is something we wish to avoid.

      Neurogenesis is highly sensitive to stress. The 5:2 diet may be associated with stress which could counteract any benefits on neurogenesis in this experimental paradigm. Did the authors assess any measures of stress in their cohorts? Were the mice group housed or single housed?

      We thank the reviewer for raising this point. We have open-field recordings that will now be analysed to assess general locomotor activity, anxiety and exploration behaviour. Additionally, we will assess levels of the stress hormone, ACTH, in end point plasma samples. These datasets will be incorporated into the revised manuscript.

      The authors state that the 5:2 diet led to a greater reduction in body weight (31%) in adolescent males compared to other groups. However, it appears that the cohorts were not evenly balanced and the adolescent 5:2 male mice started out with a significantly higher starting weight (Supplementary Figure 1). The difference in starting weight at such a young age is significantly confounding the conclusion that the 5:2 diet is more effective at limiting weight gain specifically in this group.

      We thank the reviewer for highlighting this limitation. In the revision we will re-focus our discussion around the Δ Body weight repeated measures data, which compares the daily body weight of each group to its baseline value - thereby normalising any intergroup differences in starting weight. Furthermore, we will restructure figures 1 and S1 so that figure 1 presents only the repeated measure Δ Body weight data, while data for body weight both at baseline and on the final day of the study will be presented in figure S1.

      The authors count NSCs as Sox2+S100b- cells. However, the representative S100b staining does not look very convincing. Instead, it would be more appropriate to count Sox2+GFAP+ cells with a single vertical GFAP+ projection. Alternatively, the authors could also count Nestin-positive cells. Additionally, the authors label BrdU+ Sox2+ S100B- cells as "new NSCs". However, it appears that the BrdU labeling was performed approximately 6 weeks before the tissue was collected (Figure 1A). Thus, these BrdU-positive NSCs most likely represent label retaining/quiescent NSCs that divided during the labeling 6 weeks prior but have not proliferated since. As such, the term "new NSC" is misleading and would suggest an NSC that was actively dividing at the time of tissue collection.

      We apologise for presenting low-resolution images – these will be replaced by high-resolution images in the revised manuscript. In this study we have quantified the actively dividing BrdU+/Sox2+/S100B- cells that represent type II NSCs (rather than GFAP+ or Nestin+ type I NSCs) that have incorporated BrdU within the time period of the 6-week intervention. We appreciate the reviewer’s comments concerning the “new NSCs” terminology. We agree that we should be more specific in clarifying that the NSCs identified are those labelled during the 1st week of the 6-week intervention. We will amend this throughout the revised manuscript by re-naming these cells as 6-week old NSCs.

      Overall, this manuscript lacks a clear focus and narrative. Due to a lack of an affect by the 5:2 diet on hippocampal neurogenesis, the authors mostly highlight already well-known effects of aging and Grehlin/GSH-R on neurogenesis. Moreover, the authors repeatedly use age-related decline and morbidities as a rational for their study. However, they assess the effects of the 5:2 diet on neurogenesis only in adolescent and young mature but not aged mice.

      To provide greater clarity, and in accordance with reviewer 1’s comments, we will amend the text throughout to provide a focus on the data obtained. The objective of the changes will be to re-enforce the original study narrative. In relation to the use of the term ‘age-related decline’ or ‘age-related changes’, we think that these are appropriate to our study. Physiological ageing doesn’t begin at a specific point of chronological time, but is a process that is continuously ongoing. Indeed, our data is in agreement with previous studies reporting an age-related reduction in AHN at 6 months of age (e.g Kuhn et al.1996).

      Minor Points

      The authors combine the data from both male and female mice for most bar graphs. While this does not appear to matter for neurogenesis or behavioral readouts, there are very significant sexually dimorphic differences with respect to body size and weight. As such, male and female mice in Figure 1D,F should not be plotted in the same bar graph.

      We agree that sexual dimorphism exists with respect to body size and weight. We used distinct male and female symbols for each individual animal on these bar graphs, but do agree with the reviewer that sexual dimorphic differences should be emphasized. To achieve this, we will include additional supplementary graphs presenting the sex differences in starting weight, final weight, and weight change versus starting weight.

      The Figure legends are very brief and should be expanded to include basic information of the experimental design, statistical analyses etc.

      We thank the reviewer for this comment. We will provide specific experimental detaisl in the revised figure legends.

      Many figures include a representative image. However, it is often unclear if that is a representative image of a WT or mutant mouse, or a 5:2 or control group (Figure 2A, 3A, 4A, 5A).

      We structured the manuscript with a limited number of figures and associated microscope captured panels, with the aim of presenting representative images to illustrate the nature and quality of the IHC protocols. However, we will amend the figures for the revised manuscript to provide representative microscopy images, with each group included and clearly annotated.

      It would be helpful to provide representative images of DCX-positive cells in Figure 3A-F. Additionally, the authors should include a more extensive description of how this quantification was performed in the method section.

      We will revise the manuscript to provide representative high-resolution Dcx+ images displaying cells of each category. The method will also be revised to include a detailed description of how the quantification and classification was performed.

      The authors state "the hippocampal rostro-caudal axis (also known as the dorsoventral[] axis". However, the rostral-caudal and dorsal-central axis are usually considered perpendicular to one another.

      We agree that the dorso-ventral and rostral-caudal axes are anatomically distinct. The terms are often used interchangeably in the literature, which can lead misinterpretations (e.g the caudal portion of dorsal hippocampus is often mislabelled as ventral hippocampus). To avoid ambiguity, mislabelling or misidentification, we will include a supplementary figure detailing our anatomical definitions of the rostral and caudal poles of the hippocampus, alongside representative images and the bregma coordinates.

      Reviewer #2 (Significance (Required)):


      Understanding the mechanisms of a popular form of intermittent fasting (5:2 diet) that is not well understood is an interesting topic. Moreover, examining the effect of this form of intermittent fasting on the brain is timely. Notwithstanding, while the authors use multiple markers to validate the effect of the 5:2 diet on adult hippocampal neurogenesis, concerns regarding experimental design, validation, and data analysis weaken the conclusions being drawn.

      We thank reviewer 2 for this significance statement. We will revise the manuscript, as mentioned above, to clarify the experimental design, improve presentation of the data, and re-focus the narrative of the primary aims of the study.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):


      Summary


      In this study, Roberts and colleagues used a specific paradigm of intermitted fasting, the 5:2 diet, meaning 5 days ad libitum food and 2 non-consecutive days of fasting. They exposed adolescent and adult wild-type mice and ghrelin receptor knockout mice (GHS-R-/-) for 6 weeks to this paradigm, followed by 1 week ad libitum food. They further used the "object in place task" (OIP) to assess spatial memory performance. At the end of the dietary regime, the authors quantified newborn neurons and neural stem cells (NSCs) by immunohistochemistry. Roberts

      et al. show that the 5:2 diet does not change the proliferation of cells in the hippocampus, but report an increased number of immature neurons (based on DCX) in all the mice exposed to the 5:2 diet. This change however did not result in an increased number of mature adult-born neurons, as assessed by a BrdU birthdating paradigm. The authors further show diet-independent effects of the ghrelin receptor knockout, leading to less adult born neurons, but more NSCs in the adolescent mice and a lower performance in the OIP task.

      Major comments:

      The main conclusion of this study is that a specific type of intermitted fasting (5:2 diet) has no effects on NSC proliferation and neurogenesis. As there are several studies showing beneficial effects of intermitted fasting on adult neurogenesis, while other studies found no effects, it is important to better understand the effects of such a dietary paradigm.

      The experimental approaches used in this manuscript are mostly well explained, but it is overall rather difficult to follow the results part, as the authors always show the 4 experimental groups together (adolescent vs adult and wt vs GHS-R-/-). They highlight the main effects comparing all the groups, which most of the time is the factor "age". Age is a well-known and thus not surprising negative influencer of adult neurogenesis. Instead of focusing on the main tested factor, namely the difference in diet, the authors show example images of the two age classes

      (adolescent vs adult), which does not underly the major point they are making. Most of the time, they do not provide a post hoc analysis, so it is difficult to judge if the results with a significant main effect would be significant in a direct 1 to 1 comparison of the corresponding groups. The authors point out themselves that previous rodent studies did not use such a 5:2 feeding pattern, so having diet, age and genotype as factors at the same time makes the assessment of the diet effect more difficult.

      The manuscript would improve if the authors restructure their data to compare first the diet groups (adolescent wt AL vs 5:2 and in a separate comparison adult wt AL vs 5:2) and only in a later part of the results check if the Ghrelin receptor plays a role or not in this paradigm.

      We thank the reviewer for these comments. In line with comments from the other reviewers we will re-formulate the presentation of our datasets. We will remove ‘age’ as a key variable as age related changes are to be expected. For the revision, we will separate the adolescent and adult mouse data sets, plotting individual graphs for both. This should provide a clearer focus on 5:2 responses in both assessed genotypes.

      This re-configuration will impact the data being analysed and, therefore, the statistical analysis presented. In our original manuscript post hoc analyses were performed, however, only significant post hoc comparisons were highlighted (e.g figure 5). Non-significant post hoc comparisons have not been presented. In the method section of the revised manuscript, we will clarify that we’ll report post hoc differences when they are observed.

      During our study design, we decided to assess diet and genotype in parallel - as part of the same analysis. This seemed to us to be the most appropriate statistical method, so that we assessed dietary responses in both WT and GHS-R null mice.

      As this 5:2 is a very specific paradigm, it is furthermore difficult to compare these results to other studies and the conclusions are only valid for this specific pattern and timing of the intervention (6 weeks). It remains unclear why the authors have not first tried to establish a study with wildtype mice and a similar duration as in previous studies observing beneficial effects of intermitted fasting on neurogenesis. Like this, it would have been possible to make a statement if the 5:2 per se does not increase neurogenesis or if the 6 weeks exposure were just too short.

      The reviewer raises this relevant point which we considered during the study design period. Given that we had previously reported significant modulation of AHN with a relatively short period of 30% CR (14 days followed by 14 days AL refeeding (Hornsby et al.2016)), we predicted that a 6 week course on the 5:2 paradigm (totalling 12 days of complete food restriction over the 6 week period) would provide a similar dietary challenge. The fact that we did not observe similar changes in AHN with this 5:2 paradigm is notable.

      The graphical representation of the data could also be improved. Below are a few

      examples listed:

      1.) Figure 1 B and C, the same symbol and colours are used for the adolescent and adult animals, which makes the graphs hard to read. One colour and symbol per group throughout the manuscript would be better.

      We thank the reviewer for this comment. We will amend the presentation of the graphs throughout the manuscript to ensure that they are easier to interpret.

      2.) The authors found no differences in the total number of Ki67 positive cells in the DG. However, Ki67 staining does not allow to conclude the type of cell which is proliferating. It would thus strengthen the findings if this analysis was combined with different markers, such as Sox2, GFAP and DCX.

      Double labelling of Ki67 positive cells would allow for further insight into the identity of distinct proliferating cell populations. However, quantifying Ki67 immunopositive cells within the sub-granular zone of the GCL, as a single marker, is commonly used in studies of AHN. Given that studies of intermittent fasting, calorie restriction and treatment with exogenous acyl-ghrelin report no effect on NPC cell division, we decided not to pursue this line of inquiry.

      3.) In Figure 3, the authors say that the diet increases the number of DCX in adolescent and adult mice, which is not clear when looking at the graph in 3B. Are there any significant differences when directly comparing the corresponding groups, for instance the WT AL vs the WT 5:2? It is further not clear how the authors distinguished the different types of DCX morphology-wise. The quantification in C and D would need to be illustrated by example images. Furthermore, the colour-code used in these graphs is not explained and remains unclear

      While the 3 way ANOVA does yield a significant overall effect for diet, we agree that it is indeed difficult to see a difference on the graph, although the mean values of the adolescent 5:2 animals are more prominent than the AL counterparts. Mean +/- SEM will be provided in the supplementary section of the revised manuscript. Furthermore, we will clarify the method used to identify distinct DCX+ morphologies, include representative high-resolution images of each DCX+ cell category, and amend the colour coding to avoid misinterpretation.

      4) In Figure 5, the authors show that the number of new NSCs is significantly increased in the adolescent GHS-R-/- mice, independent of the diet, but this increase does not persist in the adult mice. They conclude that "the removal of GHS-R has a detrimental effect on the regulation of new NSC number..." this claim is not substantiated and needs to be reformulated. As the GHS-R-/- mice have a transcriptional blockage of Ghrs since start of its expression, would such an effect on NSC regulation not result in an overall difference in brain development, as ghrelin is also important during embryonic development?

      This is an interesting point. However, we disagree that the statement "the removal of GHS-R has a detrimental effect on the regulation of new NSC number..." is unsubstantiated, since it does not exclude any developmental deficits in these mice that may account for the differences observed. Nonetheless, we will rephrase the sentence to clarify our intended point and remove any ambiguity.

      5.) In Figure 6, the authors asses spatial memory performance with a single behavioral test, the OIP. As these kind of tests are influenced by the animal's motivation to explore, it's anxiety levels, physical parameters (movement) etc., the interpretation of such a test without any additional measured parameters can be problematic. The authors claim that the loss of GHS-R expression impairs spatial memory performance. As the discrimination ratio was calculated, it is not possible to see if there is an overall difference in exploration time between genotypes. This would be a good additional information to display.

      We thank the reviewer for this insight. We have open-field recordings that will now be analysed to assess general locomotor activity, anxiety and exploration behaviour. These data, alongside exploratory time of the mice during the OIP task will be incorporated into the revised manuscript.

      Besides these points listed above, the methods are presented in such a way that they can be reproduced. The experiments contained 10-15 mice per group, which is a large enough group to perform statistical analyses. As mentioned above, the statistical analysis over all 4 groups with p-values for the main effects should be followed by post hoc multiple comparison tests to allow the direct comparison of the corresponding groups.

      Reviewer #3 (Significance (Required)):

      In the last years, growing evidences suggested that IF might have positive effect on health in general and also for neurogenesis. However, a few recent studies report no effects on neurogenesis, using different IF paradigms. This study adds another proof that not all IF paradigms influence neurogenesis and shows that more work needs to be done to better understand when and how IF can have beneficial effects. This is an important finding for the neurogenesis field, but the results are only valid for this specific paradigm used here, which limits its significance. The reporting of such negative findings is however still important, as it shows that IF is not just a universal way to increase neurogenesis. In the end, such findings might have the potential to bring the field together to come up with a more standardized dietary intervention paradigm, which would be robust enough to give similar results across laboratories and mouse strains, and would allow to test the effect of genetic mutations on dietary influences of neurogenesis.

      We thank the reviewer for their insightful and thorough feedback.

      1. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      The manuscript has not been revised at this stage.

      2. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      • *

      We have included in our replies to the reviewers a description of the amendments that we will make to our manuscript. Two requested revisions stand out as being unnecessary or cannot be provided within the scope of a revision.

      The first was the request to perform the 5:2 study in older mice. This an interesting suggestion, however, the expense and time needed to maintain mice into old age (e.g >18 months) cannot be provided within the scope of our revision. In addition, given that we report no effect of the 5:2 paradigm on AHN in adolescent (7 week old) and adult (7 month old) mice, there is less justification for such a study in older mice.

      The second request, that we disagree with, was to remove data relating to the GHS-R null mice (see reviewer 2, point 2). The role of ghrelin signalling via its receptor, GHS-R, is a central tenet of our hypothesis. Whilst our findings do not support a role for ghrelin signalling in the context of the 5:2 diet studied, we followed the scientific method to empirically test the stated hypothesis. While critiques of experimental design are welcome, the removal of such data may perpetuate publication bias in favour of positive outcomes and is something we wish to avoid.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this study, Roberts and colleagues used a specific paradigm of intermitted fasting, the 5:2 diet, meaning 5 days ad libitum food and 2 non-consecutive days of fasting. They exposed adolescent and adult wildtype mice and ghrelin receptor knockout mice (GHS-R-/-) for 6 weeks to this paradigm, followed by 1 week ad libitum food. They further used the "object in place task" (OIP) to assess spatial memory performance. At the end of the dietary regime, the authors quantified newborn neurons and neural stem cells (NSCs) by immunohistochemistry. Roberts et al. show that the 5:2 diet does not change the proliferation of cells in the hippocampus, but report an increased number of immature neurons (based on DCX) in all the mice exposed to the 5:2 diet. This change however did not result in an increased number of mature adult-born neurons, as assessed by a BrdU-birthdating paradigm. The authors further show diet-independent effects of the ghrelin receptor knockout, leading to less adult born neurons, but more NSCs in the adolescent mice and a lower performance in the OIP task.

      Major comments:

      The main conclusion of this study is that a specific type of intermitted fasting (5:2 diet) has no effects on NSC proliferation and neurogenesis. As there are several studies showing beneficial effects of intermitted fasting on adult neurogenesis, while other studies found no effects, it is important to better understand the effects of such a dietary paradigm.

      The experimental approaches used in this manuscript are mostly well explained, but it is overall rather difficult to follow the results part, as the authors always show the 4 experimental groups together (adolescent vs adult and wt vs GHS-R-/-). They highlight the main effects comparing all the groups, which most of the time is the factor "age". Age is a well-known and thus not surprising negative influencer of adult neurogenesis. Instead of focusing on the main tested factor, namely the difference in diet, the authors show example images of the two age classes (adolescent vs adult), which does not underly the major point they are making. Most of the time, they do not provide a post hoc analysis, so it is difficult to judge if the results with a significant main effect would be significant in a direct 1 to 1 comparison of the corresponding groups. The authors point out themselves that previous rodent studies did not use such a 5:2 feeding pattern, so having diet, age and genotype as factors at the same time makes the assessment of the diet effect more difficult. The manuscript would improve if the authors restructure their data to compare first the diet groups (adolescent wt AL vs 5:2 and in a separate comparison adult wt AL vs 5:2) and only in a later part of the results check if the Ghrelin receptor plays a role or not in this paradigm.

      As this 5:2 is a very specific paradigm, it is furthermore difficult to compare these results to other studies and the conclusions are only valid for this specific pattern and timing of the intervention (6 weeks). It remains unclear why the authors have not first tried to establish a study with wildtype mice and a similar duration as in previous studies observing beneficial effects of intermitted fasting on neurogenesis. Like this, it would have been possible to make a statement if the 5:2 per se does not increase neurogenesis or if the 6 weeks exposure were just too short.

      The graphical representation of the data could also be improved. Below are a few examples listed:

      1. Figure 1 B and C, the same symbol and colours are used for the adolescent and adult animals, which makes the graphs hard to read. One colour and symbol per group throughout the manuscript would be better.
      2. The authors found no differences in the total number of Ki67 positive cells in the DG. However, Ki67 staining does not allow to conclude the type of cell which is proliferating. It would thus strengthen the findings if this analysis was combined with different markers, such as Sox2, GFAP and DCX.
      3. In Figure 3, the authors say that the diet increases the number of DCX in adolescent and adult mice, which is not clear when looking at the graph in 3B. Are there any significant differences when directly comparing the corresponding groups, for instance the WT AL vs the WT 5:2? It is further not clear how the authors distinguished the different types of DCX morphology-wise. The quantification in C and D would need to be illustrated by example images. Furthermore, the colour-code used in these graphs is not explained and remains unclear.
      4. In Figure 5, the authors show that the number of new NSCs is significantly increased in the adolescent GHS-R-/- mice, independent of the diet, but this increase does not persist in the adult mice. They conclude that "the removal of GHS-R has a detrimental effect on the regulation of new NSC number..." this claim is not substantiated and needs to be reformulated. As the GHS-R-/- mice have a transcriptional blockage of Ghrs since start of its expression, would such an effect on NSC regulation not result in an overall difference in brain development, as ghrelin is also important during embryonic development?
      5. In Figure 6, the authors asses spatial memory performance with a single behavioral test, the OIP. As these kind of tests are influenced by the animal's motivation to explore, it's anxiety levels, physical parameters (movement) etc., the interpretation of such a test without any additional measured parameters can be problematic. The authors claim that the loss of GHS-R expression impairs spatial memory performance. As the discrimination ratio was calculated, it is not possible to see if there is an overall difference in exploration time between genotypes. This would be a good additional information to display.

      Besides these points listed above, the methods are presented in such a way that they can be reproduced. The experiments contained 10-15 mice per group, which is a large enough group to perform statistical analyses. As mentioned above, the statistical analysis over all 4 groups with p-values for the main effects should be followed by post hoc multiple comparison tests to allow the direct comparison of the corresponding groups.

      Minor comments:

      The authors should provide more information in the figure legends and always show representative images of the parameters analyzed. Some of the images are also of low resolution and should be replaced with higher resolution images (for instance Fig. 5A). The significant P values of the multiple comparison between groups should be added into the figures.

      Significance

      In the last years, growing evidences suggested that IF might have positive effect on health in general and also for neurogenesis. However, a few recent studies report no effects on neurogenesis, using different IF paradigms. This study adds another proof that not all IF paradigms influence neurogenesis and shows that more work needs to be done to better understand when and how IF can have beneficial effects. This is an important finding for the neurogenesis field, but the results are only valid for this specific paradigm used here, which limits its significance. The reporting of such negative findings is however still important, as it shows that IF is not just a universal way to increase neurogenesis. In the end, such findings might have the potential to bring the field together to come up with a more standardized dietary intervention paradigm, which would be robust enough to give similar results across laboratories and mouse strains, and would allow to test the effect of genetic mutations on dietary influences of neurogenesis.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this manuscript, Roberts et al. investigate the effect of the 5:2 diet on adult hippocampal neurogenesis (AHN) in mice via the ghrelin receptor. Many studies have reported benefits of dietary restriction (DR) on the brain that include increasing neurogenesis and enhancing cognitive function. However, neither the mechanisms underlying the effects of the 5:2 diet, nor potential benefits on the brain, are well understood. The authors hypothesize that the 5:2 diet enhances AHN and cognitive function via ghrelin-receptor signaling. To test this, they placed adolescent and adult ghrelin receptor knockout or wild type mice on either the 5:2 or ad libitum (AL) diet for 6 weeks, followed by spatial memory testing using an object in place (OIP) task. The authors also assessed changes in AHN via IHC using multiple markers for cell proliferation and neural stem cells. The authors observed a decrease in AHN due to age (from adolescent to adult), but not due to diet or ghrelin-receptor signaling. While loss of the ghrelin-receptor impaired spatial memory, the 5:2 diet did not affect cognitive function. The authors conclude that the 5:2 diet does not enhance AHN or spatial memory.

      Major Points

      1. The authors use a 5:2 diet but fail to provide a basic characterization of this dietary intervention. For example, was the food intake assessed? In addition to the time restriction of the feeding, does this intervention also represent an overall caloric restriction or not? According to the provided results, the 5:2 diet does not appear to regulate adult hippocampal neurogenesis contrary to the authors' original hypothesis. Did the authors measure the effects of the 5:2 diet on any other organ system? Do they have any evidence that the intervention itself resulted in any well documented benefits in other cell types? Such data would provide a critical positive control for their intervention.
      2. Based on the effects of grehlin in other dietary interventions, the authors speculate that the effect of the 5:2 diet is similarly mediated through grehlin. However, the authors do not provide any basic characterization of grehlin signaling to warrant this strong focus on the GSH-R mice. While the GSH-R mice display changes in NSC homeostasis and neurogenesis, none of these effects appear to be modified by the 5:2 diet. Thus, the inclusion of the GSH-R mice does not seem warranted and detracts from the main 5:2 diet focus of the manuscript.
      3. Neurogenesis is highly sensitive to stress. The 5:2 diet may be associated with stress which could counteract any benefits on neurogenesis in this experimental paradigm. Did the authors assess any measures of stress in their cohorts? Were the mice group housed or single housed?
      4. The authors state that the 5:2 diet led to a greater reduction in body weight (31%) in adolescent males compared to other groups. However, it appears that the cohorts were not evenly balanced and the adolescent 5:2 male mice started out with a significantly higher starting weight (Supplementary Figure 1). The difference in starting weight at such a young age is significantly confounding the conclusion that the 5:2 diet is more effective at limiting weight gain specifically in this group.
      5. The authors count NSCs as Sox2+S100b- cells. However, the representative S100b staining does not look very convincing. Instead, it would be more appropriate to count Sox2+GFAP+ cells with a single vertical GFAP+ projection. Alternatively, the authors could also count Nestin-positive cells. Additionally, the authors label BrdU+ Sox2+ S100B- cells as "new NSCs". However, it appears that the BrdU labeling was performed approximately 6 weeks before the tissue was collected (Figure 1A). Thus, these BrdU-positive NSCs most likely represent label-retaining/quiescent NSCs that divided during the labeling 6 weeks prior but have not proliferated since. As such, the term "new NSC" is misleading and would suggest an NSC that was actively dividing at the time of tissue collection.
      6. Overall, this manuscript lacks a clear focus and narrative. Due to a lack of an affect by the 5:2 diet on hippocampal neurogenesis, the authors mostly highlight already well-known effects of aging and Grehlin/GSH-R on neurogenesis. Moreover, the authors repeatedly use age-related decline and morbidities as a rational for their study. However, they assess the effects of the 5:2 diet on neurogenesis only in adolescent and young mature but not aged mice.

      Minor Points

      1. The authors combine the data from both male and female mice for most bar graphs. While this does not appear to matter for neurogenesis or behavioral read-outs, there are very significant sexually dimorphic differences with respect to body size and weight. As such, male and female mice in Figure 1D,F should not be plotted in the same bar graph.
      2. The Figure legends are very brief and should be expanded to include basic information of the experimental design, statistical analyses etc.
      3. Many figures include a representative image. However, it is often unclear if that is a representative image of a WT or mutant mouse, or a 5:2 or control group (Figure 2A, 3A, 4A, 5A).
      4. It would be helpful to provide representative images of DCX-positive cells in Figure 3A-F. Additionally, the authors should include a more extensive description of how this quantification was performed in the method section.
      5. The authors state "the hippocampal rostro-caudal axis (also known as the dorso-ventral [] axis". However, the rostral-caudal and dorsal-central axis are usually considered perpendicular to one another.

      Significance

      Understanding the mechanisms of a popular form of intermittent fasting (5:2 diet) that is not well understood is an interesting topic. Moreover, examining the effect of this form of intermittent fasting on the brain is timely. Notwithstanding, while the authors use multiple markers to validate the effect of the 5:2 diet on adult hippocampal neurogenesis, concerns regarding experimental design, validation, and data analysis weaken the conclusions being drawn.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript, Roberts et al. hypothesised that the 5:2 diet (a popular form of IF, a dietary strategy within the Intermittent fasting that is thought to increase adult hippocampal neurogenesis - AHN) would enhance AHN in a ghrelin-dependent manner. To do this, the Authors used immunohistochemistry to quantify new adult-born neurons and new neural stem cells in the hippocampal dentate gyrus of adolescent and adult wild-type mice and mice lacking the ghrelin receptor, following six weeks on a 5:2 diet. They report an age-related decline in neurogenic processes and identify a novel role for ghrelin-receptor in regulating the formation of new adult born neural stem cells in an age-dependent manner. However, the 5:2 diet did not affect new neuron or neural stem cell formation in the dentate gyrus, nor did alter performance on a spatial learning and memory task. They conclude that the 5:2 diet used in their study does not increase AHN or improve associated spatial memory function.

      Major comments:

      I think that the key conclusions are convincing and no further experiments are required. Maybe some parts of the text should be rewritten (see below). The methods are presented in such a way that they can be reproduced, and the experiments adequately replicated with proper statistical analysis.

      • One criticism might be the fact that many aspects are addressed at the same time. For instance it is not fully clear the role of ghrelin with respect to testing the DR effects on AHN. Although the link between ghrelin, CR and AHN is explained by citing several previous studies, it is difficult to identify the main focus of the study. Maybe this is due to the fact that the Authors analyse and comment throughout the paper the different experimental approaches used by different Authors to study effect of DR to AHN. This is not bad in principle, since I think the Authors have a deep knowledge of this complex matter, but all this results in a difficulty to follow the flow of the rationale in the manuscript.
      • Another major point: the Discussioni is too long. The Authors analyse all the possible reasons why different studies obtained different results concerning the effectiveness of DR in stimulating adult neurogenesis. Thus, the Discussion seems more as a review article dealing with different methods/experimental approaches to evaluate DR effects. We know that sometimes different results are due to different experimental approaches, yet, when an effect is strong and clear, it occurs in different situations. Thus, I think that the Authors must be less shy in expressing their conclusions, also reducing the methodological considerations. It is also well known that sometimes different results can be due to a study not well performed, or to biases from the Authors.

      Minor comments:

      • This sentence: "There is an age-related decline in adult hippocampal neurogenesis" cannot be put in the HIGHLIGHTS, since is a well known aspect of adult hippocampal neurogenesis
      • Images in Figure 5 are not good quality.
      • In general, there are not a lot of images refferring to microscopic/confocal photographs across the entire manuscript.
      • The last sentence of the Discussion "These findings suggest that distinct DR regimens differentially regulate neurogenesis in the adult hippocampus and that further studies are required to identify optimal protocols to support cognition during ageing" is meaningless in the context of the study, and in contrast with the main results.

      Honestly, my impression is that the Authors do not want to disappoint the conclusions of the previous studies; an alternative is that other Reviewers asked for this previously.

      Significance

      The significance of this study relies on the fact that adult neurogenesis field (AN) has been often damaged by the search of "positive" results, aiming at showing that AN does occur "always and everywhere" and that most internal/external stimuli do increase it. This attitude created a bias in the field, persuading many scientists that a result in AN is worthy of publication (or of high impact factor publication) only when a positive result is found.

      The Author cite in the Discussion the work by Gabarro-Solanas et al. (preprint), which share the same conclusion although analysing different aspect of neurogenesis. Both seems sound studies, substantially balanced in their conclusions.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      The authors do not wish to provide a response at this time.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this manuscript, Veen and colleagues investigate a role for hairy-related 6 (her6) and prospero homeobox 1 (prox1) in the regeneration of photoreceptors in the zebrafish retina. The candidate genes, her6 and prox1 were chosen for investigation based on initial analyses of genes implicated in the dedifferentiation of cells in the Drosophila brain. Using a chemogenetic approach to ablate long-wavelength cone photoreceptors (red cones), the authors investigate the role of her6 and prox1 in mediating the regenerative response of Müller glia and progenitors derived from these cells in the production of photoreceptors. They use morpholinos to identify that her6 and prox1 likely cross regulate each other.

      The authors state that the loss of Her6 leads to an increase in the number of photoreceptors after injury. However, the marker they use is a Zpr1 antibody, which marks both red and green cones but no other cone type nor rods. Thus what they show is an increase in red and green cones, not all photoreceptors. More markers would be needed to make that point. It also remains possible that the loss of Her6 leads to an increase in the number of overall cells generated after red cone ablation and thus Her6 is not exclusively linked with photoreceptor regeneration. Previous work has shown that while the regenerative response is biased toward the production of cell-types lost as a result of injury, other cell-types are also generated (Powell et al., 2016). It would be important to follow up whether other retinal cell-types are also generated. While her6 and prox1 in conjunction might regenerate (some?) photoreceptors, her6 alone might have a broader effect.

      The segue between the first and second sections of the results felt abrupt to me. I wonder whether the authors could instead follow this sequence:

      1. Identifying candidate genes that regulate de-differentiation in the Drosophila. 2.Investigating whether the candidate genes play a role in the dedifferentiation that Müller cells must go through in their regenerative response.
      2. To test point 2, set up an ablation paradigm - MTZ mediated red cone ablation etc. etc.<br /> The authors noted several genes as being mediators of dedifferentiation in the Drosophila. What was their reasoning for choosing the 2 they ended up pursuing in the zebrafish retina?

      I do not understand why an increase in the number of PH3+ cells in Her6 MO treated retinae indicates a faster cell-cycle? Could it also mean that cells are stuck in the G2-M phase (marked by PH3) longer? There are other approaches to measure whether cell-cycle is sped up, as the authors suggest.

      Minor suggestions to improve clarity:

      Introduction: Noel et al., 2021, in my view, is not necessarily the reference most appropriate for a broad statement of how vision works. It appears to be specifically about zebrafish photoreceptors.

      Methods:<br /> Fish husbandry and set up<br /> The authors state that the light/dark cycle in their fish facility is 12/12h. To my knowledge, this is not the standard practice; it is usually 14/10h light/dark respectively. (See Aleström et al., Laboratory Animals 2020, Vol. 54(3) 213-224).

      No references are given for the Tg(lws2:nfsb-mCherry) and the Tg (her4.1:dRFP) lines. Additionally, the reference for Tg(gfap:eGFP) is incorrect. This should be Bernardos and Raymond 2006 Gene Expr Patterns 2006 Oct;6(8):1007-13. doi: 10.1016/j.modgep.2006.04.006.

      Immunostaining fish samples<br /> 'The slides were covered with Parafilm and tissue was dampened.....'<br /> Here a reader may be confused by whether the authors refer to retinal tissue - presumably the authors mean paper tissue to create a humidified chamber.

      Microscopy and analysis<br /> A bit more detail here would help - for example, are the 40x and 60x objective air or immersion objectives?

      Analysis of zebrafish retinal sections<br /> It is unusual to quantify the percentage of cells expressing specific markers by counting voxels. Can the authors clarify why they took this approach?

      Are the micrographs depicted in the figures, single confocal planes, max. intensity projections of several confocal planes?

      mCherry labelled photoreceptors are sometimes difficult to appreciate in the micrographs of the main figures - eg. Fig 2C. Here it appears that mCherry is not expressed by the entire cell. It would help to show just the mCherry on its own.

      Fig 4 -GHI - it would help to see the double labelled cells prox1 and zpr1 at higher magnification

      Supplementary Fig 3 - PCNA, not GS is depicted in pink. GS not GFAP is in green?

      Significance

      This is an interesting study that pursues candidate genes derived from Drosophila screens to highlight pathways that might operate in the regeneration of cells that were previously ablated in the vertebrate CNS.

      Approaches such as the ones used in this study contribute to our overall knowledge about coaxing regeneration in the context of the mammalian CNS.<br /> The work here should be of interest to biologists interested in regeneration.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The manuscript by Veen and colleagues assesses two transcription factors, and makes the novel conclusion that they regulate each other in a manner that is required for photoreceptor regeneration in zebrafish. The work is potentially exciting, because similar findings from zebrafish have found traction in translation to mammals, where regeneration of photoreceptors has surprising promise to treat blindness.

      The authors have been ambitious in there approach to the problem by disrupting these genes in the adult retina, which is the appropriate context required to assess photoreceptor regeneration. Because technologies for conditional gene ablation are not very available in zebrafish, these authors use electroporation of morpholinos to accomplish their goals. Where most researchers have abandoned this very challenging approach, it seems these authors have found some success.

      Together the technical feat and intriguing conclusions combine, in my opinion, to make this paper worthy of serious consideration for publication. I would hate to see it not be made available for public consumption. Its' merits are strong, but some shortcomings in communication and interpretation nevertheless should be addressed. I suggest Major and minor concerns below.

      I suspect that doing further experiments would be asking a lot of the authors at this point, but I point out some possible experiments that would improve the manuscript if my suspicion is wrong. Without further experiments, I suggest much of the writing needs to be carefully qualified and less deterministic.

      Major concerns:

      1. The authors need to quantify impacts of MO without MTZ (or with MTZ on wildtype fish without the nfsb Tg). Alternatively, the interpretation needs to be softened considerably. Observations made include increased proliferation and more PR, but these are not clearly connected by the data in a way that allows you to claim "more regeneration". A plausible alternative is that the MO was protective, and the MTZ did not kill as many PR cells when the genes were knocked down. Moreover, Figure 3 shows that only one of two proliferation markers is increased (how to explain?) and only at one timepoint, so this may be a fluke. I suggest softening the conclusions to state that gene knockdown increased proliferation and led to increased PR abundance, thus implying improved regeneration (and provide the alternative interpretation). E.g. the punchy titles of Figures 3, 5, 7 are not supported by the data; neither is text in Discussion bottom of page 15.
      2. Fig 5 quantification of proliferation is needed if the interpretation is about regeneration (see comment 1). Instead, the conclusions could be reworked to match the data.
      3. I'm unclear on why these experiments couldn't have been completed in mutant zebrafish. Are they not viable?
      4. Sequence and chemistry of the MO knockdown reagents must be provided. If they are similar to previously published MO reagents (several for both gene targets have been published) then this might be used to improve confidence of MO efficacy. Were the MOs modified to facilitate electroporation? The gene targets also must be listed with less ambiguity, e.g. when "prox1" is mentioned, do you mean prox1a? Without these details, the experiments fail to provide enough info to permit replication.
      5. A suggestion to improve the text [no need for new experiments]: The Discussion should address assumptions about MO knockdowns in regards to: a) efficacy, and b) specificity. E.g. (a) future experiments might challenge the efficacy by measuring the abundance of genes that are regulated by prox1 and her6. E.g. (b) future experiments should challenge the specificity of the MO reagents by testing to see if the same result is attained with disparate MO oligos, by phenocopy with CRISPR, performing the work in mutants (I assume rescuing the knockdown by replacing the target gene is not feasible by electroporation, but that would be ideal).
      6. The claim that Prox1 is in PR (Figure 4 title) is not convincing. Does the scRNA-Seq confirm this, and why not invoke this data to clarify more concretely? Figure 4A shows a lot of green prox1 signal, but that is very inconsistent with what is shown in Figure 4G, where no prox1 signal is observed in the PR. On page 12, which relates to this Figure, the authors instead say that Prox1 is detected in PR after injury (a big difference compared to title of Fig4!). Fig4I' shows some signal in the area of the PR, but the overlap of the signals is not convincing and it looks to mostly be adjacent to the zpr1 signal; maybe it is Muller glia or some other cone type, or rod cells. If it is Muller glia or rods, then the interpretation needs to be adjusted. Regardless, it is unclear if this is in LWS cones, which is presumably what regenerates after LWS cone ablation(?)
      7. Figures showing prox1 or Hes1 IHC (Fig 2, 4, 6, 7 & Supps) - how many replicates were evaluated (how many individual fish were assessed) to determine that these IHCs are representative.
      8. Some of the data, i.e. some photomicrographs of IHC, are used repeatedly in separate Figures. I cannot find a comment in the manuscript acknowledging this. Panel F is identical in Figures 3 and 5, and panel 7E is identical to Supp panel S5E. My opinion here is mixed: I think re-using these Figures is marginally ok if it is explicitly and repeatedly described (e.g. in Methods, Results, and Fig Legends), but I also think that if the authors have replicated the experiments sufficiently, then they will surely have some other micrographs to use. My opinion is tipped into grumpy and worried about good data integrity, because in both cases the lines that indicate retinal layers are drawn in different places between the replicated panels; that could happen out of sloppy-ness or instead could be a ploy to help hide the Figure recycling. I prefer to assume the authors are of good intent and have made an error (indeed the panels are all meant to represent the same control treatments) but I would not want the manuscript published without explicitly rectifying this issue. Minimally the replicate micrographs should be explicitly acknowledged. My search for other duplicated panels was not exhaustive.

      Minor points:

      • a) Page numbers and line numbers would make it less work to prepare a constructive critique of this paper. Similarly, the Figures need Figure numbers.
      • b) On the histograms, does each dot represent an individual fish? (i.e. an independent biological replicate).
      • c) It would be lovely to learn that left vs. right eyes were used as internal controls in each case, and then the authors could plot the difference between control & treatment within each individual. Perhaps this would allow normalizations or more powerful statistical tests, and then the PCNA data would be more aligned with the conclusions, for example.
      • d) Figure 5: expected to see quantification of PH3 here, akin to Figure 3.
      • e) P. 6 secondary antibodies probably did not come from ZIRC
      • f) More should be done to acknowledge past papers examining Her6, Hes1 and Prox1 in vertebrate retina.
      • g) I do not see how the final section of the manuscript (beginning with "Insulinoma" to the end of the Discussion is relevant to the paper. A very odd ending to this manuscript. Some sentences (especially beginning the section with a topic sentence) would be need to be added if this writing is to remain.
      • h) The final two sentences of the Abstract were interesting - these ideas are unfortunately not Discussed again later in the manuscript.
      • i) What is the source of the transgenic zebrafish line Tg(lws2:nfsb-mCherry) ? Is it maybe from Wang...Yan 2020 PLOS BIOL (PMID: 32168317)? If yes, it would be ideal to provide an allele number. If no, construction of this line should be described.
      • j) Bottom page 4 says "Two transgenic lines used were crossed" but only one line is mentioned.
      • k) Then on page 7, the text says "Zebrafish line Tg(her4.1:dRFP/gfap:GFP/lws2:nfsb-mCherry) for red cone ablation, ..." which muddies the waters even further.
      • l) When the antibody zpr1 is described, it is mentioned as a "zinc finger" (many instances throughout). This is incorrect, and the words "zinc finger" can be removed.
      • m) It would be useful to state in Methods, and at first occurrence in figure legends, that the antibody ZPR1 labels double cones (the red & green cones), and these make up about half of the cone photoreceptor population. (i.e. not all cones are evaluated in this work).
      • n) Figure 2 desperately needs a panel describing methodological timeline, similar to Fig 1D. It is really hard to figure what happened when (e.g. when did ablation occur? When was the MO delivered?). This also should be described more explicitly in the Methods, which seem quite vague on this point: Electroporated fish went straight into MTZ?
      • o) Throughout the authors refer to injury, e.g. hpi = hours post injury. I don't think this represents the methods very well at all, because they have ablated the cells, not injured them. Injured cells don't regenerate (because they are not dead). This miswording contributes to confusion interpreting the Figures, which are not decipherable as stand-alone items.
      • p) There is a really weird yellow dotted line that spans between and ACROSS adjacent panels in Figure 2. It covers the white line separating panels F' & G', and then again in F" and G".
      • q) Fig 2, it is evident that Hes1 protein is not eliminated so you cannot claim it is "not expressed". It is perhaps reduced in abundance, but signal is still obviously present.
      • r) Title of Figure 6 needs to rewritten: LLPS may be occurring, but until you manipulate both LLPS and Prox1 together, you cannot claim that they act through one another.
      • s) Figure 7 title needs to be rewritten: PR are not quantified here.
      • t) Figure 6: I am deeply incredulous that applying any chemical to zebrafish for only two minutes can alter cell differentiation, except perhaps via toxicity. Perhaps examples of similar impacts can be provided from the literature to make it seem more credible that the mechanism here is LLPS in retinal cells.

      The following minor comments are all captured under the notion that the Figure Legends all need to be re-written by a senior colleague. Figures+legends should be interpretable as stand-alone items. All these Figures fail this minimal standard. Below are some issues, but really I'd suggest starting with a blank slate.<br /> - u) Figure 1 must mention Drosophila. So very very confusing to read this believing it is about zebrafish.<br /> - v) Figure 1 what is "deadpan"?<br /> - w) Fig 2 title, how do you know these progenitors are MG-derived?<br /> - x) Fig 2, define abbreviation MG<br /> - y) Fig 2 title, Hes1 is less abundant, but that might be from alternative mechanisms other than "reduced expression" (e.g. altered PTMs, increased clearance, LLPS, etc)<br /> - z) Fig 3 legend is a jumble of oddity. At least three distinct signals are supposedly labelled in pink(?). separately, What about the mCherry - is it also in pink?<br /> - aa) Most Figures: we know they are micrographs, so you don't need to lead the Description saying "micrographs of...". Instead, describe the logic of the experiment and the overall interpretations.<br /> - bb) All Figures: it is really odd to list the data (averages & variances, including implausible significant digits on each) for every treatment - that is what the histograms are meant to convey.<br /> - cc) Figure 4 should send the reader to the Supplemental so they know that the no-primary control experiment is available.<br /> - dd) Fig 6B legend - explain what the chemicals are meant to do (e.g. "block LLPS").<br /> - ee) Fig 6 define "2m" = 2 minutes?<br /> - ff) Several more abbreviations are not defined: hpi, ONL, etc...

      Significance

      The manuscript by Veen and colleagues assesses two transcription factors, and makes the novel conclusion that they regulate each other in a manner that is required for photoreceptor regeneration in zebrafish. The work is potentially exciting, because similar findings from zebrafish have found traction in translation to mammals, where regeneration of photoreceptors has surprising promise to treat blindness.

      Together the technical feat and intriguing conclusions combine, in my opinion, to make this paper worthy of serious consideration for publication. I would hate to see it not be made available for public consumption. Its' merits are strong, but some shortcomings in communication and interpretation nevertheless should be addressed

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The authors interrogate the roles of prox1a and her6 in red/green cone photoreceptor regeneration in zebrafish. Using scRNAseq, they find evidence that her6 is expressed in MG and suggest it is downregulated in Müller glia-derived progenitor cells during retinal regeneration. Further, they show that knockdown of her6 leads to an increase in the rate of cone PR regeneration and suggest that this is due to increased proliferation of retinal progenitors. The authors then demonstrate that prox1a is expressed in differentiated PRs and that knockdown inhibits PR regeneration. An exploration of the role of Liquid-Liquid Phase<br /> Separation (LLPS) in prox1a signaling is provided. Finally, the authors show that her6 knockdown leads to increased prox1a expression and that prox1a knockdown leads to loss of her6 expression, suggesting both factors impact expression of the other to regulate the kinetics of PR regeneration in the zebrafish retina.

      Major comments:

      1. As presented, the "downregulation" of her6 in MG-derived progenitors is not convincing due to a discrepancy between the single cell data and antibody staining. For "downregulation" to be the case, MG and/or progenitor cells would need to be expressing her6 and then lose it over time during regeneration. The single cell data are consistent with that showing expression of her6 in quiescent and proliferating MG, but the antibody staining is not. In addition, regarding the single cell data, the colors used to discriminate early PRs and PRs are nearly identical. The authors need to make clear which clusters correspond to MG-derived progenitor cells using clear labeling. Regarding antibody labeling, prior to cone PR ablation, the expression of Her6 (ie Hes1 staining) appears to be localized to interneurons and RGCs, not MG - yet the single cell data suggest this is not the case. Either the single cell data or the antibody labeling may be correct, but not both. The authors should provide a figure showing co-labeling of Her6/Hes1 and a MG marker such as GS or GFAP. In the absence of that result, the antibody data is most consistent with her6 expression either not being expressed in MG and MG-derived progenitor cells or expressed in only a subset of progenitors - both of which conflict with the single cell data.
      2. The her6 MO results are not convincing with respect to data interpretation. Knockdown of her6 results in more cone PRs at 72 hpi and more progenitor proliferation at the same time point (as assessed by pH3 immunostaining). For an increase in progenitor proliferation to explain the increase in cone PRs the observation would need to precede the increase in cones, not be coincident with it. Alternative hypotheses need to be explored, for instance, whether her6 downregulation alters cell fate choices in progenitor cells. The precocious increase in prox1 expression at 48 hpi (Figure 6A-E) would be consistent with that idea, leading either to precocious cone differentiation or a stronger bias toward the red/green cone PR fate.
      3. The connection to Liquid-liquid Phase Separation (LLPS) is the weakest component of the study given the following issues:
      4. a. Prox1 staining as punctate and/or liquid-like assembly associated is not convincingly demonstrated, this would require much higher magnification, quantification, and co-localization with factors known to aggregate in liquid-like assemblies.
      5. b. The reagents used to modulate LLPS are not specific to Prox1 and will alter all LLPS-associated signaling events.
      6. c. What assay was used to set "effective and consistent" outcomes at a concentration of 5% 1,6-HD anda treatment time of 2 minutes? Was toxicity or any other assay performed to assess the specificity of 1,6-HD effects in vivo at this concentration?
      7. d. Shouldn't the regenerated cone cells be expressing the lws2:nfsb-mCherry transgene? This is especially troubling given that the lws2:nfsb-mCherry transgene is evident at the periphery in both conditions whereas the zpr1antibody (i.e., Arr3a expression) appears to differentially label more central areas of the retina.
      8. e. Controls are needed to demonstrate that the expression of other transcription factors is normal following 1,6-HD treatment.
      9. f. Controls are needed to show that zpr1 staining / Arr3a expression is not selectively altered by 1,6-HD treatment, eg are other markers of red/cones similarly altered?
      10. Statistical methods are not provided for the Dros portion of the study. Please indicate which statistical tests were used and what corrections performed for multiple comparisons.
      11. A control is need to show that the antibody against mammalian Hes1 labels Her6 in zebrafish.

      Minor Comments:

      1. Please provide alleles for all transgenic resources used as this will help to ensure others are able to replicate these findings and/or use equivalent resources for their own research.
      2. "Zebrafish injury model" section states that two transgenic lines were used to create a PR ablation line but only one line is listed? Please clarify. Also the larval ablation model should be included in the Methods.
      3. Montgomery et al ablated rods not cones. As cells exhibit differential sensitivity to cell ablation methods - including rods and cones - it would be preferable if a reference for NTR/Mtz-mediated cone cell ablation was cited.
      4. Figure S2: Since fish between 10-12 months were used, there is no need to mention the ablation results with the younger fish as it is unrelated to the study.
      5. 24 hpi as first observation of MG-derived progenitors (Fig. S3D-D') is very weak, data is not convincing. Please update the figure or revise the manuscript. Figure 2 is much better, simply referencing Figure 2E' would suffice.
      6. Edit needed: "They began proliferating at 48hpi, as indicated by clusters of PCNA+ cells across the inner nuclear cell layer (INL; Figure S3E-E'), also observed by at 72 and 96 hpi (Figure S3F-F' and G-G' EE', outlined).
      7. her6 has been previously implicated in retinal regeneration previously and references to these studies should be included in the intro and/or discussion. See: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8643038/<br /> https://bmcdevbiol.biomedcentral.com/articles/10.1186/1471-213X-6-36<br /> https://www.jneurosci.org/content/34/43/14403
      8. Please confirm her6 MO-based downregulation with a more quantitative method.
      9. "DamID" should be defined at the first instance (first paragraph of Results) as DNA adenine methyltransferase Identification.
      10. zpr-1 is an antibody not a protein and should not be capitalized (per "Zpr1+ cells").
      11. According to ZFIN, prox1 is now prox1a, the authors use both. It would be helpful to stay consistent and use the most recent nomenclature to refer to prox1a.

      Referees cross-commenting

      Reviewer #2 / Major concern #1: Unclear how one assesses the effects of gene knockdown on regeneration in the absence of cell ablation? The reviewer should clarify what "impacts" they would like quantified (e.g., developmental effects, etc) . For instance, assessing effects of gene knockdown on PR number developmentally (with egg injections of morpholino and/or sgRNAs for Crispants) would help to account for potential gene knockdown effects on progenitor differentiation (i.e., causing a fate bias toward red cones) or protection (e.g., absence of normal levels of cell death/TUNEL).

      Reviewer #2 / Major concern #8: Repeated micrographs: In my view this should not be done at all. Please use different examples of control data between comparisons of her6 and prox1a knockdowns - even if these experiments were al performed in parallel there should be additional control samples from each assay and across a minimum of three biological repeats.

      Reviewer #3, Paragraph 2 ("The authors state that the loss of Her6..."): Pulse-chase experiments demonstrating an increase in the number of newly generated red cones - by virtue of co-labeling with pulse marker and Lws2 transgene - would help to address this concern and clarify the degree of bias exhibited in the red cone ablation paradigm (an issue discussed by all reviewers and which the authors are familiar with, eg, DOI: 10.1186/s13064-017-0089-y)

      Significance

      This work is significant in interrogating the function of two classic factors associated with regulation of neurogenesis and neuronal differentiation in Drosophila in the context of cone photoreceptor regeneration in zebrafish. My expertise lies in the latter paradigm and I have restricted my evaluation to that portion of the study. The novelty of the study is diminished somewhat by recent reports of the role of Notch signaling in retinal regeneration in zebrafish - thus, it would follow that a major signaling component of the Notch pathway, Hes1/Her6, would likely be involved as well. Indeed, expression changes for her6 during regeneration have been previously reported (see refs above). However, the present study does add a functional characterization which is a significant advance. The advent of stimulation of retinal regenerative capacity in mice by Tom Reh and colleagues adds intrigue to the study of retinal regeneration in zebrafish as the insights generated are being applied in a way that suggests possible relevance to human disease. Thus defining conditions that lead to accelerated retinal regeneration is of widespread interest. However, several issues raised in the detailed review above diminish my enthusiasm for the study overall.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General Statements:

      We want to thank the reviewers for their time in assessing our study, their positive feedback and their constructive comments that we address here. We have carefully assessed each reviewers’ comments and address them point-by-point below. We appreciate that the reviewers consider our study to be relevant and advance the field in better understanding mitochondrial stress responses.

      There is a consensus as to why we have inhibited rather than depleted PHGDH via genetic means. PHGDH knockout is developmentally lethal at embryonal day 13.5, and therefore whole-body knockout crossings were not an option (Yoshida et al. JBC 2004). Furthermore, we and colleagues have shown that mitochondrial disease induces a complex systemic response including e.g., metabokines FGF21 and GDF15, secreted by the affected muscle and heart and modifying metabolism in the whole organism, indicating that tissue-specific knockouts are not optimal to resolve mechanisms in pathophysiology. Further, potential serine supplementation from other tissues could mask the effects on the muscle. Next, the slowly progressive phenotype of the mitochondrial myopathy mouse, fully manifesting close to 2 years of age, make double-transgenic strategies resource-intensive. Therefore, a PHGDH inhibitor, the specificity of which we carefully explore, was the approach of choice.

      Serine rich diet: We did consider a serine-rich diet. However, our evidence indicates that exogenous serine is not sufficient to rescue the phenotype in cultured cells. This suggests that the enzymatic intracellular localization of de novo serine synthesis is of crucial importance.

      Off-target effects: We agree and are aware that using a small-molecule molecule for pharmacological inhibition bears risks of off-target effect, as Arlt et al. 2021 reported for NCT-503 neuroblastoma cells lines. In agreement with the reviewers about the relevance of our results, the observation that we do not observe any meaningful alterations in WT muscle, even at the advanced age where metabolic muscle fitness is already challenged, whilst the myopathy phenotype worsens in myopathic mice support an on-target effect of NCT-503.

      Therefore, we had carefully considered the suggested experiments during the initial study and decided that PHGDH inhibitor was the best choice to answer our questions about importance of de novo serine biosynthesis.

      Reviewer #1 (Evidence, reproducibility and clarity):

      In this manuscript the authors describe interesting results regarding amino acid metabolism under conditions of mitochondrial stress. The authors used a selective PHGDH inhibitor (compound NCT503), and document that de novo serine synthesis is essential to sustain phospholipid biosynthesis, redox homeostasis, mitochondrial function, and mitochondrial protein synthesis in Deletor mice and in cell culture under mitochondrial stress. Interestingly, serine supplementation does not rescue those metabolic alterations, indicating a specific mitochondrial stress-dependent mechanism of serine utilization by the cells.<br /> In addition, the authors attempted to explore the role of serine in phospholipid biosynthesis under in vivo and ex vivo mitochondrial stress, and this is the weakest part of the manuscript. The specific reduction of mitochondrial PE using the PHGDH is interesting, and it can provide some clues into how mitochondrial membranes are synthetized under mitochondrial stress, but additional experimental approaches should be incorporated to generate a more robust body of evidence.

      In summary, the manuscript should be improved by using additional experimental approaches. In addition, genetic intervention through PHGDH gain or loss of function can help to elucidate the molecular mechanisms.

      We thank the reviewer for this proposition. As explained above in detail, knockout of PHGDH in mice is lethal in embryogenesis. Secondly, the cell culture studies show that in a mitochondrial disease background, cell-intrinsic de novo serine biosynthesis becomes essential. Therefore, the phenotype of a conditional knockout in skeletal muscle is likely to be drastic and does not reflect the situation of an adult-onset disease. Thirdly, if the gain- and loss of mutant double transgenics would live, the Deletor mice are an actual slowly progressing disease model, which manifests the phenotype at around two years. Therefore, this experiment takes three years, is not feasible and was considered to be of little informativeness. We carefully explored the specificity of PHGDH inhibition by NCT503 and found it to serve best the questions asked.

      The authors could also incorporate metabolomic studies using C13 serine or C13 glucose supplemented culture medium to differentiate carbons that come from extracellular serine or from de novo synthesis.

      We thank reviewer #1 for her/his comments. The exogenous serine supplementation shows minor rescue of the phenotype in cultured cells but decreases somewhat the mitochondrial integrated stress response markers in serine-containing medium, suggesting some amelioration of the PHGDH inhibition.

      We have now incorporated new data of D3-serine flux in cells to the manuscript (p.14, FigS3G, p.33). These data indicate that some serine uptake occurs by the cells and that is not significantly affected by mitochondrial translation inhibition (actinonin), even if the combination of PHGDH plus actinonin is not viable.

      Manuscript Figure S3G. D3-serine uptake in C2C12 cells with and without actinonin. Normal non-labelled serine was used as a negative control for D3-serine contamination. D3-serine amounts were measured in culture media and in cells; biological replicates (n=3). In media, fold change (FC) was calculated relative to the sample with normal serine media without actinonin. In cells, FC was determined against cells in D3-serine without actinonin. No traces of D3 label were detected in normal serine samples. ACT = actinonin.

      Additional questions: Is PHDGH subcellular localization modulated under mitochondrial stress conditions?

      This is an interesting question. The insufficient resolution in muscle sections did not give a conclusive answer. We have, however, performed new immunofluorescence experiments in cells to investigate this potential mechanism and used a newly generated PHGDHKO cell line as a negative control (Rev Fig.1). The conclusions have been added to the manuscript (page 14, FigS4E,F, p.34). In essence, no altered localization of PHGDH in cells is observed – the localization appears to be cytoplasmic. The increasing PHGDH amount in increasing actinonin concentration is apparent, however.

      Revision Figure 1. Immunofluorescent staining of HEK293 and C2C12 cells. WT and PHGDHKO HEK293 cells were used as controls for the PHGDH antibody. (Hoechst staining of nucleus, blue; anti-PHGDH, green; mitochondrial outer membrane protein TOM20, red. EtOH = ethanol; ACT = actinonin; INH = PHGDH inhibitor.

      Is the extracellular serine uptake impaired under mitochondrial stress?

      As explained above, we have now incorporated data of D3-labeled serine uptake in cells to the manuscript, quantifying the uptake from the media and the levels in the cells. Mitochondrial translation inhibition by actinonin does not affect uptake, indicating that the uptake per se is not impaired. However, the de novo synthesis being essential in metabolic stress strongly points to the intracellular site to be important.

      While the extracellular serine can only little compensate for de novo synthesis, our new data, qPCR analysis on muscle of all mouse groups to quantify serine tRNA levels (MTTS1) indicates the levels to be increased, suggesting insufficient charging of the tRNA (MTTL1 as negative control; Rev Fig. 2). In addition, the presumed mitochondrial serine transporter SFXN1 is upregulated on protein level (p.11, Fig S2H, p.32). These data suggest that cell-intrinsic serine synthesis supports mitochondrial translation in metabolic stress situations.

      Revision Figure 2. RNA expression of mitochondrial tRNAs for leucine (MTTL1) and serine (MTTS1) in skeletal muscles of wild type (WT) and Deletor (DEL) mice; RT-qPCR. WT VEH n=6, DEL VEH n=5, WT INH n=7, DEL INH n=8. VEH = vehicle; INH = PHGDH inhibitor; FC = fold change.

      ATF4 is a transcription factor that regulates amino acid transport. In this connection, is ATF4-dependent serine transporters modulated under mitochondrial stress or under PHGDH treatment?

      As explained above, SFXN1 transporter was upregulated in protein level. In postmitotic skeletal muscle, the responses are under ATF5, as shown in Forsström, Jackson et al. Cell Metab 2019.

      Regarding the alteration in redox homeostasis, mitochondrial function and mitochondrial protein synthesis. Is the alteration of phospholipid synthesis upstream of all of those mitochondrial alterations?

      The authors are unclear of what the reviewer means by “all those mitochondrial alterations”. The disease in the Deletor mice is caused by dominant patient-homologous mutation of mitochondrial DNA helicase Twinkle, and in the cell culture model we block mitochondrial protein synthesis with actinonin. Therefore, the primary defect in both mice and cells is intramitochondrial, in mtDNA replication and protein synthesis, and the stress responses are a consequence of the primary mitochondrial dysfunction. The consequent secondary stagewise mitochondrial integrated stress response, ISRmt, affects both mitochondria and rest of the cell, with effects in metabolism and nuclear genome transcription. We have pioneered the discovery of ISRmt in mice and humans with mitochondrial defects/diseases in several studies (e.g., Cell Metab 2016, 2017, 2019, 2020). This response includes a remarkable remodeling of one-carbon metabolism, with major changes in methyl cycle, transsulfuration and nucleotide synthesis of the whole cell. PS synthesis is dependent of methyl groups deriving from the one-carbon cycle -driven methyl cycle. Therefore, the original mitochondrial replisome dysfunction causes a stagewise, progressive disease process, which is upstream of all the other responses. Phospholipid synthesis alteration, however, has high potential to modify mitochondrial membranes that can aggravate disease during its progression.

      The temporal metabolomics of cultured cells did show PE accumulation at later time points than on mitochondrial translation or other crucial cellular metabolites, suggesting its alterations to be a consequence rather than upstream. Indeed, further studies are needed to dig deeper into the dynamics of phospholipid synthesis in mitochondrial dysfunction.

      Additionally, in my opinion the results should be reorganized, because in the current format the manuscript is fragmented, and several panels lose the symmetry.

      The authors are unclear what the reviewer means by the panels losing symmetry. Without suggestions it is hard to make changes, but we have carefully reviewed the clarity of the presentation.

      Major concerns.

      Figure 1

      The authors should incorporate the Deletor mice amino acid levels in muscle. How does the PHGDH inhibitor treatment modulate the other non-essential amino acids?

      We have quantified all 11 non-essential amino acids from Deletor muscle by targeted metabolomics in combination or individually and added the new graphs (p.10, Figure S2D,E, p.32).

      Manuscript Figure S2D. Total non-essential amino acid quantification (NEAAs) from targeted metabolomics of skeletal muscles of WT and DEL mice. WT VEH n=6, DEL VEH n=5, WT INH n=7, DEL INH n=8. VEH = vehicle; INH = PHGDH inhibitor. Significance levels: n.s. = p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001.

      Manuscript Figure S2E. Individual NEAAs from targeted metabolomics of skeletal muscles of WT and DEL mice. WT VEH n=6, DEL VEH n=5, WT INH n=7, DEL INH n=8. VEH = vehicle; INH = PHGDH inhibitor. Significance levels: n.s. = p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001.2. The authors should incorporate the data of WT + vehicle and wt + NCT503 mice in figures 1C, 1D, 1F and 1G, in order to compare properly the effects of PHGDH inhibitorThe authors should incorporate the data of WT + vehicle and wt + NCT503 mice in figures 1C, 1D, 1F and 1G, in order to compare properly the effects of PHGDH inhibitor.The authors should incorporate the data of WT + vehicle and wt + NCT503 mice in figures 1C, 1D, 1F and 1G, in order to compare properly the effects of PHGDH inhibitor.

      The authors should incorporate the data of WT + vehicle and wt + NCT503 mice in figures 1C, 1D, 1F and 1G, in order to compare properly the effects of PHGDH inhibitor.

      We agree with the reviewer`s notion to depict all groups. No COX- fibres exist in our vehicle or inhibitor-treated WT mice and we have added this data into the manuscript in p.31, commented on in p.6, Figure S1B, also below).

      Manuscript Figure S1B. Histochemical analysis of combined cytochrome-c-oxidase (COX) and succinate dehydrogenase (SDH) activity in muscles of treated WT mice. (Brown fibres indicate high COX activity, translucent – low COX activity). Lower panel shows immunohistochemical detection of the mTORC1 downstream target - phosphorylated ribosomal S6 (p-S6). INH = PHDGH inhibitor.

      Figure 1H. Are there any effect of PHGDH in the mtDNA of WT mice? The authors might incorporate this information, to show properly that mitochondrial stress led to dependence of serine to sustain muscle homeostasis.

      In addition to the mtDNA deletion analysis, we have assessed mtDNA copy number via qPCR (p.27, Figure S1D). No mtDNA deletions exist in WTs and their mtDNA copy number raised slightly. These new data are included in p. 6 and Figure S1D, p.31.

      Manuscript Figure S1D. Mitochondrial DNA copy number analysis in muscles of WT and DEL mice. Measured with qPCR (n=5-8/group). VEH = vehicle; INH = PHGDH inhibitor. Significance levels: n.s. = p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001.

      Figure 2.<br /> Interestingly the authors observe a decrease in total mitochondrial lipids content, and an increase in mitochondrial PE content in Deletor mice compared to WT mice. These results suggest an alteration in the phospholipids flux between mitochondria and endoplasmic reticulum in this model of mitochondrial disease. Moreover, PHGDH treatment appears to be able to rescue this alteration. Some question related this issue: What is the expression of genes involved in the balance PC, PE, PS? Are the PSS1, PSS2, PSD and PEMT expression altered?

      Previous Deletor muscle studies cohorts showed non-altered PEMT in diseased mice of similar age nor was PEMT and PSD significantly altered RNAseq data from patients in contrast to PHGDH (Forsstrom et al., 2019; Rev Fig.3). 20-months old Deletor do not show any alteration in PEMT (qPCR quantification below) when analysed from total muscle. Whether these are changed in single fibers (mosaic manifestation of the disease) we cannot exclude.

      Revision Figure 3. Left: RNA expression of PEMT in skeletal muscles of 20-months-old WT and DEL mice. Measured with qPCR; n=9. Right: Gene expression of PEMT, PSD, and PHGDH enzymes in muscles of mitochondrial myopathy patients. Measured with RNA-Seq; n=8 in control; n=4 in patients. Significance levels: n.s. = p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001.

      Regarding the phospholipid synthesis. Is mitochondria or endoplasmic reticulum ultrastructure altered in Deletor mice muscle? The authors should explain the possible mechanisms.

      We have extensively characterized the pathology in Deletor muscle in publications previously (Tyynismaa et al. PNAS 2005; Tyynismaa Hum Mol Genet 2010 for morphology, especially, but also as a part of the physiology studies Nikkanen et al. Cell Metab 2016; Khan et al. Cell Metab 2017; Forsström, Jackson et al. Cell Metab 2019 and Mito et al. Cell Metab 2022). The morphological changes in mitochondria are quite extensive, and these are comparable to those found in patients with similar mutations: enlarged mitochondria with distorted and few cristae, various inclusions. We presume the reviewer means sarcoplasmic reticulum in skeletal muscle. The extent of the muscle pathology in vivo suggests that ER structure is changed as everything else is: the diseased muscle fibers are full of abnormal mitochondria in the Deletors, with only few traces of myofibers or fibrils. These fibers become more prevalent after PHGDH inhibition. Furthermore, the mice – WT and Deletors – show age-induced prevalence of non-pathology-related accumulation of sacroplasmic aggregates (so called tubular aggregates) as a known feature of C57Bl6 mice.

      New Figure S1 C, p.31 and below (Rev Fig.4): Ultrastructure of Deletor muscle shows enlarged mitochondria both inside the fibers (Fig S1C left panel, arrows) and subsarcolemmally, further aggravated by PHGDH inhibition. Tubular aggregates, as shown in the inhibitor treated Deletor in the Figure S1C seen in the light-microscopic image on the right (arrows), are part of the mouse substrain characteristics, not disease associated. These changes are also, as white aggregates inside the fibers in all genotypes and treatment groups We now added the light and electron microscopic image analysis to Figure S1 C. We now added the electron microscopic images to the manuscript as S1C (commented on p.6), indicating the aggravated phenotype of PHGDH inhibitor.

      Revision Figure 4. Left: Panel from the Manuscript Fig. S1C. Representative images of transmission electron microscopy (TEM) in skeletal muscles of WT and DEL mice. Black arrows – enlarged mitochondria. Right: Representative images from light microscopy (LM) of muscles of the same groups as in Left. Black arrows – tubular aggregates. VEH = vehicle; INH = PHGDH inhibitor.

      We have also performed analysis of mitochondrial ultrastructure in cells (see below) showing specific lipid accumulation. As mentioned above the alterations in PE levels are detected metabolically at later time points and after substantial loss of mitochondrial translation.

      We added this new data as Figure S3E, p.33, commented on p.6.

      Manuscript Figure S3E. Representative images of TEM analysis of 12h-treated C2C12 cells. The cells were incubated in media with or without serine and treated with either actinonin, PHGDH inhibitor or a combination of both. White arrow – myelinosome-like membranous lipid aggregates; M = mitochondria. INH = PHGDH inhibitor; ACT = actinonin; Ser = serine.

      Supplementary figure 3D<br /> Based on the metabolomic studies, the authors propose a time-dependent decrease in PSAT1 and phosphoserine in cells under mitochondrial stress (Figure S3D). To elucidate the direct role of PHGDH, the authors should analyze the phosphoserine and different phospholipid (described in figure 2E) in presence of PHGDH inhibitor. This will help to understand the link between the endogenous serine synthesis and mitochondrial PE accumulation.

      The temporal metabolomics show a time-dependent decrease of the metabolite phosphoserine (not PSAT1). Here, we show the PE and PC dynamics at 6 and 24 hours. These data have now been added to the manuscript, figure S3I, p.33, commented on page 14.

      Manuscript Figure S3I. Normalised PC and PE pools in C2C12 cells measured with untargeted metabolomics after treatments with actinonin, PHGDH inhibitor, or a combination of two for 6 and 24 hours. n=6-11/group; ACT = actinonin; INH = PHGDH inhibitor.

      Figure 3H shows a decrease in phosphoserine in the presence of PHGDH inhibitor but this figure is asymmetric compared to figure 3I. Can the authors use another experimental approach to detect the specific mitochondria phospholipid levels (used in Figure 2 for instance)?

      Figure 3H shows a decrease in phosphoserine in the presence of mitochondrial dysfunction induced through actinonin alone. Figure 3I shows a further decrease in phosphoserine when actinonin-treated cells are treated with the PHGDH inhibitor (phosphoserine is marked now also in our genetic model of mtDNA depletion, Figure 3I). The data are from untargeted metabolomics, parallel analysed samples, and therefore are comparable for the levels.

      We have now grouped the time-wise dynamics of the annotated phospholipids from the untargeted metabolomics decreasing at a late stage of the temporal treatment, suggesting that the consequences on of mitochondrial dysfunction by translation inhibition clearly precede phospholipid alterations in cells. (Figure below, also added to the manuscript as Figure S3D, p.33, and commented in the text in p. 13)

      Manuscript Figure S3D. Heatmap of selected top significantly altered metabolites in primary human myoblasts temporally treated with actinonin; untargeted metabolomics (n=5-6, run in technical duplicates). ACT = actinonin.

      The authors should incorporate mitochondrial PE analysis in figure 3 to link the cellular studies described in this figure with the studies done in Deletor mice muscle.

      Figure 3 I-K. The authors suggest an alteration in glutathione redox state and a further increase in mitochondrial superoxide production in cells treated with the PHGDH inhibition under mitochondrial stress. What are the total glutathione levels under these conditions? Could GSH regeneration improve the mitochondrial function and mitochondrial protein synthesis? Is extracellular serine able to rescue the reduced glutathione levels?

      We have previously shown in vivo (Nikkanen et al. Cell Metab 2016), in Deletors, that in the skeletal muscle and the heart glucose carbons show flux via serine to glutathione, without changes in steady-state levels of glutathione, indicating high usage. In our targeted metabolomics assay from muscle, the steady-state glutathione amount was below the limit of quantitation. The levels of glutathione oxidized vs reduced are dynamic, however. Our untargeted set shows a trend towards an increase. The GSSG/GSH data (Rev Fig.5 Right) was included already in the original manuscript, as Figure S2C, and the time-wise dynamics is here shown for the reviewer (Rev Fig.5 Left).

      Revision Figure 5. Left: Ratio between oxidized (GSSG) and reduced (GSH) glutathione temporally measured in primary human myoblasts with untargeted metabolomics; n=10-16/group. Right: Ratio between glutathione forms in muscles of WT and DEL mice. Measured by targeted metabolomics; WT VEH n=6, DEL VEH n=5, WT INH n=7, DEL INH n=8; VEH = vehicle; INH = inhibitor. Significance levels: n.s. = p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001.

      Minor concerns. Figure 3B,C does not show the statistical analysis so please incorporate this information.<br /> Include quantification of figure 3 E and supplementary figure S3E.

      We have added this information to both figures.

      Figure S3E. Improve flow cytometry histogram, the cell population data values cannot be observed.

      We have improved the resolution.

      Some methods and primers included in the material and methods section are not used in the manuscript.

      We have carefully edited the materials and methods sections for any unnecessary data.

      Reviewer #1 (Significance):

      In this manuscript the authors describe interesting results regarding amino acid metabolism under conditions of mitochondrial stress. The authors used a selective PHGDH inhibitor (compound NCT503), and document that de novo serine synthesis is essential to sustain phospholipid biosynthesis, redox homeostasis, mitochondrial function, and mitochondrial protein synthesis in Deletor mice and in cell culture under mitochondrial stress. Interestingly, serine supplementation does not rescue those metabolic alterations, indicating a specific mitochondrial stress-dependent mechanism of serine utilization by the cells.<br /> This data will be relevant to better understand the connection between alterations in mitochondrial function and amino acid metabolism in cells, and in organisms.

      We thank the reviewer #1 for the constructive comments and acknowledgement of interesting results and significance.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Experiments reported in this manuscript indicate that NCT-530- an inhibitor of the de novo serine biosynthetic enzyme PHGDH- worsens mitochondrial pathology.<br /> Systemic administration of NCT-503 decreased serine levels only in Deletor mice- ubiquitously expressing a homologous dominant patient mutation in mitochondrial twinkle helicase.<br /> NCT-503 treatment induced a further increase of the mitochondrial integrated stress response in Deletor mice. Moreover, the metabolic profile and lipid balance was further modified by NCT-503 administration to Deletor mice. The relevance of NCT-503 treatment was finally evaluated in cellular systems exposed with different treatments inducing mitochondrial insults.

      COMMENTS:

      NCT-530 specificity should be confirmed by reducing PHGDH levels by either siRNA or even better by CRISPR-Cas9-mediated gene deletion.

      Firstly, we find clear results in Deletor mice but no pathology in WT mice treated with NCT-530. We interpret the reviewer to mean our cellular model, because in vivo siRNA or CRISPR-Cas9 approach is not feasible in mice that manifest the disease at 2 years of age. The compound is inhibiting the activity of PHGDH. The specificity has been described in the paper of Pacoult et al. (2016) previously, and as we find decreased serine and response of increased PHGDH transcript, the results are well consistent to what has previously been described. However, to respond to this reviewer, we have now added new data on a PHGDHKO in HEK293 cells (Figure S4E,F,p34 and below, commented on page 14).

      Manuscript Figure S4F. Quantification of population doublings of WT and PHGDHKO cells treated with actinonin, PHDGH inhibitor or a combination of both. Immunofluorescence images are presented in Rev Fig 1. The data is presented as average values of three independent experiments; VEH = vehicle; INH = inhibitor; ACT = actinonin; KO = knockout; EtOH = ethanol. Significance levels: n.s. = p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001; **** p ≤0.0001.

      If the serine biosynthetic pathway is causally relevant to worsen the mitochondrial pathology, supplementing Deletor mice with a serine-rich diet or intraperitoneal injection of serine is expected to improve pathology.

      This is an exciting suggestion which we did consider. However, based on our cell experiments, we show that in the context of mitochondrial disease, the de novo serine synthesis becomes essential for cellular viability, and this cannot be compensated by extracellular serine supplementation alone. This suggests that the intracellular localization of serine synthesis is essentially important, which is an interesting finding and warrants further investigation, not in the scope of this paper.

      Reviewer #2 (Significance):

      Limited significance in the field.

      Reviewer #3 (Evidence, reproducibility and clarity):

      This study concludes that de novo serine biosynthesis fueled by PHGDH activity is an adaptive mechanism counteracting defects in mitochondrial function observed in mitochondrial myopathies, while being dispensable for mitochondrial function of healthy muscle. By using a mouse model of mitochondrial myopathies, as well as cells treated with different mitochondrial poisons, authors show that de novo serine biosynthesis is specifically needed to preserve phospholipid synthesis, some degree of mitochondrial function, and mitigate mitochondrial ROS production. These conclusions are drawn mostly from the data obtained from experiments treating cells and mutant mice with NCT-503, an inhibitor of PHGDH. The main limitation is that the approach does not allow us to discern whether the phenotypes observed are explained by on-target and muscle autonomous actions of NCT-503. The list of major concerns are as follows:

      We thank reviewer #3 for her/his comments.

      1) The authors do not cite the study by Vandekeere et al. Cell Metabolism 2018 that define the KO of PHGDH in endothelial cells. This study demonstrates that serine derived from PHGDH is required to synthesize heme to preserve mitochondrial function in endothelial cells. In addition, they demonstrate that the absence of PHGDH increases mitochondrial ROS and decreases electron transport chain function. These previous studies can indicate that the worsening of the muscle phenotype in the mice treated with NCT-503 might be driven by its actions in endothelial cells, and not in muscle. In addition, it raises the question on why NCT-503 has no effect on muscle of 24-month-old mice, which have a decline in metabolic fitness.

      This is an interesting comment, and we indeed have now included the missing reference. Firstly, we find it interesting as well that NCT-503 has no significant health-related effect in WT background in the tissues that we analysed but shows harmful effects upon mitochondrial dysfunction. Our aged WT mice, even at the age of 24 months, show no signs of respiratory chain deficiency in skeletal muscle and this is consistent with numerous other studies on old mice. Therefore, the metabolic fitness decline that the reviewer mentions does not make PHGDH induction essential in normal aging.

      Secondly, we are aware of the Vandekeere et al. study on endothelial cells. Our mouse is a constitutive transgenic mouse, and therefore isolated changes in single tissues as in the endothelial KO mouse, because of metabolite signaling between cell types, is hard to compare with ours. In our mice, expressing a dominant patient mutation in the mitochondrial replicative helicase Twinkle, PHGDH induction in the skeletal muscle is a key component of the mitochondrial integrated stress response (ISRmt) as we described in e.g., in Tyynismaa et al. 2010 and Forsström, Jackson et al. Cell Metab 2019. Similar findings have been reported by Kuhl et al. ELife 2017 and other groups. We have also shown that PHGDH expression is dependent on prior induction of FGF21 in the skeletal muscle (Cell Metab 2019). We cannot fully exclude a contribution of endothelial cells in the Deletor phenotype, but the upregulation of PHGDH is robust exactly in the Deletor muscle, and endothelial cells show no phenotype in ultrastructural analysis of these mice. Therefore, our strong view is that in order to study the effect of PHGDH induction caused by primary mitochondrial disease in the skeletal muscle, the use of an inhibitor is the first choice.

      Hence, we find that the Vandekeere et al. study supports our findings in that increasing PHGDH could represent an adaptive response to support electron transport chain function and decreasing mitochondrial ROS in a tissue where PHGDH is induced.

      In this respect, we would also like to emphasize that a 1-month treatment of old mice, as in our study, differs from a life-long tissue-specific knockout, which is not a natural disease presentation nor an avenue to understand whether the opposite – increasing PHGDH activity – could represent a viable treatment option.

      2) No experiments with PHGDH knockdown are performed in vitro (or ideally in vivo using muscle electroporation if possible) to confirm the specificity of NCT-503. This is validation is key in muscle, as the on-target actions of NCT-503 were mostly shown in different cancers with low and high PGHDH expression (Pacold et al). Therefore, whether there are no off-target effects of NCT-503 in muscle is still unknown and should be defined.

      Firstly, we find effects in serine levels and also response to PHGDH expression, and effects on ISRmt. As argued, full-body genetic ablation is associated with lethality in early embryogenesis and is not an option. Muscle-specific PHGDH-KO was considered, but with a late-manifesting mouse is a several-year experiment and therefore was not considered to be in the scope of this article. In an addition to the arguments, we raised above, muscle electroporation or intramuscular AAV infection would represent the only option, but with limited spreading in adult aged mice (our own and colleagues’ experience), and in a mosaic disease would offer low information.

      We have however, now added data on a PHGDHKO HEK293 cell line with and without pharmacologically inducing mitochondrial dysfunction, p.14, Fig S4E,F.

      3) The data showing that exogenous serine supplementation cannot override the effects of NCT-503 treatment on mitochondria could also be compatible with an off-target effect of NCT-503 in models of mitochondrial dysfunction (see point 2). If the experiments suggested in point number 2 demonstrate on-target action of NCT-503, authors should then decrease the expression of the mitochondrial transporter of serine (SFXN1) to demonstrate that specific intracellular pools of serine are needed to mitigate mitochondrial dysfunction. If the authors' conclusion is conclusive, knock-down of SFXN1 should be highly toxic in in vitro and in vivo models of mitochondrial myopathies, while having barely any effect in controls (similarly to serine deprivation in vitro being almost harmless).

      Thank you for the comment. To our knowledge and based on our own experience elsewhere, the role of SFXN1 as the only serine transporter is still somewhat unclear (Kory et al, Science 2018; see also below). Therefore, the relevant metabolomic serine-dependent changes, PHGDH response and effects on the relevant stress response to our opinion are strong evidence of on-target-effects.

      4) The authors list SFXN1 in the antibodies used in the paper, but I could not find any data. Are the protein levels of SFXN1 changed in mice with mitochondrial myopathies? Do they strongly correlate with PHGDH expression?

      We actually had probed SFXN1 ab in the muscle but because of the extent of the data in the paper, had decided to omit the data – but accidentally left it in the methods. We do see an increase in the abundance of SFXN1 in treated Deletors. However, as also explained above, although SFXN1 has been described as a serine transporter, it is not fully characterized, also transports other amino acids, and has some redundancy with other SFXN family members requiring multiple KDs to get the required effect (Kory et al., Science 2018).

      These data are now included to Figure S2H (p.32 and below) and commented in page 11.

      Manuscript Figure S2H. Evaluation of SFXN1 protein expression in muscles of WT and DEL mice with Western Blotting. Left: image of the SFXN1 bands and the total protein lanes. Right: quantification of the band intensities. n=5/group; VEH = vehicle; INH = inhibitor. Significance levels: n.s. = p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤0.001.

      4) Serine tracing experiments would be required to conclude that serine is needed for phospholipid synthesis. Otherwise, the defects observed can just be downstream of mitochondrial dysfunction and ISRmt activation.

      Thank you for the point. Our study aims to characterize the role of PHGDH in skeletal muscle, in a mitochondrial disease. In vivo tracing experiments would be out of the scope for this study. We have modified our conclusions in respect to this in page 11.

      5) Authors use isolated mitochondria from muscle to determine whether OPA1 processing is changed in mice with mitochondrial myopathy and treated with NCT-503. The blots show higher total OPA1 content per mitochondria in the group with the greatest mitochondrial dysfunction, depolarization, and ROS production (myopathy + NCT-503). These data strongly suggest that dysfunctional mitochondrial from dysfunctional fibers do not survive the isolation procedure, showing just OPA1 content of resilient mitochondria surviving isolation. Indeed, heme depletion (as expected from PHGDH inhibition Vadekeere et al. Cell Metabolism 2018) and OPA1 processing catalyzed by OMA1 activation by ROS and depolarization can both activate the mitochondria ISR, via HRI. Therefore, authors should analyze OPA1 processing in total lysates to include mitochondria from dysfunctional fibers. Maybe increased OMA1 activity as a result of increased mitochondrial ROS and depolarization could explain the exacerbation of the mitochondrial ISR induced by NCT-503 treatment.

      The notion that stress-induced OPA1 processing present in mitochondrial myopathy is a valid one, which we did ask in a previous study in the Deletor mouse (Forsstrom et al., Cell Metabolism 2019). Surprisingly, we did not detect any significant levels of OPA1 processing in the Deletors, in the total cell lysates in that paper, nor in a previous paper of mitochondrial myopathy treated with Atkins diet (Ahola et al. EMBO Mol Med, 2016). The differential centrifugation protocol is unlikely to induce selection bias at the high centrifugation forces used (10000xg). We have previously described the increase in stress-related proteins in mitochondria-enriched fractions (Forsstrom et al., Cell Metabolism, 2019) and Rev Fig.6, below from the current study.

      Revision Figure 6. Immunoblot analysis of mitochondria-enriched fractions from skeletal muscles of all treatment groups from this study. n=5/group; VEH = vehicle; INH = inhibitor.

      Reviewer #3 (Significance):

      This study is significant, as it aims to understand the pathways that mediate adaptation to mitochondrial myopathies and such knowledge is necessary to find novel therapeutic targets. It could be of high interest to basic researchers studying metabolism and mitochondrial regulation, as well as to clinicians treating mitochondrial diseases.

      We appreciate the reviewer noting its importance and emphasizing the significance of this pathway for its clinical relevance.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This study concludes that de novo serine biosynthesis fueled by PHGDH activity is an adaptive mechanism counteracting defects in mitochondrial function observed in mitochondrial myopathies, while being dispensable for mitochondrial function of healthy muscle. By using a mouse model of mitochondrial myopathies, as well as cells treated with different mitochondrial poisons, authors show that de novo serine biosynthesis is specifically needed to preserve phospholipid synthesis, some degree of mitochondrial function, and mitigate mitochondrial ROS production. These conclusions are drawn mostly from the data obtained from experiments treating cells and mutant mice with NCT-503, an inhibitor of PHGDH. The main limitation is that the approach does not allow us to discern whether the phenotypes observed are explained by on-target and muscle autonomous actions of NCT-503. The list of major concerns are as follows:

      1. The authors do not cite the study by Vadekeere et al. Cell Metabolism 2018 that define the KO of PHGDH in endothelial cells. This study demonstrates that serine derived from PHGDH is required to synthesize heme to preserve mitochondrial function in endothelial cells. In addition, they demonstrate that the absence of PHGDH increases mitochondrial ROS and decreases electron transport chain function. These previous studies can indicate that the worsening of the muscle phenotype in the mice treated with NCT-503 might be driven by its actions in endothelial cells, and not in muscle. In addition, it raises the question on why NCT-503 has no effect on muscle of 24-month-old mice, which have a decline in metabolic fitness.
      2. No experiments with PHGDH knockdown are performed in vitro (or ideally in vivo using muscle electroporation if possible) to confirm the specificity of NCT-503. This is validation is key in muscle, as the on-target actions of NCT-503 were mostly shown in different cancers with low and high PGHDH expression (Pacold et al). Therefore, whether there are no off-target effects of NCT-503 in muscle is still unknown and should be defined.
      3. The data showing that exogenous serine supplementation cannot override the effects of NCT-503 treatment on mitochondria could also be compatible with an off-target effect of NCT-503 in models of mitochondrial dysfunction (see point 2). If the experiments suggested in point number 2 demonstrate on-target action of NCT-502, authors should then decrease the expression of the mitochondrial transporter of serine (SFXN1) to demonstrate that specific intracellular pools of serine are needed to mitigate mitochondrial dysfunction. If the authors' conclusion is conclusion, knock-down of SFXN1 should be highly toxic in in vitro and in vivo models of mitochondrial myopathies, while having barely any effect in controls (similarly to serine deprivation in vitro being almost harmless).
      4. The authors list SFXN1 in the antibodies used in the paper, but I could not find any data. Are the protein levels of SFXN1 changed in mice with mitochondrial myopathies? Do they strongly correlate with PHGDH expression?
      5. Serine tracing experiments would be required to conclude that serine is needed for phospholipid synthesis. Otherwise, the defects observed can just be downstream of mitochondrial dysfunction and ISRmt activation.
      6. Authors use isolated mitochondria from muscle to determine whether OPA1 processing is changed in mice with mitochondrial myopathy and treated with NCT-503. The blots show higher total OPA1 content per mitochondria in the group with the greatest mitochondrial dysfunction, depolarization, and ROS production (myopathy + NCT-503). These data strongly suggest that dysfunctional mitochondrial from dysfunctional fibers do not survive the isolation procedure, showing just OPA1 content of resilient mitochondria surviving isolation. Indeed, heme depletion (as expected from PHGDH inhibition Vadekeere et al. Cell Metabolism 2018) and OPA1 processing catalyzed by OMA1 activation by ROS and depolarization can both activate the mitochondria ISR, via HRI. Therefore, authors should analyze OPA1 processing in total lysates to include mitochondria from dysfunctional fibers. Maybe increased OMA1 activity as a result of increased mitochondrial ROS and depolarization could explain the exacerbation of the mitochondrial ISR induced by NCT-503 treatment.

      Significance

      This study is significant, as it aims to understand the pathways that mediate adaptation to mitochondrial myopathies and such knowledge is necessary to find novel therapeutic targets. It could be of high interest to basic researchers studying metabolism and mitochondrial regulation, as well as to clinicians treating mitochondrial diseases.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Experiments reported in this manuscript indicate that NCT-530- an inhibitor of the de novo serine biosynthetic enzyme PHGDH- worsens mitochondrial pathology.

      Systemic administration of NCT-503 decreased serine levels only in Deletor mice- ubiquitously expressing a homologous dominant patient mutation in mitochondrial twinkle helicase.

      NCT-503 treatment induced a further increase of the mitochondrial integrated stress response in Deletor mice. Moreover, the metabolic profile and lipid balance was further modified by NCT-503 administration to Deletor mice. The relevance of NCT-503 treatment was finally evaluated in cellular systems exposed with different treatments inducing mitochondrial insults.

      Comments:

      1. NCT-530 specificity should be confirmed by reducing PHGDH levels by either siRNA or even better by CRISPR-Cas9-mediated gene deletion.
      2. If the serine biosynthetic pathway is causally relevant to worsen the mitochondrial pathology, supplementing Deletor mice with a serine-rich diet or intraperitoneal injection of serine is expected to improve pathology.

      Significance

      Limited significance in the field.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript the authors describe interesting results regarding amino acid metabolism under conditions of mitochondrial stress. The authors used a selective PHGDH inhibitor (compound NCT503), and document that de novo serine synthesis is essential to sustain phospholipid biosynthesis, redox homeostasis, mitochondrial function, and mitochondrial protein synthesis in Deletor mice and in cell culture under mitochondrial stress. Interestingly, serine supplementation does not rescue those metabolic alterations, indicating a specific mitochondrial stress-dependent mechanism of serine utilization by the cells.<br /> In addition, the authors attempted to explore the role of serine in phospholipid biosynthesis under in vivo and ex vivo mitochondrial stress, and this is the weakest part of the manuscript. The specific reduction of mitochondrial PE using the PHGDH is interesting, and it can provide some clues into how mitochondrial membranes are synthetized under mitochondrial stress, but additional experimental approaches should be incorporated to generate a more robust body of evidence.<br /> In summary, the manuscript should be improved by using additional experimental approaches. In addition, genetic intervention through PHGDH gain or loss of function can help to elucidate the molecular mechanisms. The authors could also incorporate metabolomic studies using C13 serine or C13 glucose supplemented culture medium in order to differentiate carbons that come from extracellular serine or from de novo synthesis.

      Additional questions:

      Is PHDG subcellular localization modulated under mitochondrial stress conditions?

      Is the extracellular serine uptake impaired under mitochondrial stress?

      ATF4 is a transcription factor that regulates amino acid transport. In this connection, is ATF4-dependent serine transporters modulated under mitochondrial stress or under PHGDH treatment?

      Regarding the alteration in redox homeostasis, mitochondrial function and mitochondrial protein synthesis. Is the alteration of phospholipid synthesis upstream of all of those mitochondrial alterations?

      Additionally, in my opinion the results should be reorganized, because in the current format the manuscript is fragmented, and several panels lose the symmetry.

      Major concerns.

      Figure 1<br /> 1. The authors should incorporate the Deletor mice amino acid levels in muscle. How does the PHGDH inhibitor treatment modulate the other non-essential amino acids?<br /> 2. The authors should incorporate the data of WT + vehicle and wt + NCT503 mice in figures 1C, 1D, 1F and 1G, in order to compare properly the effects of PHGDH inhibitor<br /> 3. Figure 1D is mislabeled<br /> 4. Figure 1H. Are there any effect of PHGDH in the mtDNA of WT mice?

      The author might incorporate this information, to show properly that mitochondrial stress led to dependence of serine to sustain muscle homeostasis

      Figure 2

      Interestingly the authors observe a decrease in total mitochondrial lipids content, and an increase in mitochondrial PE content in Deletor mice compared to WT mice. These results suggest an alteration in the phospholipids flux between mitochondria and endoplasmic reticulum in this model of mitochondrial disease. Moreover, PHGDH treatment appears to be able to rescue this alteration. Some question related this issue:<br /> What is the expression of genes involved in the balance PC, PE, PS?, Are the PSS1, PSS2, PSD and PEMT expression altered?<br /> Regarding the phospholipid synthesis. Is mitochondria or endoplasmic reticulum ultrastructure altered in Deletor mice muscle?<br /> The authors should explain the possible mechanisms.

      Figure 3

      Based on the metabolomic studies, the authors propose a time-dependent decrease in PSTA1 and phosphoserine in cells under mitochondrial stress (Figure 3D). To elucidated the direct role of PHGDH, the authors should analyze the phosphoserine and different phospholipid (described in figure 2E) in presence of PHGDH inhibitor. This will help to understand the link between the endogenous serine synthesis and mitochondrial PE accumulation.<br /> Figure 3H shows a decrease in phosphoserine in the presence of PHGDH inhibitor but this figure is asymmetric compared to figure 3I. Can the authors use another experimental approach to detect the specific mitochondria phospholipid levels (used in Figure 2 for instance)?<br /> The authors should incorporate mitochondrial PE analysis in figure 3 to link the cellular studies described in this figure with the studies done in Deletor mice muscle.<br /> Figure 3 I-K. The authors suggest an alteration in glutathione redox state and a further increase in mitochondrial superoxide production in cells treated with the PHGDH inhibition under mitochondrial stress. What are the total glutathione levels under these conditions? Could GSH regeneration improves the mitochondrial function and mitochondrial protein synthesis? Is extracellular serine able to rescue the reduced glutathione levels?

      Minor concerns.

      Figure 3B,C does not show the statistical analysis so please incorporate this information.

      Include quantification of figure 3 E and supplementary figure S3E.

      figure S3E. Improve flow cytometry histogram, the cell population data values cannot be observed.

      Some methods and primers included in the material and methods section are no used in the manuscript.

      Significance

      In this manuscript the authors describe interesting results regarding amino acid metabolism under conditions of mitochondrial stress. The authors used a selective PHGDH inhibitor (compound NCT503), and document that de novo serine synthesis is essential to sustain phospholipid biosynthesis, redox homeostasis, mitochondrial function, and mitochondrial protein synthesis in Deletor mice and in cell culture under mitochondrial stress. Interestingly, serine supplementation does not rescue those metabolic alterations, indicating a specific mitochondrial stress-dependent mechanism of serine utilization by the cells.

      This data will be relevant to better understand the connection between alterations in mitochondrial function and amino acid metabolism in cells, and in organisms.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1:

      Major comments:

      1. In figure 4 and throughout the text they refer to AVP neurons as being "directly" inhibited by glucose but they do not show this. They do show membrane depolarization in response to decreased glucose form 2.5 to 0.1 mM; however this could easily be an indirect effect. To demonstrate that they directly sense glucose, it is necessary to block presynaptic input (generally done with the sodium channel blocker tetrodotoxin). In addition, the example recordings are not very good. The neurons seem to just decrease action potential frequency throughout the recording, despite the membrane depolarization. In the methods section, they state that cell resistance was measured but they do not report it. Looking at the traces, it appears that resistance does not change in response to decreased glucose which further supports a presynaptic action. In order to characterize these neurons as directly glucose sensing, they must use a blocker of presynaptic activity such as tetrodotoxin and the resistance values should be reported. They should also choose better representative traces.

      Answer: By “directly inhibited” we do not refer to a cell-autonomous effect but to a direct glucose responsiveness. Our cFOS experiments (Fig 3) and preexisting in vivo fiber photometry data (Kim et al., PMID: 34787082; Mandelblat-Cerf et al., PMID: 27989461) reported activation of AVP neurons in conditions of hypoglycemia. We further wanted to verify that the activation was triggered directly by the decreased glucose levels and not by accompanying systemic signals (for example insulin levels, stress response, etc). Furthermore, we aimed at identifying if inactivation of Tmem117 in AVP neurons affects their glucose responsiveness (at the circuit level). Therefore, we decided to take into account the synaptic inputs. Of course, this approach provides information at the circuit level (that we consider essential for CRR characterization) but is also accompanied with highly variable firing patterns. We focused our analysis on the membrane potential, as an indicator of cell excitability state that based on our previous experience was proven to be consistently affected in glucose sensing neurons regardless of cell-type, inputs or topology (Strembitska et al., PMID: 36180454; Kessler et al., PMID: 34622169; Quenneville et al., PMID: 32839348; Quenneville et al., PMID: 32839348; Labouèbe et al., PMID: 29218531; Steinbusch et al., PMID: 27422385; Labouèbe et al., PMID: 27322418; Lamy et al., PMID: 24606905). We used membrane resistance as an indicator of our patch-clamp quality. As specified in the Materials and Methods section (pages 33, lines 702-704), neurons with an access resistance >25 MΩ or changing by >20% during the recording were excluded from the analysis.

      We understand that the term “directly affected” has created some confusion since it could be interpreted as cell-autonomous effect. Therefore, we have exchanged the term as follows:

      • Results section (page 14, line 281): “To determine whether AVP neurons were directly sensitive to hypoglycemia and whether Tmem117 would modify this sensitivity” was converted to “To determine whether AVP neurons were sensitive to the decreased glucose availability and whether Tmem117 would modify this sensitivity”
      • Discussion section (page 27, lines 548-553): “Thus, AVP neurons can directly respond to hypoglycemia. Interestingly, a recent study reported that hypoglycemia can also activate AVP neurons indirectly, through afferent connections arising from GI neurons of the basolateral medulla (Kim et al., 2021). Thus, AVP neurons are part of a brainstem-hypothalamus neuronal circuit where hypoglycemia can be sensed by neurons located at multiple sites to activate the secretion of AVP leading to increased secretion of GCG.” was converted to “Thus, AVP neurons can respond to decreased glucose levels. Interestingly, a recent study reported that hypoglycemia can also activate AVP neurons through afferent connections arising from GI neurons of the basolateral medulla (Kim et al., 2021). Thus, AVP neurons are part of a brainstem-hypothalamus neuronal circuit where hypoglycemia can be sensed by neurons located at multiple sites to activate the secretion of AVP leading to increased secretion of GCG.”

      Regarding the membrane resistance measurements, 6 out of 7 AVPTM117KO GI cells and 6 out of 9 AVPTM117WT GI cells show a decrease in conditions of low glucose suggesting a cell autonomous effect, at least in a subpopulation of AVP GI neurons. We realized, based on the reviewer’s comment, that not including these data can lead to misinterpretation of the results, therefore we included the membrane resistance measurements in figure 4 and added the corresponding explanation in the Results section (page 15, lines 295-298).

      Regarding the representative traces, those included in the figure clearly show the increase in membrane potential that was consistent in all our GI cells. Choosing a representative trace for firing patterns is unrealistic given the high variability observed without the use of synaptic blockers.

      1. The relationship between the AVP/Tmem117 knockout and glucagon secretion is also not very convincing - especially in terms of the data showing that the effect seen at 1-week reverses by 3 weeks post knockdown in males when the neurons have died. First, the effect is very slight to begin with. Second, and more of a concern, the over secretion is still evident at the later time point, it just did not reach significance. This could have been due to the difference in sample size. Sample size in the early timepoint is 15-16 and in the late time point is reported as 8-9 (almost half the size), and in fact when I try to count data points, it really looks like the WT sample size is only 5. To make the conclusion that the effect disappears at the later time it is necessary to increase sample size so that the studies are equivalent. This is very important because these data are what is supporting the hypothesis that Tmem117 in AVP neurons regulates (inhibits) glucagon secretion. It is also concerning that the increased glucagon secretion in the knockout did not translate into differences in the depth of hypoglycemia raising concerns about physiological relevance.

      Answer: The sample size required based on our power calculations for these traits (plasma glucagon and copeptin) in male mice is 8 animals per group. Figure 2 consists of data merged from two individual experiments, both of which showed a significant effect. Figure 6 is the 3rd replication of our phenotypic observations with the addition of a later timepoint measurement. The number of animals included is 9 AVPTM117WT and 8 AVPTM117KO. Only for copeptin levels (panel F), as stated in the figure legend, the n is 8 mice per group, since for one of the AVPTM117WT mice the baseline levels of copeptin were undetectable by ELISA. Counting the datapoints in a 2D graph can cause misinterpretation since similar values can be depicted as overlapping points. We had decided to present in Fig 6 only the later timepoint that corresponds to the IF results reporting AVP cell death. We now realize based on the reviewer’s comment that this can cause misinterpretation of the phenotypic outcome, therefore we have exchanged graphs E-G (containing 2 timepoints) for the corresponding graphs that contain all 3 timepoints. We believe that with this addition the concern will be addressed since with the same sample size there is a significant increase in glucagon and copeptin secretion in AVPTM117KO mice at the early timepoint that is no longer evident at the later timepoint.

      Regarding the concern of effect size, we acknowledge the fact that we are reporting a small effect. But the CRR is controlled by a highly complex network of hypoglycemia activated neurons, which are located in different brain regions and act in an integrated manner to induce glucagon secretion through autonomic control, the HPA axis, and the secretion of AVP (reviewed in Steinbush et al., PMID: 26163755; Thorens, PMID: 34989155). Therefore, in this highly redundant and robust system, suppressing only one hypoglycemia sensing node, cannot be expected to have major consequence on the glucagon secretion. Nevertheless, we provide solid evidence that inactivation of Tmem117 in AVP neurons leads to a slight upregulation of AVP secretion that is accompanied by a subsequent increase in the glucose-stimulating hormone glucagon. To further highlight this observation, we added in figure 6 the correlation analysis between glucagon and copeptin levels of each tested sample that is reporting a significant positive correlation in both genotypes.

      Regarding the concern for physiological relevance, we would like to clarify that in this model we have not followed the reestablishment of normoglycemia over time. The timepoint of blood collection and glycemic measurement was selected based on our previous experience. We have performed multiple times full insulin tolerance tests in various mouse models, and we selected here (and in other papers: Picard et al., PMID: 35339728; Strembitska et al., PMID: 36180454) the one-hour time point because this is always the nadir of the glycemic curves, where CRR has the strongest effect in stimulating the secretion of CRR hormones. Glycemia at this time point depends on the insulin sensitivity of the animal. Thus, finding similar glycemia at 60 minutes after insulin injection indicates similar insulin sensitivity in AVPTM117WT and AVPTM117KO mice, further supporting that the increased glucagon secretion is directly correlated to the increased AVP secretion.

      1. It is also curious that the females in proestrus were similar to males but that females in other stages showed no effect. If, as mentioned in the discussion, estradiol was involved one would expect that males would be more similar to females in stages with low estradiol. The sex difference should be discussed more fully since it does seem to be one of the strong conclusions in the study

      Answer: We acknowledge that the discussion of the sex-specific phenotype was minimal in the initial version of our manuscript. We consider this finding very important for the general understanding of sex-differences in CRR, therefore we have included it in our main figures. But given that our observations remain in the phenotypic level our intention was to keep the discussion minimal and not add a lot of speculations that would not be supported by experimental data. We have performed all our further mechanistic analysis only in male mice and therefore we are not able to comment about this sex specific effect with evidence on the underlying mechanism. Of course, we have our literature-based explanation/hypothesis for the observed phenotype and given that this point was raised by all 3 reviewers, we have expanded this section of the discussion (pages 26, lines 520-542).

      1. The discussion needs to be adjusted in line with the findings.

      Answer: Several adjustments both in the Results and Discussion sessions have been incorporated based on the reviewers’ comments. Details on the adjustments for each point raised can be found in the corresponding answer.

      Minor comments:

      The BXD mice should be defined and the reason for their use explained

      Answer: We did not include further information in the first place because all the details and rational for the use of BXD mice were included in the original publication of this genetic screen (Picard et al., PMID: 35339728). We have now added further details on the origin of the BXD mouse lines accompanied with the corresponding reference (page 4, lines 83-85).

      The abbreviation cQTL needs to be defined at first use in the text of the results

      Answer: We added the abbreviation (page 5, line 102).

      Reviewer #2:

      Minor comments:

      1. Page 5, line 111: Fig1 shows Tmem117 expression in the hypothalamus. Tmem117 expression in AVP neurons in the PVN and SON are highlighted, however, AVP is not only expressed in these areas in the hypothalamus and in extra-hypothalamic areas. Was Tmem117 also expressed in AVP neurons beyond these areas?

      Answer: Based on our immunofluorescent detection Tmem117 is only observed in AVP neurons of the PVN and SON. This pattern (Fig 1A), the percentage of AVP-Tmem117 co-positive cells in these two areas (Fig 1H, I) and the presence of strong positive staining in the neurohypophysis (Fig 1B) points towards specific expression in magnocellular neurosecretory AVP cells. We do not observe staining in other AVP positive neurons. An example can be found in Fig 1A where Tmem117 staining is localized at the PVN and SON, but not at the Suprachiasmatic nucleus.

      1. Page 10, line 219: Fig2 shows CRR responses after conditional Tmem117 ko in AVP neurons. A sex-dependent difference was observed in the increased CRR after Tmem117 inactivation. A similar pattern between males and females during pro-estrus in copeptin and glucagon was observed. Was AVP expression and AVP neuron response to hypoglycemia also analyzed in both sexes, and in the case of females, were the results analyzed during the pro-estrus phase?

      Answer: Unfortunately, a detailed analysis of the mechanistic underpins of the estrus phase-dependent phenotype in female mice would exceed the spectrum of this initial characterization. We do believe that this finding is of great importance for the general understanding of sex-differences in CRR, therefore we have included it in our main figures. But our observations remain at the phenotypic level. We have performed all our further mechanistic analysis only in male mice. Of course, we have our literature-based explanation/hypothesis for the observed phenotype and given that this point was raised by all 3 reviewers, we have expanded this section of the discussion (pages 26, lines 520-542).

      1. Many of the experiments performed after Fig 3 (glucose responsiveness of AVP neurons, ER stress and ROS production, Ca2+ imaging) are mainly analyzed in the SON, but not the PVN. What is the rationale for analyzing only the SON in some experiments? Analyzing the PVN is of relevance due to its known role in CRR triggering.

      Answer: The reason for focusing our single-cell level analysis only in SON is its homogeneous population of AVP-Tmem117 double positive cells (Fig 1I). In the PVN about 10% of AVP neurons are negative for Tmem117 (Fig 1H). Therefore, we would be unable to distinguish between the cells with Tmem117 inactivation and those that did not express it at the first place. We agree with the reviewer that PVN is of great relevance for CRR induction, and this is why for all our in vivo phenotyping experiments we aimed at targeting both areas. Our AVPTM117KO mouse model is generated by injection of the AAV6-AVP-icre virus in the posterior pituitary and is targeting both regions (Fig S2E). This model was used for all our phenotypic analyses (Fig 2, 6) and for the fiber photometry recordings (Fig 5H-M). The Ca2+ signal we obtain is a collective output of AVP magnocellular terminals in the posterior pituitary deriving from both PVN and SON. But when it comes to the analysis of responses at the single-cell level, not having the ability to identify the subpopulation of Tmem117 negative cells could have a big impact on the results and their interpretation.

      1. Page 16, line 346: Again here, only BIP expression in AVP neurons is shown in the SON. I would be interested in looking at expression in AVP neurons in the PVN. Same goes for activation of these neurons (measured by Ca2+) after insulin administration.

      Answer: As mentioned above, we did not quantify these single-cell events in AVP neurons of the PVN due to the inability of effectively distinguishing between cells with Tmem117 inactivation and those that do not express Tmem117. But based on our supporting data (activation of PVN AVP cells in Fig 3 and decreased number of AVP PVN cells upon Tmem117 inactivation in Fig 6) we believe that the effect of Tmem117 inactivation is comparable between the Tmem117-positive AVP cells of both areas.

      1. What would be the role of Tmem117 in CRR triggering after hypoglycemia? Would its expression change during hypoglycemic conditions versus normoglycemia? Would that be different in models of pathology, like diabetes? Speculation of its physiological role in the discussion might be of help to visualize its role beyond inactivation.

      Answer: We focused our discussion strictly on the acquired results, but we agree with the reviewer than including speculations regarding the physiological role of Tmem117 would enhance the communication of our results. We have incorporated some extra points focusing on the possible role of Tmem117 expression in physiological conditions and pathological states in the Discussion section (pages 27-28, lines 562-571). Furthermore, we have included some extra data from microdissected PVN and SON tissue reporting downregulation of Tmem117 in the SON as a physiological response to insulin-induced hypoglycemia (Fig 3G-I).

      Reviewer #3:

      Major comments:

      1) The in vivo calcium data is not convincing (e.g. Figure 5j). Why is the activity not similar to that normally seen from populations of neurons (and in particular AVP neurons) in vivo - bursting/spikes. This is just a background increase in calcium... not an increase in activity?

      Answer: Our aim with the fiber photometry experiments was not to detect the activity of AVP neurons but to evaluate the Ca2+ fluctuations in AVP neuronal terminals, directly at the site of AVP exocytosis. The activity of AVP neurons in conditions of hypoglycemia has been previously detected with similar techniques at the level of cell bodies in the SON (Kim et al., PMID: 34787082; Mandelblat-Cerf et al., PMID: 27989461) and was further supported by our cFOS and ephys experiments (Fig 3, 4). These experiments showed that inactivation of Tmem117 did not affect the activation of AVP neurons in conditions of hypoglycemia. But our phenotypic characterization revealed higher secretion of AVP (Fig 2) and our in vitro (Fig S3) and in vivo (Fig 5A-G) data demonstrated increased ER stress and ROS in AVPTM117KO cells. Therefore, we wanted to assess if this increased stress is associated with increased Ca2+ at the level of neuronal terminals which would enhance AVP exocytosis. The acquired signal is a collective output of AVP magnocellular neurons from PVN and SON and although it is not resembling the pattern observed from cell body recordings, we believe it provides important information for the output of this circuit in conditions of hypoglycemia. Our results do not only report that Tmem117 inactivation is accompanied by an increase in intracellular Ca2+ at the level of nerve terminals/exocytosis, but further demonstrate (for the first time to our knowledge) that the activity reported in conditions of hypoglycemia is linked, as expected, to an increase in local Ca2+ levels at the posterior pituitary. All the essential controls for normalization and interpretation have been taken into account as mentioned in the methods section (page 31, lines 655-668). GCaMP7 signal recordings are corrected for artifacts and photobleaching. The isosbestic channel is subtracted to correct for non-GCaMP7 related signal artifacts and then at a second stage (during the DF/F0 normalization) the traces are corrected for photobleaching by the running average algorithm. Furthermore, 60min recordings of mice injected with saline are used as control for determining the increased signal after insulin injection. We have now added a clarification on the origin of the recorded signal in the Results section (page 18, line 368).

      2) Why would this response be oestrus cycle dependent? This is given very little thought in the manuscript.

      Answer: We acknowledge that the sex-specific phenotype observed was not thoroughly discussed in the initial version of our manuscript. We included the data in a main figure since we consider them as an important piece of information supporting the crucial role of sex hormones in the regulation of CRR. On the other hand, since our observations remain in the phenotypic level, we thought it would be better to keep the discussion on the topic short and not include various literature-based hypothesis that would not be supported by experimental data. We have performed all our further mechanistic analysis only in male mice and therefore we are not able to comment about this sex specific effect with evidence on the underlying mechanism. We have now realized based on the reviewers’ comments that further discussion on the topic is needed, therefore we have expanded this section of the Discussion (page 26, lines 520-542).

      Minor comments:

      1) How does the regulation make sense in the context of AVPs normal role in whole body physiology?

      Answer: We focused our discussion strictly on the acquired results, but it has become evident based on the reviewers’ comments that a discussion of the broad picture regarding the role of AVP and Tmem117 in physiological and pathological conditions would strengthen the interpretation of our results. We have now incorporated some extra points focusing on the possible role of Tmem117 expression in physiological conditions and pathological states in the Discussion section (pages 27-28, lines 562-571).

      2) What do the authors think about the role of AVP in islets, some authors suggest it actually has the opposite effect.

      Answer: The literature on the role of AVP on pancreatic islets shows indeed some controversies. A couple of studies suggest an action on beta cells and insulin secretion without any effect on glucagon secretion. On the other hand, the evidence on the stimulation of glucagon secretion is supported by numerous studies over the years and has been convincingly demonstrated with various ex vivo and in vivo models. Our study, in line with these findings, verifies the increased AVP secretion in conditions of hypoglycemia and reports a positive correlation between the levels of circulating copeptin and glucagon (Fig 6H).

      3) Why have the authors left the recent study by Kim, Rorsman and colleagues et al. 2022 (eLife) to the discussion? This manuscript is an important piece in this field and should be introduced in the introduction.

      Answer: We have now added the AVP induced glucagon secretion, accompanied by the supporting references (including the reference mentioned by the reviewer) as integral part of the CRR in our Introduction section (pages 3-4, lines 68-71).

      4) The intro should also mention that islets also can intrinsically regulate glucagon release.

      Answer: We focused our introduction exclusively to the brain triggered glucagon secretion, but in accordance with the reviewer’s comment we have now incorporated the intra-islet regulation and supporting literature in the Introduction (page3, line 55).

      5) Has tmem117 shown up in any human screens of hypogylcaemia risk? Do tmem117 variants show in any osmoregulation or insipidus risk?

      Answer: Not to our knowledge.

      6) Please clarify what N= is? What is a statistical unit in each case in the graphs. It is not clear when it is a mouse, cell or experiment. This should be justified in each case.

      Answer: We have now justified the corresponding values in all figure legends.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Glucagon secretion counters hypogylcaemia, and this is in part regulated by the CNS.

      The authors investigated the role of hypothalamic Tmem117, which was previously identified in a genetic screen as a regulator of the counter-regulatory response to hypoglycaemia. They show that Tmem117 is expressed in vasopressin neurons and that inactivation of Tmem117 in AVP neurons increases hypoglycemia-induced vasopressin secretion leading to higher glucagon secretion. They show this is oestrus cycle phase-dependent.

      The manuscript is generally well written and the results of good quality. The findings are important.

      I have some comments:

      Major:

      1. The in vivo calcium data is not convincing (e.g. Figure 5j). Why is the activity not similar to that normally seen from populations of neurons (and in particular AVP neurons) in vivo - bursting/spikes. This is just a background increase in calcium... not an increase in activity?
      2. Why would this response be oestrus cycle dependent? This is given very little thought in the manuscript.

      Minor:

      1. How does the regulation make sense in the context of AVPs normal role in whole body physiology?
      2. What do the authors think about the role of AVP in islets, some authors suggest it actually has the opposite effect.
      3. Why have the authors left the recent study by Kim, Rorsman and colleagues et al. 2022 (eLife) to the discussion? This manuscript is an important piece in this field and should be introduced in the introduction.
      4. The intro should also mention that islets also can intrinsically regulate glucagon release.
      5. Has tmem117 shown up in any human screens of hypogylcaemia risk? Do tmem117 variants show in any osmoregulation or insipidus risk?
      6. Please clarify what N= is? What is a statistical unit in each case in the graphs. It is not clear when it is a mouse, cell or experiment. This should be justified in each case.

      Significance

      This is important, but some of the in vivo calcium data is weak. The manuscript is also riddled with self-citations and doesn't really put the results into a broader context. In addition, the finding is in a sense piggybacking off a recent revelation in the field (AVP neuron importance) using a technique that is available to the authors (Tmem117 manipulation) rather than trying to address the hypothesis/question with THE BEST approach to answer the question. The question feels like: "how can we use our mouse model to probe this AVP neuron hypothesis ourselves". Strange. The finding that the results are only relevant during a particular phase of the oestrus cycle feels a bit random and lacks adequate explanation. I still like the manuscript very much, the experiments are very technically challenging, the results are very interest, the data (mostly) of excellent quality, and the relevance to the field highly important, but I feel there is still room for improvement (unlikely more experiments, definitely some thinking and rewritting).

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The present study led by Gaspari, et al shows a new role for Tmem117 as a major regulator in the CRR. The authors used a variety of techniques to demonstrate that Tmem117 innactivation modulates hypoglycemia-induced responses by regulating AVP action in the hypothalamus. I found the rationale of the study interesting, the results seem to support the author's claims and conclusions seem to be proper. However there are some minor issues that needs to addressed:

      1. Page 5, line 111: Fig1 shows Tmem117 expression in the hypothalamus. Tmem117 expression in AVP neurons in the PVN and SON are highlighted, however, AVP is not only expressed in these areas in the hypothalamus and in extra-hypothalamic areas. Was Tmem117 also expressed in AVP neurons beyond these areas?
      2. Page 10, line 219: Fig2 shows CRR responses after conditional Tmem117 ko in AVP neurons. A sex-dependent difference was observed in the increased CRR after Tmem117 inactivation. A similar pattern between males and females during pro-estrus in co-peptin and glucagon was observed. Was AVP expression and AVP neuron response to hypoglycemia also analyzed in both sexes, and in the case of females, were the results analyzed during the pro-estrus phase?
      3. Many of the experiments performed after Fig 3 (glucose responsiveness of AVP neurons, ER stress and ROS production, Ca2+ imaging) are mainly analyzed in the SON, but not the PVN. What is the rationale for analyzing only the SON in some experiments? Analyzing the PVN is of relevance due to its known role in CRR triggering.
      4. Page 16, line 346: Again here, only BIP expression in AVP neurons is shown in the SON. I would be interested in looking at expression in AVP neurons in the PVN. Same goes for activation of these neurons (measured by Ca2+) after insulin administration.
      5. What would be the role of Tmem117 in CRR triggering after hypoglycemia? Would its expression change during hypoglycemic conditions versus normoglycemia? Would that be different in models of pathology, like diabetes? Speculation of its physiological role in the discussion might be of help to visualize its role beyond inactivation.

      Significance

      The study of Gaspari, et al proposes a new player in the hypoglycemia-induced CRR, specially affecting AVP modulation of CRR. The results and conclusions are of relevance to the field, as the mechanisms mediating hypoglycemia-induced CRR and how these are affected during pathology are not completely understood. The study is relevant in the metabolic field and for a neuroendocrinology public.

      Field of expertise: Neuroendocrinology, hypoglycemia, diabetes.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this study the authors convincingly demonstrate that the hypothalamic protein Tmem117 protects against elevated ROS and cell death in AVP neurons, and that knocking out Tmem117 in these neurons leads to cell death. However, the major thrust of this paper was to demonstrate that Tmem117, in AVP neurons plays a role in hypoglycemia counter regulation (per the title). The data supporting this hypothesis are much less convincing.

      Major comments

      There are 2 major findings of this study that are problematic (#1 and 2 below). Further experiments are needed to support their conclusions.

      1. In figure 4 and throughout the text they refer to AVP neurons as being "directly" inhibited by glucose but they do not show this. They do show membrane depolarization in response to decreased glucose form 2.5 to 0.1 mM; however this could easily be an indirect effect. To demonstrate that they directly sense glucose, it is necessary to block presynaptic input (generally done with the sodium channel blocker tetrodotoxin). In addition, the example recordings are not very good. The neurons seem to just decrease action potential frequency throughout the recording, despite the membrane depolarization. In the methods section, they state that cell resistance was measured but they do not report it. Looking at the traces, it appears that resistance does not change in response to decreased glucose which further supports a presynaptic action. In order to characterize these neurons as directly glucose sensing, they must use a blocker of presynaptic activity such as tetrodotoxin and the resistance values should be reported. They should also choose better representative traces.
      2. The relationship between the AVP/Tmem117 knockout and glucagon secretion is also not very convincing - especially in terms of the data showing that the effect seen at 1-week reverses by 3 weeks post knockdown in males when the neurons have died. First, the effect is very slight to begin with. Second, and more of a concern, the over secretion is still evident at the later time point, it just did not reach significance. This could have been due to the difference in sample size. Sample size in the early timepoint is 15-16 and in the late time point is reported as 8-9 (almost half the size), and in fact when I try to count data points, it really looks like the WT sample size is only 5. To make the conclusion that the effect disappears at the later time it is necessary to increase sample size so that the studies are equivalent. This is very important because these data are what is supporting the hypothesis that Tmem117 in AVP neurons regulates (inhibits) glucagon secretion. It is also concerning that the increased glucagon secretion in the knockout did not translate into differences in the depth of hypoglycemia raising concerns about physiological relevance.
      3. It is also curious that the females in proestrus were similar to males but that females in other stages showed no effect. If, as mentioned in the discussion, estradiol was involved one would expect that males would be more similar to females in stages with low estradiol. The sex difference should be discussed more fully since it does seem to be one of the strong conclusions in the study
      4. The discussion needs to be adjusted in line with the findings.

      Minor comments:

      The BXD mice should be defined and the reason for their use explained<br /> The abbreviation cQTL needs to be defined at first use in the text of the results

      Significance

      The observation that Tmem117 is protective against ROS and cell death is interesting. However, the other conclusions are not supported by the data which decreases the overall significance of the study

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Thank you for the rapid and favorable reviews of our manuscript entitled “Long-Read Genome Assembly and Gene Model Annotations for the Rodent Malaria Parasite Plasmodium yoelii 17XNL.” We particularly appreciated that both reviewers had substantial, detailed expertise with the sequencing and assembly of Plasmodium genomes, and valued their questions and suggestions to ensure high rigor of our work. We have addressed all of the reviewers’ comments in the revised manuscript, and have provided a point-by-point response to each below.

      Response to Reviewers

      Note: Point-by-point responses are provided in italics below each reviewer comment below. Line numbers referenced in our responses refer to their final line position in the Track Changes version of the manuscript.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript entitled "Long-Read Genome Assembly and Gene Model annotation for the Rodent Malaria Parasite P. yoelii 17XNL" is a well-written manuscript providing updates and important observations about the genome assembly and annotation of this specific non-lethal isolate. The group overall did a great job showing how the application of newer technologies such as long-read DNA and direct RNA sequencing to generate top-quality genomes to be used as a reference for the community. Here are some comments about the work presented:

      Response: Thank you for your positive feedback and suggestions on how to clarify these findings. We have improved the revised manuscript based on your feedback and suggestions below.

      Major comments: - The authors added several result information across the methods section. Making the text repetitive, since the same is also presented in the results section. Please revise the method section to remove results from this section.

      Response: We agree and have streamlined both the Results and Methods sections to remove redundancy in these descriptions.

      • Some methods are also redundant in the Result section. For example, in line 141-142, the group describe which DNA extraction kit they used (again this is correctly mentioned in the methods section).

      Response*: We agree and have removed minutiae such as these from the Results section. These details remain in the Methods section to ensure reproducibility. *

      • Besides important, the group added several information about method comparison between base call accuracy and sequencing methods. I agree that having this information in the supplemental material is great, but I would be careful to not focus too much on those, since most of the observations are already well-known by the community and focus more in the biological relevance of what is being generated with the newly updated genome.

      Response: The advances in base calling algorithms do make substantial improvements to the Nanopore reads. We have only included a short description of this in the main manuscript and feel this is an appropriate amount of context for the typical reader. Those that love these details and want to dig further can find this content in our supplemental information.

      • The group did a great job generating two versions of the genome, and an updated gene annotation set using long-read sequencing. But the major question is, how about alternative splicing? They mention the use of it (line 350) but I don't see any result about how many alternative transcripts were observed, and if they were differentially detected in different life stages of the sets used for the RNA sequencing. This is a very important result to be added since one of the key pieces of information that long-read RNA sequencing brings for Genome annotation.

      Response: We have now expanded this description in the manuscript to note that 866 genes are predicted to have multiple transcript isoforms (Lines 240-241). Moreover, we have now generated a Supplemental Table 4 that lists these isoforms in the revised manuscript. As we have not conducted further validation of this large number of transcript isoforms, we have left the description at this level.

      • Same observation as above for potential long ncRNAs.

      Response: We agree that lncRNAs are a fascinating aspect of the biology of the parasite, but a proper analysis of this class of RNA is far outside of the scope of this current study. Automatic identification approaches with Nanopore data will likely yield high numbers of false positives, which require manual curation for rigorous annotation. We hope others can use these data to accelerate such studies as well.

      • From what I understand the Hifi run was able to generate a gapless genome assembly and the ONT run did not. What was the final coverage for each? From my experience with P. falciparum genomes, ONT even with the rapid kit was able to generate chromosomal level assemblies if the coverage was >100x (but again, this is not a rule). Add those valuable observations about the depth so the reader can check if other variables in the comparison should be made.

      Response: This is a particularly interesting aspect of not only our datasets, but of other Plasmodium genomes as well. This issue occurs at least in part due to the presence of many repeated elements in the subtelomeric regions. It is important to note that these repeated elements do not resolve into a single haplotype in an assembly due to conflicting information, not due to lack of coverage. For instance, regions may differ by only a few nucleotides that each have significant read support. We are particularly interested in a recent preprint that concludes that P. falciparum harbors extrachromosomal plasmids with these var sequences present (doi.org/10.1101/2023.02.02.526885). *If this observation is supported via peer review, this interpretation could also begin to explain our results with P. yoelii 17XNL as well. *

      • Also be sure that the structural comparisons between the genomes are not the ones used after running ragtag.py. If so, there is a high chance of structural bias in the scaffolded contigs.

      Response: We apologize for the confusion. We did not use ragtag for the PacBio assembly, and all structural and variant comparisons were done using the PacBio assembly. However, we did use ragtag for the Nanopore assembly that is included in this study as an additional resource to our community. These data were not used for variant calling though.

      • How Prokka differed from Braker2 for the Mitochondria/API annotation? This needs to be very well described since prokka is made for prokaryotic organisms and not for eukaryotic ones. And Braker2 uses a custom build dataset for training, which I believe contains known information about MIT/API for Plasmodium species.

      Response: We first applied Braker2 to the organellar genomes and identified only 6 genes in the apicoplast genome and only 2 genes in the mitochondrial genome. Due to their prokaryotic origin, we then tested if Prokka could alleviate this issue. To do so, we applied Prokka to the 17X reference genome and found that it detected all of its annotated organellar genes. Therefore, we also applied Prokka to our Py17XNL genome to annotate the genes found on the apicoplast and mitochondrial genomes. As a final validation check, the gene annotations on these two organellar genomes are effectively identical between 17X and 17XNL. This is consistent with the sequencing results and assemblies that show that the apicoplast genome is identical and the mitochondrial genome differs in a single, notable deletion in 17XNL.

      • Figure 5B, what is the peak observed in the mitochondria? What genes? Repeats?

      Response: What appears to be an inward pointed trough actually reflects the deletion of bases in 17XNL compared to the 17X assembly. We have clarified this in the manuscript on Lines 296-297 and in the legend of Figure 5.

      Minor comments: - For Oxford nanopore sequencing using the ligation kit, did the group check for potential chimeric reads generated by the protocol?

      Response*: We did. We used the adapter trimming software, Porechop, to identify and bin chimeric reads that were eliminated from the dataset. This method is described in the Makefile associated with the manuscript. *

      • Check if all species are italicized (for example, line 187 P. yoelii is not)

      Response: We have italicized this instance of P. yoelii and have reviewed the document to search for any other words that should be italicized.

      • In methods add the parameters for minimap2 for the direct RNA alignment

      Response*: We would encourage readers to view our MakeFile that has all of the commands and parameters used for the bioinformatic work reported here. *

      • For variant calling, I would use a minimum of 10x coverage to make a variant call instead of 5x. Besides looking well reproducible between all checks, I would be careful mainly with the single bp deletions with a such low threshold.

      Response: Read counts for the called variants were generally greater than 20. Moreover, we took these validations a step further and manually curated these variants using the data from multiple sequencing platforms used in this study to ensure high rigor in making these variant calls. We have further clarified this in the revised manuscript.

      • In some parts of the methods, the authors mentioned slight modifications in some protocols (for example, lines 443 and 454), besides well described in the text, could you highlight what were the modifications in the text? This will facilitate many other researchers to understand why those modifications were needed.

      Response: We have clarified these modifications in the revised manuscript. In short, these modifications consisted of: 1) For the HMW gDNA prep kit, an agitation speed of 1500 rpm was used as opposed to the recommended 2000 rpm due to limitations of our instruments. 2) A slow end over end mixing by hand was preferred over using a vertical rotating mixer as yield was consistently greater with this change. 3) For the RNeasy kit, the lysate was passed through a 20-gauge needle for homogenization of the sample. Instead of an on-column DNaseI treatment, the RNA was treated with DNaseI off of the column to promote complete DNA digestion. 4) A second elution from the RNeasy column was performed in order to improve yield.

      • As mentioned in the major, the data analysis method section needs rework to remove results from the text.

      Response: We have revised the manuscript accordingly.

      • The group mentioned that small contigs not mapping to Py17X were discarded. What are those? Repeats? Contamination?

      Response: These contigs were of mouse origin, as P. yoelii was grown in Swiss webster mice in this work. We have clarified this in the revised manuscript on Lines 183-184.

      Reviewer #1 (Significance (Required)):

      This work generated a strong method and resource for a better genome assessment of P. yoelii for the community. As I mentioned in my comments, some more details about the findings such as alternative splicing and lncRNAs may strengthen them even more the publication. I know that comparative analysis between Py17X and XNL is not in the scope here, but more information about it, such as a synteny plot would be great for the community to understand that they can rely on this new reference genome. I've been working with eukaryotic and prokaryotic genomes for more than a decade and I have a lot of experience with all the methods presented. I believe that potentially the depth generated for the ONT data may be one of the factors for not reaching the chromosomal level of this isolate, since HiFI was. The group did a great job on the method description, and I believe that the community will be very happy to incorporate this genome as one of the references for this organism.

      Response: We are thrilled that you value the data and the rigor of our approaches. We also believed that a direct comparison between 17X and 17XNL strains is critical. Because of this, we provided details of this comparison in Figures 5 and 6, as well as in supplemental files. Because our colleagues often use these strains interchangeably, it is important for our community to know what differences are present between the parental 17X and the cloned 17XNL line. While substantial identity exists between the 17X and 17XNL strains, there are many variants between them, including many that affect genes that are known to have essential functions for the parasite. For this reason and more, we believe the true 17XNL genome assembly will be a preferred reference once it is fully integrated into PlasmoDB.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The paper has three distinct parts, 1. Assembly of the P. yoelii yoelii 17XNL 2 Annotation of the genome and adding UTR regions 3. Comparing the sequence of 17XNL with 17X .

      Assembly: The authors present a novel assembly for the P. yoelii yoelii 17XNL genome. They used two different approaches, comparing Oxford Nanopore (ONT) long reads + Illumina DNA with PacBio Hifi. None of the approaches generated a telomer to telomer assembly so sequences from the 17X reference was used to fill in the mssing sequence.

      Response: Please also see the comment from Reviewer 1 and our response. The presence of many repeated elements in the subtelomeric regions leads to the challenges noted here about a telomere-to-telomere assembly, as well. The presence of these elements means that the sequences do not resolve into a single haplotype in an assembly due to conflicting information, not due to lack of coverage. Because of this, we have chosen to harmonize the selected haplotype at these subtelomeric regions with that of 17X, while still acknowledging and providing the complex data associated with the subtelomeric regions.

      Annotation Next, they generated long reads (ONT)and Illumina RNA-Seq to improve the annotation. Although, their annotation is not better than the current P. yoelii 17X reference genome in PlasmoDB, they could predict the UTR regions and alternative splice sites due to the 3' capturing approach and long reads. Having the UTR annotated and potentially having alternative splice sides is useful for the field.

      Response: We agree that the additional gene model annotations for both UTRs and alternative transcript isoforms is a valuable resource to our community. We are working with PlasmoDB currently to make these data readily accessible.

      17XNL - 17X comparison The author compared the 17XNL with the 17X reference. Both genomes were done with Pacbio, and it should be noted that P. yoelii has a GC content of probably ~23% with several homopolymer tracks. Further, the 17XNL genotype was obtained from a 17X culture, so the genomes are expected to be very similar as the author noted in the introduction. The authors found ~2000 differences; some are in genes, but many are indels, which very well could be sequencing errors. Finally, the authors claim that this genome could become relevant for the community as new reference to perform analysis. As their genome is so similar to 17X and they have to show that their annotation is at least as good as the current 17X reference genome (manual curated) and the difference are not due to sequence error in 17X or 17XNL.

      Response: As we describe below, we have taken multiple steps to inspect the quality of the 17X genome assembly (it is very robust), to call variants between strains, and to validate them using our data across multiple sequencing platforms and via manual curation. Because of this, we view these as true variants between the 17X and 17XNL genomes

      Major comments Overall I struggle to see the need for a "NEW" P. yoelii reference. It would be good to state how similar these genomes are - they are basically identical. As the 17XNL is curated manually, it would have made more sense to me to start from that one and then generate the UTR annotation and include splice sides. This could be easily loaded into an alternative Web-apollo track and then merged to the current annotation to be useful to the community.

      Response*: We chose to generate a new reference assembly for 17XNL because the current one is from 2002, remains in >5000 contigs, has gene identifiers that do not align with other current Plasmodium gene models (e.g., PY00204 vs. PY17X_0502200), and historically has had problematic gene models attributed to individual genes. This clean start ensures that users can know the provenance of the underlying data that created the genome assembly and gene models. *

      I wonder if many of the differences the authors found between 17X and the 17XNL reference are true. The authors are correct that some differences between 17X and 17XNL are true. I could not find any evidence of genome polishing with tools like Pilon or ICORN to correct sequencing errors, I wonder if these differences are sequencing errors.

      Response: The PacBio-based assembly received no error correction or polishing. It should be noted that all variants that were called automatically were also manually verified using data from multiple sequencing platforms generated in this study. Moreover, for coding sequences, we imposed a threshold that 80% of all reads at the variant’s location needed to support the variant in order to be considered true. Through these strict thresholds, we eliminated many potential variants that only had support from one sequencing platform. We highlight several variants that were confirmed through multiple datasets in Table 2.

      Did the authors look into the reads of the NCBI - GCA_900002385.2 - assembly? Maybe they could use the underlying Illumina reads if theirs don't have enough coverage. Also, the differences between 17X and 17XNL could be that the reference is wrong. How many pseudo genes did they obtain? Are there more or less than in the current reference?

      To confirm the calls, could you also map the 17XNL reads against the 17X reference and see if they are still true. As the same time, map the 17X illumina reads to see if the reference is correct at this state. When looking at the alignments, it can be seen that many different are in low complexity/repetitive regions.

      Response: We analyzed both their raw and assembled data to compare them with our results, and we determined that the 17X data and assembly were robust and that these difference likely reflect true variance between the strains. The 17X reference has 57 pseudogenes that are annotated as pir, fam-a/c, or others. Overall, there were 1057 pir genes annotated in the 17X genome, whereas we annotated 1048 for our Py17XNL genome. There were 302 fam-a/b genes annotated in the 17X genome, whereas we annotated 301 for our Py17XNL genome. As noted above, we confirmed variant calls using data from multiple sequencing platforms in this study as well as through manual curation.

      The authors sequence their genome with a HiFi Pacbio run and also ONG + DNASeq... but why did they not get 16 chomromes out? For example the current P. yoelii reference was assembled directly into far less pieces than theirs [P. chabaudi assembles into 16 pieces]. Could it be a different read depth or is it the fragment length? Could the authors please comment on that. Also, if there were contigs, why did they fill the sequence with 17X sequence, rather than keeping gaps? So in the end, their sequence is a hybrid, of 17X and 17XNL, right?

      Response: Please see our responses above to both Reviewer 1 and 2 regarding the heterogeneity of the subtelomeric regions that indicate that a single haplotype is not readily called. This is not due to insufficient read depth, but rather we believe it reflects something fascinating about Plasmodium genomes in these regions. A recent preprint (doi.org/10.1101/2023.02.02.526885) provides one possible interpretation for this observation.

      Why do you think you had less coverage of CCS read around the telomer ends? Do you think it is a systematic issue of the PacBio Hifi? Did you see any evidence of Illumina or ONT reads - or could it be that while culturing the telomer ends dropped off?

      Response: See our response above about the challenging nature of the subtelomeric regions of Plasmodium genomes. As above, this is not an issue of coverage per se, but rather of heterogeneous related sequences that are not readily resolved into a single haplotype. In order to minimize the risk of sequencing a genome of a mixture of heterogeneous parasites, we sequenced “Pass 0” parasites received directly from BEI Resources to ensure this genome reflects the established P. yoelii 17XNL clone.

      I realised that the authors used a lot of primary tools. I wonder why they chose that path, as there are several tools to do automatic finishing for long read assemblies: Assemblosis, ARAMIS, MpGAP or ILRA. Especially the last one focuses on Plasmodium genomes. Please comment.

      Response: We initially started our bioinformatic analyses using established tools such as these. Specifically, we first tried Companion and ILRA, but the results were not superior to those we achieved with the workflow we describe in this manuscript, which also provided greater parameter control.

      Also, for the annotation, could it not be better to transfer the manually curated genome annotation with LIFT off or RATT? All these tools are widely used in the generation of reference genomes in the parasitology field. I annotated their sequence with Companion, and although their gene models are good and some of the Companion calls might need improvement, overall, the Companion results look more exact to me.

      Response: Companion was the original tool we used for the generation of gene models. While we found that for a pre-package software platform it performed excellently, we found it to be insufficiently customizable and the results were not sufficiently accurate from our assessment. Additionally, lifting over information always raises the risk of imposing a different perspective on what is truly present. We believe that a high quality, de novo assembly is always preferable, and therefore chose this workflow.

      The code is very well organised, and it was easy to follow. Are you planning to put it on a GitHub repository?

      Response: We appreciate this recognition. We believe clear reporting of the bioinformatics work is critical for rigor and reproducibility. Yes, all of this will also be provided in GitHub to benefit the wider community.

      For the annotation in the attachment, there were two files. I had a look at them and they were quite different. As 17X and this genome are basically identical (Response: The two gff files represent either a Nanopore only or hybrid Nanopore+Illumina-based model. The latter produced a more comprehensive annotation of gene models, which is what we have proceeded with. However, we provided both in case end users find value in the Nanopore only annotation which has a 3’ bias due to the mechanism of how sequencing occurs via this approach.

      We have found meaningful variations in genome sequence that potentially impact biological function (see Discussion). Therefore, we maintain that these genomes are not basically identical and are useful to the malaria research community for these reasons and more.

      It is excellent that the genome is submitted to NCBI. Why are there 18k proteins? Are these the alternative spliced forms?

      Response*: We are not certain how this interpretation might have arisen, as we only have reported 7047 potential transcript isoforms to NCBI based upon our data. *

      Minor The current Py 17X genome in PlasmoDB is a Pacbio assembly (https://plasmodb.org/plasmo/app/record/dataset/TMPTX_pyoeyoelii17X), but not part of the 2014 paper. It was submitted later to NCBI than the paper the authors cite. Also, the current P. berghei Pacbio genome is from Fougère et al. PLoS Pathog 2016;12(11):e1005917.

      Response: We have now made a detailed note about the Py17X PacBio dataset in our revised manuscript on Lines 186-187. Mentions of the current P. berghei genome assembly had already cited the Foug’ere et al. publication.

      I tried to open the supplemental tables, but they were all in pdf rather than excel and split over several pages. Two had missing information, e.g. UTR per gene. From the name of the tables, I had an idea of what they should contain, but for a re-submission, it would be good to have them in the correct format.

      Response: We agree that provision of the PDFs of the supplemental files is not the ideal way to review these analyses. The complete data was also provided in the Excel files provided to Review Commons. We will ensure that the affiliate journal receives the Excel files for completion’s sake.

      To me, the beginning of the results reads a bit like an introduction (the part which sequencing technology to use)

      Response: We agree, and as noted to Reviewer 1 above, we have streamlined this section of the revised manuscript.

      Could you add to the tables: Sequence Coverage of the three technology, how many contigs you had before ordering the contigs and the number of pseudogenes in the annotation?

      Response: This information is now provided in Supplemental Table 3 in the revised manuscript.

      I struggle with the section header line 229-230 that the new sequence is more complete as it is a hybrid assembly with 17X. Alternatively, please explain how the consensus was built.

      Response: We agree and have revised this section header for accuracy.

      The authors correctly state that ONG is great, lines 333ff, but why does it not generate telomer-to-telomer chromosomes in this case? Please discusss.

      Response: Please see our response to this above for remarks made by both Reviewer 1 and 2. We have also added clarifying text in our revised manuscript discussing why this may have occurred.

      Reviewer #2 (Significance (Required)):

      General assessment As mentioned above, I struggle to see this as a strong leap for the malaria community to use this genome, as it is so similar to the current 17X genome, which is manually curated in plasmodb. Response: We agree that it is important to know how similar the genomes of 17X and the cloned 17XNL strain are. It is perhaps even more important to know what the key differences are as well. In this study, we have asked and answered these questions, and identified 2000+ variants between the strains. We have manually curated several of the variants that impact the expression of essential/important genes, and found that biologically meaningful differences exist (see Discussion). Finally, we have also provided additional information on the gene models of 17XNL, including an experimental definition of UTRs and transcript isoforms. Together, we hold that these data will not only match those currently available for 17X, but will exceed them. We are currently working with PlasmoDB to make these data readily accessible to our community.

      Advance The authors should make the comparison of ONT and PacBio HiFi clearer and discuss why the technologies still don't generate telomer-to-telomer sequences. From the biological side, none of the found differences were related to the different phenotype between 17X and 17XNL.

      Response: We have provided these comparisons and all related data to the reader in this manuscript, as well as through public depositories. Please see above for our responses as to why a true telomere-to-telomere assembly is challenging with Plasmodium parasites, and for a recent preprint that might provide an explanation for this. Finally, the phenotypic differences between 17X and 17XNL are variable, which might reflect differences in individual parasite stocks as has been historically seen in the spontaneous development of lethality in multiple laboratories. While we do not find any particular genetic difference correlates with a specific phenotype, these data using the cloned 17XNL parasite available from BEI provides a robust reference with a defined parasite stock.

      Audience: I do agree that adding the UTR sequence will be useful for those working with P. yoelii as a model, or who want to do comparative UTR analysis across species.

      Response: We agree that this additional gene model information will be valuable. We are working with PlasmoDB to make this information readily available and are already integrating it into our ongoing studies.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The paper has three distinct parts,

      1. Assembly of the P. yoelii yoelii 17XNL 2 Annotation of the genome and adding UTR regions
      2. Comparing the sequence of 17XNL with 17X .

      Assembly: The authors present a novel assembly for the P. yoelii yoelii 17XNL genome. They used two different approaches, comparing Oxford Nanopore (ONT) long reads + Illumina DNA with PacBio Hifi. None of the approaches generated a telomer to telomer assembly so sequences from the 17X reference was used to fill in the mssing sequence.

      Annotation Next, they generated long reads (ONT)and Illumina RNA-Seq to improve the annotation. Although, their annotation is not better than the current P. yoelii 17X reference genome in PlasmoDB, they could predict the UTR regions and alternative splice sites due to the 3' capturing approach and long reads. Having the UTR annotated and potentially having alternative splice sides is useful for the field.

      17XNL - 17X comparison The author compared the 17XNL with the 17X reference. Both genomes were done with Pacbio, and it should be noted that P. yoelii has a GC content of probably ~23% with several homopolymer tracks. Further, the 17XNL genotype was obtained from a 17X culture, so the genomes are expected to be very similar as the author noted in the introduction. The authors found ~2000 differences; some are in genes, but many are indels, which very well could be sequencing errors.

      Finally, the authors claim that this genome could become relevant for the community as new reference to perform analysis. As their genome is so similar to 17X and they have to show that their annotation is at least as good as the current 17X reference genome (manual curated) and the difference are not due to sequence error in 17X or 17XNL.

      Major comments

      Overall I struggle to see the need for a "NEW" P. yoelii reference. It would be good to state how similar these genomes are - they are basically identical. As the 17XNL is curated manually, it would have made more sense to me to start from that one and then generate the UTR annotation and include splice sides. This could be easily loaded into an alternative Web-apollo track and then merged to the current annotation to be useful to the community.

      I wonder if many of the differences the authors found between 17X and the 17XNL reference are true. The authors are correct that some differences between 17X and 17XNL are true. I could not find any evidence of genome polishing with tools like Pilon or ICORN to correct sequencing errors, I wonder if these differences are sequencing errors. Did the authors look into the reads of the NCBI - GCA_900002385.2 - assembly? Maybe they could use the underlying Illumina reads if theirs don't have enough coverage. Also, the differences between 17X and 17XNL could be that the reference is wrong. How many pseudo genes did they obtain? Are there more or less than in the current reference?

      To confirm the calls, could you also map the 17XNL reads against the 17X reference and see if they are still true. As the same time, map the 17X illumina reads to see if the reference is correct at this state. When looking at the alignments, it can be seen that many different are in low complexity/repetitive regions. The authors sequence their genome with a HiFi Pacbio run and also ONG + DNASeq... but why did they not get 16 chomromes out? For example the current P. yoelii reference was assembled directly into far less pieces than theirs [P. chabaudi assembles into 16 pieces]. Could it be a different read depth or is it the fragment length? Could the authors please comment on that. Also, if there were contigs, why did they fill the sequence with 17X sequence, rather than keeping gaps? So in the end, their sequence is a hybrid, of 17X and 17XNL, right?

      Why do you think you had less coverage of CCS read around the telomer ends? Do you think it is a systematic issue of the PacBio Hifi? Did you see any evidence of Illumina or ONT reads - or could it be that while culturing the telomer ends dropped off?

      I realised that the authors used a lot of primary tools. I wonder why they chose that path, as there are several tools to do automatic finishing for long read assemblies: Assemblosis, ARAMIS, MpGAP or ILRA. Especially the last one focuses on Plasmodium genomes. Please comment.

      Also, for the annotation, could it not be better to transfer the manually curated genome annotation with LIFT off or RATT? All these tools are widely used in the generation of reference genomes in the parasitology field. I annotated their sequence with Companion, and although their gene models are good and some of the Companion calls might need improvement, overall, the Companion results look more exact to me. The code is very well organised, and it was easy to follow. Are you planning to put it on a GitHub repository? For the annotation in the attachment, there were two files. I had a look at them and they were quite different.

      As 17X and this genome are basically identical (<2k variants), would it not be better to transfer the genes from the 17X genome and then add the UTR (see comment before)? The 17X is manually curated. Table 1 and figure 4 show that it is far better. I doubt that the community would use this genome, if the annotation is not lifted over.

      There are two gff files in the supplemental. Which one is better? It is excellent that the genome is submitted to NCBI. Why are there 18k proteins? Are these the alternative spliced forms?

      Minor

      The current Py 17X genome in PlasmoDB is a Pacbio assembly (https://plasmodb.org/plasmo/app/record/dataset/TMPTX_pyoeyoelii17X), but not part of the 2014 paper. It was submitted later to NCBI than the paper the authors cite. Also, the current P. berghei Pacbio genome is from Fougère et al. PLoS Pathog 2016;12(11):e1005917. I tried to open the supplemental tables, but they were all in pdf rather than excel and split over several pages. Two had missing information, e.g. UTR per gene. From the name of the tables, I had an idea of what they should contain, but for a re-submission, it would be good to have them in the correct format. To me, the beginning of the results reads a bit like an introduction (the part which sequencing technology to use) Could you add to the tables: Sequence Coverage of the three technology, how many contigs you had before ordering the contigs and the number of pseudogenes in the annotation? I struggle with the section header line 229-230 that the new sequence is more complete as it is a hybrid assembly with 17X. Alternatively, please explain how the consensus was built. The authors correctly state that ONG is great, lines 333ff, but why does it not generate telomer-to-telomer chromosomes in this case? Please discusss.

      Significance

      General assessment As mentioned above, I struggle to see this as a strong leap for the malaria community to use this genome, as it is so similar to the current 17X genome, which is manually curated in plasmodb.

      Advance The authors should make the comparison of ONT and PacBio HiFi clearer and discuss why the technologies still don't generate telomer-to-telomer sequences. From the biological side, none of the found differences were related to the different phenotype between 17X and 17XNL.

      Audience: I do agree that adding the UTR sequence will be useful for those working with P. yoelii as a model, or who want to do comparative UTR analysis across species.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript entitled "Long-Read Genome Assembly and Gene Model annotation for the Rodent Malaria Parasite P. yoelii 17XNL" is a well-written manuscript providing updates and important observations about the genome assembly and annotation of this specific non-lethal isolate. The group overall did a great job showing how the application of newer technologies such as long-read DNA and direct RNA sequencing to generate top-quality genomes to be used as a reference for the community. Here are some comments about the work presented:

      Major comments:

      • The authors added several result information across the methods section. Making the text repetitive, since the same is also presented in the results section. Please revise the method section to remove results from this section.
      • Some methods are also redundant in the Result section. For example, in line 141-142, the group describe which DNA extraction kit they used (again this is correctly mentioned in the methods section).
      • Besides important, the group added several information about method comparison between base call accuracy and sequencing methods. I agree that having this information in the supplemental material is great, but I would be careful to not focus too much on those, since most of the observations are already well-known by the community and focus more in the biological relevance of what is being generated with the newly updated genome.
      • The group did a great job generating two versions of the genome, and an updated gene annotation set using long-read sequencing. But the major question is, how about alternative splicing? They mention the use of it (line 350) but I don't see any result about how many alternative transcripts were observed, and if they were differentially detected in different life stages of the sets used for the RNA sequencing. This is a very important result to be added since one of the key pieces of information that long-read RNA sequencing brings for Genome annotation.
      • Same observation as above for potential long ncRNAs.
      • From what I understand the Hifi run was able to generate a gapless genome assembly and the ONT run did not. What was the final coverage for each? From my experience with P. falciparum genomes, ONT even with the rapid kit was able to generate chromosomal level assemblies if the coverage was >100x (but again, this is not a rule). Add those valuable observations about the depth so the reader can check if other variables in the comparison should be made.
      • Also be sure that the structural comparisons between the genomes are not the ones used after running ragtag.py. If so, there is a high chance of structural bias in the scaffolded contigs.
      • How Prokka differed from Braker2 for the Mitochondria/API annotation? This needs to be very well described since prokka is made for prokaryotic organisms and not for eukaryotic ones. And Braker2 uses a custom build dataset for training, which I believe contains known information about MIT/API for Plasmodium species.
      • Figure 5B, what is the peak observed in the mitochondria? What genes? Repeats?

      Minor comments:

      • For Oxford nanopore sequencing using the ligation kit, did the group check for potential chimeric reads generated by the protocol?
      • Check if all species are italicized (for example, line 187 P. yoelii is not)
      • In methods add the parameters for minimap2 for the direct RNA alignment
      • For variant calling, I would use a minimum of 10x coverage to make a variant call instead of 5x. Besides looking well reproducible between all checks, I would be careful mainly with the single bp deletions with a such low threshold.
      • In some parts of the methods, the authors mentioned slight modifications in some protocols (for example, lines 443 and 454), besides well described in the text, could you highlight what were the modifications in the text? This will facilitate many other researchers to understand why those modifications were needed.
      • As mentioned in the major, the data analysis method section needs rework to remove results from the text.
      • The group mentioned that small contigs not mapping to Py17X were discarded. What are those? Repeats? Contamination?

      Significance

      This work generated a strong method and resource for a better genome assessment of P. yoelii for the community. As I mentioned in my comments, some more details about the findings such as alternative splicing and lncRNAs may strengthen them even more the publication. I know that comparative analysis between Py17X and XNL is not in the scope here, but more information about it, such as a synteny plot would be great for the community to understand that they can rely on this new reference genome.

      I've been working with eukaryotic and prokaryotic genomes for more than a decade and I have a lot of experience with all the methods presented. I believe that potentially the depth generated for the ONT data may be one of the factors for not reaching the chromosomal level of this isolate, since HiFI was. The group did a great job on the method description, and I believe that the community will be very happy to incorporate this genome as one of the references for this organism.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Banerji and colleagues measure DUX4 and target gene expression over a time course in doxycycline-inducible myoblasts to estimate kinetic parameters and rates underlying the transition of non-expressing cells through DUX4-expressing cells to cell death. They then use these parameters to model the rate of appearance of DUX4+ cells, DUX4 target gene expression, etc. in cells from FSHD patients, and derive a model that predicts that over 100 days around one fourth of cells die while less than 1% of cells express DUX4 or its target genes at any given time. This is somewhat similar to what is seen in FSHD patients, where DUX4 expression is infrequent in cultured cells, while patients eventually have substantial muscle loss. The experiments are well-designed and explained clearly.

      We thank the reviewer for their kind comments on our manuscript and for acknowledging the similarity between our model simulation and both cell biological and clinical features of FSHD.

      Reviewer #1 (Significance (Required)):

      The primary significance of this study is that the field has a sense that the damage seen in patient muscle is not congruent with the low expression of DUX4 in patients, and the model showing many cells dying with only a few cells expressing DUX4 at any given time suggests that overall damage can be greater than that observed in any particular snapshot.

      However, it is important not to conflate low frequencies of DUX4+ nuclei in cultured myoblasts with "DUX4 being difficult to detect" as in p 12, Discussion. DUX4 is difficult to detect, indeed basically not detected, in muscle biopsy specimens, but in cells in vitro, DUX4 is fairly easy to detect, albeit in quite low numbers of cells. Since the study evaluates cells in vitro, it is important to make clear that the situation in vivo is qualitatively different from that seen in vitro, namely DUX4 not being detected, and the authors should clarify this importance difference.

      We appreciate this important point that DUX4 detection is extremely challenging in FSHD patient muscle biopsies, compared to in vitro cell culture of FSHD myoblasts and myotubes, a topic we considered at length in our recent review (Banerji and Zammit 2021, https://doi.org/10.15252/emmm.202013695).

      Detection of DUX4 mRNA in muscle biopsies is highly variable requiring nested RT-qPCR, and protein detection is even less robust, though this has been achieved via western blot in less affected FSHD muscle (Tassin et al., 2013, DOI: 10.1111/j.1582-4934.2012.01647.x) and using a proximity ligation assay (Beermann et al. 2022, doi: 10.1186/s13104-022-06054-8). DUX4 target gene expression is detected in inflamed FSHD muscle but less robustly in non-inflamed muscle, indicating the recent presence of DUX4 protein, and also implying that a systemic component may activate DUX4 expression in vivo.

      Conversely in cell culture of FSHD muscle cells, DUX4 mRNA is typically found in 0.5-3.8% of myonuclei (van den Heuvel et al., 2019, https://doi.org/10.1093/hmg/ddy400) and protein in around 1/1000 myonuclei (Snider et al., 2010, https://doi.org/10.1371/journal.pgen.1001181). Arguably these levels are still very low and DUX4 is still ‘difficult to detect’ in vitro, for example DUX4 expression is never seen above the limit of detection in bulk RNA-seq of FSHD patient cultured myoblasts. However, we fully appreciate that DUX4 is ‘easier to detect’ in vitro versus in vivo.

      Regardless, anti-DUX4 therapy is currently the most heavily funded approach to FSHD treatment, and all anti-DUX4 therapies currently under consideration were first investigated in the myoblast in vitro setting. Thus, the aim of our model is to provide an additional level of in silico screening for anti-DUX4 therapy, before progressing to in vitro investigation.

      Full consideration of DUX4 expression in vivo (while an exciting prospect), would require significantly more data than is currently available (relating to inflammation, vascularity and other systemic factors) and a highly complex model which is beyond the remit of this investigation.

      We will clarify in the manuscript that our model applies in vitro, highlighting differences with in vivo and emphasising that the model is limited for understanding DUX4 expression in FSHD muscle biopsies.

      We will also change the title to emphasise this point to: ‘In silico FSHD muscle cell culture for modelling DUX4 dynamics and predicting the impact of therapy’.

      A second reason for caution in extrapolating correlates from the in vitro model to the disease process in muscle tissue is that in vivo there is a continual source of replacement cells, as the authors have shown in a previous study. Have the authors attempted to model a situation in which new cells are provided into the system at some rate, related to the amount of death occurring at different times? Although the authors mention that the static cell number is a limitation of the model, it would be valuable to revisit or explore this idea in the Discussion section, if only to provide the reader with a more pragmatic perspective.

      We are focused specifically on modelling the in vitro differentiated myogenic cell setting to provide an in silico pre-screening tool for assessing anti-DUX4 therapy, rather than attempting to model the full pathology in vivo, which given data limitations, is beyond the scope of our study. As the reviewer notes, we highlight this limitation relating to proliferation when we introduce the model in the results stating: ‘Cells are assumed not to proliferate over the evolution of the model. We restrict applications to differentiating cells which have exited the cell cycle.’

      As the reviewer likely appreciates, DUX4 expression in proliferating cells differs significantly from differentiated cells. The single nuclear and single cell RNA-seq data we employ to derive the parameters underlying DUX4 and DUX4 target transcription rates are from non-proliferating myocytes differentiated for 3 days. Hence it is not appropriate to include proliferation in this model, as the transcription rates we use will not be accurate for proliferating cells.

      Introducing proliferation will also require us to estimate the proliferation rate of FSHD myoblasts, and how it is impacted by DUX4 expression, as well as how DUX4/target transcription rates change as the proliferating cells differentiate. Though this is an interesting application there is not sufficient data available to produce this wider scale model at present.

      We thus restrict application of our model to the non-proliferating differentiated setting, which can be easily accessed in vitro to screen anti-DUX4 therapy.

      We appreciate the observation that in vivo, there will be addition of new cells during muscle regeneration, and will include this in discussion in the updated manuscript. We will also expand on our discussion of what data would be required to include proliferation in our model in the revised manuscript.

      The second part of the paper models presence of DUX4 in nuclei based on diffusion from expressing to non-expressing nuclei, and characterizes this as the activity of "an infectious agent, able to spread from one nucleus to another by adapting epidemiological compartment models". The relationship to an infection process is probably not the ideal way to characterize this process, because an infection implies the setting up of new sites of production of the agent, DUX4, where what is really happening is that DUX4 diffusing into these other nuclei isn't leading to more DUX4 production, it is just diffusing into nearby nuclei and accumulating there. Unless I am misunderstanding, the authors are simply showing that a larger number of nuclei will be positive in a system in which cells are fusion products having many nuclei than in a system in which all nuclei are isolated within their own cells.

      The term ‘infectious agent’ is only an analogy and implies some preconceptions. The reviewer interprets our infectious agent model as: ‘an infection implies the setting up of new sites of production of the agent, DUX4, where what is really happening is that DUX4 diffusing into these other nuclei isn't leading to more DUX4 production, it is just diffusing into nearby nuclei and accumulating there. Our bespoke model is not based on a direct mapping of e.g., viral infection to our setting. In our case, the ‘infectious agent’ DUX4 causes harm but does not replicate. DUX4 protein is a transcription factor and thus activates the expression of target genes (not including DUX4). In our model, DUX4 can be seen as the ‘infectious agent’, and expression of DUX4 target genes can be seen as the ‘infection’, which leads to cell death. DUX4 can either stay in the ‘infected’ cell until it dies or diffuse to another cell to spread the ‘infection’.

      The reviewer interprets the results of our model as ‘simply showing that a larger number of nuclei will be [DUX4] positive in a system in which cells are fusion products having many nuclei than in a system in which all nuclei are isolated within their own cells’.

      In fact, we make several observations: firstly we compare single cell RNA-seq of unfused myocytes to single nuclear RNA-seq of fused muti-nucleated myotubes and find that the latter has a greater proportion of cells expressing DUX4 target genes (i.e. more infection). The proportion of DUX4 positive cells (i.e. the amount of infectious agent produced) is similar in the two settings. We posit that this difference in DUX4 target gene positive cells (infection) may be due to DUX4 protein diffusing between cells in the myotube syncytium and activating the targets in neighbouring nuclei (i.e., greater mobility of the infectious agent/loss of quarantine). Note that there are many other possibilities, such as fusion causing an increase in DUX4 transcription/mRNA stability etc.

      We find that by introducing a DUX4 protein diffusion term (loss of quarantine) into our model we can completely explain the difference between DUX4 target gene expression (infection) in real data of unfused versus fused myonuclei, despite identical levels of DUX4 (infectious agent). This is a novel finding providing evidence for DUX4 protein diffusion in syncytial myonuclei, which represents an often overlooked therapeutic target/consideration in FSHD. We also provide the first explicit quantification of this diffusion rate via our model as well as a framework for investigators to understand how modifying this parameter can impact DUX4 induced myotoxicity.

      We will better define our ‘infectious agent’ analogy and clarify our interpretation in the updated manuscript.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      An in silico FSHD muscle fibre for modelling DUX4 dynamics

      Summary

      This paper studies and mathematically models the stochastic process of presence or absence of DUX4 expression in individual myocytes in FSHD, which underlies the very small proportion of individual cells which do express DUX4. The paper is valuable in providing a mathematical basis for modelling this, and hence a basis by which to study the effects of other factors or potential therapeutic interventions which may influence the overall proportion of cells which do express.

      We thank the reviewer for the kind comments on our manuscript and recognition of its value to design/screening of potential therapeutics for FSHD.

      To understand the paper fully, requires a familiarity with mathematical and statistical reasoning which will be beyond many potential readers, including this reviewer, but I hope that the following specific comments may still be helpful.

      We appreciate the reviewer’s candour regarding their understanding of the more advanced mathematical aspects the paper. Interdisciplinary work such as ours may introduce concepts which are unfamiliar to some readers.

      As the reviewer will appreciate, understanding a complex process like DUX4 expression requires new and more sophisticated approaches, having largely eluded the conventional approaches to date. The main mathematical tools employed in our work derive from the well-established stochastic gene expression and epidemiological compartment models. We have endeavoured to make the mathematics self-contained to facilitate understanding and will edit to further improve accessibility.

      Major Comments

      1. A potential major concern is that the modelling seems to be based largely on combined data from 27 DUX-4 positive myocytes out of 5133 myocytes from 4 FSHD patients described by Van Den Heuvel et al, 2019 (ref 17), but with 2 being FSHD1 and 2 FSHD2, and without the 2 patients within each FSHD type being matched for D4Z4 fragment length (RU = 'residual units'), which can be expected to be a major influencing factor on the threshold for expression in any one myocyte upon which the stochastic process acts. Thus, one can expect lower RU number to show a greater proportion of expressing cells within FSHD1, and to some extent similarly within FSHD2 (although in FSHD2, different SMCHD1 mutations will also have different 'strengths'). The 4 patients were : 2x FSHD1 (3RU ; 6RU); 2x FSHD2 (12RU ; 18 RU). In the paper of Den Heuvel et al it is evident that the DUX4-positive cell count differs between these 4 cell lines very much as might be anticipated from their D4Z4 RU number. Thus (Figure 2 in that paper) patient 1.1 (3RU) has 12 positive cells, whereas patient 1.2 (6RU) has only 2 positive cells. Patient 2.1 (SMCHD1 exon 37 mutation, and 12 RU) has 11 positive cells, whereas Patient 2.2 (SMCHD1 exon 10 mutation, and 18 RU) has only 2 positive cells. Therefore, if the validity and accuracy of the modelling here would be affected by genetic heterogeneity, the authors should present their calculations and analyses based only on the 2 patients who account for 23/27 of the positive cells, and furthermore, that the calculations and modelling are performed and presented for those 2 patients separately.

      The reviewer raises the important point that 2/5 of the parameters of our model were derived from the single cell RNA-seq data set of van den Heuvel et al., which comprises 4 FSHD patients of various genotype. The reviewer remarks that the number of DUX4 positive cells reported for each patient in the van den Heuvel data, differs according to genotype, in line with the known inverse association between DUX4 expression and D4Z4 short allele length. Figure 2E in van den Heuvel et al., to which the reviewer refers, does not present absolute DUX4+ cell counts, but rather ‘DUX4 affected’ cell counts, based on the expression of 67 DUX4 target genes. The numbers in that figure thus differ from ours. We caution that the number of ‘DUX4 affected’ cell counts must be normalised by the total number of cells assayed per patient, to obtain a ‘DUX4 affected’ proportion for each patient. However, we appreciate the reviewers point.

      A concern is raised that we have pooled all 4 FSHD patients to derive our parameter estimates, essentially averaging over genotypes. The two parameters we derived from this data are ‘the average DUX4 transcription rate, and ‘the average DUX4 target gene transcription rate.

      The average DUX4 target gene transcription rate was derived from consideration of DUX4 target gene expression in the 27 FSHD cells already expressing DUX4 mRNA. Since the capacity of DUX4 to activate its target genes is not known to depend on genotype, we feel it is appropriate to pool the patients to estimate this parameter.

      For the average DUX4 transcription rate however, we do appreciate the reviewer’s concern that patient genotype may impact the estimate. The reason for pooling all patients is partly statistical. As there are so few cells expressing DUX4 in each patient, the gradient descent algorithm we employed to estimate the 3 rate parameters for the promoter switching model of DUX4, may fail to converge for every patient separately. By pooling patients, we obtained an estimate that may not be true for an individual but represented the ‘average’ transcription rate of DUX4 in these 4 FSHD patients, hence our careful use of wording when defining the average DUX4 transcription rate parameter.

      Our in silico model of DUX4 expression is proposed as a pre- in vitro screening tool to guide anti-DUX4 therapy for the general population, not a digital twin of a single FSHD patient, and so an average DUX4 transcription rate derived from pooling available data is optimal.

      This average measure is not irrelevant in light of genetic variation and in fact may be more informative for anti-DUX4 therapeutics intended for a general population, but less informative for genotype stratified therapeutic design. Genotypic stratification by D4Z4 repeat length was not performed in recent FSHD clinical trials for anti-DUX4 therapy (e.g., losmapimod: NCT04003974), which recruited patients with all pathogenic D4Z4 repeat lengths, motivating an average over genotype design in the first instance.

      We will elaborate in detail on the reasons for patient pooling throughout the manuscript.

      We will attempt the analysis the reviewer suggests i.e. ‘the authors should present their calculations and analyses based only on the 2 patients who account for 23/27 of the positive cells…separately’. However, this is conditional on algorithm convergence given the smaller number of cells, and we must caveat that in doing so we will have eliminated 2 patients purely on the basis of low DUX4 expression and so will over-estimate the average DUX4 transcription rate for FSHD patients in general.

      In order to be of value for assessing potential interventions more widely in FSHD, the authors would then need, in further publications, to extend their analysis similarly to genetically homogeneous myocyte sets with other RU number.

      We agree with the reviewer that for genotypically stratified therapeutic design, based on D4Z4 short allele length, personalised or genotype specific estimates of the DUX4 transcription rate should be calculated. However, as the reviewer clearly appreciates, developing such FSHD digital twins, though exciting, would require a much larger library of single cell RNA-seq datasets describing FSHD patients of various genotypes than is currently available.

      We will explore this in an updated discussion.

      Specific points.

      Introduction 4th paragraph: - 'Single cell and single nuclear transcriptomic studies find only 0.5-3.8% of in vitro differentiated FSHD myonuclei express DUX4 transcript16,17. Immunolabelling studies only detect DUX4 protein in between 0.1-5% of FSHD myonuclei18,19.' The authors should comment whether there is any evidence from the data in these references, or from other publications, regarding differences in these proportions by FSHD diagnosis (I or II) or by D4Z4 residual number?.

      We will expand discussion in the updated manuscript of the result (explained by the reviewer) that the number of DUX4 affected cells found in the single cell RNA-seq dataset of van den Heuvel may correlate with genotype. We will contrast this with the observation that immortalised isogenic FSHD myoblast clones isolated from a single FSHD patient can also have a very wide range of DUX4 expression (e.g., Krom et al., doi: 10.1016/j.ajpath.2012.07.007). This will highlight the mix of poorly understood genetic and epigenetic factors impacting DUX4 expression and further motivate an average model in the first instance.

      Introduction 5th paragraph: - Importantly, a recent phase 2b clinical trial of the DUX4 inhibitor losmapimod failed to reach its primary endpoint of reduced DUX4 target gene expression in patient muscle, despite improvement in functional outcomes23. Please state here whether or not there was any evidence that DUX4 expression itself was reduced in this trial. It would help if the authors could also add here an interpretive comment as to whether this indicates that the current presumed target genes for DUX4 are not in fact the ones important for FSHD, or whether their expression might be retained from compensatory upregulation by other upstream regulators. The authors should expand briefly also in the introduction on the evidence for toxicity of target gene expression.

      We are very happy to include a discussion of these points, which we explore in considerable detail in our recent review of DUX4 in FSHD (Banerji and Zammit 2021, https://doi.org/10.15252/emmm.202013695). Briefly, the losmapimod trial did not publish data showing they measured DUX4, as Reviewer #1 pointed out DUX4 is highly difficult to detect in patient muscle biopsies and dynamic change following anti-DUX4 therapy has certainly never been observed. Expression of four DUX4 target genes was intended as a surrogate measure of DUX4 activity, reasons for its lack of change in this trial is very much a topic of open debate, which we will outline in an updated manuscript.

      Results 2nd paragraph: - We first describe the compartment model. FSHD single myocytes can express DUX4 and therefore DUX4 target genes; DUX4 target gene expression leads to cell death19,27,28. Please indicate whether the evidence in these studies is independent of DUX4. Ie. Is there independent evidence that it is definitely the target gene expression, rather than DUX4 expression per se, that leads to cell death, especially if losmapimod improves function by inhibiting DUX4, but has no impact on these target genes.

      This is an important point raised by the reviewer and one that we have rigorously investigated (Knopp et al., 2016, https://doi.org/10.1242/jcs.180372).

      The c-terminus of DUX4 is a potent transcriptional activator and is required for DUX4 target gene activation, while an inverted centromeric D4Z4 repeat unit encodes a version of DUX4 lacking the c-terminus, named DUX4c. We constructed a library of DUX4 expression constructs encoding: DUX4, DUX4c, tMALDUX4 (DUX4 with the c-terminus removed), DUX4-VP16 (DUX4 with the c-terminus replaced by the VP16 transactivation domain) and DUX4-ERD (DUX4 with the c-terminus replaced by the engrailed repressor domain). In a series of experiments outlined in Knopp et al., we clearly demonstrated that only DUX4 and DUX4-VP16 could activate DUX4 targets in C2C12 murine myoblasts and that only these constructs could induce apoptosis. Our prior work provides this clear link between DUX4 target gene expression and cell death. We will include discussion of this point in the updated manuscript.

      Results 2nd paragraph Item 4 : - 𝑅(𝑡) - a resigned state where the cell expresses no DUX4 mRNA but does express DUX4 target mRNA (DUX4 -ve/Target gene +ve: i.e. a historically DUX4 mRNA expressing cell) Since the mRNA is from the target genes, why should it be produced only in response to DUX4 expression ? ie. Please indicate the evidence to say that these must be 'historically DUX4 mRNA expressing cells', rather than target gene expression in response to other factors, or even autonomously.

      The reviewer raises the point that the 8 DUX4 target genes we investigate may be expressed in a DUX4 independent manner, making DUX4 target gene +ve, DUX4 -ve cells, potentially not historic DUX4 expressing cells. We selected these 8 genes as they are confirmed DUX4 targets by ChIP-seq and have been identified as upregulated by DUX4 in every transcriptomic analysis of DUX4 over-expressing human myoblasts (Banerji and Zammit 2021, https://doi.org/10.15252/emmm.202013695). We provide further evidence for these genes indicating historic DUX4 in these cells: first, we never find a single transcript for any of these 8 target genes in 1914 single myocytes and 77 single nuclei from control individuals, suggesting that their expression requires an FSHD genotype (and thus likely DUX4 expression). Second, our investigation of these genes in the single cell RNA-seq data set of van den Heuvel demonstrated that in the presence of DUX4, expression of all 8 genes significantly increase (Figure 3D), indicating activation by DUX4.

      While this is evidence that the 8 targets are specific to DUX4, we accept that it is not 100% conclusive and these genes may also be induced by some other factor related to the FSHD genotype. We will thus highlight this possibility of other modes of expression in the discussion.

      Results - Estimating the kinetics of DUX4 mRNA - 2nd paragraph: - DUX4 expression was induced with 250 ng/ml doxycycline for 7 hours .... Might some of the laboratory detail here be better placed in the 'Methods' section ?

      We will move some methodological detail to the methods as suggested.

      Results - Estimating the kinetics of DUX4 mRNA - 4th paragraph: - '...from 4 FSHD patients (2 FSHD1 and 2 FSHD2).' Please give additional information about these patients - ie. Age, sex, severity (or age-onset), and genetic results - perhaps best done as a Table in this paper rather than only by reference back to the Van den Heuvel et al. paper (see main comment 1 above).

      We will provide this information in a table as the reviewer suggests.

      Results - Estimating kinetics of DUX4 target activation - 2nd paragraph: - '8 DUX4 target genes......expression was restricted to FSHD cells/nuclei and never observed in controls.' So are these genes normally only expressed in the zygote , rather than post-birth (except perhaps the testis)? The authors should comment on this.

      The 8 DUX4 target genes are not well characterised in terms of their expression pattern in other tissues. We are confident that in our data sets they are not expressed in healthy myocytes and myotubes, but it is difficult to expand confidently on other tissues due to lack of data. We will include comment on what is known about their expression pattern during zygotic genome activation and in testicular tissue, but this cannot be an exhaustive description of their expression. For example, DUX4 has been detected in keratinocytes, osteoblasts and lymphocytes, but the target genes have not been characterised in such settings. We still have much to learn about the expression of these genes outside of the muscle setting.

      Results - Estimating kinetics of DUX4 target activation - 4nd paragraph: - In the presence of DUX4 mRNA the proportion of time the promoters of the 8 DUX4 target genes remained in the active state,....significantly increased. It would be interesting to know if any of these temporal dynamic descriptors of DUX4 target promoters differ consistently between sample II-2 and II-1 and in the same direction between I-2 and I-1. ie. Might the same factors (eg. D4Z4 copy number) which may affect presence/absence of DUX4 also affect other cellular measures of DUX 4 ?

      The reviewer raises an interesting point about genetic modifiers of DUX4 transcriptional activation. As discussed in response to point 1, the DUX4 target gene transcription rate is derived from the 27 cells expressing DUX4. As there are so few cells expressing DUX4 in each patient (sometimes We will attempt analysis of the two patients which provide the majority of DUX4 positive cells separately, as the reviewer requested in point 1. If successful, we will investigate whether the derived DUX4 target gene expression parameters differ between these two patients as the reviewer suggests. While this limited data will not permit anything definitive about impact of D4Z4 repeat length on DUX4 target gene expression, it may highlight the existence of inter-individual differences in such parameters.

      Results - Compartment model simulation - 4th paragraph: - '...so that after 10 days 26.3% of cells had died.' The authors need to give data here also for controls. Ie. What proportion of cells die after 10 days in controls ?

      As mentioned in the introduction of our model, we only model DUX4 dependent cell death. As control cells do not express DUX4 they cannot experience cell death by this mechanism. The reviewer can therefore interpret this result as excess death due to DUX4, i.e., the 26.3% of FSHD cells die which would not have died in control cells. We will clarify this point in an updated manuscript.

      Discussion - 1st paragraph: - ' However, DUX4 expression in FSHD muscle demonstrates a complex dynamic with DUX4 mRNA, protein and target gene accumulation all difficult to detect2,21. Understanding this complex dynamic is essential to the construction of optimal therapy' So, it presumably follows that comparison by known genetic or demographic modifiers of disease severity (such as D4Z4 copy number) could be of fundamental importance in interpreting this dynamic and hence the results of clinical trials) (see Main point 1, and point 7).

      This point appears to generally be a reiteration of the reviewer’s initial concerns on genotypic variation in the van den Heuvel et al., data set. We have addressed these concerns in response to points 1, 2 and 9.

      Discussion - 6th paragraph: - 'Our model predicts

      We will update the manuscript to amend to ‘DUX4 target gene mRNA positive’. The reviewer again raises the concern of genotypic variability, we will of course discuss this and perform additional analysis as detailed above (points 1, 2, 9 and 11).

      Minor comments

      Methods - scRNAseq and snRNAseq data - 2nd paragraph: - '..2 sperate patients...' Typo. to correct.

      We thank the reviewer and will address this typo.

      Methods - Hypothetical scenarios for raising 𝑬[𝒎] under the promoter-switching model- 1st paragraph: - '...constant in the second...' needs punctuation.

      We thank the reviewer and will address this typo.

      Methods - Cellular Automaton Model - 3rd paragraph: - '...according the non-syncytial...' Typo : '...according to...'

      We thank the reviewer and will address this typo.

      Methods - Genetic algorithms - 3rd paragraph: - '...elitism of 5%, mutation probability 0.1, crossover probability 0.8,...' Should these parameters be given in the same format to avoid any confusion - ie. all as probability, or all as percentages ?

      We thank the reviewer and will change all parameters and probabilities.

      Reviewer #2 (Significance (Required)):

      Please see comments in the 'Evidence, reproducibility and clarity' box above.

      This paper is valuable in providing a mathematical basis for modelling the stochastic process of presence or absence of DUX4 expression in individual myocytes in FSHD (facioscapulohumeral muscular dystrophy), and hence a basis by which to study the effects of other factors or potential therapeutic interventions which may influence the overall proportion of muscle cells which do express DUX4, and hence succumb to its toxicity.

      This is a specialist field and the nature of presentation of the mathematical modelling in the paper will restrict accessibility to only a very few researchers in this field.

      We appreciate that introducing concepts from different fields such as mathematics can present a challenge to some readers. However, new methods and interdisciplinary science are essential to understand complex disorders and this is even more so in complex rare diseases such as FSHD, where diversity in expertise is important. ‘Stochastic’ has been used to describe DUX4’s expression pattern for many years and is commonly used in many FSHD papers and conferences. We have introduced concepts from the well established field of ‘stochastic gene expression’ to understand DUX4 expression in FSHD. The methods are different from conventional approaches used in FSHD, but are arguably the most natural framework in which to understand DUX4.

      We have provided user-friendly programs that can be used to estimate the effects on DUX4 parameters of multiple variables to make the paper useful, even if some of the more advanced mathematics is challenging. We will also further edit to increase accessibility.

      There appears to be a possible major problem in the way that the paper has combined data from patients with different genetic forms of FSHD, and different likely genetic severities. It would seem better to analyse the data separately for each of these to allow a more homogenous platform on which to construct a model.

      That we pooled data from 4 FSHD patients, to derive estimates of 2 of the 5 parameters of our model is the major (non-editorial) comment about our study, and is raised in various versions in points 1, 2, 9, 11 and 12 of reviewer 2’s response. We have explained above that the reason for pooling is partly statistical, due to dataset size limitation. Considering each patient separately may prevent convergence of a gradient descent algorithm for parameter estimation. We again emphasise that pooling 4 FSHD patients, while less personalised, does not make our estimate of the average DUX4 transcription rate in FSHD patients invalid. It is simply an average level across our 4 patients, perhaps higher than for some patients but lower than for others.

      As commented, we will repeat the analysis separately for the 2 patients who have larger numbers of DUX4 positive cells and report the findings, with the caveat that these estimates will, by definition, be over-estimates of the true value of the average DUX4 transcription rate for the FSHD population.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      An in silico FSHD muscle fibre for modelling DUX4 dynamics

      Summary

      This paper studies and mathematically models the stochastic process of presence or absence of DUX4 expression in individual myocytes in FSHD, which underlies the very small proportion of individual cells which do express DUX4. The paper is valuable in providing a mathematical basis for modelling this, and hence a basis by which to study the effects of other factors or potential therapeutic interventions which may influence the overall proportion of cells which do express. To understand the paper fully, requires a familiarity with mathematical and statistical reasoning which will be beyond many potential readers, including this reviewer, but I hope that the following specific comments may still be helpful.

      Major Comments

      1. A potential major concern is that the modelling seems to be based largely on combined data from 27 DUX-4 positive myocytes out of 5133 myocytes from 4 FSHD patients described by Van Den Heuvel et al, 2019 (ref 17), but with 2 being FSHD1 and 2 FSHD2, and without the 2 patients within each FSHD type being matched for D4Z4 fragment length (RU = 'residual units'), which can be expected to be a major influencing factor on the threshold for expression in any one myocyte upon which the stochastic process acts. Thus, one can expect lower RU number to show a greater proportion of expressing cells within FSHD1, and to some extent similarly within FSHD2 (although in FSHD2, different SMCHD1 mutations will also have different 'strengths'). The 4 patients were : 2x FSHD1 (3RU ; 6RU); 2x FSHD2 (12RU ; 18 RU). In the paper of Den Heuvel et al it is evident that the DUX4-positive cell count differs between these 4 cell lines very much as might be anticipated from their D4Z4 RU number. Thus (Figure 2 in that paper) patient 1.1 (3RU) has 12 positive cells, whereas patient 1.2 (6RU) has only 2 positive cells. Patient 2.1 (SMCHD1 exon 37 mutation, and 12 RU) has 11 positive cells, whereas Patient 2.2 (SMCHD1 exon 10 mutation, and 18 RU) has only 2 positive cells. Therefore, if the validity and accuracy of the modelling here would be affected by genetic heterogeneity, the authors should present their calculations and analyses based only on the 2 patients who account for 23/27 of the positive cells, and furthermore, that the calculations and modelling are performed and presented for those 2 patients separately. In order to be of value for assessing potential interventions more widely in FSHD, the authors would then need, in further publications, to extend their analysis similarly to genetically homogeneous myocyte sets with other RU number.

      Specific points.

      1. Introduction 4th paragraph: - 'Single cell and single nuclear transcriptomic studies find only 0.5-3.8% of in vitro differentiated FSHD myonuclei express DUX4 transcript16,17. Immunolabelling studies only detect DUX4 protein in between 0.1-5% of FSHD myonuclei18,19.' The authors should comment whether there is any evidence from the data in these references, or from other publications, regarding differences in these proportions by FSHD diagnosis (I or II) or by D4Z4 residual number?.
      2. Introduction 5th paragraph: - Importantly, a recent phase 2b clinical trial of the DUX4 inhibitor losmapimod failed to reach its primary endpoint of reduced DUX4 target gene expression in patient muscle, despite improvement in functional outcomes23. Please state here whether or not there was any evidence that DUX4 expression itself was reduced in this trial. It would help if the authors could also add here an interpretive comment as to whether this indicates that the current presumed target genes for DUX4 are not in fact the ones important for FSHD, or whether their expression might be retained from compensatory upregulation by other upstream regulators. The authors should expand briefly also in the introduction on the evidence for toxicity of target gene expression.
      3. Results 2nd paragraph: - We first describe the compartment model. FSHD single myocytes can express DUX4 and therefore DUX4 target genes; DUX4 target gene expression leads to cell death19,27,28. Please indicate whether the evidence in these studies is independent of DUX4. Ie. Is there independent evidence that it is definitely the target gene expression, rather than DUX4 expression per se, that leads to cell death, especially if losmapimod improves function by inhibiting DUX4, but has no impact on these target genes.
      4. Results 2nd paragraph Item 4 : - 𝑅(𝑡) - a resigned state where the cell expresses no DUX4 mRNA but does express DUX4 target mRNA (DUX4 -ve/Target gene +ve: i.e. a historically DUX4 mRNA expressing cell) Since the mRNA is from the target genes, why should it be produced only in response to DUX4 expression ? ie. Please indicate the evidence to say that these must be 'historically DUX4 mRNA expressing cells', rather than target gene expression in response to other factors, or even autonomously.
      5. Results - Estimating the kinetics of DUX4 mRNA - 2nd paragraph: - DUX4 expression was induced with 250 ng/ml doxycycline for 7 hours .... Might some of the laboratory detail here be better placed in the 'Methods' section ?
      6. Results - Estimating the kinetics of DUX4 mRNA - 4th paragraph: - '...from 4 FSHD patients (2 FSHD1 and 2 FSHD2).' Please give additional information about these patients - ie. Age, sex, severity (or age-onset), and genetic results - perhaps best done as a Table in this paper rather than only by reference back to the Van den Heuvel et al. paper (see main comment 1 above).
      7. Results - Estimating kinetics of DUX4 target activation - 2nd paragraph: - '8 DUX4 target genes......expression was restricted to FSHD cells/nuclei and never observed in controls.' So are these genes normally only expressed in the zygote , rather than post-birth (except perhaps the testis)? The authors should comment on this.
      8. Results - Estimating kinetics of DUX4 target activation - 4nd paragraph: - In the presence of DUX4 mRNA the proportion of time the promoters of the 8 DUX4 target genes remained in the active state,....significantly increased. It would be interesting to know if any of these temporal dynamic descriptors of DUX4 target promoters differ consistently between sample II-2 and II-1 and in the same direction between I-2 and I-1. ie. Might the same factors (eg. D4Z4 copy number) which may affect presence/absence of DUX4 also affect other cellular measures of DUX 4 ?
      9. Results - Compartment model simulation - 4th paragraph: - '...so that after 10 days 26.3% of cells had died.' The authors need to give data here also for controls. Ie. What proportion of cells die after 10 days in controls ?
      10. Discussion - 1st paragraph: - ' However, DUX4 expression in FSHD muscle demonstrates a complex dynamic with DUX4 mRNA, protein and target gene accumulation all difficult to detect2,21. Understanding this complex dynamic is essential to the construction of optimal therapy' So, it presumably follows that comparison by known genetic or demographic modifiers of disease severity (such as D4Z4 copy number) could be of fundamental importance in interpreting this dynamic and hence the results of clinical trials) (see Main point 1, and point 7).
      11. Discussion - 6th paragraph: - 'Our model predicts <2.9% of single FSHD myocytes will be DUX4 target gene positive at any given time...' Should this be: '...DUX4 target gene-mRNA positive' . Also, does this 2.9%-figure differ between individual patients, and therefore might generally differ between FSHD1 and 2, and between different D4Z4 genetic categories ?; as this will matter for different individual patients.

      Minor comments

      1. Methods - scRNAseq and snRNAseq data - 2nd paragraph: - '..2 sperate patients...' Typo. to correct.
      2. Methods - Hypothetical scenarios for raising 𝑬[𝒎] under the promoter-switching model- 1st paragraph: - '...constant in the second...' needs punctuation.
      3. Methods - Cellular Automaton Model - 3rd paragraph: - '...according the non-syncytial...' Typo : '...according to...'
      4. Methods - Genetic algorithms - 3rd paragraph: - '...elitism of 5%, mutation probability 0.1, crossover probability 0.8,...' Should these parameters be given in the same format to avoid any confusion - ie. all as probability, or all as percentages ?

      Significance

      Please see comments in the 'Evidence, reproducibility and clarity' box above.

      This paper is valuable in providing a mathematical basis for modelling the stochastic process of presence or absence of DUX4 expression in individual myocytes in FSHD (facioscapulohumeral muscular dystrophy), and hence a basis by which to study the effects of other factors or potential therapeutic interventions which may influence the overall proportion of muscle cells which do express DUX4, and hence succumb to its toxicity.

      This is a specialist field and the nature of presentation of the mathematical modelling in the paper will restrict accessibility to only a very few researchers in this field. There appears to be a possible major problem in the way that the paper has combined data from patients with different genetic forms of FSHD, and different likely genetic severities. It would seem better to analyse the data separately for each of these to allow a more homogenous platform on which to construct a model.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Banerji and colleagues measure DUX4 and target gene expression over a time course in doxycycline-inducible myoblasts to estimate kinetic parameters and rates underlying the transition of non-expressing cells through DUX4-expressing cells to cell death. They then use these parameters to model the rate of appearance of DUX4+ cells, DUX4 target gene expression, etc. in cells from FSHD patients, and derive a model that predicts that over 100 days around one fourth of cells die while less than 1% of cells express DUX4 or its target genes at any given time. This is somewhat similar to what is seen in FSHD patients, where DUX4 expression is infrequent in cultured cells, while patients eventually have substantial muscle loss. The experiments are well-designed and explained clearly.

      Significance

      The primary significance of this study is that the field has a sense that the damage seen in patient muscle is not congruent with the low expression of DUX4 in patients, and the model showing many cells dying with only a few cells expressing DUX4 at any given time suggests that overall damage can be greater than that observed in any particular snapshot.

      However, it is important not to conflate low frequencies of DUX4+ nuclei in cultured myoblasts with "DUX4 being difficult to detect" as in p 12, Discussion. DUX4 is difficult to detect, indeed basically not detected, in muscle biopsy specimens, but in cells in vitro, DUX4 is fairly easy to detect, albeit in quite low numbers of cells. Since the study evaluates cells in vitro, it is important to make clear that the situation in vivo is qualitatively different from that seen in vitro, namely DUX4 not being detected, and the authors should clarify this importance difference.

      A second reason for caution in extrapolating correlates from the in vitro model to the disease process in muscle tissue is that in vivo there is a continual source of replacement cells, as the authors have shown in a previous study. Have the authors attempted to model a situation in which new cells are provided into the system at some rate, related to the amount of death occurring at different times? Although the authors mention that the static cell number is a limitation of the model, it would be valuable to revisit or explore this idea in the Discussion section, if only to provide the reader with a more pragmatic perspective.

      The second part of the paper models presence of DUX4 in nuclei based on diffusion from expressing to non-expressing nuclei, and characterizes this as the activity of "an infectious agent, able to spread from one nucleus to another by adapting epidemiological compartment models". The relationship to an infection process is probably not the ideal way to characterize this process, because an infection implies the setting up of new sites of production of the agent, DUX4, where what is really happening is that DUX4 diffusing into these other nuclei isn't leading to more DUX4 production, it is just diffusing into nearby nuclei and accumulating there. Unless I am misunderstanding, the authors are simply showing that a larger number of nuclei will be positive in a system in which cells are fusion products having many nuclei than in a system in which all nuclei are isolated within their own cells.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In the manuscript "Compaction of Drosophila histoblasts in a crowded epidermis is driven by buckling of their apical junctions", Rigato et al. study the behaviour of histoblasts during the third larval stage of Drosophila. Histoblasts are the progenitor cells of the adult abdominal epidermis. They are produced in the embryo and lie between the larval epithelial cells (LECs) in the larva before abdominal morphogenesis takes place during metamorphosis. The authors use this system to explore the role of forces during epithelial development.

      The authors show that histoblasts undergo a dramatic change in morphology between 90 and 115 h AEL (after egg laying), with adherens junctions changing from a straight to a highly folded appearance. They also show that, during this time, histoblast volume is increasing. Furthermore, both junctional actin and junctional myosin II levels decrease over time. Interestingly, reduction of contractility (Rok-RNAi) and increase of contractility (overexpression of Rok constitutively active) in both histoblasts or LECs has no significant effect on histoblast behaviour.

      The authors hypothesise that growth of histoblasts and LECs lead to a compression of the histoblasts, which causes the buckling of the histoblast junctions. To test this hypothesis, they perform three experiments and show that (1) overexpression of a dominant negative form of insulin receptor in LECs leads to a non-autonomous effect on histoblast cell size, (2) overexpression of a dominant negative Rab11 in histoblasts interferes with histoblast buckling, and (3) overexpression of String in histoblasts induces histoblast division and reduces histoblasts buckling.

      Major comments

      As mentioned in the significance box below, a major weakness of the manuscript is that the presented data does not sufficiently support the hypothesis that histoblasts are compressed by the LECs: Firstly, the manuscript does not provide evidence that the LECs expand and compress the histoblasts. Such an analysis needs to be included.

      Secondly, the authors present two pieces of evidence to support their hypothesis, which are not very convincing:

      1. In line 147ff, the authors imply that their experiments in Fig. S3D (Rok alterations in LECs) support a 'mechanical tug of war'. However, the authors point out that their analysis is not statistically significant, so their data does not actually support their hypothesis.
      2. The authors show that overexpression of a dominant negative form of insulin receptor results in a non-autonomous increase in apical histoblast cell area. Here, I wonder to which extent the change in histoblast cell size might be due to a change in histoblast cell number per nest rather than a change in LEC pressure. Furthermore, they state that junctions are straighter, however, it would be good to see a statistical analysis here. Importantly, the conclusion of the experiment is not very convincing as it has not been shown that LECs are smaller, or grow slower, or exert less pressure on the histoblasts due to the performed genetic manipulation. So, the reason for the observed histoblast phenotype is unclear. This needs to be explored further.

      Thirdly, there are a few observations, which further challenge the author's hypothesis:

      1. Buckling appears to happen in the plane of the tissue, but should it not happen orthogonal to it, as shown in the scheme in Fig. 2J, if LEC compression was the cause of buckling?
      2. In Fig. 1D, one can see buckling at interfaces between histoblasts and LECs - does this not suggest that histoblasts push against LECs (and that in that area LECs are not pushing against histoblasts)? I think this observation is very interesting and a more detailed analysis of this phenomenon at histoblast-LEC junctions could be included in the manuscript.

      Based on the above point, there are various sections of the manuscript that need to be adjusted in my opinion, for example:

      • Line 190ff. 'Combined, these perturbation experiments provide strong evidence that junctional buckling of the histoblasts is the result of a imbalance between the addition of junctional material in the histoblasts and mechanical constraints from the overcrowding of the epidermis.' - There is not sufficient evidence for this statement with respect to overcrowding. The presented data does however show convincingly that junctional remodelling is needed for buckling.
      • Line 201 ff. 'This experiments confirms that junctional buckling is a result of the combined overcrowding and absence of divisions.' - The presented experiments do not provide sufficient evidence for this statement. The presented data does however show convincingly that inducing cell division leads to less buckling. I wonder whether this result is counterintuitive with respect to the authors' compression hypothesis, as if increased compression from LECs would lead to buckling would then not also increased pushing by neighbouring histoblast lead to buckling?
      • Line 235 ff. 'We investigated the formation of histoblast junctional folding and found that it is a non-autonomous transition originated by the competition for space of the two cell populations.' - This needs to be rephrased are there is not sufficient evidence for this hypothesis.

      Further major comments

      Line 56: More details about which histoblasts were imaged would help the reader understanding the experiments better. - Which abdominal segment was imaged? - The authors state that they have imaged the "dorsal posterior nest, which has the largest number of cells (15-17)" - is this correct? In later stages, the anterior dorsal nest is larger than the posterior dorsal nest. - Do the different abdominal segments have different histoblast numbers/ histoblast nest sizes? - I think that it would be helpful to show the behaviour of the ventral nest - the authors' hypothesis suggests that all histoblasts behave similarly and the buckling should be observed in all nests.

      In the figures, the authors do not clearly present the statistics done. Here, giving the p-values in the graphs would be very helpful. There are instances where it is not sufficiently clear whether the authors present a significant finding or merely a non-significant tendency (e.g. in Fig. 6).

      Fig. 4CD. I do not agree with the authors' interpretation that Sqh::GFP is lost from the junctions. The figure shows that levels are reduced. Also, in line 157, it might be better to use 'reduction of junctional myosin' rather than 'loss of junctional myosin'.

      With a few exceptions, the authors do not show the fluorescent marker used in their experiments to report where and how strong the Gal4 is expressed, which they use to drive their RNAi or dominant negative constructs. For example, in Fig. 5, they say that they have co-expressed a cytosolic GFP, but they do not show it. To have this kind of information would be very useful when interpreting the data.

      In line 171 and in other places the authors talk about 'plastic remodelling'. It would be helpful if the authors could explain in more detail what they mean by this.

      Minor comments

      In my opinion, the paragraph about the 'Qualitative model of junctional buckling' would be better placed in the discussion.

      Fig. 6. Why was the insulin receptor experiment done in white pupa and not in wandering L3 larvae? This makes comparison of data more difficult.

      I wonder when are histoblasts stopping to show the buckling? I assume that it must be before the beginning of abdominal morphogenesis, as at the beginning of LEC replacement, the junctions are straight again?

      What is the morphology of histoblasts in late L1- and late L2-stage larvae? Potentially there might also be crowding during those stages?

      Significance

      The observations by Rigato et al. are very interesting. They present a novel model system that enables the study of the interaction of two epithelial cell types, which do not divide. The fact that the presented data suggests that neither histoblasts nor LECs are under tension, makes this an extremely interesting novel system to explore the forces involved. The presented results provide some interesting insights into histoblast biology. However, a major weakness of the manuscript is that the proposed hypothesis of histoblast compression by larval epithelial cells is not sufficiently supported by the results. So apart from the very interesting observations, the manuscript lacks insight into the mechanistical basis of junctional buckling.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript by Rigato and colleagues uses live imaging of Drosophila larvae to describe the transition of histoblasts from a configuration where junctions are straight to a configuration where junctions are folded. The emergence of folded junctions is concomitant with a decreasing apical area, an increasing cell height and decreasing junctional Myosin. Expression of Rab11-DN (reducing apical junctional trafficking) or Cdc25 (inducing proliferation) in histoblasts abolishes the emergence of folded junctions. Expression of InRdn (impairing insulin receptor pathway) in surrounding larval epidermal cells (LEC) is claimed to also reduce folding (but see comment below). Finally, laser ablation of folded junctions reveals little or no relaxation, indicating that these junctions are not under tension. The authors propose a model in which growth mediated cellular crowding generates mechanical constrain on histoblasts which, in conjunction with decreased junctional Myosin II, leads to the buckling of junctions.

      • The authors convincingly show that histoblast junctions buckle/fold during late larval stages. They also convincingly show that junctional folding requires Rab11 and is counteracted by cell proliferation. The conclusion that folded junctions are not under tension is less well supported. Ablation of folded junction results in little/no relaxation (Fig. 5), however, the positive control (late pupal histoblasts) did not show obvious relaxation either (in absence of quantification).
      • The key conclusion that growth mediated crowding drives junctional folding is not well supported. The authors claim that InRdn expression in LECs leads to straight junctions of histoblast, but that is not obvious from Fig. 6F. Additional experiments will be required to further test the role of growth mediated crowding in junctional folding. For example, the authors should further attempt to modulate growth of LECs and/or test whether overgrowth of larvae to increase epidermal surface (e.g. lgl mutants) would influence junctional folding. These experiments will likely require several months.
      • Moreover, the authors provide a 'qualitative model' (Fig. 7). The paper would be strengthened by providing a model based simulation (best based on quantitative data derived from experiment (e.g. growth rates of histoblasts, LECs, etc.) of the transition of straight to folded junctions. This simulation would test whether the authors' hypothesized mechanism is feasible. This work will likely require several months.
      • Statistical analysis to reveal significances between datasets is missing throughout the manuscript. The number of biological replicates (i.e. larvae) for each experiment are not provided. The authors should provide statistical analysis.
      • Fig. 3/S3. The authors observe a correlation between junctional folding and a decrease in F-actin and Myosin on junctions. However, changes in Rok activity do not alter junctional folding. It is therefore unclear whether the decrease of F-actin and Myosin is a cause or consequence of junctional folding. The authors should tune down their conclusion that junctions 'soften' through a loss of cytoskeletal components.
      • Fig. 5. The laser ablation experiments require a quantitative analysis.
      • Fig. 6. A control image (Cad;mKate without perturbation) is missing.
      • Fig. 7. The junctional buckling model is a hypothesis by the authors to explain their observation; it is not data and therefore should be removed from the 'results' section of the manuscript.

      Significance

      The manuscript describes an interesting behaviour of cells to change their junctional morphology from straight to folded during development. Previous work has mainly described epithelia as networks of cell junctions under tension. This work advances our understanding by providing evidence that epithelia can also be in a configuration that is not based on tension. The authors provide evidence that this cell configuration requires the absence of cell proliferation and trafficking of junctional material. However, beyond this, the mechanisms that drive epithelia into this configuration remain somewhat unclear. The manuscript would therefore likely target a specialist audience

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      the answers and strategy plans are details in the "revision plan" document attached to this submission

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This study used metabolomic, lipidomic and proteomic approaches to analyze the metabolic changes induced by the p.S59L CHCHD10 mutation in mice. Altered metabolism in plasma and heart of Chchd10S59L/+ mice was seen compared to their wild type littermate. In plasma, levels of phospholipids were decreased while those of carnitine derivatives and most of amino acids were increased. In cardiac tissue, Chchd10S59L/+ mice showed a decreased Oxidative Phosphorylation (OXPHOS) and -oxidation proteins levels as well as tricarboxylic acid cycle (TCA) intermediates and carnitine pathway metabolism. In parallel, lipidomics analysis revealed changes in the lipidome, including triglycerides, cardiolipin and phospholipids. Consistent with this energetic deficiency in cardiac tissue, the authors show that L-acetylcarnitine supplementation improved the mitochondrial network length in IPS-derived cardiomyocytes from a patient carrying the CHCHD10S59L/+ mutation. It is concluded that L-acetylcarnitine may restore mitochondrial function in CHCHD10-related disease, due to the reduction in energy deficit that could be compensated by carnitine metabolic pathways.

      General Comments:

      The authors had already generated knock-in (KI) mice (Chchd10S59L/+) that developed cardiomyopathy associated with morphological abnormalities of mitochondria, severe oxidative phosphorylation (OXPHOS) deficiency and multiple defects of respiratory chain (RC) complexes activity in several tissues in the late stage. Other authors have seen similar results (see reference 5) As a result, the insights provided by this further metabolomic, lipidomic and proteomic analysis are not that novel. The data is very descriptive and often the authors misinterpret the meaning of the results. Addionally the alterations in either metabolites or proteins have in their mutant CHCHD10S59L/+ mice are often not accurately represented.

      The administration of acetylcarnitine to reverse the metabolic defects in iPSC cardiomyoctytes derived from a from a patient carrying the CHCHD10S59L/+ mutation is interesting, although the authors did not determine if similar benefits of acetylcarnitine were seen in the CHCHD10S59L/+ mice. They msy also misinterprete the role of acetylcarnitine in the mitochondria.

      Specific Comments:

      1. The authors point out that in vitro and in vivo studies have shown that CHCHD10 mutants cause disease by a toxic gain-of-function mechanism rather than by loss of function. It would be helpful to better define what the effects of the CHCHD10S59L/+ mutation represent.
      2. An aim of this study is to understand how mitochondria dysfunction associated with CHCHD10 mutations triggers altered global metabolism. This aim has not really be accomplished in this study.
      3. Figure 3C: The authors put FABP3 in the ß-oxidation pathwayt. This is incorrect. The figure also does not highlight the ketothiolase (ACAT1)? It is also not clear why CPT1 and CPT2 are place together. There is a carnitine translocase situation in between these enzymes. It should also be pointed out that CACT also has role in long chain acylcarnitine translocation.
      4. The main direction of CrAT in heart mitochondria is the conversion of acetyl CoA to acetylcarnitine. This is not recognized by the authors, and has important implications on interpreting acetylcarnitine therapy.
      5. Figure 3C: Why is just palmitate and linoeate shown as fatty acids?
      6. The authors state that "In cells, long-chain fatty acids dependent on esterification with L-carnitine to form acetyl-carnitine for transport from the cytoplasm to the mitochondrial matrix for oxidation and energy production." This sentence should be re-written and broken down into clearer statements.
      7. The authors state that "In lipid biosynthesis pathway, protein levels of long-chain- fatty-acid-CoA ligase 1 (Acsl1; as well as mRNA expression) and mitochondrial short-chain specific acyl-CoA dehydrogenase (Acads) in the hearts of symptomatic Chchd10S59L/+ mice were significantly lower than those of age-matched wild-type mice (with adjusted p < 0.05) (Fig. 3A-B). Please clarify and re-write this sentence. ACSl1 is primarily producing acyl CoA for CPT1. ACADs is involved in ß-oxidation of short chain fatty acids. Not lipid biosynthesis.
      8. The authors state that "With respect to the lipid oxidation, protein levels of carnitine-O-Acetyltransferase (Crat; as well as mRNA expression)...". Crat is not involved in fatty acid oxidation.
      9. It is stated that "Interestingly, a significant decrease in fatty acid biosynthesis intermediates, such as malonate and ethyl-malonate, was also observed in the hearts of symptomatic Chchd10S59L/+ mice (Fig. 3C). I do no not see this data. Where is this?
      10. Figure 3G.; Data is incomplete
      11. The authors state that: Altogether, those results suggest that CHCHD10S59L mutation induces branched-chain amino acids catabolic defects and increased non-essential amino acids synthesis which may contribute to the elevated levels of amino acids metabolites observed in plasma and heart of Chchd10S59L/+ mice (Fig.1D, Fig. 3D)." It should be recognized that the heart is a small contributor to plasma amino acid changes.
      12. The IPSC-derived cardiomyocytes seem to involve one single patient.
      13. The authors state that "As highlighted by our study, Chchd10S59L/+ mice displayed markedly elevated levels of cholesteryl esters, some glycerophospholipids and reduced concentrations of triglycerides species in heart at the symptomatic stage. Changes in cholesteryl ester metabolism were not reflected in changes in plasma total cholesterol pools (Table 1). In other words, it appears that cholesterol synthesis is upregulated but does not result in accumulation of free cholesterol." It should be recognized that the heart is not really involved in the synthesis of cholesterol.
      14. The authors state that "Increased plasma concentrations of acylcarnitines (which formed from carnitine and acyl-CoAs) are suggested as a marker of metabolism disorders related to cardiovascular diseases [43, 44]. Based on our data and the literature, we suggested that targeting carnitine metabolism pathway could counterbalance the metabolic disturbances, ameliorate mitochondrial functions, and therefore delay CHCHD10-related disease progression." This statement is not supported by data. There are also inaccuracies with the discussion of metabolism.

      Significance

      The authors had already generated knock-in (KI) mice (Chchd10S59L/+) that developed cardiomyopathy associated with morphological abnormalities of mitochondria, severe oxidative phosphorylation (OXPHOS) deficiency and multiple defects of respiratory chain (RC) complexes activity. Other authors have seen similar results (see reference 5) As a result, the insights provided by this further metabolomic, lipidomic and proteomic analysis are not that novel. The data is very descriptive and often the authors misinterpret the meaning of the results. They often misrepresent the significance of the observed alterations in metabolites and proteins in their mutant CHCHD10S59L/+ mice.

      The administration of acetylcarnitine to reverse the metabolic defects in iPSC cardiomyoctytes derived from a from a patient carrying the CHCHD10S59L/+ mutation is interesting, although the authors did not determine if similar benefits of acetylcarnitine were seen in the CHCHD10S59L/+ mice.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      This manuscript by Madji Hounoum et al presents a study of the metabolic changes associated with the p.S59L CHCHD10 mutation that underlies a toxic gain-of-function in a number of disease phenotypes, including ALS and mitochondrial myopathy. The authors have used a multi-omics approach in their mouse model to demonstrate significant decreases in proteins required for oxidative phosphorylation (OXPHOS) and -oxidation, as well as metabolites involved in the Kreb's cycle and carnitine metabolism, along with significant changes in lipid profiles. The authors also provide evidence that L-acetylcarnitine appears to ameliorate mitochondrial function.

      Major comments:

      The manuscript is, in general, well-written and 1. The conclusions drawn are mostly justified on the basis of the data presented (see comment 2). 2. The authors have used a multi-omics approach, which is very powerful in allowing a cell-(or organism-) wide analysis of multiple systems. However, the key drawback for the proteomics approach is that low abundance proteins, such as the OXPHOS proteins, are often not accurately assessed. In this regard, it seems critical that the authors provide further evidence for the changes suggested by the heatmaps - or justify that the technical approach they have taken can account for low abundance. Western blotting would fit the bill nicely - there are antibodies available to many of the OXPHOS complex subunits. 3. There is a very rich and deep literature, particularly from the '80s and '90s, regarding the metabolic disturbances identified in mitochondrial disease patients, both for OXPHOS and fatty acid oxidation defects, that should be cited. In addition, the literature delineating the mitochondrial 'cofactor cocktail' should at least be mentioned.

      Minor comments:

      1. Some attention to grammar would help clarify the meaning for the reader. Some sentences are incomplete.
      2. The authors are encouraged to check their references, as a number are incomplete.
      3. Adding the scale to the scale bar for the MitoTracker Red confocal images would be handy. The right-most micrographs of the S59L/+ cells (Fig 4C) are not nearly as convincing as the middle pair of micrographs - and detract from the message. In addition, it would be nice to have the authors comment on the very intense staining of the mitochondria in the S59L/+ cardiomyocytes in panel A of Figure 4.
      4. The final paragraph of the Discussion is not as impactful as it could be. Specifically, referencing the mitochondrial disease literature would aloow a more fulsome discussion as to the mechanism underlying the action of ALCAR i.e. is the anti-oxidant function most important? Or is it simply it's action as a metabolite?

      Significance

      This study is an important contribution to the literature examining neurodegenerative diseases, such as ALS, that remain poorly understood. While the advance seems incremental, especially in light of the many studies in recent years that have document mitochondrial dysfunction in the mutant mice, the ALCAR treatment is novel and worthy of dissemination. The audience that this manuscript would interest would span from neurologists and other clinicians, such as medical geneticists, to basic biomedical researchers in both academic and industry.

      Reviewer area of expertise: mitochondrial function in health and disease; insufficient expertise to evaluate the details of the 'omics' methodologies.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary

      In the manuscript titled "Multiomics study of CHCHD10 S59L -related disease reveals energy metabolism downregulation: OXPHOS and beta-oxidation deficiencies associated with lipids alterations," Hounoum et al. performed metabolomics, lipidomics, and proteomics analyses of symptomatic and presymptomatic CHCHD10 S59L murine hearts. The results are largely descriptive. Levels of carnitine acyltransferases and carnitine palmitoyltransferase 2 are lower in S59L hearts. Many proteins of lipid biosynthesis and beta-oxidation pathways are also reduced. Authors concluded that utilization of fatty acids for energy production is deficient in the mutants. They treated CHCHD10 S59L iPS-derived cardiomyocytes with acetyl-L-carnitine and observed a rescue of mitochondrial length and cristae organization in vitro. This paper contains a few grammatical, structural, and organizational issues. The paper confirms several findings recently published by Sayles et al. (Cell Reports, 2022) while providing some additional information through lipidomics analysis in the hearts and metabolomics analysis in the plasma. Overall, it is largely descriptive apart from an experiment in the figure 3 in which the authors use iPSC-derived cardiomyocytes to show partial rescue of a mitochondrial morphology defect following acetyl-L-carnitine supplementation. However, these data seem preliminary and the correlation between the iPSC and mouse model is not established. Overall, these data are likely to be of interest to the immediate field but lack novelty for a general audience.

      Major comments

      1. In Figure 3, authors treated CHCHD10 S59L iPSC-derived cardiomyocytes with acetyl-L-carnitine for 72 hours and observed a rescue of mitochondrial length and cristae organization. However, it is not established that the defect in mitochondrial length is important to the pathology in the mouse heart. A rescue of the mitochondrial functional defects would have greater relevance. Thus, the relevance of rescuing this phenotype is not clear. It is not clear a priori whether increasing acetyl-L-carnitine levels would be protective. While certainly there is evidence for downregulation of fatty acid beta-oxidation as well as carnitine-related metabolites, if this a compensatory response to an OXPHOS defect, increasing acetyl-L-carnitine levels could make the cardiomyopathy worse. Supporting this alternative interpretation, levels of carnitine derivatives are already higher in mutant plasma. Thus, it is important to demonstrate this rigorously and in the most appropriate model. For instance, showing rescue of cardiomyopathy in the in vivo mouse model would be stronger than showing rescue of a minor defect in mitochondrial morphology in iPSC derived cardiomyocytes. Additionally, the EM images provided in the paper are in low magnification, and cristae structures are not clear. Quantifications of the cristae defects are not provided. Authors also do not provide any information regarding how they quantify mitochondrial length. Mitochondria is a 3D structure. The length of mitochondria on a 2D transmission EM image may not represent the true length of the mitochondria.

      Minor comments

      1. Title. Recommend changing "lipids alterations" to "lipid alterations."
      2. Page 7, line 13, 14, and 23. Some characters appear as squares.
      3. Page 12, line 8. Recommend changing "After 72 treated with Acetyl-L-carnitine" to "After treated with acetyl-L-carnitine for 72 hours."
      4. Page 14. It is unclear what the significance of the electrolyte measurements is. A brief discussion of the implications should be added.
      5. Page 15, last sentence. Consider rephrasing the sentence "Very interestingly, most of the amino acids detected in the plasma were increased in CHCHD10 S59L/+ mice at both stages, as well as carnitine, O-acetyl-L-carnitine and deoxycarnitine increased at symptomatic stage."
      6. Page 16, line 10. "Longitudinal proteomics" implies that the pre-symptomatic and symptomatic heart samples came from the same subjects. If this is not the case, I would recommend deleting the word "longitudinal."
      7. Page 17, line 14. Authors show changes in levels of proteins and metabolites in beta-oxidation, but there is no evidence presented to show that beta-oxidation is impaired in CHCHD10 S59L/+ hearts.
      8. Page 17, line 19. Please indicate where Cyb5r1 levels are shown.
      9. Page 18, line 15. Please indicate where Acss1 levels are shown.
      10. Page 18, line 10. Abbreviation Plaa has already been spelled out in line 2.
      11. Page 18, line 10, it is stated here that Plaa levels are lower in the CHCHD10 S59L KO mice but 3 sentences earlier and on the figure they are higher. Please resolve this discrepancy.
      12. Page 18, line 18. Recommend changing "lipids alterations" to "lipid alterations."
      13. Are enzymes involved in amino acid metabolism (PHGDH, PSAT1, and ASNS) upregulated in your proteomics analysis?
      14. Page 20, line 6. Recommend changing "Catabolic enzymes are mainly located in the mitochondrial matrix such as the branched-chain alpha-keto dehydrogenase complex (Bckdha, Bckdhb) and branched-chain-amino-acid aminotransferase (Bcat2)" to "Catabolic enzymes, such as the branched-chain alpha-keto dehydrogenase complex (Bckdha, Bckdhb) and branched-chain-amino-acid aminotransferase (Bcat2), are mainly located in the mitochondrial matrix."
      15. Page 20, line 12. The authors interpret the increase in non-essential amino acid synthesis as a consequence of the changes in branch-chain amino acids. An alternative interpretation is that this is a consequence of the mitochondrial integrated stress response, which has been demonstrated to be upregulated in symptomatic CHCHCD10 S59L hearts. Specifically, expression of proline synthesis, serine metabolism, and asparagine synthesis enzymes is increased in a manner that depends on the OMA1-DELE1-eIF2alpha signaling axis. This alternative explanation for these results should be discussed and the relevant studies cited (PMID: 35700042 and 32338760).
      16. Page 22, line 12. An alternative explanation for lower creatinine levels is decreased body weight in the CHCHD10 S59L mice. This should be discussed in addition to noting changes in creatinine in ALS. Additionally, it seems more likely that these changes in the CHCHD10 S59L mouse relate more to the myopathy/cardiomyopathy in this model than motor neuron disease, which is not a prominent feature in the model.
      17. Page 23, line 10. Recommend showing Uchl1 levels in Results and/or Figures.
      18. Page 23, line 15. Myh6 levels are unchanged or decreased not increased in cardiomyopathy.
      19. Page 24, line 17. Recommend changing "mitochondrial dysfunctional" to "mitochondrial dysfunction."
      20. Page 27, line 10. Recommend changing "ameliorate mitochondrial function" to "ameliorate mitochondrial dysfunction."
      21. Page 31, line 22. Formatting error.
      22. Figure and Figure legend 3D. Recommend changing "not regulated" and "not modulated" to "unchanged" or "not significantly different."
      23. Figure 4C and 4D. Please provide images of higher magnification to clearly show mitochondrial network and cristae. Please provide quantification for 4C.

      Significance

      This paper contains a few grammatical, structural, and organizational issues. The paper confirms several findings recently published by Sayles et al. (Cell Reports, 2022) while providing some additional information through lipidomics analysis in the hearts and metabolomics analysis in the plasma. Overall, it is largely descriptive apart from an experiment in the figure 3 in which the authors use iPSC-derived cardiomyocytes to show partial rescue of a mitochondrial morphology defect following acetyl-L-carnitine supplementation. However, these data seem preliminary and the correlation between the iPSC and mouse model is not established. Overall, these data are likely to be of interest to the immediate field but lack novelty for a general audience.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      The study "Mesenchymal stem cell models reveal critical role of Myc as early molecular event in osteosarcomagenesis" by Akkawi et al shows that BM-MSCs are a foundational tool for study of osteosarcoma. And authors identified Myc and its targets as early molecular events in osteosarcoma formation, using BM-MSCs knocked out of both p53 and Wwox. Although the quality and validity of the data presented in this manuscript are not in question, this reviewer has doubts about the novelty of the findings in this current version of manuscript. It does not clearly indicate what is different from previous findings.

      Response: We thank the reviewer for the kind words regarding our manuscript. Our study revealed that combined deletion of WWOX and p53, two known tumor suppressors in OS, results in early transformation of BM-MSCs that mediates upregulation of Myc. We believe that this notion is original and has not been described before. In addition, we provide evidence that this genetic manipulation has an advantage over p53 deletion alone. More details are provided below.

      1. It has already been reported that p53-/- BM-MSCs are the cells of origin in osteosarcoma development (ref. 21).

      Response: We agree with the reviewer about this notion/fact and we indeed cited this reference. It should be noted that in this study the cell of origin of osteosarcoma was proposed to be BM-MSCs-derived osteogenic progenitors when p53 and Rb are co-deleted. Interestingly, this study did not show whether p53-/- BM-MSCs-derived osteogenic progenitors are able to form osteosarcoma or any other type of sarcomas. In our model BM-MSCs p53-KO alone were not able to develop osteosarcoma tumors as well, even when injected intratibially. Moreover, we showed that co-deletion of Wwox and p53 in BM-MSCs-derived osteogenic progenitors have the ability to form OS at earlier stages at the time point when deletion of p53 alone is still not enough to induce osteosarcomagenesis. Based on our findings and those in the literature, we believe that this combined genetic perturbation is critical for initiation of OS.

      1. Indispensability of Myc in osteosarcomagenesis was revealed (PMID: 12098700).

      Response: It is well known that Myc is a potent oncogene and overexpressed in osteosarcoma (ref. 12, 13, 28 and ref. 29) as well as in many other human malignancies. The referred study (PMID: 12098700; ref 32) which expressed Myc in lymphocytes based their analysis of Myc contribution at the tumor stage (at the time of tumor detection). Our study, on the contrary, shows that upregulation of Myc is an early event in osteogenic-committed BM-MSCs deficient for Wwox and p53 in tumor-free mice. This notion indicates that combined deletion of two important tumor suppressors, WWOX and p53, promotes osteosarcoma through early changes in Myc levels. Our data further show that p53 deletion alone is dispensable for this change to happen at early stages further highlighting the significance of our findings. The referred paper was cited and discussed in the discussion section (ref 32).

      Our data further shed light on WWOX as a key determinant of Myc function placing it as an upstream regulator. To further proof this, we propose in our revision plan to knockout WWOX in yBM SKO cells and/or restore WWOX in yBM DKO cells and determine consequences on Myc levels and activity as well as on tumorigenesis. In addition, we shall perform a ChIP-seq assay for Myc in yBM DKO and compare it to yBM SKO cells to show whether WWOX deletion is indeed results in enhanced chromatin accessibility of Myc.

      1. Osteosarcoma formation of p53flox-OsxCre mice was rescued by Myc-depletion and BM-MSCs from p53flox-OsxCre was shown to upregulate Myc (PMID: 34803166).

      Response: This is a very relevant new study that we regrettably missed to cite so we are grateful for the reviewer to bring this up. In our revised version, we will be citing this important reference and discussing it (ref 33). Although this article shows that p53 deficiency promotes osteosarcomagenesis mediated through oncogenic Myc, which we also showed in our study (figure 6C, D), but the authors did not validate the tumorigenic ability of these cells at this earlier stage of osteosarcomagenesis. The later was showed in our study by injecting yBM-MSCs deficient for p53 intratibially into immunocompromised mice and showed that they lack tumorigenic ability although they display a mild upregulation of Myc (figure S5). On the other hand, co-deletion of Wwox and p53 at this earlier stage resulted in even higher levels of Myc and inducing osteosarcomagenesis at this earlier stage. Therefore, our study provides unforeseen effect of genetic perturbation that promotes OS initiation.

      First of all, the authors need to cite the above papers and compare their findings with them to better clarify the value of their findings.

      Response: Thank you for this comment, we will cite and discuss these valuable studies in our revised version.

      The only one clear finding would be that Wwox functions as a tumor suppressor by repressing Myc function in the absence of p53, but unfortunately, no data have been presented on the mechanism Some additional analysis would be needed to mention it

      Response: As addressed above, our revision plan will include:

      1. Depleting WWOX in yBM SKO and/or restoring WWOX in yBM DKO cells to further prove the tumor suppressor function of WWOX.
      2. Performing ChIP-seq assay for Myc in yBM DKO and compare it to yBM SKO cells to show whether WWOX deletion is indeed results in enhanced chromatin accessibility of Myc.

      In the first place, Myc is upregulated in the absence of both p53 and Wwox, compared in only p53-null situation? Western blotting would be better to show it

      Response: In our revised version we will add a western blotting showing the upregulation of Myc in DKO (WWOX, p53) compared to SKO (p53) yBM cells; This is already added in new Figure 5S C.

      1. In Figure 1D, should separate each panel so that it is clearly visible. What is the blue-colored fluorescence, DAPI? If so, why don't tdTomato positive cells overlap with blue (Figs, 1D, 2C, 4C, 4E?

      Response: In our revised version we added more precise images in all Figures indicating the overlap between DAPI (blue) and tdTomato (Red).

      1. Why was MCM7 chosen among the Myc targets (S Figure 3)? What is the rationale for this?

      Response: Thank you for this important notion. MCM7 is part of the MCMs protein family, that plays and essential role as a helicase and organizing center in DNA replication initiation. Moreover, several studies show the upregulation of MCM7 in several types of cancers among which is osteosarcoma, as cited in our manuscript (Ref. 14, 15, 16). MCM7 is also a direct target of Myc and has been shown to be a druggable target, by SVA as has been presented in Fig 7. Altogether, these facts and observations made us exploring its significance in our mode. In our revision plan, we will also explore other Myc targets through performing ChIP-seq on DKO cells.

      In Figure 5 legend, what does "yBM cells (1.5, 4-months) (n=6)" mean? yBM cells (1.5-months) (n=3) and yBM cells (4-months) (n=3)?

      Response: Thank you for this notion. yBM, at age of 1.5 months or 4-months were collected from tumor free mice and analyzed. In our revised paper, we updated and clarified this in the Figure 5 legend.

      1. In Figure 7B, is there a correlation between MCM7 and Myc protein expression levels?

      Response: Thank you for this comment. In our revised version we added a western blot analysis showing the upregulation of both Myc and MCM7 in yBM-DKO compared to SKO cells; new Figure S5 C. (did the mean 7B upper panne, if so, we have to add this in the updated version).

      Also, do MCM7 and Myc immunopositivites overlap in Figure 7G?

      Response: In our revised version we will perform Myc IHC on same tumor sections. In the meanwhile, we added a western blot analysis showing the inhibitory effect of Simvastatin on both MCM7 and Myc in vitro (new Fig 7B, lower panel, re-blotted for Myc).

      In S Figure 4C, what is 'PC'? What sample was loaded?

      Response: PC refers to positive control for p53 that was used which was in this case HEPG2 cells treated with Nutlin to stabilize p53. p53 antibody used in this plot (IC12-Cell signaling) detects both human and mouse p53. A note was added to Figure legend.

      1. In S Figure 2A, what does 'US' (BM-US) mean? In S Figure 4F, what does 'US' and 'S' (Direct US and Direct S) mean?

      Response: Thank you for this notion. We apologize for not clearly defined these symbols. In our revised version we added clarifications in the legends of these figures. The symbols are as follow: US: unstained BM-control, S: stained BM, Direct: directly collected BM and checked with FACS before culturing.

      1. Overall, this manuscript, there are too many symbols and it is cumbersome. Ex, in S Figure 3, yBM_DKO, Tum_DKO, DKOT, DKO-BMT, etc. All figures should be consistent with the same notation.

      Response: We apologize for this in consistency in using too many symbols. In our revised version we will provide a table with all the symbols that should be consistent all over the manuscript

      Reviewer #1 (Significance):

      Although the quality and validity of the data presented in this manuscript are not in question, this reviewer has doubts about the novelty of the findings in this current version of manuscript. It does not clearly indicate what is different from previous findings, such as;

      1. It has already been reported that p53-/- BM-MSCs are the cells of origin in osteosarcoma development (ref.21).
      2. Indispensability of Myc in osteosarcomagenesis was revealed (PMID: 12098700).
      3. Osteosarcoma formation of p53flox-OsxCre mice was rescued by Myc-depletion and BM-MSCs from p53flox-OsxCre was shown to upregulate Myc (PMID: 34803166).

      First of all, the authors need to cite the above papers and compare their findings with them to better clarify the value of their findings.

      Response: Thank you for your valuable comments, and as we mentioned these important studies were and will be cited and discussed properly in our revised version.

      The only one clear finding would be that Wwox functions as a tumor suppressor by repressing Myc function in the absence of p53, but unfortunately, no data have been presented on the mechanism.

      Response: As stated in our response above, we argue that our observations showing very early transformation of BM-MSCs in combined genetic perturbation of WWOX and p53 is novel. In our revision plan we propose to perform additional ex vivo experiments to prove this notion by performing WWOX deletion in SKO-yBM cells and WWOX restoration in DKO-yBM cells and test consequences on Myc levels/activity and tumorigenicity. To further shed light on the mechanistic outcome of WWOX action in this context, we shall perform Myc ChIP and ChIP seq assays in yBM DKO and compare it to yBM SKO cells to show whether WWOX deletion is indeed results in enhanced chromatin accessibility of Myc [follow up of Fig-I shown above]. These experiments should further strengthen our findings.

      Reviewer #2 (Evidence, reproducibility and clarity):

      In current study, the authors established a mouse model with tdTomato expression under the OSX-controlled double deletions of Wwox and Trp53. Such mouse strain gives a great platform to study the OS development and therapeutic potential. Experiments are clear and convincing. Results are well presented.

      Response: We thank the reviewer for the kind words regarding our manuscript and acknowledging its clarity and validity.

      To better improve this study, few minor suggestions regarding the data are as following:

      1. Some of the legends on figures are too small to read, or in low quality. please change these labels.

      Response: We thank the reviewer for this notion. We apologize for the low quality and inconvenience. In our revised version, we shall provide an improved resolution of legends.

      1. For Figure 7C and D, from 7C, the control WT BM showed clear resistance to the SVA treatment, but in 7D, there is almost no cells in the WT BM group. Data of this group might be missed?

      Response: Thank you for this comment. Cre+WT BM cells (shown in 7D) were unable to form colonies as shown previously in figures 2B and 4B. Fig 7C refers to sensitivity to SVA using MTT assay.

      1. For figure 7G, the difference among MCM7 IHC staining of two groups didn't show as much as the statistical analysis in the right panel. Authors may consider using MCM7 western blot to check its levels after SVA treat.

      Response: Thank you for this notion. We updated the Figure showing a more representative image (new Figure 7G).

      Reviewer #2 (Significance):

      This study uses a transgenic mouse model with tdTomato expressed in combination of loss of p53 and Wwox under the OSX lineage to study early initiation of OS. They found only DKO bone marrow cells can form OS in a subsequent orthotopic mouse model, but not the p53 single KO cells. After compare the RNA-seq from these different cell population, they identified the Myc pathway is the key player to promote OS development, especially the MCM7. Moreover, they tested SVA in treating these BM cells and reveal a therapeutic potential. This animal model is a good platform to study OS, especially at the early stage. Most results are clear and convincing. With the identification of Myc pathway, they further tested the SVA effects on treating these DKO BM. This is an important study and provided meaningful information to the OS, even broad cancer research community.

      Response: We thank the reviewer for his/her supporting comments, and acknowledging the importance of our study.

      However, the significance, or novelty of this work is not sufficient. For instance, SKO BM won't form tumor in the IT injection assays compare to the DKO BM groups, therefore, the involvement of Wwox during the OS tumorigenesis is clear. However, authors didn't explore any potential mechanisms of Wwox function or related signaling behind this observation

      Response: We thank the reviewer for this very important comment. As mentioned previously, response to reviewer 1, our results indicate that combined deletion of two important known tumor suppressors, WWOX and p53, promotes osteosarcoma through early changes in Myc levels. Our data further show that p53 deletion alone is dispensable for this change to happen at early stages further highlighting the significance of our findings. In our revision plan we will do knockout of WWOX in yBM SKO and restore WWOX in yBM DKO cells. In addition, we are currently working to perform ChIP assay for Myc in yBM DKO and compare it to yBM SKO cells to show whether WWOX deletion is indeed results in enhanced chromatin accessibility of Myc.

      And the RNA-seq analysis mostly focus on c-Myc pathway and its downstream targets. Given the well-known relationship of p53, c-myc even RB in the OS, it will be more interesting and attractive to see a clear mechanism of Wwox in this context.

      Response: We thank the reviewer for this suggestion. Indeed, combined deletion of WWOX and p53 resulted in alteration of key cellular pathways involved in OS development. Due to the capacity of the work, we focused here on this important notion showing very early upregulation of Myc in BM-MSCs isolated from DKO cells, but not from SKO cells. Future work can expand use of this model to address relationship with other key pathways and genes.

      Second, since authors took effort to generate this Tomato-DKO mice, it could be clearer if they isolate tdTomato positive cells instead of a mixture of BM, culture them, differentiate them, and perform more assays using these cells. In this way, it will give better clean background for all assays, and may be able to find novel effectors during this OS progression process.

      Response: Thank you for this important suggestion. BM-MSCs cells collected directly from the mouse (Tom+, Sca1+, CD45-) represents a very small and minute population and was used to be cultured for enrichment as was done in previous studies (ref. 33 and 34). So direct collecting this small population and injecting directly to immunocompromised mice is not feasible. Moreover, further validation of the cultured cells used in our study confirmed their mesenchymal identity. We however, propose to try performing in vitro tumorigenic assays on these sorted cells. In our revision plan we suggest performing colony formation assays and soft agar assays to address tumorigenicity of these cells.

      Third, within the text, authors tried to use OB differentiation and some other assays to discuss the OS origin cells, MSC or OB; but didn't get a preferred conclusion. It could be possible to better understand this process with the single cell RNA-seq using these BM from different mice or at different ages

      Response: Thank you for this important point. According to our results we can conclude that BM-MSCs committed to the osteoblast lineage are supposed to be the cell of origin for OS and will be clearly emphasized in our revised version. Preforming a single cell RNA-seq is beyond the scope of this study and can be explored in future studies.

      In general, this is a clean, straightforward study, and they established a very useful model to study OS. But the mechanisms merit is somewhere short

      Response: Thank you for the kind words, as proposed previously our plan to further investigate the mechanism of WWOX regulatory effect on Myc will be addressed using the in vitro assays of WWOX deletion/restoration to SKO/DKO-yBM cells respectively. Moreover, ChIP-seq assay for Myc in yBM DKO and compare it to yBM SKO cells to show whether WWOX deletion is indeed results in enhanced chromatin accessibility of Myc.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary: The work describes analysis of an Osx1-Cre p53fl/fl Wwoxfl/fl mouse model compared to an Osx1-Cre p53fl/fl model. The authors have assessed the osteosarcoma inducing potential of cells within the bone marrow by including a tdTom reporter of Cre expression. They conclude that bone marrow mesenchymal cells can give rise to osteosarcoma when transplanted. Based on transcriptomics they contend that upregulation of Myc is important and its target MCM7 can be targeted with simvastatin.

      Major comments: -

      Are the key conclusions convincing?

      The authors can generate tumors in immunocompromised mice upon injecting cells derived from bone marrow flushed. This is not surprising given the data available now about expression of Osx1-Cre

      Response: Thank you for this notion. In our study we showed that yBM cells harboring the deletion of two known important tumor suppressor genes WWOX and p53 collected from tumor free mice are tumorigenic compared to SKO p53 at this earlier stage. This is a novel notion that has not been presented previously. In our revised version, we propose to further study the mechanism of WWOX action on Myc accessibility.

      The analysis of MSCs lacks detail and needs significant more improvement and assessment by FACS using the well-defined criteria for mesenchymal cells that have been developed

      Response: Thank you for this comment. In our revised version we will add another marker (CD11b), in addition to the used markers (CD45/Sca-1 and CD29) which are all well known to define MSCs as mentioned in Ref. 21, 33, 34.

      It is not clear to me from the available information if the authors have used bone marrow cells that were flushed and immediately transplanted or if all cells transplanted have been placed in culture first, adherent cells expanded in culture media favoring survival and proliferation of non-hematopoietic cells and then transplanted- this is important to clarify explicitly as it is important to the significance of the study. If these cells are all used after culture, then the novelty of these studies are questionable as it was demonstrated previously that similar types of cells give rise to OS when transplanted (PMID: 18697945).

      Response: Thank you for this important point. In the referred reference (PMID: 18697945, ref 34) authors used p53/Rb Cre- stromal cells that were cultured in vitro then infected with Ad-Cre and then injected subcutaneously in immunocompromised mice. In our study, we provide evidence that genetically manipulated young BM-MSCs (for Wwox/p53) are tumorigenic when injected intratibially, a more relevant niche for these cells, and this involved upregulation of Myc. In our revised version, we shall provide more mechanistic insights on the functional relationship of WWOX and Myc. Using BM-MSCs cells that are directly collected from the mouse (Tom+, Sca1+, CD45-) is not feasible due to very low percentage of cells which has been also previously reported by many groups (Ref 34). In our revision plan, we also propose to try performing in vitro tumorigenic assays on sorted cells.

      Moreover, in our study we validated that the deletion of p53 alone at this earlier stage is not enough to induce osteosarcomagenesis (which was not shown previously) suggesting additional hits are required for OS formation. Importantly, co-deletion of Wwox and p53 using the same Cre line resulted in the upregulation/higher levels of Myc that promotes osteosarcomagenesis at this earlier stage.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      I think overall the authors are appropriately cautious in interpretation. The points raised above regarding the nature of the cells would need clarification and then the claims reassessed however.

      Response: Thank you for this acknowledgment. According to our results we can conclude that BM-MSCs committed to the osteoblast lineage could be the cell of origin for OS and this will be clearly emphasized in the discussion of our revised version.

      Claims re "metastatic potential" should be significantly reconsidered - the authors present (motility assays) which should be referred to as motility assays. The injection of cells intravenously is a lodgment assay of cells in the venous circulation and does not equate to the process a cancer cell must undergo and survive to metastasis from a primary tumor in an immune competent environment. The claims around these assays should be significantly reconsidered.

      Response: Thank you for this important comment. In our revision plan we will check the lungs of IT injected mice for the presence of lung metastatic nodules (tdTomato positive cells in the lungs).

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      It is not explained or justified what the control cohort in Fig 7F is significantly smaller than the treated cohort. This will affect the statistical analysis and interpretation. There is no statement regarding blinding/randomization (or not) in the in vivo simvastatin experiment - this needs to be added.

      Response: In our revised version we clarified in the materials and methods section clearly the randomization of the mice selection for each group and number of mice in each group.

      The authors should include discussion that these are relatively long latency OS models compared to p53/pRb compound mutants and contrast with previous data from these models where in vitro cultured cells did give rise to OS in vivo after Cre treatment.

      Response: Thank you for this suggestion. In our revised paper, we will include the latency of OS in our model and compare them to p53/Rb, and emphasize that our model tested the tumorigenic ability of SKO yBM cells and showed that they are unable to form osteosarcoma tumors at this early stage compared to DKO yBM cells.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      If a patient could to be treated based on these data, then the extra experiments to provide a robust preclinical dataset should be provided otherwise significant caution should be stated.

      Response: Our study provides a proof-of-concept showing that our model can be used to screen for drugs that could inhibit OS development. The inhibitory potential of SVA affecting the progression of OS for clinical assessment would certainly need further investigation that goes beyond the scope of this paper.

      • Are the data and the methods presented in such a way that they can be reproduced?

      See comments regarding cells used for injection and blinding. Need to more clearly describe the cells being injected and what was done to them from isolation to injection.

      Response: Thank you for this comment. In our revised version we will add clearly in the materials and methods section the protocol of cell isolation and injection, randomization of the mice selection for each group and number of mice in each group.

      • Are the experiments adequately replicated and statistical analysis adequate? Unclear if appropriate experiment completed in Fig 7F as no justification of different sample sizes is provided nor a statement reblinding/randomization.

      Response: Thank you for this point. In our revised version we will add clearly in the materials and methods section the randomization of the mice selection for each group and number of mice in each group.

      Minor comments:

      • Specific experimental issues that are easily addressable.

      The Osx1-Cre expresses a Cre:GFP fusion - the authors should correlate the GFP and tomato signal.

      Response: We thank the reviewer for this point. We shall perform validation analysis in our revised plan.

      Fig 2A- if 50% of the bone marrow is tdTom positive this is not evident in the image in Fig 1D. Quantify the images in Fig 1D. The tumor images in Fig 2C appear to have only sporadic tdTom positive cells - the authors should explain this further.

      Response: Thank you for this notion, Figure 2A represents BM collected from a tumor bearing mouse which has a higher percentage of tomato positive BM cells compared to tumor free mouse (Fig 1D). Fig 2C is updated

      Need statistics added to all GSEA plots.

      Response: Thank you for this comment, statistics will be added in our revised version.

      4C is very different than 2C - 4C is more consistent with the levels of tomato stated

      Response: Thank you for this notion, the images were updated in our revised version

      • Are prior studies referenced appropriately?

      This seems appropriate

      Response: Thank you for this comment.

      • Are the text and figures clear and accurate?

      Figures are not ideal and could be improved in terms of >clarity and text size

      Response: We apologize for the low quality. In our revised version, we shall provide an improved resolution and accuracy.

      Several sections of text are either contradictory or questionably accurate:

      page 3: Molecular studies of OS are significantly hindered by its genetic complexity and chromosomal instability, which precludes the identification of a single recurrent event associated with OS. Contrasts with the following text: Page 18 - p53 has been extensively shown to play a central role in OS development in both human and mouse models. The data from sequencing of human OS and mouse models and canine data all point to p53 loss as being a central event in OS.

      Response: We apologize for this inaccurate statement. In our revised paper, we revised this statement to reflect the common event of p53 deletion in OS and its significance in osteosarcomagenesis.

      Page 18: High genetic heterogeneity and chromosomal instability limit the early diagnosis of OS and lead to lung metastases and a worse prognosis. I don't understand this statement given that intratumor characteristics are not a determinant of early diagnosis - the patient being aware they have an issue and the clinical follow up determine the rate of diagnosis (and access to healthcare).

      Response: We shall revise this statement to reflect the genetic heterogeneity of OS tumors.

      Page 21: Consistent with their roles as tumor suppressor genes, the combined deletion of WWOX and p53 in Osx1-positive progenitor cells resulted in their transformation and growth advantage. Didn't the authors reach this conclusion from their previous work published in 2016? –

      Response: Thank you for this notion. In our previous paper, we provided evidence that WWOX and p53 loss contributes to more aggressive OS tumor formation. In the current study, we provide evidence about early events contributes to osteosarcomagenesis using our Wwox/p53 model.

      Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      improve figure clarity and text sizes

      Response: We thank the reviewer for this notion; in our revised version, we shall provide an improved resolution, accuracy and clarity.

      Reviewer #3 (Significance):

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      I think this is largely an incremental study which largely confirms previous studies.

      Response: Although our results are consistent with some previously noted observations, we clearly provide unforeseen evidence that links Wwox/p53 in early osteosarcomagenesis and suggest that p53 deletion alone is not enough at this stage; other hits are required as in Wwox/p53 or Rb/p53. The mechanism of how DKO cells (Wwox/p53) results in Myc upregulation is also novel and will be further tested in our revised submission.

      • Place the work in the context of the existing literature (provide references, where appropriate).

      The study is a modest advance over the existing literature.

      Response: We believe that with our revision plan, our paper will provide a significant advancement in the research in osteosarcomagenesis.

      • State what audience might be interested in and influenced by the reported findings.

      This would be relevant to basic sarcoma researchers.

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Generated multiple murine models of OS and characterized and applied them for biological understanding and preclinical studies.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary: The work describes analysis of an Osx1-Cre p53fl/fl Wwoxfl/fl mouse model compared to an Osx1-Cre p53fl/fl model. The authors have assessed the osteosarcoma inducing potential of cells within the bone marrow by including a tdTom reporter of Cre expression. The conclude that bone marrow mesenchymal cells can give rise to osteosarcoma when transplanted. Based on transcriptomics they contend that upregulation of Myc is important and its target MCM7 can be targeted with simvastatin.

      Major comments:

      • Are the key conclusions convincing?

      The authors can generate tumors in immunocompromised mice upon injecting cells derived from bone marrow flushed. This is not surprising given the data available now about expression of Osx1-Cre. The analysis of MSCs lacks detail and needs significant more improvement and assessment by FACS using the well-defined criteria for mesenchymal cells that have been developed.

      It is not clear to me from the available information if the authors have used bone marrow cells that were flushed and immediately transplanted or if all cells transplanted have been placed in culture first, adherent cells expanded in culture media favouring survival and proliferation of non-hematopoietic cells and then transplanted - this is important to clarify explicitly as it is important to the significance of the study. If these cells are all used after culture then the novelty of these studies are questionable as it was demonstrated previously that similar types of cells give rise to OS when transplanted (PMID: 18697945).<br /> - Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      I think overall the authors are appropriately cautious in interpretation. The points raised above regarding the nature of the cells would need clarification and then the claims reassessed however.

      Claims re "metastatic potential" should be significantly reconsidered - the authors present motility assays which should be referred to as motility assays. The injection of cells intravenously is a lodgement assay of cells in the venous circulation and does not equate to the process a cancer cell must undergo and survive to metastasise from a primary tumour in an immune competent environment. The claims around these assays should be significantly reconsidered.<br /> - Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      It is not explained or justified what the control cohort in Fig 7F is significantly smaller than the treated cohort. This will affect the statistical analysis and interpretation. There is no statement regarding blinding/randomisation (or not) in the in vivo simvastatin experiment - this needs to be added.

      The authors should include discussion that these are relatively long latency OS models compared to p53/pRb compound mutants and contrast with previous data from these models where in vitro cultured cells did give rise to OS in vivo after Cre treatment.<br /> - Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      If a patient could to be treated based on these data then the extra experiments to provide a robust preclinical dataset should be provided otherwise significant caution should be stated.<br /> - Are the data and the methods presented in such a way that they can be reproduced?

      See comments regarding cells used for injection and blinding.

      Need to more clearly describe the cells being injected and what was done to them from isolation to injection.<br /> - Are the experiments adequately replicated and statistical analysis adequate?

      Unclear if appropriate experiment completed in Fig 7F as no justification of different sample sizes is provided nor a statement re blinding/randomisation.

      Minor comments:

      • Specific experimental issues that are easily addressable.

      The Osx1-Cre expresses a Cre:GFP fusion - the authors should correlate the GFP and tomato signal.

      Fig 2A- if 50% of the bone marrow is tdTom positive this is not evident in the image in Fig 1D. Quantify the images in Fig 1D.

      The tumor images in Fig 2C appear to have only sporadic tdTom positive cells - the authors should explain this further.

      Need statistics added to all GSEA plots

      Panel 4C is very different than 2C - 4C is more consistent with the levels of tomato stated<br /> - Are prior studies referenced appropriately?

      This seems appropriate<br /> - Are the text and figures clear and accurate?

      Figures are not ideal and could be improved in terms of clarity and text sizes

      Several sections of text are either contradictory or questionably accurate:<br /> page 3: Molecular studies of OS are significantly hindered by its genetic complexity and chromosomal instability, which precludes the identification of a single recurrent event associated with OS.<br /> Contrasts with the following text:<br /> Page 18 - p53 has been extensively shown to play a central role in OS development in both human and mouse models.

      The data from sequencing of human OS and mouse models and canine data all point to p53 loss as being a central event in OS.

      Page 18: High genetic heterogeneity and chromosomal instability limit the early diagnosis of<br /> OS and lead to lung metastases and a worse prognosis.<br /> I don't understand this statement given that intratumor characteristics are not a determinant of early diagnosis - the patient being aware they have an issue and the clinical follow up determine the rate of diagnosis (and access to healthcare).

      Page 21: Consistent with their roles as tumor suppressor genes, the combined deletion of<br /> WWOX and p53 in Osx1-positive progenitor cells resulted in their transformation<br /> and growth advantage.

      Didn't the authors reach this conclusion from their previous work published in 2016?<br /> - Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      improve figure clarity and text sizes

      Significance

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      I think this is largely an incremental study which largely confirms previous studies.<br /> - Place the work in the context of the existing literature (provide references, where appropriate).

      The study is a modest advance over the existing literature.<br /> - State what audience might be interested in and influenced by the reported findings.

      This would be relevant to basic sarcoma researchers.<br /> - Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Generated multiple murine models of OS and characterized and applied them for biological understanding and preclinical studies.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In current study, the authors established a mouse model with tdTomato expression under the OSX-controlled double deletions of Wwox and Trp53. Such mouse strain gives a great platform to study the OS development and therapeutic potential. Experiments are clear and convincing. Results are well presented.

      To better improve this study, few minor suggestions regarding the data are as following,

      1. Some of the legends on figures are too small to read, or in low quality. please change these labels.
      2. For Figure 7C and D, from 7C, The control WT BM showed clear resistance to the SVA treatment, but in 7D, there is almost no cells in the WT BM group. Data of this group might be missed?
      3. For figure 7G, the difference among MCM7 IHC staining of two groups didn't show as much as the statistic analysis in the right panel. Authors may consider using MCM7 western blot to check its levels after SVA treat.

      Significance

      This study use a transgenic mouse model with tdTomato expressed in combination of loss of p53 and Wwox under the OSX lineage to study early initiation of OS. They found only DKO bone marrow cells can form OS in a subsequent orthotopic mouse model, but not the p53 single KO cells. After compare the RNA-seq from these different cell population, they identified the Myc pathway is the key player to promote OS development, especially the MCM7. Moreover, they tested SVA in treating these BM cells and reveal a therapeutic potential.

      This animal model is a good platform to study OS, especially at the early stage. Most results are clear and convincing. With the identification of Myc pathway, they further tested the SVA effects on treating these DKO BM. This is an important study and provided meaningful information to the OS, even broad cancer research community. However, the significance, or novelty of this work is not sufficient.

      For instance, SKO BM won't form tumor in the IT injection assays compare to the DKO BM groups, therefore, the involvement of Wwox during the OS tumorigenesis is clear. However, authors didn't explore any potential mechanisms of Wwox function or related signaling behind this observation. And the RNA-seq analysis mostly focus on c-Myc pathway and its downstream targets. Given the well known relationship of p53, c-myc even RB in the OS, it will be more interesting and attractive to see a clear mechanisms of Wwox in this context.

      Second, since authors took effort to generate this Tomato-DKO mice, it could be more clear if they isolate tdTomato positive cells instead of a mixture of BM, culture them, differentiate them, and perform more assays using these cells. In this way, it will give better clean background for all assays, and may be able to find novel effectors during this OS progression process.

      Third, within the text, authors tried to use OB differentiation and some other assays to discuss the OS origin cells, MSC or OB; but didn't get a preferred conclusion. It could be possible to better understand this process with the single cell RNA-seq using these BM from different mice or at different ages.

      In general, this is a clean, straightforward study, and they established a very useful model to study OS. But the mechanisms merit is somewhere short.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The study "Mesenchymal stem cell models reveal critical role of Myc as early molecular event in osteosarcomagenesis" by Akkawi et al shows that BM-MSCs are a foundational tool for study of osteosarcoma. And authors identified Myc and its targets as early molecular events in osteosarcoma formation, using BM-MSCs knocked out of both p53 and Wwox. Although the quality and validity of the data presented in this manuscript are not in question, this reviewer has doubts about the novelty of the findings in this current version of manuscript. It does not clearly indicate what is different from previous findings, such as;

      1. It has already been reported that p53-/- BM-MSCs are the cells of origin in osteosarcoma development (ref.19).
      2. Indispensability of Myc in osteosarcomagenesis was revealed (PMID: 12098700).
      3. Osteosarcoma formation of p53flox-OsxCre mice was rescued by Myc-depletion and BM-MSCs from p53flox-OsxCre was shown to upregulate Myc (PMID: 34803166).<br /> First of all, the authors need to cite the above papers and compare their findings with them to better clarify the value of their findings.

      The only one clear finding would be that Wwox functions as a tumor suppressor by repressing Myc function in the absence of p53, but unfortunately, no data have been presented on the mechanism. Some additional analysis would be needed to mention it. In the first place, Myc is upregulated in the absence of both p53 and Wwox, compared in only p53-null situation? Western blotting would be better to show it.

      1. In Figure 1D, should separate each panel so that it is clearly visible. What is the blue-colored fluorescence, DAPI? If so, why don't tdTomoto positive cells overlap with blue (Figs, 1D, 2C, 4C, 4E?
      2. Why was MCM7 chosen among the Myc targets (S Figure 3)? What is the rationale for this?
      3. In Figure 5 legend, what does "yBM cells (1.5, 4-months)(n=6)" mean? yBM cells (1.5-months)(n=3) and yBM cells (4-months)(n=3)?
      4. In Figure 7B, is there a correlation between MCM7 and Myc protein expression levels? Also, do MCM7 and Myc immunopositivites overlap in Figure 7G?
      5. In S Figure 4C, what is 'PC'? What sample was loaded?
      6. In S Figure 2A, what does 'US' (BM-US) mean? In S Figure 4F, what does 'US' and 'S' (Direct US and Direct S) mean?
      7. Overall this manuscript, there are too many symbols and it is cumbersome. Ex, in S Figure 3, yBM_DKO, Tum_DKO, DKOT, DKO-BMT, etc. All figures should be consistent with the same notation.

      Significance

      Although the quality and validity of the data presented in this manuscript are not in question, this reviewer has doubts about the novelty of the findings in this current version of manuscript. It does not clearly indicate what is different from previous findings, such as;

      1. It has already been reported that p53-/- BM-MSCs are the cells of origin in osteosarcoma development (ref.19).
      2. Indispensability of Myc in osteosarcomagenesis was revealed (PMID: 12098700).
      3. Osteosarcoma formation of p53flox-OsxCre mice was rescued by Myc-depletion and BM-MSCs from p53flox-OsxCre was shown to upregulate Myc (PMID: 34803166).<br /> First of all, the authors need to cite the above papers and compare their findings with them to better clarify the value of their findings.<br /> The only one clear finding would be that Wwox functions as a tumor suppressor by repressing Myc function in the absence of p53, but unfortunately, no data have been presented on the mechanism.
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      Summary:<br /> Plasmodium sporozoites rely on gliding motility to invade the salivary glands of the mosquito vector where they reside until being inoculated into the vertebrate host. Once in the vertebrate host, sporozoites again have to glide to pass through liver cells and reach the final host cell before exo-erythrocytic replication occurs. In sporozoites, thrombospondin-related anonymous protein (TRAP) is the key adhesin, linking the molecular motor to the substrate. TRAP and TRAP-like proteins contain on the extracellular side an inserted (I) domain that is responsible for substrate binding. The I domain can be in an open or closed state which can be fixed by mutating specific amino acids. Braumann et al. then assessed the effect of these states on gliding motility and infection. Whilst no effect was seen for both mutants with closed or open states until the production of haemolymph sporozoites, the number of salivary gland sporozoites were highly reduced in both mutants. The closed mutant was not able to be transmitted from mosquitoes to mice whilst the open mutant is severely impacted in transmission. Gliding of both mutant is highly impaired. Some of these phenotypes could be reverse by adding a reducing agent.

      Major comments:<br /> This is an elegant study with exhaustive experiments to address the research questions. One of the things I wondered about is the effect of exchanging amino acids. As far as I understood, structural information of integrins from other organisms informed the authors about positions that should be mutated and about the impact (or loss of it) on the 3D structure of the domain. Would it not be useful to run a structure prediction programme such as Alphafold on all the mutants to at least confirm stability of the domain structure upon mutation in silico?_

      A: Thanks for this suggestion, we added the crystal structure models of P. falciparum and P. vivax as well as the Alphafold models of the open and closed state of P. berghei TRAP as new panels in Figure 1, added some corresponding text to the results, materials and methods, and the figure legend.

      Some of the concentrations of reducing agents tested are very high. Can the authors be sure that the parasites are not dead?

      A: We used sporozoites expressing GFP in the cytosol and did not see loss of fluorescence. While this does not rule out that the parasites are not alive anymore, it shows that the plasma membrane was not compromised. Importantly, when using the more moderate concentrations that rescued motility, wild type parasites were also moving, showing that the parasites were alive.

      Minor comments:<br /> -Please make sure that punctuation is correct (e.g. missing commas) and that there are no other typing errors.

      A: We carefully read and edited the manuscript again and hopefully corrected all those errors.

      • Line 50: This sentence may imply mechanical rupture of oocysts rather than active egress of the sporozoite. Please re-phrase.

      A: rephrased, it now reads “egress” instead of “burst”. (now line 53)

      • Line 82: Do you mean a complexed Mg2+ ion?

      A: Yes, this sentence was revised. (now line 99)

      • The introduction stops rather abruptly. Maybe a sentence of the significance of this study could be added.

      A: we added the following: “Our results suggest that active change between the open and closed conformation of the TRAP I domain is essential for sporozoite invasion of salivary glands and transmission from mosquitoes to mammals.” (line 122-125).

      • Line 361: 20 million parasites each? Please re-phrase to make it clearer.

      A: done, it now reads: “…into each of two naïve mice…”.(now line 517)

      • Line 363: Field of view needs to defined: What is the magnification used to observe exflagellation?

      A: done, it now reads: “as observed with a Zeiss Axiostar using a 100x objective lens – revealing 300-400 red blood cells per field of view) – now line 519-521.”

      • Materials and Methods: Please write out reagent names for the first time.

      A: done, e.g. “phosphate buffered saline” for PBS; line 540; Roswell Park Memorial Institute medium 1640 for RPMI; line 420; as well as for DTT and TCEP (lines 560, 561), BSA (line 565), etc

      Figures:<br /> - Figure 1A is very small. The label font of the whole figure 1 is often too small.

      A: We intentionally kept Figure 1A small as most readers will be familiar with the life cycle but increased font size as much as possible throughout the figure including Figure 1B, which we needed to shrink in the new design to accommodate the Alphafold structures.

      • Figure 1D: Please list the components in the figure legend, e.g. blue: substrate etc.

      A: done, now lines 722-725

      • Figure 3: The figure title should be changed as there is no complete failure of sporozoites with fixed I-domains to invade salivary glands.

      A: done, it now reads: “…show strong reduction in salivary gland invasion”, line 790-791

      • Figure 5: for clarity, it would be easier if Figure C would not be squeezed into the legends of A and B.

      A: We agree this is a tricky arrangement, but when composing the figure, we tried many different ways, which were all unsatisfactory too, leading to either too awkward an arrangement or too much white between the panels. We hence, despite anticipating this critique, decided on this arrangement and would hence like to keep it. However, we changed the color of the box around C so that it is marked more differently.

      Reviewer #1 (Significance):

      This study addresses in detail the mechanism of Plasmodium TRAP I domain in gliding motility and transmission. It builds on work from many years and groups including their own and contributes to deepen our understanding of TRAP-family proteins, gliding motility in Plasmodium sporozoites and maybe even in other Plasmodium stages or other Apicomplexan parasites.

      This work is of interest to researchers in the field of Plasmodium mosquito stages and transmission as well as scientist who work on apicomplexan gliding motility and transmission.

      I have previously worked on Plasmodium mosquito stages, but currently work on Toxoplasma_ gondii.

      A: Thank you for your appreciation of our study, the mechanistic insights it gives into gliding and transmission, and the helpful critique.

      Reviewer #2 (Evidence, reproducibility and clarity):

      This work seeks to investigate the effects on sporozoite motility of hypothesized conformational changes in TRAP's integrin domain. Previous structural studies suggested that the Integrin-like domain of TRAP assumes 'open' and 'closed' conformations induced by ligand binding. Here the authors hypothesize that TRAP's ability to dynamically switch between these states is crucial for sporozoite motility. The hypothesis is interesting and the authors elected to test it by 'fixing' TRAP in constitutively 'open' and 'closed' conformations by introducing Cys residues that are presumed to form disulphide bonds resulting in these states.

      Major Comments<br /> The approach is creative. The data that are presented are of high quality with adequate reproducibility. However, as written the manuscript does not provide a rationale for the specific substitutions they chose, how these substitutions are expected to lead to 'open' and 'closed' states, and how they mimic the natural route of TRAP transitioning between the 'open' and 'closed' conformations._

      A: We now add a more detailed rationale at the very start of the results section, which now reads: “We used closed and open structures of TRAP from P. falciparum and P. vivax, respectively (Song et al., 2012), to design cysteine mutations in P. berghei (Fig. 1E-J). The TRAP I domain of P. berghei is 42 and 48% identical in sequence to those of P. vivax and P. falciparum, respectively; lower identity was used for successful introduction of a disulfide into integrin αI domains (Shimaoka et al., 2001; Shimaoka et al., 2003). Between the open and closed TRAP I domain conformations, the I domain α7-helix pistons 9 Å relative to the neighboring β6-strand; therefore, disulfides introduced between these two structural elements can stabilize one state over the other, as previously pioneered in integrin I domains. β6-strand and α7-helix residues with Cβ atoms within 5 Å of one another in structures of the two states were chosen for mutation to cysteine (Fig. 1G&H). P. falciparum TRAP-Fc fusions with homologous cysteine mutations were well expressed in mammalian cells (Koksal et al,, 2013). Using the TRAP sequence alignment (Fig. 1F), homologous residues in P. berghei TRAP were mutated to cysteine to stabilize the closed conformation (Ser-210 and Phe-224 in the S210C/F224C mutation) and the open conformation (Ser-210 and Gln-216 in the S210C/Q216C mutation). AlphaFold (Mirdita et al 2022) predicted that the P. berghei TRAP I domains were well folded and assumed the desired conformations with formation of the mutationally introduced disulfide bonds (Fig. 1I&J). The I domain of P. berghei is 42 and 48% identical in sequence to those of P. vivax and P. falciparum in which the open and closed conformations are defined, assuring highly confident modeling (Song et al., 2012). Cysteines were substituted in positions that were sufficiently close in one conformation to form a disulfide but not in the alternative conformation..” lines 130-202 and also provided a detailed view of the structures in Figure 1.

      Furthermore, there is no biochemical, biophysical or modeling data demonstrating that the introduced mutations impact the folding/unfolding of TRAP's I domain in the manner hypothesized. Therefore, it is difficult to interpret subsequent phenotypic data from the two mutant lines. While mutant parasites display defects in gliding motility, these defects are unexpected, perhaps pointing to alternative explanations - such as aberrant inter- or intra-molecular disulphide bonding in TRAP's extracellular domain.

      A: The ability of such mutations to give biologically meaningful results has already been demonstrated in integrin I domains, where ligand-binding affinity was measured. We now describe the rationale in more detail, and demonstrate that the cysteines are recognized by Alphafold to yield well-folded domains that are stabilized in the desired conformations. These are presented as new panels in Figure 1.

      About 10% of mutant sporozoites assumed to be in a constitutively 'closed' conformation display gliding motility and they move faster that WT. Yet this mutant did not cause patency in mice when introduced either via mosquito bite or IV injection. In contrast, the mutant assumed to be in an 'open' conformation displayed no motility in vitro but was able to infect mice (albeit at a significantly reduced rate compared to controls). Presumably, these data suggest that the in vitro gliding motility assays used are insufficient for testing the effect of these mutations on motility that is relevant in vivo. The model is that TRAP's interaction with extracellular ligands stabilizes its 'open' position. This suggests that motility assays conducted with extracellular matrix eg Matrigel are a more appropriate test of motility.

      A: The reviewer raises interesting points. There are several types of sporozoite motility assays available, 2D on glass, 2D on ligands (e.g. Matrigel), 3D in polyacrylamide gels or Matrigel, and 3D in the skin. All of these have a number of advantages and disadvantages. 2D on glass is clearly the easiest, 3D in skin, clearly the most complex one. The advantage of the 2D on glass assay is that it reveals even tiny defects on motility that cannot be revealed in 3D assays as the enclosure of the parasite in a 3D matrix compensates for several defects, especially those in adhesion that are most relevant for our study here (see also e.g. Bane et al. Plos Path 2016, Ripp et al., EMBO Mol Med 2021). Hence, we believe that for understanding the role of adhesion in motility the 2D assay is highly valuable because it represents a minimal system. In contrast, the complex 3D environments, are closer to the natural situation but are less useful in our specific case. The fact that the mutants are severely limited in vivo (in the mosquito where they are blocked at the 2D surface of the salivary gland) suggests that the assays are highly relevant. We take this comment as a motivation to write a review/opinion like paper in the near future but feel it would distract if added here to e.g. the discussion.

      Experiments with DTT are difficult to interpret since there is once again no biochemical evidence that this treatment leads to a change in conformation of TRAP. DTT's effect on motility of the mutant could be non-specific. Overall, conclusions that are presented need to be supported by more data.

      A: We are aware of this and hence already discussed these potential shortcomings of our study in the discussion. Importantly: there is no known specific ligand to the TRAP I domain. Hence, we believe that biochemical tests would not justify the effort it would take to express the different domains.

      Reviewer #2 (Significance):

      Sporozoite motility is a prerequisite for infection by Plasmodium of the liver. A better mechanistic understanding of this process is significant for our understanding of the first step of malaria infection. TRAP is the major adhesin on the sporozoite surface and its loss abrogates sporozoite motility. The authors are to be commended for undertaking a challenging study.

      A: We thank the reviewer for appreciating our efforts, the advance provided, and for the constructive critique.

      Reviewer #3 (Evidence, reproducibility and clarity):

      This paper builds on previous structural studies from the Springer lab, which show that the I-domain of the malaria sporozoite surface protein TRAP can switch between two conformations ("open" and "closed"), similar to what happens with the I domain of integrins. In the current study the authors explore whether the open and closed conformations of TRAP are important for sporozoite migration and infectivity by generating parasites expressing each form locked in place using introduced disulfides. Locking TRAP into either form inhibits sporozoite gliding, invasion of the mosquito salivary glands and transmission from mosquito to mouse. The addition of low levels of a reducing agent can partially rescue these effects with the open form, which the authors suggest points to a requirement for TRAP to undergo a switch between its open and closed states to support these key processes in the parasite's life cycle.

      The paper is well written and the data and methods are clearly presented.

      Major Comments:

      Lines 109-115: The entire paper relies on the premise that the introduced disulfides lock the I domain of TRAP in either the open or closed conformation. In the absence of experimental proof that this is the case, it would be helpful to the reader to have more detail on how this can be confidently inferred from the previous work on integrins -- perhaps as a supplementary figure._

      A: We now added a statement on how the positions for the cysteines were selected and also a figure on structures and Alphafold prediction as also suggested by reviewers 1 and 2 as panels in Figure 1.

      The partial rescue of motility in the S210C/Q216C parasites by 50-100mM DTT is a VERY indirect approach to testing whether the conformational switch between the open and closed states is functionally important. The authors are appropriately reserved in their conclusions, but wildtype parasites are ultimately a better (less confounded) comparator; the authors may want to stress this more._

      A: Thanks for appreciating our efforts to navigate the limitations of our experimental system. We have changed our wording (e.g. replaced “fixed state” with “stabilized state” in the discussion) and added cautionary statements, which now read “While DTT clearly does not only act on TRAP, these data nevertheless suggest that…” (lines 353-354); “While not providing final proof, this phenotype indicates…” (lines 371); “…antibodies that stabilize… could contribute to stopping parasite migration” (line 415)

      The implications of the current results for the authors' previous stick-and-slip model of sporozoite motility should be discussed.

      A: We added a few sentences including two references on this in the discussion: “Sporozoites glide in a stick-slip fashion…” (lines 417-422)

      Minor Comments:

      The authors are experienced in the use reflection interference contrast microscopy to visualize attachment of the parasite to the substrate. Did they do any RICM on the mutants? Although not necessary for the paper, this would be a good way to support the interpretation of some of their results (eg, lines 185-190)._

      A: We indeed hoped that the mutants would allow us to exploit these techniques as this would give much insight into the mode of migration. However, all our previous work on RICM was done with salivary gland derived sporozoites, which are robustly gliding. In contrast, those derived from the hemolymph or oocysts do not glide very well. While we can quantitatively image them at low magnification (large field of view) settings, we have consistently failed to get sufficient data on most of our advanced assays that require single sporozoite imaging such as RICM, TIRFM, and laser tweezer experiments. This, unfortunately, is a real limitation of the system as most interesting mutants (see also e.g. recent paper by Yee et al., Plos Pathogens 2022) are not entering the salivary glands.

      Line 127: Figure 2A does not show "no growth difference to wild type mice"

      A: we split the sentence in two with Figure 2A now only referring to mosquito infections (now line 212)

      Line 154: "higher, but not significantly higher" - if the data don't meet the significance threshold being used, they cannot be called higher

      A: Yes, the thing here is that we always got more from the open mutant and hence could do experiments but indeed the stats showed it not to be significant. We changed the sentence to read “…was not significantly higher…” (line 242)

      Line 186: "showed nearly no floating parasites compared to the controls S210C and cFluo" - cFluo and S210C/Q216C show the same amount of floaters in Fig 5B. Also, S210C/Q216C HLS show similar levels of floaters to both controls in 2A.

      A: Thanks for spotting this mixup, we changed it to: “Interestingly, hemolymph sporozoites expressing the closed I domain (S210CF224C) showed more floating parasites suggesting reduced adhesion. Intriguingly, the few moving sporozoites of this mutant were also significantly faster than the corresponding controls.” (lines 296-299). We also pick up on this observation in the discussion in the new paragraph on stick-slip motility, lines 414-422) which links back to the Munter et al paper cited in line 303. This is in line with observations in mammalian cells where reduced ligand density also leads to less adhesion and faster migration.

      Fig S2 defines unproductive gliding to include waving, but Figs. 5 and S3 scores waving as a separate category

      A: We define it as unproductive motility, which we now changed into “unproductive movement” in the hope to be less misleading, clearly “lazy gliding” is motility while waving is no motility but some type of movement.

      Fig S3B and Fig 5D,E appear to be the same data presented twice

      A: Correct, we now state this explicitly in the figure legend to Figure S3B (lines 958-960) where they are reproduced together with the matching controls

      Line 304: "the inability of sporozoites with the TRAP I domain to migrate" (?)

      A: “conformationally stabilized” was missing and has now been included (line 453)

      Line 226: please explain what the + > ++++ qualitative descriptors signify in the tables and how they were scored

      A: Now added in the legends to the table, lines 885-887 and 892, respectively.

      Lines 282, 312: the authors should mention here the extensive work that has been done on efficacy of viral vaccines directed against a particular conformational state of the immunogen

      A: We were naturally tempted to do this but feel that this could hype the study more than is justified by our data.

      Fig 2B: The labels above the lanes are incomplete and therefore confusing; suggest sticking to the same nomenclature as in 2A

      A: Modified as suggested

      Typographical errors on lines: 58 (space missing), 80-81 (parentheses), 155 (Figure misspelled), 188 (expressing the closed (S210C/F224C)), 306 (comma after both)

      A: Thanks, these were corrected.

      CROSS-CONSULTATION COMMENTS<br /> Since all three reviewers questioned whether the introduced disulfides would have the assumed effects on I domain structure, the authors should provide a stronger rationale for this assumption or -- as suggested by reviewer 2 -- some actual data to support it. Reviewer 2's comment about the extracellular ligands available for the parasite to bind to in the gliding assay and whether this could influence the outcome (and relevance to what occurs in vivo) also deserves consideration.

      A: We have now added Alphafold predictions of the mutants (Figure 1) and also described better how we selected the mutations based on extensive work by the Springer lab (see newly added lines 130-202). We appreciate the idea of using extracellular ligands, however, all our previous assays (e.g. Klug et al. eLife 2020 and Perschmann et al., Nano Letter 2011) suggest that the parasites move on a large variety of surfaces at the same rate.

      Reviewer #3 (Significance):

      This is an elegant study that contributes important new information to our understanding of apicomplexan parasite motility and the function of the TRAP protein. The results will be of significant interest to those who study parasite motility, and likely also to those who study the role of integrins in cellular adhesion and signaling. The data nicely connect what was previously known about conformational changes in integrins with parasite adhesion to the substrate and motility.

      I have expertise in the area of parasite motility._

      A: We thank the reviewer for the constructive comments and appreciation of our work

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This paper builds on previous structural studies from the Springer lab, which show that the I-domain of the malaria sporozoite surface protein TRAP can switch between two conformations ("open" and "closed"), similar to what happens with the I domain of integrins. In the current study the authors explore whether the open and closed conformations of TRAP are important for sporozoite migration and infectivity by generating parasites expressing each form locked in place using introduced disulfides. Locking TRAP into either form inhibits sporozoite gliding, invasion of the mosquito salivary glands and transmission from mosquito to mouse. The addition of low levels of a reducing agent can partially rescue these effects with the open form, which the authors suggest points to a requirement for TRAP to undergo a switch between its open and closed states to support these key processes in the parasite's life cycle.

      The paper is well written and the data and methods are clearly presented.

      Major Comments:

      Lines 109-115: The entire paper relies on the premise that the introduced disulfides lock the I domain of TRAP in either the open or closed conformation. In the absence of experimental proof that this is the case, it would be helpful to the reader to have more detail on how this can be confidently inferred from the previous work on integrins -- perhaps as a supplementary figure.

      The partial rescue of motility in the S210C/Q216C parasites by 50-100mM DTT is a VERY indirect approach to testing whether the conformational switch between the open and closed states is functionally important. The authors are appropriately reserved in their conclusions, but wildtype parasites are ultimately a better (less confounded) comparator; the authors may want to stress this more.

      The implications of the current results for the authors' previous stick-and-slip model of sporozoite motility should be discussed.

      Minor Comments:

      The authors are experienced in the use reflection interference contrast microscopy to visualize attachment of the parasite to the substrate. Did they do any RICM on the mutants? Although not necessary for the paper, this would be a good way to support the interpretation of some of their results (eg, lines 185-190).

      Line 127: Figure 2A does not show "no growth difference to wild type mice"

      Line 154: "higher, but not significantly higher" - if the data don't meet the significance threshold being used, they cannot be called higher

      Line 186: "showed nearly no floating parasites compared to the controls S210C and cFluo" - cFluo and S210C/Q216C show the same amount of floaters in Fig 5B. Also, S210C/Q216C HLS show similar levels of floaters to both controls in 2A.

      Fig S2 defines unproductive gliding to include waving, but Figs. 5 and S3 scores waving as a separate category

      Fig S3B and Fig 5D,E appear to be the same data presented twice

      Line 304: "the inability of sporozoites with the TRAP I domain to migrate" (?)

      Line 226: please explain what the + > ++++ qualitative descriptors signify in the tables and how they were scored

      Lines 282, 312: the authors should mention here the extensive work that has been done on efficacy of viral vaccines directed against a particular conformational state of the immunogen

      Fig 2B: The labels above the lanes are incomplete and therefore confusing; suggest sticking to the same nomenclature as in 2A

      Typographical errors on lines: 58 (space missing), 80-81 (parentheses), 155 (Figure misspelled), 188 (expressing the closed (S210C/F224C)), 306 (comma after both)

      Referees cross-commenting

      Since all three reviewers questioned whether the introduced disulfides would have the assumed effects on I domain structure, the authors should provide a stronger rationale for this assumption or -- as suggested by reviewer 2 -- some actual data to support it. Reviewer 2's comment about the extracellular ligands available for the parasite to bind to in the gliding assay and whether this could influence the outcome (and relevance to what occurs in vivo) also deserves consideration.

      Significance

      This is an elegant study that contributes important new information to our understanding of apicomplexan parasite motility and the function of the TRAP protein. The results will be of significant interest to those who study parasite motility, and likely also to those who study the role of integrins in cellular adhesion and signaling. The data nicely connect what was previously known about conformational changes in integrins with parasite adhesion to the substrate and motility.

      I have expertise in the area of parasite motility.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      This work seeks to investigate the effects on sporozoite motility of hypothesized conformational changes in TRAP's integrin domain. Previous structural studies suggested that the Integrin-like domain of TRAP assumes 'open' and 'closed' conformations induced by ligand binding. Here the authors hypothesize that TRAP's ability to dynamically switch between these states is crucial for sporozoite motility. The hypothesis is interesting and the authors elected to test it by 'fixing' TRAP in constitutively 'open' and 'closed' conformations by introducing Cys residues that are presumed to form disulphide bonds resulting in these states.

      Major Comments

      The approach is creative. The data that are presented are of high quality with adequate reproducibility. However, as written the manuscript does not provide a rationale for the specific substitutions they chose, how these substitutions are expected to lead to 'open' and 'closed' states, and how they mimic the natural route of TRAP transitioning between the 'open' and 'closed' conformations.

      Furthermore, there is no biochemical, biophysical or modeling data demonstrating that the introduced mutations impact the folding/unfolding of TRAP's I domain in the manner hypothesized. Therefore, it is difficult to interpret subsequent phenotypic data from the two mutant lines. While mutant parasites display defects in gliding motility, these defects are unexpected, perhaps pointing to alternative explanations - such as aberrant inter- or intra-molecular disulphide bonding in TRAP's extracellular domain.

      About 10% of mutant sporozoites assumed to be in a constitutively 'closed' conformation display gliding motility and they move faster that WT. Yet this mutant did not cause patency in mice when introduced either via mosquito bite or IV injection. In contrast, the mutant assumed to be in an 'open' conformation displayed no motility in vitro but was able to infect mice (albeit at significantly reduced compared to controls). Presumably these data suggest that the in vitro gliding motility assays used are insufficient for testing the effect of these mutations on motility that is relevant in vivo. The model is that TRAP's interaction with extracellular ligands stabilizes its 'open' position. This suggests that motility assays conducted with extracellular matrix eg Matrigel are a more appropriate test of motility.

      Experiments with DTT are difficult to interpret since there is once again no biochemical evidence that this treatment leads to a change in conformation of TRAP. DTT's effect on motility of the mutant could be non-specific. Overall, conclusions that are presented need to be supported by more data.

      Significance

      Sporozoite motility is a prerequisite for infection by Plasmodium of the liver. A better mechanistic understanding of this process is significant for our understanding of the first step of malaria infection. TRAP is the major adhesin on the sporozoite surface and its loss abrogates sporozoite motility. The authors are to be commended for undertaking a challenging study.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      Plasmodium sporozoites rely on gliding motility to invade the salivary glands of the mosquito vector where they reside until being inoculated into the vertebrate host. Once in the vertebrate host, sporozoites again have to glide to pass through liver cells and reach the final host cell before exo-erythrocytic replication occurs. In sporozoites, thrombospondin-related anonymous protein (TRAP) is the key adhesin, linking the molecular motor to the substrate. TRAP and TRAP-like proteins contain on the extracellular side an inserted (I) domain that is responsible for substrate binding. The I domain can be in an open or closed state which can be fixed by mutating specific amino acids. Baumann et al. then assessed the effect of these states on gliding motility and infection. Whilst no effect was seen for both mutants with closed or open states until the production of haemolymph sporozoites, the number of salivary gland sporozoites were highly reduced in both mutants. The closed mutant was not able to be transmitted from mosquitoes to mice whilst the open mutant is severely impacted in transmission. Gliding of both mutant is highly impaired. Some of these phenotypes could be reverse by adding a reducing agent.

      Major comments:

      This is an elegant study with exhaustive experiments to address the research questions. One of the things I wondered about is the effect of exchanging amino acids. As far as I understood, structural information of integrins from other organisms informed the authors about positions that should be mutated and about the impact (or loss of it) on the 3D structure of the domain. Would it not be useful to run a structure prediction programme such as Alphafold on all the mutants to at least confirm stability of the domain structure upon mutation in silico?

      Some of the concentrations of reducing agents tested are very high. Can the authors be sure that the parasites are not dead?

      Minor comments:

      • Please make sure that punctuation is correct (e.g. missing commas) and that there are no other typing errors.
      • Line 50: This sentence may imply mechanical rupture of oocysts rather than active egress of the sporozoite. Please re-phrase.
      • Line 82: Do you mean a complexed Mg2+ ion?
      • The introduction stops rather abruptly. Maybe a sentence of the significance of this study could be added.
      • Line 361: 20 million parasites each? Please re-phrase to make it clearer.
      • Line 363: Field of view needs to defined: What is the magnification used to observe exflagellation?
      • Materials and Methods: Please write out reagent names for the first time.

      Figures:

      • Figure 1A is very small. The label font of the whole figure 1 is often too small.
      • Figure 1D: Please list the components in the figure legend, e.g. blue: substrate etc.
      • Figure 3: The figure title should be changed as there is no complete failure of sporozoites with fixed I-domains to invade salivary glands.
      • Figure 5: for clarity, it would be easier if Figure C would not be squeezed into the legends of A and B.

      Significance

      This study addresses in detail the mechanism of Plasmodium TRAP I domain in gliding motility and transmission. It builds on work from many years and groups including their own and contributes to deepen our understanding of TRAP-family proteins, gliding motility in Plasmodium sporozoites and maybe even in other Plasmodium stages or other Apicomplexan parasites.

      This work is of interest to researchers in the field of Plasmodium mosquito stages and transmission as well as scientist who work on apicomplexan gliding motility and transmission.

      I have previously worked on Plasmodium mosquito stages, but currently work on Toxoplasma gondii.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The Kim et al. paper titled "PRMT5 links lipid metabolism to contractile function of skeletal muscles" reports how the arginine methyltransferase PRMT5 affects lipid metabolism in myofibers by stabilizing the mSREBP1 protein and repressing the expression of the PNPLA2 gene. The genetic deletion of PRMT5 in muscle results in the loss of lipid droplets in myofibers and a loss in muscle strength. Additionally, there is a change in muscle fiber types, moving from an oxidative state to a more glycolytic one. While the authors present compelling data on PRMT5's role in muscle metabolism, there are some concerns on the mouse model used and the sequencing data.

      Major concerns:

      1. The mouse model used in this study is PRMT5fl/fl , Myl1cre in order to genetically delete PRMT5 in skeletal muscle. While there is no issue with the KO mice, the WT mice are PRMT5fl/fl , Myl1+ which is not an acceptable control. It is known that Cre itself can have a phenotype, and additionally Myl1 is very highly expressed. Thereby, there is a large amount of Cre in the KO mice, but none in the WT which may contribute to the differences seen between WT and KO mice. The appropriate WT control is PRMT5+/+ Myl1cre and the experiments would need to be repeated using this mouse genotype as the WT.

      2. We appreciated the comment and have analyzed many mice from the various control groups (WT, Myl1Cre, Prmt5f/f, and Myl1Cre/Prmt5f/+). Long story short, we have maintained and used Myl1Cre for multiple projects and in several previous publications (PMID: 25794679; PMID: 27644105), and never observed a phenotype of the Myl1Cre In the current study during the development of the Myl1Cre-Prmt5KO mouse model, we had to first breed Myl1Cre with Prmt5f/f to generate the Myl1Cre/Prmt5f/+ mice, and then breed Myl1Cre/Prmt5f/+ with Prmt5f/fmice to generate the Myl1Cre/Prmt5f/f mice. During the breeding we had generated many Myl1Cre/Prmt5f/+ mice (at least 10). We only observed phenotypes in the Myl1Cre/Prmt5f/f mice but not in the Myl1Cre/Prmt5f/+ (heterozygous KO) mice. In line with our observation, no phenotypes were described in the original report on the generation of the Myl1Cre mice by Steve J. Burden and his colleagues (Bothe, Genesis, 2000, PMID: 10686620). Also, in consistent to our choice of the floxed mice as control, Pereira et al (EMBO Molecular Medicine, 2020, PMC7005622 ) used the Ndufsf/+/Myl1Cre-/- or Ndufsf/f/Myl1Cre-/- as control for their Ndufs3f/f/Myl1Cre+/- KO mice.

      3. Given the situation, we trust that the reviewer will agree that the Prmt5f/f mice are appropriate controls and repeating all the experiments with a new control model will not only require years of work but also violate IACUC’s and NIH’s 3R policy in reducing unnecessary use of animals. We added a sentence to state that the Prmt5f/f are phenotypically identical to Myl1Cre/Prmt5f/+ mice in the revised manuscript.

      In the scRNA-Seq the authors claim that PRMT5 is not expressed in quiescent muscle stem cells. However, the data set that is used only has approximately 250 muscle stem cells, which would not provide much coverage. It would be necessary to validate this claim by using other data sets, such as Tabula Muris or publicly available bulk RNA-Seq.

      • As suggested, we queried Tabula Muris on Prmt5 expression in skeletal muscles based on scRNA-seq. The results showed that Prmt5 is expressed at very low levels in various mononuclear cell populations in the skeletal muscle. Specifically, only 8% of satellite cells had detectable levels of Prmt5, while 92% satellite cells had no detectable levels of Prmt5 (Table 1). We included the results in the revised Supplemental Table S1.

      The ChIP-Seq data shown was performed on 3T3-L1 cells and is not appropriate for a muscle paper. The ChIP-Seq must be performed on muscle cells in order to confirm their conclusion.

      • We trust that the reviewer understand that ChIP-seq only represents a discovery tool that needs to be experimentally validated. Although the ChIP-Seq data and identification of the PRMT5 binding peak at the Pnpla2 gene was based on 3T3-L1 cells, we have validated enrichment of PRMT5 on the potential binding region through ChIP-qPCR experiments. Repeating the ChIP-seq on muscle cells will not add additional support to the conclusion.

      The authors claim that loss of PRMT5 leads to a gradual loss of muscle fiber size but has no effect on myogenesis. The evidence to support that claim is shallow, being based solely on CSA and total number of myofibers, along with a loss of lean body mass. To confirm this statement, it would be best to quantify the CSA and # of myofibers in EDL and TA at P7 and P21. Further, a regeneration assay would also demonstrate if myogenesis is compromised or not.

      • Thank you for this suggestion. As Myl1Cre is only expressed in post-differentiation myocytes and myofibers (Bi et al, 2016, eLife, PMID: 27644105), we do not expect the Myl1Cre/Prmt5f/f to impact muscle development. Nevertheless, we now provide data on analysis of muscles at P7 and P21, as well postnatal muscle regeneration. The results are included in Supplementary Fig S2.

      The data presented shows that there is fiber type switch from oxidative to glycolytic, along with a decrease in muscle strength in the PRMT5 KO mice. This seems counterintuitive to what is known in the field as glycolytic fibers are viewed as being capable of generating more force than oxidative, while having less endurance. The authors should clarify this point and elaborate more on their conclusion that the loss of strength is due to an altered metabolism.

      • We agree with the reviewer that an increased abundance of glycolytic myofibers should increase muscle force under normal conditions. However, the increased glycolytic fibers in the Prmt5 mKO mice is associated with metabolic deficiencies. These fibers are atrophic (smaller than control fibers of the same myosin type), devoid of lipid droplets and had less force production. We added the following sentences to the discussion in this matter. Minor concerns:

      • The term myocyte is not the most accurate word for describing skeletal muscle. Myofibers would be best for fully differentiated muscle, myotubes for in vitro differentiation and myocytes should be reserved for differentiated cells that have not fused yet (1-2 nuclei/cell). I would recommend changing all mentions of myocyte to myofiber and changing "myocyte specific" with regards to the mouse models as "skeletal muscle specific"

      • Thank you for your suggestion. We updated the nomenclature accordingly.

      Figure 1 Panel F and G would be clearer if they were labelled as 2 months old mice

      We edited the Figure 1F, and 1G to include the mouse age. 3. Figure 2 Panel E, G and H the control line appears to be missing error bars

      Error bars were in the original panels, but the variation was very small, making it hard to visualize the error bars. 4. Figure 2 legend should specify that these mice are 2 months old for the sake of clarity

      We added mouse age to the Figure 2 legend. 5. Figure 3 Panel G and H are not informative and are misleading. The supplemental panels show that when normalized to body mass there is no difference in O2 consumption or CO2 production. These should be replaced with the supplemental panels

      We reformatted the figure as suggested.

      Figure 4 Panel E and F, are these separate experiments? The values do not match between the 2 panels. If these are separate it should be made more clear. a. Error bars appear to be missing in Panel E

      Error bars were included (as it was obvious after FCCP) but the error bars are small for the rest of the time points. b. As this is an experiment where the state of the cell is incredibly important (metabolism of myoblast is much different to myotube), the authors must demonstrate that there is no defect in in vitro differentiation by showing the fusion index assay for these cells and a representative image of the myotubes.

      The differentiation of the KO cells was normal as Myl1cre is only expressed after differentiation. we isolated myoblasts from WT and Prmt5MKO mice and differentiated for 3 days to stain MyoG and MF20 to measure fusion index. However, we did not see any change in fusion index from differentiated myotubes (Supplementary Fig. S4A)

      c.The authors should mention in the legend that these are 3 DM myotubes

      Figure legends are updated.

      1. Figure 5 Panel G, a qPCR to confirm the O/E of the PRMT5 and SREBP1a in the test samples would be necessary.

      We added the PRMT5 and SREBP1 O/E data (Supplementary Fig S5C, D). a. The double O/E cells are marked as significantly different, but it is unclear to which group they are significantly different to.

      We edited the figure to highlight the comparison. 8. Figure 7 Panel B, body weight would be more informative in g rather than percentage.

      We reformatted the figure as suggested.

      It would be interesting to test whether the KO of Pnpla2 also rescues the fiber type switch.

      We added Fiber type staining in dKO muscles. Based on quantification in Sol and EDL muscles, increased Type IIB (glycolytic myofibers) in Prmt5MKO mice was significantly decreased in Prmt5/Pnpla2MKO mice (Supplementary Fig S6D-F).

      Reviewer #1 (Significance (Required)):

      Overall the manuscript provides insight into the role of PRMT5 in regulating the metabolism of skeletal muscle. While the paper provides some interesting data, it is severely hampered by the improper WT controls lacking the cre alleles. In order for the data to be reliable, all of the WT samples will need to be replaced with PRMT5+/+ Myl1 cre mice. There are other papers looking at the role of PRMT5 in skeletal muscle, however these are more focused on muscle stem cells than the myofibers. Therefore this paper does fill in a gap with regards to the metabolic role of PRMT5 and how this can affect skeletal muscle function. This paper would most likely be of interest to a specialized audience, mostly those in the skeletal muscle field.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In the manuscript "PRMT5 links lipid metabolism to contractile function of skeletal muscles", Kim et al., describe the role for the arginine methyl transferase PRMT5 in maintaining skeletal muscle homeostasis. The authors showed that myocyte-specific deletion of PRTM5 results in the loss of muscle mass, reduced motor-performance, a fiber type switch from oxidative to glycolytic fibers along with reduced lipid content in the myofibers. The authors reasoned that absence of PRMT5 results in reduced methylation and stability of mSREBP1 and an increase in the expression of adipose triglyceride lipase (ATGL).

      Major Comments

      1. Experiments looking at the interaction between PRMT5 and mSREBP1a using overexpressed proteins are used to conclude that PRMT5 methylates SREBP1a. While the results are consistent with these conclusions, the finding remains correlative. Methylation assays using purified PRMT5 and SREBP1a would be required to make a definite conclusion that PRMT5 methylates SREBP1a. These should be performed. In the absence of such data, the authors would need to adjust their conclusions to say that in the presence of PRMT5, SREBP1a becomes methylated, and that it remains to be determined if this is directly mediated by PRMT5.

      [response] We thank the reviewer for this comment and wished we could perform in vitro methylation assay to address whether SREBP1a is directly methylated by PRMT5. However, our co-author (Dr. Changdeng Hu) who is an expert of PRMT5 biochemistry unfortunately died recently, hampering the validation of SREBP1 as PRMT5 substrate. We would also like to mention that several other studies have reported SREBP1 as substrate of PRMT5 in cancer cells (Liu et al, 2016, Cancer Research, https://doi.org/10.1158/0008-5472.CAN-15-1766 ).We cited and discussed the paper in the manuscript. Our new results using enzymatic inhibitor of PRMT5 (BLL3.3) further supports that PRMT5 mediates methylation of SREBP1 (Supplementary Fig. S5A).

      Stability studies in figure 5E have been performed in HEK293 cells using over-expressed proteins. While these results show that PRMT5 protects SREBP1a from degradation, the significance of this in muscle is less clear. Western blots of these proteins in C2C12 cells show that the over expression of PRMT5 does not stabilize SREBP1a (Flag) despite the appearance of increased methylation. To solidify the concept that PRMT5-dependent methylation of SREBP1 leads to its stabilization, cycloheximide experiments should be performed in myotubes generated in culture from the PRMT5mko mice. The stability of the endogenous SREBP1a gene could be monitored using antibodies.

      [response] We performed that study as suggested. Consistent with the notion that PRMT5 stabilizes SREBP1, we found extremely low levels of SREBP1 proteins (nearly undetectable) in Prmt5 KO myotubes, in contrast to the robust expression of SREBP1 in WT myotubes (Supplementary Fig. S5B). This extremely low levels of SREBP1 precludes us from examining degradation after cycloheximide treatment

      The measurement of methylation levels of SREBP1a are complicated by the fact that the protein levels are destabilized in the absence of PRMT5. The authors should use a PRMT5 inhibitor experiments in complement to these overexpression studies to measure the relative methylation of mSREBP1a (SMY10/mSREBP1).

      [response] We used PRMT5 inhibitor, BLL 3.3, to support that mSREBP1a methylation is mediated by PRMT5 (Supplementary Fig. S5A).

      Minor Comments 4. In figure 1H, there are more nuclei surrounding the myofibers. The authors should document the number of PAX7 cells per myofiber in the Control and Prmt5MKO mouse strains as it helps understand the additive effect of change in PAX7 cells during muscle atrophy.

      [response] We quantified the number of Pax7+ cells in muscles and myofibers of WT and KO mice (Supplementary S2D,E).

      In figure 5, the legend title mentioned ATGL. However the stability or methylation results of ATGL are not presented anywhere in the manuscript. Only in figure 6 did the authors show the differential expression of ATGL in the presence and absence of PRMT5. This title for Figure 5 should corrected.

      [response] Thanks for clarifying. We fixed title of Figure 5 in the manuscript.

      For better representation, the authors should consider moving the western blot panel (S3A) and lipid droplet staining data (S3E) to main figures and some of the data on force generation and body weights to supplementary. [response] We updated the figures as suggested.

      Reviewer #2 (Significance (Required)):

      This is an interesting manuscript that provides novel insight into the role for PRMT5 in muscle homeostasis. While previous studies have looked at the PRMT5 from a transcriptional standpoint during muscle differentiation, this work shows a role for PRMT5 in controlling the metabolic state of myofibers through transcriptional and potentially non-transcriptional mechanisms. Identification of the transcriptional regulation of Pnpla2 gene by PRMT5 is confirmed by mouse rescue experiments with the double KO mice. However the role for non-transcriptional control of SREBP1a stability through methylation by PRMT5 is not as clearly established. To strengthen this aspect of the manuscript, additional experiments are needed.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The lipid droplets represent an energy store and central hub of lipid metabolism in cells. In the skeletal muscle, abundant lipid droplets are present in myofibers (especially in oxidative Type 1 and IIA myofibers) and thought to play a role in supplying energy through fatty acid oxidation (FAO) to power muscle contraction. Increased abundance of lipid droplets in myofibers is associated with poor muscle function and insulin resistance in patients of type 2 diabetes. Paradoxically, myofibers of trained athletes also contain higher than normal levels of lipid droplets but with better contractile function and insulin sensitivity. The molecular mechanism underlying this "Athlete's Paradox" has been unclear, due to the lack of understanding of what controls biogenesis and metabolism of lipid droplets in the myofiber.

      In this manuscript, Kuang and colleague provide compelling evidence to support a key role of PRMT5 in maintaining lipid droplets in the myofiber. They generated a conditional knockout mouse model to disrupt the Prmt5 gene in the myofibers. This leads to an astonishing depletion of lipid droplets in myofibers. The Prmt5 null myofibers also exhibited poor contractile function and classical signs of atrophy. To determine if the depletion of lipid droplets drives muscle atrophy or if muscle atrophy drives depletion of lipid droplets, the authors introduced a secondary lesion (ATGL-KO) in the Prmt5 null myofibers that would preserve the lipid droplets by preventing ATGL-mediated lipolysis. This restored lipid droplet content and largely rescued muscle contractile function, demonstrating that depletion of lipid droplets drives muscle atrophy and impairs muscle contractile function. The authors also performed a series of biochemical and molecular biology assays to show that PRMT5 stabilizes SREBP1a through dimethylation, enhancing the activity of this master transcriptional regulator of de novo lipogenesis. PRMT5 also methylates H4R3, and the methylated H4R3 represses the transcription of Pnpla2 (ATGL - which controls lipolysis), therefore inhibiting degradation of lipid droplets. These results together illustrate the dual role of PRMT5 in promoting lipid biogenesis and inhibiting lipid droplet degradation.

      Reviewer #3 (Significance (Required)):

      Collectively, this study identify PRMT5 as a key regulator of lipid metabolism in the muscle and establish a causal relationship between lipid droplet and muscle contractile function, and point to scarce lipid droplets as a driver of muscle atrophy. PRMT5 has previously been reported to regulate early myogenesis but its role in post-fusion myofibers has never been reported, therefore the conceptual novelty of this study is high. There are couple of minor points authors should consider: 1) While muscle-specific Prmt5-KO mice show reduced muscle mass, it is not clear whether this is a developmental effect or muscle atrophy. Authors should measure a few markers of muscle atrophy such as Atrogin1 and MuRF1 and overall levels of ubiquitination. Alternatively, authors can also subject the mice to conditions of muscle atrophy such as starvation and measure how various markers of atrophy are affected.

      [response] Thank you for this suggestion. As the Myl1Cre is only expressed in post-differentiation myocytes and myotubes/myofibers, we did see any developmental defects during postnatal myogenesis (Supplementary Fig S2A-C). We also checked Atrogin-1 and MuRF1 in WT and KO muscle tissues based on your advice, but we did not find any significant difference (Supplementary Fig S1F). These two genes are muscle-specific E3 ubiquitin ligases involved in protein degradation by the ubiquitin proteasome pathway. This finding is consistent with the idea that there are multiple mechanisms that can lead to muscle atrophy, and our study clearly elaborates that dysregulation of lipid catabolism by PRMT5 is the main pathway associated with muscle wasting.

      2) Please show representative EcoMRI images for body composition analysis.

      [response] Thank you for your comments, but the EcoMRI equipment does not provide images of body composition. It only provides data of lean mass, fat mass and water in gram. We presented those data in the manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The lipid droplets represent an energy store and central hub of lipid metabolism in cells. In the skeletal muscle, abundant lipid droplets are present in myofibers (especially in oxidative Type 1 and IIA myofibers) and thought to play a role in supplying energy through fatty acid oxidation (FAO) to power muscle contraction. Increased abundance of lipid droplets in myofibers is associated with poor muscle function and insulin resistance in patients of type 2 diabetes. Paradoxically, myofibers of trained athletes also contain higher than normal levels of lipid droplets but with better contractile function and insulin sensitivity. The molecular mechanism underlying this "Athlete's Paradox" has been unclear, due to the lack of understanding of what controls biogenesis and metabolism of lipid droplets in the myofiber.

      In this manuscript, Kuang and colleague provide compelling evidence to support a key role of PRMT5 in maintaining lipid droplets in the myofiber. They generated a conditional knockout mouse model to disrupt the Prmt5 gene in the myofibers. This leads to an astonishing depletion of lipid droplets in myofibers. The Prmt5 null myofibers also exhibited poor contractile function and classical signs of atrophy. To determine if the depletion of lipid droplets drives muscle atrophy or if muscle atrophy drives depletion of lipid droplets, the authors introduced a secondary lesion (ATGL-KO) in the Prmt5 null myofibers that would preserve the lipid droplets by preventing ATGL-mediated lipolysis. This restored lipid droplet content and largely rescued muscle contractile function, demonstrating that depletion of lipid droplets drives muscle atrophy and impairs muscle contractile function. The authors also performed a series of biochemical and molecular biology assays to show that PRMT5 stabilizes SREBP1a through dimethylation, enhancing the activity of this master transcriptional regulator of de novo lipogenesis. PRMT5 also methylates H4R3, and the methylated H4R3 represses the transcription of Pnpla2 (ATGL - which controls lipolysis), therefore inhibiting degradation of lipid droplets. These results together illustrate the dual role of PRMT5 in promoting lipid biogenesis and inhibiting lipid droplet degradation.

      Significance

      Collectively, this study identify PRMT5 as a key regulator of lipid metabolism in the muscle and establish a causal relationship between lipid droplet and muscle contractile function, and point to scarce lipid droplets as a driver of muscle atrophy. PRMT5 has previously been reported to regulate early myogenesis but its role in post-fusion myofibers has never been reported, therefore the conceptual novelty of this study is high.

      There are couple of minor points authors should consider:

      1. While muscle-specific Prmt5-KO mice show reduced muscle mass, it is not clear whether this is a developmental effect or muscle atrophy. Authors should measure a few markers of muscle atrophy such as Atrogin1 and MuRF1 and overall levels of ubiquitination. Alternatively, authors can also subject the mice to conditions of muscle atrophy such as starvation and measure how various markers of atrophy are affected.
      2. Please show representative EcoMRI images for body composition analysis.
    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In the manuscript "PRMT5 links lipid metabolism to contractile function of skeletal muscles", Kim et al., describe the role for the arginine methyl transferase PRMT5 in maintaining skeletal muscle homeostasis. The authors showed that myocyte-specific deletion of PRTM5 results in the loss of muscle mass, reduced motor-performance, a fiber type switch from oxidative to glycolytic fibers along with reduced lipid content in the myofibers. The authors reasoned that absence of PRMT5 results in reduced methylation and stability of mSREBP1 and an increase in the expression of adipose triglyceride lipase (ATGL).

      Major Comments

      1. Experiments looking at the interaction between PRMT5 and mSREBP1a using overexpressed proteins are used to conclude that PRMT5 methylates SREBP1a. While the results are consistent with these conclusions, the finding remains correlative. Methylation assays using purified PRMT5 and SREBP1a would be required to make a definite conclusion that PRMT5 methylates SREBP1a. These should be performed. In the absence of such data, the authors would need to adjust their conclusions to say that in the presence of PRMT5, SREBP1a becomes methylated, and that it remains to be determined if this is directly mediated by PRMT5.
      2. Stability studies in figure 5E have been performed in HEK293 cells using over-expressed proteins. While these results show that PRMT5 protects SREBP1a from degradation, the significance of this in muscle is less clear. Western blots of these proteins in C2C12 cells show that the over expression of PRMT5 does not stabilize SREBP1a (Flag) despite the appearance of increased methylation. To solidify the concept that PRMT5-dependent methylation of SREBP1 leads to its stabilization, cycloheximide experiments should be performed in myotubes generated in culture from the PRMT5mko mice. The stability of the endogenous SREBP1a gene could be monitored using antibodies.
      3. The measurement of methylation levels of SREBP1a are complicated by the fact that the protein levels are destabilized in the absence of PRMT5. The authors should use a PRMT5 inhibitor experiments in complement to these overexpression studies to measure the relative methylation of mSREBP1a (SMY10/mSREBP1).

      Minor Comments

      1. In figure 1H, there are more nuclei surrounding the myofibers. The authors should document the number of PAX7 cells per myofiber in the Control and Prmt5MKO mouse strains as it helps understand the additive effect of change in PAX7 cells during muscle atrophy.
      2. In figure 5, the legend title mentioned ATGL. However the stability or methylation results of ATGL are not presented anywhere in the manuscript. Only in figure 6 did the authors show the differential expression of ATGL in the presence and absence of PRMT5. This title for Figure 5 should corrected.
      3. For better representation, the authors should consider moving the western blot panel (S3A) and lipid droplet staining data (S3E) to main figures and some of the data on force generation and body weights to supplementary.

      Significance

      This is an interesting manuscript that provides novel insight into the role for PRMT5 in muscle homeostasis. While previous studies have looked at the PRMT5 from a transcriptional standpoint during muscle differentiation, this work shows a role for PRMT5 in controlling the metabolic state of myofibers through transcriptional and potentially non-transcriptional mechanisms. Identification of the transcriptional regulation of Pnpla2 gene by PRMT5 is confirmed by mouse rescue experiments with the double KO mice. However the role for non-transcriptional control of SREBP1a stability through methylation by PRMT5 is not as clearly established. To strengthen this aspect of the manuscript, additional experiments are needed.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The Kim et al. paper titled "PRMT5 links lipid metabolism to contractile function of skeletal muscles" reports how the arginine methyltransferase PRMT5 affects lipid metabolism in myofibers by stabilizing the mSREBP1 protein and repressing the expression of the PNPLA2 gene. The genetic deletion of PRMT5 in muscle results in the loss of lipid droplets in myofibers and a loss in muscle strength. Additionally, there is a change in muscle fiber types, moving from an oxidative state to a more glycolytic one. While the authors present compelling data on PRMT5's role in muscle metabolism, there are some concerns on the mouse model used and the sequencing data.

      Major concerns:

      1. The mouse model used in this study is PRMT5fl/fl , Myl1cre in order to genetically delete PRMT5 in skeletal muscle. While there is no issue with the KO mice, the WT mice are PRMT5fl/fl , Myl1+ which is not an acceptable control. It is known that Cre itself can have a phenotype, and additionally Myl1 is very highly expressed. Thereby, there is a large amount of Cre in the KO mice, but none in the WT which may contribute to the differences seen between WT and KO mice. The appropriate WT control is PRMT5+/+ Myl1cre and the experiments would need to be repeated using this mouse genotype as the WT.
      2. In the scRNA-Seq the authors claim that PRMT5 is not expressed in quiescent muscle stem cells. However, the data set that is used only has approximately 250 muscle stem cells, which would not provide much coverage. It would be necessary to validate this claim by using other data sets, such as Tabula Muris or publicly available bulk RNA-Seq.
      3. The ChIP-Seq data shown was performed on 3T3-L1 cells and is not appropriate for a muscle paper. The ChIP-Seq must be performed on muscle cells in order to confirm their conclusion.
      4. The authors claim that loss of PRMT5 leads to a gradual loss of muscle fiber size but has no effect on myogenesis. The evidence to support that claim is shallow, being based solely on CSA and total number of myofibers, along with a loss of lean body mass. To confirm this statement, it would be best to quantify the CSA and # of myofibers in EDL and TA at P7 and P21. Further, a regeneration assay would also demonstrate if myogenesis is compromised or not.
      5. The data presented shows that there is fiber type switch from oxidative to glycolytic, along with a decrease in muscle strength in the PRMT5 KO mice. This seems counterintuitive to what is known in the field as glycolytic fibers are viewed as being capable of generating more force than oxidative, while having less endurance. The authors should clarify this point and elaborate more on their conclusion that the loss of strength is due to an altered metabolism.

      Minor concerns:

      1. The term myocyte is not the most accurate word for describing skeletal muscle. Myofibers would be best for fully differentiated muscle, myotubes for in vitro differentiation and myocytes should be reserved for differentiated cells that have not fused yet (1-2 nuclei/cell). I would recommend changing all mentions of myocyte to myofiber and changing "myocyte specific" with regards to the mouse models as "skeletal muscle specific"
      2. Figure 1 Panel F and G would be clearer if they were labelled as 2 months old mice
      3. Figure 2 Panel E, G and H the control line appears to be missing error bars
      4. Figure 2 legend should specify that these mice are 2 months old for the sake of clarity
      5. Figure 3 Panel G and H are not informative and are misleading. The supplemental panels show that when normalized to body mass there is no difference in O2 consumption or CO2 production. These should be replaced with the supplemental panels
      6. Figure 4 Panel E and F, are these separate experiments? The values do not match between the 2 panels. If these are separate it should be made more clear.
        • a. Error bars appear to be missing in Panel E
        • b. As this is an experiment where the state of the cell is incredibly important (metabolism of myoblast is much different to myotube), the authors must demonstrate that there is no defect in in vitro differentiation by showing the fusion index assay for these cells and a representative image of the myotubes.
        • c. The authors should mention in the legend that these are 3 DM myotubes
      7. Figure 5 Panel G, a qPCR to confirm the O/E of the PRMT5 and SREBP1a in the test samples would be necessary.
        • a. The double O/E cells are marked as significantly different, but it is unclear to which group they are significantly different to.
      8. Figure 7 Panel B, body weight would be more informative in g rather than percentage.
      9. It would be interesting to test whether the KO of Pnpla2 also rescues the fiber type switch.

      Significance

      Overall the manuscript provides insight into the role of PRMT5 in regulating the metabolism of skeletal muscle. While the paper provides some interesting data, it is severely hampered by the improper WT controls lacking the cre alleles. In order for the data to be reliable, all of the WT samples will need to be replaced with PRMT5+/+ Myl1 cre mice. There are other papers looking at the role of PRMT5 in skeletal muscle, however these are more focused on muscle stem cells than the myofibers. Therefore this paper does fill in a gap with regards to the metabolic role of PRMT5 and how this can affect skeletal muscle function. This paper would most likely be of interest to a specialized audience, mostly those in the skeletal muscle field.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We thank the reviewers for their comments and very helpful suggestions to improve the manuscript. All the reviewers address that further confirmation of the causality of activity-induced AMPK activation and AMPK-induced mitochondrial fission and mitophagy regulating dendritic outgrowth in immature neurons would strengthen the significance of this study. We believe that this is the first study demonstrating that AMPK mediates activity-dependent dendritic outgrowth of immature neurons, and that regulation of mitophagy is critical for dendrite development.

      We can perform most of the experimentations and corrections requested by the reviewers. We have already made several revisions and are currently working on additional experiments. All experiments will be finished in several weeks and we expect to submit a full revision by the due date.

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      Reviewer #1-1.- MMP alone is not a good indicator of mitochondrial health. For instance, ATPase inhibitor causes increase in MMP and complex I inhibition diminish MMP and in both cases mitochondrial function is impaired. On the other hand, authors use increased flickering and mitochondrial ROS production as an indicator of enhanced respiration but they could also be used as indicators of mitochondrial dysfunction. Other assays, such as oxygen consumption, are needed to assess the mitochondrial function.

      *Related comments by Reviewer #2-C. In figure 6 it is unclear what is the significance of the TMRM "flickering" parameter quantified and the difference between the control and knockdown condition is small on average. *

      Increase in TMRM flickering and mitochondrial ROS production, which we used as indicators of enhanced mitochondrial respiration, can certainly also be caused by mitochondrial dysfunction. We think it difficult to adopt an oxygen consumption assay in our system, as the transfection efficiency in the primary hippocampal culture is low (~10%). Instead, we plan to assess the mitochondrial function in control and AMPK deficient cells by using an ATP FRET sensor targeted to mitochondria (Mito-ATeam, Imamura et al., PNAS, 2009; Yoshida et al., Methods Mol Biol 2017). Mito-ATeam will be transfected in neurons to compare mitochondrial ATP synthesis in control and AMPK deficient neurons.

      *Reviewer #1-2.- It would be interesting to show a better characterization of the mitophagy flux and to test whether pharmacological or genetic stimulation of mitophagy could revert the effect of AMPK KD on dendritic outgrowth, ultimately linking AMPK, mitophagy and dendritic outgrowth. The latter experiments may be challenging but not impossible, for example see (PMID: 27760312). *

      We understand that it is important to demonstrate more strongly the correlation of the AMPK-induced peripheral fission and subsequent mitophagy of fragmented mitochondria with dendritic outgrowth. We will attempt the suggested experiment to see if induction of autophagy could revert the dendritic hypoplasia by AMPK KD. However, because AMPK deficiency generates elongated mitochondria defective in fission rather than fragmented mitochondria that are failed to undergo mitophagy, we doubt that activating mitophagy will properly remove damaged mitochondria.

      In parallel to the above experiments, we currently analyze if inhibition of mitochondrial fission or mitophagy would phenocopy the hypoplastic dendrites of AMPK-deficient neurons, and if the activation of fission would rescue the phenotypes of AMPK KD, to strengthen the causality of AMPK-dependent fission, autophagy and dendrite outgrowth. So far we have observed that inhibition of mitochondrial fission by MFF knockdown or inhibition of autophagy by bafilomycin treatment strongly suppress dendrite outgrowth. MFF knockdown also leads to the elongation of mitochondria with decreased association of p62-puncta, strikingly reminiscent of AMPK-deficient neurons. Please see attached figures. Completed analyses will be included in the full revision.

      *Reviewer #1-4.- Results clearly indicate that AMPK enhances mitochondrial fission, and that AMPK is necessary for proper dendritic outgrowth. However, as indicated, the role of AMPK-dependent mitochondrial fission in promoting dendritic growth is not well demonstrated. A possible, and not very difficult experiment, would be the expression of non-phosphorylable MFF S155/172 mutant (perhaps is also needed to knock down the endogenous MFF). Use of this mutant would abolish AMPK-dependent mitochondrial fission while preserving its other functions. *

      Related comments by Reviewer #3-3. The authors could further confirm the claim by examining how mutations in Mff and ULK2 which cannot be phosphorylated by AMPK can rescue defects in mitochondrial fission and spine density.

      We will examine if the expression of non-phosphorylable MFF S155/172 mutant would cause defective autophagy and dendritic arbor growth similarly to AMPK KD neurons. In addition, we will test whether MFF S155/172 mutant would inhibit activity-induced mitochondrial fission to strengthen the link between activity-AMPK-MFF-autophagy axis and dendritic outgrowth.

      *Reviewer #1-Minor 2.- It is intriguing that as shown in Fig. 2A, rather than an increase in pAMPK/AMPK at DIV5 seems there is less phosphorylation despite FRET analysis indicate more AMPK activation. On the other hand, most of the blots in Fig. 6 seem to be overexposed. *

      The exposure time of WB in Fig. 2A was adjusted so that all lanes can be compared. We will fix the exposure time.

      Reviewer#2-A. Most of the evidence on the role of AMPKa2 relies on a shRNA-based strategy. The authors have performed this approach with the best practice, including selecting 2 shRNA plasmids for each gene, and performing a rescue experiment with shRNA -resistant cDNA. Yet, it is critical to provide stronger evidence with all the tools available to demonstrate the role of AMPKa2 in dendritic development. This is especially important because the effect reported by the authors is a transient effect: indeed, dendritic development appears abnormal in very young neurons (P5) but largely normal afterwards (P10). Hence one cannot discard a non specific effect on cell viability or sampling effect. The number of neurons counted is fairly low (about 30 neurons per condition) and it is not clear if they come from several independent cultures. It is known that plasmid preparation can impact cell viability and performing the experiment with only one batch of plasmid prep could explain why one plasmid would produce a short-lived effect on cell morphology. Two shRNA constructs are presented in figure S2A but only one is used for morphological experiments quantified in S2D-E with again a very low N number. The specific experiments I would recommend would be to increase the N: at least 25-30 neurons counted per culture, 3 independent cultures, and presenting the results of the two shRNA plasmids for both AMPKa1 and AMPKa2. Furthermore, the immunofluorescence validation of knockdown provided in figure S2B is not really convincing, a nuclear marker is lacking to determine where cells are (it seems that many cells are present in the image, maybe some of them with low AMPKa2 expression as well). A quantification should be provided as well as evidence for shRNA #1 and #2. *

      *

      We thank the reviewer for valuable suggestions to improve our manuscript. All the knockdown analyses were done from three independent experiments using different mouse litters and multiple batches of plasmid prep. N number was low because of a low transfection efficiency in the primary culture. We will repeat experiments and increase the sample number. We will also present results of the two shRNA constructs. We will redo the immunofluorescence for validation of shRNA knockdown and replace Extended Data Fig. 2B which was pointed out as not being clear.

      *Reviewer #2-C. The observation, in vivo, that dendritic development is normal at P10 is intriguing but this reconciles the observation of altered dendritic development with previous studies demonstrating that AMPK knockout has little effect on brain development, as well as previous studies (Mairet-Coello et al. Neuron 2013, Lee et al. Nat commun 2022) targeting AMPKa2 in the hippocampus of AD mouse models by in utero electroporation. This is a critical aspect of the paper and as stated in the discussion, the previous studies only looked at the end product (neuronal morphology appears normal after development) but not the process of neuronal development and maturation. The in vitro experiment offer the possibility to study dendritic development over time in the same population of neurons, either through selected time points, or through time lapse imaging. This would strengthen one of the most original aspect of this work. *

      We thank the reviewer for an important suggestion. We will analyze if dendritic morphology and mitochondria would recover in later stages in culture. However, the dendritic growth defects in AMPK KD neurons are apparently more severe in culture and our preliminary results have shown that dendritic growth defects and mitochondrial elongation persist until 10DIV. We anticipate that AMPK deficiency is complemented by certain compensation mechanisms in vivo that are not present in culture, such as chemical signals or synaptic inputs from correct afferents. We will confirm the recovery of dendritic outgrowth in vivo using an AMPK alpha2 knockout mouse. We will include the results in vivo and in vitro in the revised manuscript.

      * The authors use a FRET probe to witness AMPK activity, and this part raises a lot of questions. A lot of the signal matches the regularly spaced activity peaks suggesting that FRET response is a coincidence detector of calcium waves. Hence, is the FRET signal influenced by intracellular calcium concentration, or changes in pH? To address this question, the proper control would be to use a FRET biosensor with a mutated AMPK phosphorylation site and demonstrating the absence of response to calcium waves. *

      We think it unlikely that the FRET probe detects calcium concentration or pH change, as its kinetics and timing are different from calcium spikes. For confirmation, we will examine a FRET probe lacking phosphorylation sites to negate that calcium waves directly activate the FRET probe.

      * Also, the parameter used for quantification is a so-called "number of FRET peaks over 3 minutes" for which the biological significance is unknown. On average there are 1-2 such "peaks" in control conditions (figure 4). These peaks have low amplitude, sometimes around 0.05-0.1 of the YFP/CFP ratio, which is about what is expected even in AMPKa2 knockdown cells (figure S4C). Are there changes in the baseline of FRET signal? *

      We monitor FRET at 3-5 sec intervals and is set to 3 minutes due to gradual photobleaching. Although the event frequency is 0-4 times per 3 minutes observation, it is nearly absent in AMPK KD (1 small peak in 3 cells out of 40 cells) or activity deprivation, which we consider a significant difference. We have replaced Figure 4B, 4D, 4I, 4J andExtended Data Fig.4E. The basal FRET signal is lowered in AMPK KD cells, but also varies depending on the expression level of the probe. For comparision of the results shown in Figure 4 and Extended Data Fig.4, we have changed the y-axis to the normalized FRET signal {FRET/FRETbaseline} and jRGECO signals (DF/F0) in Fig. 4F, Extended Data Fig.4C, 4D.

      *

      *

      *Finally, given that calcium peaks and AMPK activity peaks overlap, one key observation is the continued presence of calcium peaks upon AMPKa2 knockdown in figure S4D. Yet, the scale for jRGECO1 intensity in figure S4D differs from the scale in figure 4, making it difficult to interpret. It seems that on average the delta (peak-baseline) is 2000 in wild-type cells (figure 4), compared to 500 in AMPKa2 knockdown cells, which suggests a strong reduction in calcium signal amplitude upon knockdown of AMPK. This should be clarified to demonstrate that the FRET probe peaks are really due to AMPK activity. Also, the effect of STO-609 should be added to this figure. *

      We think that the presence of calcium transients in AMPK KD cells supports our conclusion that AMPK is downstream of calcium signaling. The amplitude of calcium spikes was actually lowered in AMPK KD cells. We think it is due to the reduction of the cell size and complexity in KD cells. To negate that AMPK inhibition affects calcium influx, we will examine if acute inhibition by an AMPK inhibitor will suppress only FRET signals but not calcium waves. In addition, we will monitor calcium waves and FRET signals in neurons treated with STO-609 or AICAR. STO-609 and AICAR should decrease and increase FRET signals without affecting calcium influx.

      • Other comments by Reviewer #2*
      • Similarly, the number of events in figure 5F-G is really low. Is a difference between 0.02 in the control group and 0.01 in the knockdown group physiologically relevant?*

      Since p62 puncta contact only a small mitochondrial region, the overlap area of mitochondria with p62 in the total mitochondrial area is small. We will analyze the number of p62 puncta associated with mitochondria per unit dendritic area.

        • Lines 339-350, the authors discuss about a putative regulatory loop involving AMPK dephosphorylation. Since this part of the discussion is based on the FRET signal, the authors should consider if an alternative explanation could be the kinetics of the biosensor dephosphorylation.* We will revise Discussion to argue about alternative possibilities of dynamic oscillation of the FRET signal when we get data from the above experiments.

      *In terms of significance, I would have two major criticisms. The first is that it appears that many of the findings by the authors are redundant with observations of the roles of CAMKK2-AMPK-MFF-ULK1 in AD model mice, see for example the work by Polleux (Mairet-Coello et al. Neuron 2013, Lee et al., Nat commun 2022). As said above, my opinion is that the paper should put more emphasis on the transient effect of AMPK, which would be a novel observation and, as the authors rightfully discuss, a phenotype potentially overlooked in previous studies of AMPK KO mice. The second is that many points in the discussion seem to be over reached and are not entirely supported by the data. As an example lines 298-299 "leading to mitochondrial dysfunction with low respiratory activity" (not addressed in this manuscript), lines 312-313 "multiple signatures of mitochondrial dysfunction such as reduced delta-Psi-m and ROS production" (biological significance of these parameters?), lines 332-334 "AMPK phosphorylation dynamically oscillates in dendrites, depending on Ca2+ influx and CAMKK2 activity, while it is independent of LKB1" (the authors don't study AMPK phosphorylation, and the experimental data has many limitations that need addressing), etc. *

      We thank reviewer’s guidance. We think this is the first study showing AMPK function in dendritic arbor growth in immature neurons before synaptogenesis. We will rewrite the manuscript to emphasize that neuronal activity in immature neurons regulates dendrite formation via AMPK in a short time window during brain development. Discussion will be revised according to the data of the ongoing additional experiments.

      Reviewer#3-1. All these studies are done in invitro neuronal culture modal with transfection of ShRNAs to Knockdown AMPK. An alternative possibility is that authors could use an AMPK Conditional Knockout mouse models Conditional deletion of (AMPKα1/α2 (AMPKα1−/−; AMPKα2F/F; Emx1-Cre) derived neurons for this study.

      We showed the effect of AMPK knockdown in hippocampal neurons in culture and in vivo (Fig. 2). For validation, we also examined CRISPR interference (Extended data Fig.2). We will examine in vivo phenotypes in pyramidal neurons in AMPK alpha2 knockout mice to further validate our observation.

      Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      *Reviewer #1-1.- Authors use mitochondrial membrane potential (MMP), MMP flickering and mitochondrial ROS production as indicators of mitochondrial function, but this is not convincing. To analyze MMP, authors use TMRM fluorescence normalized by mitochondria area. This is not correct, using this strategy would mean that a symmetric fission would instantly double MMP and fusion would half MMP. The analysis must be made by tracing ROIs of the same surface in different mitochondria and determining TMRM fluorescence in these ROIs. *

      We have reanalyzed TMRM fluorescence using the method indicated. As a result, TMRM fluorescence show a slight but significant decrease (p=0.0071) in AMPK KD cells. Extended Data Fig. 5C has been replaced accordingly. We thank the Reviewer for kind guidance!

      Reviewer #1-3.- The authors treat neurons with glutamate to support the view that synaptic activity activates AMPK and promotes mitochondrial fission. However, the concentration used (100 mM) may be excitotoxic. Synaptic activity can be induced by electric field stimulation, although this require equipment that may not be available in the authors' lab. Another alternative is network disinhibition with bicuculine or to use lower concentrations of glutamate. In any case, since neurons are immature and may respond differently from mature neurons, it would be worth to verify synaptic activity by analyzing Ca2+ transients.

      *Reviewer #1-Minor 3.- It is necessary more explanation about spontaneous Ca2+ transients in immature cultures. What percentage of neuros experience it? Is it synchronized? *

      *Related comments by Reviewer#2-D. It is well established and thus not surprising that AMPK activity increases in response to synaptic activity. It is more surprising to witness such an effect of activity in very immature neurons, where presumably synapses are sparse and not well developed. For example dendritic segments in Figure 1E and 3A don't have dendritic spines. Western-blot and/or immunofluorescence of synaptic markers with comparison to fully mature neurons would complete figure 1 and make the case whether the reported effects are marginal or a strong driver for dendritic development and AMPK regulation. *

      We thank the reviewers’ point that we failed to emphasize in the original manuscript.

      We focus on AMPK function during activity-dependent dendritic outgrowth in immature neurons before the onset of synaptogenesis. It has been shown that synaptogenesis occurs in dissociated hippocampal cultures between 7-12 DIV (eg, Renger et al., Neuron 2001) and that developing dendrites at 5 DIV are activated by ambient glutamate which is spontaneously released from nearby immature axon terminals and undergo spontaneous Ca2+ transients, and this non-synaptic activity is important for dendritic outgrowth (Andreae and Burrone, Cell Rep 2015). We have observed that Ca2+ transients in individual neurons are variable in frequency and magnitude and are not synchronized in consistent with previous studies. We have performed immunofluorescence with a synaptic marker PSD95 and confirmed that dendritic spines are not yet differentiated and PSD95 is sparsely distributed along the dendritic shaft in DIV5 hippocampal neurons. We describe the nature of Ca2+ transients in the Results more clearly and provide high magnified images and immunofluorescence with a synaptic marker PSD95 of the neurons at DIV5 and DIV13 as a new Fig. 1A. We believe that this is the first indication of AMPK function in non-synaptic neuronal activity during dendritogenesis.

      We have observed induction of mitochondrial fission in neurons treated with 1 µM glutamate. Extended Data Fig. 1E has been replaced accordingly. Since GABA is known to induce depolarization in immature neurons (Soriano et al., PNAS 2008), we would like to exclude bicuculine treatment from this analysis.

      *Reviewer #1-5.- The statistical analysis seems appropriate, but it is confusing that sometimes non-parametric and sometimes parametric tests are used. It is not indicated which test is used to determine normality since the methods section lacks a statistical analysis section.

      *

      We have revised Methods and have described statistical analysis in detail.

      *Reviewer #1-Minor 1.- Authors should double check the analysis shown in Fig. 1A. As it is shown, Ca2+ transients are 2-3% higher than basal, when the video shown in video 1 seem to indicate much more. *

      Thank you for pointing this out. In the original version, the percentile change was erroneously measured across the entire visual field, including areas without neurons. We have replaced Fig. 1B (original Fig. 1A) with reanalyzed data in the proximal region of the apical dendrite.

      *Reviewer #1-Minor 4.- It is interesting that AMPK KD in vivo impairs dendritic architecture at P5, however at P10 the defect seem to be somehow compensated. This result apparently detracts from the relevance of the findings, however last year was published a paper in which in an animal model of Huntington's disease dendritic architecture is delayed during the first week but normalizes thereafter. Despite later normalization in dendritic architecture, this early defect in maturation has effects in adulthood as pharmacological restoration of arborization during the neonatal period suppresses some phenotypes observed in adulthood (PMID: 36137051). I believe that discussing this paper would help the reader to recognize the potential relevance of the findings. *

      *Related comments by Reviewer #2: Nonetheless let aside the technical concern, if their findings hold true, this is an intriguing mechanism. There are interesting parallels to be made with observations of altered morphology and excitability of neurons in Huntington's disease model mice during the first postnatal week. These changes spontaneously reverts and are undetectable in the second week (Braz et al. Science 2022). Thus, precedent suggests that indeed dendritic development can take a slow course, and this study also suggests that this is important later since normalization of abnormal excitability during the first week in HTT mice prevents some of the phenotypes later in life. Here again, an interesting parallel could be made with the known role of AMPK in synaptic loss in AD models. *

      We thank the reviewers for the supportive comments. We will refer this paper and discuss about potential significance of the transient defects in early dendrite morphology in AMPK deficient neurons.

      *Reviewer#2-B. The Crispr method lacks validation which should be provided somehow. The drug-based experiment relies on compound C, a notoriously non specific AMPK inhibitor (see for example Bain et al. Biochem J 2007, or Vogt et al. Cell Signal 2011). Data obtained with Compound C is hard to interpret given the number of kinases that are affected by the drug and should be removed from the manuscript. *

      We have added immunofluorescence images for validation of AMPK deletion by CRISPRi (Extended Data Fig. 2F).

      We think the results of Compound C treatment support our conclusion in combination with KD and CRISPRi, but will delete the results in accordance with this comment.

      • Other comments by Reviewer#2*
      • Figure 5A-C relies on the quantification of fission events that appear very rare (0.4 event per 20 minutes). The difference between the two groups is between 0.1 and 0.2 events on average. Since this was quantified on a fairly low number of cells (N=14), it is hard to appreciate exactly how many events have been observed and the actual physiological relevance. Furthermore individual datapoints should be added to the figure to estimate variability.*

      The number of fission events was counted in mitochondria in a unit length of dendrite of similar diameter, and normalized by the number of mitochondria. The values were thus small as they represent average number of events in one mitochondrion in 20 minutes. We have replaced the Fig. 1K, 3F, 5B and 5C to show the number of fission events in mitochondria included in a unit length of dendrites of similar diameter. Individual data points have been included.

      Reviewer #3-4. Authors showed activity-dependent calcium signaling controls mitochondrial homeostasis and dendritic outgrowth via AMP-activated protein kinase (AMPK) in developing hippocampal neurons do the cortical mitochondria respond the same way as the hippocampal neurons?

      Thank you for the comment. As pyramidal neurons in the cerebral cortex and hippocampus are basically the same origin, it is likely that they share the same signaling. We use hippocampal neurons in this study to perform quantitative analysis of dendritic morphology in the same type of neurons. Primary cultures of cortical neurons contain multiple different cell types, making it difficult to analyze the same cell type.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      *Reviewer #1: If activity is observed in only a portion of the neurons, taking advantage of the stablished long-term live imaging protocol in the authors' lab, it would be interesting to study in the same culture whether neurons that experience spontaneous activity develop more than those that do not. *

      We prefer not to carry out this analysis, as activity-dependent dendritic growth has already been well described in previous papers. It will take considerable time to observe the number of neurons for analysis of correlation between Ca2+ transients and dendrite morphology. We would like to focus our effort to demonstrate AMPK signaling during activity-dependent dendritic growth.

      Reviewer#3-2. Another technical issue here, most of the experiments are carried out on Neurobasal media, which has a lot of glucose plus substitution of glutamax might be not the perfect conditions for AMPK. Authors could not obtain evidence supporting the regulation of mitochondria biogenesis by PGC1α phosphorylation and expression. This surprise me, if you could reduce the glucose concentration if might change.

      We observed little or no changes in phosphorylation of PGC1alpha by enhancing or suppressing neuronal activity or AMPK activity. As mitochondrial biogenesis is very active in growing neurons, we surmise that PGC1alpha and mitochondrial biogenesis is regulated by multiple mechanisms during neuronal differentiation and AMPK activation/inhibition might not induce visible changes. We agree the reviewer that there is room to seek the conditions under which changes in PGC1alpha can be detected, but we do not see why Neurobasal plus glutamax is not suitable for this study. Multiple papers studying AMPK function in cultured neurons use similar culture media (Sample et al., Mol. Cell. Biol., 2015; Muraleedharan et al., Cell. Rep., 2020; Lee et al., Nat. Commun., 2022). We might see PGC1 phosphorylation by glucose deprivation, as it decreases glycolysis-derived ATP and thereby activates AMPK. Since we focus on AMPK activation by calcium signals, we are afraid that it would be difficult to distinguish AMPK activation by ATP deficiency or calcium signaling in glucose deficient condition. In addition, glucose deprivation would affect neuronal activity (which consumes large amount of ATP) and neuronal differentiation including dendritic outgrowth.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The manuscript by Hatsuda and colleagues builds on previous work from their group and others, to further investigate the activity-dependent dendritic arbor development and AMPK-dependent mitochondrial quality control. It recently been illustrated that over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy (Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy). Though this is progress is modest, present study showed neuronal activity induces activation of two downstream effectors of AMPK, MFF and ULK1, which are the key regulators of mitochondrial fission and mitophagy.

      Major Concerns:

      1. All these studies are done in invitro neuronal culture modal with transfection of ShRNAs to Knockdown AMPK. An alternative possibility is that authors could use an AMPK Conditional Knockout mouse models Conditional deletion of (AMPKα1/α2 (AMPKα1−/−; AMPKα2F/F; Emx1-Cre) derived neurons for this study.
      2. Another technical issue here, most of the experiments are carried out on Neurobasal media, which has a lot of glucose plus substitution of glutamax might be not the perfect conditions for AMPK. Authors could not obtain evidence supporting the regulation of mitochondria biogenesis by PGC1α phosphorylation and expression. This surprise me, if you could reduce the glucose concentration if might change.
      3. The authors could further confirm the claim by examining how mutations in Mff and ULK2 which cannot be phosphorylated by AMPK can rescue defects in mitochondrial fission and spine density.
      4. Authors showed activity-dependent calcium signaling controls mitochondrial homeostasis and dendritic outgrowth via AMP-activated protein kinase (AMPK) in developing hippocampal neurons do the cortical mitochondria respond the same way as the hippocampal neurons?

      Significance

      It recently been illustrated that over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy (Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy). Though this is progress is modest, present study showed neuronal activity induces activation of two downstream effectors of AMPK, MFF and ULK1, which are the key regulators of mitochondrial fission and mitophagy.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The manuscript 'Calcium signals tune AMPK activity and mitochondrial homeostasis in dendrites of developing neurons' by Hatsuda and collaborators aims at studying the interrelationship between neuronal activity, mitochondria dynamics (ie. fusion and fission mechanisms) and dendritic development. The authors provide evidence linking activity-dependent activation of a CAMKK2-AMPK pathway and the regulation of mitochondria fission and autophagy. Based on the literature, they focus on the roles of the mitochondria fission factor MFF and the autophagy regulator ULK1, both previously known targets of AMPK.

      This work parallels previous observations in the context of Alzheimer's disease and as such the discovery of a molecular link between CAMKK2-AMPK, MFF/ULK1 and the regulation of dendritic mitochondria is not surprising. The change of biological context raises interesting question although the relevance of these observations is not addressed in this manuscript.

      As a general comment, the work is well structured, reads easily. Iconography and figures organization are good. Major criticisms would concern the tools used to study AMPK and challenge some of the observations, as such I believe these are essential to address to validate the findings.

      Major comments

      • A. Most of the evidence on the role of AMPKa2 relies on a shRNA-based strategy. The authors have performed this approach with the best practice, including selecting 2 shRNA plasmids for each gene, and performing a rescue experiment with shRNA -resistant cDNA. Yet, it is critical to provide stronger evidence with all the tools available to demonstrate the role of AMPKa2 in dendritic development. This is especially important because the effect reported by the authors is a transient effect: indeed, dendritic development appears abnormal in very young neurons (P5) but largely normal afterwards (P10). Hence one cannot discard a non specific effect on cell viability or sampling effect. The number of neurons counted is fairly low (about 30 neurons per condition) and it is not clear if they come from several independent cultures. It is known that plasmid preparation can impact cell viability and performing the experiment with only one batch of plasmid prep could explain why one plasmid would produce a short-lived effect on cell morphology. Two shRNA constructs are presented in figure S2A but only one is used for morphological experiments quantified in S2D-E with again a very low N number. The specific experiments I would recommend would be to increase the N: at least 25-30 neurons counted per culture, 3 independent cultures, and presenting the results of the two shRNA plasmids for both AMPKa1 and AMPKa2. Furthermore, the immunofluorescence validation of knockdown provided in figure S2B is not really convincing, a nuclear marker is lacking to determine where cells are (it seems that many cells are present in the image, maybe some of them with low AMPKa2 expression as well). A quantification should be provided as well as evidence for shRNA #1 and #2.
      • B. To complete the shRNA-based experiments, the authors use a single cell Crispr approach, as well as a pharmacological approach. The Crispr method lacks validation which should be provided somehow. The drug-based experiment relies on compound C, a notoriously non specific AMPK inhibitor (see for example Bain et al. Biochem J 2007, or Vogt et al. Cell Signal 2011). Data obtained with Compound C is hard to interpret given the number of kinases that are affected by the drug and should be removed from the manuscript.
      • C. The observation, in vivo, that dendritic development is normal at P10 is intriguing but this reconciles the observation of altered dendritic development with previous studies demonstrating that AMPK knockout has little effect on brain development, as well as previous studies (Mairet-Coello et al. Neuron 2013, Lee et al. Nat commun 2022) targeting AMPKa2 in the hippocampus of AD mouse models by in utero electroporation. This is a critical aspect of the paper and as stated in the discussion, the previous studies only looked at the end product (neuronal morphology appears normal after development) but not the process of neuronal development and maturation. The in vitro experiment offer the possibility to study dendritic development over time in the same population of neurons, either through selected time points, or through time lapse imaging. This would strengthen one of the most original aspect of this work.
      • D. It is well established and thus not surprising that AMPK activity increases in response to synaptic activity. It is more surprising to witness such an effect of activity in very immature neurons, where presumably synapses are sparse and not well developed. For example dendritic segments in Figure 1E and 3A don't have dendritic spines. Western-blot and/or immunofluorescence of synaptic markers with comparison to fully mature neurons would complete figure 1 and make the case whether the reported effects are marginal or a strong driver for dendritic development and AMPK regulation. Furthermore the authors use a FRET probe to witness AMPK activity, and this part raises a lot of questions. A lot of the signal matches the regularly spaced activity peaks suggesting that FRET response is a coincidence detector of calcium waves. Hence, is the FRET signal influenced by intracellular calcium concentration, or changes in pH? To address this question, the proper control would be to use a FRET biosensor with a mutated AMPK phosphorylation site and demonstrating the absence of response to calcium waves. Also, the parameter used for quantification is a so-called "number of FRET peaks over 3 minutes" for which the biological significance is unknown. On average there are 1-2 such "peaks" in control conditions (figure 4). These peaks have low amplitude, sometimes around 0.05-0.1 of the YFP/CFP ratio, which is about what is expected even in AMPKa2 knockdown cells (figure S4C). Are there changes in the baseline of FRET signal? Finally, given that calcium peaks and AMPK activity peaks overlap, one key observation is the continued presence of calcium peaks upon AMPKa2 knockdown in figure S4D. Yet, the scale for jRGECO1 intensity in figure S4D differs from the scale in figure 4, making it difficult to interpret. It seems that on average the delta (peak-baseline) is 2000 in wild-type cells (figure 4), compared to 500 in AMPKa2 knockdown cells, which suggests a strong reduction in calcium signal amplitude upon knockdown of AMPK. This should be clarified to demonstrate that the FRET probe peaks are really due to AMPK activity. Also, the effect of STO-609 should be added to this figure.

      Other comments

      • A. Figure 5A-C relies on the quantification of fission events that appear very rare (0.4 event per 20 minutes). The difference between the two groups is between 0.1 and 0.2 events on average. Since this was quantified on a fairly low number of cells (N=14), it is hard to appreciate exactly how many events have been observed and the actual physiological relevance. Furthermore individual datapoints should be added to the figure to estimate variability.
      • B. Similarly, the number of events in figure 5F-G is really low. Is a difference between 0.02 in the control group and 0.01 in the knockdown group physiologically relevant?
      • C. In figure 6 it is unclear what is the significance of the TMRM "flickering" parameter quantified and the difference between the control and knockdown condition is small on average. Rather, the data presented in figure S5 would suggest that there is no difference in TMRM signal.
      • D. Lines 339-350, the authors discuss about a putative regulatory loop involving AMPK dephosphorylation. Since this part of the discussion is based on the FRET signal, the authors should consider if an alternative explanation could be the kinetics of the biosensor dephosphorylation.

      Significance

      The manuscript by Hatsuda and collaborator studies the roles of neuronal AMPK in the development of hippocampal neurons, specifically the authors describe a transient effect on dendritic development. To this reviewer's opinion, this is the major findings of this paper. Although the physiological implications of this finding are unknown, this is beyond the scope of this paper.

      Yet in terms of significance, I would have two major criticisms. The first is that it appears that many of the findings by the authors are redundant with observations of the roles of CAMKK2-AMPK-MFF-ULK1 in AD model mice, see for example the work by Polleux (Mairet-Coello et al. Neuron 2013, Lee et al., Nat commun 2022). As said above, my opinion is that the paper should put more emphasis on the transient effect of AMPK, which would be a novel observation and, as the authors rightfully discuss, a phenotype potentially overlooked in previous studies of AMPK KO mice. The second is that many points in the discussion seem to be over reached and are not entirely supported by the data. As an example lines 298-299 "leading to mitochondrial dysfunction with low respiratory activity" (not addressed in this manuscript), lines 312-313 "multiple signatures of mitochondrial dysfunction such as reduced delta-Psi-m and ROS production" (biological significance of these parameters?), lines 332-334 "AMPK phosphorylation dynamically oscillates in dendrites, depending on Ca2+ influx and CAMKK2 activity, while it is independent of LKB1" (the authors don't study AMPK phosphorylation, and the experimental data has many limitations that need addressing), etc.

      Nonetheless let aside the technical concern, if their findings hold true, this is an intriguing mechanism. There are interesting parallels to be made with observations of altered morphology and excitability of neurons in Huntington's disease model mice during the first postnatal week. These changes spontaneously reverts and are undetectable in the second week (Braz et al. Science 2022). Thus, precedent suggests that indeed dendritic development can take a slow course, and this study also suggests that this is important later since normalization of abnormal excitability during the first week in HTT mice prevents some of the phenotypes later in life. Here again, an interesting parallel could be made with the known role of AMPK in synaptic loss in AD models.

      Reviewer expertise: I have expertise in neuronal metabolism

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript, Hatsuda et al study the role of synaptic activity-dependent Ca2+ signals in activating AMPK and regulating mitochondrial homeostasis and dendritic outgrowth in developing neurons. Using cultures of immature primary hippocampal neurons, the authors found that Ca2+ transients activate AMPK, which regulates mitochondrial fission and dendritic growth. AMPK KD and pharmacological manipulation of AMPK activity confirmed a role of AMPK in mitochondrial morphology that correlated with impaired mitophagy and mitochondrial function. These findings led the authors to conclude that activity-dependent activation of AMPK promotes mitochondrial fission, which facilitates removal of dysfunctional mitochondria and thus contributes to maintaining a healthy mitochondrial pool that is necessary in the intense energetic effort that requires dendritic outgrowth.

      Major comments:

      Meanwhile the activation of AMPK and its role in mitochondrial fission and dendritic outgrowth is in general well demonstrated, the conclusion that AMPK is necessary for proper dendritic outgrowth because by promoting asymmetric mitochondrial fission facilitates mitophagy of dysfunctional mitochondria and thus ensures adequate generation of energy for dendritic outgrowth still seems preliminary.

      1. Authors use mitochondrial membrane potential (MMP), MMP flickering and mitochondrial ROS production as indicators of mitochondrial function, but this is not convincing. To analyze MMP, authors use TMRM fluorescence normalized by mitochondria area. This is not correct, using this strategy would mean that a symmetric fission would instantly double MMP and fusion would half MMP. The analysis must be made by tracing ROIs of the same surface in different mitochondria and determining TMRM fluorescence in these ROIs. But even in the case that there were changes in MMP, that it does not seem to be the case, MMP alone is not a good indicator of mitochondrial health. For instance, ATPase inhibitor causes increase in MMP and complex I inhibition diminish MMP and in both cases mitochondrial function is impaired. On the other hand, authors use increased flickering and mitochondrial ROS production as an indicator of enhanced respiration but they could also be used as indicators of mitochondrial dysfunction. Other assays, such as oxygen consumption, are needed to assess the mitochondrial function.
      2. It would be interesting to show a better characterization of the mitophagy flux and to test whether pharmacological or genetic stimulation of mitophagy could revert the effect of AMPK KD on dendritic outgrowth, ultimately linking AMPK, mitophagy and dendritic outgrowth. The latter experiments may be challenging but not impossible, for example see (PMID: 27760312).
      3. The authors treat neurons with glutamate to support the view that synaptic activity activates AMPK and promotes mitochondrial fission. However, the concentration used (100 M) may be excitotoxic. Synaptic activity can be induced by electric field stimulation, although this require equipment that may not be available in the authors' lab. Another alternative is network disinhibition with bicuculine or to use lower concentrations of glutamate. In any case, since neurons are immature and may respond differently from mature neurons, it would be worth to verify synaptic activity by analyzing Ca2+ transients.
      4. Results clearly indicate that AMPK enhances mitochondrial fission, as previously reported, and that AMPK is necessary for proper dendritic outgrowth. However, as indicated, the role of AMPK-dependent mitochondrial fission in promoting dendritic growth is not well demonstrated. For example, AMPK could regulate dendritic outgrowth through its role on cytoskeletal dynamics. A possible, and not very difficult experiment, would be the expression of non-phosphorylable MFF S155/172 mutant (perhaps is also needed to knock down the endogenous MFF). Use of this mutant would abolish AMPK-dependent mitochondrial fission while preserving its other functions.
      5. The statistical analysis seems appropriate, but it is confusing that sometimes non-parametric and sometimes parametric tests are used. It is not indicated which test is used to determine normality since the methods section lacks a statistical analysis section.

      Minor comments:

      1. Authors should double check the analysis shown in Fig. 1A. As it is shown, Ca2+ transients are 2-3% higher than basal, when the video shown in video 1 seem to indicate much more.
      2. It is intriguing that as shown in Fig. 2A, rather than an increase in pAMPK/AMPK at DIV5 seems there is less phosphorylation despite FRET analysis indicate more AMPK activation. On the other hand, most of the blots in Fig. 6 seem to be overexposed.
      3. It is necessary more explanation about spontaneous Ca2+ transients in immature cultures. What percentage of neuros experience it? Is it synchronized? If activity is observed in only a portion of the neurons, taking advantage of the stablished long-term live imaging protocol in the authors' lab, it would be interesting to study in the same culture whether neurons that experience spontaneous activity develop more than those that do not.
      4. It is interesting that AMPK KD in vivo impairs dendritic architecture at P5, however at P10 the defect seem to be somehow compensated. This result apparently detracts from the relevance of the findings, however last year was published a paper in which in an animal model of Huntington's disease dendritic architecture is delayed during the first week but normalizes thereafter. Despite later normalization in dendritic architecture, this early defect in maturation has effects in adulthood as pharmacological restoration of arborization during the neonatal period suppresses some phenotypes observed in adulthood (PMID: 36137051). I believe that discussing this paper, and others with similar message (if they exist, I do not know), would help the reader to recognize the potential relevance of the findings.

      I believe that all the proposed experiments would strongly help to support the claims of the paper and are perfectly feasible during the time given for a revision and economically affordable.

      Significance

      As authors already cite in their work, several groups have shown that mitochondrial fission is necessary for proper dendritic growth. Here, the authors have proposed that synaptic activity in immature neurons induce mitochondrial fission via AMPK activation and subsequent MFF phosphorylation. Many of the findings here are confirmations of previous work, for instance activity-dependent activation of AMPK (PMID: 25698741, PMID: 27012879) and induction of mitochondrial fission by AMPK via MFF phosphorylation (PMID: 26816379). The novelty of the work is in studying these processes in immature neurons and how this affects dendritic growth, which is of interest for cellular neuroscientist, but I do not think it represents a conceptual breakthrough. A more detailed understanding of the mechanism proposed, i.e. mitochondrial fission facilities removal of dysfunctional mitochondria to maintain the high energy demands of growing dendrites, would greatly enhance the significance of the study.

      This reviewer specializes in neuronal cell biology, specifically the study of the mechanisms by which mitochondrial function regulates aspects of neuronal physiology, including neuritic outgrowth.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Point-by-point response to reviewer comments

      General statement

      Several studies have previously demonstrated functional links between the death receptors (DR) TRAIL-R1/2 and the Unfolded protein response (UPR). In this manuscript, we describe the previously unrecognized IRE1-dependent dual regulation of the expression of another DR, CD95, and CD95L-induced cell death. Our work therefore adds to the current knowledge on the functional links existing between UPR and DR signaling and provides novel mechanistic insights on a dual regulation involving both transcriptional and post-transcriptional control of the expression of CD95 mRNA expression by IRE1. To demonstrate this, we have used both genetic (overexpression of XBP1s or dominant-negative forms of IRE1) and pharmacologic (IRE1 RNase inhibitor) approaches and cellular models of glioblastoma (GB) and triple-negative breast cancer (TNBC). We show that IRE1 RNase activity promotes CD95 expression and CD95-mediated cell death via the transcription factor XBP1s whilst IRE1 RNase limits CD95 expression and cell death via its ability to cleave RNAs (through RIDD, for Regulated IRE1-dependent decay of RNAs, activity). Furthermore, we report that IRE1-mediated control of CD95 expression is active in vivo, using a model of CD95-mediated fulminant hepatitis in mice. Lastly, we correlate these results to the pathology by showing that CD95 expression is decreased in RIDD high or XBP1s low human GB and TNBC tumors.

      We thank the reviewers for their fair assessment of our manuscript and for their insightful comments. Below, we describe the experiments we plan to carry out to address the reviewers’ comments.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)): Summary: Here the authors argue that IRE1 activation has opposite effects on Fas/CD95 expression/stability in a number of contexts, via either RIDD-dependent degradation of Fas mRNA or XBP-1-mediated induction of Fas expression, which led to either increased or decreased sensitivity to Fas-induced apoptosis in a number of settings. Major issues: The study is somewhat preliminary and inconclusive in that it is not clear why the RIDD function of XBP-1 appears to predominate in vitro in the cell lines examined, leading to modest increases in Fas expression levels (Figure 1) when IRE1 DN versus IRE1 WT constructs are overexpressed, which is at odds with the latter part of the paper which suggests that inhibition of RIDD led to reduced Fas expression levels. However, this could be due to supraphysiological levels of IRE1 being expressed under overexpression conditions, leading to confounding results. Similarly, when XBP-1s is overexpressed in vitro (Figure 5) the modest increases in CD95/Fas expression and sensitization to Fas-induced cell death may not be fully representative of what would be observed at physiological levels of XBP-1s activation. The in vivo results obtained using an IRE1 RNase inhibitor (MKC8866) contradict the earlier part of the study (as Fas levels decreased and there was protection from Fas-induced liver toxicity) and this could be due to a multitude of reasons. There is no doubt that impacting on IRE1 activity has interesting effects on CD95/Fas expression, which can be up- or -down-regulated, with consequences for cell death induced via engagement of the latter receptor, however, the manuscript does not offer a lot of clarity on which outcome is the predominant one in the context of engagement of the UPR. I have the following suggestions for improvement.

      We thank the reviewer for this overall positive assessment.

      1. The authors should induce ER stress using Thaps, Brefeldin A and Tunicamycin, and explore the effects of doing this on Fas expression levels in the context of silencing endogenous IRE1, XBP-1 and PERK.

      We do agree with this reviewer that the proposed experiments might further highlight which of the IRE1-dependent control of CD95 expression dominates upon ER stress induction. Therefore, we will perform the requested experiment in the various cell lines already used in the manuscript.

      We propose to evaluate the expression of CD95 (at the mRNA and total protein levels) under ER stress induction (by different ER stressors) upon knock-down of IRE1 or XBP1. Other DRs (TRAIL-R1 and 2) have been shown to be induced by PERK activation and it is also demonstrated that PERK and IRE1 signaling pathways coregulate each other. As such, we also propose to assess whether PERK could also control CD95 expression in this setting.

      1. The authors should explore the effects of silencing of IRE1, XBP-1 and PERK on constitutive Fas expression and the outcome of Fas/CD95-induced apoptosis in cells not experiencing an overt activation of the UPR (i.e. in the absence of Thaps, Brefeldin A or other UPR inducer).

      We thank the reviewer for their suggestion and will perform the requested experiments as proposed.

      1. The specificity of MKC8866 at the concentration used (30 uM) is unclear. What effect does MKCC have on sensitivity towards Fas-induced apoptosis, similar to the type of experimental set up presented in Figure 5A, 5B?

      Regarding the specificity of MKC8866, this drug has been optimized and refined from a family of IRE1-specific endoribonuclease inhibitors initially obtained from a chemical library screen [1-3]. This salicylaldehyde analog has already shown to be effective in multiple cancer models including breast [4, 5] and prostate [2] cancers. We have recently demonstrated its efficacy in a GB mouse model [6]. It is therefore a widely used IRE1 inhibitor, including in the dose range 10-30 mM used in this study (e.g [4, 5]). We therefore do not think it is in the scope of this manuscript to re-assess it specificity. However, we will aim at testing an additional IRE1 inhibitor to assess whether similar effects can be observed on CD95 expression in cells. To do so, we propose to use a novel IRE1 kinase inhibitor developed in the laboratory (DOI: 10.26434/chemrxiv-2022-2ld35 – Accepted iScience) and shown to efficiently blunt IRE1 activity in GB. As also suggested by the reviewer, we will assess whether the use of MKC-8866 can affect CD95L-induced cell death in cell lines.

      1. Similarly, what effects does MKC8866 (at 30 uM) have on key Fas pathway determinants, such as Fas, FLIPL, FLIPs, Caspase-8, FADD, RIPK1, A20, CYLD, cIAP-1, cIAP-2 and Bid? There are many points at which MKC8866 could influence the outcome of Fas receptor engagement beyond the receptor itself.

      In the present manuscript, we have shown that MKC-8866 reduces CD95 expression in mouse liver (IHC depicted in Figure 4B and S3B) in vivo and that, when used at 30 mM in vitro, it prevents the loss of CD95 expression induced by tunicamycin or thapsigargin in U87 cells (Fig 1C-F). We do agree with the reviewer that IRE1 may impact CD95-induced cell death beyond modulating CD95 expression, as also already discussed in the present manuscript. Therefore, and as suggested, we will assess whether MKC-8866, used at 30 mM, also impacts on the basal cellular expression of the various components of CD95 signaling mentioned by this reviewer.

      Minor issues:

      1. For the Fas mRNA cleavage experiments presented in Figure 2, there are no irrelevant control mRNAs to allow the reader to judge whether the effects presented are specific to Fas mRNA or are commonly observed for many mRNAs at these amounts of IRE1 (1 ug, 0.5 ug, which appear high).

      The expression of Fas mRNA was already normalized to GAPDH (which does not seem to vary upon incubation with IRE1). We nevertheless will test the expression of additional “irrelevant” RNAs as suggested by the reviewer.

      Reviewer #1 (Significance (Required)): General assessment: this is an interesting study, as there is little knowledge currently concerning how the UPR influences Fas expression or Fas-dependent outcomes. However, the impact of this work is limited by the overexpression approaches used, which could produce artifactual results, as well as the contradictory message of the study.

      Although we think that the message of the manuscript is indeed complex, the work presented herein does not rely exclusively on overexpression approaches as our genetic-based results are also comforted by the use of pharmacologic inhibitors of IRE1.

      Advance: the advance reported here is relatively modest and limited in scope due to the inconclusive nature of the data presented.

      Audience: this study will be of interests to specialists in the UPR and cell death communities.

      We thank the reviewer for acknowledging the overall novelty of our work. We do hope that the experiments proposed will address her/his remaining concerns.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors address here for the first time the connection between CD95, which is known as Fas, and ER stress. The role of another DR, TRAIL-R2 has been already reported, but this is the first study uncovering the link between Cd95 system and ER stress. The study is performed on the high level and supported by all necessary controls. They find the connection between IRE1 and CD95 and show that it might play a role in Cd95 signaling and attenuate CD95-mediated cell death.

      Further, the correlation between CD95 expression and IRE is found in tumors. Importantly the authors find out the connection between XBP1 and CD95 expression, which was not reported to date. Hence, it is a very important and highly essential piece of research.

      We thank the reviewer for these very positive comments and the acknowledging of the novelty and importance of our study.

      However, I would like to clarify the several issues:

      1: Figure 1. Tunicamycin obviously leads to deglycosylation of CD95, which is indicated by the appearance of 35 Kda band. This should be highlighted and commented.

      We agree, this will be commented on in the text.

      1. Figure 2c, d. The piece of mRNA structure, which is synthesized, might have the different secondary structure and might be not cleaved by IRE, accordingly. More detailed comments have to be provided in this regard.

      The model depicted in Figure 2B is a predicted computational secondary structure of CD95 mRNA. In the experiments performed in Figure 2A, C and D the mRNA was extracted from U87 cells prior to incubation with recombinant IRE1 and the resulting products analyzed using RT-qPCR with primers flanking different portions of the CD95 mRNA sequence. For Figures 2C and D, the primers used flank the two sites which were predicted to be cleaved by IRE1 based on previous work from our lab [7]. Even though we cannot exclude that additional sites can be targeted beyond these two, the fact that the amplification of CD95 sequence is reduced in samples pre-incubated with recombinant IRE1 strongly suggests that IRE1 is indeed able to cleave CD95 mRNA in these regions in vitro. We will modify the main text to further explain this point.

      1. Figure 3. Caspase-8-3 western blots show beautiful effects but did authors see some effects further downstream, eg on PARP1 cleavage? Was cell death (not viability) measured as well? Can you comment on this?

      This is absolutely right, we will test PARP-1 cleavage in this setting as suggested. Given the morphology of the cells we observed in the viability experiments, we would expect a similar trend using cell death assays. However, we do agree with the reviewer that this should be proven experimentally, so we will perform these experiments again using cell death assays as a read out.

      1. Did the authors looked at the DISC assembly? Did they detect some differences there?

      No, we did not. We would expect some difference given the impact we have observed on CD95 expression, caspase-8 activation and cell death of expressing dominant negative forms of IRE1, but this of course needs to be actually tested. We are in the process of optimizing CD95 DISC experiments in our lab and we therefore hope to be able to address this reviewer’s comment in a revised version of the manuscript.

      Reviewer #2 (Significance (Required)):

      This is an excellent study. The authors address here for the first time the connection between CD95, which is known as Fas, and ER stress. The role of another DR, TRAIL-R2 has been already reported, but this is the first study uncovering the link between Cd95 system and ER stress. The study is performed on the high level and supported by all necessary controls. This is an important advance for the death receptor field.

      Thank you again for these very positive comments and your insightful appreciation of our work.

      References

      1. Volkmann, K., Lucas, J. L., Vuga, D., Wang, X., Brumm, D., Stiles, C., Kriebel, D., Der-Sarkissian, A., Krishnan, K., Schweitzer, C., Liu, Z., Malyankar, U. M., Chiovitti, D., Canny, M., Durocher, D., Sicheri, F. & Patterson, J. B. (2011) Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease, J Biol Chem. 286, 12743-55.
      2. Sheng, X., Nenseth, H. Z., Qu, S., Kuzu, O. F., Frahnow, T., Simon, L., Greene, S., Zeng, Q., Fazli, L., Rennie, P. S., Mills, I. G., Danielsen, H., Theis, F., Patterson, J. B., Jin, Y. & Saatcioglu, F. (2019) IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling, Nat Commun. 10, 323.
      3. Langlais, T., Pelizzari-Raymundo, D., Mahdizadeh, S. J., Gouault, N., Carreaux, F., Chevet, E., Eriksson, L. A. & Guillory, X. (2021) Structural and molecular bases to IRE1 activity modulation, Biochem J. 478, 2953-2975.
      4. Logue, S. E., McGrath, E. P., Cleary, P., Greene, S., Mnich, K., Almanza, A., Chevet, E., Dwyer, R. M., Oommen, A., Legembre, P., Godey, F., Madden, E. C., Leuzzi, B., Obacz, J., Zeng, Q., Patterson, J. B., Jager, R., Gorman, A. M. & Samali, A. (2018) Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy, Nat Commun. 9, 3267.
      5. Almanza, A., Mnich, K., Blomme, A., Robinson, C. M., Rodriguez-Blanco, G., Kierszniowska, S., McGrath, E. P., Le Gallo, M., Pilalis, E., Swinnen, J. V., Chatziioannou, A., Chevet, E., Gorman, A. M. & Samali, A. (2022) Regulated IRE1α-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer, Nat Commun. 13, 2493.
      6. Le Reste, P. J., Pineau, R., Voutetakis, K., Samal, J., Jégou, G., Lhomond, S., Gorman, A. M., Samali, A., Patterson, J. B., Zeng, Q., Pandit, A., Aubry, M., Soriano, N., Etcheverry, A., Chatziioannou, A., Mosser, J., Avril, T. & Chevet, E. (2020) Local intracerebral Inhibition of IRE1 by MKC8866 sensitizes glioblastoma to irradiation/chemotherapy in vivo, 841296.
      7. Voutetakis, K. D., D.; Vlachavas, E-I., Leonidas, DD.; Chevet, E.; Chatzioannou, A. (In preparation) RNA sequence motif and structure in IRE1-mediated cleavage.
    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The authors address here for the first time the connection between CD95, which is known as Fas, and ER stress. The role of another DR, TRAIL-R2 has been already reported, but this is the first study uncovering the link between Cd95 system and ER stress.The study is performed on the high level and supported by all necessary controls. They find the connection between IRE1 and CD95 and show that it might play a role in Cd95 signaling and attenuate CD95-mediated cell death.

      Further, the correlation between CD95 expression and IRE is found in tumors. Importantly the authors find out the connection between XBP1 and CD95 expression, which was not reported to date. Hence, it is a very important and highly essential piece of research.

      However, I would like to clarify the several issues:

      1: Figure 1. Tunicamycin obviously leads to deglycosylation of CD95, which is indicated by the appearance of 35 Kda band. This should be highlighted and commented. 2.Figure 2c, d. The piece of mRNA structure, which is synthesized, might have the different secondary structure and might be not cleaved by IRE, accordingly. More detailed comments have to be provided in this regard. 3. Figure 3. Caspase-8-3 western blots show beautiful effects but did authors see some effects further downstream, eg on PARP1 cleavage? Was cell death ( not viability) measured as well? Can you comment on this? 4. Did the authors looked at the DISC assembly? Did they detect some differences there?

      Significance

      This is an excellent study. The authors address here for the first time the connection between CD95, which is known as Fas, and ER stress. The role of another DR, TRAIL-R2 has been already reported, but this is the first study uncovering the link between Cd95 system and ER stress.The study is performed on the high level and supported by all necessary controls. This is an important advance for the death receptor field.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      Here the authors argue that IRE1 activation has opposite effects on Fas/CD95 expression/stability in a number of contexts, via either RIDD-dependent degradation of Fas mRNA or XBP-1-mediated induction of Fas expression, which led to either increased or decreased sensitivity to Fas-induced apoptosis in a number of settings.

      Major issues:

      The study is somewhat preliminary and inconclusive in that it is not clear why the RIDD function of XBP-1 appears to predominate in vitro in the cell lines examined, leading to modest increases in Fas expression levels (Figure 1) when IRE1 DN versus IRE1 WT constructs are overexpressed, which is at odds with the latter part of the paper which suggests that inhibition of RIDD led to reduced Fas expression levels. However, this could be due to supraphysiological levels of IRE1 being expressed under overexpression conditions, leading to confounding results. Similarly, when XBP-1s is overexpressed in vitro (Figure 5) the modest increases in CD95/Fas expression and sensitization to Fas-induced cell death may not be fully representative of what would be observed at physiological levels of XBP-1s activation. The in vivo results obtained using an IRE1 RNase inhibitor (MKC8866) contradict the earlier part of the study (as Fas levels decreased and there was protection from Fas-induced liver toxicity) and this could be due to a multitude of reasons. There is no doubt that impacting on IRE1 activity has interesting effects on CD95/Fas expression, which can be up- or -down-regulated, with consequences for cell death induced via engagement of the latter receptor, however, the manuscript does not offer a lot of clarity on which outcome is the predominant one in the context of engagement of the UPR. I have the following suggestions for improvement.

      1. The authors should induce ER stress using Thaps, Brefeldin A and Tunicamycin, and explore the effects of doing this on Fas expression levels in the context of silencing endogenous IRE1, XBP-1 and PERK.
      2. The authors should explore the effects of silencing of IRE1, XBP-1 and PERK on constitutive Fas expression and the outcome of Fas/CD95-induced apoptosis in cells not experiencing an overt activation of the UPR (i.e. in the absence of Thaps, Brefeldin A or other UPR inducer).
      3. The specificity of MKC8866 at the concentration used (30 uM) is unclear. What effect does MKCC have on sensitivity towards Fas-induced apoptosis, similar to the type of experimental set up presented in Figure 5A, 5B?
      4. Similarly, what effects does MKC8866 (at 30 uM) have on key Fas pathway determinants, such as Fas, FLIPL, FLIPs, Caspase-8, FADD, RIPK1, A20, CYLD, cIAP-1, cIAP-2 and Bid? There are many points at which MKC8866 could influence the outcome of Fas receptor engagement beyond the receptor itself

      Minor issues:

      1. For the Fas mRNA cleavage experiments presented in Figure 2, there are no irrelevant control mRNAs to allow the reader to judge whether the effects presented are specific to Fas mRNA or are commonly observed for many mRNAs at these amounts of IRE1 (1 ug, 0.5 ug, which appear high).

      Significance

      General assessment: this is an interesting study, as there is little knowledge currently concerning how the UPR influences Fas expression or Fas-dependent outcomes. However, the impact of this work is limited by the overexpression approaches used, which could produce artifactual results, as well as the contradictory message of the study.

      Advance: the advance reported here is relatively modest and limited in scope due to the inconclusive nature of the data presented.

      Audience: this study will be of interests to specialists in the UPR and cell death communities.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      The authors do not wish to provide a response at this time.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Overview:

      This manuscript addresses the emerging nexus linking the machinery associated with clathrin endocytosis (clathrin-coated pits; CCPs), flat clathrin lattices (FCLs) and the recently discovered Reticular Adhesions (RAs). This is timely work, reflecting recent foci on the relationship between these structures and systems. Initially clearly identifying reductions in FCL and RA formation on fibronectin, the authors sought to clarify the mechanisms that suppress or prevent FCL / RA formation on this matrix. Knock-down of integrin avb5 (core RA component) suppressed both RA and FCL formation, suggesting a dependence of FCLs on this integrin. This was supported by acute avb5 inhibition via cilengitide (avb5 and avb3 inhibitor) which caused disassembly of existing RAs and FCLs.

      Notably, the inverse relationship also appears true, with suppression of core clathrin endocytic machinery (AP2 complex components) being sufficient to greatly deplete RA formation. Supporting this finding, overexpression of a dominant negative-acting protein fragment (AP180 c-terminal fragment) blocked both AP2 localisation to the plasma membrane and RA formation.

      To unmix this bi-directional dependence further, the authors used acute cilengitide treatment followed by washout and post-washout incubation to first deplete RAs (cillengitide) and then allow monitoring of en masse RA formation after cilengitide washout. This is an effective experiment, however, the analysis would benefit from greater depth, particularly relating to the order of events. Analysis of this aspect seems central to the thrust of the paper, and some statistical analysis of either static co-occurrence or dynamic ordering in large numbers of FCL / RA structures (i.e. hundreds) would be of value.

      The authors next focused on the observation that fibronectin suppressed both FCL and RA structures, by assessing the role of fibronectin-receptor integrin b1. Acute antibody mediated integrin b1 inhibition (mab13) and integrin b1 knock down both confirmed that in cells on fibronectin, suppression of integrin b1 is sufficient to permit massive upregulation of both FCL and RA formation. This is surprising and very interesting. It raises questions about the actual ECM requirements for avb5-mediated reticular adhesion formation. It would seem that fibronectin per se can support very efficient RA / FCL formation, but that normally concurrent integrin b1 activities would suppress this. Given this implication, it would be especially important to clarify the purity of FN ECM coating (as explored in questions 1-3 below) at the time of imaging. The discussion addresses a number of topics, and proposes a mechanistic model to explain the results presented. I don't find the mechanism very convincing, as the directionality of the dependence between FCLs and RAs is not clearly delineated by the experiments presented, in my opinion. That there is co-dependence is convincingly shown, but whether there is directionality, and what order of events underpins FCL then RA or RA then FCL formation, is unclear. Nonetheless, the evidence presented does generally support the idea of a shift in the way we consider the role of endocytic machinery in adhesion regulation, from a disassembly only related function to additional functions associated with adhesion formation and maintenance. Ideally, the mechanisms around this new assembly / maintenance function would be further delineated here, but regardless, this work does point in the direction of important new questions in this area. Further discussion about the potential role of this interdependent regulatory process in, for example, mitosis, seems unwarranted and should probably be removed.

      Questions:

      1. A technical question on the replating experiments onto specific matrix proteins; after coating surfaces with the purified ECM components or controls, what media were the cells replated in? Ideally this should be serum-free media, to ensure that the ECM components of FBS / FCS are not immediately added to the purified ECM components. This should be clarified in the methods.
      2. Related to above, I cannot see how long cells were plated onto the different ECM conditions. This would be relevant to know and should be clarified because cells will secrete ECM over time and thus the purity of the ECM components addressed is dependent on the length of time cells are incubated and imaged for after attachment.
      3. Similarly, it is noted that cells plated on 'glass' support RA formation. It should be clarified what ECM component is then actually responsible for cell adhesion and adhesion complex (RA, FA or other) formation
        • since this requires an ECM component of some type. Presumably, 'on glass' means whatever ECM is either derived from the media used during cell attachment / incubation (if that media contains serum, which is vitronectin rich), or whatever ECM is secreted by the cells themselves over the attachment / incubation period prior to imaging.
      4. In the cilengitide washout experiments, the evidence shown in figures seems to suggest that AP2-positive FCLs form in locations where avb5 (probably RAs) are already present, whereas avb5 positive structures do not form from AP2-only structures. Statistical analysis of this pattern (i.e. which protein is present first) would be valuable to address directionality. Notably, in Figure 3G, it appears that avb5 is present and increasing prior to the subsequent arrival of AP2.
        • a. I would suggest that the cilengitide experimental results(3E-G) be shown in a separate figure from the endocytosis inhibition results (3A-D).
      5. The integrin b1 inhibition and knock down results are clear and interesting. Clarifying the ECM components present during these experiments would be valuable to interpretation of the paper.

      Significance

      see above

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      Hakanpää and colleagues report on the relationship between flat clathrin lattices (FCLs) and reticular adhesions, with FCLs being preposed to nucleate reticular adhesions. Overall the experimental work is high quality and the data are generally well presented.

      Major comments:

      The Introduction is very brief and doesn't cover the information required to understand the paper. There are three cellular structures to be understood: focal adhesions, reticular adhesions and FCLs. The intro jumps straight into the FCLs (the paper is written from a FCL point of view) but there is no information about the other two structures really particularly the differences between them. Furthermore, there is nothing in the intro about cellular adhesion or why this is even worth studying. The authors should fully revise this Intro, there is much room for improvement!

      Fig 4D I could not understand this plot and the legend did not describe it properly. What are the units of FCL frequency? I guess it is FCLs per some distance (10µm?), the images need a scale bar. OK, I read the description in the methods and now I see it is the proportion of total CCSs that are FCLs; so frequency is the wrong term. The legend says that there were 32 videos and there are 32 points on the plot but what we need to know is: where n = 1 cell, what did the FCL frequency do over time? A line is drawn on the graph, no info on what the line is and the fit is poor (R2 < 0.5). The authors should take their series of data points from individual cells and fit curves to each and describe the summary statistics of the parameters of these fits OR average the data and fit to that, using the 1 SD of the data for weighting the fit. Probably more data is required to do any meaningful fitting here. To my eye it looks like FCL frequency goes from 0.3 to a plateau of 0.5 at 10 min and that more timepoints between 0 and 10 min would have been useful.

      Fig 3F/G is a nice expt. It looks as though the ITGB5 signal is already creeping up when the AP2 arrives. I agree that they accelerate together, but the prior accumulation of integrin is at odds with the conclusion that AP2/clathrin nucleates the adhesion. This experiment is missing two controls: what is the behaviour of ITGB5 in AP2 negative regions? What happens to both signals in the continued presence of cilengitide? These controls are needed to conclude that AP2 is nucleating the adhesion.

      Minor comments:

      Fig 6 - several typos - "adaptor proteins" "engagement" "containing"

      Significance

      Previously, endocytosis (clathrin-mediated) was thought to decrease cellular adhesion by removal of integrins. This paper suggests that the same machinery can be used to build adhesions. This is a surprising conclusion that will be of interest to many cell biologists; the topic of clathrin and adhesion is being actively explored by several labs either from the adhesion or the endocytosis sides. I have been following this topic from a distance and don't know the details of all the published papers, but this paper does seem to add something new over the recent work from Taraska, Sonnenberg, Montagnac, Strömblad.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript, Hakanpää et al explored the connection between flat clathrin lattices and reticular adhesions and the regulatory mechanism underlying the formation of these two structures in the U2OS cells. The author provided evidence that the composition of the extracellular matrix plays critical roles in their formation and concluded that fibronectin and its receptor, β1 integrin, inhibit the assembly of FCLs and RAs. The author depleted several components of the clathrin mediated endocytosis machinery and could show that it blocked the formation of reticular adhesions.

      Major comments

      1. In Fig. 1, the author plated U2OS cells on surfaces coated with different ECM components and then measured the frequency of FCLs. How long were the cells allowed to attach to the surfaces before they were imaged? Were the cells serum-starved before seeding? Given the fact that cells attached well even on BSA-coated dishes, I guess the cells were allow to attach and spread for at least overnight. In this case, the ECM components (vitronectin is very abundant in the serum in a concentration of 200-400 ug/mL, fibronectin is another one) in the culture medium would coat the glass surface and this has profound effects on the adhesion status of the cells. Thus, more details of this experiment need to be included and more attention should be pay regarding the data interpretation. In Fig. 1C, it seems like the mere glass surface induced the most FCL formation. However, if the cells are grown on the glass overnight or for days, the major component of the surface would actually be vitronectin and fibronectin (maybe more) rather than glass, thus it is not accurate to say that 'VTN reduced FCL frequency to some extent compared to glass' (Line 67).
      2. Line 91-93. It is not accurate to claim that the reticular adhesions are the only type of cellular adhesion maintained during mitosis. In several studies, active integrin β1 are found along the retraction fibers (Dix et al, Dev Cell, 2018; Chen et al, NCB, 2022). The importance of αVβ5 integrin in the spatial memory during mitosis was only shown in the in vitro cell culture. In fact, mice lacking αVβ5 integrin or its ligand vitronectin are both viable and show no major defects during embryonic development (Zheng et al, PNAS, 1995; Huang et al, Mol Cell Biol, 2000), suggesting reticular adhesions are dispensable in cell division in vivo. I advise to change it into'RAs are composed of αVβ5 integrin and are maintained during mitosis in culture'.
      3. It has been shown that fibronectin and laminin coating inhibit formation of reticular adhesions (Lock et al, NCB, 2018, Fig. S7). This study should be cited in Fig. 1. I suggest to also include laminin in Fig. 1C to make the list of ECM components more complete.
      4. Fig. 5C, the fluorescent intensity of αVβ5 integrin is increased dramatically when integrin β1 was depleted compared to the control shRNA. Although the images were collected in the TIRF mode, it is important to measure αVβ5 and β1 integrin level by immunoblot to confirm the knockdown efficiency of β1 integrin and exclude the possibility that the increase of RA formation is not due to the compensation by upregulation of αVβ5.
      5. Antibody-blocking or depletion of β1 integrin both lead to accumulation of FCL and RA formation, indicating that the activation of β1 integrin is critical in the inhibition of FCL and RA. Activation of β1 integrin depends on talin and kindlin, which bind β5 integrin with a much lower affinity. Would depletion of talin or kindlin cause FCL and RA formation similar to inhibition of β1 integrin?

      Minor comments

      1. In most of the quantifications, only the number of the cells measured were mentioned in the legend. The number of replicate experiments is missing. It should be included in the legend as well.
      2. A recent study (https://doi.org/10.1242/jcs.259465) demonstrated the molecular mechanism underlying the localization of αVβ5 integrin in flat clathrin lattices. It should be mentioned in the introduction.

      Significance

      Although it is not novel that FCLs and RAs share same localization and might actually be the different parts of the same structure (Zuidema et al, JCS, 2022), the observation that inhibiting β1 integrin stimulates FCL and RA assembly is interesting as it indicates the counter-balance between the αVβ5 and α5β1 integrins. It is a pity that the author did not dig deeper into the mechanism underlying this interesting finding, which should greatly increase the impact of this study.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer 1:

      We would like to thank you for taking the time to review our manuscript. Your thoughtful and insightful comments have greatly improved the quality of our work. We appreciate your thoroughness in evaluating our study and providing valuable feedback.

      Your constructive criticism and suggestions have helped us identify areas that needed further clarification and improvement, and we are grateful for your efforts in guiding us towards a stronger manuscript.

      Thank you again for your time and expertise in reviewing our work. We hope that you find our revisions satisfactory and look forward to hearing your thoughts on the revised manuscript.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      In this manuscript by Sharma and colleagues, the authors investigate the transcriptional regulation of the TAL1 isoforms - that derive from differential promoter usage and/or alternative splicing - and the contribution of TAL1 long and TAL1 short protein isoforms in normal haematopoietic development and disease.

      The study suggests that TAL1 transcript isoforms are fine-tuned regulated. By using CRISPR/Cas9 techniques, the authors show that the enhancer -8 (MuTE) and enhancer -60 differentially regulate the TAL1 isoforms. Whether the remaining enhancers at the TAL1 locus (see Zhou Y et al, Blood 2013) also differentially regulate TAL1 transcription remains to be elucidated.

      The authors found that TAL1 short isoform interacts strongly with T-cell specific transcription factors such as TCF3 and TCF12, as compared to TAL1 long isoform. TAL1 short shows an apoptotic transcription signature and it fails in rescuing cell growth as compared to TAL1 long in T-ALL. In addition, TAL1 short promotes erythropoiesis.

      Lastly, the authors suggest that altering TAL1 long and TAL1 short protein isoforms ratio could have a potential therapeutic application in disease, but further studies are needed. *

      We would like to thank you for your time and effort in reviewing our manuscript. Your constructive feedback and insightful comments have been immensely valuable in improving the quality of our work. Your expertise in the field has undoubtedly contributed to the credibility and accuracy of this research. In addition, your dedication and attention to detail have been instrumental in shaping the final version of the manuscript.

      * I have a number of comments: Figure 1 It was not mentioned that MOLT4 cells also have MuTE. Do Jurkat and MOLT4 share a similar profile in terms of TAL1 transcript isoforms? It would have been very interesting to see whether the TAL1 transcript isoforms are similar in SIL-TAL1+ cells (e.g RPMI-8402). In these cells, TAL1 activation results from a deletion that fuses the 5' non-coding region of SIL with TAL1. *

      Thank you for your comment. We apologize for the confusion regarding the MOLT4 cells in our analysis. We have now updated the manuscript to explicitly mention the presence of MuTE in MOLT4 cells (Line 127). Additionally, we agree that it would be interesting to investigate whether the TAL1 transcript isoforms are similar in SIL-TAL1+ cells, such as RPMI-8402. To address this point, we have included the CCRF-CEM cell line that harbors the SIL-TAL1 recombination in our analysis. We have updated the manuscript with these new findings (Fig. 1C&D and S1A&B). Thank you for bringing this to our attention.

      Figure 2 * It is not very clear how the expression of the short isoform delta exon 3 is quantified. Detailed information and a schematic of the primer location could be helpful. *

      Thank you for your comment. We apologize for any confusion regarding the quantification of the expression of the short isoform (delta exon 3). The detailed information and schematic of the primer location can be found in Supplementary Figure 2B. We have included the location of each primer used in real-time PCR analysis for the quantification of all TAL1 isoforms. We hope this additional information will address your concerns.

      * The results on Figure 2 derive from complex Cas9/CRISPR experiments. A schematic representation showing the location of the following elements is missing: CTCF sites, CTCF gRNA target region, dCas9-p300 gRNA target region and -60 enhancer. *

      We agree that providing a schematic representation of the Cas9/CRISPR experiments would be helpful for better understanding the data in Figure 2. We have now included a detailed schematic of the location of the CTCF sites, CTCF gRNA target region, dCas9-p300 gRNA target region and -60 enhancer in Supplementary Figure 2E. We believe this new figure will provide a clearer overview of the experiments performed and will aid in the interpretation of the results.

      * Are the levels of dCas9-p300 WT and dCas9-p300 MUT comparable in transfected HEK 293 cells? Were those possibly measured by qPCR or Western Blot? Why the authors chose to use 293T cells for the CTCF del as the enhancer usage around the locus must be so different from haematopoietic cells. *

      Thank you for your question. We have added Western Blot analysis to compare the levels of dCas9-p300 WT and dCas9-p300 MUT in transfected HEK293T cells, as suggested. The results are presented in Supp. Fig. S2H.

      Regarding the choice of HEK293T cells for the CTCF deletion experiment, we selected this cell line for its low expression of TAL1, which contributes to a high dynamic range when tethering p300 core to a closed chromatin region. We have added a clarification of our rationale for using HEK293T cells in the revised manuscript (Lines 177-8). Thank you for your valuable feedback.

      * Is CPT - camptothecin? A control gene that is sensitive to CPT treatment would ensure the inhibitor is working. *

      Thank you for your comment. Indeed, CPT stands for camptothecin, and this information is already included in the methods section. We have also added this information to the results section (Line 221) to make it clearer.

      Regarding the suggestion to use a control gene sensitive to CPT treatment, we agree that this could be a useful addition to our experimental design. To address this, we have quantified the amount of TAL1 transcript to an endogenous control which is not transcribed by RNA Polymerase II (RNAPII) (18s rRNA). As a positive control, we compared Cyclo A, our endogenous control, to 18s rRNA and observed a reduction (Supp. Fig. S2K). This allows us to confidently conclude that the inhibitor is working as intended.

      Thank you for bringing up this point, and we hope that our response addresses your concern.

      *

      In supplementary Figure 2D, the reduction in expression in Jurkat Del-12 is restricted to TSS2. There is no reduction in TAL1 TSS1 and TAL1 TSS4 (this is not clear from the result description section). As seen, these isoforms are upregulated and that could suggest a compensatory mechanism mediated by alternative promoter activation. The fact that Jurkat Del-12 express TAL1 from MSCV-TAL1 could also suggest that TSS1 and TSS4 are upregulated by TAL1 or indirectly, by other members of the TAL/LMO complex (see Sanda T et al, Cancer Cell 2012) *

      Certainly, we appreciate your feedback. Supplementary Figure 2D indeed shows that the MuTE enhancer has a differential effect on the promoters, and we have now included this in the text of the manuscript. Regarding the TAL1-long isoform, while MSCV-TAL1 in the Jurkat Del-12 cell line does give rise to this isoform, our results from Figure 3A did not find TAL1-long to have a differential effect on TAL1 promoters. It is important to note that the experiment conducted was an exogenous construct in HEK293T cells, which has its limitations. Thus, the speculation that TAL1-long drives the result in supplementary Figure 2D is possible, and we have added this to the text. Thank you for bringing up this important point (Lines 167-9).

      Figure 3 * A. Are the levels of TAL1 short cDNA and TAL1 long cDNA comparable in the co-transfection luciferase experiments? The overexpression of the isoforms does not reflect the endogenous expression levels in cell lines where one of the isoforms is more predominantly expressed (e.g Jurkat cells express low levels of TAL1 short). *

      Thank you for your comment. To address your concern, we have added real time (Supp. Fig. S3A) as well as Western blot in a new figure (Supp. Fig. S3B) to show that the levels of TAL1-short and TAL1-long cDNA are comparable in the co-transfection luciferase experiments. Additionally, we observed a very low amount of endogenous TAL1 isoforms in the cell line (Supp. Fig. S3A&B), which was below detection using these methods. This suggests that the effect of the endogenous TAL1 in this cell line is low. We appreciate your feedback, and we hope this additional information addresses your concern.

      * Figure 4 Are the levels of flag-TAL1 long and flag-TAL1 short comparable? The levels of expression could explain the low intensity signal for TAL1 long. *

      Thank you for your insightful comment. Indeed, the issue of isoform quantification is critical in understanding the functional differences between TAL1-short and TAL1-long. To address this concern, we performed careful quantification of the isoforms and made sure that the amount was equal or slightly in favor of TAL1-long before conducting the experiments in this manuscript. We have also added a Western blot in Supp. Fig. S3A and real time in Supp. Fig. S3B showing the similar amount of the two isoforms. Furthermore, in Figure 4A, we provided the amount of each isoform in the input section, showing a higher amount of TAL1-long. This strengthens our result, which shows that TAL1-short binds stronger to TCF-3 and 12. Protein levels for ChIP-seq experiment (Fig. 4B-H) is now in Supp. Fig. S4B. We thank you for bringing up this important point, and we hope that our additional data and clarifications have addressed your concern

      *Is there any reason for not performing a depletion of endogenous TAL1 prior to the ChIP seq flag experiment? *

      Thank you for your comment. In our experience, infecting Jurkat cells with shRNA or an expressing vector systems can induce some cellular stress, and we did not want to add additional stress to the cells by depleting endogenous TAL1. Since we immunoprecipitated using a Flag-tagged protein, we did not see a need to deplete the endogenous TAL1 protein. However, in our RNA-seq experiment, depletion of endogenous TAL1 was critical, and we have added this additional step in this experiment.

      * Could the authors speculate about MAF motif enrichment in both isoforms and not in TAL1-total? *

      Thank you for bringing up this interesting point. It is worth noting that while all ChIP-seq experiments were performed in Jurkat cells, not all of them were conducted by us. In particular, ChIP-seq of TAL1 total was performed by Sanda et al., 2012, using an endogenous antibody against both isoforms, whereas we conducted ChIP-seq for TAL1-short and TAL1-long using a FLAG tag antibody in cells expressing each of the isoforms. Therefore, the different conditions of these experiments may have contributed to the observed MAF motif enrichment in both isoforms and not in TAL1-total. While we cannot provide a definitive explanation, we speculate that the overexpression of the isoforms or the presence of the FLAG tag may have facilitated the detection of the MAF motif. We have added this discussion to the manuscript to acknowledge and address this interesting observation (Lines: 307-8).

      1. Sanda et al., Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 22, 209-221 (2012).

        * Do TAL1 long and TAL1 short recognise the same DNA motif? *

      This is indeed a very interesting question but a difficult one to answer since TAL1 does not bind to the DNA alone but in a complex. In this situation, the ChIP-seq de-novo binding results suggest motifs that could be recognized by TAL1 or any of its complex partners. Using previous data, TAL1’s binding motif is CAGNTG (Hsu et al., 1994), while this motif was not identified in our analysis of the TAL1-total or FLAG-TAL1-long ChIP-seq results, we did, however, identify this sequence in FLAG-TAL1-short ChIP-seq results (p value=1e-93). We predict that this discrepancy is due to the complex nature of transcription factors binding and the fact that the ChIP-seq results were not all done in the same way. We have now added this to the discussion (Lines: 419-25).

      1. L. Hsu et al., Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins. Mol Cell Biol 14, 1256-1265 (1994).

      * Figure 6 In A and B, are the levels of flag-TAL1 long and flag-TAL1 short in transduced K562 comparable? In C and D, are the TAL1 levels reduced at the protein level?*

      Thank you for your question. To answer your question, we added Western Blot analysis to show the comparable levels of flag-TAL1-long and flag-TAL1-short in transduced K562 cells (Supp. Fig. S6C). In Figure 6C and D, we also added Western Blot analysis to show the reduction in TAL1 protein levels upon shRNA-mediated knockdown(Supp. Fig. S6B).

      * Minor points: Figure 1 A. Include a scale bar *

      To address this, we included coordinates of the components of the gene marked in the figure.

      * C. Loading control such as GAPDH is missing in the Western Blot. Are CUTLL cells the same as CUTTL-1? *

      We added loading controls as requested now supplementary Fig. 1C, S2C, S3A, S4B, S6B&C. Yes, CUTLL is the same as CUTLL-1 we have now fixed this in the text (Line 120).

      D. Adjust scale of the CHIP seq tracks in K562 cells in order to see the peak summit. *Include genome build *

      Thank you for your comment. We have adjusted the scale of the ChIP-seq tracks in K562 cells as suggested to improve the visualization of the peak summit. However, one of the peaks still had a much higher signal and the summit is still missing from this particular peak. To address this, we have added a new figure in the supp. Fig. S1C materials where we adjusted the peak to show the summit. Please note that in this track, the chromatin structure at the enhancers is missing, and therefore, we did not include it in the main figure. Thank you for bringing this to our attention.

      We have added a genome build hg19 to the figure legend.

      * In supplementary Figure 1B, the symbol scheme is not clear *

      Thank you for this note, we have replaced the figure and added text to make it clearer.

      * Figure 2 A & C. Remove 'amount' from the Y axis. Is the total mRNA amount calculated as % of the reference genes? It could be specified on the y axis or figure legend. *

      We have removed the word "amount" from the Y axis as requested. Total mRNA amount is normalized relative to the reference genes (∆∆Cq) by Bio-Rad's CFX Maestro software (version 2.3) according to the formula:

      where:

      • RQ = Relative Quantity of a sample
      • Ref = Reference target in a run that includes one or more reference targets in each sample
      • GOI = Gene of interest (one target)

      * In supplementary Figure 2C, a loading control is missing.*

      We have added alpha-tubulin to this figure.

      * Figures 4, 5 and 6 Size of the figures should be increased. *

      We have increased the figure size as suggested. *

      Reviewer #1 (Significance (Required)): The study from Sharma and colleagues is novel and it extends the knowledge on TAL1 regulation and the role of TAL1 in development and disease. Although the study suggests that there is a correlation between enhancers, chromatin mark deposition at exons and regulation of alternative splicing, the mechanistic link is not fully elucidated.*

      To further elucidate the mechanistic link between the MuTE enhancer, broad H3K4me3 modification spanning 7.5 Kbp from TAL1 promoter 1 to promoter 5 (as shown in Fig. 1D), and alternative splicing, we conducted experiments where we manipulated KMT2B, a component of the SET1/COMPASS complexes responsible for methylating H3K4. Our findings indicate that silencing KMT2B in Jurkat cells led to a significant 30% increase in TAL1-∆Ex3 (Fig. 2H and Supp. Fig. S2I&J). These results contribute to a more comprehensive understanding of the molecular mechanisms underlying TAL1 alternative splicing regulation.

      The findings on TAL1 short protein are interesting but the data on TAL1 long lacks some refinement so then robust conclusions can be drawn. * The experimental data lacks a few controls. The text is clear and prior studies could be better referenced. *

      We have made an effort to better reference out manuscript.

      * As TAL1 is a very crucial transcription factor oncogene in T-ALL, the study is important as it addresses a very relevant question in the field that is the regulation of the transcription of TAL1 and the functional relevance of both TAL1 short and TAL1 long isoforms. *

      Reviewer 2: *

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: Sharma et al. thoroughly characterized the regulation of TAL1 by mapping the use of its five promoters and enhancers, which together transcribe five transcripts, coding for two protein isoforms. For that purpose the authors used few cell lines: Jurkat as a T-ALL cell line, chronic myeloid leukemia (CML) cell line K562 and HEK293T with low TAL1 expression, as well as CutLL and MOLT4. They profiled the chromatin marks H3K27ac and H3K4me3 at the TAL1 locus, and show that when a the -8 enhancer is compromised tha chromatin marks change, and not only the expression level of TAL1 is reduced, the level of exon 3 skipping is increased. When the -60 enhancr was activated, TAL1 expression increased, and exon 3 skipping was reduced. Those findings indicate that in tal1, transcription and alternative splicing are co-regulated, independent of RNAPII. The authors also show that as an autoregulator, TAL1-short has a preference to TSS1-3 of TAL1, which is not shared by TAL1-long, and that each of the 5' UTR affect Tal1 expression differently. TAL1-short binds E-proteins more strongly than TAL1-long, binds many more sites than TAL1-long and stronger, and each isoform has unique set of targets. Finally, the authors set to identify the different functions of the TAL1 isoforms, and showed that Tal1-short slows cell growth and leads to TAL1-short but not TAL1-long leads to exhaustion of hematopoietic stem cells and promotes differentiation into erythroids. This paper used for the first time TAL1 isoform specific ChIP-seq, which enable accurate definition of isoform-specific targets in Jurkat cells. They demonstrated an interaction between choice of TSS and alternative splicing, and isoform specific functions. Given the clinical importance of TAL1 and the meticulous work performed to characterize its isoform specific regulation and function, I find this manuscript of interest, and only have minor suggestions to improve readability. *

      Thank you for taking the time to carefully review our manuscript on the regulation and function of TAL1 isoforms. We appreciate your positive feedback on our comprehensive characterization of TAL1 regulation using chromatin profiling and isoform-specific ChIP-seq. We are glad that you found our findings on the co-regulation of transcription and alternative splicing, as well as the isoform-specific functions of TAL1, to be of interest.

      We also appreciate your suggestions to improve the readability of the manuscript and have made the necessary revisions accordingly. Your feedback has been invaluable in strengthening the quality of our work, and we are grateful for your contribution to the scientific community.

      * Minor comments: Add explicitly the motivation for choosing the cell line in each part. *

      We have added motivation (Lines: 157-8, 177-8, 192-194, 235-6 text that was on the previous version: 192-194, 379-80).

      * Figure 1 - Consider marking the promoter numbers and the enhancers names in the same names as in text (-8,-60 etc.), to make it easier for the readers to understand which enhancers is being discussed. *

      This in a very important point. We have added the numbering to Figure 1D and Supp. Fig. S2A, B & E.

      *P5, P18 - ProtParam is only a prediction tool, and does not supply an experimental measurement, as may be assumed from text. Please rephrase accordingly. *

      The words “prediction tool” were added in the indicated paragraphs (Lines 115 and 427).

      * Figure 2B/D - y axis label unclear, not explained in text. In accordance, unclear if the change is in the amount of RNA, or the ratio between the long and short variants. *

      Thank you for this comment. We greatly appreciate your feedback and suggestions. To make our calculations, which are the norm in the splicing field, clearer, we have now added text to Figure 4 and provided more detailed explanations in lines 670-73. We hope that these modifications will improve the clarity and comprehensiveness of our manuscript.

      *Consider removing the bars and increasing the dots, to make the graphs cleaner. *

      We removed the bars throughout the manuscript for a cleaner look.

      * P8 - The term '5C' may require more explanation, depending on target audience. *

      We have added text to explain the technique (Lines 179-81).

      * Figure 3 - the trend is that TAL1-short promotes transcription from all five TSSs. However, only in TSS1-3 is the difference significant, but the difference between the long and short forms is not significant. It is unclear if "The mean of three independent experiments done with three replicates" means overall there are three replicates per condition or nine. Please rephrase to clarify. *

      Thank you for your comment. To clarify, we want to state that each biological experiment was done in three technical replicates, resulting in a total of nine replicates for each condition. We apologize for any confusion and have now rephrased to: The mean was calculated from three independent biological experiments, each performed with three technical replicates (Lines: 696 and 699).

      *Fig 4 A - it seems that many of the sites bound by Tal1 total are not bind by either Tal1-short or Tal1-long. Indeed very little overlap between Tal1-short and Tal-1-total is seen in Fig 4I as well. It seems Tal1-long has very few peaks. Consider adding a discussion of possible reasons. *

      We agree that these findings are noteworthy and warrant further discussion. We added text to the discussion section to explore potential reasons for these observations (Lines 416-25).

      * Fig 4c - it is hard to distinguish the different lines. Consider a more clear visualization. Also, some text is in a font size too small to read. *

      We have changed the format of the figure and took out the input data from the main figure to help the visualization. The input data appear in the Supp. Fig. S4C.

      * Fig 4 D-H - will be useful to see the numbers, not just the % divided by %. *

      A table with the specific numbers can be found in Supp Figure 4F-J.

      * Fig 4 legend - 'I&L' possibly means 'I-L'. P14 - refer to where the results of the 'validation using real-time PCR' are shown. P16 - symbol replaced by an empty rectangle 20 􀀀M *

      Thank you for these valuable comments, we have fixed/added these in the manuscript.

      * Figure 6D - Y axis value seem strange (fold change relative to day 0 should be 1 at day 0). Consider different Y axis label for C and D to clarify. *

      Thank you for this comment, we have changed the y-axis to: Fold-change relative to day 1.

      * P18 - It is unclear which "two isoforms with posttranslational modifications which affected the migration rate of the protein (Fig. 1C)" were shown. Only two isoforms are mentioned throughout the paper. *

      We have added text to clarify we are referring to TAL1-short and long (Lines 409-10).

      *

      P18 - "Our ChIP-seq results suggest that the isoforms bind at the same location (Fig. 4B)." - in 4B it seems most of TAL1-short bound positions are not bound by TAL1 long. Please clarify. *

      * Worth mentioning that the Total TAL1 is taken from Jurkat cells but from a different experiment. * We have changed the statement and added the text referring to the experiments done independently (Lines 422-3).

      *

      Reviewer #2 (Significance (Required)): This paper used for the first time TAL1 isoform specific ChIP-seq, which enable accurate definition of isoform-specific targets in Jurkat cells. They demonstrated an interaction between choice of TSS and alternative splicing, and isoform specific functions. Given the clinical importance of TAL1 and the meticulous work performed to characterize its isoform specific regulation and function, I find this manuscript of interest, and only have minor suggestions to improve readability. *

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      Sharma et al. thoroughly characterized the regulation of TAL1 by mapping the use of its five promoters and enhancers, which together transcribe five transcripts, coding for two protein isoforms. For that purpose the authors used few cell lines: Jurkat as a T-ALL cell line, chronic myeloid leukemia (CML) cell line K562 and HEK293T with low TAL1 expression, as well as CutLL and MOLT4.

      They profiled the chromatin marks H3K27ac and H3K4me3 at the TAL1 locus, and show that when a the -8 enhancer is compromised tha chromatin marks change, and not only the expression level of TAL1 is reduced, the level of exon 3 skipping is increased. When the -60 enhancr was activated, TAL1 expression increased, and exon 3 skipping was reduced. Those findings indicate that in tal1, transcription and alternative splicing are co-regulated, independent of RNAPII. The authors also show that as an autoregulator, TAL1-short has a preference to TSS1-3 of TAL1, which is not shared by TAL1-long, and that each of the 5' UTR affect Tal1 expression differently. TAL1-short binds E-proteins more strongly than TAL1-long, binds many more sites than TAL1-long and stronger, and each isoform has unique set of targets.

      Finally, the authors set to identify the different functions of the TAL1 isoforms, and showed that Tal1-short slows cell growth and leads to TAL1-short but not TAL1-long leads to exhaustion of hematopoietic stem cells and promotes differentiation into erythroids.

      This paper used for the first time TAL1 isoform specific ChIP-seq, which enable accurate definition of isoform-specific targets in Jurkat cells. They demonstrated an interaction between choice of TSS and alternative splicing, and isoform specific functions. Given the clinical importance of TAL1 and the meticulous work performed to characterize its isoform specific regulation and function, I find this manuscript of interest, and only have minor suggestions to improve readability.

      Minor comments:

      Add explicitly the motivation for choosing the cell line in each part.

      Figure 1 - Consider marking the promoter numbers and the enhancers names in the same names as in text (-8,-60 etc.), to make it easier for the readers to understand which enhancers is being discussed.

      P5, P18 - ProtParam is only a prediction tool, and does not supply an experimental measurement, as may be assumed from text. Please rephrase accordingly.

      Figure 2B/D - y axis label unclear, not explained in text. In accordance, unclear if the change is in the amount of RNA, or the ratio between the long and short variants. Consider removing the bars and increasing the dots, to make the graphs cleaner.

      P8 - The term '5C' may require more explanation, depending on target audience.

      Figure 3 - the trend is that TAL1-short promotes transcription from all five TSSs. However, only in TSS1-3 is the difference significant, but the difference between the long and short forms is not significant. It is unclear if "The mean of three independent experiments done with three replicates" means overall there are three replicates per condition or nine. Please rephrase to clarify.

      Fig 4 A - it seems that many of the sites bound by Tal1 total are not bind by either Tal1-short or Tal1-long. Indeed very little overlap between Tal1-short and Tal-1-total is seen in Fig 4I as well. It seems Tal1-long has very few peaks. Consider adding a discussion of possible reasons.

      Fig 4c - it is hard to distinguish the different lines. Consider a more clear visualization. Also, some text is in a font size too small to read.

      Fig 4 D-H - will be useful to see the numbers, not just the % divided by %.

      Fig 4 legend - 'I&L' possibly means 'I-L'.

      P14 - refer to where the results of the 'validation using real-time PCR' are shown.

      P16 - symbol replaced by an empty rectangle 20 􀀀M

      Figure 6D - Y axis value seem strange (fold change relative to day 0 should be 1 at day 0). Consider different Y axis label for C and D to clarify.

      P18 - It is unclear which "two isoforms with posttranslational modifications which affected the migration rate of the protein (Fig. 1C)" were shown. Only two isoforms are mentioned throughout the paper.

      P18 - "Our ChIP-seq results suggest that the isoforms bind at the same location (Fig. 4B)." - in 4B it seems most of TAL1-short bound positions are not bound by TAL1 long. Please clarify. Worth mentioning that the Total TAL1 is taken from Jurkat cells but from a different experiment.

      Significance

      This paper used for the first time TAL1 isoform specific ChIP-seq, which enable accurate definition of isoform-specific targets in Jurkat cells. They demonstrated an interaction between choice of TSS and alternative splicing, and isoform specific functions. Given the clinical importance of TAL1 and the meticulous work performed to characterize its isoform specific regulation and function, I find this manuscript of interest, and only have minor suggestions to improve readability.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript by Sharma and colleagues, the authors investigate the transcriptional regulation of the TAL1 isoforms - that derive from differential promoter usage and/or alternative splicing - and the contribution of TAL1 long and TAL1 short protein isoforms in normal haematopoietic development and disease.

      The study suggests that TAL1 transcript isoforms are fine-tuned regulated. By using CRISPR/Cas9 techniques, the authors show that the enhancer -8 (MuTE) and enhancer -60 differentially regulate the TAL1 isoforms. Whether the remaining enhancers at the TAL1 locus (see Zhou Y et al, Blood 2013) also differentially regulate TAL1 transcription remains to be elucidated.

      The authors found that TAL1 short isoform interacts strongly with T-cell specific transcription factors such as TCF3 and TCF12, as compared to TAL1 long isoform. TAL1 short shows an apoptotic transcription signature and it fails in rescuing cell growth as compared to TAL1 long in T-ALL. In addition, TAL1 short promotes erythropoiesis.

      Lastly, the authors suggest that altering TAL1 long and TAL1 short protein isoforms ratio could have a potential therapeutic application in disease, but further studies are needed.

      I have a number of comments:

      Figure 1

      It was not mentioned that MOLT4 cells also have MuTE. Do Jurkat and MOLT4 share a similar profile in terms of TAL1 transcript isoforms? It would have been very interesting to see whether the TAL1 transcript isoforms are similar in SIL-TAL1+ cells (e.g RPMI-8402). In these cells, TAL1 activation results from a deletion that fuses the 5' non-coding region of SIL with TAL1.

      Figure 2

      It is not very clear how the expression of the short isoform delta exon 3 is quantified. Detailed information and a schematic of the primer location could be helpful.

      The results on Figure 2 derive from complex Cas9/CRISPR experiments. A schematic representation showing the location of the following elements is missing: CTCF sites, CTCF gRNA target region, dCas9-p300 gRNA target region and -60 enhancer. Are the levels of dCas9-p300 WT and dCas9-p300 MUT comparable in transfected HEK 293 cells? Were those possibly measured by qPCR or Western Blot? Why the authors chose to use 293T cells for the CTCF del as the enhancer usage around the locus must be so different from haematopoietic cells.

      Is CPT - camptothecin? A control gene that is sensitive to CPT treatment would ensure the inhibitor is working.

      In supplementary Figure 2D, the reduction in expression in Jurkat Del-12 is restricted to TSS2. There is no reduction in TAL1 TSS1 and TAL1 TSS4 (this is not clear from the result description section). As seen, these isoforms are upregulated and that could suggest a compensatory mechanism mediated by alternative promoter activation. The fact that Jurkat Del-12 express TAL1 from MSCV-TAL1 could also suggest that TSS1 and TSS4 are upregulated by TAL1 or indirectly, by other members of the TAL/LMO complex (see Sanda T et al, Cancer Cell 2012)

      Figure 3

      A. Are the levels of TAL1 short cDNA and TAL1 long cDNA comparable in the co-transfection luciferase experiments? The overexpression of the isoforms does not reflect the endogenous expression levels in cell lines where one of the isoforms is more predominantly expressed (e.g Jurkat cells express low levels of TAL1 short).

      Figure 4

      Are the levels of flag-TAL1 long and flag-TAL1 short comparable? The levels of expression could explain the low intensity signal for TAL1 long. Is there any reason for not performing a depletion of endogenous TAL1 prior to the ChIP seq flag experiment? Could the authors speculate about MAF motif enrichment in both isoforms and not in TAL1-total? Do TAL1 long and TAL1 short recognise the same DNA motif?

      Figure 6

      In A and B, are the levels of flag-TAL1 long and flag-TAL1 short in transduced K562 comparable? In C and D, are the TAL1 levels reduced at the protein level?

      Minor points:

      Figure 1

      A. Include a scale bar C. Loading control such as GAPDH is missing in the Western Blot. Are CUTLL cells the same as CUTTL-1? D. Adjust scale of the CHIP seq tracks in K562 cells in order to see the peak summit. Include genome build In supplementary Figure 1B, the symbol scheme is not clear

      Figure 2

      A & C. Remove 'amount' from the Y axis. Is the total mRNA amount calculated as % of the reference genes? It could be specified on the y axis or figure legend.

      In supplementary Figure 2C, a loading control is missing.

      Figures 4, 5 and 6

      Size of the figures should be increased.

      Significance

      The study from Sharma and colleagues is novel and it extends the knowledge on TAL1 regulation and the role of TAL1 in development and disease. Although the study suggests that there is a correlation between enhancers, chromatin mark deposition at exons and regulation of alternative splicing, the mechanistic link is not fully elucidated. The findings on TAL1 short protein are interesting but the data on TAL1 long lacks some refinement so then robust conclusions can be drawn.

      The experimental data lacks a few controls. The text is clear and prior studies could be better referenced.

      As TAL1 is a very crucial transcription factor oncogene in T-ALL, the study is important as it addresses a very relevant question in the field that is the regulation of the transcription of TAL1 and the functional relevance of both TAL1 short and TAL1 long isoforms.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank the reviewers for their extensive review of our manuscript and constructive criticism. We have attempted to address the points raised in the reviewer's comments and have performed additional experiments and have edited the text of the manuscript to explain these points. Please see below, our point-by-point response to the reviewer’s comments. In the submitted revised manuscript, some figure numbers have changed from the prior reviewed version.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this MS, Mrj - a member of the JDP family of Hsp70 co-chaperones was identified as a regulator of the conversion of Orb2A (the Dm ortholog of CPEB) to its prion-like form.

      In drosophila, Mrj deletion does not cause any gross neurodevelopmental defect nor leads to detectable alterations in protein homeostasis. Loss of Mrj, however, does lead to altered Orb2 oligomerization. Consistent with a role of prion-like characteristics of Orb2 in memory consolidation, loss of Mrj results in a deficit in long-term memory.

      Aside from the fact that there are some unclarities related to the physicochemical properties of Orb2 and how Mrj affects this precisely, the finding that a chaperone could be important for memory is an interesting observation, albeit not entirely novel.

      In addition, there are several minor technical concerns and questions I have that I feel the authors should address, including a major one related to the actual approach used to demonstrate memory deficits upon loss of Mrj.

      Reviewer #1 (Significance (Required)):

      Figure 1 (plus related Supplemental figures): • There seem to be two isoforms of Mrj (like what has been found for human DNAJB6). I find it striking to see that only (preferentially?) the shorter isoform interacts with Orb2. For DNAJB6, the long isoform is mainly related to an NLS and the presumed substrate binding is identical for both isoforms. If this is true for Dm-Mrj too, the authors could actually use this to demonstrate the specificity of their IPs where Orb2 is exclusively non-nuclear?

      According to Flybase, Mrj has 8 predicted isoforms of which four are of 259 amino acids (PA, PB, PC, and PD), 3 are of 346 amino acids (PE, PG, and PH) and one is of 208 amino acids (PF) length (Supplementary data 1). We isolated RNA from flyheads and used this in RT-PCR experiments to check which Mrj isoforms express in the brain. Since both the 346 amino acid (1038 nucleotide long) and 259 amino acids (777 nucleotides long) form, which we refer to as the long and middle isoform, has the same N and C terminal sequences we used the same primer pair for this, but on RT-PCR the only amplicon we got corresponds to the 259 amino acid form. For the 208 amino acids (624 nucleotides long) form we designed a separate forward primer and attempted to amplify this using RT-PCR but were unable to detect this isoform also. This data is now presented in Supplemental Figure 4B. Since the only isoform detected from fly head cDNA corresponded to the 259 amino acid form, we think this is the predominant isoform of Mrj expressing in Drosophila and this is what is in our DnaJ library and what we have used in all our experiments here. This is also the same isoform described in previous papers on Drosophila Mrj (Fayazi et al, 2006; Li et al, 2016b). For this 259 amino acid Mrj isoform, we see its expression in both the nucleus and cytoplasm (Supplemental Figure 4C). As the long 346 AA fragment was undetectable in the brain, it was not feasible to address the reviewer’s point of using the long and short forms of Mrj for IP with Orb2. However, we have performed IP of human CPEB2 (hCPEB2) with the long and short isoforms of human DnaJB6 and have detected interaction of hCPEB2 with both the long and short isoforms of DnaJB6 (Supplemental Figure 6E).

      • I would be interested to know a bit more about the other 5 JDPs that are interactors with Orb2: are the human orthologs of those known? It is striking that these other 5 JDPs interact with Orb2 in Dm (in IPs) but have no impact on Sup35 prion behavior. Importantly, this does not imply they may not have impact on the prion-like behavior of other Dm substrates, including Dm-Orb2.

      We have performed BlastP analysis of CG4164, CG9828, CG7130, DroJ2, and Tpr2 protein sequences against Human proteins. Based on this we have listed the highest-ranking candidate identified here for each of these genes.

      Drosophila Gene

      Human gene

      Query cover

      Percent identity

      E value

      CG4164

      dnaJ homolog subfamily B member 11 isoform 1

      98 %

      62.96%

      2e-150

      CG9828

      dnaJ homolog subfamily A member 2

      92%

      39.41%

      3e-84

      CG7130

      dnaJ homolog subfamily B member 4 isoform d

      56%

      69.44%

      2e-30

      Tpr2

      dnaJ homolog subfamily C member 7 isoform 1

      93%

      46.22%

      6e-139

      DroJ2

      dnaJ homolog subfamily A member 4 isoform 2

      98%

      60.60%

      2e-169

      In the context of the chimeric Sup35-based assay where Orb2A’s Prion-like domain (PrD) is coupled with the C-terminal domain of Sup35, the only protein which could convert Orb2A PrD-Sup35 C from its non-prion state to prion state was Mrj. Within the limitations of this heterologous-system based assay, the other 5 DnaJ domain proteins as well as the Hsp70’s were unable to convert the Orb2A PrD from its non-prion to prion-like state. What these other 5 interacting JDP proteins are doing through their interaction with Orb2A and if they are even expressing in the Orb2 relevant neurons will need to be tested separately and will be the subject of our future studies.

      • The data in panels H, I indeed suggest that Mrj1 alters the (size of) the oligomers. It would be important to know what is the actual physicochemical change that is occurring here. The observed species are insoluble in 0.1 % TX100 but soluble in 0.1% SDS, which suggest they could be gels, but not real amyloids such as formed by the polyQ proteins that require much higher SDS concentrations (~2%) to be solubilized. This is relevant as Mrj1 reduces polyQ amyloidogenesis whereas is here is shown to enhance Orb2A oligomerization/gelidification. In the same context, it is striking to see that without Mrj the amount of Orb2A seems drastically reduced and I wonder whether this might be due to the fact that in the absence of Mrj a part of Orb2A is not recovered/solubilized due to its conversion for a gel to a solid/amyloid state? In other words: Mrj1 may not promote the prion state, but prevents that state to become an irreversible, non-functional amyloid?

      On the reviewer’s point to address what is the actual physicochemical change occurring here, we will need to develop methods to purify the Orb2 oligomers in significant quantities to examine and distinguish if they are of gel or real amyloid-like nature. Currently, within the limitations of our ongoing work, this has not been possible for us to do and we can attempt to address this in our future work. Cryo-EM derived structure of endogenous Orb2 oligomers purified from a fly head extract from 3 million fly heads, made in the TritonX-100 and NP-40 containing buffer, the same buffer as what we have used here for the first soluble fraction, showed these oligomers as amyloids (Hervas et al, 2020). If the oligomers extracted using 0.1% and 2% SDS are structurally and physicochemically different, within the limitations of our current work, had not been possible to address.

      The other point raised by the reviewer is, if in the absence of Mrj (in the context of Figure 4 of our previously submitted manuscript), a part of Orb2 is not solubilized due to us using a lower 0.1% SDS for extraction. To address this, we attempted to see how much of leftover Orb2 is remaining in the pellet after extraction with 0.1 % SDS. Towards this, according to the reviewers’ suggestion, we used a higher 2% SDS containing buffer to resuspend the leftover pellet after 0.1% SDS extraction, and post solubilisation ran all the fractions in SDD-AGE. We did this experiment with both wild-type and Mrj knockout fly heads. Under these different extractions, we first observed while there is more Orb2 in the soluble fraction (Triton X-100 extracted) of Mrj knockout, this amount is reduced in both the 0.1% SDS solubilized and 2% SDS solubilized fractions. So, even though there is leftover Orb2 after 0.1% SDS extraction, which can be extracted using 2% SDS, this amount is reduced in Mrj knockout. The other observation here is the Orb2 extracted using 2% SDS shows a longer smear in comparison to the 0.1% SDS extracted form suggesting a possibility of more and higher-sized oligomers present in this fraction. Since we do not have the exact physicochemical characterization of these oligomers detected with 0.1% and 2% SDS-containing buffer, we are not differentiating them by using the terms gels and real amyloids, but refer to them as 0.1% SDS soluble Orb2 oligomers and 2% SDS soluble Orb2 oligomers. Overall, our observations here suggest in absence of Mrj, both of these kinds of Orb2 oligomers are decreased and so Mrj is most likely promoting the formation of Orb2 oligomers. It is possible that the 0.1% SDS soluble Orb2 oligomers gradually accumulate and undergo a further transition to the 2% SDS soluble Orb2 oligomers, so if in absence of Mrj, the formation of the 0.1% SDS soluble Orb2 oligomers is decreased, the next step of formation of 2% SDS soluble Orb2 oligomers also be decreased. This data is now presented in Figure 5H, I and J).

      On the other possibility raised by the reviewer that Mrj can prevent the oligomeric state of Orb2 to become an irreversible non-functional amyloid, we think it is still possible for Mrj to do this but this could not be tested under the present conditions.

      • It may be good for clarity to refer to the human Mrj as DNAJB6 according to the HUGO nomenclature. Also, the first evidence for its oligomerization was by Hageman et al 2010.

      We have now changed mentions of human Mrj to DNAJB6. We apologize for missing the Hageman et al 2010 reference and have now cited this reference in the context of Mrj oligomerization.

      • It is striking to see that Mrj co-Ips with Hsp70AA, Hsp70-4 but not Hsp70Cb. The fact that interactions were detected without using crosslinking is also striking given the reported transient nature of J-domain-Hsp70 interactions Together, this may even suggest that Mrj-1 is recognized as a Hsp70 substrate (for Hsp70AA, Hsp70-4 but not Hsp70Cb) rather than as a co-chaperone. In fact, a variant of Mrj-1 with a mutation in the HPD motif should be used to exclude this option.

      In IP experiments we notice Mrj interacts with Hsp70Aa and Hsc70-4 but not with Hsc70-1 and Hsc70Cb. In our previously submitted manuscript, we realized we made a typo on the figure, where we referred to Hsp70Aa as Hsc70Aa. We have corrected this in the current revised manuscript. On the crosslinking point raised by the reviewer, we reviewed the published literature for studies of immunoprecipitation experiments which showed an interaction between DnaJB6 and Hsp70. We noted while one of the papers (Kakkar et al, 2016) report the use of a crosslinker in the experiment which showed an interaction between GFP-Hsp70 and V5-DnaJB6, in another two papers the interaction between endogenous Mrj and endogenous Hsp/c70 (Izawa et al, 2000) and Flag-Hsp70 and GFP-DnaJB6 (Bengoechea et al, 2020) could be detected without using any crosslinker. Our observations of detecting the interaction of Mrj with Hsp70Aa and Hsc70-4 in the absence of a crosslinker are thus similar to the observations reported by (Izawa et al, 2000; Bengoechea et al, 2020).

      On the point of if Mrj is a substrate for Hsp70aa and Hsc70-4 and not a co-chaperone, we feel in the context of this manuscript, since we are focussing on the role of Mrj in the regulation of oligomerization of Orb2 and in memory, the experiment with HPD motif mutant is probably not necessary here. However, if the reviewers suggest this experiment to be essential, we can attempt this experiment by making this HPD motif mutant.

      • The rest of these data reconfirm nicely that Mrj/DNAJB6 can suppress polyQ-Htt aggregation. Yet note that in this case the oligomers that enter the agarose gel are smaller, not bigger. This argues that Mrj is not an enhancer of oligomerization, but rather an inhibitor of the conversion of oligomers to a more amyloid like state.

      Figure 2 and Supplemental Figure 4 discuss the effect of Mrj on Htt aggregation. We have used 2 different Htt constructs here. For Figure 2I, we used only Exon1 of Htt with the poly Q repeats. Here in SDD-AGE, for the control lane, we see the Htt oligomers as a smear for the control. For Mrj, we see only a small band at the bottom which can be interpreted most likely as either a monomer or as small oligomers since we do not observe any smear here. However, for the 588 amino acid fragment of HttQ138 in the SDD-AGE we do not see a difference in the length of the smear but in the intensity of the smear of the Htt oligomers (Supplemental Figure 4E). Based on this we are suggesting in presence of Mrj, there are lesser Htt oligomers. On the point of Mrj is not an enhancer of oligomerization, but rather an inhibitor of the conversion of oligomers to a more amyloid-like state, our experiments with the Mrj knockout show reduced Orb2 oligomers (both for 0.1% and 2% SDS soluble forms), suggesting Mrj plays a role in the conversion of Orb2 to the oligomeric state. If Mrj inhibits the conversion of oligomers to a more amyloid-like state, this is possible but we couldn’t test this hypothesis here. However, for Htt amyloid aggregates, previous works done by other labs with DnaJB6 as well as our experiments with Mrj suggest this as a likely possibility.

      Figure 3: • The finding that knockout of DNAJB6 in mice is embryonic lethal is related to a problem with placental development and not embryonic development (Hunter et al, 1999; Watson et al, 2007, 2009, 2011) as well recognized by the authors. Therefore, the finding that deletion of Dm-Mrj has no developmental phenotype in Drosophila may not be that surprising.

      We agree with the reviewer’s point that DNAJB6 mutant mice have a problem with placental development. However, one of the papers cited here (Watson et al, 2009) suggests DNAJB6 also plays a crucial role in the development of the embryo independent of the placenta development defect. The mammalian DNAJB6 mutant embryos generated using the tetraploid complementation method show severe neural defects including exencephaly, defect in neural tube closure, reduced neural tube size, and thinner neuroepithelium. Due to these features seen in the mice knockout, and the lack of such developmental defects in the Drosophila knockout, we interpreted our findings in Drosophila as significantly different from the mammals.

      • It is a bit more surprising that Mrj knockout flies showed no aggregation phenotype or muscle phenotype, especially knowing that DNAJB6 mutations are linked to human diseases associated with aggregation (again well recognized by the authors). However, most of these diseases are late-onset and the phenotype may require stress to be revealed. So, while important to this MS in terms of not being a confounder for the memory test, I would like to ask the authors to add a note of caution that their data do not exclude that loss of Mrj activity still may cause a protein aggregation-related disease phenotype. Yet, I also do think that for the main message of this MS, it is not required to further test this experimentally.

      We agree with the reviewer and have added this suggestion in the discussion that loss of Mrj may still result in a protein aggregation-related disease phenotype, probably under a sensitized condition of certain stresses which is not tested in this manuscript.

      Figure 4:

      • IPs were done with Orb2A as bite and clearly pulled down substantial amounts of GFP-tagged Mrj. For interactions with Orb2B, a V5-tagged Mrj was use and only a minor fraction was pulled down. Why were two different Mrj constructs used for Arb2A and Orb2b?

      In the previously submitted manuscript, we have used HA-tagged Mrj (not V5) for checking the interaction with full-length Orb2B tagged with GFP. This was done with the goal of using the same Mrj-HA construct as that used in the initial Orb2A immunoprecipitation experiment. Since this has raised some concern as in the IPs to check for interaction between truncated Orb2A constructs (Orb2A325-GFP and Orb2AD162-GFP) and Mrj (Mrj-RFP), we used a different GFP and RFP tag combination. To address this, we have now added the same tag combinations for the IPs (Mrj-RFP with Orb2A-GFP and Orb2B-GFP). In these immunoprecipitation experiments where Mrj-RFP was pulled down using RFP Trap beads, we were able to detect positive interaction with GFP-tagged Orb2A and Orb2B. This data is now added in Figure 4F and 4I. We also have added the IP data for interaction between Mrj-HA and untagged Orb2B in Figure 4K, similar to the combination of initial experiment between Mrj-HA and untagged Orb2A.

      • In addition, I think it would be important what one would see when pulling on Mrj1, especially under non-denaturing conditions and what is the status of the Orb2 that is than found to be associated with Mrj (monomeric, oligomeric and what size).

      We have now performed IP from wild-type fly heads using anti Mrj antibody and ran the immunoprecipitate in SDS-PAGE and SDD-AGE followed by immunoblotting them with anti-Orb2 antibody. Our experiments suggest that immunoprecipitating endogenous Mrj brings down both the monomeric and oligomeric forms of Orb2. This data is now added in Figure 4L, M and N.

      • This also relates to my remark at figure 1 and the subsequent fractionation experiments they show here in which there is a slight (not very convincing) increase in the ratio of TX100-soluble and insoluble (0.1% SDS soluble) material. My question would be if there is a remaining fraction of 0.1% insoluble (2% soluble) Orb2 and how Mrj affects that? As stated before, this is (only) mechanistically relevant to understanding why there is less oligomers of Orb2 in terms of Mrj either promoting it or by preventing it to transfer from a gel to a solid state. The link to the memory data remains intriguing, irrespective of what is going on (but also on those data I do have several comments: see below).

      We have addressed this in response to the reviewer’s comments on Figure 1. We find in both wild type and Mrj knockout fly heads, there are Orb2 oligomers that can be detected using 0.1% SDS extraction and with further extraction with 2% SDS. The 2% SDS soluble Orb2 oligomers were previously insoluble during 0.1% SDS-based extraction. However, the amounts of both of these oligomers are reduced in Mrj knockout fly heads. Since we do not have the physicochemical characterization of both of these kinds of oligomers, we are not using the terms gel or solid state here but referring to these oligomers as 0.1% SDS soluble Orb2 oligomers and 2% SDS soluble Orb2 oligomers. We speculate that the 0.1% SDS soluble Orb2 oligomers over time transition to the 2% SDS soluble Orb2 oligomers. As in the absence of Mrj in the knockout flies, both the 0.1% SDS soluble and 2% SDS soluble Orb2 oligomers are decreased, this suggests Mrj is promoting the formation of Orb2 oligomers. On the reviewer’s point, if Mrj can prevent the transition from 0.1% SDS soluble to 2% SDS soluble Orb2 oligomers, we think it is possible for Mrj to both promote oligomerization of Orb2 as well as prevent it from forming bigger non-functional oligomers, but the second point is not tested here. The relevant data is now presented in Figure 5H, I and J.

      • I also find the sentence that "Mrj is probably regulating the oligomerization of endogenous Orb2 in the brain" somewhat an overstatement. I would rather prefer to say that the data show that Mrj1 affects the oligomeric behavior/status of Orb2.

      Based on the reviewer’s suggestion we have now changed the sentence to Mrj is probably regulating the oligomeric status of Orb2

      Figure 5:

      • To my knowledge, the Elav driver regulates expression in all neurons, but not in glial cells that comprise a significant part of the fly heads/brain. The complete absence of Mrj in the fly-heads when using this driver is therefore somewhat surprising. Or do we need to conclude from this that glial cells normally already lack Mrj expression?

      On driving Mrj RNAi with Elav Gal4, we did not detect any Mrj in the western. We attempted to address the glial contribution towards Mrj’s expression we used a Glia-specific driver Repo Gal4 line to drive the control and Mrj RNAi line and performed a western blot using fly head lysate with anti-Mrj antibody. In this experiment, we did not observe any difference in Mrj levels between the two sets. As the Mrj antibody raised by us works in western blots but not in immunostainings, we could not do a colocalization analysis with a glial marker. However, we used the Mrj knockout Gal4 line to drive NLS-GFP and performed immunostainings of these flies with a glial marker anti-Repo antibody. Here we see two kinds of cells in the brain, one which have GFP but no Repo and the other where both are present together. This suggest that while Glial cells have Mrj but probably majority of Mrj in the brain comes from the neurons. We also found a reference where it was shown that Elav protein as well as Elav Gal4 at earlier stages of development expresses in neuroblasts and in all Glia (Berger et al, 2007). So, another possibility is when we are driving Mrj RNAi using Elav Gal4, this knocks down Mrj in both the neurons as well as in the glia. This coupled with the catalytic nature of RNAi probably creates an effective knockdown of Mrj as seen in the western blot. This data is now added in Supplementary Figure 5G and H.

      • Why not use these lines also for the memory test for confirmation? I understand the concerns of putative confounding effects of a full knockdown (which were however not reported), but now data rely only on the mushroom body-specific knockdown for the 201Y Gal4 line, for which the knockdown efficiency is not provided. But even more so, here a temperature shift (22oC-30oC) was required to activate the expression of the siRNA. For the effects of this shift alone no controls were provided. The functional memory data are nice and consistent with the hypothesis, but can it be excluded that the temperature shift (rather than the Mrj) knockdown has caused the memory defects? I think it is crucial to include the proper controls or use a different knockdown approach that does not require temperature shifts or even use the knockout flies.

      We have now performed the memory experiments with Mrj knockout flies. Our experiments show at 16 and 24-hour time points Mrj knockout flies have significantly reduced memory in comparison to the control wildtype. This data is now added in Figure 6B.

      Figure 6:

      The finding of a co-IP between Rpl18 and Mrj (one-directional only) by no means suffices to conclude that Mrj may interact with nascent Orb2 chains here (which would be the relevant finding here). The fact that Mrj is a self-oligomerising protein (also in vitro, so irrespective of ribosomal associations!), and hence is found in all fractions in a sucrose gradient, also is not a very strong case for its specific interaction with polysomes. The finding that there is just more self-oligomerizing Orb2A co-sedimenting with polysomes in sucrose gradients neither is evidence for a direct effect of Mrj enhancing association of Orb2A with the translating ribosomes even though it would fit the hypothesis. So all in all, I think the data in this figure and non-conclusive and the related conclusions should be deleted.

      We have now performed the reverse co-IP between Rpl18-Flag and Mrj-HA using anti-HA antibody and could detect an interaction between the two. This data is now added in Supplementary Figure 6A.

      To address if Mrj is a self-oligomerizing protein that can migrate to heavier polysome fractions due to its size, we have loaded recombinant Mrj on an identical sucrose gradient as we use for polysome analysis. Post ultra-centrifugation we fractionated the gradients and checked if Mrj can be detected in the fraction numbers where polysomes are present. In this experiment, we could not detect recombinant Mrj in the heavier polysome fractions (data presented in Supplementary Figure 6B). Overall, our observations of Mrj-Rpl18 IPs, the presence of cellularly expressed Mrj in polysome fractions, and the absence of recombinant Mrj from these fractions, suggest a likelihood of Mrj’s association with the translating ribosomes.

      On the reviewer’s point of us concluding Mrj may interact with nascent Orb2 chains, we have not mentioned this possibility in the manuscript as we don’t have any evidence to suggest this. We have also added a sentence: This indicates that in presence of Mrj, the association of Orb2A with the translating ribosomes is enhanced, however, if this is a consequence of increased Orb2A oligomers due to Mrj or caused by interaction between polysome-associated Orb2A and Mrj will need to be tested in future.

      Based on these above-mentioned points, we hope we can keep the data and conclusions of this section.

      Overall, provided that proper controls/additional data can be provided for the key experiments of memory consolidation, I find this an intriguing study that would point towards a role of a molecular chaperone in controlling memory functions via regulating the oligomeric status of a prion-like protein and that is worthwhile publishing in a good journal.

      However, in terms of mechanistical interpretations, several points have to be reconsidered (see remarks on figure 1,4); this pertains especially to what is discussed on page 13. In addition, I'd like the authors to put their data into the perspective of the findings that in differentiated neurons DNAJB6 levels actually decline, not incline (Thiruvalluvan et al, 2020), which would be counterintuitive if these proteins are playing a role as suggested here in memory consolidation.

      We have addressed the comments on Figures 1 and 4 earlier. We have also added new memory experiment’s data with the Mrj knockout in Figure 6.

      We have attempted to put the observations with Drosophila Mrj in perspective to observations in Thiruvalluvan et al, on human DnaJB6 in the discussions as follows:

      Can our observation in Drosophila also be relevant for higher mammals? We tested this with human DnaJB6 and CPEB2. In mice CPEB2 knockout exhibited impaired hippocampus-dependent memory (Lu et al, 2017), so like Drosophila Orb2, its mammalian homolog CPEB2 is also a regulator of long-term memory. In immunoprecipitation assay we could detect an interaction between human CPEB2 and human DnaJB6, suggesting the feasibility for DnaJB6 to play a similar role to Drosophila Mrj in mammals. However, as the human DnaJB6 level was observed to undergo a reduction in transitioning from ES cells to neurons, (Thiruvalluvan et al, 2020) how this can be reconciled with its possible role in the regulation of memory. We speculate, such a reduction if is happening in the brain will occur in a highly regulatable manner to allow precise control over CPEB2 oligomerization only in specific neurons where it is needed and the reduced levels of DnaJB6 is probably sufficient to aid CPEB oligomerization Alternatively, there may be additional chaperones that may function in a stage-specific manner and be able to compensate for the decline in levels of DNAJB6.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The manuscript describes the role of the Hsp40 family protein Mrj in the prion-like oligomerization of Orb2. The authors demonstrate that Mrj promotes the oligomerization of Orb2, while a loss in Mrj diminishes the extent of Orb2 oligomerization. They observe that while Mrj is not an essential gene, a loss in Mrj causes deficiencies in the consolidation of long-term memory. Further, they demonstrate that Mrj associates with polysomes and increases the association of Orb2 with polysomes.

      Major comments: None

      Minor comments:

      1. In the section describing the chaperone properties of Mrj in clearing Htt aggregates (Fig 2), the legend describes that "Mrj-HA constructs are more efficient in decreasing Htt aggregation compared to Mrj-RFP". It would be helpful to add Mrj-RFP to the quantification in Fig 2G to know exactly the difference in efficiency. Is there an explanation for why the 2 constructs behave differently?

      We have added the quantitation of Htt aggregates in presence of Mrj-RFP in the revised version (Data presented in Figure 2G). While the efficiency of Mrj-RFP to decrease Htt aggregates is significantly less in comparison to Mrj-HA, it is still significantly better in comparison to the control CG7133-HA construct. It is possible, due to the tagging of Mrj with a larger tag (RFP), this reduces its ability to decrease the Htt aggregates in comparison to the construct where Mrj is tagged with a much smaller HA tag.

      Figs A, B, C, G need to have quantification of the percentage of colocalization with details about the number of cells quantified for each experiment.

      We have now added the intensity profile images and colocalization quantitation (pearson’s coefficient) in the Supplemental Figure 5A and B. This quantitation is done from multiple ROI’s taken from at 4-6 cells.

      In Fig 6 B, C, F, G it would be helpful to label the 40S, 60S and 80S peaks in the A 254 trace.

      We have now labeled the 80S, and polysome peaks in the Figure 7B, C, F and G. We could not separate the 40S and 60S peaks in the A254 trace.

      It's interesting that Mrj has opposing functions with regard to aggregation when comparing huntingtin with Orb2. From the literature presented in the discussion, it appears as though chaperones including Mrj have an anti-aggregation role for prions. It would be helpful to have more discussion around why, in the case of Orb2, this is different. The discussion states that "The only Hsp40 chaperone which was found similar to Mrj in increasing Orb2's oligomerization is the yeast Jjj2 protein" - this point needs elaboration, as well as a reference.

      In the discussions section we have now added the following speculations on this:

      One question here is why Mrj behaves differently with Orb2 in comparison to other amyloids. Orb2 differs from other pathogenic amyloids in its extremely transient existence in the toxic intermediate form (Hervás et al, 2016). For the pathogenic amyloids, since they exist in the toxic intermediate form for longer, Mrj probably gets more time to act and prevent or delay them from forming larger aggregates. For Orb2, Mrj may help to quickly transition it from the toxic intermediate state, thereby helping this state to be transient instead of longer. An alternate possibility is post-transition from the toxic intermediate state, Mrj stabilizes these Orb2 oligomers and prevents them from forming larger aggregates. This can be through Mrj interacting with Orb2 oligomers and blocking its surface thereby preventing more Orb2 from assembling over it. Another difference between the Orb2 oligomeric amyloids and the pathogenic amyloids is in the nature of their amyloid core. For the pathogenic amyloids, this core is hydrophobic devoid of any water molecules, however for Orb2, the core is hydrophilic. This raises another possibility that if the Orb2 oligomers go beyond a certain critical size, Mrj can destabilize these larger Orb2 aggregates by targeting its hydrophilic core.

      On the Jjj2 point raised by the reviewer, we have added the (Li et al, 2016a) reference now and elaborated as:

      The only Hsp40 chaperone which was found similar to Mrj in increasing Orb2’s oligomerization is the yeast Jjj2 protein. In Jjj2 knockout yeast strain, Orb2A mainly exists in the non-prion state, whereas on Jjj2 overexpression the non-prion state could be converted to a prion-like state. In S2 cells coexpression of Jjj2 with Orb2A lead to an increase in Orb2 oligomerization (Li et al, 2016a). However, Jjj2 differs from Mrj, as when it is expressed in S2 cells, we do not detect it to be present in the polysome fractions.

      The Jjj2 polysome data is now presented in Supplementary Figure 6C.

      Reviewer #2 (Significance (Required)):

      General assessment:

      Overall, the work is clearly described and the manuscript is very well-written. The motivation behind the study and its importance are well-explained. I only have minor comments and suggestions to improve the clarity of the work. The study newly describes the interaction between the chaperone Mrj and the translation regulator Orb2. The experiments that the screen for proteins that interact with Orb2 and promote its oligomerization are very thorough. The experiments that delve into the role of Mrj in protein synthesis are a good start, and need to be explored further, but that is beyond the scope of this study.

      Advance: The study describes a new interaction between the chaperone Mrj and the translation regulator Orb2. The study is helpful in expanding our knowledge of prion regulators as well factors that affect memory acquisition and consolidation.

      Audience: This paper will be of most interest to basic researchers.

      My expertise is in Drosophila genetics and neuronal injury.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript submitted by Desai et al. identifies a chaperone of the Hsp40 family (Mrj) that binds Orb2 and modulates its oligomerization, which is critical for Orb2 function in learning and memory in Drosophila. Orb2 are proteins with prion-like properties whose oligomerization is critical for their function in the storage of memories. The main contribution of the article is the screen of Hsp40 and Hsp70-family proteins that bind Orb2. The authors show IP results for all the candidates tested, including those that bind Fig. 1) and those that don't (Supp Fig 3). There is also a figure devoted to examining the interaction of Mrj with polyglutamine models (Htt). They also generate a KO mutant that is viable and shows no gross defects or protein aggregation. Lastly, they show that the silencing of Mrj in the mushroom body gamma neurons results in weaker memories in a courtship paradigm. Although the data is consistent and generally supportive of the hypothesis, key details are missing in several areas, including controls. Additionally, the interpretation of some results leaves room for debate. Overall, this is an ambitious article that needs additional work before publication.

      Specific comments:

      1. General concern over the interpretation of IP experiments and colocalization. These experiments don't necessarily reflect direct interactions. They are consistent with direct interaction but not the only explanation for a positive IP or colocalization.

      This paper is centred on the interaction between Orb2A and Mrj, which we have detected using immunoprecipitation. The reviewer’s concern here is, this experiment is not able to distinguish if this can be a direct protein-protein interaction or if the two proteins are part of a complex.

      To address this concern we have used purified recombinant protein-based pulldowns. Our experiments with purified protein pulldowns (GST tagged Mrj from E.coli with Orb2A from E.coli or Orb2A-GFP from Sf9 cells) suggest Orb2A and Mrj can directly interact amongst themselves. This data is now presented in Figure 1J and K.

      The Huntingtin section has a few concerns. The IF doesn't show all controls and the quantification is not well done in terms of what is relevant. A major problem is the interpretation of Fig 2F. The idea is that Mrj prevents the aggregation of Htt, which is the opposite of what is observed with Orb2. The panel actually shows a large Htt aggregate instead of multiple small aggregates. This has been reported before in Drosophila and other systems with different polyQ models. Mrj and other Hsp40 and Hsp70 proteins modify Htt aggregation, but in an unexpected way. This affects the model shown in Fig. 6H. Lastly, Fig 2H and 2I show very different level of total Htt.

      In Figure 2F of the previously submitted manuscript, we have shown representative images of HttQ103-GFP cells coexpressing with a control DnaJ protein CG7133-HA and Mrj-HA. In Figure 2G we quantitated the number of cells showing aggregates within the population of doubly transfected cells. On the reviewer’s point of figure 2F showing large Htt aggregates instead of multiple small aggregates, we do not see a large Htt aggregate in presence of Mrj in this figure, the pattern looks diffused here and very different from the control CG7133 where the aggregates are seen. We have performed the same experiment with a different Htt construct (588 amino acids long fragment) tagged with RFP, and here also we notice in presence of Mrj, the aggregates are decreased and the expression pattern looks diffused (Supplementary Figure 4E, 4F).

      If the comment on large Htt aggregates in presence of Mrj is concerning figure 2E, here we show Mrj-RFP to colocalize with the Htt aggregates. Here, even though Mrj-RFP colocalizes with Htt aggregates, it rescues the Htt aggregation phenotype as in comparison to the control CG7133, the number of cells with Htt aggregates is still significantly less here. We have added this quantitation of rescue by Mrj-RFP in the revised manuscript now. The observation of colocalization of Mrj-RFP with Htt aggregates is similar to previous reports of chaperones rescuing Htt aggregation and yet showing colocalization with the aggregates. Both Hdj-2 and Hsc70 suppress Htt aggregation and yet were observed to colocalize with Htt aggregates in the cell line model as well as in nuclear inclusions in the brain (Jana et al, 2000). In a nematode model of Htt aggregation, DNJ-13 (DnaJB-1), HSP-1 (Hsc70), and HSP-11 (Apg-2) were shown to colocalize with Htt aggregates and yet decrease the Htt aggregation (Scior et al, 2018). Hsp70 was also found to colocalize with Htt aggregates in Hela cells (Kim et al, 2002).

      Regarding Figures 2H and 2I, while figure 2H is of an SDS-PAGE to show no difference in the levels of monomeric HttQ103 (marked with *) in presence of Mrj and the control CG7133, figure 2I is for the same samples ran in an SDD-AGE where reduced amount of Htt oligomers as seen with the absence of a smear in presence of Mrj. The apparent difference in Htt levels between 2H and 2I is due to the detection of Htt aggregates/oligomers in the SDD-AGE which are unable to enter the SDS-PAGE and hence undetected. In Supplementary Figure 4E, similar experiments were done with the longer Htt588 fragment and here we notice in the SDD-AGE reduced intensity of the smear made up of Htt oligomers, again suggesting a reduction in Htt aggregates. Thus our results are not in contradiction to previous studies where Mrj was found to rescue Htt aggregate-associated toxicity.

      Endogenous expression of Mrj using Gal4 line: where else is it expressed in the brain / head and in muscle. Fig 3G shows no muscle abnormalities but no evidence is shown for muscle expression. It is nice that Fig 3E and F show no abnormal aggregates in the Mrj mutant, but this would be maybe more interesting if flies were subjected to some form of stress.

      We have now added images of the brain and muscles to show the expression pattern of Mrj. Using Mrj Gal4 line and UAS- CD8GFP, we noticed enriched expression in the optic lobes, mushroom body, and olfactory lobes. We also noticed GFP expression in the larval muscles and neuromuscular junction synaptic boutons. This data is now presented in Supplementary Figure 5C, D, E and F.

      On the reviewer’s point of subjecting the Mrj KO flies to some form of stress, we have not performed this. We have added in the discussions a note of caution, that loss of Mrj may still result in a protein aggregation-related disease phenotype, probably under a sensitized condition of certain stresses which is not tested in this manuscript.

      Fig. 5B shows no Mrj detectable from head homogenates in flies silencing Mrj in neurons with Elav-Gal4. It would be nice if they could show that ONLY neurons express Mrj in the head. Also noted, Elav-Gal4 is a weak driver, so it is surprising that it can generate such robust loss of Mrj protein

      We have used an X chromosome Elav Gal4 driver to drive the UAS-Mrj RNAi line and here we could not detect Mrj in the western. To address the reviewer’s point on the glial contribution towards expression of Mrj, we used a Glial driver Repo Gal4 to drive Mrj RNAi. In this experiment, we did not detect any difference in Mrj levels between the control and the Mrj RNAi line (presented now in Supplementary Figure 5G). We also used the Mrj knockout Gal4 line to drive NLS-GFP and immunostained these using a glial marker anti-Repo antibody. Here, we were able to detect cells colabelled by GFP as well as Repo, suggesting Mrj is likely to be present in the glial cells (presented now in Supplementary Figure 5H). We also looked in the literature and found a reference where it was shown that Elav protein as well as Elav Gal4 at earlier stages of development expresses in neuroblasts and in all Glia (Berger et al, 2007). So, another possibility is when we are driving Mrj RNAi using Elav Gal4, this knocks down Mrj in both the neurons as well as in the glia.

      Fig 4-Colocalization of Orb2 with Mrj lacks controls. The quantification could describe other phenomena because the colocalization is robust but the numbers shown describe something else.

      We have now added the intensity profile and colocalization quantitation (pearson’s coefficient) in Supplemental Figure 5A and B. This quantitation is done from multiple ROI’s taken from 4-6 cells. Also, to suggest the interaction of Orb2 isoforms with Mrj, we are not depending on colocalization alone and have used immunoprecipitation experiments to support our observations.

      Fly behavior. The results shown for Mrj RNAi alleles is fine but it would be more robust if this was validated with the KO line AND rescued with Mrj overexpression.

      We have now performed memory assays with the Mrj knockout. Our experiments showed Mrj knockouts to show significantly decreased memory in comparison to wild-type flies at 16 and 24-hour time points (presented in Figure 6B). We have not been able to make an Mrj Knockout-UAS Mrj recombinant fly, most likely due to the closeness of the two with respect to their genomic location in second chromosome.

      Minor comments:

      Please, revise minor errors, there are several examples of words together without a space.

      We have identified the words without space and have corrected them now.

      Intro: describe the use of functional prions. Starting the paragraph with this sentence and then explaining what prion diseases are is a little confusing. Also "prion proteins" can be confusing because the term refers to PrP, the protein found in prions.

      We have now altered the introduction and have described functional prions.

      Results, second subtitle in page 5. This sentence is quite confusing using prion-like twice

      We have now changed the heading to “Drosophila Mrj converts Orb2A from non-prion to a prion-like state.”

      Page 6: "conversion from non-prion to prion-like form...". This can be presented differently. Prion-like properties are intrinsic, proteins don't change from non-prion to prion-like. They may be oligomeric or monomeric or highly aggregated but the prion-like property doesn't change

      We agree with the reviewer's point of Prion-like properties are intrinsic, but the protein might or might not exist in the prion-like state or confirmation. When we are using the term conversion from non-prion to prion-like form we mean to suggest a conformational conversion leading to the eventual formation of the oligomeric species. We also noted the terminology of non-prion to prion-like state change is used in several papers (Satpute-Krishnan & Serio, 2005; Sw & Yo, 2012; Uptain et al, 2001).

      Scale bars and text are too small in several figures

      We have now mentioned in the figure legends the size of the scale bars. For several images we have made the scale bars also larger.

      Not sure why Fig 4C is supplemental, seems like an important piece of data.

      We have kept this data in the supplemental data as we performed this experiment with recombinant protein which is tagged with 6X His and we are not sure if this high degree of oligomerization/aggregation of recombinant Mrj and further precipitation over time, happens inside the cells/ brain.

      Intro to Mrj KO in page 7 is too long. Most of it belongs in the discussion

      We have now moved the portions on mammalian DNAJB6 which were earlier in the results section to the discussions section.

      Change red panels in IF to other color to make it easier for colorblind readers.

      We have now changed the red panels to magenta. We apologize for our figures not being colorblind friendly earlier.

      The discussion is a little diffuse by trying to compare Orb2 with mammalian prions and amyloids and yeast prions.

      We looked into the functional prion data and couldn’t find much on chaperone mediated regulation of these. Also, we felt comparing with the amyloids and yeast prions brings out the contrast with respect to the Mrj mediated regulatory differences between the two.

      Reviewer #3 (Significance (Required)):

      This is a paper with a broad scope and approaches. The paper describes the role of Mrj in the oligomerization of Orb2 by protein biochemistry techniques and determine the role of loss of Mrj in the mushroom bodies in fly behavior.

      The audience for this content is basic research and specialized. The role of Mrj in Orb2 aggregation and function sheds new light on the mechanisms regulating the function of this protein involved in a novel mechanism of learning and memory.

      References:

      Bengoechea R, Findlay AR, Bhadra AK, Shao H, Stein KC, Pittman SK, Daw JA, Gestwicki JE, True HL & Weihl CC (2020) Inhibition of DNAJ-HSP70 interaction improves strength in muscular dystrophy. J Clin Invest 130: 4470–4485

      Berger C, Renner S, Lüer K & Technau GM (2007) The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in the Drosophila embryonic CNS. Dev Dyn 236: 3562–3568

      Fayazi Z, Ghosh S, Marion S, Bao X, Shero M & Kazemi-Esfarjani P (2006) A Drosophila ortholog of the human MRJ modulates polyglutamine toxicity and aggregation. Neurobiol Dis 24: 226–244

      Heinrich SU & Lindquist S (2011) Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB). Proc Natl Acad Sci U S A 108: 2999–3004

      Hervás R, Li L, Majumdar A, Fernández-Ramírez MDC, Unruh JR, Slaughter BD, Galera-Prat A, Santana E, Suzuki M, Nagai Y, et al (2016) Molecular Basis of Orb2 Amyloidogenesis and Blockade of Memory Consolidation. PLoS Biol 14: e1002361

      Hervas R, Rau MJ, Park Y, Zhang W, Murzin AG, Fitzpatrick JAJ, Scheres SHW & Si K (2020) Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Science 367: 1230–1234

      Izawa I, Nishizawa M, Ohtakara K, Ohtsuka K, Inada H & Inagaki M (2000) Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein. J Biol Chem 275: 34521–34527

      Jana NR, Tanaka M, Wang G h & Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9: 2009–2018

      Kakkar V, Månsson C, de Mattos EP, Bergink S, van der Zwaag M, van Waarde MAWH, Kloosterhuis NJ, Melki R, van Cruchten RTP, Al-Karadaghi S, et al (2016) The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Mol Cell 62: 272–283

      Kim S, Nollen EAA, Kitagawa K, Bindokas VP & Morimoto RI (2002) Polyglutamine protein aggregates are dynamic. Nat Cell Biol 4: 826–831

      Li L, Sanchez CP, Slaughter BD, Zhao Y, Khan MR, Unruh JR, Rubinstein B & Si K (2016a) A Putative Biochemical Engram of Long-Term Memory. Curr Biol 26: 3143–3156

      Li S, Zhang P, Freibaum BD, Kim NC, Kolaitis R-M, Molliex A, Kanagaraj AP, Yabe I, Tanino M, Tanaka S, et al (2016b) Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy. Hum Mol Genet 25: 936–950

      Liebman SW & Chernoff YO (2012) Prions in yeast. Genetics 191: 1041–1072

      Lu W-H, Yeh N-H & Huang Y-S (2017) CPEB2 Activates GRASP1 mRNA Translation and Promotes AMPA Receptor Surface Expression, Long-Term Potentiation, and Memory. Cell Rep 21: 1783–1794

      Prusiner SB (2001) Neurodegenerative Diseases and Prions. New England Journal of Medicine 344: 1516–1526

      Satpute-Krishnan P & Serio TR (2005) Prion protein remodelling confers an immediate phenotypic switch. Nature 437: 262–265

      Scior A, Buntru A, Arnsburg K, Ast A, Iburg M, Juenemann K, Pigazzini ML, Mlody B, Puchkov D, Priller J, et al (2018) Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex. EMBO J 37: 282–299

      Si K (2015) Prions: what are they good for? Annu Rev Cell Dev Biol 31: 149–169

      Si K, Choi Y-B, White-Grindley E, Majumdar A & Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140: 421–435

      Si K, Lindquist S & Kandel ER (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115: 879–891

      Sw L & Yo C (2012) Prions in yeast. Genetics 191

      Thiruvalluvan A, de Mattos EP, Brunsting JF, Bakels R, Serlidaki D, Barazzuol L, Conforti P, Fatima A, Koyuncu S, Cattaneo E, et al (2020) DNAJB6, a Key Factor in Neuronal Sensitivity to Amyloidogenesis. Mol Cell 78: 346-358.e9

      Uptain SM & Lindquist S (2002) Prions as protein-based genetic elements. Annu Rev Microbiol 56: 703–741

      Uptain SM, Sawicki GJ, Caughey B & Lindquist S (2001) Strains of [PSI(+)] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J 20: 6236–6245

      Watson ED, Mattar P, Schuurmans C & Cross JC (2009) Neural stem cell self-renewal requires the Mrj co-chaperone. Dev Dyn 238: 2564–2574

      Wickner RB (2016) Yeast and Fungal Prions. Cold Spring Harb Perspect Biol 8: a023531

      Wickner RB, Edskes HK, Maddelein ML, Taylor KL & Moriyama H (1999) Prions of yeast and fungi. Proteins as genetic material. J Biol Chem 274: 555–558

      Wickner RB, Masison DC, Edskes HK & Maddelein ML (1996) Prions of yeast, [PSI] and [URE3], as models for neurodegenerative diseases. Cold Spring Harb Symp Quant Biol 61: 541–550

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The manuscript submitted by Desai et al. identifies a chaperone of the Hsp40 family (Mrj) that binds Orb2 and modulates its oligomerization, which is critical for Orb2 function in learning and memory in Drosophila. Orb2 are proteins with prion-like properties whose oligomerization is critical for their function in the storage of memories. The main contribution of the article is the screen of Hsp40 and Hsp70-family proteins that bind Orb2. The authors show IP results for all the candidates tested, including those that bind Fig. 1) and those that don't (Supp Fig 3). There is also a figure devoted to examining the interaction of Mrj with polyglutamine models (Htt). They also generate a KO mutant that is viable and shows no gross defects or protein aggregation. Lastly, they show that the silencing of Mrj in the mushroom body gamma neurons results in weaker memories in a courtship paradigm. Although the data is consistent and generally supportive of the hypothesis, key details are missing in several areas, including controls. Additionally, the interpretation of some results leaves room for debate. Overall, this is an ambitious article that needs additional work before publication.

      Specific comments:

      1. General concern over the interpretation of IP experiments and colocalization. These experiments don't necessarily reflect direct interactions. They are consistent with direct interaction but not the only explanation for a positive IP or colocalization.
      2. The Huntingtin section has a few concerns. The IF doesn't show all controls and the quantification is not well done in terms of what is relevant. A major problem is the interpretation of Fig 2F. The idea is that Mrj prevents the aggregation of Htt, which is the opposite of what is observed with Orb2. The panel actually shows a large Htt aggregate instead of multiple small aggregates. This has been reported before in Drosophila and other systems with different polyQ models. Mrj and other Hsp40 and Hsp70 proteins modify Htt aggregation, but in an unexpected way. This affects the model shown in Fig. 6H. Lastly, Fig 2H and 2I show very different level of total Htt.
      3. Endogenous expression of Mrj using Gal4 line: where else is it expressed in the brain / head and in muscle. Fig 3G shows no muscle abnormalities but no evidence is shown for muscle expression. It is nice that Fig 3E and F show no abnormal aggregates in the Mrj mutant, but this would be maybe more interesting if flies were subjected to some form of stress.
      4. Fig. 5B shows no Mrj detectable from head homogenates in flies silencing Mrj in neurons with Elav-Gal4. It would be nice if they could show that ONLY neurons express Mrj in the head. Also noted, Elav-Gal4 is a weak driver, so it is surprising that it can generate such robust loss of Mrj protein
      5. Fig 4-Colocalization of Orb2 with Mrj lacks controls. The quantification could describe other phenomena because the colocalization is robust but the numbers shown describe something else.
      6. Fly behavior. The results shown for Mrj RNAi alleles is fine but it would be more robust if this was validated with the KO line AND rescued with Mrj overexpression.

      Minor comments:

      Please, revise minor errors, there are several examples of words together without a space.

      Intro: describe the use of functional prions. Starting the paragraph with this sentence and then explaining what prion diseases are is a little confusing. Also "prion proteins" can be confusing because the term refers to PrP, the protein found in prions.

      Results, second subtitle in page 5. This sentence is quite confusing using prion-like twice

      Page 6: "conversion from non-prion to prion-like form...". This can be presented differently. Prion-like properties are intrinsic, proteins don't change from non-prion to prion-like. They may be oligomeric or monomeric or highly aggregated but the prion-like property doesn't change

      Scale bars and text are too small in several figures

      Not sure why Fig 4C is supplemental, seems like an important piece of data.

      Intro to Mrj KO in page 7 is too long. Most of it belongs in the discussion

      Change red panels in IF to other color to make it easier for colorblind readers.

      The discussion is a little diffuse by trying to compare Orb2 with mammalian prions and amyloids and yeast prions.

      Significance

      This is a paper with a broad scope and approaches. The paper describes the role of Mrj in the oligomerization of Orb2 by protein biochemistry techniques and determine the role of loss of Mrj in the mushroom bodies in fly behavior.

      The audience for this content is basic research and specialized. The role of Mrj in Orb2 aggregation and function sheds new light on the mechanisms regulating the function of this protein involved in a novel mechanism of learning and memory.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      The manuscript describes the role of the Hsp40 family protein Mrj in the prion-like oligomerization of Orb2. The authors demonstrate that Mrj promotes the oligomerization of Orb2, while a loss in Mrj diminishes the extent of Orb2 oligomerization. They observe that while Mrj is not an essential gene, a loss in Mrj causes deficiencies in the consolidation of long-term memory. Further, they demonstrate that Mrj associates with polysomes and increases the association of Orb2 with polysomes.

      Major comments: None

      Minor comments:

      1. In the section describing the chaperone properties of Mrj in clearing Htt aggregates (Fig 2), the legend describes that "Mrj-HA constructs are more efficient in decreasing Htt aggregation compared to Mrj-RFP". It would be helpful to add Mrj-RFP to the quantification in Fig 2G to know exactly the difference in efficiency. Is there an explanation for why the 2 constructs behave differently?
      2. Figs A, B, C, G need to have quantification of the percentage of colocalization with details about the number of cells quantified for each experiment.
      3. In Fig 6 B, C, F, G it would be helpful to label the 40S, 60S and 80S peaks in the A 254 trace.
      4. It's interesting that Mrj has opposing functions with regard to aggregation when comparing huntingtin with Orb2. From the literature presented in the discussion, it appears as though chaperones including Mrj have an anti-aggregation role for prions. It would be helpful to have more discussion around why, in the case of Orb2, this is different. The discussion states that "The only Hsp40 chaperone which was found similar to Mrj in increasing Orb2's oligomerization is the yeast Jjj2 protein" - this point needs elaboration, as well as a reference.

      Significance

      General assessment:

      Overall, the work is clearly described and the manuscript is very well-written. The motivation behind the study and its importance are well-explained. I only have minor comments and suggestions to improve the clarity of the work. The study newly describes the interaction between the chaperone Mrj and the translation regulator Orb2. The experiments that the screen for proteins that interact with Orb2 and promote its oligomerization are very thorough. The experiments that delve into the role of Mrj in protein synthesis are a good start, and need to be explored further, but that is beyond the scope of this study.

      Advance:

      The study describes a new interaction between the chaperone Mrj and the translation regulator Orb2. The study is helpful in expanding our knowledge of prion regulators as well factors that affect memory acquisition and consolidation.

      Audience:

      This paper will be of most interest to basic researchers. My expertise is in Drosophila genetics and neuronal injury.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this MS, Mrj - a member of the JDP family of Hsp70 co-chaperones was identified as a regulator of the conversion of Orb2A (the Dm ortholog of CPEB) to its prion-like form.

      In drosophila, Mrj deletion does not cause any gross neurodevelopmental defect nor leads to detectable alterations in protein homeostasis. Loss of Mrj, however, does lead to altered Orb2 oligomerization. Consistent with a role of prion-like characteristics of Orb2 in memory consolidation, loss of Mrj results in a deficit in long-term memory.

      Aside from the fact that there are some unclarities related to the physicochemical properties of Orb2 and how Mrj affects this precisely, the finding that a chaperone could be important for memory is an interesting observation, albeit not entirely novel.

      In addition, there are several minor technical concerns and questions I have that I feel the authors should address, including a major one related to the actual approach used to demonstrate memory deficits upon loss of Mrj.

      Significance

      Figure 1 (plus related Supplemental figures):

      • There seem to be two isoforms of Mrj (like what has been found for human DNAJB6). I find it striking to see that only (preferentially?) the shorter isoform interacts with Orb2. For DNAJB6, the long isoform is mainly related to an NLS and the presumed substrate binding is identical for both isoforms. If this is true for Dm-Mrj too, the authors could actually use this to demonstrate the specificity of their IPs where Orb2 is exclusively non-nuclear?
      • I would be interested to know a bit more about the other 5 JDPs that are interactors with Orb2: are the human orthologs of those known? It is striking that these other 5 JDPs interact with Orb2 in Dm (in IPs) but have no impact on Sup35 prion behavior. Importantly, this does not imply they may not have impact on the prion-like behavior of other Dm substrates, including Dm-Orb2.
      • The data in panels H,I indeed suggest that Mrj1 alters the (size of) the oligomers. It would be important to know what is the actual physicochemical change that is occurring here. The observed species are insoluble in 0.1 % TX100 but soluble in 0.1% SDS, which suggest they could be gels, but not real amyloids such as formed by the polyQ proteins that require much higher SDS concentrations (~2%) to be solubilized. This is relevant as Mrj1 reduces polyQ amyloidogenesis whereas is here is shown to enhance Orb2A oligomerization/gelidification. In the same context, it is striking to see that without Mrj the amount of Orb2A seems drastically reduced and I wonder whether this might be due to the fact that in the absence of Mrj a part of Orb2A is not recovered/solubilized due to its conversion for a gel to a solid/amyloid state? In other words: Mrj1 may not promote the prion state, but prevents that state to become an irreversible, non-functional amyloid?

      Figure 2 (plus related Supplemental figures):

      • It may be good for clarity to refer to the human Mrj as DNAJB6 according to the HUGO nomenclature. Also, the first evidence for its oligomerization was by Hageman et al 2010.
      • It is striking to see that Mrj co-IPs with Hsp70AA, Hsp70-4 but not Hsp70Cb. The fact that interactions were detected without using crosslinking is also striking given the reported transient nature of J-domain-Hsp70 interactions Together, this may even suggest that Mrj-1 is recognized as a Hsp70 substrate (for Hsp70AA, Hsp70-4 but not Hsp70Cb) rather than as a co-chaperone. In fact, a variant of Mrj-1 with a mutation in the HPD motif should be used to exclude this option.
      • The rest of these data reconfirm nicely that Mrj/DNAJB6 can suppress polyQ-Htt aggregation. Yet note that in this case the oligomers that enter the agarose gel are smaller, not bigger. This argues that Mrj is not an enhancer of oligomerization, but rather an inhibitor of the conversion of oligomers to a more amyloid like state.

      Figure 3:

      • The finding that knockout of DNAJB6 in mice is embryonic lethal is related to a problem with placental development and not embryonic development (Hunter et al, 1999; Watson et al, 2007, 2009, 2011) as well recognized by the authors. Therefore, the finding that deletion of Dm-Mrj has no developmental phenotype in Drosophila may not be that surprising.
      • It is a bit more surprising that Mrj knockout flies showed no aggregation phenotype or muscle phenotype, especially knowing that DNAJB6 mutations are linked to human diseases associated with aggregation (again well recognized by the authors). However, most of these diseases are late-onset and the phenotype may require stress to be revealed. So, while important to this MS in terms of not being a confounder for the memory test, I would like to ask the authors to add a note of caution that their data do not exclude that loss of Mrj activity still may cause a protein aggregation-related disease phenotype. Yet, I also do think that for the main message of this MS, it is not required to further test this experimentally.

      Figure 4:

      • IPs were done with Orb2A as bite and clearly pulled down substantial amounts of GFP-tagged Mrj. For interactions with Orb2B, a V5-tagged Mrj was use and only a minor fraction was pulled down. Why were two different Mrj constructs used for Arb2A and Orb2b?
      • In addition, I think it would be important what one would see when pulling on Mrj1, especially under non-denaturing conditions and what is the status of the Orb2 that is than found to be associated with Mrj (monomeric, oligomeric and what size).
      • This also relates to my remark at figure 1 and the subsequent fractionation experiments they show here in which there is a slight (not very convincing) increase in the ratio of TX100-soluble and insoluble (0.1% SDS soluble) material. My question would be if there is a remaining fraction of 0.1% insoluble (2% soluble) Orb2 and how Mrj affects that? As stated before, this is (only) mechanistically relevant to understanding why there is less oligomers of Orb2 in terms of Mrj either promoting it or by preventing it to transfer from a gel to a solid state. The link to the memory data remains intriguing, irrespective of what is going on (but also on those data I do have several comments: see below).
      • I also find the sentence that "Mrj is probably regulating the oligomerization of endogenous Orb2 in the brain" somewhat an overstatement. I would rather prefer to say that the data show that Mrj1 affects the oligomeric behavior/status of Orb2.

      Figure 5:

      • To my knowledge, the Elav driver regulates expression in all neurons, but not in glial cells that comprise a significant part of the fly heads/brain. The complete absence of Mrj in the fly-heads when using this driver is therefore somewhat surprising. Or do we need to conclude from this that glial cells normally already lack Mrj expression?
      • Why not use these lines also for the memory test for confirmation? I understand the concerns of putative confounding effects of a full knockdown (which were however not reported), but now data rely only on the mushroom body-specific knockdown for the 201Y Gal4 line, for which the knockdown efficiency is not provided. But even more so, here a temperature shift (22oC-30oC) was required to activate the expression of the siRNA. For the effects of this shift alone no controls were provided. The functional memory data are nice and consistent with the hypothesis, but can it be excluded that the temperature shift (rather than the Mrj) knockdown has caused the memory defects? I think it is crucial to include the proper controls or use a different knockdown approach that does not require temperature shifts or even use the knockout flies.

      Figure 6:

      The finding of a co-IP between Rpl18 and Mrj (one-directional only) by no means suffices to conclude that Mrj may interact with nascent Orb2 chains here (which would be the relevant finding here). The fact that Mrj is a self-oligomerising protein (also in vitro, so irrespective of ribosomal associations!), and hence is found in all fractions in a sucrose gradient, also is not a very strong case for its specific interaction with polysomes. The finding that there is just more self-oligomerizing Orb2A co-sedimenting with polysomes in sucrose gradients neither is evidence for a direct effect of Mrj enhancing association of Orb2A with the translating ribosomes even though it would fit the hypothesis. So all in all, I think the data in this figure and non-conclusive and the related conclusions should be deleted.

      Overall, provided that proper controls/additional data can be provided for the key experiments of memory consolidation, I find this an intriguing study that would point towards a role of a molecular chaperone in controlling memory functions via regulating the oligomeric status of a prion-like protein and that is worthwhile publishing in a good journal.

      However, in terms of mechanistical interpretations, several points have to be reconsidered (see remarks on figure 1,4); this pertains especially to what is discussed on page 13. In addition, I'd like the authors to put their data into the perspective of the findings that in differentiated neurons DNAJB6 levels actually decline, not incline (Thiruvalluvan et al, 2020), which would be counterintuitive if these proteins are playing a role as suggested here in memory consolidation.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their time and for the helpful comments. We felt the reviews overall were fair and quite positive. All three reviewers felt the manuscript could be of broad, general interest, especially given the relevance of the protein (Pbp1/ataxin-2) to neurodegenerative conditions and stress granule biology. Reviewer 3 seems to have some doubt there could be specificity for the types of transcripts regulated by Pbp1, given prior studies of mammalian ataxin-2 which implicated 16,000+ mRNAs that could bind via PAR-CLIP experiments! However, our study shows the power of utilizing a simpler model organism and thinking about the metabolic state of cells for elucidating the function of this interesting protein. Although our demonstration of the specificity of Pbp1 for regulating Puf3-target mRNAs involved in mitochondrial biogenesis and mitochondrial function may be surprising to this reviewer, we have the utmost confidence in our data and feel the study represents a highly significant finding that will be of interest to many researchers.

      1. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      *In this manuscript, van de Poll et al. aim to further establish the function of poly(A) binding protein-binding protein 1 (Pbp1) and its relationship to the RNA-binding protein Puf3 in regulating the expression of mitochondrial proteins. This work builds upon a solid body of previous studies from this group regarding the function of Puf3 and the role of Pbp1 in regulating TORC1 signaling. Here, the authors show that Pbp1 has a physical and functional interaction with Puf3 and that ablation or disruption of Pbp1 eliminates this interaction and reduces the expression of some Puf3 target proteins. This work provides reliable data supporting a role for Pbp1 in the regulation of mitochondrial protein expression and that there is a clear functional interaction between Puf3 and Pbp1. Nonetheless, there are several issues that should be addressed before the manuscript is suitable for publication. *

      *1.) The model put forward suggests that Pbp1 works to recruit Puf3 to the vicinity of mitochondria, where Puf3 can then promote the expression of its target mRNAs. In Figure 3A, however, deletion of Pbp1 has a stronger affect on the expression of COX2 than deletion of Puf3 alone, which would not be expected if the role of Pbp1 is to modulate Puf3 function. Similarly, the expression of COX2 is higher in the double deletion versus the Pbp1 single deletion. The authors should attempt to clarify this experimentally, or at least make mention of alternative mechanisms for Pbp1 which may be causing this. *

      We have mentioned alternative mechanisms in the text. We suggest that Puf3-target mRNAs also can be translated through Tom20, in the absence of Puf3 (p. 8, ref 18). In single deletion strains lacking Pbp1 (but with Puf3 present), Puf3 may direct some of its target mRNAs to decay pathways, leading to lower Cox2 expression compared to double deletion strains that also lack Puf3. We performed qPCR analysis of several Puf3-target and other mRNAs in pbp1∆puf3∆ double deletion strains and some transcripts (e.g., COX17) would support this possibility (Fig S4).

      * 2.) The authors mention that the increased pull-down of Puf3 with Pbp1 in respiratory conditions suggests that the Pbp1-Puf3 interaction is responsive to the cellular metabolic state (Figure 3B). However, the increase in Puf3 expression makes it difficult to compare the interactions between the two conditions. *

      Yes this is correct, we stated this in the legend of Fig 4B as: “Increased amounts of Puf3 are associated with Pbp1 in respiratory conditions.” We clarified in the text that Puf3 expression increases in respiratory conditions and this likely explains the increased pull-down of Puf3 with Pbp1 (p. 10).

      * 3.) The authors only look at a very small subset of Puf3 target mRNAs using qPCR when it would be much more informative and overall convincing to examine a larger amount using RNA-seq experiments. *

      We conducted an RNA-seq experiment to compare transcriptomes of WT vs pbp1∆ cells in fermentative (YPD) vs respiratory (YPL) conditions and observed mRNAs with functions associated with mito-translation and mito-respiration (i.e., Puf3-targets) to be most differentially expressed – and majority of these are lower in abundance in pbp1∆ cells (new Fig 2).

      * 4.) The authors consistently mention that Pbp1 function is helping to stabilize Puf3 target mRNAs. However, if the authors wish to prove this particular mode-of-action, more direct evidence should be provided, such as a pulse-chase experiment. Otherwise, other models allowing for increased mRNA abundance should be noted. *

      Using thiolutin which is the standard for such expts, we measured mRNA half-lives of several Puf3-target and other mRNAs (COX17, COX10, POR1, ACT1) by qPCR in WT vs pbp1∆ cells. However, these data turned out to be difficult to interpret, as several “control” mRNAs exhibited different decay profiles in pbp1∆ vs WT cells, and their behavior was different in respiratory conditions compared to what was reported in common glucose media. Nonetheless, the data are included as Fig S2, and the important observation is that each of the Puf3-target mRNAs tested behaves similarly following thiolutin treatment, compared to non Puf3-target mRNAs. Given that Puf3-target mRNAs were more stable in pbp1∆ cells (compared to PGK1) following thiolutin treatment, we have deleted the term “stabilize” throughout the text. The exact fate of these mRNAs in normal vs pbp1∆ mutant cells will require more sophisticated investigation in future studies.

      * 5.) Given the proposed model, one would expect Puf3 to have reduced mRNA binding upon deletion of Pbp1. It would be interesting to examine Puf3 mRNA binding, perhaps through cross-linking immunoprecipitation (CLIP), to see if this indeed is the case. This would provide further direct evidence that Pbp1 is functioning through Puf3 and facilitating its function. Similarly, the authors mention that Pbp1 contains putative RNA binding domains, however, they make no mention if these domains may contribute to its function in mitochondrial protein expression. *

      We performed an RNA-IP experiment to test whether Puf3 has reduced binding to its target mRNAs in the absence of Pbp1. In new Fig 7, Puf3 is still able to bind its mRNA targets in the absence of Pbp1. However, the association of Pbp1 with these mRNAs is reduced in puf3∆ knockouts. Such results are perhaps expected as Puf3 has been shown to bind in a sequence-specific manner to a ~8 nt motif in the 3’UTR of its target mRNAs. However, it is unclear whether the Lsm / LsmAD domains of Pbp1 actually bind RNAs directly (hence our use of the term “putative”) - they may be involved in protein-protein interactions. Moreover, Fig 5 shows that deletion of both domains has no apparent effect on mitochondrial protein expression. We prefer to address the role of the Lsm and LsmAD domains of Pbp1 in a future study.

      * Reviewer #1 (Significance (Required)):

      Overall, this manuscript provides a modest advance, but one that could prove to have important implications for the field-especially if the Pbp1 findings prove relevant to its human ortholog, ataxin-2. The advance is limited by the robustness of the specific molecular model proposed and the extent to which the Pbp1-Puf3 relationship is examined on the gene-expression level.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors found that the pbp1∆ mutant grew poorly on nonfermentable carbon source medium (YP Lactate medium) and that the pbp1∆ mutant had decreased amount of Cox2 protein, a cytochrome c oxidase. The pbp1∆ mutant also had decreased amounts of COX17, COX10, and MRP51 mRNAs. Since these mRNAs are target mRNAs of the RNA-binding protein Puf3, the authors next investigated the relationship between Pbp1 and Puf3. The analysis of the GFP reporter gene containing Puf3-binding sites in the 3' UTR showed that the levels of GFP reporter mRNA and protein were decreased in the pbp1∆ mutant strain. This reduction was dependent on the Puf3-binding site in the 3' UTR. Next, the authors examined the genetic interaction between the pbp1∆ and puf3∆ mutants, and found that the levels of Cox2 protein were reduced in the two mutants. Finally, the authors showed the interaction between Pbp1 and Puf3 by co-immunoprecipitation and determined the regions of Pbp1 and Puf3 required for the interaction. They also showed that these regions in Pbp1 and Puf3 proteins are also important for the regulation of Cox2 protein levels. The story is very clear and the data is reliable. However, the data from Western blotting should be shown quantitatively to make the results more reliable. Also, although the story is based on the reduction of Cox2 protein level, it would be better to discuss whether other proteins or mRNAs should be considered as well.

      Major comments:

      Figure 2C. Protein levels of GFP should be quantified and the data should be shown. *

      These data have been quantified (now Fig 3C).

      * Figure 3. Not only the Cox2 protein level but also mRNA levels of COX2, COX17, COX10, MRP51, etc in pbp1∆ mutant, puf3∆ mutant and pbp1∆ puf3∆ double mutant should be shown. Then the point of action of Pbp1 and Puf3 would become clearer. *

      The mRNA levels have been determined by qPCR and are now in Fig S4.

      Figure 4. * For the domain analysis of Pbp1 protein, showing differences in cell proliferation as in Figure 1B would indicate the physiological importance of the domain. *

      Growth curves of the various Pbp1 domain deletions have been performed and shown in Fig 5D. They do support the physiological importance of the domain(s).

      * Figure 4B. Quantification of the amount of co-immunoprecipitated proteins would indicate the strength of binding. *

      These data have been quantified (now Fig 5B).

      * Figure 4C. Protein levels should be quantified and the data presented. *

      These data have been quantified (now Fig 5C).

      * Line 153-8 The description of Line 153-8 is not appropriate for this position because it breaks up the flow of the story before and after. *

      These text have been moved as requested.

      * Minor comments:

      Line 153 Isn't the following the first reference cited for Pbp1 is a negative regulator of TORC1? Transient sequestration of TORC1 into stress granules during heat stress Terunao Takahara 1, Tatsuya Maeda Mol Cell. 2012 Jul 27;47(2):242-52. doi: 10.1016/j.molcel.2012.05.019. Epub 2012 Jun 21.

      Ref19. Ref 19 also shows that the pbp1∆ mutant strains grow poorly on the medium containing glycerol and lactate as carbon sources.

      Overall, the gene is not italicized. *

      These requested edits to the references and text have been made in the revised version of the manuscript.

      * Reviewer #2 (Significance (Required)):

      This manuscript analyzes the relationship between Pbp1 and Puf3 in yeast. Since these proteins are evolutionarily conserved from yeast to humans and are also associated with disease in humans, this reviewer believes this manuscript will be of interest to a wide audience. *

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): *

      In this study, van de Poll et al. describe the involvement of a cytosolic RNA-binding protein (Pbp1) in the transcriptional regulation of mitochondrial biogenesis during the shift from fermentative to respiratory growth in budding yeast. Using the advantage of yeast genetics and molecular biology, they show that a number of mitochondrial transcripts and proteins are downregulated in pbp1Δ cells both under normal growth conditions and during respiratory shift. Since Puf3, another RNA-binding protein, is known to regulate the fate of these transcripts, they further investigate the interaction between Pbp1 and Puf3. Through a series of biochemical assays, they characterize the interaction between Pbp1 and Puf3 taking place through their low-complexity domains, which is suggested by authors to stabilize and promote the translation of Puf3-target transcripts.

      As stated in the manuscript, Pbp1 is an evolutionarily conserved protein, encoded by ATXN2 gene in humans. Due to its involvement in multiple neurological disorders, it has been widely studied in mouse models and patient samples. The transcriptome profiles of Atxn2-KO mouse liver and cerebellum have been published (albeit having used a relatively older microarray technology for today's standards), revealing a prominent dysregulation of global translational machinery, and the ER-protein secretion pathway (Fittschen et al., 2015). These findings were followed by numerous studies showing dysregulations of distinct transcript pools under examination. Moreover, a PAR-CLIP study showed ATXN2 to associate with ~16.000 transcripts, 8000 of which depended on its interaction with PABPC1 (Yokoshi et al., 2014). In that study, ATXN2 was shown to preferentially bind to target transcripts on 3'-UTR AU-rich sequences. In addition to PABPC1, some other RNA-binding proteins, like TDP-43, were also shown to modulate the indirect interaction of ATXN2 with transcripts, while it also maintained direct interactions through its Lsm and LsmAD domains. Altogether, the mammalian data on ATXN2 thus far depicts it as an avid interactor of numerous RNA-binding proteins and countless transcripts, including microRNAs. The authors however have not cited or compared their findings with this vast array of mammalian literature (with the exception of two properly discussed papers in Discussion).

      Considering its stress-responsive nature and association with RNP granules, it is plausible to assume that ATXN2/Pbp1 could regulate certain groups of transcripts in terms of their stability (in stress granules and p-bodies) or active translation under given environmental conditions and cellular state. The work of van de Poll et al. in this regard is an important step in expanding our knowledge about the many downstream effects of ATXN2/Pbp1. Yet, the following issues should be solved:

      1) The pre-eminence of the proposed group of affected transcripts (i.e. those associated with mitochondrial biogenesis) has to be empirically established. Among all its interactions with other RNA-binding proteins, how important or dominant is the interaction of Pbp1 with Puf3 for mitochondrial biogenesis during the shift towards respiratory growth? Line 74 in the Results says "Analysis of a panel of nuclear- and mitochondrial-encoded mRNAs..."; how broad was this panel? how were the genes selected? Considering the fact that ATXN2/Pbp1 is associated with an immense number of transcripts, hand-picking a number of Puf3 targets and selectively analyzing their expression will surely give some significant dysregulations. Therefore, an unbiased transcriptomic survey is necessary to see all Pbp1-dependent dysregulations during respiratory shift. Since it's a process that requires heavy mitogenesis, one can assume that many dysregulations will concern mitochondrial factors. Indeed, proteome surveys in Atxn2-KO mouse tissues and pbp1Δ yeast (under fermentative growth and stress) point out to a strong mitochondrial dysregulation, so it raises hopes to see an even stronger Pbp1 impact during the respiratory shift in yeast. Then, bioinformatic analyses can reveal what proportion of those are Puf3 targets. If the authors' premise is valid, then the Puf3-targets will stand out in the transcriptome data, and give them an unbiased, solid and much stronger base for the following interaction analyses. They can then compare this dataset to the readily available mouse transcriptome from Atxn2-KO or polyQ-disease models, and strengthen their hypothesis about ATXN2/Pbp1 regulating mitochondrial biogenesis in association with Puf3.

      The Results text about Figure 1 in its current state is an overstatement of the available data. Line 81-84 suggests mitochondrially encoded Cox2 levels are reduced because some mitoribosome subunits are Puf3 targets, but pbp1Δ itself is known to have altered mitochondrial membrane potential which negatively impacts mitochondrial import. So, the reduction of Cox2 levels (and potentially other mitochondrial-encoded proteins, it was never checked) may have nothing to do with Puf3, but rather be a direct consequence of reduced mitoribosome import in pbp1Δ. In order to make this statement, the total mitochondrial translation rates of WT and pbp1Δ strains would have to be compared, and if they are found the same, a selective effect on Puf3-target proteins has to be shown among many tested candidates. Same applies to line 86 "the specific decrease in Puf3-target mRNAs in pbp1Δ cells" referring to Figure 3C. This statement cannot be made without analyzing a larger group of transcripts including the targets of other RNA-binding proteins. The current data does not support any specific dysregulation of Puf3-targets, it just shows some Puf3 targets to be dysregulated, however without the knowledge of how many significant among all Puf3-targets, or how significant are Puf3-targets compared to others. An unbiased, high-throughput transcriptome data, and detailed bioinformatic analyses should replace Figure 1C. The high variation among replicates at 1h-3h-5h time points is also alarming, and puts the reproducibility of these experiments under question. *

      As mentioned in the response to Reviewer 1, we performed an unbiased RNA-seq experiment comparing transcriptomes of WT vs pbp1∆ cells. The data are quite striking and strongly support our hypothesis (new Fig 2). To address the reviewer’s concern that pbp1∆ phenotypes may be due to altered mito membrane potential and mito protein import, we have performed an experiment to examine import of Cox4, which is a protein substrate that is commonly used for this purpose (note COX4 is not a Puf3-target mRNA). Steady-state Cox4 protein amounts are similar in WT vs pbp1∆ cells. Moreover, following treatment of cells with the uncoupler CCCP, there is more of the “pre”-processed Cox4 form in WT cells compared to pbp1∆ cells. These data would argue against the reviewer’s hypothesis and are included in the revised manuscript as Fig S1. Since every mitochondrial ribosomal subunit gene transcript is a target of Puf3 (PMID: 16254148) and therefore subject to regulation by Pbp1, we would argue that a defect in mito biogenesis (due to compromised translation of these mRNAs) precedes and may explain any subsequent defect in mito membrane potential. *

      2) Stabilization of mRNAs The basal reduction in the mRNA levels of the reporter construct in pbp1Δ is a strong but not necessarily direct evidence of stabilization by Pbp1. mRNA half-life analyses (i.e. degradation curves) should be performed with desired targets to measure stability in WT and pbp1Δ strains. *

      As mentioned above in the response to Reviewer 1, we performed mRNA half-life analyses for several transcripts in WT vs pbp1∆ strains using thiolutin treatment. The results are not straightforward to interpret as loss of Pbp1 led to a stabilization of Puf3-target mRNAs (relative to PGK1), however all Puf3-target mRNAs that we examined exhibited similar decay profiles. Thus, we deleted the term “stabilize” and further determination of the fate of these mRNAs in the absence of new transcription will require more careful and sophisticated experiments.*

      3) Cox2 levels Regarding Line 125: "Cox2 protein levels, which are dependent on the translation of Puf3-target mRNAs": This may be generally true, but the data here suggests otherwise. pbp1Δ cells have completely diminished Cox2 levels, whereas puf3Δ have approx. 50% reduction. This means that Pbp1 is more important to maintain normal Cox2 levels, and does so independent of Puf3. In contrast, puf3Δ "rescues" some of the defect in pbp1Δ cells and increases Cox2 abundance to ~50%. As stated above, Cox2 reduction in pbp1Δ could be a direct consequence of mitochondrial membrane depolarization unrelated to Puf3, and could be accompanied by many other non-Puf3-targets being downregulated. Therefore, the authors should refrain from "Cox2 levels are dependent on the translation of Puf3-target mRNAs" statements throughout the text without an experimental proof in the context of pbp1Δ strain. *

      See response to Reviewer 1. We believe that in the absence of Pbp1, Puf3 may now preferentially promote decay of various mito biogenesis transcripts, leading to apparently lower Cox2 levels. Moreover, per the results of our Cox4 experiment (Fig S1), we would respectfully disagree with the reviewer’s hypothesis. Nonetheless, we included an additional statement that mitochondrial membrane depolarization, as a consequence of reduced expression of numerous Puf3-targets, could also contribute to lower Cox2 abundance (p. 6 and 15). *

      4) Pbp1-Puf3 interaction The authors state that Pbp1-Puf3 interaction is required for Puf3-target mRNA stabilization and translation. This suggests that Pbp1 stabilizes this pool of mRNAs because of its interaction with Puf3 primarily, not the mRNAs themselves. One general question while studying the interaction between two RNA-binding proteins is whether they interact in an RNA-dependent manner in vivo. The co-IP analyses show the interaction between Pbp1 and Puf3 to increase under respiratory shift as expected. However, in co-IPs from cell lysates, many RNA-binding proteins may seemingly interact due to their association with translation machinery at that given time. But this does not mean "direct" protein-protein interaction, just a co-existence around actively translating ribosomes. In order to ensure the direct interaction of these two proteins, the same co-IPs should be performed with/out RNase treatment of the lysate (many protocols available online). Only if Pbp1-Puf3 interaction persists in RNase+ samples, they can conclude a direct interaction. In addition, RNA-immunoprecipitation analyses should be performed in Pbp1-Flag and Pbp1-Flag/ puf3Δ strains to check if the association of Pbp1 with Puf3-target mRNAs indeed depends on Puf3. *

      This is a good suggestion. We performed an experiment to test whether RNase treatment alters interaction between Pbp1 and Puf3 and there was minimal effect, supporting the hypothesis that the interaction may be direct. We also performed RNA-IP of Pbp1 in the presence of absence of Puf3 (new Fig 7). As the reviewer predicted, the RNA-IP enrichment of Puf3-target mRNAs was reduced in puf3∆ strains, suggesting that the association of Pbp1 with such transcripts depends on Puf3. It is known from work by others that Puf3 contains a PUF domain that enables sequence-specific binding to a motif in the 3’UTR of its target mRNAs, so these results are quite sensible.

      * Minor comments: • Second sentence of the Abstract ("How mutations in its mammalian ortholog ataxin-2 are linked to neurodegenerative conditions remains unclear") is semantically incorrect. The term "linked" suggests an observed but uncharacterized effect of a genetic variation on a certain syndrome. Diseases can be linked to a chromosome or a locus without knowing the exact causative mutation. How the CAG repeat expansion mutations in ATXN2 are causative of SCA2, ALS or Parkinson-plus syndromes are very well known. One should also be careful with using "mutations" as a general term in the context of ATXN2, because there are certain variations in and around ATXN2 locus leading to a decrease in its activity and metabolic problems, which is far from its neurodegeneration-causing mutations. If the authors meant to state that the pathological mechanism is unclear by this sentence, that would also be a negligence of the extensive literature around this topic. Multiple disease models in mouse, Drosophila and C. elegans collectively point out to an RNA metabolism deficit, caused by toxic ATXN2 aggregates that sequestrate other RNA-binding proteins and their target transcripts. The specific downstream effects involve synaptic strength, Calcium-related action potentials, ER stress and cholesterol/sphingolipid synthesis. Therefore, this sentence could be rephrased to "PolyQ expansion mutations in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation." and simply avoid going into mechanistic details as it is not necessary for this manuscript.

      • Lines 241-243: "Human sequencing" is also an incorrect term. Can be rephrased to "PolyQ expansion mutations in ATXN2 are associated with SCA2 and ALS". The references 22-24 are the first association of polyQ mutations with SCA2, however a reference for ALS is missing. Elden et al. Nature 2010 should be cited here.

      • The authors should discuss the relevance of these findings to the mammalian ortholog of Pum3, namely PUM1/2. Afterall, it is also a very important conserved protein and well-studied in mammalian literature. *

      These changes to the text and references have been made.

      * Following a better characterization of the transcript pools selectively affected by Pbp1 (meaning a transcriptome survey), a graphical abstract sort of scheme could be useful in putting the findings in perspective and conveying the message.*

      We decided not to include a graphical abstract at this time, since it is difficult for us to “picture” what is going on inside an Pbp1-containing RNP granule at this time. * Reviewer #3 (Significance (Required)):

      The intricate experiments characterizing the nature of interaction between Pbp1 and Puf3 (Figures 3B, 4, 5, 6) are quite convincing. However, some fundamental questions remain especially regarding the primary rationale of studying Pbp1-Puf3 relationship and the breadth of some conclusions. The data are of general interest to a broad audience. The statistical tests in Figure 1 are of concern. The reviewer(s) has experience both with yeast molecular biology and with mammalian Atxn2 function. *

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this study, van de Poll et al. describe the involvement of a cytosolic RNA-binding protein (Pbp1) in the transcriptional regulation of mitochondrial biogenesis during the shift from fermentative to respiratory growth in budding yeast. Using the advantage of yeast genetics and molecular biology, they show that a number of mitochondrial transcripts and proteins are downregulated in pbp1Δ cells both under normal growth conditions and during respiratory shift. Since Puf3, another RNA-binding protein, is known to regulate the fate of these transcripts, they further investigate the interaction between Pbp1 and Puf3. Through a series of biochemical assays, they characterize the interaction between Pbp1 and Puf3 taking place through their low-complexity domains, which is suggested by authors to stabilize and promote the translation of Puf3-target transcripts.

      As stated in the manuscript, Pbp1 is an evolutionarily conserved protein, encoded by ATXN2 gene in humans. Due to its involvement in multiple neurological disorders, it has been widely studied in mouse models and patient samples. The transcriptome profiles of Atxn2-KO mouse liver and cerebellum have been published (albeit having used a relatively older microarray technology for today's standards), revealing a prominent dysregulation of global translational machinery, and the ER-protein secretion pathway (Fittschen et al., 2015). These findings were followed by numerous studies showing dysregulations of distinct transcript pools under examination. Moreover, a PAR-CLIP study showed ATXN2 to associate with ~16.000 transcripts, 8000 of which depended on its interaction with PABPC1 (Yokoshi et al., 2014). In that study, ATXN2 was shown to preferentially bind to target transcripts on 3'-UTR AU-rich sequences. In addition to PABPC1, some other RNA-binding proteins, like TDP-43, were also shown to modulate the indirect interaction of ATXN2 with transcripts, while it also maintained direct interactions through its Lsm and LsmAD domains. Altogether, the mammalian data on ATXN2 thus far depicts it as an avid interactor of numerous RNA-binding proteins and countless transcripts, including microRNAs. The authors however have not cited or compared their findings with this vast array of mammalian literature (with the exception of two properly discussed papers in Discussion).

      Considering its stress-responsive nature and association with RNP granules, it is plausible to assume that ATXN2/Pbp1 could regulate certain groups of transcripts in terms of their stability (in stress granules and p-bodies) or active translation under given environmental conditions and cellular state. The work of van de Poll et al. in this regard is an important step in expanding our knowledge about the many downstream effects of ATXN2/Pbp1. Yet, the following issues should be solved:

      1. The pre-eminence of the proposed group of affected transcripts (i.e. those associated with mitochondrial biogenesis) has to be empirically established. Among all its interactions with other RNA-binding proteins, how important or dominant is the interaction of Pbp1 with Puf3 for mitochondrial biogenesis during the shift towards respiratory growth? Line 74 in the Results says "Analysis of a panel of nuclear- and mitochondrial-encoded mRNAs..."; how broad was this panel? how were the genes selected? Considering the fact that ATXN2/Pbp1 is associated with an immense number of transcripts, hand-picking a number of Puf3 targets and selectively analyzing their expression will surely give some significant dysregulations. Therefore, an unbiased transcriptomic survey is necessary to see all Pbp1-dependent dysregulations during respiratory shift. Since it's a process that requires heavy mitogenesis, one can assume that many dysregulations will concern mitochondrial factors. Indeed, proteome surveys in Atxn2-KO mouse tissues and pbp1Δ yeast (under fermentative growth and stress) point out to a strong mitochondrial dysregulation, so it raises hopes to see an even stronger Pbp1 impact during the respiratory shift in yeast. Then, bioinformatic analyses can reveal what proportion of those are Puf3 targets. If the authors' premise is valid, then the Puf3-targets will stand out in the transcriptome data, and give them an unbiased, solid and much stronger base for the following interaction analyses. They can then compare this dataset to the readily available mouse transcriptome from Atxn2-KO or polyQ-disease models, and strengthen their hypothesis about ATXN2/Pbp1 regulating mitochondrial biogenesis in association with Puf3.

      The Results text about Figure 1 in its current state is an overstatement of the available data. Line 81-84 suggests mitochondrially encoded Cox2 levels are reduced because some mitoribosome subunits are Puf3 targets, but pbp1Δ itself is known to have altered mitochondrial membrane potential which negatively impacts mitochondrial import. So, the reduction of Cox2 levels (and potentially other mitochondrial-encoded proteins, it was never checked) may have nothing to do with Puf3, but rather be a direct consequence of reduced mitoribosome import in pbp1Δ. In order to make this statement, the total mitochondrial translation rates of WT and pbp1Δ strains would have to be compared, and if they are found the same, a selective effect on Puf3-target proteins has to be shown among many tested candidates. Same applies to line 86 "the specific decrease in Puf3-target mRNAs in pbp1Δ cells" referring to Figure 3C. This statement cannot be made without analyzing a larger group of transcripts including the targets of other RNA-binding proteins. The current data does not support any specific dysregulation of Puf3-targets, it just shows some Puf3 targets to be dysregulated, however without the knowledge of how many significant among all Puf3-targets, or how significant are Puf3-targets compared to others. An unbiased, high-throughput transcriptome data, and detailed bioinformatic analyses should replace Figure 1C. The high variation among replicates at 1h-3h-5h time points is also alarming, and puts the reproducibility of these experiments under question. 2. Stabilization of mRNAs The basal reduction in the mRNA levels of the reporter construct in pbp1Δ is a strong but not necessarily direct evidence of stabilization by Pbp1. mRNA half-life analyses (i.e. degradation curves) should be performed with desired targets to measure stability in WT and pbp1Δ strains. 3. Cox2 levels Regarding Line 125: "Cox2 protein levels, which are dependent on the translation of Puf3-target mRNAs": This may be generally true, but the data here suggests otherwise. pbp1Δ cells have completely diminished Cox2 levels, whereas puf3Δ have approx. 50% reduction. This means that Pbp1 is more important to maintain normal Cox2 levels, and does so independent of Puf3. In contrast, puf3Δ "rescues" some of the defect in pbp1Δ cells and increases Cox2 abundance to ~50%. As stated above, Cox2 reduction in pbp1Δ could be a direct consequence of mitochondrial membrane depolarization unrelated to Puf3, and could be accompanied by many other non-Puf3-targets being downregulated. Therefore, the authors should refrain from "Cox2 levels are dependent on the translation of Puf3-target mRNAs" statements throughout the text without an experimental proof in the context of pbp1Δ strain. 4. Pbp1-Puf3 interaction The authors state that Pbp1-Puf3 interaction is required for Puf3-target mRNA stabilization and translation. This suggests that Pbp1 stabilizes this pool of mRNAs because of its interaction with Puf3 primarily, not the mRNAs themselves. One general question while studying the interaction between two RNA-binding proteins is whether they interact in an RNA-dependent manner in vivo. The co-IP analyses show the interaction between Pbp1 and Puf3 to increase under respiratory shift as expected. However, in co-IPs from cell lysates, many RNA-binding proteins may seemingly interact due to their association with translation machinery at that given time. But this does not mean "direct" protein-protein interaction, just a co-existence around actively translating ribosomes. In order to ensure the direct interaction of these two proteins, the same co-IPs should be performed with/out RNase treatment of the lysate (many protocols available online). Only if Pbp1-Puf3 interaction persists in RNase+ samples, they can conclude a direct interaction. In addition, RNA-immunoprecipitation analyses should be performed in Pbp1-Flag and Pbp1-Flag/ puf3Δ strains to check if the association of Pbp1 with Puf3-target mRNAs indeed depends on Puf3.

      Minor comments:

      • Second sentence of the Abstract ("How mutations in its mammalian ortholog ataxin-2 are linked to neurodegenerative conditions remains unclear") is semantically incorrect. The term "linked" suggests an observed but uncharacterized effect of a genetic variation on a certain syndrome. Diseases can be linked to a chromosome or a locus without knowing the exact causative mutation. How the CAG repeat expansion mutations in ATXN2 are causative of SCA2, ALS or Parkinson-plus syndromes are very well known. One should also be careful with using "mutations" as a general term in the context of ATXN2, because there are certain variations in and around ATXN2 locus leading to a decrease in its activity and metabolic problems, which is far from its neurodegeneration-causing mutations. If the authors meant to state that the pathological mechanism is unclear by this sentence, that would also be a negligence of the extensive literature around this topic. Multiple disease models in mouse, Drosophila and C. elegans collectively point out to an RNA metabolism deficit, caused by toxic ATXN2 aggregates that sequestrate other RNA-binding proteins and their target transcripts. The specific downstream effects involve synaptic strength, Calcium-related action potentials, ER stress and cholesterol/sphingolipid synthesis. Therefore, this sentence could be rephrased to "PolyQ expansion mutations in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation." and simply avoid going into mechanistic details as it is not necessary for this manuscript.
      • Lines 241-243: "Human sequencing" is also an incorrect term. Can be rephrased to "PolyQ expansion mutations in ATXN2 are associated with SCA2 and ALS". The references 22-24 are the first association of polyQ mutations with SCA2, however a reference for ALS is missing. Elden et al. Nature 2010 should be cited here.
      • The authors should discuss the relevance of these findings to the mammalian ortholog of Pum3, namely PUM1/2. Afterall, it is also a very important conserved protein and well-studied in mammalian literature.
      • Following a better characterization of the transcript pools selectively affected by Pbp1 (meaning a transcriptome survey), a graphical abstract sort of scheme could be useful in putting the findings in perspective and conveying the message.

      Significance

      The intricate experiments characterizing the nature of interaction between Pbp1 and Puf3 (Figures 3B, 4, 5, 6) are quite convincing. However, some fundamental questions remain especially regarding the primary rationale of studying Pbp1-Puf3 relationship and the breadth of some conclusions. The data are of general interest to a broad audience.<br /> The statistical tests in Figure 1 are of concern. The reviewer(s) has experience both with yeast molecular biology and with mammalian Atxn2 function.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this manuscript, the authors found that the pbp1∆ mutant grew poorly on nonfermentable carbon source medium (YP Lactate medium) and that the pbp1∆ mutant had decreased amount of Cox2 protein, a cytochrome c oxidase. The pbp1∆ mutant also had decreased amounts of COX17, COX10, and MRP51 mRNAs. Since these mRNAs are target mRNAs of the RNA-binding protein Puf3, the authors next investigated the relationship between Pbp1 and Puf3. The analysis of the GFP reporter gene containing Puf3-binding sites in the 3' UTR showed that the levels of GFP reporter mRNA and protein were decreased in the pbp1∆ mutant strain. This reduction was dependent on the Puf3-binding site in the 3' UTR. Next, the authors examined the genetic interaction between the pbp1∆ and puf3∆ mutants, and found that the levels of Cox2 protein were reduced in the two mutants. Finally, the authors showed the interaction between Pbp1 and Puf3 by co-immunoprecipitation and determined the regions of Pbp1 and Puf3 required for the interaction. They also showed that these regions in Pbp1 and Puf3 proteins are also important for the regulation of Cox2 protein levels.

      The story is very clear and the data is reliable. However, the data from Western blotting should be shown quantitatively to make the results more reliable. Also, although the story is based on the reduction of Cox2 protein level, it would be better to discuss whether other proteins or mRNAs should be considered as well.

      Major comments:

      Figure 2C.

      Protein levels of GFP should be quantified and the data should be shown.

      Figure 3.

      Not only the Cox2 protein level but also mRNA levels of COX2, COX17, COX10, MRP51, etc in pbp1∆ mutant, puf3∆ mutant and pbp1∆ puf3∆ double mutant should be shown. Then the point of action of Pbp1 and Puf3 would become clearer.

      Figure 4.

      For the domain analysis of Pbp1 protein, showing differences in cell proliferation as in Figure 1B would indicate the physiological importance of the domain.

      Figure 4B.

      Quantification of the amount of co-immunoprecipitated proteins would indicate the strength of binding.

      Figure 4C.

      Protein levels should be quantified and the data presented.

      Line 153-8

      The description of Line 153-8 is not appropriate for this position because it breaks up the flow of the story before and after.

      Minor comments:

      Line 153

      Isn't the following the first reference cited for Pbp1 is a negative regulator of TORC1? Transient sequestration of TORC1 into stress granules during heat stress Terunao Takahara 1, Tatsuya Maeda Mol Cell. 2012 Jul 27;47(2):242-52. doi: 10.1016/j.molcel.2012.05.019. Epub 2012 Jun 21.

      Ref19.

      Ref 19 also shows that the pbp1∆ mutant strains grow poorly on the medium containing glycerol and lactate as carbon sources.

      Overall, the gene is not italicized.

      Significance

      This manuscript analyzes the relationship between Pbp1 and Puf3 in yeast. Since these proteins are evolutionarily conserved from yeast to humans and are also associated with disease in humans, this reviewer believes this manuscript will be of interest to a wide audience.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript, van de Poll et al. aim to further establish the function of poly(A) binding protein-binding protein 1 (Pbp1) and its relationship to the RNA-binding protein Puf3 in regulating the expression of mitochondrial proteins. This work builds upon a solid body of previous studies from this group regarding the function of Puf3 and the role of Pbp1 in regulating TORC1 signaling. Here, the authors show that Pbp1 has a physical and functional interaction with Puf3 and that ablation or disruption of Pbp1 eliminates this interaction and reduces the expression of some Puf3 target proteins. This work provides reliable data supporting a role for Pbp1 in the regulation of mitochondrial protein expression and that there is a clear functional interaction between Puf3 and Pbp1. Nonetheless, there are several issues that should be addressed before the manuscript is suitable for publication.

      1. The model put forward suggests that Pbp1 works to recruit Puf3 to the vicinity of mitochondria, where Puf3 can then promote the expression of its target mRNAs. In Figure 3A, however, deletion of Pbp1 has a stronger affect on the expression of COX2 than deletion of Puf3 alone, which would not be expected if the role of Pbp1 is to modulate Puf3 function. Similarly, the expression of COX2 is higher in the double deletion versus the Pbp1 single deletion. The authors should attempt to clarify this experimentally, or at least make mention of alternative mechanisms for Pbp1 which may be causing this.
      2. The authors mention that the increased pull-down of Puf3 with Pbp1 in respiratory conditions suggests that the Pbp1-Puf3 interaction is responsive to the cellular metabolic state (Figure 3B). However, the increase in Puf3 expression makes it difficult to compare the interactions between the two conditions.
      3. The authors only look at a very small subset of Puf3 target mRNAs using qPCR when it would be much more informative and overall convincing to examine a larger amount using RNA-seq experiments.
      4. The authors consistently mention that Pbp1 function is helping to stabilize Puf3 target mRNAs. However, if the authors wish to prove this particular mode-of-action, more direct evidence should be provided, such as a pulse-chase experiment. Otherwise, other models allowing for increased mRNA abundance should be noted.
      5. Given the proposed model, one would expect Puf3 to have reduced mRNA binding upon deletion of Pbp1. It would be interesting to examine Puf3 mRNA binding, perhaps through cross-linking immunoprecipitation (CLIP), to see if this indeed is the case. This would provide further direct evidence that Pbp1 is functioning through Puf3 and facilitating its function. Similarly, the authors mention that Pbp1 contains putative RNA binding domains, however, they make no mention if these domains may contribute to its function in mitochondrial protein expression.

      Significance

      Overall, this manuscript provides a modest advance, but one that could prove to have important implications for the field-especially if the Pbp1 findings prove relevant to its human ortholog, ataxin-2. The advance is limited by the robustness of the specific molecular model proposed and the extent to which the Pbp1-Puf3 relationship is examined on the gene-expression level.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      'The authors do not wish to provide a response at this time.'

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The manuscript by Naeli et al., presents study on effects of SARS-CoV-2 NSP2 protein on miRNA mediated translational repression. Authors show in multiple ways using reporter mRNAs with various miRNA sites that NSP2 protein stimulates miRNA mediated repression. The increase in miRNA repression is likely due to the interaction of NSP2 with either GIGYF2 or Argonaute protein directly thus making more stable repressive complex on mRNA. The manuscript is written clearly and methods provide enough details for reproducibility. Only major comment would be that authors could have tested multiple endogenous targets of miRNAs for extent of miRNA mediated expression in the presence of NSP2. This could be achieved using either western blots for known targets (looking at protein levels) or using targeted qRT-PCR or distribution of mRNAs in polysome fractions (mRNA translational repression. An alternative would be Ribo-Seq experiment.

      Minor comment:

      Line in introduction arguing: "The GIGYF2/4EHP complex is recruited by a variety of factors including miRNAs" should state miRISC instead of miRNAs.

      Significance

      General assessment: The study presents sold evidence that NSP2 protein interacts with miRISC complex and increases miRNA-mediated translational repression of reporter mRNAs. Multiple target sites for miR20, let7 and miR92 are tested as well as two different human cell lines (Hek293 and U87) which gives strength to study and reproducibility of the results. Focus on the endogenous miRNA targets in the presence or absence of the NSP2 protein would make study even stronger.

      The advance of the study is more rigorous analyses of NSP2 protein effects on miRNA-mediated gene expression regulation with some novel mechanistic insights. The study will be of interest for specialized and basic research audience with potential impact on translational research.

      My field of expertise covers mechanisms of gene expression regulation by miRNAs and RBPs as well as impact of mRNAs, nascent peptides and ribosomes on protein synthesis.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this study, Naeli and collaborators propose a role for the SARS-CoV2 protein NSP2 in the miRNA-mediated translational repression. Their data show that NSP2 co-immunoprecipitate with the Argonaute AGO2 and the previously reported translation modulator GIGYF2. Using different reporters sensitive to miRNA repression, they show that overexpressing NSP2 enhances miRNA-mediated translational repression in different cell lines as well as one endogenous miRNA target CDK1 and thus without affecting the stability of targeted mRNAs. Interestingly, their data show that the effect of NSP2 depends on the number of miRNA binding sites suggesting that highly repressed mRNAs, due to the presence of several miRNA binding sites, are not affected by NSP2. Finally, using an AGO2 tethering reporter assay that does not rely on miRNA binding but needs two NSP2 interactors GIGYF2 and 4EHP, they demonstrate that overexpressing NSP2 still stimulates mRNA repression, suggesting that NSP2 can have a broader impact on miRISC-dependent silencing.

      Overall, this is an interesting follow-up study from their previous paper (Xu et al., 2022) that have the potential to add another dimension to the modulation of mRNA translation by the SARS-CoV2 protein NSP2. But unfortunately, in its current form, the work falls short of supporting their claims appropriately and providing sufficient and relevant insights about the role of NSP2 in regulating the miRNA-mediate gene regulation. To overcome this, the authors should perform and add the following experiments to strengthen their study.

      1. Interaction of NSP2 with the miRISC: With the data presented here, we can only conclude that NPS2 forms a complex with AGO2. Is their interaction direct or indirect? Is miRNA- and TNRC6-bound AGO2 (and thus miRISC) associated with NSP2? To address those important questions, the authors should perform NSP2 immunoprecipitations in GIGYF2 (and 4EHP) KO cell lines and monitor the presence of AGO2 and miRNAs in the immunoprecipitated complex. Those experiments will define the type of interaction NSP2 has with the miRISC (GIGYF2 dependent or not).
      2. Along this line, is NSP2 action on miRNA-mediated gene regulation dependent or not of GIGYF2? Again, testing this by monitoring the repression of the different reporters upon NSP2 overexpression in the presence or not of GIGYF2 in cells will precise the contribution of NSP2 in miRNA-mediated gene silencing.

      Besides these two sets of critical experiments that will define the relationship between NSP2 mRNA modulation and the microRNA pathway, it would be interesting for this study to readily test the effect of NSP2 on miRNA targets related to immune-regulatory processes and antiviral response. As the authors pointed out in their discussion, several mRNAs are involved in the control of genes found in those pathways. Demonstrating the contribution of NSP2 in the regulation of a few of them will strengthen their study's significance and interest by providing a possible mechanism at play during a SARS-CoV2 infection. Also, it would be interesting to test if the modulation of translation inhibition by NSP2 occurs in cells infected by the SARS-CoV2 virus. For instance, is NSP2 and miRISC interaction enhances during the viral infection? As the authors propose, NSP2 could also have improved antiviral microRNA repression, so it would be interesting to characterize this interplay in a relevant biological context.

      Minor comment:

      From the data presented in Figure S1A, it is impossible to conclude "that miR-20a represses the expression of the target mRNA in a GIGFY2-dependent manner" as its KO also affect the level/stability of 4EHP. Therefore, we cannot distinguish the contribution of GIGFY2 and 4EHP in this context as both protein levels decrease. The authors should tone down this statement on page 3.

      Significance

      With the addition of the proposed experiments, the revised study will better define the direct contribution of NSP2 with the miRISC. This work has the potential to provide another aspect of the mRNA translation modulation by the SARS-CoV2 protein NSP2 with the interesting angle of miRNA-mediated gene silencing.

      As mentioned by the authors, another recent paper reports the potential impact of NSP2 on post-transcriptional silencing (Zou et al., iScience 2022). However, in contrast to the current study, this previous work did not directly test the interaction of NSP2 with the miRISC. Furthermore, it only used a single miRNA reporter (let-7) to support NSP2 contribution in miRNA-mediated gene silencing, which does not demonstrate the broader impact of NSP2 on this gene regulatory mechanism as tested in this current study. Upon revision, this study will provide more definitive proof of the involvement of NSP2 in miRNA-mediated gene regulation and thus will be of interest to experts in the miRNA field and scientists interested in understanding viruses/hosts interaction.

      Although not essential, if the authors want to add data that addresses the function of NSP2 on this regulatory pathway in the context of viral infection (which seems feasible for this group), that will definitely increase the broader significance of their work.

      I am an expert in molecular biology and molecular genetics, miRNA-mediated gene regulation, and small non-coding RNA biology.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript the authors examine whether SARS-CoV-2 protein, NSP2 mediate translation repression of cellular transcripts by increasing miRNA mediated suppression. The same authors previously demonstrated NSP2 interacts with GIGYF2 and this interaction suppresses the translation of the Ifnb mRNA. Here they extend this finding and using a series of reporters they illustrate that at least part of NSP2 translation suppression is mediated by increasing GIGYF2 mediated miRNA translation suppression. Overall the manuscript is clearly written and the experiments well executed.

      Major comments:

      Optional- The authors show that the ability of NSP2 to enhance miRNA-mediated repression is dependent on the extent of the initial repression and suggest this dependency on the initial repression levels may explain the discrepancy with published work showing NSP2 actually impairs (and not increase) microRNA-mediated silencing . Therefore, an important addition could be to examine what happen to translation in cells that express NSP2 and whether generally translation repression is significant in transcripts (native) that are enriched in miRNA binding site. This experiment will help to show NSP2 effect on native transcripts and potentially help to understand how much of these changes are likely explained by miRNAs.

      Minor comments:

      1. Personally I found the term repression fold quite confusing and unintuitive. Why not to present the actual measurements so that the control (blue bars) have high value and the red bars (representing repression) have lower values?
      2. It seems inadequate to present on the same graph two values that are normalized to 1. For example, in figure 1D it will be important to show the mir20-Mut real values (at least mir20-Mut in NSP2 cells should not be normalized to 1). This will allow to show that the differences are indeed mediated by stronger translation repression of miR-20 WT luciferase in the presence of NSP2 and not by unexplained differences in mir20-mut luciferase expression. This is true for almost all the figures in the manuscript. Correspondingly, the statistical test should be two-factor ANOVA test examining if NSP2 expression significantly increase the difference between Luciferase miR20-WT and luciferase miR20-mut.

      Significance

      There is an urgent need for better molecular understanding of how SARS-CoV-2 proteins influence the machineries of the host cell.

      This study investigates how NSP2 interaction with GIGYF2 mediate translation repression of cellular transcript. The authors also address the discrepancy with previously published work that showed NSP2 actually impairs (and not increase) microRNA-mediated silencing.

      The paper would be of interest to RNA biologists and for molecular virologists that study SARS-CoV-2

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      I summarise the major findings of the work below. In my opinion the range and application of approaches has provided a broad evidence base that, in general, supports the authors conclusions. However, there are, in my opinion, particular failures to utilise and communicate this evidence. The manuscript may be much improved with attention in the following areas. In each case I will give general criticism with a few examples, but the principals of my comments could be applied throughout the work.

      1) Insufficient quantification. The investigation combines various sources of qualitative data (EM, fluorescence microscopy, western blotting) to generate a reasonably strong evidence base. However, the work is over-reliant on representative images and should include more quantification from repeat experiments. When there are multiple fluorescence micrographs with intensity changes (not necessarily just representative images) (e.g. Figure 1 or 2) the authors should consider making measurements of these. Also the VLP production assays, which are assessed by western blotting would particularly benefit from a quantitative assessment (either by densitometry or, if samples remain, ELISA/similar approach).

      We have performed quantification of immunofluoresence, western blotting and VLP experiments from existing data. These quantification are presented in our revised manuscript. An overview of new quantification is shown below:

      Data shown

      Quantification now shown in

      Method

      Analysis

      Figure 1A

      Supp F1C

      IF

      HAE (-/+ SARS-CoV-2)

      • Tetherin total fluorescence intensity

      Figure 1D

      Supp F1E

      IF

      HeLa+ACE2 (-/+ SARS-CoV-2 )

      • Tetherin total fluorescence intensity

      Figure 2C

      Supp F2B

      IF

      A549+ACE2 (-/+ SARS-CoV-2)

      • Tetherin total fluorescence intensity

      Figure 2G

      Supp F2D

      IF

      T84 (-/+ SARS-CoV-2)

      • Tetherin total fluorescence intensity

      Supp F4A

      Supp F4B

      IF

      HeLa + ss-HA-Spike transients (-/+ HA stained cells) - Tetherin total fluorescence intensity

      Figure 4D

      Supp F4E

      IF

      HeLa + TetOne ss-HA-Spike stables (-/+ Dox)

      • Tetherin total fluorescence intensity

      Figure 4F

      Supp F4G

      W blot

      HeLa + TetOne ss-HA-Spike stables (-/+ Dox)

      – Tetherin abundance

      Figure 4G

      Supp F4I

      W blot – lysates

      Spike VLP experiments

      – tetherin abundance

      Figure 4G

      Supp F4J

      W blot - VLPs

      Spike VLP experiments

      • N-FLAG abundance

      Figure 6A

      Supp F7A

      W blot – lysates

      ORF3a VLP experiments

      – tetherin abundance

      Figure 6A

      Supp F7B

      W blot - VLPs

      ORF3a VLP experiments

      • N-FLAG

      For immunofluoresence anaysis, the mean, standard deviation, number of cells analysed and number of independent experiments are shown in the updated figure legends. Statistical analysis is also detailed in figure legends. Methods for the quantificaiton of fluoresence intensity is included in the Methods section.

      Densitometry was performed on western blots and VLP experiments as suggested. The mean, standard devisation and number of independent expreiments analysed are expressed in figure legends. Methods for densityometry quantification is now included.

      2) Insufficient explanation. I found some of the images and legends contained insufficient annotation and/or description for a non-expert reader to appreciate the result(s). Particularly if the authors want to draw attention to features in micrographs they should consider using more enlarged/inset images and annotations (e.g. arrows) to point out structures (e.g DMVs etc.). This short coming exacerbates the lack of quantification.

      Additional detail has been provided to the figure legends, and we have updated several figures to draw attention to features in micrographs. Black arrowheads have been added to Figures 1E, 2D, 2H to highlight plasma membrane-associated virions, and asterisks to highlight DMVs in Figures 1E, 2D and Supplemental Figures 2C, 2E. Similarly, typical Golgi cisternae are highlighted by white arrowheads micrographs in Figure 2E. These figure legends have also been modified to highlight these additions.

      3) Insufficient exploration of the data. I had a sense that some aspects of the data seem unconsidered or ignored, and the discussion lacks depth and reflection. For example the tetherin down-regulation apparent in Figures 1 and 2 is not really explained by the spike/ORF3a antagonism described later on, but this is not explicitly addressed.

      We have made changes throughout the manuscript, but the discussion especially has been modified. We now discuss the ORF3a data in more depth, discuss possible mechanisms by which ORF3a alone enhances VLP release, and discuss our ORF7a data in context to previous reports.

      The discussion has been updated to now include a better description of our data, and additional writing putting our work in to context with previously published work. See discussion section of revised manuscript.

      Also, Figure 6 suggests that ORF3a results in high levels of incorporation of tetherin in to VLPs, but I don't think this is even described(?). The discussion should also include more comparison with previous studies on the relationship between SARS-2 and tetherin.

      We have added a section to discuss how ORF3a may enhance VLP release,

      ‘We found that the expression of ORF3a enhanced VLP independently of its ability to relocalise tetherin (Figure 6A). This may be due to either the ability of ORF3a to induce Golgi fragmentation [38] which facilitates viral trafficking [39], or due to enhanced lysosomal exocytosis [37]. Tetherin was also found in VLPs upon co-expression with ORF3a (Figure 6A) which may also indicate to enhanced release via lysosomal exocytosis [37].

      The secretion of lysosomal hydrolases has been reported upon expression of ORF3a [31] and whilst this may in-part be due to enhanced lysosome-plasma membrane fusion, our data highlights that ORF3a impairs the retrograde trafficking of CIMPR (Supplemental Figures 6B, 6F, 6G), which may similarly increase hydrolase secretion.’ – (Line 625-654).

      The discussion has been developed to compare the relationship between SARS-CoV-2 and tetherin in previous studies,

      ‘SARS-CoV-1 ORF7a is reported to inhibit tetherin glycosylation and localise to the plasma membrane in the presence of tetherin [18]. We did not observe any difference in total tetherin levels, tetherin glycosylation, ability to form dimers, or surface tetherin upon expression of either SARS-CoV-1 or SARS-CoV-2 ORF7a (Figures 4A, 4B, 4C).

      Others groups have demonstrated a role for ORF7a in sarbecovirus infection and both SARS-CoV-1 and SARS-CoV-2 virus lacking ORF7a show impaired virus replication in the presence of tetherin [18,41]. A direct interaction between SARS-CoV-1 ORF7a and SARS-CoV-2 ORF7a and tetherin have been described [18,41], although the precise mechanism(s) by which ORF7a antagonises tetherin remains enigmatic. We cannot exclude that ORF7a requires other viral proteins to antagonise tetherin, or that ORF7a antagonises tetherin via another mechanism. For example, ORF7a can potently antagonise IFN signalling [42] which would impair tetherin induction in many cell types.’ – (Line 667-704).

      I have no minor comments on this draft of the manuscript.

      Reviewer #1 (Significance (Required)):

      Tetherin, encoded by the BST2 gene, is an antiviral restriction factor that inhibits the release of enveloped viruses by creating tethers between viral and host membranes. It also has a capacity for sensing and signalling viral infection. It is most widely understood in the context of HIV-1, however, there is evidence of restriction in a wide variety of enveloped viruses, many of which have evolved strategies for antagonising tetherin. This knowledge informs on viral interactions with the innate immune system, with implications for basic virology and translational research.

      This study investigates tetherin in the context of SARS-CoV-2. The authors use a powerful collection of tools (live virus, gene knock out cells, recombinant viral and host expression systems) and a variety of approaches (microscopy, western blotting, infection assays), which is, itself, a strength. The study provides evidence to support a series of conclusions: I) BST2/tetherin restricts SARS-CoV-2 II) SARS-CoV-2 ablates tetherin expression III) spike protein can modestly down-regulate tetherin IV) ORF3A dysregulates tetherin localisation by altering retrograde trafficking. These conclusions are broadly supported by the data and this study make significant contributions to our understanding of SARS-CoV-2/tetherin interactions.

      My enthusiasm is reduced by, in my opinion, a failure of the authors to fully quantify, explain and explore their data. I expect the manuscript could be significantly improved without further experimentation by strengthening these aspects.

      This manuscript will be of interest to investigators in virology and/or cellular intrinsic immunity. Given the focus on SARS-CoV-2 it is possible/likely that it will find a slightly broader readership.

      I have highly appropriate skills for evaluating this work being experienced in virology, SARS-CoV-2, cell biology and microscopy.

      We wish to thank Reviewer #1 for their comments which have helped us to improve the quality of our revised manuscript.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      BST2/tetherin can restrict the release and transmission of many enveloped viruses, including coronaviruses. In many cases, restricted viruses have developed mechanisms to abrogate tetherin-restriction by expressing proteins that antagonize tetherin; HIV-1 Vpu-mediated antagonism of tetherin restriction is a particularly well studied example. In this paper, Stewart et al. report their studies of the mechanism(s) underlying SARS-CoV-2 antagonism of tetherin restriction. They conclude that Orf3a is the primary virally encoded protein involved and that Orf3a manipulates endo-lysosomal trafficking to decrease tetherin cycling and divert the protein away from putative assembly sites.

      Major comments:- In my view some of the claims made by the authors are not fully supported by the data. For example, the bystander effect discussed in line 162 may suggest that infected cells can produce IFN but does not 'indicate' that they do

      This text has now been edited,

      ‘The levels of tetherin in uninfected HAE cells is lower than observed in uninfected neighbours in infected wells demonstrating that infected HAE cells are able to generate IFN to act upon uninfected neighbouring cells, enhancing tetherin expression.’ - (Lines 163-172).

      Most of the EM images show part of a cell profile, so statements such as (line 192) 'virus containing tubulovesicular organelles were often polarised towards sites of significant surface-associated virus' should be backed up with appropriate images, or indicated as 'not shown', or removed (the observation is not so important for this story). Line 196, DMVs can't be seen in these micrographs.

      The statement 'virus containing tubulovesicular organelles were often polarised towards sites of significant surface-associated virus' has been removed. The micrographs in Figure 1E have been re-cropped, and image iii replaced with an image showing DMVs and budding virions. Plasma membrane-associated virions are highlighted by black arrowheads, DMVs by black asterisks, and intracellular virion by a white arrow.

      Line 391, I can't see much change in CD63 distribution.

      CD63 reproducibly appears clustered towards the nuclei in ORF3a expressing cells, whilst CD63 positive puncta are abundant in the periphery of mock cells. CD63 puncta are also larger, and the staining of CIMPR and VPS35 also appears to be associated with larger organelles. We have amended the text to now read,

      ‘Expression of ORF3a also disrupted the distribution of numerous endosome-related markers including CIMPR, VPS35, CD63, which all localised to larger and less peripheral puncta (Supplemental Figure 6B), and the mixing of early and late endosomal markers’ - (Line 469).

      Quantification of the diameter of CD63 puncta indicate that they are larger in ORF3a expressing cells than in mock cells. Mock cells - 0.71μm (SD; 0.19), ORF3a - 1.15μm (SD;0.35). At least 75 organelles per sample, from 10 different cells. We have not included this data as we do not wish to labor this point but are happy to include this quantification if required to do so.

      Line 321, the authors show that ORF7a does not affect tetherin localization, abundance, glycosylation or dimer formation, but they don't show that it doesn't restrict SARS-CoV-2. Can they be sure that epitope tagging this molecule does not abrogate function (or the functions of any of the other tagged proteins for that matter), or that ORF7a works in conjunction with one of the other viral proteins?

      We are careful in the manuscript not to claim that ORF7a has no effect on tetherin. Our data indicate that ‘ORF7a does not directly influence tetherin localisation, abundance, glycosylation or dimer formation’ - (Line 361-362).

      We were unable to reproduce an effect of ORF7a on tetherin glycosylation. Our data conflicts with that presented by Taylor et al, 2015, where ORF7a impaired tetherin glycosylation and ORF7a localised to the plasma membrane in tetherin expressing cells. The experiments performed by Taylor et al used HEK293 cells and ectopically expressed tagged tetherin. The differences in results may be attributed to the differences between cell lines or due to differences between endogenous or ectopic / tagged tetherin.

      The study by Taylor et al uses SARS-CoV-1 ORF7a-HA from Kopecky-Bromberg et al., 2007 (DOI: 1128/JVI.01782-06), where the -HA tag is positioned at the C-terminus. Our ORF7a-FLAG constructs have a C-terminal epitope tag. While we cannot exclude the possibility that tagged proteins may act differently from untagged ones, the differences between our findings and previous work appear unlikely to be due to epitope tags.

      Our manuscript states that although we cannot find any effect of ORF7a on tetherin localisation, abundance, glycosylation, or dimer formation, we cannot exclude that ORF7a impacts tetherin by another mechanism. For example, ORF7a has been found to antagonise interferon responses. Tetherin is abundantly expressed in HeLa cells and expression does not require induction through interferon. None of our experiments above would be impacted by interferon antagonism yet this could impact other cell types besides infection in vivo. These possibilities may explain the reported differential impact of ORF7a by different labs. An addition comment has been added to the discussion to reflect this,

      ’We cannot exclude that ORF7a requires other viral proteins to antagonise tetherin, or that ORF7a antagonises tetherin via another mechanism. For example, ORF7a potently antagonises IFN signalling [38], which would impair tetherin induction in many cell types. - (Line 701-704).

      Note - Reference 38 has been added to the manuscript – Xia et al., Cell Reports DOI: 10.1016/j.celrep.2020.108234

      In the ORF screen, a number of the constructs are expressed at low level, is it possible they [the authors] are missing something?

      Some of the ORFs expressed in the miniscreen appear poorly expressed. We accept that in the use of epitope tagged constructs expression levels of individual viral proteins may impact upon a successful screen. However, this screen was performed to identify any potential changes in tetherin abundance or localisation, and the screen did successfully identify ORF3a, which we were able to follow-up and verify.

      Line 376, the authors refer to ORF3a being a viroporin. A recent eLife paper (doi: 10.7554/eLife.84477; initially published in BioRxiv) refutes this claim and builds on other evidence that ORF3a interacts with the HOPS complex. The authors should at least mention this work, especially in the discussion, as it would seem to provide a molecular mechanism to support their conclusions.

      This paper had not been peer reviewed at the time of our initial submission. We have now included the following text,

      ‘SARS-CoV-2 ORF3a is an accessory protein that localises to and perturbs endosomes and lysosomes [29]. It may do so by acting either as a viroporin [30] or by interacting with, and possibly interfering with the function of VPS 39, a component of the HOPS complex which facilitates tethering of late endosomes or autophagosomes with lysosomes [29,31]. Given ORF3a likely impairs lysosome function, the observed increased….’ - (Lines 444-449).

      Fig 3, the growth curves illustrated in Fig3 C and D do not have errors bars; how many times were these experiments repeated?

      These experiments require more repeats to include error bars. Infection and plaque assay (Figure 3C, 3D) are currently ongoing and we plan to complete them in the next 6-8 weeks and include them in the finalised manuscript.

      In the new experiments, infections will additionally be performed at MOI 0.01, in addition to the previous MOIs (1 and 5).

      Line 396, the authors show increased co-localization with LAMP1. As LAMP1 is found in late endosomes as well as lysosomes, they cannot claim the redistributed tetherin is specifically in lysosomes.

      We have altered the text to now say:

      ‘The ORF3a-mediated increase in tetherin abundance within endolysosomes could be due to defective lysosomal degradation.’ - (Line 475).

      There seems to be a marked difference in the anti-rb555 signal in the 'mock' cells in panels 5H and Suppl 6E. Is there a good reason for this, or does this indicate variability between experiments?

      Antibody uptake experiments in Figure 5H and Supp Figure 6E were performed and acquired on different days. Relatively low levels of signal are available in these antibody uptake experiments, and the disperse labelling seen in the mocks does not aid this.

      Fig 6a, why is there negligible VLP release from cells lacking BST2 and ORF3a-strep? How many times were these experiments performed? Is this a representative image? I think it confusing to refer to the same protein by two different names in the same figure (i.e. BST2 and tetherin). Do the authors know how the levels of ORF3a expressed in cells in these experiments compares to those seen in infected cells?

      We have changed the blot in Figure 6A for one with clearer FLAG bands. Three independent experiments were performed for Figure 6A. Quantification of VLPs is now included in Supplemental Figure 7B.

      We have changed ‘Bst2’ to ‘tetherin’ in all previous figures relating to protein; Figure 4G, Figure 6A, B, C.

      We have no current information to compare ORF3a levels in these experiments versus in infected cells. We can investigate quantifying this if necessary.

      My final point is, perhaps, the trickiest to answer, but nevertheless needs to be considered. As far as we know, SARS-CoV-2 and at least some other coronaviruses, bud into organelles of the early secretory pathway, often considered to be ERGIC. In the experiments shown here the authors provide evidence that ORF3a can influence tetherin recycling, but the main way of showing this is through its increased association with endocytic organelles. Do the authors have any evidence that Orf3a reduces tetherin levels in the ERGIC or whether the tetherin cycling pathway(s) involve the ERGIC?

      This is an interesting point, and as the reviewer concedes, this is tricky to answer. Expression of ORF3a causes the redistribution or remodeling of various organelles (Figures 1E, 2D, 2F, Supp Figures 2C, 2E, 3E, 6B, 6C, 6D). We have been unable to test the direct involvement of ERGIC, despite attempts with a number of commercial antibodies. Given the huge rearrangements of organelles during SARS-CoV-2 infection, it is unclear exactly what will happen to the distribution of ERGIC.

      Minor comments: Line 53, delete 'shell' its redundant and confusing when the authors have said coronaviruses have a membrane.

      Deleted.

      Line 61, delete 'the'

      Deleted.

      Line 72, delete 'enveloped'; coronaviruses already described as enveloped viruses (line 53)

      Deleted.

      Lines 93 - 100, lop-sided discussion of the viral life cycle; this paragraph is mostly about entry, which is not relevant to this paper, and does not really deal with the synthesis and assembly side of the cycle.

      We have now added the following text,

      ‘….liberating the viral nucleocapsid to the cytosol of the cell. Upon uncoating, the RNA genome is released into the host cytosol and replication-transcription complexes assemble to drive the replication of the viral genome and the expression of viral proteins. Coronaviruses modify host organelles to generate viral replication factories - so-called DMVs (double-membrane vesicles) that act as hubs for viral RNA synthesis [10]. SARS-CoV-2 viral budding occurs at ER-to-Golgi intermediate compartments (ERGIC) and newly formed viral particles traffic through secretory vesicles to the plasma membrane where they are released to the extracellular space.’ - (Lines 95-104).

      Line 103, why are the neighbouring cells 'naive'?

      ‘naïve’ removed.

      Line 112 - 113, delete last phrase; tetherin is described as an IFN stimulated gene in line 111; to be accurate, the beginning of the sentence should be 'Tetherin is expressed from a type 1 Interferon stimulated gene ...'

      Amended.

      Line 118 - 119, should say 'For tetherin-restricted enveloped viruses' as not all enveloped viruses are restricted by tetherin.

      Amended.

      Line 131, coronaviruses are not the only family of tetherin-restricted viruses that assemble on intracellular membranes, e.g. bunyaviruses.

      This has been modified and now reads,

      ‘In order for tetherin to tether coronaviruses, tetherin must be incorporated in the virus envelope during budding which occurs in intracellular organelles.’ - (Lines 133-135).

      Line 192, there is no EM data in Supplemental Fig 1C.

      This has now been removed.

      Line 251, 'a synchronous infection event' should be 'synchronous infection' as there will be multiple infection events.

      This has been changed.

      Page 13 (and elsewhere), unlike Southern, 'Western' should not have a capital letter, except at the start of a sentence.

      These have been updated throughout the manuscript (Lines 183, 341, 3549, 356, 392, 509, 763, 1330, 1399).

      Lines 330 and 352, can the authors quantitate S protein-induced reduction in cell surface tetherin rather than using the somewhat subjective 'mild'?

      These are now changed to,

      ‘Transient transfection of cells with ss-HA-Spike caused a 32% decrease in tetherin as observed by immunofluorescence (Supplemental Figure 4A, 4B), with…’ – (Line 370).

      ‘To explore whether the Spike-induced tetherin downregulation altered virus release, we performed experiments with virus like particles (VLPs) in HEK293T …’ – (Line 399).

      Line 379, OFR, should be ORF.

      Yes, changed.

      Line 448, 'Tetherin retains the ability' - did it ever loose it?

      This has been rephrased to,

      ‘Tetherin has the ability to restrict a number of different enveloped viruses that bud at distinct organelles.’ - (Line 547).

      Line 451, 'luminal' is confusing in this context.

      This has been modified to,

      ‘Tetherin forms homodimers between opposing membranes (e.g., plasma membrane and viral envelope) that are linked via disulphide bonds.’ - (Line 549).

      Line 453, the process of virus envelopment is likely to be more than a 'single step'

      This now reads,

      ‘…virus during viral budding, which occurs in modified ERGIC organelles.’ - (Line 552).

      Line 457, in my view the notion that Vpu abrogation of tetherin restriction is just due to redistribution of tetherin to the TGN is somewhat simplistic and disregards a lot of other work.

      We have removed mention of mechanisms of tetherin antagonism by other viruses. The key point we wish to make here is that tetherin is lost from the budding compartment. This now reads,

      ‘Many enveloped viruses antagonise tetherin by altering its localisation and removing it from the respective site of virus budding.’ – (Line 552-553).

      Line 472, what is meant by 'resting states'?

      This should have been ‘in the absence of stimulation’ and have now been re-written,

      ‘Tetherin is an IFN-stimulated gene (ISG) [13], and many cell types express low levels of tetherin in the absence of stimulation.’ - (Line 577).

      Line 1204, how were 'mock infected cells .......... infected'?

      This has now been re-written,

      ‘Differentiated nasal primary human airway epithelial (HAE) cells were embedded to OCT….’ - (Line 1385).

      Reviewer #2 (Significance (Required)):

      This study builds on published work supporting the notion that SARS-Cov-2 ORF3a is an antagonist for the restriction factor tetherin. Importantly, it provides insights to the the mechanism of ORF3a mediated tetherin antagonism, specifically to ORF3a inhibits tetherin cycling, diverting the protein to lysosomes and away from compartment(s) where virions assemble. Overall, the authors provide good supporting evidence for these conclusions, however there are issues that the authors need to address.

      We wish to thank Reviewer #2 for their insightful comments and suggestions for improving this work.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Restriction factors are major barriers against viral infections. A prime example is Tetherin (aka BST2), which is able to physically tether budding virions to the plasma membrane preventing release of the infectious particles. Of note, tetherin has broad anti-viral activity and has been established as a crucial innate immune defense factor against HIV, IAV, SARS-CoV-2 and other important human pathogens. However, successful viruses like SARS-CoV-2 evolved strategies to counteract restriction factors and promote their replication. Important restriction factors, such as tetherin, may often be targeted by multiple viral strategies to ensure complete suppression of their anti-viral activities by the pathogen. Of note, it was previously published that the accessory protein ORF7a of SARS-CoV-2 binds to (Petrosino et al, Chemistry Europe, 2021) and antagonizes it (Martin-Sancho et al, Molecular Cell, 2021). Previous data on SARS-CoV also revealed that ORF7a promotes cleavage of tetherin (Taylor et al, 2015, J Virol). In this manuscript, the authors show that tetherin restricts SARS-CoV-2 by tethering virions to the plasma membrane and propose that tetherin is targeted by two proteins of SARS-CoV-2. Whereas the Spike protein promotes degradation of tetherin, the accessory protein ORF3a redirects tetherin away from newly forming SARS-CoV-2 virions. While the overall findings that both S and ORF3a are additionally targeting tetherin is both novel and intriguing, additional evidence is needed to support this. In addition, the authors show that in their experimental setups ORF7a does not induce cleavage of tetherin. This is in direct contrast to previously published data both on SARS-CoV(-1) and -2 (Taylor et al, 2015, J Virol; Petrosino et al, Chemistry Europe, 2021; Martin-Sancho et al, Molecular Cell, 2021). From my point of view that needs further experimental confirmation. While the authors state that the impact of Spike on tethrin is mild, the experiments should still allow the conclusion whether there is a (mild) effect or not. The mechanism of ORF3a is fortunately more robustly assessed and provides some novel insights. Unfortunately, the whole manuscript suffers from a striking lack of quantifications. In addition, it is not clear whether and how many times experiments were repeated to the same results. Overall, the data in this manuscript seem very speculative and preliminary and thus do not support the authors conclusions.

      Major:

      Much of the data seems like it was only done once. As I am sure that this is a writing issue, please clearly state how many times the individual assays were repeated, provide the quantification graphs and appropriate statistics. Some experiments may need additional quantification and confirmation by other methods to be convincing.

      Quantification is provided throughout the revised manuscript. Figure legends have also been updated to provide information on quantification and statistical analysis.

      For example, Figure 1A, C and D: Please quantify the levels of tetherin and use an alternative readout, e.g. Western blotting of infected cells.

      Quantification has been performed and included in our revised manuscript in Supplemental Figures 1C, 1E. Tetherin is not shown in Figure 1C.

      A table is provided (above) to highlight the additional quantification.

      Figure 2A: Please quantify.

      We are not sure we understand this point. The western blot shown in Figure 2A demonstrates the ectopic expression of ACE2 in our A549 cell line. A549 cells have been used by many labs to study SARS-CoV-2 infection, but express negligible ACE2.

      Fig 3A: Please show and confirm successful tetherin KO in the cell lines that are used not only in microscopy.

      A new blot is now shown in Figure 3A, including a blot demonstrating tetherin loss in both KO lines.

      Figure 4C: Please quantify

      Currently flow cytometry experiments have been performed twice each and this is now detailed in the figure legends. The data shown in each panel is representative and the data has been explored using analogous approaches. For example, Figure 4C is complemented by Figures 4A and 4B, Figures 4E is complemented by 4D and 4F. We do not feel that repeating these flow cytometry analysis will significantly improve the manuscript.

      Figure 4D: Please quantify the effects are not obvious from the images provided.

      Quantification is now provided in Supplemental Figure 4E.

      Figure 4E, F Please provide a quantification of multiple independent repeats, the claimed differences are neither striking nor obvious.

      Quantification of 4F is now provided in Supplemental Figure 4G. Tetherin levels were quantified to be reduced by 25% (SD: 8%) by addition of Doxycycline and induction of ss-HA-Spike. Information for quantification is provided in figure legends.

      Figure 5A: Please quantify

      These experiments have currently been performed twice and this is now described in the figure legends. Data shown is representative. We can perform one more repeat of these experiments to quantify if neccessary, but do not feel it will significantly alter the manuscript.

      Figure 3C and D: At timepoint 0 the infection input levels are different. The initial infection levels have to be the same to draw the conclusion that tetherin KO affects virion release and not the initial infection efficiency. Can the authors either normalize or ensure that the initial infection is the same in all conditions and that variations in the initial infection efficiency do not correlated with the impact of tetherin on replication/release ? How often were those experiments repeated? Are the marginal differences in infectious titre significant? Overall the impact of tetherin on SARS-CoV-2 is very underwhelming but that may be due to efficient viral tetherin-counteraction strategies. Why is the phenotype inverted at 72 h?

      Equal amounts of virus, as measured by plaque-forming units (PFU), were used for both HeLa cell lines and thus at 0 hpi the variation seen is within the parameters of the assay used. It remains possible that tetherin affects virus entry but this is unlikely and this assay was not designed to investigate that effect.

      Growth curve assays are currently being repeated using an MOI of 0.01, 1 and 5. We are removing the 72 hpi sample from future experiments. At this time point, we find that the extensive cell death caused by viral replication (especially at higher MOIs) makes it difficult to accurately separate the released from intracellular fractions and conclusions cannot be accurately drawn from the data.

      Additional repeats of these experiments are in progress and will be included in the finalised manuscript.

      Figure 4B and C: Can the authors provide an explanation why SARS-CoV ORF7a is not inducing cleavage/removes glycosylation of tetherin. To show that the assays work, an independent positive control needs to be included. The FACS data in C is unfortunately not quantified.

      See above comments (Reviewer #2) regarding discussion on ORF7a. Additional text has been included to discuss ORF7a data,

      ‘SARS-CoV-1 ORF7a is reported to inhibit tetherin glycosylation and localise to the plasma membrane in the presence of tetherin [18]. We did not observe any difference in total tetherin levels, tetherin glycosylation, ability to form dimers, or surface tetherin upon expression of either SARS-CoV-1 or SARS-CoV-2 ORF7a (Figures 4A, 4B, 4C).

      Others groups have demonstrated a role for ORF7a in sarbecovirus infection and both SARS-CoV-1 and SARS-CoV-2 virus lacking ORF7a show impaired virus replication in the presence of tetherin [18,41]. A direct interaction between SARS-CoV-1 ORF7a and SARS-CoV-2 ORF7a and tetherin have been described [18,41], although the precise mechanism(s) by which ORF7a antagonises tetherin remains enigmatic. We cannot exclude that ORF7a requires other viral proteins to antagonise tetherin, or that ORF7a antagonises tetherin via another mechanism. For example, ORF7a can potently antagonise IFN signalling [42] which would impair tetherin induction in many cell types.’ – (Line 667-704).

      Fig 4G: The rationale and result of this experiment are not clear.

      The rationale for Spike VLP experiments is explained at Line 403. Given that Spike caused a reproducible decrease in cellular tetherin, we examined whether this downregulation was sufficient to antagonise tetherin and increase VLP yield.

      Fig 6: What is the benefit of doing the VLP assays as opposed to genuine virus experiments? To me it rather seems to be making the data unnecessarily complex. Again, no quantifications or repeats are provided.

      VLPs are used to separate the budding and release process from the replication process of RNA viruses. VLPs have been used in a number of SARS-CoV (DOI: 1002/jmv.25518) and HIV-1 (DOI: https://doi.org/10.1186/1742-4690-7-51) studies to analyse the impact of tetherin (and tetherin mutants) on release.

      VLP experiment quantification are now included throughout.

      Minor: Fig 1D: How do the authors explain the mainly intracellular Spike staining?

      We do not understand this point. Spike staining is intracellular, whether expressed alone or in the context of infected cells.

      Please add statistical analyses on the data e.g. Fig. 3 C and D

      Additional repeats of these experiments are in progress and will be included in the finalised manuscript.

      Fig. 4B and F: Why do the annotated sizes of tetherin differ between the blots?

      Figures 4B and 4F are run in non-reduced and reduced conditions respectively. In order to best show the dimer deficient C3A-Tetherin, blots are typically run in non-reduced conditions to exemplify dimer formation and to highlight any defects in dimer formation. The rest of the blots in the manuscript are run in denaturing conditions to aid blotting of other proteins. (Lines 957-958) and now (Lines 1356-1357).

      Fig. 5A: What is ORF6a? Do the authors mean ORF6?

      Yes, this has been changed.

      An MOI of 1 is NOT considered a low or relevant MOI. Can the authors either rephrase or repeat experiments with an actual low or relevant MOI i.e. 0.01 ?

      We are currently repeating these experiments and are including MOIs of 0.01, 1 and 5.

      Why were the cell models switched between Figure 1 and 2 and essentially the same experiments repeated?

      HeLa cells express high levels of tetherin at steady state, whilst A549 cells require IFN stimulation. HeLa cells demonstrate that tetherin downregulation occurs via an IFN-independent manner. A549 and T84 cells are more physiologically relevant cell types for SARS-CoV-2 infection. These points are stated in Lines 230 and 261.

      The manuscript may benefit a lot from streamlining and removing unessential deviations from the main message (e.g. discussions why multistep/single step growth curves are used/not relevant; why are they shown if the authors conclude that a single step is not relevant?). The discussion is extremely lengthy and does not provide sufficient discussion of the presented data.

      The multistep/single step growth curve text will be adapted, but it will be re-written after additional infection experiments.

      We have removed from the Discussion a small section discussing ORF7a mutants, given that the emphasis of our manuscript is not on ORF7a.

      We have also removed a small section describing the rearrangements of intracellular organelles by SARS-CoV-2 as it does not directly relate to the central message of our manuscript.

      According to my opinion, the current manuscript does not provide significant advancement for the field. While the intention was to update and expand our existing knowledge about tetherin restriction by SARS-CoV-2, the experiments do not support this yet. However, the general premise and approach/concept of the manuscript would be appealing to a broader audience. I especially like the notion that multiple proteins of SARS-CoV-2 could synergistically counteract an important innate immune defense factor, tetherin. My expertise is on SARS-CoV-2 and the interplay between the virus and host cell restriction factors.

      Reviewer #3 (Significance (Required)):

      According to my opinion, the current manuscript does not provide significant advancement for the field. While the intention was to update and expand our existing knowledge about tetherin restriction by SARS-CoV-2, the experiments do not support this yet. However, the general premise and approach/concept of the manuscript would be appealing to a broader audience. I especially like the notion that multiple proteins of SARS-CoV-2 could synergistically counteract an important innate immune defense factor, tetherin. My expertise is on SARS-CoV-2 and the interplay between the virus and host cell restriction factors.

      We thank Reviewer#3 for their comments and suggestions for improving this work.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Restriction factors are major barriers against viral infections. A prime example is Tetherin (aka BST2), which is able to physically tether budding virions to the plasma membrane preventing release of the infectious particles. Of note, tetherin has broad anti-viral activity and has been established as a crucial innate immune defense factor against HIV, IAV, SARS-CoV-2 and other important human pathogens. However, successful viruses like SARS-CoV-2 evolved strategies to counteract restriction factors and promote their replication. Important restriction factors, such as tetherin, may often be targeted by multiple viral strategies to ensure complete suppression of their anti-viral activities by the pathogen. Of note, it was previously published that the accessory protein ORF7a of SARS-CoV-2 binds to (Petrosino et al, Chemistry Europe, 2021) and antagonizes it (Martin-Sancho et al, Molecular Cell, 2021). Previous data on SARS-CoV also revealed that ORF7a promotes cleavage of tetherin (Taylor et al, 2015, J Virol).

      In this manuscript, the authors show that tetherin restricts SARS-CoV-2 by tethering virions to the plasma membrane and propose that tetherin is targeted by two proteins of SARS-CoV-2. Whereas the Spike protein promotes degradation of tetherin, the accessory protein ORF3a redirects tetherin away from newly forming SARS-CoV-2 virions.

      While the overall findings that both S and ORF3a are additionally targeting tetherin is both novel and intriguing, additional evidence is needed to support this. In addition, the authors show that in their experimental setups ORF7a does not induce cleavage of tetherin. This is in direct contrast to previously published data both on SARS-CoV(-1) and -2 (Taylor et al, 2015, J Virol; Petrosino et al, Chemistry Europe, 2021; Martin-Sancho et al, Molecular Cell, 2021). From my point of view that needs further experimental confirmation. While the authors state that the impact of Spike on tethrin is mild, the experiments should still allow the conclusion whether there is a (mild) effect or not. The mechanism of ORF3a is fortunately more robustly assessed and provides some novel insights. Unfortunately, the whole manuscript suffers from a striking lack of quantifications. In addition, it is not clear whether and how many times experiments were repeated to the same results. Overall, the data in this manuscript seem very speculative and preliminary and thus do not support the authors conclusions.

      Major

      Much of the data seems like it was only done once. As I am sure that this is a writing issue, please clearly state how many times the individual assays were repeated, provide the quantification graphs and appropriate statistics. Some experiments may need additional quantification and confirmation by other methods to be convincing. For example, Figure 1A, C and D: Please quantify the levels of tetherin and use an alternative readout, e.g. Western blotting of infected cells. Figure 2A: Please quantify. Fig 3A: Please show and confirm successful tetherin KO in the cell lines that are used not only in microscopy. Figure 4C: Please quantify. Figure 4D: Please quantify the effects are not obvious from the images provided. Figure 4E,F Please provide a quantification of multiple independent repeats, the claimed differences are neither striking nor obvious. Figure 5A: Please quantify.

      Figure 3C and D: At timepoint 0 the infection input levels are different. The initial infection levels have to be the same to draw the conclusion that tetherin KO affects virion release and not the initial infection efficiency. Can the authors either normalize or ensure that the initial infection is the same in all conditions and that variations in the initial infection efficiency do not correlated with the impact of tetherin on replication/release ? How often were those experiments repeated? Are the marginal differences in infectious titre significant? Overall the impact of tetherin on SARS-CoV-2 is very underwhelming but that may be due to efficient viral tetherin-counteraction strategies. Why is the phenotype inverted at 72 h? Figure 4B and C: Can the authors provide an explanation why SARS-CoV ORF7a is not inducing cleavage/removes glycosylation of tetherin. To show that the assays work, an independent positive control needs to be included. The FACS data in C is unfortunately not quantified.

      Fig 4G: The rationale and result of this experiment are not clear.

      Fig 6: What is the benefit of doing the VLP assays as opposed to genuine virus experiments? To me it rather seems to be making the data unnecessarily complex. Again, no quantifications or repeats are provided.

      Minor

      Fig 1D: How do the authors explain the mainly intracellular Spike staining?

      Please add statistical analyses on the data e.g. Fig. 3 C and D

      Fig. 4B and F: Why do the annotated sizes of tetherin differ between the blots?

      Fig. 5A: What is ORF6a? Do the authors mean ORF6?

      An MOI of 1 is NOT considered a low or relevant MOI. Can the authors either rephrase or repeat experiments with an actual low or relevant MOI i.e. 0.01 ?

      Why were the cell models switched between Figure 1 and 2 and essentially the same experiments repeated? The manuscript may benefit a lot from streamlining and removing unessential deviations from the main message (e.g. discussions why multistep/single step growth curves are used/not relevant; why are they shown if the authors conclude that a single step is not relevant?). The discussion is extremely lengthy and does not provide sufficient discussion of the presented data.

      According to my opinion, the current manuscript does not provide significant advancement for the field. While the intention was to update and expand our existing knowledge about tetherin restriction by SARS-CoV-2, the experiments do not support this yet. However, the general premise and approach/concept of the manuscript would be appealing to a broader audience. I especially like the notion that multiple proteins of SARS-CoV-2 could synergistically counteract an important innate immune defense factor, tetherin. My expertise is on SARS-CoV-2 and the interplay between the virus and host cell restriction factors.

      Significance

      According to my opinion, the current manuscript does not provide significant advancement for the field. While the intention was to update and expand our existing knowledge about tetherin restriction by SARS-CoV-2, the experiments do not support this yet. However, the general premise and approach/concept of the manuscript would be appealing to a broader audience. I especially like the notion that multiple proteins of SARS-CoV-2 could synergistically counteract an important innate immune defense factor, tetherin.

      My expertise is on SARS-CoV-2 and the interplay between the virus and host cell restriction factors.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      BST2/tetherin can restrict the release and transmission of many enveloped viruses, including coronaviruses. In many cases, restricted viruses have developed mechanisms to abrogate tetherin-restriction by expressing proteins that antagonize tetherin; HIV-1 Vpu-mediated antagonism of tetherin restriction is a particularly well studied example. In this paper, Stewart et al. report their studies of the mechanism(s) underlying SARS-CoV-2 antagonism of tetherin restriction. They conclude that Orf3a is the primary virally encoded protein involved and that Orf3a manipulates endo-lysosomal trafficking to decrease tetherin cycling and divert the protein away from putative assembly sites.

      Major comments:

      In my view some of the claims made by the authors are not fully supported by the data. For example, the bystander effect discussed in line 162 may suggest that infected cells can produce IFN but does not 'indicate' that they do. Most of the EM images show part of a cell profile, so statements such as (line 192) 'virus containing tubulovesicular organelles were often polarised towards sites of significant surface-associated virus' should be backed up with appropriate images, or indicated as 'not shown', or removed (the observation is not so important for this story). Line 196, DMVs can't be seen in these micrographs. Line 391, I can't see much change in CD63 distribution.

      Line 321, the authors show that ORF7a does not affect tetherin localization, abundance, glycosylation or dimer formation, but they don't show that it doesn't restrict SARS-CoV-2. Can they be sure that epitope tagging this molecule does not abrogate function (or the functions of any of the other tagged proteins for that matter), or that ORF7a works in conjunction with one of the other viral proteins? In the ORF screen, a number of the constructs are expressed at low level, is it possible they are missing something?

      Line 376, the authors refer to ORF3a being a viroporin. A recent eLife paper (doi: 10.7554/eLife.84477; initially published in BioRxiv) refutes this claim and builds on other evidence that ORF3a interacts with the HOPS complex. The authors should at least mention this work, especially in the discussion, as it would seem to provide a molecular mechanism to support their conclusions.

      Fig 3, the growth curves illustrated in Fig3 C and D do not have errors bars; how many times were these experiments repeated?

      Line 396, the authors show increased co-localization with LAMP1. As LAMP1 is found in late endosomes as well as lysosomes, they cannot claim the redistributed tetherin is specifically in lysosomes.

      There seems to be a marked difference in the anti-rb555 signal in the 'mock' cells in panels 5H and Suppl 6E. Is there a good reason for this, or does this indicate variability between experiments?

      Fig 6a, why is there negligible VLP release from cells lacking BST2 and ORF3a-strep? How many times were these experiments performed? Is this a representative image? I think it confusing to refer to the same protein by two different names in the same figure (i.e. BST2 and tetherin). Do the authors know how the levels of ORF3a expressed in cells in these experiments compares to those seen in infected cells?

      My final point is, perhaps, the trickiest to answer, but nevertheless needs to be considered. As far as we know, SARS-CoV-2 and at least some other coronaviruses, bud into organelles of the early secretory pathway, often considered to be ERGIC. In the experiments shown here the authors provide evidence that ORF3a can influence tetherin recycling, but the main way of showing this is through its increased association with endocytic organelles. Do the authors have any evidence that Orf3a reduces tetherin levels in the ERGIC or whether the tetherin cycling pathway(s) involve the ERGIC?

      Minor comments:

      Overall, the manuscript should be carefully edited to ensure the text reads clearly. A few examples of thing that need to be fixed are:-

      Line 53, delete 'shell' its redundant and confusing when the authors have said coronaviruses have a membrane.

      Line 61, delete 'the'

      Line 72, delete 'enveloped'; coronaviruses already described as enveloped viruses (line 53)

      Lines 93 - 100, lop-sided discussion of the viral life cycle; this paragraph is mostly about entry, which is not relevant to this paper, and does not really deal with the synthesis and assembly side of the cycle.

      Line 103, why are the neighbouring cells 'naive'?

      Line 112 - 113, delete last phrase; tetherin is described as an IFN stimulated gene in line 111; to be accurate, the beginning of the sentence should be 'Tetherin is expressed from a type 1 Interferon stimulated gene ...'

      Line 118 - 119, should say 'For tetherin-restricted enveloped viruses' as not all enveloped viruses are restricted by tetherin.

      Line 131, coronaviruses are not the only family of tetherin-restricted viruses that assemble on intracellular membranes, e.g. bunyaviruses.

      Line 192, there is no EM data in Supplemental Fig 1C.

      Line 251, 'a synchronous infection event' should be 'synchronous infection' as there will be multiple infection events

      Page 13 (and elsewhere), unlike Southern, 'Western' should not have a capital letter, except at the start of a sentence.

      Lines 330 and 352, can the authors quantitate S protein-induced reduction in cell surface tetherin rather than using the somewhat subjective 'mild'?

      Line 379, OFR, should be ORF.

      Line 448, 'Tetherin retains the ability' - did it ever loose it?

      Line 451, 'luminal' is confusing in this context.

      Line 453, the process of virus envelopment is likely to be more than a 'single step'

      Line 457, in my view the notion that Vpu abrogation of tetherin restriction is just due to redistribution of tetherin to the TGN is somewhat simplistic and disregards a lot of other work.

      Line 472, what is meant by 'resting states'?

      Line 1204, how were 'mock infected cells .......... infected'?

      Significance

      This study builds on published work supporting the notion that SARS-Cov-2 ORF3a is an antagonist for the restriction factor tetherin. Importantly, it provides insights to the the mechanism of ORF3a mediated tetherin antagonism, specifically to ORF3a inhibits tetherin cycling, diverting the protein to lysosomes and away from compartment(s) where virions assemble. Overall, the authors provide good supporting evidence for these conclusions, however there are issues that the authors need to address.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      I summarise the major findings of the work below. In my opinion the range and application of approaches has provided a broad evidence base that, in general, supports the authors conclusions. However, there are, in my opinion, particular failures to utilise and communicate this evidence. The manuscript may be much improved with attention in the following areas. In each case I will give general criticism with a few examples, but the principals of my comments could be applied throughout the work.

      1. Insufficient quantification. The investigation combines various sources of qualitative data (EM, fluorescence microscopy, western blotting) to generate a reasonably strong evidence base. However, the work is over-reliant on representative images and should include more quantification from repeat experiments. When there are multiple fluorescence micrographs with intensity changes (not necessarily just representative images) (e.g. Figure 1 or 2) the authors should consider making measurements of these. Also the VLP production assays, which are assessed by western blotting would particularly benefit from a quantitative assessment (either by densitometry or, if samples remain, ELISA/similar approach).
      2. Insufficient explanation. I found some of the images and legends contained insufficient annotation and/or description for a non-expert reader to appreciate the result(s). Particularly if the authors want to draw attention to features in micrographs they should consider using more enlarged/inset images and annotations (e.g. arrows) to point out structures (e.g DMVs etc.). This short coming exacerbates the lack of quantification.
      3. Insufficient exploration of the data. I had a sense that some aspects of the data seem unconsidered or ignored, and the discussion lacks depth and reflection. For example the tetherin down-regulation apparent in Figures 1 and 2 is not really explained by the spike/ORF3a antagonism described later on, but this is not explicitly addressed. Also, Figure 6 suggests that ORF3a results in high levels of incorporation of tetherin in to VLPs, but I don't think this is even described(?). The discussion should also include more comparison with previous studies on the relationship between SARS-2 and tetherin.

      I have no minor comments on this draft of the manuscript.

      Significance

      Tetherin, encoded by the BST2 gene, is an antiviral restriction factor that inhibits the release of enveloped viruses by creating tethers between viral and host membranes. It also has a capacity for sensing and signalling viral infection. It is most widely understood in the context of HIV-1, however, there is evidence of restriction in a wide variety of enveloped viruses, many of which have evolved strategies for antagonising tetherin. This knowledge informs on viral interactions with the innate immune system, with implications for basic virology and translational research.

      This study investigates tetherin in the context of SARS-CoV-2. The authors use a powerful collection of tools (live virus, gene knock out cells, recombinant viral and host expression systems) and a variety of approaches (microscopy, western blotting, infection assays), which is, itself, a strength. The study provides evidence to support a series of conclusions: I) BST2/tetherin restricts SARS-CoV-2 II) SARS-CoV-2 ablates tetherin expression III) spike protein can modestly down-regulate tetherin IV) ORF3A dysregulates tetherin localisation by altering retrograde trafficking. These conclusions are broadly supported by the data and this study make significant contributions to our understanding of SARS-CoV-2/tetherin interactions.

      My enthusiasm is reduced by, in my opinion, a failure of the authors to fully quantify, explain and explore their data. I expect the manuscript could be significantly improved without further experimentation by strengthening these aspects.

      This manuscript will be of interest to investigators in virology and/or cellular intrinsic immunity. Given the focus on SARS-CoV-2 it is possible/likely that it will find a slightly broader readership.

      I have highly appropriate skills for evaluating this work being experienced in virology, SARS-CoV-2, cell biology and microscopy.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their enthusiasm for our work and constructive feedback.

      Below please find our point-by-point response to the comments:

      Reviewer #1 -Key conclusions that were less convincing: -RhoA and NMII are in the title as mechanistic downstream regulators of CaM, but the results in Fig 8 call into question the role of RhoA. Why does RhoA activation not influence cell size and circularity? Can you overexpress MRLC-GFP and inhibit Rho and restore the wt phenotype? The role of NMII is also not clear - why does overexpressing MLCK-CA not have a phenotype but overexpressing MLCK downstream target MRLC show the phenotype? Are there any alternative pathways to regulate MRLC? It's not being discussed or described in 6D's schematic.

      Response: Rho activation usually leads to the formation of more stress fibers and therefore does not lead to decreased cell size and increased circularity observed in MFN2 KO. The phenotype is restored by either ROCK or MLCK knockdown. We have discussed in the main text that the formation of PAB requires both RhoA and NMII activation under restricted spatiotemporal control.

      MRLC has three major regulators (Ikebe & Hartshorne, 1985; Isotani et al., 2004). As we discussed, MLCK and ROCK phosphorylate MRLC at either Ser19 or Ser19 and Thr18. MRLC is dephosphorylated and inactivated by its phosphatase MLCP. We tried to knock down MLCP in wt MEF cells but failed to see any cell morphology changes (data not shown).

      We were also surprised to see MRLC-GFP overexpression with Rho Activator can phenocopy PAB, but “MLCK-CA + Rho Activator” failed to. We believe it is because MLCK-CA constitutively over-activates a broad range of downstream effectors while overexpressing MRLC mimics endogenous activation or NMII alone. Also, only a proportion of cells acquired PAB structure under Rho Activator and MRLC overexpression, which indicates PAB formation also requires specific spatiotemporal controls.

      *Rewrite for clarity -The role of ER/mito contacts in the system was unclear (since ER/mito contacts were not observed nor evaluated directly). *

      __Response: __We have included additional data to measure ER/mito contacts in MEFs. Our result is consistent with numerous previous reports that MFN2 regulates ER/mito contacts. The data is now included in Fig. S3.

      * -What role does focal adhesions have on PAB formation or any part of the model - There were results showing larger focal adhesions in the MFN2-/- cells, but not sure how this fits in with the bigger picture of contractility and PABs, and focal adhesions were not in the model in Figure 5.*

      __Response: __Focal adhesion and actomyosin are tightly coupled, and our work focuses on the actin network. Our model did not include FAs since FA is not a significant focus in this study.

      * -Whether regulating calcium impacts PAB formation*

      __Response: __Calcium likely regulates PAB formation. We have shown PAB cell percentage decreases in mfn2-/- with ER-mito tethering contrast in Fig. S3.

      -The role of PABs in migration is also unclear - can you affect PAB formation or get rid of PABs and quantify cell migration?

      __Response: __Our data suggest that PAB formation and cell migration are inversely correlated. Since PAB results from a contractile actin band on the cell periphery, its role in defective cell spreading and migration is expected. We demonstrated that MLCK and ROCK knockdown reduced PABs and rescued cell spreading.

      -It was hard to understand the correlation between the membrane tension of MFN2-/- cells and their ability to spread on softer substrates. How does this result fit in with the overarching model?

      __Response: __Reduced membrane tension is presumably associated with decreased cell spreading. Softer substrates attenuate the mechanical force on focal adhesion proteins and the actin cytoskeleton (Burridge & Chrzanowska-Wodnicka, 2003; Pelham & Wang, 1997; Wong et al., 2015), which is required for focal adhesion maturation. As a result, softer substrates can reduce the over-contraction in the MFN2 KO cells. The results support the model that MFN2 KO cells have enhanced cell contraction on the substrates dependent on substrate interaction and force transduction on focal adhesions. Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      __Response: __We have removed the MFN2-related disease from the introduction to focus the paper more on cell biology in vitro.

      *-There were a number of findings that did not seem to fit in with the paper, or they were included, but were not robustly described nor quantified. As an example, Paxillin-positive focal adhesions were evaluated in MFN2-/- and with various pharmacological approaches, but there is no quantification with respect to size, number, or distribution of focal adhesions, despite language in the main text that there are differences between conditions. *

      __Response: __We have quantified the focal adhesions in the KO cells, and the data is now included in Fig. 5. We used the actin distribution to quantify the “PAB”; therefore, FAs are not a significant focus of this study.

      *Also, the model was presented in figure 5, and then there were several pieces of data presented afterward, some that are included in the model (myosin regulation), and some that are not in the model (membrane tension, TFM, substrate stiffness, etc). * __Response: __Membrane tension and substrate stiffness dependence are physical properties of the cell. The model focuses on the molecular mechanism that leads to PAB formation.

      The stiffness/tension figure was not clear to me, and it was difficult to make sense of the data since one would predict that an increase in actomyosin contractility at the cortex would lead to higher membrane tension, not lower, and then how membrane tension relates to spreading on soft matrices is also unclear.

      __Response: __The result was surprising to us initially. However, the MFN2 KO cells have increased actomyosin contractility only at the cell-substrate interface but not throughout the entire cell cortex. A less spread cell would have a more relaxed membrane and display a lower membrane tension, consistent with our observation. Softer matrices reduce cell contractility at the cell-substrate interface, which allows MFN2 KO cells to relax and spread better. We have emphasized in the discussion of our manuscript that MFN2 KO cells have an increase in actomyosin contractility only at the cell-substrate interface.

      The manuscript seems like an amalgamation of different pieces of data that do not necessarily fit together into a cohesive story, so the authors are encouraged to either remove these data, or shore them up and weave them into the narrative.

      __Response: __We respectfully disagree with the reviewer since the cell morphology, actin structure, substrate interaction, and cell mechanics are tightly correlative and provide a complete picture of the role of MFN2 in regulating cell behavior.

      * Request additional experiments 1. -The imaging used for a lot of the quantification (migration, circularity) is difficult to resolve. The cells often look like they are not imaged in the correct imaging plane. It would be helpful to have better representative images such that it is clear how the cells were tracked and how cell periphery regions of interest were manually drawn. Focal adhesions should also be shown without thresholding.*

      __Response: __We used a TIRF microscope and imaged a Z stack. Imaris was used to combine the Z-stack images. The images in the manuscripts are now of the lowest stack with background subtraction.

      2. -For most of the quantification, it appears that the experiment was only performed once and that a handful of cells were quantified. The figure legend indicates the number of cells (often reported as >12 cells or >25 cells), but the methods indicate that high content imaging was performed, and so the interpretation is that these experiments were only performed once. Biological replicates are required. If the data do represent at least 3 biological replicates, then more cell quantification is required (12 or 25 cells in total would mean quantifying a small number of cells per replicate).

      Response: __We quantified more cells and indicated the number of cells quantified in the figure legends. The experiments are with three biological replicates.__

      * 3. -Mitochondrial morphology and quantification should be performed in the MFN2 knockdown and rescue lines.*

      __Response: __Mitochondrial morphology is well characterized in the Mfn2 KO and rescue MEF cells (Chen et al., 2003; Naon et al., 2016; Samanas et al., 2020). We observed a similar phenotype using mito-RFP to label mitochondrial structure (Fig. S1).

      4.-Many of the comparisons throughout the figures is between MFN2 knockdown and MFN2 knockdown plus rescue or genetic/pharmacological approaches, but a comparison that is rarely made is between wildtype and experimental. These comparisons could be useful in comparing partial rescues and potential redundancies with the other mitofusin.

      Response: We have included the WT in our assays (Fig. 2-6). We also confirmed that MFN1 could not rescue the MFN2 defects (Fig. 2). We observed partial and complete rescue in different assays. It would be difficult to conclude whether the phenotype is due to the redundancies with the other mitofusin because not all cells are rescued at the endogenous level.

      * 5. -For the mito/ER tethering experiments, it is important to show that ER/mito contacts are formed and not formed in the various conditions with imaging approaches.*

      __Response: __We adopted a previously established method to quantify ER-mitochondria contacts with the probe SPLICSL (Cieri et al., 2017; Vallese et al., 2020). Our results align with previous reports that Mfn2-null MEFs displayed significantly decreased ER-mitochondria contacts. MFN2 re-expression or ER-mitochondria tethering structure restored the contacts. (Fig. S3).

      * 6. -For some of the pharmacological perturbations, it would be helpful to show that the perturbation actually led to the expected phenotype - as an example, in cells treated with different concentrations of A23187, what are the intracellular calcium levels and how do these treatments influence PAB formation? This aspect should be generally applied across the study - when a modification is made, that particular phenotype should first be evaluated, before dissecting how the perturbation affects downstream phenotypes.*

      __Response: __We selected a collection of well-characterized inhibitors broadly used in the literature for pharmacological perturbations. For example, numerous studies used A23187 treatment to raise intracellular calcium to examine related actin cytoskeleton changes (Carson et al., 1994; Goldfine et al., 1981; Shao et al., 2015). We titrated the drugs in WT in preliminary experiments and observed similar phenotypes. (data not shown). We then use the same concentration to treat the MFN2 KO cells. Overall, we use pharmacological perturbations as supporting evidence. We use genetics (knockdown or overexpression) to validate our results.

      7. -In Figures 4 and 5, the thresholding approaches in the images make the focal adhesions difficult to resolve, and therefore it is difficult to determine the size. As described above, these metrics should be defined and quantified.

      __Response: __We used a TIRF microscope and imaged a Z stack. Imaris was used to combine the Z-stack images. The images in the manuscripts are now of the lowest stack with background subtraction.

      8. -What is a PAB? How is it defined? What metrics make a structure a PAB versus regular cortical actin - are there quantifiable metrics? In figure 8, there are some structures that are labelled as a PAB, but some aren't (as an example, the left panel in 8b is a PAB, but the right panel in 8A is not, but they look the same), so a PAB should be defined with quantifiable measures, and then applied to the entire study.

      __Response: __We developed an algorism to quantify PAB cells. We first used the ImageJ plugin FiloQuant (Jacquemet et al., 2019) to identify the cell border and cytoskeleton, then used our custom algorism to quantify the percentage of actin in the cell border area. The cellular circularity is also calculated at the same time. If the cell contains more than 50% actin in the cell border area, and the circularity is higher than 0.6, we then count it as a “PAB” cell (Fig. S2).

      -As described above, why does RhoA activation not influence cell size and circularity? Can you overexpress MRLC-GFP and inhibit Rho and restore the wildtype phenotype?

      __Response: __Rho activation usually leads to the formation of more stress fibers and therefore does not lead to decreased cell size and increased circularity observed in MFN2 KO.

      We are sorry that we don’t understand the rationale of this experiment proposed by the reviewer. ROCK inhibition restored the wildtype phenotype in MFN2 KO cells (Fig.7). Figure 8 is to create the MFN2 KO phenotype in WT cells, which requires both Rho and MRLC overactivation.

      * 10 Are the data and the methods presented in such a way that they can be reproduced? -We appreciate that the authors quantified many parameters, although some quantifications were missing. There are some missing methods - how was directionality quantified, was migration quantified by selecting the approximate center of cells using MTrackJ or were centroids quantified by outlining cells, for instance. Also, given that some of the phenotypes were somewhat arbitrarily assigned (ie. what constitutes a PAB?), it may be difficult to reproduce these approaches and interpret data appropriately.*

      __Response: __We have clarified directionality quantification methods and other details. We used MTrackJ to track cell migration. And as we mentioned above, we came up with a customized algorithm to quantify PAB cells, which shows the critical effectors in a more quantifiable way.

      * 11. Are the experiments adequately replicated and statistical analysis adequate? -Unfortunately, while the approximate number of cells was reported, the number of biological replicates were not reported, and therefore, the experimental information and statistical analyses are not adequate.*

      __Response: __We have quantified more cells and indicated the number of repeats and cells quantified in the figure legend. Minor comments: Specific experimental issues that are easily addressable.

      * 12. - for some of the graphs - mostly about calcium levels - fold change is shown, but raw values should also be included to determine whether the basal levels of calcium are different across the conditions.*

      __Response: __Delta F/F0 is the standard method to normalize dye loading in cells for calcium concentration measurements (Kijlstra et al., 2015; Zhou et al., 2021).

      13. - scale bars in every panel should also help make the points clearer.

      __Response: __We have added scale bars in all panels.

      * Reviewer #2 (Evidence, reproducibility and clarity (Required)): 1. Fig. 1A: The Mfn1 Western Blot is not of publication quality. Moreover, quantitation is necessary.*

      __Response: __We performed additional western blots, changed the representative images, and quantified the level of knockdown and overexpression (Fig.2 and 7). We did not quantify the WB in Fig.1A since it was to confirm that the Mfn1-/- or Mfn2-/- were knock-out cell lines.

      2. Fig. 1B (as well as Fig. 2G and others): the date do not reflect cellular size but instead spread cellular area.

      __Response: __We thank the reviewer for this suggestion. We have changed all similar descriptions to “Spread Area” in the main text and figures.

      3. Fig. 1C, D: Mfn1-null MEFs appear to be more spindle-shaped than wt cells, yet their circularity tends to be elevated. Do the authors have an explanation?

      __Response: __The circularity of Mfn1-/- MEFs has a slight increase but is not significant compared to the wt cells. As we observed, Mfn1-/- MEFs have fewer protrusions than wt, which may contribute to the slight increase in its circularity (Fig. 5C). However, this is not the focus of this study.

      * 4. Fig. 2A: The Mfn1 levels in Mfn2-/- + Mfn2 are lower than Mfn2-/-? Does this imply a crosstalk between Mfn1 and Mfn2 expression.*

      __Response: __We agree with the reviewer that a compensatory change in MFN1 expression might happen in Mfn2-/- + MFN2 MEFs. Previous research also indicated crosstalk between MFN1 and MFN2 expression (Sidarala et al., 2022).

      * 5. Fig. 2H: The authors should provide co-staining of mitochondria and Mfn2 as well.*

      __Response: __Co-staining of mitochondria and MFN2 in Mfn2-/- MEFs or rescue lines has been done in numerous previous studies (Chen et al., 2003; Naon et al., 2016; Samanas et al., 2020). In this work, we transfected our cells with mito-RFP and showed mitochondria changes in Mfn2-/- and rescue MEF cells (Fig. S1G).

      6. Fig. 4D-E: Western blots are not of publication quality. Looking at the blots provided in Fig. 4D, the reviewer is not convinced with the quantitative data shown in Fig. 4E. For instance, the intensity of pCaMKII band for "vec" does not look 3x higher than that of "+MFN2", whereas that of "+MFN2" looks much higher than that of WT.

      __Response: __We have performed additional western blots and changed the representative images.

      * 7. Fig. 5C: The authors should stain for vinculin, which are present in mature FAs only, rather than paxillin which are present in all FAs. This would strengthen the authors' conclusions. Also, FA size should be quantified.*

      __Response: __We have quantified FA size in Figure 5. The maturity of FAs is not a major focus of this study. It is likely that most FAs here are mature since they are connected with stress fibers.

      * 8. Fig. 6C - Why does the background have a grid and appear grey in color? Also, the cell interior appears in different colors in the different images. The authors should take a z-stack of images and provide the raw image files.*

      __Response: __We used a TIRF microscope and imaged a Z stack. Imaris was used to combine the Z-stack images. The images in the manuscripts are now of the lowest stack with background subtraction.

      9. Fig 7C: The MLCII Western blot is not of publication quality, and may affect the quantification provided in Fig. 7D.

      __Response: __We have performed additional western blots and changed the representative images.

      * 10. Fig 8: Do cell treatments with Rho Activator and MLCK-CA also impair migration velocity similar to Mfn2-null cells?*

      __Response: __Our data indicated that Rho Activator and MRLC induced the “PAB” structure seen in MFN2 KO cells. It is likely that cell migration is impaired here. Spatiotemporal regulation of Rho Activation is important to cell migration, it is known that Rho overactivation can significantly inhibit cell migration (Nobes & Hall, 1999). Showing Rho Activator and MLCK-CA will reduce cell migration will not add new knowledge to the cell migration field. However not all cell migration defects are associated with the PAB. We, therefore, focused on PAB quantification in this figure.

      11. Fig. 9A: The authors claim that wt cells have actin bundles that protrude against the membrane while Mfn2-null cells do not. This does not look convincing as the Mfn2-null actin bundle seem to be pushing against the membrane at the bottom of the image. No quantification is provided. It is unclear what conclusion can be drawn from the super-resolution images.

      __Response: __We used super-resolution imaging to demonstrate the details of the peripheral actin band (PAB) structure. We have used two boxes to enlarge the regions where membrane parallel actin structures are predominant. The quantification of PAB is provided in other figures.

      12. Suppl. Fig. 5C: The authors should take images using a confocal microscope for cells with Flipper-TR construct, eliminate the background and the cell center to only consider the cell periphery. Nikon TE2000 does not seem to be a confocal microscope.

      Response: __The amount of Flipper-TR that MEF cells can take in was limited. With the current signal-to-noise ratio, complete background elimination is not feasible. A confocal microscope is not necessary for Flipper-TR FLIM imaging (García-Calvo et al., 2022). __* Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      General Comments (Major) 1. Data Presentation and analysis: The data analysis would benefit from using a method such as Super-Plots to show the data from separate biological repeats and to use N numbers that represent the number of biological repeats rather than the number of cells analysed. Please see the following reference for a suggestion on how to analyse the data: Lord SJ, Velle KB, Mullins RD, Fritz-Laylin LK. SuperPlots: Communicating reproducibility and variability in cell biology. J Cell Biol. 2020 Jun 1;219(6):e202001064. doi: 10.1083/jcb.202001064. PMID: 32346721; PMCID: PMC7265319.*

      __Response: __We have changed the dot colors to show data from separate biological repeats.

      • Another general comment is that many of the experiments show analysis of very few numbers of cells or maybe only one field of view in a microscopy quantification experiment. This seems unusually low - for example, in Figure 1E only 6 cells have been analysed. It seems like more could have been done and if statistical analysis like we suggest in 1 above is used, this might reveal that some of the differences are less significant than the authors think/report. This is important, as cells are noisy and it is unusual to have such high significance for experiments like cell migration and other parameters unless a lot of measurements are made. In Figure 1G, it appears that only one field of view has been used to quantify the data. We routinely use 3-5 fields of view to get a representative sample of what the cells are doing.*

      __Response: __We have quantified more cells and indicated the number of repeats and cells quantified in the figure legend.

      • Some of the micrographs appear to be missing scale bars- e.g. Fig. 2H, Fig. 8*

      __Response: __We have included scale bars in the lower right corner of all panels.

      * 4. In the cell tracking experiments, only some of the cells in the images appear to have been tracked. How were the tracked cells chosen? Normally, we would track every cell to avoid bias in selection.*

      __Response: __We tracked all the cells in the view at the beginning of the experiments.

      5. The western blot images do not show the molecular size of the bands. Show ladder position

      __Response: __We have added bands to show molecular weights.

      6. Mostly the graphs show individual data points, which is good, but in some cases only a bar is shown- it would be nice to have individual points overlaid on the bars- e.g. Figure 1I, 4E, 5B, 5E, 7B, 7D

      __Response: __We have updated the graph to show individual points.

      7. Many of the confocal images look very processed- they have no background and have a hazy black halo around the cell. I am not familiar with the type of processing that was done and I worry that the images are only showing a masked and processed version of the actual data. The authors need to explain what processing they have done and probably also to provide the unprocessed images in a supplementary figure or dataset for readers to see. The methods description is inadequate as it only says Image J was used to process the data.

      __Response: __We used a TIRF microscope and imaged a Z stack. Imaris was used to combine the Z-stack images. The images in the manuscripts are now of the lowest stack with background subtraction.

      * Individual comments on Figures: Figure 1: See general comments above- consider to use Superplots, more cells and more fields of view in quantifications. Show experimental points in bar graph.*

      __Response: __We have quantified more cells and used super plots to display the data. The number of repeats and cells quantified are indicated in the figure legend.

      Figure 2: In 2E, the colours are very similar for two of the experiments so it is difficult to distinguish them- e.g. the MFN1 vs MFN2 rescue data both appear dark blue. Response: We have changed the color for MFN1 rescue to distinguish the two samples better.

      In 2H are the magnifications really the same for the WT as the +DOX and -DOX? The cell in the WT looks huge. Is this representative? Also, the phalloidin stain looks very spotty on the WT. This seems unusual.

      __Response: __The images are of the same scale. The Mfn2-/- MEFs are smaller, and DOX-induced MFN2 expression can only partially rescue the cell size.

      * Figure 3: Not many cells were analysed in 3B, especially the zero time point.*

      __Response: __We have quantified more cells.

      * Please define +T, we assume it is the tether construct, but it is not defined*

      __Response: __We defined T as a tether in the main text and the figure legend. In 3F, how were the tracked cells chosen?

      __Response: __We tracked all the cells in the view at the beginning of the experiments.

      * Figure 4:* 4B: Why have they not tested FK506 and STO609 on the WT cells?

      __Response: __We focused on understanding the MFN2 KO phenotype. Since neither FK506 nor STO609 altered the MFN2 KO phenotype, we did not include them in the WT group.

      4C: How were the tracked cells chosen?

      __Response: __We tracked all the cells in the view at the start of the experiments.

      4D-E: The blot doesn't look representative of the quantification- were the numbers normalised to vinculin? The difference between WT and vector looks too large to be real if the amounts were normalised to the vinculin, as vinculin is increased in vector. Likewise, the pCAMKII looks to be substantially decreased from the +MFN2, but this is not what the quantification shows.

      __Response: __We have performed additional western blots and changed the representative images.

      Figure 5: 5B- please clarify which ratio is shown here. I assume it is the ratio of RhoA-GTP vs RhoA between the zero and 4 minute time points.

      __Response: __Yes, we have clarified this point in the figure legend.

      5C- These images appear to have a mask around the cell. It is hard to tell where the edge of the cell really is- what sort of processing was used? Especially for the paxillin staining, why is there no cytoplasm shown? Is this because the image is in TIRF?

      __Response: __We used a TIRF microscope and imaged a Z stack. Imaris was used to combine the Z-stack images. The images in the manuscripts are now of the lowest stack with background subtraction.

      Figure 6: Figure 6C- the blebbistatin treated cell looks very large- is this representative?

      __Response: __Yes, Blebbistatin-treated cells are larger (Fig. 6A).

      Figure 7: Fig 7C- The lanes for MLCII are all run together- is this from a different gel? Is this quantification accurate?

      __Response: __We have performed additional western blots and changed the representative images.

      Fig. 7F- What is the % level of knockdown achieved?

      __Response: __The level of knockdown is labeled on the figure.

      Figure 8: Fig 8A,B- does the scale bar represent all of the images in these two panels?

      __Response: __Yes, the figure legend is updated to clarify this point.

      Fig 8C,D- Superplots would be helpful here.

      __Response: __We have used super plots to display the data.

      Supplementary Data: The OCR data do not add much and are not discussed much in the manuscript. Perhaps they could be omitted.

      __Response: __Our OCR data ruled out the possibility of metabolic regulation. Since MFN2 is a mitochondria protein with its typical functions in metabolic pathways, we cannot omit its influence on metabolism here. As we observed, shMLCK enhanced OCR, shROCK reduced OCR, and both knock-down rescued cell morphology and motility. We believe that PAB formation is independent of MFN2’s function in metabolic regulation.

      Figure S3- The figure label doesn't match the manuscript test- was fibrinogen or collagen used?

      __Response: __We tried cover glass alone, collagen, and fibronectin-coated glass. The PAB formation is independent of these extracellular substrates. We did not try fibrinogen because MEF cell is reported to prefer fibronectin (Lehtimäki et al., 2021).

      Reference

      Burridge, K., & Chrzanowska-Wodnicka, M. (2003). FOCAL ADHESIONS, CONTRACTILITY, AND SIGNALING. Http://Dx.Doi.Org/10.1146/Annurev.Cellbio.12.1.463, 12, 463–519. https://doi.org/10.1146/ANNUREV.CELLBIO.12.1.463

      Carson, S. D., Perry, G. A., & Pirruccello, S. J. (1994). Fibroblast Tissue Factor: Calcium and Ionophore Induce Shape Changes, Release of Membrane Vesicles, and Redistribution of Tissue Factor Antigen in Addition to Increased Procoagulant Activity. Blood, 84(2), 526–534. https://doi.org/10.1182/BLOOD.V84.2.526.526

      Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., & Chan, D. C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of Cell Biology, 160(2), 189. https://doi.org/10.1083/JCB.200211046

      Cieri, D., Vicario, M., Giacomello, M., Vallese, F., Filadi, R., Wagner, T., Pozzan, T., Pizzo, P., Scorrano, L., Brini, M., & Calì, T. (2017). SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death & Differentiation 2018 25:6, 25(6), 1131–1145. https://doi.org/10.1038/s41418-017-0033-z

      García-Calvo, J., López-Andarias, J., Maillard, J., Mercier, V., Roffay, C., Roux, A., Fürstenberg, A., Sakai, N., & Matile, S. (2022). HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chemical Science, 13(7), 2086–2093. https://doi.org/10.1039/D1SC05208J

      Goldfine, S. M., Schroter, E. H., & Izzard, C. S. (1981). Calcium-dependent shortening of fibroblasts induced by the ionophore, A23187. Journal of Cell Science, 50(1), 391–405. https://doi.org/10.1242/JCS.50.1.391

      Ikebe, M., & Hartshorne, D. J. (1985). Phosphorylation of Smooth Muscle Myosin at Two Distinct Sites by Myosin Light Chain Kinase*. Journal of Biological Chemistry, 260, 10027–10031. https://doi.org/10.1016/S0021-9258(17)39206-2

      Isotani, E., Zhi, G., Lau, K. S., Huang, J., Mizuno, Y., Persechini, A., Geguchadze, R., Kamm, K. E., & Stull, J. T. (2004). Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6279–6284. https://doi.org/10.1073/PNAS.0308742101

      Kijlstra, J. D., Hu, D., Mittal, N., Kausel, E., van der Meer, P., Garakani, A., & Domian, I. J. (2015). Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 5(6), 1226. https://doi.org/10.1016/J.STEMCR.2015.10.017

      Lehtimäki, J. I., Rajakylä, E. K., Tojkander, S., & Lappalainen, P. (2021). Generation of stress fibers through myosin-driven reorganization of the actin cortex. ELife, 10, 1–43. https://doi.org/10.7554/ELIFE.60710

      Naon, D., Zaninello, M., Giacomello, M., Varanita, T., Grespi, F., Lakshminaranayan, S., Serafini, A., Semenzato, M., Herkenne, S., Hernández-Alvarez, M. I., Zorzano, A., De Stefani, D., Dorn, G. W., & Scorrano, L. (2016). Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proceedings of the National Academy of Sciences of the United States of America, 113(40), 11249–11254. https://doi.org/10.1073/PNAS.1606786113/SUPPL_FILE/PNAS.201606786SI.PDF

      Nobes, C. D., & Hall, A. (1999). Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement. The Journal of Cell Biology, 144(6), 1235. https://doi.org/10.1083/JCB.144.6.1235

      Pelham, R. J., & Wang, Y. L. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13661. https://doi.org/10.1073/PNAS.94.25.13661

      Samanas, N. B., Engelhart, E. A., & Hoppins, S. (2020). Defective nucleotide-dependent assembly and membrane fusion in Mfn2 CMT2A variants improved by Bax. Life Science Alliance, 3(5). https://doi.org/10.26508/LSA.201900527

      Shao, X., Li, Q., Mogilner, A., Bershadsky, A. D., & Shivashankar, G. V. (2015). Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proceedings of the National Academy of Sciences of the United States of America, 112(20), E2595–E2601. https://doi.org/10.1073/PNAS.1504837112/SUPPL_FILE/PNAS.1504837112.SM03.AVI

      Sidarala, V., Zhu, J., Levi-D’Ancona, E., Pearson, G. L., Reck, E. C., Walker, E. M., Kaufman, B. A., & Soleimanpour, S. A. (2022). Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis. Nature Communications 2022 13:1, 13(1), 1–16. https://doi.org/10.1038/s41467-022-29945-7

      Vallese, F., Catoni, C., Cieri, D., Barazzuol, L., Ramirez, O., Calore, V., Bonora, M., Giamogante, F., Pinton, P., Brini, M., & Calì, T. (2020). An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nature Communications, 11(1). https://doi.org/10.1038/S41467-020-19892-6

      Wong, S. Y., Ulrich, T. A., Deleyrolle, L. P., MacKay, J. L., Lin, J. M. G., Martuscello, R. T., Jundi, M. A., Reynolds, B. A., & Kumar, S. (2015). Constitutive activation of myosin-dependent contractility sensitizes glioma tumor-initiating cells to mechanical inputs and reduces tissue invasion. Cancer Research, 75(6), 1113–1122. https://doi.org/10.1158/0008-5472.CAN-13-3426

      Zhou, W., Hsu, A. Y., Wang, Y., Syahirah, R., Wang, T., Jeffries, J., Wang, X., Mohammad, H., Seleem, M. N., Umulis, D., & Deng, Q. (2021). Mitofusin 2 regulates neutrophil adhesive migration and the actin cytoskeleton. Journal of Cell Science, 133(17). https://doi.org/10.1242/JCS.248880/VIDEO-11

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This study explores the importance of MFN2, a known endoplasmic reticulum-mitochondria linker protein, in cell motility and actin-myosin organization. It is known that the mitofusin proteins MFN1 and MFN2 can tether the mitochondria to the ER and are connected with calcium regulation in muscle and non-muscle cell types. Calcium flux mediated by mitofusins has previously been implicated in apoptosis and ER stress. In this study, the authors show that loss or depletion of MFN2 (but not MFN1) can lead to aberrant calcium increase in the cytoplasm and trigger actin-myosin reorganisation. They show that the actin and myosin changes are linked with activation of RhoA and also that they can be suppressed by inhibiting myosin light chain phosphorylation/ activation. They also show that cells with reduced MFN2 are softer (using atomic force microscopy), which agrees with activation of RhoA and contractility. If cells are plated on softer substrata, it partially compensates for the over-activation of RhoA.

      In many places, the data support the claims made, but in several places the experiments could be made more convincing or be more clearly presented. Some of the experiments appear to have been repeated only 1-2 times and very few cells or fields of view have been analysed.

      General Comments (Major)

      1. Data Presentation and analysis: The data analysis would benefit from using a method such as Super-Plots to show the data from separate biological repeats and to use N numbers that represent the number of biological repeats rather than the number of cells analysed. Please see the following reference for a suggestion on how to analyse the data: Lord SJ, Velle KB, Mullins RD, Fritz-Laylin LK. SuperPlots: Communicating reproducibility and variability in cell biology. J Cell Biol. 2020 Jun 1;219(6):e202001064. doi: 10.1083/jcb.202001064. PMID: 32346721; PMCID: PMC7265319.
      2. Another general comment is that many of the experiments show analysis of very few numbers of cells or maybe only one field of view in a microscopy quantification experiment. This seems unusually low - for example, in Figure 1E only 6 cells have been analysed. It seems like more could have been done and if statistical analysis like we suggest in 1 above is used, this might reveal that some of the differences are less significant than the authors think/report. This is important, as cells are noisy and it is unusual to have such high significance for experiments like cell migration and other parameters unless a lot of measurements are made. In Figure 1G, it appears that only one field of view has been used to quantify the data. We routinely use 3-5 fields of view to get a representative sample of what the cells are doing.
      3. Some of the micrographs appear to be missing scale bars- e.g. Fig. 2H, Fig. 8
      4. In the cell tracking experiments, only some of the cells in the images appear to have been tracked. How were the tracked cells chosen? Normally, we would track every cell to avoid bias in selection.
      5. The western blot images do not show the molecular size of the bands.
      6. Mostly the graphs show individual data points, which is good, but in some cases only a bar is shown- it would be nice to have individual points overlaid on the bars- e.g. Figure 1I, 4E, 5B, 5E, 7B, 7D
      7. Many of the confocal images look very processed- they have no background and have a hazy black halo around the cell. I am not familiar with the type of processing that was done and I worry that the images are only showing a masked and processed version of the actual data. The authors need to explain what processing they have done and probably also to provide the unprocessed images in a supplementary figure or dataset for readers to see. The methods description is inadequate as it only says Image J was used to process the data.

      Individual comments on Figures:

      Figure 1: See general comments above- consider to use Superplots, more cells and more fields of view in quantifications. Show experimental points in bar graph.

      Figure 2: In 2E, the colours are very similar for two of the experiments so it is difficult to distinguish them- e.g. the MFN1 vs MFN2 rescue data both appear dark blue. In 2H are the magnifications really the same for the WT as the +DOX and -DOX? The cell in the WT looks huge. Is this representative? Also, the phalloidin stain looks very spotty on the WT. This seems unusual.

      Figure 3: Not many cells were analysed in 3B, especially the zero time point. Please define +T, we assume it is the tether construct, but it is not defined In 3F, how were the tracked cells chosen?

      Figure 4: 4B: Why have they not tested FK506 and STO609 on the WT cells? 4C: How were the tracked cells chosen? 4D-E: The blot doesn't look representative of the quantification- were the numbers normalised to vinculin? The difference between WT and vector looks too large to be real if the amounts were normalised to the vinculin, as vinculin is increased in vector. Likewise, the pCAMKII looks to be substantially decreased from the +MFN2, but this is not what the quantification shows.

      Figure 5: 5B- please clarify which ratio is shown here. I assume it is the ratio of RhoA-GTP vs RhoA between the zero and 4 minute time points. 5C- These images appear to have a mask around the cell. It is hard to tell where the edge of the cell really is- what sort of processing was used? Especially for the paxillin staining, why is there no cytoplasm shown? Is this because the image is in TIRF?

      Figure 6: Figure 6C- the blebbistatin treated cell looks very large- is this representative?

      Figure 7: Fig 7C- The lanes for MLCII are all run together- is this from a different gel? Is this quantification accurate? Fig. 7F- What is the % level of knockdown achieved?

      Figure 8: Fig 8A,B- does the scale bar represent all of the images in these two panels? Fig 8C,D- Superplots would be helpful here.

      Supplementary Data:

      The OCR data do not add much and are not discussed much in the manuscript. Perhaps they could be omitted. Figure S3- The figure label doesn't match the manuscript test- was fibrinogen or collagen used?

      Significance

      The main novelty here appears to be the connection between excess cytoplasmic calcium, MFN2 loss and RhoA/myosin activation. This is interesting and a useful addition to the literature. It is unclear what the significance is perhaps, as increased cytoplasmic calcium is likely to cause multiple effects in addition to these. So, this effect may be a side-effect of uncoupling the ER and the mitochondria. Nonetheless, it is important to know about this and it will likely inform future studies on the mitofusins.

      This will be of interest to basic researchers studying mitochondria function and the connections between signaling and mitochondria function.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this manuscript, Wang et al. investigate the role of Mitofusin 2 (Mfn2) in MEF morphology and migration. MEFs lacking Mfn2 exhibit a rather circular shape and reduced migratory potential due to increased cytosolic Ca2+, which activates Ca2+/calmodulin-dependent protein kinase II, RhoA and myosin light-chain kinase (MLCK), triggering non-muscle myosin II overactivation and formation of an F-actin ring at the cell periphery. Overall, this is an interesting study. However, additional work is needed for this manuscript to reach publication quality.

      Major Concerns:

      • Several of the Western blots are not of publication quality. This may affect their quantification, and the authors' conclusions.
      • The authors should examine how treatment of wt MEFs with Rho Activator and MLCK-CA affect cell motility (point #10).
      • The reviewer is not convinced that the membrane tension measurements were performed correctly (see point #12 below). The reviewer would expect that the presence of an F-actin ring at the cell periphery would increase the membrane tension, which is opposite to the authors' findings.

      Specific Comments:

      1. Fig. 1A: The Mfn1 Western Blot is not of publication quality. Moreover, quantitation is necessary.
      2. Fig. 1B (as well as Fig. 2G and others): the date do not reflect cellular size but instead spread cellular area.
      3. Fig. 1C, D: Mfn1-null MEFs appear to be more spindle-shaped than wt cells, yet their circularity tends to be elevated. Do the authors have an explanation?
      4. Fig. 2A: The Mfn1 levels in Mfn2-/- + Mfn2 are lower than Mfn2-/-? Does this imply a crosstalk between Mfn1 and Mfn2 expression.
      5. Fig. 2H: The authors should provide co-staining of mitochondria and Mfn2 as well.
      6. Fig. 4D-E: Western blots are not of publication quality. Looking at the blots provided in Fig. 4D, the reviewer is not convinced with the quantitative data shown in Fig. 4E. For instance, the intensity of pCaMKII band for "vec" does not look 3x higher than that of "+MFN2", whereas that of "+MFN2" looks much higher than that of WT.
      7. Fig. 5C: The authors should stain for vinculin, which are present in mature FAs only, rather than paxillin which are present in all FAs. This would strengthen the authors' conclusions. Also, FA size should be quantified.
      8. Fig. 6C - Why does the background have a grid and appear grey in color? Also, the cell interior appears in different colors in the different images. The authors should take a z-stack of images and provide the raw image files.
      9. Fig 7C: The MLCII Western blot is not of publication quality, and may affect the quantification provided in Fig. 7D.
      10. Fig 8: Do cell treatments with Rho Activator and MLCK-CA also impair migration velocity similar to Mfn2-null cells?
      11. Fig. 9A: The authors claim that wt cells have actin bundles that protrude against the membrane while Mfn2-null cells do not. This does not look convincing as the Mfn2-null actin bundle seem to be pushing against the membrane at the bottom of the image. No quantification is provided. It is unclear what conclusion can be drawn from the super-resolution images.
      12. Suppl. Fig. 5C: The authors should take images using a confocal microscope for cells with Flipper-TR construct, eliminate the background and the cell center to only consider the cell periphery. Nikon TE2000 does not seem to be a confocal microscope.

      Significance

      Delineating the role of Mfn2 in cell migration will represent a good, fundamental contribution to the field of cell migration. The reviewer finds this manuscript to be conceptually interesting. Unfortunately, there are technical issues, which need to be fixed so that the readers feel confident about the conclusion of this study.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      Wang et al use a combination of cell biological and biochemical approaches to show that Mitofusin2 (MFN2) - a protein typically known to regulate mitochondrial morphology - regulates cell morphology by regulating calcium levels and downstream cell contractility players. They show that cells deficient in MFN2 exhibit increased intracellular calcium levels, and overactivation of myosin II, leading to increased cell contractility. Furthermore, MFN2-deficient cells exhibit an F-actin ring around the cell periphery (which they call PABs). The study takes advantage of both pharmacological and genetic perturbations, as well a variety of assays to support many of their findings; however, it is unclear how these findings are related to each other. Furthermore, MFN2-related disease was raised a few times in the abstract and throughout the manuscript, but it's unclear how the findings in the paper relate to disease states, both in terms of the cell biology, as well as the model that was used (MEFs). This reviewer applauds the authors for exploring MFN2 function outside of its conventional role in mitochondria; but it was difficult to parse through the findings to resolve a mechanistic explanation for how MFN2 affect cell behavior, and what role, if any, PABs have on biological function. While it is important to dissect mitochondrial-independent functions for MFN2, given the whole scale changes in cells in MFN2-deficient cells, and the fact that there is a metabolic phenotype, it is difficult to know how many of the observed phenotypes are downstream of perturbed mitochondrial function versus on cytoskeletal dynamics directly.

      Major comments:

      Are the key conclusions convincing?

      • Key conclusions that were convincing:
        • MFN2-/- cells exhibit decreased cell velocity, decreased cell size, increased cell circularity, and increased intracellular calcium
        • modifying the levels of calcium has an effect on cell circulariy.
        • MFN2-/- cells exhibit increased activation of contractility players
      • Key conclusions that were less convincing:
        • RhoA and NMII are in the title as mechanistic downstream regulators of CaM, but the results in Fig 8 call into question the role of RhoA. Why does RhoA activation not influence cell size and circularity? Can you overexpress MRLC-GFP and inhibit Rho and restore the wt phenotype? The role of NMII is also not clear - why does overexpressing MLCK-CA not have a phenotype but overexpressing MLCK downstream target MRLC show the phenotype? Are there any alternative pathways to regulate MRLC? It's not being discussed or described in 6D's schematic.
        • The role of ER/mito contacts in the system was unclear (since ER/mito contacts were not observed nor evaluated directly).
        • What role does focal adhesions have on PAB formation or any part of the model - There were results showing larger focal adhesions in the MFN2-/- cells, but not sure how this fits in with the bigger picture of contractility and PABs, and focal adhesions were not in the model in Figure 5.
        • Whether regulating calcium impacts PAB formation
        • The role of PABs in migration is also unclear - can you affect PAB formation or get rid of PABs and quantify cell migration?
        • It was hard to understand the correlation between the membrane tension of MFN2-/- cells and its ability to spread on softer substrates. How does this result fit in with the overarching model?

      Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      • There were a number of findings that did not seem to fit in with the paper, or they were included, but were not robustly described nor quantified. As an example, Paxillin-positive focal adhesions were evaluated in MFN2-/- and with various pharmacological approaches, but there is no quantification with respect to size, number, or distribution of focal adhesions, despite language in the main text that there are differences between conditions. Also, the model was presented in figure 5, and then there were several pieces of data presented afterward, some that are included in the model (myosin regulation), and some that are not in the model (membrane tension, TFM, substrate stiffness, etc). The stiffness/tension figure was not clear to me, and it was difficult to make sense of the data since one would predict that an increase in actomyosin contractility at the cortex would lead to higher membrane tension, not lower, and then how membrane tension relates to spreading on soft matrices is also unclear. The manuscript seems like an amalgamation of different pieces of data that do not necessarily fit together into a cohesive story, so the authors are encouraged to either remove these data, or shore them up and weave them into the narrative.

      Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      • The imaging used for a lot of the quantification (migration, circularity) is difficult to resolve. The cells often look like they are not imaged in the correct imaging plane. It would be helpful to have better representative images such that it is clear how the cells were tracked and how cell periphery regions of interest were manually drawn. Focal adhesions should also be shown without thresholding.
      • For most of the quantification, it appears that the experiment was only performed once and that a handful of cells were quantified. The figure legend indicates the number of cells (often reported as >12 cells or >25 cells), but the methods indicate that high content imaging was performed, and so the interpretation is that these experiments were only performed once. Biological replicates are required. If the data do represent at least 3 biological replicates, then more cell quantification is required (12 or 25 cells in total would mean quantifying a small number of cells per replicate).
      • Mitochondrial morphology and quantification should be performed in the MFN2 knockdown and rescue lines.
      • Many of the comparisons throughout the figures is between MFN2 knockdown and MFN2 knockdown plus rescue or genetic/pharmacological approaches, but a comparison that is rarely made is between wildtype and experimental. These comparisons could be useful in comparing partial rescues and potential redundancies with the other mitofusin.
      • For the mito/ER tethering experiments, it is important to show that ER/mito contacts are formed and not formed in the various conditions with imaging approaches
      • For some of the pharmacological perturbations, it would be helpful to show that the perturbation actually led to the expected phenotype - as an example, in cells treated with different concentrations of A23187, what are the intracellular calcium levels and how do these treatments influence PAB formation? This aspect should be generally applied across the study - when a modification is made, that particular phenotype should first be evaluated, before dissecting how the perturbation affects downstream phenotypes.
      • In Figures 4 and 5, the thresholding approaches in the images make the focal adhesions difficult to resolve, and therefore it is difficult to determine the size. As described above, these metrics should be defined and quantified.
      • What is a PAB? How is it defined? What metrics make a structure a PAB versus regular cortical actin - are there quantifiable metrics? In figure 8, there are some structures that are labelled as a PAB, but some aren't (as an example, the left panel in 8b is a PAB, but the right panel in 8A is not, but they look the same), so a PAB should be defined with quantifiable measures, and then applied to the entire study.
      • As described above, why does RhoA activation not influence cell size and circularity? Can you overexpress MRLC-GFP and inhibit Rho and restore the wildtype phenotype?

      Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      • These suggested experiments described above will take a substantial amount of time and money, as it appears that some experiments were only performed once, and therefore many of these experiments might need to be performed 2-3 more times. Also, experiments showing that addition of drugs lead to expected outcomes prior to analyzing downstream phenotypes will also require a significant amount of time. It is hard to predict how long it will take, but we would guess, 6-8 months?

      Are the data and the methods presented in such a way that they can be reproduced?

      • We appreciate that the authors quantified many parameters, although some quantifications were missing. There are some missing methods - how was directionality quantified, was migration quantified by selecting the approximate center of cells using MTrackJ or were centroids quantified by outlining cells, for instance. Also, given that some of the phenotypes were somewhat arbitrarily assigned (ie. what constitutes a PAB?), it may be difficult to reproduce these approaches and interpret data appropriately.

      Are the experiments adequately replicated and statistical analysis adequate?

      • Unfortunately, while the approximate number of cells was reported, the number of biological replicates were not reported, and therefore, the experimental information and statistical analyses are not adequate.

      Minor comments:

      Specific experimental issues that are easily addressable. - for some of the graphs - mostly about calcium levels - fold change is shown, but raw values should also be included to determine whether the basal levels of calcium are different across the conditions. - scale bars in every panel should also help make the points clearer.

      Are prior studies referenced appropriately?

      • Yes

      Are the text and figures clear and accurate?

      • Some of the data in the figures were unclear - see above for more info.

      Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      • See above for more info.

      Significance

      Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      • There is a growing field of mitochondrial biology and how it relates to cell migration. This paper examines the function of a key mitochondrial morphology regulator, MFN2, and dissects a role for MFN2 in migration at the level of cytoskeletal regulation. We think that this is interesting, and that it's clear that MFN2 has multiple functions in the cell, but the phenotypes are so pleiotropic that it's difficult to parse out mechanistic understanding. The authors also describe a new actin architecture - a structure that they refer to as PABs - but there is no indication that PABs form in other cell types or tissues, or in other contexts, so it is unclear whether PABs are an important structure or an artifact of the system. Furthermore, part of the motivation of the work seems to be to understand MFN-related pathologies, but using a MEF system does not necessarily allow for that. One way to strengthen this part of the manuscript is to potentially use disease-relevant MFN2 mutations and determine downstream effects on cell morphology and migration.

      State what audience might be interested in and influenced by the reported findings.

      • This work would appeal to card-carrying cell biologists.

      Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      • cell migration; actin; mitochondria
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank all the reviewers for their positive evaluations of our work and constructive comments, in particular for highlighting that our work “provides new insight into cancer metabolism knowledge”, is “conceptually interesting and experimentally well performed” and “the findings presented here will be very interesting to a broad range of researchers, including the cancer, metabolism and wider cell biology communities”.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)): Nazemi et al. show that the extracellular matrix (ECM) has a crucial role in sustaining the growth of invasive breast and pancreatic cells during nutrient deprivation. In particular, under amino acid starvation, cancer cells internalize ECM by macropinocytosis and activate phenylalanine and tyrosine catabolism, which in turn support cell growth in nutrient stress conditions. The paper is well written and the results shown are very interesting. The experimental plan is well designed to assess the hypothesis and the description of the methods is sufficiently detailed to reproduce the analyses, which are also characterized by appropriate internal controls. Finally, the data provided sustain the conclusions proposed by the authors.

      * Major comment:*

      Since the authors performed their experiments on invasive breast and pancreatic cancers and it has been noted that stress conditions could promote the escape of cancer cells from the site of origin (e.g., Jimenez and Goding, Cell Metabolism 2018; Manzano et al, EMBO Reports 2020), it would be interesting to evaluate how ECM internalization could have a role in sustaining the invasive abilities of cancer cells under amino acid starvation. Which is the impact of the inhibition of macropinocytosis and tyrosine catabolism on cell invasion? The authors could evaluate this aspect by in vitro 2D and 3D analysis.

      This is a very important point, and we are planning to investigate this by using:

      • 2D single cell migration assays on cell-derived matrices (we have extensively used this system to characterise invasive cell migration; Rainero et al., 2015; Rainero et al., 2012)
      • 3D spheroids assays, to assess collective/3D cell invasion through collagen I and matrigel mixtures. Both experiments will be performed under amino acid starvation, in the presence of pharmacological inhibitors and siRNAs targeting macropinocytosis (FRAX597, PAK1) and tyrosine catabolism (Nitisinone, HPDL). Preliminary data suggest that both FRAX597 and Nitisinone reduce cell invasiveness.

      In addition, to strengthen the paper and give a stronger significance in terms of clinical translatability, it could be useful to implement the analysis of breast and pancreatic patients by publicly dataset evaluating for example free survival, disease free survival, overall survival and metastasis free survival.

      We have now included in the manuscript new data in figure 6 O-R showing that high HPDL expression correlates with reduces overall survival, distant metastasis-free survival, relapse-free survival and palliative performance scale in breast cancer patients. In response to other reviewers’ comments, we have removed the pancreatic cancer data from our manuscript.

      Minor Comment:

      The text and the figures are clear and accurate. The references cited support the hypothesis, rightly introduce the results and are appropriate for the discussion. However, the paragraph relative to figure 4 is a little confusing. Changing the order of the description of the results could be useful.

      We apologise for the lack of clarity in this section. We have now re-organised the data both in the figure and in the result section, to describe the findings in a more logical way.

      Reviewer #1 (Significance (Required)): Based on my metabolic background in tumour aetiology and progression, I think that this study provides new insights into cancer metabolism knowledge, in particular on how the stroma may drive metabolic reprogramming of cancer cells sustaining cell growth in nutrient stress conditions. Together with other similar studies on the stromal non-cellular components, the data here shown can contribute to expand the knowledge on the factors that promote cancer metabolic plasticity, which is exploited from cancer cells to obtain advantages in terms of growth, survival and progression. In conclusion, I think that the results shown are new and the manuscript is well presented. Following the short revision process suggested, it will be eligible for a final publication in a medium-high impact factor journal.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      • Please find enclosed my reviewing comments on the manuscript entitled "The extracellular matrix supports cancer cell growth under amino acid starvation by promoting tyrosine catabolism" by Nazemi et al.*

      In this manuscript the group of Elena Romero and colleagues provides evidence that breast cancer cells, and pancreatic cancer cell, use matrix proteins degradation to feed their proliferative metabolic needs under amino acid starvation. Under this drastic condition, cancer cells use micropinocytosis to uptake matrix proteins, a process that requires mTORC1 activation and PAK1. Furthermore, a metabolomic study demonstrates that ECM-dependent cancer cell growth relies on tyrosine catabolism. Altogether, I found this study conceptually interesting and experimentally well performed. Experiments are well controlled and state-of-the-art technologies used in this manuscript make it a good candidate for publication. However, some aspects of the work need to be strengthen to reinforce the overall good quality of the manuscript, therefore, please find below some experimental propositions. 1. Despite the reviewer proposition, I believe that the additional experiments using the PDAC cancer cell does not improve the quality of the manuscript. Instead, it brings confusion to me, since the relative addition is minor compare to what is demonstrated using breast cancer cells.

      We have decided to remove the pancreatic cancer cell data from the manuscript.

      To importantly improve the potential impact of this manuscript, I suggest to add in vivo data using either syngenic mice model of breast cancer or xenografted human breast cancer cells in nude mice. What would be the impact of micropinocytosis and tyrosine catabolism inhibition on cancer growth, in vivo, should be demonstrated? If possible, it may be interesting to demonstrate that this micropinocytosis may interfere with cancer evolution toward a metastatic phenotype using, for example, the PyMT-MMTV mice model of breast cancer development?

      We will perform orthotopic mammary fat pad injections in immunocompetent mice, to monitor primary tumour growth and localised invasion in the presence of Nitisinone or vehicle control. PyMT-driven breast cancer cells have been generated in the Blyth lab, from FVB-pure MMTV-PyMT mice and we have preliminary data indicating that these cells are able to internalise ECM and grow under starvation in an ECM-dependent manner. Prior to performing any in vivo work, we will perform further in vitro experiment to confirm the role of tyrosine catabolism in these cells. Nitisinone is an FDA-approved drug that has already been used in mouse models. Blood tyrosine levels can be measured to assess tyrosine catabolism inhibition by Nitisinone. These experiments will be conducted in collaboration with the Blyth lab at the CRUK Beatson Institute in Glasgow.

      Data obtained using cancer cells with different metastatic property suggest that the ability to use ECM to compensate for soluble nutrient starvation is acquired during cancer progression. To further demonstrate that it is the case, would it be possible that non metastatic breast cancer cells are not able to perform micropinocytosis? Is PAK1 overexpressed with increase cancer cells metastatic ability, without affecting invasive capacity in 3D spheroids?

      To address these points, we have started to measure PAK1 expression across the MCF10 series of cell lines, where MCF10A are non-transformed mammary epithelial cells, MCF10A-DCIS are ductal carcinoma in situ cells and MCF10CA1 are metastatic breast cancer cells. Our preliminary data show that there is no upregulation of PAK1 expression in the metastatic cells compared to non-transformed or non-invasive cancer cells. This suggest that the over-expression of PAK1 might not be a valuable strategy to address this point.

      In addition, we found that collagen I uptake was upregulated in MCF10CA1 compared to MCF10A and MCF10A-DCIS. We will corroborate our preliminary data by quantifying collagen I and cell-derived matrices internalisation across the 3 cell lines.

      What would be the efficacy to promote the ECM-dependent growth under starvation following a mTORC1 in non-invasive cancer cells?

      We will measure the growth of MCF10A and MCF10A-DCIS on ECM under starvation in the presence of the mTOR activator MHY1485. Western blot analysis of downstream targets of mTORC1 (p-S6 and p-4EBP1) will confirm the extent of mTOR activation.

      The discrepancy of cancer cells proliferation under starvation condition between plastic and ECM-based supports could be explained by the massive difference of support rigidity. This is also probably the case between CDM made by normal fibroblast and CAF. It brings the question of studying the role of matrix stiffness in regard to micropinocytosis-dependent cancer cells growth. It would also explain why this process is link to aggressive cancer cell behaviour, as ECM goes stiffer with time in cancer development. It may not be the case, but the demonstration that mechanical cues from the ECM could regulate the micropinocytosis-dependent cancer cells growth under amino acid starvation could bring additional value to the manuscript.

      We will use 2 experimental approaches to address the effect of different stiffness in ECM-dependent cell growth:

      1. Polyacrylamide hydrogels coated with different ECM components.
      2. Collagen I gels in which the stiffness is modified by Ribose treatment (this approach has been published by the Parson’s lab). Our preliminary data confirmed that ribose cross-linking increased YAP nuclear localisation and collagen I can still be internalised under these conditions. We will assess ECM endocytosis and cell growth under starvation conditions (using EdU incorporation in conjunction with A and high throughput imaging with B)

      Along with this, it has been demonstrated that matrix rigidity regulates glutaminolysis in breast cancer, resulting in aspartate production and cancer cells proliferation. Is asparate production increase by micropinocytosis? Could you rescue cancer cells growth by aspartate supplementation?

      Our metabolomics experiments were performed under amino acid starvation; therefore glutamine was not present in the media. Nor glutaminolysis intermediates nor aspartate were upregulated on ECM compared to plastic in our datasets, suggesting that aspartate might not be involved in this system. We added this point in the discussion. However, glutamine, glutamate and aspartate were found to be upregulated on collagen I compared to plastic in complete media, where the most enriched pathway was alanine, aspartate and glutamate metabolism. Future work will address the role of the ECM in supporting cancer cell metabolism in the absence of nutrient starvation.

      Data presented in Fig 1 and SF1 show that breast cancer cell lines growth in a comparable manner either they are cultured on plastic or on 3D ECM substrates in complete media. Again, on thick 3D substrates, in which the stiffness is lower compared to plastic, I would have thought that cancer cells would have grown slower. Could you please discuss this finding in regard to the literature?

      Our experiments in full media were performed in the presence of dialysed serum, to represent a better control for the starvation conditions, which were in the presence of dialysed serum. This is consistent with a vast body of literature assessing nutrient starvation conditions in the presence of dialysed serum. This could explain the discrepancy between ours and published results. We have addressed this point in the discussion.

      If you have the capacity to do so in your lab or in collaboration, would it be possible to measure the exact stiffness of the different matrix you use in this manuscript? Or using hydrogel, would it be possible to study the role of matrix stiffness in the ECM-dependent cancer cells growth under AA starvation? I would understand that this may be out of the scope of the present manuscript, but I again believe that such finding would reinforce the manuscript.

      We don’t have the capacity to measure the stiffness in our lab, however NF-CDM and CAF-CDM, generated by the same cells and using the same protocol, have been previously measured at ~0.4kPa and ~0.8 kPa, respectively (Hernandez-Fernaud et al., 2017). We have now included this in the paper. As mentioned in response to point 4, we will use hydrogels to directly test the effect of matrix stiffness on ECM-dependent cell growth under nutrient starvation.

      In SF 3A-C, it is shown that ECM does not affect caspase-dependent cell death under AA starvation. Did you considered a non-caspase dependent cell death that may be triggered by AA starvation?

      We will complement the caspase 3/7 data by performing PI staining, to detect all forms of cell death. Preliminary data indicate that, consistent with our cas3/7 data, amino acid starvation promotes cell death, but the presence of the ECM doesn’t affect the percentage of PI positive cells, corroborating our conclusions that the ECM modulates cell proliferation and not cell death. We will complete these experiments in both MDA-MB-231 and MCF10CA1 cells and will include them in figure S3.In fig 5, it is shown that inhibition of Focal Adhesion Kinase (FAK) does not impair the ECM-dependent rescue of cancer cell growth under starvation. To further decipher the concept of adhesion dependent signalling, maybe the authors could also inhibit the Src kinase or ITG-beta1 activation?

      Integrin b1 is also required for ECM internalisation (our unpublished data), therefore interfering with integrin function would make the interpretation of the data quite complex. As suggested by the reviewer, we will use the Src inhibitor PP2, which has been extensively used in the literature in MDA-MB-231 cells. Preliminary data indicate that, despite significantly reducing cell proliferation in complete media, Src inhibition does not affect cell growth on collagen I under amino acid starvation, consistent with our FAK inhibitor data. We will complete these experiments on both collagen I and cell-derived matrices and will include them in figure 5.

      Minor comment, in F1B, it is written "AA free starvation" while in every others legend, it is written "AA starvation". I believe the "free" should be removed.

      We apologise for this mistake; we have now removed “free” from the legend.

      Reviewer #2 (Significance (Required)): Altogether, I found this study conceptually interesting and experimentally well performed. Experiments are well controlled and state-of-the-art technologies used in this manuscript make it a good candidate for publication. However, some aspects of the work need to be strengthen to reinforce the overall good quality of the manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): In this manuscript the authors explore the mechanisms that metastatic cancer cells use to adapt their metabolism. The authors show that the growth of cancer cell lines is supported by uptake of ECM components in nutrient-starved conditions. The authors propose a very interesting mechanism in which the cells adapt their metabolism to ECM uptake as nutrient source via a PAK1-dependent macropinocytosis pathway which in turn increases tyrosine catabolism. Several key aspects of the authors complex hypothesis require further controls to fully support the authors ideas. As a disclaimer we do not feel qualified enough to comment on the metabolite experiments. Please find our detailed comments below.

      * Major -The ECM mediated increase of cell growth under amino acid (AA) starvation is nicely shown In Fig.1 but the authors should include the full medium data from figure S1 in the graphs of Fig. 1 to enable the reader to evaluate the magnitude of rescue effect of the ECM components. The values should also be included in the results text*.

      We have now moved all the complete media data into the main figure and highlighted the extent of the rescue in the result section.

      Also the authors only glutamine starve in Fig1&2 and then don't mention it again can the authors please include a sentence to explain why this experiment was dropped.

      As now highlighted in the result section, we focused on the amino acid starvation as it resulted in the strongest difference between normal and cancer. On the one hand, also non-invasive breast cancer cells can use ECM (namely matrigel) to grow under glutamine starvation, while this is not the case under amino acid starvation. On the other hand, only CAF-CDM, but not normal-CDM, could rescue cell growth under amino acid starvation. We reasoned that this condition was more likely to identify cancer-specific phenotypes.

      - The evaluation of uptake pathways is very interesting. The focus on macropinocytosis is not entirely justified in our opinion looking at FigS4A. Caveolin1/2 and DNM1/3 seem to have strongest effect on uptake of Matrigel and not PAK1? Statements like "Since our data indicate that macropinocytosis is the main pathway controlling ECM endocytosis..." are not justified nor are they really needed in our opinion. Several pathways can be implicated in passive uptake.

      We have now removed the statement, as suggested by the reviewer. In addition, we will assess CDM uptake upon caveolin 1/2 and DNM 2/3 knock-down, to test whether the effects are matrigel specific.

      - The authors use FAK inhibition to evaluate the effect of focal adhesion signalling on their phenotypes and conclude that there is no connection between the observed increase of cell proliferation in presence of ECM and adhesion signalling. To make this assessment the authors need at the very least to show that their FAK inhibitor treatment at the used concentration results in changes in focal adhesions and the associated force transduction.

      In the result section, we are including a western blot analysis showing that the concentration of FAK inhibitor used in sufficient so significantly reduced FAK auto-phosphorylation. Based on published evidence (Horton et al., 2016), FAK inhibition does not affect focal adhesion formation, but only the phosphorylation events. Therefore, we don’t think that we will be able to detected changes in focal adhesions regardless of the concentration of the inhibitor we use. To strengthen the observation that ECM-dependent cell growth in independent from adhesion signalling, as suggested by reviewer #2, we will use the Src inhibitor PP2, which has been extensively used in the literature in MDA-MB-231 cells. Preliminary data indicate that, despite significantly reducing cell proliferation in complete media, Src inhibition does not affect cell growth on collagen I under amino acid starvation, consistent with our FAK inhibitor data. We will complete these experiments on both collagen I and cell-derived matrices and will include them in figure 5.

      -The pancreatic cancer data currently feels a bit like an afterthought. We suggest to remove this data from the manuscript. If this data is included we suggest the authors should expand this section and repeat key experiments of earlier figures.

      We have now removed these data from the manuscript, as this was also the suggestion of reviewer #2.

      -Was the fetal bovine serum (FBS) and Horse Serum (HS) the authors use in their experiments tested for ECM components? The authors mention that the FBS for MDA231 cells was dialysed but not the HS.

      HS was used at a much lower concentration that FBS in our cell proliferation experiments (2.5% compared to 10%). We will characterise both sera components by mass spectrometry analysis, in collaboration with Dr Collins, biOMICS Facility, University of Sheffield.

      Minor comments:

      -Please can the authors provide experimental data directly comparing NF-CAM versus CAF-CDM on the same graph (Figure 1D-E).

      In the experiments included in the manuscript, the two matrices were generated independently, and we don’t feel it is appropriate to combine the results in the same graph. We are now repeating these experiments by generating both matrices in the same plates, so that we can present the data in the same graph. -Please can the authors give more insight to the use of 25% Plasmax to mimic starved tumor microenvironment. Is there previous research that suggests the nutrient values are representative of TME?

      Apologies for not clarifying this in the initial submission, the rationale behind this choice is based on the observation that, in pancreatic cancers, nutrients were shown to be depleted between 50-75% (Kamphorst et al., 2015). We have now stated this in the result section.

      -Fig3E Can the authors please include example images of the pS6 staining in the supplementary figures and explain "mTOR endosomal index" in figure legend.

      We have now included the representative images (new figure 3E) and we have described how the mTOR endosomal index was calculated both in the figure legend and in the method section. -Can the authors include a negative control for the mTORC1 localisation in Fig.3 (such as use of rapamycin/Torin)?

      Amino acid starvation is the gold-standard control for mTORC1 lysosomal targeting, as described in a variety of publications, including Manifava et al., 2016; Meng et al., 2021; Averous et al., 2014. In addition, Torin 1 treatment has been shown to result in a significant accumulation of mTOR on lysosomes compared with untreated cells (Settembre et al., 2012). Consistent with this, we looked at mTOR localisation in the presence of Rapamycin and we did not detect any reduction in lysosomal targeting.

      - The PAK1 expression level blots in the knockdown experiments should be quantified from N=3.

      We have not included the quantification of the western blots in the new supplementary figure 5.

      -What is the FA index in Fig.5, explain how it is calculated. Why not use FA size alone?

      We have now defined this is the method section. We haven’t used FA size alone, as this measure can be affected by cell size. If a cell is bigger, the overall FA size will be bigger, but this doesn’t necessarily reflect a change in adhesions.

      -Can the authors please use paragraphs on page 9 to improve readability. We apologise for overlooking this, we have now used paragraph in this section.

      Reviewer #3 (Significance (Required)): The findings presented here will be very interesting to a broad range of researchers including the cancer, metabolism and wider cell biology communities. The Rainero lab has progressed the idea that ECM uptake supports cancer progression and the data presented here has the potential to significantly advance our understanding of the underlying cellular mechanisms.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this manuscript the authors explore the mechanisms that metastatic cancer cells use to adapt their metabolism. The authors show that the growth of cancer cell lines is supported by uptake of ECM components in nutrient-starved conditions. The authors propose a very interesting mechanism in which the cells adapt their metabolism to ECM uptake as nutrient source via a PAK1-dependent macropinocytosis pathway which in turn increases tyrosine catabolism. Several key aspects of the authors complex hypothesis require further controls to fully support the authors ideas. As a disclaimer we do not feel qualified enough to comment on the metabolite experiments. Please find our detailed comments below.

      Major

      • The ECM mediated increase of cell growth under amino acid (AA) starvation is nicely shown In Fig.1 but the authors should include the full medium data from figure S1 in the graphs of Fig. 1 to enable the reader to evaluate the magnitude of rescue effect of the ECM components. The values should also be included in the results text. Also the authors only glutamine starve in Fig1&2 and then don't mention it again can the authors please include a sentence to explain why this experiment was dropped.
      • The evaluation of uptake pathways is very interesting. The focus on macropinocytosis is not entirely justified in our opinion looking at FigS4A. Caveolin1/2 and DNM1/3 seem to have strongest effect on uptake of Matrigel and not PAK1? Statements like "Since our data indicate that macropinocytosis is the main pathway controlling ECM endocytosis..." are not justified nor are they really needed in our opinion. Several pathways can be implicated in passive uptake.
      • The authors use FAK inhibition to evaluate the effect of focal adhesion signalling on their phenotypes and conclude that there is no connection between the observed increase of cell proliferation in presence of ECM and adhesion signalling. To make this assessment the authors need at the very least to show that their FAK inhibitor treatment at the used concentration results in changes in focal adhesions and the associated force transduction.
      • The pancreatic cancer data currently feels a bit like an afterthought. We suggest to remove this data from the manuscript. If this data is included we suggest the authors should expand this section and repeat key experiments of earlier figures.
      • Was the fetal bovine serum (FBS) and Horse Serum (HS) the authors use in their experiments tested for ECM components? The authors mention that the FBS for MDA231 cells was dialysed but not the HS.

      Minor comments:

      • Please can the authors provide experimental data directly comparing NF-CAM versus CAF-CDM on the same graph (Figure 1D-E)
      • Please can the authors give more insight to the use of 25% Plasmax to mimic starved tumor microenvironment. Is there previous research that suggests the nutrient values are representative of TME?
      • Fig3E Can the authors please include example images of the pS6 staining in the supplementary figures and explain "mTOR endosomal index" in figure legend.
      • Can the authors include a negative control for the mTORC1 localisation in Fig.3 (such as use of rapamycin/Torin)?
      • The PAK1 expression level blots in the knockdown experiments should be quantified from N=3
      • What is the FA index in Fig.5, explain how it is calculated. Why not use FA size alone?
      • Can the authors please use paragraphs on page 9 to improve readability.

      Significance

      The findings presented here will be very interesting to a broad range of researchers including the cancer, metabolism and wider cell biology communities. The Rainero lab has progressed the idea that ECM uptake supports cancer progression and the data presented here has the potential to significantly advance our understanding of the underlying cellular mechanisms.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Please find enclosed my reviewing comments on the manuscript entitled "The extracellular matrix supports cancer cell growth under amino acid starvation by promoting tyrosine catabolism" by Nazemi et al.

      In this manuscript the group of Elena Romero and colleagues provides evidence that breast cancer cells, and pancreatic cancer cell, use matrix proteins degradation to feed their proliferative metabolic needs under amino acid starvation. Under this drastic condition, cancer cells use micropinocytosis to uptake matrix proteins, a process that requires mTORC1 activation and PAK1. Furthermore, a metabolomic study demonstrates that ECM-dependent cancer cell growth relies on tyrosine catabolism.

      Altogether, I found this study conceptually interesting and experimentally well performed. Experiments are well controlled and state-of-the-art technologies used in this manuscript make it a good candidate for publication. However, some aspects of the work need to be strengthen to reinforce the overall good quality of the manuscript, therefore, please find below some experimental propositions.

      1. Despite the reviewer proposition, I believe that the additional experiments using the PDAC cancer cell does not improve the quality of the manuscript. Instead, it brings confusion to me, since the relative addition is minor compare to what is demonstrated using breast cancer cells.
      2. To importantly improve the potential impact of this manuscript, I suggest to add in vivo data using either syngenic mice model of breast cancer or xenografted human breast cancer cells in nude mice. What would be the impact of micropinocytosis and tyrosine catabolism inhibition on cancer growth, in vivo, should be demonstrated? If possible, it may be interesting to demonstrate that this micropinocytosis may interfere with cancer evolution toward a metastatic phenotype using, for example, the PyMT-MMTV mice model of breast cancer development?
      3. Data obtained using cancer cells with different metastatic property suggest that the ability to use ECM to compensate for soluble nutrient starvation is acquired during cancer progression. To further demonstrate that it is the case, would it be possible that non metastatic breast cancer cells are not able to perform micropinocytosis? Is PAK1 overexpressed with increase cancer cells metastatic ability, without affecting invasive capacity in 3D spheroids? What would be the efficacy to promote the ECM-dependent growth under starvation following a mTORC1 activation or PAK1 activation in non-invasive cancer cells?
      4. The discrepancy of cancer cells proliferation under starvation condition between plastic and ECM-based supports could be explained by the massive difference of support rigidity. This is also probably the case between CDM made by normal fibroblast and CAF. It brings the question of studying the role of matrix stiffness in regard to micropinocytosis-dependent cancer cells growth. It would also explain why this process is link to aggressive cancer cell behaviour, as ECM goes stiffer with time in cancer development. It may not be the case, but the demonstration that mechanical cues from the ECM could regulate the micropinocytosis-dependent cancer cells growth under amino acid starvation could bring additional value to the manuscript.
      5. Along with this, it has been demonstrated that matrix rigidity regulates glutaminolysis in breast cancer, resulting in aspartate production and cancer cells proliferation. Is asparate production increase by micropinocytosis? Could you rescue cancer cells growth by aspartate supplementation?
      6. Data presented in Fig 1 and SF1 show that breast cancer cell lines growth in a comparable manner either they are cultured on plastic or on 3D ECM substrates in complete media. Again, on thick 3D substrates, in which the stiffness is lower compared to plastic, I would have thought that cancer cells would have grown slower. Could you please discuss this finding in regard to the literature? If you have the capacity to do so in your lab or in collaboration, would it be possible to measure the exact stiffness of the different matrix you use in this manuscript? Or using hydrogel, would it be possible to study the role of matrix stiffness in the ECM-dependent cancer cells growth under AA starvation? I would understand that this may be out of the scope of the present manuscript, but I again believe that such finding would reinforce the manuscript.
      7. In SF 3A-C, it is shown that ECM does not affect caspase-dependent cell death under AA starvation. Did you considered a non-caspase dependent cell death that may be triggered by AA starvation?
      8. In fig 5, it is shown that inhibition of Focal Adhesion Kinase (FAK) does not impair the ECM-dependent rescue of cancer cell growth under starvation. To further decipher the concept of adhesion dependent signalling, maybe the authors could also inhibit the Src kinase or ITG-beta1 activation?
      9. Minor comment, in F1B, it is written "AA free starvation" while in every others legend, it is written "AA starvation". I believe the "free" should be removed.

      Significance

      Altogether, I found this study conceptually interesting and experimentally well performed. Experiments are well controlled and state-of-the-art technologies used in this manuscript make it a good candidate for publication. However, some aspects of the work need to be strengthen to reinforce the overall good quality of the manuscript.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Nazemi et al. show that the extracellular matrix (ECM) has a crucial role in sustaining the growth of invasive breast and pancreatic cells during nutrient deprivation. In particular, under amino acid starvation, cancer cells internalize ECM by macropinocytosis and activate phenylalanine and tyrosine catabolism, which in turn support cell growth in nutrient stress conditions.

      The paper is well written and the results shown are very interesting. The experimental plan is well designed to assess the hypothesis and the description of the methods is sufficiently detailed to reproduce the analyses, which are also characterized by appropriate internal controls. Finally, the data provided sustain the conclusions proposed by the authors.

      Major comment:

      Since the authors performed their experiments on invasive breast and pancreatic cancers and it has been noted that stress conditions could promote the escape of cancer cells from the site of origin (e.g., Jimenez and Goding, Cell Metabolism 2018; Manzano et al, EMBO Reports 2020), it would be interesting to evaluate how ECM internalization could have a role in sustaining the invasive abilities of cancer cells under amino acid starvation. Which is the impact of the inhibition of macropinocytosis and tyrosine catabolism on cell invasion? The authors could evaluate this aspect by in vitro 2D and 3D analysis. In addition, to strengthen the paper and give a stronger significance in terms of clinical translatability, it could be useful to implement the analysis of breast and pancreatic patients by publicly dataset evaluating for example free survival, disease free survival, overall survival and metastasis free survival.

      Minor Comment:

      The text and the figures are clear and accurate. The references cited support the hypothesis, rightly introduce the results and are appropriate for the discussion. However, the paragraph relative to figure 4 is a little confusing. Changing the order of the description of the results could be useful.

      Significance

      Based on my metabolic background in tumour aetiology and progression, I think that this study provides new insights into cancer metabolism knowledge, in particular on how the stroma may drive metabolic reprogramming of cancer cells sustaining cell growth in nutrient stress conditions. Together with other similar studies on the stromal non-cellular components, the data here shown can contribute to expand the knowledge on the factors that promote cancer metabolic plasticity, which is exploited from cancer cells to obtain advantages in terms of growth, survival and progression.

      In conclusion, I think that the results shown are new and the manuscript is well presented. Following the short revision process suggested, it will be eligible for a final publication in a medium-high impact factor journal.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This study by Viedor et al. examines the role of TIS7 (IFRD1) and its ortholog SKMc15 (IFRD2) in the regulation of adipogenesis via their ability to modulate the levels of DLK1 (Pref-1), a well-known inhibitor of adipogenesis. They generate SKMc15 KO mice and cross them to previously published TIS7 KO mice. All 3 mutant strains show decreased fat mass, with the effect being most pronounced in double KO mice (dKO). Using mouse embryonic fibroblasts (MEFs) from mutant mice, they authors ascribe a defect in adipogenic differentiation of mutant cells to an upregulation of DLK-1. In the case of TIS7, they propose that this is due to its known inhibition of Wnt signaling, which regulates DLK-1 expression. In the case of SKMc15, they suggest a new mechanism linked to its ability to suppress translation. Overall, the work is of interest, with the finding, that SKMc15 regulates adipocyte differentiation being its novelty, and generally well done, though multiple aspects need to be improved to bolster the conclusions put forth.

      **Major concerns:**

      1)The main mechanism put forth by the authors to explain the inability of dKO cells to differentiate into adipocytes is the upregulation of DLK-1 levels. However, this notion is never directly tested. Authors should test if knockdown of DLK-1 in dKO cells is sufficient to correct the defect in differentiation, or if additional factors are involved.

      Response: In response to the reviewer’s concerns, we have generated two stable cell lines expressing short hairpin RNAs directed against DLK1 in the TIS7 SKMc15 dKO MEFs. With these two and the parental dKO MEF cell line, we have performed adipogenesis differentiation experiments as explained in the manuscript before. Figure EV2C (left and right panels) shows that knockdown of DLK1 with two different DLK1 shRNA constructs (targeting DLK1 with or without the extracellular cleavage site) significantly (P2)There are multiple instances were the authors refer to "data not shown", such as when discussing the body length of dKO mice. Please show the data in all cases (Supplementary Info is fine) or remove any discussion of data that is not shown and cannot be evaluated.

      Response: Following three results were in the initial version of our manuscript mentioned as “data not shown”:

      • line 137: “body length, including the tail did not significantly differ between WT and dKO mice”
      • line 307: “higher concentrations of free fatty acids in the feces of dKO mice”
      • line 331: “effects of ectopic expression of TIS7, SKMc15 and their co-expression on DLK-1 levels” In the current version of the manuscript, we provide these results as:

      • Figure EV1A shows no significant difference in body length.

      • The significantly elevated levels of free fatty acids and energy determined by bomb calorimetry in the feces of dKO animals fed HFD are shown in Figures 6A and B, respectively.
      • The significant inhibitory effect of ectopic expression of TIS7 and SKMc15 on DLK1 levels was identified by both qPCR and WB analyses, which are shown in Figure 3B. 3)Indirect calorimetry data shown in Fig. S1 should include an entire 24 hr cycle and plots of VO2, activity and other measured parameters shown (only RER and food intake are shown), not just alluded to in the legend.

      Response: Based on the reviewer’s suggestion, we present here a table containing all parameters measured in the indirect calorimetry experiment.

      Metabolic phenotyping presented in Figure EV1B containing 21 hours measurement was performed exactly according to the standardized protocol previously published by Rozman J. et al. [1]. All phenotyping tests were performed following the International Mouse Phenotyping Resource of Standardized Screens (IMPReSS) pipeline routines.

      4)It is surprising that the dKO mice weight so much less than WT even though their food consumption and activity levels are similar, and their RER does not indicate a switch in fuel preference. An explanation could be altered lipid absorption. The authors indicate that feces were collected. An analysis of fat content in feces (NEFAs, TG) needs to be performed to examine this possibility. The discussion alludes to it, but no data is shown.

      __Response: __We thank the reviewer for bringing up this important point that prompted us to present data clarifying this aspect of the metabolic phenotype of dKO mice. As shown in Figures 6A,B, while fed with HFD, dKO mice had higher concentrations of free fatty acids in the feces (109 ± 10.4 µmol/g) when compared to the WT animals (78 ± 6.5 µmol/g) and a consequent increase in feces energy content (WT: 14.442 ± 0.433 kJ/g dry mass compared to dKO: 15.497 ± 0.482 kJ/g dry mass). Thus, lack of TIS7 and SKMc15 reduced efficient free fatty acid uptake in the intestines of mice.

      5)It would be important to know if increased MEK/ERK signaling and SOX9 expression are seen in fat pads of mutant mice, not just on the MEF system. Similarly, what are the expression levels of PPARg and C/EBPa in WAT depots of mutant mice?

      Response: To address this point, we have now performed the MEK/ERK activity measurement for the revised version of the manuscript in gonadal WAT tissue (GWAT). As noted in samples from several mice, there was an increase in p42 and p44 MAPK phosphorylation in G WAT isolated from dKO mice compared with the G WAT from WT control mice (Figure 4G).).

      The mRNA expression levels of PPARg and C/EBPa were significantly downregulated in GWAT samples isolated from dKO mice compared with levels from WT control animals (Figure 4H). However, we did not find any significant difference in SOX9 expression in fat pads. Total amounts of Sox9 mRNA in terminally differentiated adipocytes were very low and not within the reliable detection range, and the variation between animals within the same group was too great. Therefore, we provide these data only for the reviewer’s information here and do not present them in the manuscript.

      6)Analysis of Wnt signaling in Fig. 3c should also include a FOPflash control reporter vector, to demonstrate specificity. Also, data from transfection studies should be shown as mean plus/minus STD and not SEM. This also applies to all other cell-based studies (e.g., Fig. 6b,c).

      Response: To address the reviewer’s concerns, we performed FOPflash control reporter measurements in MEFs of all four genotypes. As expected, in every tested cell line the luciferase activity of the FOPflash reporter was substantially lower than that of TOPflash, confirming the specificity of this reporter system.

      We also thank the reviewer for this important reference to our statistical analyses. We have revised the original data and found that the abbreviation SEM was inadvertently used in the legends instead of STD. STD was always used in the original analyses and therefore we have corrected all legends accordingly in the new version of the manuscript.

      7)It is unclear why the authors used the MEF model rather than adipocyte precursors derived from the stromal vascular fraction (SVF) of fat pads from mutant mice. If they did generate data from SVF progenitors, they should include it.

      __Response: __We agree with this comment, although performing the experiments was challenging enough for us. Therefore, we isolated inguinal fat pads and obtained SVF cells from mice of all four genotypes (WT, TIS7, SKMc15 single and double KOs) and have repeated crucial experiments, i.e. adipocyte differentiation, DLK1, PPARg and C/EBPa mRNA and protein analyses in these cells. Novel data gained in this cell system fully confirmed our previous observations in MEFs. Therefore, in the current version of the manuscript we have replaced figures describing the effects of lacking TIS7 and SKMc15 in MEFs by adipose tissues samples (Figures 2D,E, 4G,H,I and 6C) or SVF cells from inguinal WAT (Figures 2A,B,F,G,H, 3C,D,E and F). In addition to the results obtained from SVF cells of inguinal WAT, we also obtained comparable data from SVF cells isolated from fat pads of gonadal WAT. We provide the results from gonadal WAT hereafter for the reviewers' information only.

      amido black

      • 60 kDa

      • 50 kDa

      __G WAT __tissues

      dKO

      WT

      GAPDH

      DLK-1

      • 60 kDa

      • 50 kDa

      • 35 kDa

      WT

      dKO

      DLK-1

      • 60 kDa

      • 50 kDa

      __G WAT __undifferentiated cells

      undifferentiated G WAT cells

      The only experiments where we have still used data obtained in MEFs are those where the ectopic expression or effects of shRNA were necessary (e.g. Figures 2C, 3B,H,I, 5F,G EV2B,C and EV3 A-F).

      8)Given that the authors' proposed mechanism involves both, transcriptional and post-transcriptional regulation of DLK-1 by TIS7 and SKMc15, Fig. 4d should be a Western blot capturing both of these events, and not just quantitation of mRNA levels.

      Response: As requested by the reviewer, we have added in Figure 3B the Western blot analysis of DLK1 expression. Secondly, this experiment was entirely redone and we now show the effects of ectopic expression of SKMc15, TIS7 alone and their combination side by side with the control GFP. We present here the effects of stable expression of ectopic TIS7 and SKMc15 in dKO MEFs following the viral delivery of expression constructs, antibiotic selection and 8 days of adipocyte differentiation.

      9)There is no mention of the impact on brown adipose tissue (BAT) differentiation of KO of TIS7, SKMc15, or the combination. Given the role of BAT in systemic metabolism beyond energy expenditure, the authors need to comment on this issue.

      Response: We thank the reviewer for bringing up this important point that prompted us to better describe the phenotype of TIS7, SKMc15 and double knockout mice. We measured DLK1 protein levels in BAT isolated from WT, TIS7, and SKMc15 mice with single and double knockout and detected a significant increase in DLK1 protein levels in all three knockout genotypes. Five mice per genotype were analyzed, and the statistical analysis in Figure 4I represents the mean ± STD. The p-values are based on the results of the Student's t-test and one-way Anova analysis (p-value = 0.0241).

      **Minor comments:**

      10)The y axis in Fig. 2c is labeled as gain of body weight (g). Is it really the case that WT mice gained 30 g of body weight after just 3 weeks of HFD? This rate of increase seems extraordinary, and somewhat unlikely. Please re-check the accuracy of this panel.

      Response: We thank the reviewer for drawing our attention to the apparent mislabeling of the y-axis. The correct labeling is: "Increase in body weight in %" and Figure 1F has been corrected accordingly.

      11)The Methods indicates all statistical analysis was performed using t tests, but this is at odds with some figure legends that indicate additional tests (e.g., ANCOVA).

      Response: This inaccurate information in the manuscript was corrected.

      12)Please specify in all cases the WAT depot used for the analysis shown (e.g., Fig. 3d is just labeled as WAT, as are Fig. 4a,e, etc.).

      Response: This information was added at all appropriate places of the manuscript.

      13)Fig. 5d is missing error bars, giving the impression that this experiment was performed only once (Fig. 5c). The legend has no details. Please amend.

      __Response: __We thank the reviewer for this important point regarding the statistical analyses. In the new version of the manuscript, we have included a graph (now Figure 4D) depicting results of three independent experiments including the results of the statistical analysis performed. Statistical analysis was performed using One-Way ANOVA (P=0.0016).

      Reviewer #1 (Significance (Required)):

      The role of TIS7 in adipocyte differentiation is well established. The only truly novel finding in this work is the observation that SKMc15 also plays a role in adipogenesis. The molecular mechanisms proposed (modulation of DLK-1 levels) are not novel, but make sense. However, they need to be bolstered by additional data.

      **Referees cross-commenting**

      I think we are all in agreement that the findings in this work are of interest, but that significant additional work is required to discern the mechanisms involved. In my view, a direct and specific link between SKMc15 and translation of DLK-1 needs to be established and its significance for adipogenesis in cells derived from the SVF of fat pads determined. Reviewer 2 has suggested some concrete ways to provide evidence of a direct link.

      __Response: __We agree with the reviewer's comment and have also noted that this point will be crucial in assessing the novelty value of our manuscript, as was also expressed in the referees cross-commenting. Therefore, we have now additionally performed a polysomal RNA analysis, which has of course been included in the current version of the manuscript.

      We analyzed the differences in DLK-1 translation between wild-type control cells and SKMc15 knockout cells in the gradient-purified ribosomal fractions by DLK-1 qPCR. Our analysis identified significantly (pSimilarly, as proposed by the reviewer, we have established stromal vascular fraction cell cultures from inguinal fat pads. In SVF cells of TIS7 and SKMc15 single and double knockout mice, we found increased DLK1 mRNA and protein levels (Figures 2F,G and H) as well as decreased PPARg and C/EBPa levels (Figures 3C,D,E and F). Specifically, we found that the ability of knockout SVF cells to differentiate into adipocytes was significantly downregulated (Figures 2A and B), fully confirming our original findings in TIS7 and SKMc15 knockout MEFs.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      **Summary:**

      In the current study, Vietor et al. aimed to explore the regulation of Delta-like homolog 1 (DLK-1), an inhibitor of adipogenesis, and demonstrated a role for TIS7 and its orthologue SKMc15 in the regulation of adipogenesis by controlling the level of DLK-1. Using mouse models with whole body deficiency of TIS7 (TIS7 KO) or SKMc15 (SKMc15KO) and double KO (TIS7 and SKMc15 dKO) mice, the authors used a combination of in-vivo experiments and cell culture experiments with mouse embryonic fibroblasts derived from the KO animals, to show that the concurrent depletion of TIS7 and SKMc15 dramatically reduced the amount of adipose tissues and protected against diet-induced obesity in mice, which was associated with defective adipogenesis in vitro.

      **Major Comments:**

      Overall, this study presents convincing evidence that TIOS7 and SKMc15 are necessary for optimal adipogenesis, and proposes a novel mechanism for the control of DLK1 abundance via coordinated regulation of DLK-1 transcription and translation. However, a number of questions remain largely unanswered. In particular, the direct ability of SKMc15 to regulate the translation of DLK-1 is lacking, and this claim remains speculative. SKMc15 being a general inhibitor of translation, SKMc15 may have an effect on adipogenesis independently of its regulation of DLK-1. Thus, addressing the following comments would further improve the quality of the manuscript:

      Response:

      We have been very attentive to these comments to improve the novelty and quality of our manuscript and have tried to address them experimentally. Therefore, this thorough revision of our manuscript took a longer time. First, we identified polysomal enrichment of DLK-1 RNA in SKMc15 KO MEFs, demonstrating that SKMc15 translationally affects DLK-1 levels (Figure 3I). Second, treatment with a recombinant DLK-1 protein as well as its ectopic expression quite clearly blocked adipocyte differentiation of WT MEFs (Figures EV3B,C). In addition, two different shRNA constructs targeting DLK-1 significantly induced adipocyte differentiation of TIS7 SKMc15 dKO MEFs (Figure EV2C, left and right panels). We believe that these results, taken together, sufficiently support our proposed mechanism, namely that TIS7 and SKMc15 control adipocyte differentiation through DLK-1 regulation.

      • The experimental evidence supporting that SKMc15 controls DLK-1 protein levels comes primarily from the observations that DLK-1 abundance is further increased in SKMc15 KO and dKO WAT than in TIS7KO WAT (Fig 3d), and that translation is generally increased in SKMc15 KO and dKO cells (Fig 5a). However, since the rescue experiment is performed in dKO cells, by restoring both TIS7 and SKMc15 together, it is impossible to disentangle the effects on DLK-1 transcription, DLK-1 translation and on adipogenesis. A more detailed description of the TIS7 and SKM15c single KO cells, with or without re-expression of TIS7 and SKMc15 individually, at the level of DLK-1 mRNA expression and DLK-1 protein abundance would be necessary. In addition, polyribosome fractioning followed by qPCR for DLK-1 in each fraction, and by comparison with DLK-1 global expression in control and SKMc15 KO cells, would reveal the efficiency of translation for DLK-1 specifically, and directly prove a translational control of DLK-1 by SKMc15. Alternatively, showing that DLK-1 is among the proteins newly translated in SKMc15 KO cells (Fig. 5a) would be helpful. Response: As suggested by the reviewer we used single TIS7 and SKMc15 knockout cells and demonstrated that both, TIS7 and SKMc15, affect Dlk-1 mRNA levels. We identified a highly significant effect on total DLK-1 mRNA levels in SKMc15 knockout MEFs as presented in Figure 3H. We also show that DLK-1 mRNA is specifically enriched in polysomal fractions obtained from proliferating SKMc15 knockout MEFs when compared to WT MEFs. However, the strong accumulation of DLK-1 mRNA in polysomes cannot be explained by transcriptional upregulation of DLK-1 alone, suggesting that regulation also occurs at the translational level. We took up this suggestion and ectopically expressed TIS7 and SKMc15 separately or together. For this purpose, we used not only MEF cell lines with double knockout but also with single knockout. Our recent data showed that stable ectopic expression of SKMc15 significantly increased adipocyte differentiation in both, single and double TIS7 and SKMc15 knockout MEF cell lines (Figures EV1C,D and EV2A). Ectopic expression of TIS7 significantly induced the adipocyte differentiation in TIS7 single knockout MEFs (Figure EV1C). In addition, both genes down regulated DLK-1 mRNA expression in dKO MEFs (Figure EV2A, bar chart on the right). We fully agree with the opinion of both reviewers and as already explained above we identified by qPCR in the polysomes that SKMc15 directly regulates DLK-1 translation (Figure 3I).

      • While the scope of the study focuses on the molecular control of adipogenesis by TIS7 and SKMc15 via the regulation of DLK-1, basic elements of the metabolic characterization of the KO animals providing the basis for this study would be useful. Since the difference in body weight between WT and dKO animals is already apparent 1 week after birth (Fig 1a), it would be interesting to determine whether the fat mass is decreased at an earlier age than 6 months (Fig 1b). The dKO mice are leaner despite identical food intake, activity and RER (Sup Fig 1). It remains unclear whether defective fat mass expansion is a result or consequence of this phenotype. Is the excess energy stored ectopically? The authors mention defective lipid absorption, however, these data are not presented in the manuscript. It would be interesting to investigate the relative contribution of calorie intake and adipose lipid storage capacity in the resistance to diet-induced obesity. In addition, data reported in Fig 1c seem to indicate a preferential defect in visceral fat development, as compared to subcutaneous fat. It would be relevant if the authors could quantify it and comment on it. Are TIS7 and SKMc15 differentially expressed in various adipose depots? The authors used embryonic fibroblasts as a paradigm to study adipogenesis. It would be important to investigate, especially in light of the former comment, whether pre-adipocytes from subcutaneous and visceral stroma-vascular fractions present similar defects in adipogenesis. Response: We addressed the issue of lipid storage capacity raised by the reviewer using two experimental methods. First, we have analyzed feces of mice fed with high fat diet. The free fatty acids content in dKO mice feces was significantly (PConcerning the question of younger animals, we have repeated microCT fat measurements on a group of 1-2 months old WT and dKO male mice (n=4 per group). The total amount of abdominal fat was in WT mice significantly higher than in dKO mice (P=0.019; Student’s T-test). We provide these data only for the reviewer’s information here and do not present them in the manuscript.

      We have also followed the reviewer’s advice and revisited our microCT measurements of abdominal fat and anylyzed the possible differences between subcutaneous and visceral fat. In all three types of abdominal fat mass measurement (total, subcutaneous and visceral) there was always significantly (ANOVA P=0.034 subcutaneous, P=0.002 total and P=0.002 visceral fat) less fat in the dKO group (n=8) of mice when compared to WT (n=12) mice. However, the difference was more prominent in visceral (P=0.001; Student’s T-test) than in subcutaneous fat (P=0.027; Student’s T-test). We provide these data only for the reviewer’s information here and do not present them in the manuscript.

      In addition, we have analyzed the expression of TIS7 and SKMc15 mRNA expression in both, inguinal and gonadal WAT. Our qPCR result showed that both genes are expressed in different types of WAT. The qPCR analysis was performed on RNA isolated from undifferentiated SVF cells isolated from several animals. The expression of TIS7 and SKMc15 was normalized on GAPDH. Data represent mean and standard deviation of technical replicates from several mice as labeled in the graph. We provide these data only for the reviewer’s information here and do not present them in the manuscript.

      Topics of a) stromal vascular fraction as a source of pre-adipocytes and b) comparison of TIS7 and SKMc15 roles in gonadal vs. inguinal fat pads we answered in response to the Reviewer #1, point 7. The results are presented in Figures 2, 3 and 4 and in this document.

      Both data and methods are explained clearly. The experiments are, for the most part, adequately replicated. However, whenever multiple groups are compared, ANOVA should be employed instead of t-test for statistical analysis.

      Response: Thank you for pointing this out. Wherever it was applicable, we used ANOVA for the statistical analysis of data.

      **Minor comments:**

      • Figure 4 d. The appropriate control would be WT with empty vector Response: this experiment was entirely replaced by the new Figure 3B where stably transfected MEF cells expressing TIS7 or SKMc15 were used.

      • Figure 7c/d. The appropriate control would be WT with empty vector Response: We have now generated new, confirmatory data in MEF cells stably expressing TIS7 or SKMc15 following lentiviral expression.

      • Figure 5C. An additional control would be WT with WT medium __Response: __We agree with your suggestion and therefore we have incorporated this control in all experimental repeats presented in the new Figure 4C.

      • Figure 2: In the legends, the "x" is missing for the dKO regression formula __Response: __Thank you, we have corrected this mistake. In the current version of the manuscript it is Figure 1D.

      • Since the role of SKMc15 in adipogenesis has never been described, the authors could consider describing the single SKMc15 KO in addition to the dKO, or explain the rationale for focusing the study on dKO. __Response: __The original reason for focusing on dKO mice and cells was the obvious and dominant phenotype in this animal model. However, we have sought to address the reviewer's concerns and have now also examined DLK-1 mRNA levels in proliferating SKMc15 knockout MEFs (Figure 3H). In addition to this experiment, we measured DLK-1 mRNA levels also during the process of adipocyte differentiation of single knockout cells. In WT MEFs we observed a transient increase of DLK-1 mRNA only on day 1. In contrast, significantly elevated DLK-1 mRNA levels were found in TIS7 single-knockout MEFs throughout the differentiation process, with the highest level reached at day 8. Interestingly, in SKMc15 single knockout MEFs we found an upregulation of DLK-1 mRNA level in proliferating cells but not a further increase during the differentiation. This supported our idea that SKMc15 acts mainly via translational regulation of DLK-1. We provide these data only for the reviewer’s information here and do not present them in the manuscript.

      To emphasize this point, we revised the entire manuscript accordingly and added data on SKMc15 knockout mice. In particular, experiments presenting data characterizing SKMc15 single knockout mice are presented in: Figures 1C,D,E and F, Figures 2A,B,C and D, Figures 3E,F,H and I, Figures 4A and I and in Figure EV1D.

      Reviewer #2 (Significance (Required)):

      While the effects of DLK-1 on adipogenesis have been widely documented, the factors controlling DLK-1 expression and function remain poorly understood. Here the authors propose a novel mechanism for the regulation of DLK-1, and how it affects adipocyte differentiation. This study should therefore be of interest for researchers interested in the molecular control of adipogenesis and cell differentiation in general. Furthermore, the characterization of the function of SKMc15 in the control of translation may be of interest to a broader readership.

      **Referees cross-commenting**

      I agree with all the comments raised by the other reviewers. Addressing the often overlapping but also complementary questions would help to clarify the molecular mechanisms by which TIS7 and SKMc15 control adipogenesis, and support the conclusions raised by the authors.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In the article, "The negative regulator DLK1 is transcriptionally regulated by TIS7 (IFRD1) and translationally by its orthologue SKMc15 (IFRD2)", the authors performed a double knockout (dKO) of TIS7 and its orthologue SKMc15 in mice and could show that those dKO mice had less adipose tissue compared to wild-type (WT) mice and were resistant to a high fat-diet induced obesity. The study takes advantage of number of different methods and approaches and combines both in vivo and in vitro work. However, some more detailed analysis and clarifications would be needed to fully justify some of the statements. Including the role of TIS7 as a transcriptional regulator of DLK1, SKMc15 as translational regulator of DLK1 and overall contribution of DLK1 in the observed differentiation defects. The observed results could still be explained by many indirect effects caused by the knock-outs and more direct functional connections between the studied molecules would be needed. Moreover, some assays appear to be missing biological replicates and statistical analysis. Please see below for more detailed comments:

      **Major comments:**

      -Are the key conclusions convincing? Yes.

      -Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? No.

      -Would additional experiments be essential to support the claims of the paper? Yes. Please see my comments.

      -Are the suggested experiments realistic in terms of time and resources? Recombinant DLK1 10 μg - Tetu-bio - 112€ ; 8 days of adipocyte differentiation in 3 biological replicate ~ 1 month.

      __Response: __We followed the advice of the individual reviewers as expressed in “Referees cross-commenting” and tested this idea experimentally. Since the manufacturer couldn’t suppy information on biological activities of recombinant DLK-1 proteins, we analyzed in vivo the effects of two different ones, namely RPL437Mu01 and RPL437Mu02. The 8-day adipocyte differentiation protocol showed that the RPL437Mu02 protein was cytotoxic to WT MEF cells and therefore could not be used for analysis. On the other hand, treatment with the Mu01 recombinant DLK-1 protein did not result in a substantial cell death. According to oil red O staining, incubation with 3.3 mg/ml (final concentration) RPL437Mu01 led to 75% inhibition of adipocyte differentiation when compared to not treated WT MEFs (Figure EV3B and C).

      -Are the data and the methods presented in such a way that they can be reproduced? Yes.

      -Are the experiments adequately replicated and statistical analysis adequate?

      Adequately reproduced yes. Please see my comments concerning the statistical analysis.

      1)Fig1a: In the method section it is written that an unpaired 2-tailed Student's t test was used for all statistical comparisons. However, here something like Multivariate analysis of variance (MANOVA) should rather be used to assess statistical significance between the mice. Moreover, the details of this should be clearly stated in the corresponding Figure legend.

      __Response: __Based on this suggestion, we have revised all of our statistical analyses. In several cases, (Figures 1F, 2B and C) we have replaced the statistical analysis using Student’s T test with Anova. However, based on the definition “the difference between ANOVA and MANOVA is merely the number of dependent variables fit. If there is one dependent variable then the procedure ANOVA is used”, in case of Figure 1A we used ANOVA.

      2)Fig2a: please use an appropriate title for Fig2a instead of "Abdominal fat vs. body mass".

      Response: Title of the Figure 1D (formerly Figure 2a) we changed to “Effect of TIS7 and SKMc15 on the abdominal fat mass”.

      3)Fig2c: in the method section it is written that an unpaired 2-tailed Student's t test was used for all statistical comparisons. However, in Fig2c 4 groups are compared (WT, TIS7 KO, SKMc15 KO and dKO) and thus something like Multivariate analysis of variance (MANOVA) should rather be used to assess statistical significance.

      Response: For Figure 1F (formerly Figure 2c), in the revised version of the manuscript, we applied the ordinary one-way ANOVA with Holm-Šidák's multiple comparison test. This analysis gave us statistically even more significant results concerning the difference between WT and dKO mice than previously found by Student's T test. The results in detail were as follows:

      Holm-Šidák's multiple comparisons test Summary Adjusted P Value

      WT vs. TIS7 KO ** 0,0096

      WT vs. SKMc15 KO * 0,0308

      WT vs. dKO **** 4)Fig2 conclusion: Additive or just showing stronger effect?

      Response: We have re-phrased the concluding summary for Figure 1F (formerly Figure 2c). We agree that the precise description of differences found between the weight of single and double knockout animals should be described as “stronger” and not additive effect of knockout of both genes.

      5)Fig3a: the microscope picture for SKMc15 KO shows that cells might have died. Please state the percentage of cell death.

      Response: We would like to comment on these concerns of the reviewer as follows: In the image in Figure 3 of the original manuscript, the density of SKMc15 KO MEF cells after the adipocyte differentiation protocol was lower than in the WT control. Regarding the possible cell death, the cells stained with Oil Red O were adherent and alive. The adipocyte differentiation protocol consists of 3 days proliferation and further 5 days of differentiation including three changes of media during which dead cells are washed away and their vitality cannot be checked. However, in the meantime, we have repeated this protocol and the density of SKMc15 knockout MEFs was now not substantially lower than those of controls. Despite the comparable cell density, we have seen a substantial negative effect of the SKMc15 knockout on the adipogenic differentiation ability of these cells. Several examples are shown here:

      TIS7 +/+ SKMc15 +/+ MEFs

      TIS7 +/+ SKMc15 -/- MEFs

      oil red O staining; 8d differentiated cells

      Importantly, in the current version of our manuscript we replaced MEFs (shown in the former Figure 3a) by SVF cells (Figure 2A in the current manuscript). In these cells we did not see any significant difference in their density after 8 days of the adipocyte differentiation protocol.

      6)Fig3b: It would be informative to additionally observe some of marker genes for adipogenesis and whether all of them are affected.

      Response: In our newly established SVF cell lines, derived from inguinal WAT we have confirmed data previously identified in MEFs. As shown in the new Figure 3, PPARg and C/EBPa mRNA levels were downregulated in all knockout SVF cell lines, both undifferentiated (Figures 3C and D) and adipocyte differentiated (Figures 3E and F). On the other hand, DLK-1 mRNA and protein levels, both in undifferentiated (Figures 2F and G) and adipocyte differentiated (Figure 2H) SVF cells were significantly upregulated in dKO cells when compared to WT cells.

      7)Fig3b: instead of using an unpaired 2-tailed Student's t test with proportion, an one-way ANOVA would be more appropriate.

      __Response: __On the recommendation of the reviewer, we applied a simple ANOVA to our new data from SVF cells using the Holm-Šidák test for multiple comparisons. The Anova summary using GraphPad Prism Ver. 9.2 identified statistically highly significant (P value 8)Fig3c: Same comment as for Fig3b.

      __Response: __Also, in this experiment (now Figure 2C) we used ordinary one-way ANOVA with Holm-Šidák's multiple comparisons test. The ANOVA summary identified statistically highly significant (P value 9)Fig3d: A representative Western blot for 3 independent experiments is shown. Please add the other two as supplementary materials.

      __Response: __Here we provide examples of the requested two additional, independent experiments. These refer now to the Figure 2D in the revised version of the manuscript:

      31 07 2020

      = manuscript

      b____-catenin

      22 07 2020

      WT

      TIS7 KO

      dKO

      SKMc15 KO

      WT

      TIS7 KO

      dKO

      SKMc15 KO

      actin

      b____-catenin

      30 07 2020

      actin

      b____-catenin

      WT

      TIS7 KO

      dKO

      SKMc15 KO

      WT

      TIS7 KO

      dKO

      SKMc15 KO

      actin

      10)Fig3d:Is this distinguishing between the active and inactive catenin?

      __Response: __No, the b-catenin antibody, that we used is not discriminating between active and inactive b-catenin forms.

      11)Fig4a: Please perform qPCR for measuring DLK-1 mRNA levels in TIS7 KO and SKMc15 KO samples to check whether there is a correlation between mRNA and protein level as the statement of the authors is that "DLK1 is transcriptionally regulated by TIS7 (IFRD1) and translationally by its orthologue SKMc15".

      Response: Similar questions were raised by Reviewer 2 on p. 11 “Since the role of SKMc15 in adipogenesis has never been described, the authors could consider describing the single SKMc15 KO in addition to the dKO, or explain the rationale for focusing the study on dKO.” Please see our reply to his comment.

      12)Fig4c: please add the other two western blots as supplementary materials.

      __Response: __Here we provide data from two additional, independent experiments.

      13)Fig4d: The effects in MEFs appear quite modest. What about a rescue with TIS7 or SKMc15 alone?

      __Response: __As mentioned already in response to the question 2 of Reviewer #1, in our newly performed experiments we found significant inhibitory effects of ectopic TIS7 and SKMc15 expression on DLK1 levels, identified both by qPCR and WB analyses (Figure 3B).

      14)Page 12, row 207: I would not call histones transcription factors.

      __Response: __We re-phrased this sentence accordingly.

      15)Fig4e: Would be good to see a schematic overview of the locations of the ChIP primers in relation to the known binding sites and the gene (TSS, gene body). Moreover, the results include an enrichment for only one region while in the text two different regions are discussed. Importantly, to confirm the specificity of the observed enrichment, a primer pair targeting an unspecific control region not bound by the proteins should be included.

      __Response: __The selection of oligonucleotide sequences used for ChIP analyses of the binding of b-catenin, TIS7 and SKMc15 to the Dlk-1 promoter was, based on the following reference, as mentioned in Methods section of our original manuscript on p.21, line 494: Paul C, Sardet C, Fabbrizio E. “The Wnt-target gene Dlk-1 is regulated by the Prmt5-associated factor Copr5 during adipogenic conversion”. Biol Open. 2015 Feb 13;4(3):312-6. doi: 10.1242/bio.201411247.

      We used two regions of the Dlk-1 promoter: a proximal one, encompassing the TCF binding site 2 (TCFbs2) and a more distal one, annotated as “A”:

      Oligonucleotide sequences used for ChIP PCR:

      Dlk-1 TCFbs2 5'f CATTTGACGGTGAACATATTGG

      5'r GCCCAGACCCCAAATCTGTC

      Dlk-1 region A (-2263/-2143) 5'f TTGTCTAACCACCCTACCTCAAA

      5’r CTCTGAGAAAAGATGTTGGGATTT

      We observed specific binding at the proximal site.

      16)Fig5a: Has this experiment been replicated? That is no mention about the reproducibility or quantification of this result. This is the main experiment regarding the role of SKMc15 as a translational regulator of DLK1, also mentioned in the title of the manuscript.

      __Response: __This relates to the Figure 4A in the revised manuscript. Yes, we repeated this experiment several times. Here we provide images and quantifications of three independent experiments.

      17)Fig5b: Showing another unaffected secreted protein would be an appropriate control here.

      Response: As recommended by the reviewer, we have performed an additional WB with a recombinant anti-Collagen I antibody [Abcam, [EPR22209-75] ab255809]. Medium from 8 days adipocyte differentiated WT and dKO MEFs was concentrated using Centriprep 30K and resolved on 10% SDS-PAGE gel. Western blot presented in the new Fig 4 B shows even slightly higher amounts of Collagen-1 protein in medium from WT than in dKO MEFs. Mw of the detected band was approximately 35 kDa, which corresponded to the manufacturer’s information.

      18)Fig5c: I would recommend to perform additional experiments to prove that DLK-1 secreted in the medium can contribute and is responsible for the inhibition of the differentiation. Indeed, a time course of adipocyte differentiation followed by the addition of soluble DLK-1 would confirm that DLK-1 can inhibit adipocyte differentiation in this experimental setup. Moreover, silencing (for example RNAi) of DLK1 in the dKO cells before harvesting the conditioned media would allow to estimate the contribution of DLK1 to the observed inhibition of differentiation by the media. This is important because many other molecules could also be mediating this inhibition.

      __Response: __We agree with this reviewer’s concern, which are shared by other reviewers. Similarly, as in response to Reviewer #2 and as already mentioned above, in response to “major comments” of Reviewer #3, in our novel experiments we found that treatment with recombinant DLK-1 protein as well as ectopic expression of DLK-1 blocked adipocyte differentiation of WT MEFs (Figures EV3B,C,D and E) as well as medium from dKO shDLK-1 391 cells (Figure EV3F).

      19)Fig5c: The details and the timeline of the experiment with conditioned media are not provided in the figure or in the methods. At what time point was conditioned media changed? How long were the cells kept in conditioned media? How does this compare to the regular media change intervals? Could the lower differentiation capacity relate to turnover of the differentiation inducing compounds in the media due to longer period between media change? Moreover, is the result statistically significant after replication?

      __Response: __Based on the reviewer`s comment we have added technical information concerning the experimental protocol of the treatment with conditioned media. In general, the treatment for adipocyte differentiation was identical with the previous experiments. The only difference was that after three days in proliferation medium, we used either fresh differentiation medium or 2-day-old differentiation medium from dKO control or dKO-shDLK-1 391 cell cultures then for wild-type cells, as shown in the figure (Figure EV3F). Cells were incubated additional five days with the differentiation medium with two changes of media, every second day. The adipocyte differentiation of medium “donor” cells and the DLK-1 protein levels in these cells were monitored by oil red O staining and Western blot analysis, respectively.

      Additionally, we show now in Figure 4C representative images from three independent biological repeats and in Figure 4D the statistical analysis confirming a significant decrease in adipocyte differentiation ability of WT MEFs following their incubation with a conditioned differentiation medium from dKO MEFs.

      20)Fig5d: please add a statistical analysis of the oil-red-o quantification.

      __Response: __As requested, we included statistical analysis of at least three independent experiments. In Figure 4D we present the statistical analysis confirming a significant decrease in adipocyte differentiation of WT MEFs following their incubation with the differentiation medium from dKO cells. Additionally, Figure 4C shows representative images of oil red O staining from several independent experiments.

      21)Fig7c-d: Does overexpression also rescue the PPARg and CEBPa induction during differentiation. The importance of their induction in undifferentiated MEFs is a little difficult to judge.

      __Response: __We have focused our attention primarily on the ability of TIS7 and SKMc15 to “rescue” the adipocyte differentiation phenotype of dKO MEFs. dKO MEFs stably expressing SKMc15, TIS7 or both genes were differentiated into adipocytes for 8 days and afterwards stained with oil red O. There was a statistically significant increase in oil red O staining following the individual ectopic expression of SKMc15 (p=5.7E-03), a negative effect of TIS7 ectopic expression and a significant (p=9.3E-03), positive effect of co-expression of both genes (Figure EV2A). We found a significant decrease in Dlk-1 mRNA expression following the ectopic expression of TIS7 and/or SKMc15 (Figure EV2A, very right panel). However, C/EBPa mRNA levels were only partially rescued in 8 days differentiated MEFs by TIS7 and/or SKMc15 ectopic expression, and PPARg mRNA levels were not significantly altered.

      22)Fig8: it is not surprising that PPARg targets are not induced in the absence of PPARg. What is the upstream event explaining this defect? Is DLK1 alone enough to explain the results? Could there be additional mediators of the differences? How big are transcriptome-wide differences between WT MEFs and dKO MEFs?

      __Response: __We agree with the reviewer that the lean phenotype of dKO mice most likely cannot be explained by simple transcriptional regulation of PPARg. Although we showed that in undifferentiated MEFs, the levels of PPARg and C/EBPa are controlled (or upregulated) by both TIS7 and SKMc15, we also expected differences in the expression of genes regulating fat uptake. To determine changes in expression of lipid processing and transporting molecules, we performed transcriptome analyses of total RNA samples isolated from the small intestines of HFD-fed WT type and dKO animals. Cluster analyses of lipid transport-related gene transcripts revealed differences between WT type and dKO animals in the expression of adipogenesis regulators. Those included among other genes the following, mentioned as examples:

      • peroxisome proliferator-activated receptors γ (PPARγ) and d [2], fatty acid binding proteins 1 and 2 (FABP1, 2) [3],
      • cytoplasmic fatty acid chaperones expressed in adipocytes,
      • acyl-coenzyme A synthetases 1 and 4 (ACSL1,4) found to be associated with histone acetylation in adipocytes, lipid loading and insulin sensitivity [4],
      • SLC27a1, a2 fatty acid transport proteins, critical mediators of fatty acid metabolism [5],
      • angiotensin-converting enzyme (ACE) playing a regulatory role in adipogenesis and insulin resistance [6],
      • CROT, a carnitine acyltransferase important for the oxidation of fatty acids, a critical step in their metabolism [7],
      • phospholipase PLA2G5 robustly induced in adipocytes of obese mice [8]; [9]. Parts of the following text are embedded in the manuscript.

      We decided to study in more detail the regulation of CD36 that encodes a very long chain fatty acids (VLCFA) transporter because CD36 is an important fatty acid transporter that facilitates fatty acids (FA) uptake by heart, skeletal muscle, and also adipose tissues [10]. PPARγ induces CD36 expression in adipose tissue, where it functions as a fatty acid transporter, and therefore, its regulation by PPARγ contributes to the control of blood lipids. Diacylglycerol acyltransferase 1 (DGAT1), a protein associated with the enterocytic triglyceride absorption and intracellular lipid processing is besides CD36 another target gene of adipogenesis master regulator PPARγ [11]. DGAT1 mRNA levels are strongly up regulated during adipocyte differentiation [12], its promoter region contains a PPARγ binding site and DGAT1 is also negatively regulated by the MEK/ERK pathway. DGAT1 expression was shown to be increased in TIS7 transgenic mice [13] and its expression was decreased in the gut of high fat diet-fed TIS7 KO mice [14]. Importantly, DGAT1 expression in adipocytes and WAT is up regulated by PPARγ activation [11].

      Heatmap of hierarchical cluster analysis of intestinal gene expression involved in lipid transport altered in TIS7 SKMc15 dKO mice fed a high-fat diet for 3 weeks.

      What is the upstream event explaining this defect?

      Wnt pathway causes epigenetic repression of the master adipogenic gene PPARγ. There are three epigenetic signatures implicated in repression of PPARγ: increased recruitment of MeCP2 (methyl CpG binding protein 2) and HP-1α co-repressor to PPARγ promoter and enhanced H3K27 dimethylation at the exon 5 locus in a manner dependent on suppressed canonical Wnt. These epigenetic effects are reproduced by antagonism of canonical Wnt signaling with Dikkopf-1.

      Zhu et al. showed that Dlk1 knockdown causes suppression of Wnt and thereby epigenetic de-repression of PPARγ [15]. Dlk1 levels positively correlate with Wnt signaling activity and negatively with epigenetic repression of PPARγ [16]. Activation of the Wnt pathway caused by DLK1 reprograms lipid metabolism via MeCP2-mediated epigenetic repression of PPARγ [17]. Blocking the Wnt signaling pathway abrogates epigenetic repressions and restores the PPARγ gene expression and differentiation [18].

      **Minor comments:**

      1)Please use the same font in the main text for the references.

      Response: We thank the reviewer for the remark. This issue was corrected.

      Reviewer #3 (Significance (Required)):

      The study provides interesting insights into the role of these factors in adipocyte differentiation that would be relevant especially to researchers working on adipogenesis and cellular differentiation in general. The authors find the studied factors to have additive contribution to the differentiation efficiency. However, the exact nature of the roles and whether they are strictly speaking additive or synergistic is not clear. More detailed analysis of their contribution and molecular interplay would add to the broader interest of the study on molecular networks controlling cellular differentiation.

      **Referees cross-commenting**

      I very much agree on the different points raised by the other reviewers, some of which are also matching my own already raised concerns. And therefore it makes sense to request these modifications from the authors.

      References

      1. Rozman, J., M. Klingenspor, and M. Hrabe de Angelis, A review of standardized metabolic phenotyping of animal models. Mamm Genome, 2014. 25(9-10): p. 497-507.
      2. Lefterova, M.I., et al., PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol Metab, 2014. 25(6): p. 293-302.
      3. Garin-Shkolnik, T., et al., FABP4 attenuates PPARgamma and adipogenesis and is inversely correlated with PPARgamma in adipose tissues. Diabetes, 2014. 63(3): p. 900-11.
      4. Joseph, R., et al., ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content. Mol Endocrinol, 2015. 29(6): p. 909-20.
      5. Anderson, C.M. and A. Stahl, SLC27 fatty acid transport proteins. Mol Aspects Med, 2013. 34(2-3): p. 516-28.
      6. Riedel, J., et al., Characterization of key genes of the renin-angiotensin system in mature feline adipocytes and during in vitro adipogenesis. J Anim Physiol Anim Nutr (Berl), 2016. 100(6): p. 1139-1148.
      7. Zhou, S., et al., Increased missense mutation burden of Fatty Acid metabolism related genes in nunavik inuit population. PLoS One, 2015. 10(5): p. e0128255.
      8. Wootton, P.T., et al., Tagging SNP haplotype analysis of the secretory PLA2-V gene, PLA2G5, shows strong association with LDL and oxLDL levels, suggesting functional distinction from sPLA2-IIA: results from the UDACS study. Hum Mol Genet, 2007. 16(12): p. 1437-44.
      9. Sergouniotis, P.I., et al., Biallelic mutations in PLA2G5, encoding group V phospholipase A2, cause benign fleck retina. Am J Hum Genet, 2011. 89(6): p. 782-91.
      10. Coburn, C.T., et al., Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem, 2000. 275(42): p. 32523-9.
      11. Koliwad, S.K., et al., DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation. J Clin Invest, 2010. 120(3): p. 756-67.
      12. Cases, S., et al., Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A, 1998. 95(22): p. 13018-23.
      13. Wang, Y., et al., Targeted intestinal overexpression of the immediate early gene tis7 in transgenic mice increases triglyceride absorption and adiposity. J Biol Chem, 2005. 280(41): p. 34764-75.
      14. Yu, C., et al., Deletion of Tis7 protects mice from high-fat diet-induced weight gain and blunts the intestinal adaptive response postresection. J Nutr, 2010. 140(11): p. 1907-14.
      15. Zhu, N.L., et al., Hepatic stellate cell-derived delta-like homolog 1 (DLK1) protein in liver regeneration. J Biol Chem, 2012. 287(13): p. 10355-10367.
      16. Zhu, N.L., J. Wang, and H. Tsukamoto, The Necdin-Wnt pathway causes epigenetic peroxisome proliferator-activated receptor gamma repression in hepatic stellate cells. J Biol Chem, 2010. 285(40): p. 30463-71.
      17. Tsukamoto, H., Metabolic reprogramming and cell fate regulation in alcoholic liver disease. Pancreatology, 2015. 15(4 Suppl): p. S61-5.
      18. Miao, C.G., et al., Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie, 2013. 95(12): p. 2326-35.
    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In the article, "The negative regulator DLK1 is transcriptionally regulated by TIS7 (IFRD1) and translationally by its orthologue SKMc15 (IFRD2)", the authors performed a double knockout (dKO) of TIS7 and its orthologue SKMc15 in mice and could show that those dKO mice had less adipose tissue compared to wild-type (WT) mice and were resistant to a high fat-diet induced obesity. The study takes advantage of number of different methods and approaches and combines both in vivo and in vitro work. However, some more detailed analysis and clarifications would be needed to fully justify some of the statements. Including the role of TIS7 as a transcriptional regulator of DLK1, SKMc15 as translational regulator of DLK1 and overall contribution of DLK1 in the observed differentiation defects. The observed results could still be explained by many indirect effects caused by the knock-outs and more direct functional connections between the studied molecules would be needed. Moreover, some assays appear to be missing biological replicates and statistical analysis. Please see below for more detailed comments:

      Major comments:

      -Are the key conclusions convincing? Yes.

      -Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? No.

      -Would additional experiments be essential to support the claims of the paper? Yes. Please see my comments.

      -Are the suggested experiments realistic in terms of time and resources? Recombinant DLK1 10 μg - Tetu-bio - 112€ ; 8 days of adipocyte differentiation in 3 biological replicate ~ 1 month.

      -Are the data and the methods presented in such a way that they can be reproduced? Yes.

      -Are the experiments adequately replicated and statistical analysis adequate? Adequately reproduced yes. Please see my comments concerning the statistical analysis.

      1)Fig1a: In the method section it is written that an unpaired 2-tailed Student's t test was used for all statistical comparisons. However, here something like Multivariate analysis of variance (MANOVA) should rather be used to assess statistical significance between the mice. Moreover, the details of this should be clearly stated in the corresponding Figure legend.

      2)Fig2a: please use an appropriate title for Fig2a instead of "Abdominal fat vs. body mass".

      3)Fig2c: in the method section it is written that an unpaired 2-tailed Student's t test was used for all statistical comparisons. However, in Fig2c 4 groups are compared (WT, TIS7 KO, SKMc15 KO and dKO) and thus something like Multivariate analysis of variance (MANOVA) should rather be used to assess statistical significance.

      4)Fig2 conclusion: Additive or just showing stronger effect?

      5)Fig3a: the microscope picture for SKMc15 KO shows that cells might have died. Please state the percentage of cell death.

      6)Fig3b: It would be informative to additionally observe some of marker genes for adipogenesis and whether all of them are affected.

      7)Fig3b: instead of using an unpaired 2-tailed Student's t test with proportion, an one-way ANOVA would be more appropriate.

      8)Fig3c: Same comment as for Fig3b.

      9)Fig3d: A representative Western blot for 3 independent experiments is shown. Please add the other two as supplementary materials.

      10)Fig3d:Is this distinguishing between the active and inactive catenin?

      11)Fig4a: Please perform qPCR for measuring DLK-1 mRNA levels in TIS7 KO and SKMc15 KO samples to check whether there is a correlation between mRNA and protein level as the statement of the authors is that "DLK1 is transcriptionally regulated by TIS7 (IFRD1) and translationally by its orthologue SKMc15".

      12)Fig4c: please add the other two western blots as supplementary materials.

      13)Fig4d: The effects in MEFs appear quite modest. What about a rescue with TIS7 or SKMc15 alone?

      14)Page 12, row 207: I would not call histones transcription factors.

      15)Fig4e: Would be good to see a schematic overview of the locations of the ChIP primers in relation to the known binding sites and the gene (TSS, gene body). Moreover, the results include an enrichment for only one region while in the text two different regions are discussed. Importantly, to confirm the specificity of the observed enrichment, a primer pair targeting an unspecific control region not bound by the proteins should be included.

      16)Fig5a: Has this experiment been replicated? That is no mention about the reproducibility or quantification of this result. This is the main experiment regarding the role of SKMc15 as a translational regulator of DLK1, also mentioned in the title of the manuscript.

      17)Fig5b: Showing another unaffected secreted protein would be an appropriate control here.

      18)Fig5c: I would recommend to perform additional experiments to prove that DLK-1 secreted in the medium can contribute and is responsible for the inhibition of the differentiation. Indeed, a time course of adipocyte differentiation followed by the addition of soluble DLK-1 would confirm that DLK-1 can inhibit adipocyte differentiation in this experimental setup. Moreover, silencing (for example RNAi) of DLK1 in the dKO cells before harvesting the conditioned media would allow to estimate the contribution of DLK1 to the observed inhibition of differentiation by the media. This is important because many other molecules could also be mediating this inhibition.

      19)Fig5c: The details and the timeline of the experiment with conditioned media are not provided in the figure or in the methods. At what time point was conditioned media changed? How long were the cells kept in conditioned media? How does this compare to the regular media change intervals? Could the lower differentiation capacity relate to turnover of the differentiation inducing compounds in the media due to longer period between media change? Moreover, is the result statistically significant after replication?

      20)Fig5d: please add a statistical analysis of the oil-re3d-o quantification.

      21)Fig7c-d: Does overexpression also rescue the PPARg and CEBPa induction during differentiation. The importance of their induction in undifferentiated MEFs is a little difficult to judge.

      22)Fig8: it is not surprising that PPARg targets are not induced in the absence of PPARg. What is the upstream event explaining this defect? Is DLK1 alone enough to explain the results? Could there be additional mediators of the differences? How big are transcriptome-wide differences between WT MEFs and dKO MEFs?

      Minor comments:

      1)Please use the same font in the main text for the references.

      Significance

      The study provides interesting insights into the role of these factors in adipocyte differentiation that would be relevant especially to researchers working on adipogenesis and cellular differentiation in general. The authors find the studied factors to have additive contribution to the differentiation efficiency. However, the exact nature of the roles and whether they are strictly speaking additive or synergistic is not clear. More detailed analysis of their contribution and molecular interplay would add to the broader interest of the study on molecular networks controlling cellular differentiation.

      Referees cross-commenting

      I very much agree on the different points raised by the other reviewers, some of which are also matching my own already raised concerns. And therefore it makes sense to request these modifications from the authors.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      In the current study, Vietor et al. aimed to explore the regulation of Delta-like homolog 1 (DLK-1), an inhibitor of adipogenesis, and demonstrated a role for TIS7 and its orthologue SKMc15 in the regulation of adipogenesis by controlling the level of DLK-1. Using mouse models with whole body deficiency of TIS7 (TIS7 KO) or SKMc15 (SKMc15KO) and double KO (TIS7 and SKMc15 dKO) mice, the authors used a combination of in-vivo experiments and cell culture experiments with mouse embryonic fibroblasts derived from the KO animals, to show that the concurrent depletion of TIS7 and SKMc15 dramatically reduced the amount of adipose tissues and protected against diet-induced obesity in mice, which was associated with defective adipogenesis in vitro.

      Major Comments:

      Overall, this study presents convincing evidence that TIOS7 and SKMc15 are necessary for optimal adipogenesis, and proposes a novel mechanism for the control of DLK1 abundance via coordinated regulation of DLK-1 transcription and translation. However, a number of questions remain largely unanswered. In particular, the direct ability of SKMc15 to regulate the translation of DLK-1 is lacking, and this claim remains speculative. SKMc15 being a general inhibitor of translation, SKMc15 may have an effect on adipogenesis independently of its regulation of DLK-1. Thus, addressing the following comments would further improve the quality of the manuscript:

      •The experimental evidence supporting that SKMc15 controls DLK-1 protein levels comes primarily from the observations that DLK-1 abundance is further increased in SKMc15 KO and dKO WAT than in TIS7KO WAT (Fig 3d), and that translation is generally increased in SKMc15 KO and dKO cells (Fig 5a). However, since the rescue experiment is performed in dKO cells, by restoring both TIS7 and SKMc15 together, it is impossible to disentangle the effects on DLK-1 transcription, DLK-1 translation and on adipogenesis. A more detailed description of the TIS7 and SKM15c single KO cells, with or without re-expression of TIS7 and SKMc15 individually, at the level of DLK-1 mRNA expression and DLK-1 protein abundance would be necessary. In addition, polyribosome fractioning followed by qPCR for DLK-1 in each fraction, and by comparison with DLK-1 global expression in control and SKMc15 KO cells, would reveal the efficiency of translation for DLK-1 specifically, and directly prove a translational control of DLK-1 by SKMc15. Alternatively, showing that DLK-1 is among the proteins newly translated in SKMc15 KO cells (Fig. 5a) would be helpful.

      •While the scope of the study focuses on the molecular control of adipogenesis by TIS7 and SKMc15 via the regulation of DLK-1, basic elements of the metabolic characterization of the KO animals providing the basis for this study would be useful. Since the difference in body weight between WT and dKO animals is already apparent 1 week after birth (Fig 1a), it would be interesting to determine whether the fat mass is decreased at an earlier age than 6 months (Fig 1b). The dKO mice are leaner despite identical food intake, activity and RER (Sup Fig 1). It remains unclear whether defective fat mass expansion is a result or consequence of this phenotype. Is the excess energy stored ectopically? The authors mention defective lipid absorption, however, these data are not presented in the manuscript. It would be interesting to investigate the relative contribution of calorie intake and adipose lipid storage capacity in the resistance to diet-induced obesity. In addition, data reported in Fig 1c seem to indicate a preferential defect in visceral fat development, as compared to subcutaneous fat. It would be relevant if the authors could quantify it and comment on it. Are TIS7 and SKMc15 differentially expressed in various adipose depots? The authors used embryonic fibroblasts as a paradigm to study adipogenesis. It would be important to investigate, especially in light of the former comment, whether pre-adipocytes from subcutaneous and visceral stroma-vascular fractions present similar defects in adipogenesis.

      We estimate the suggested experiments above realistic in terms of time and resources and important to support the major conclusions of the study. Both data and methods are explained clearly. The experiments are, for the most part, adequately replicated. However, whenever multiple groups are compared, ANOVA should be employed instead of t-test for statistical analysis.

      Minor comments:

      •Figure 4 d. The appropriate control would be WT with empty vector

      •Figure 7c/d. The appropriate control would be WT with empty vector

      •Figure 5C. An additional control would be WT with WT medium

      •Figure 2: In the legends, the "x" is missing for the dKO regression formula

      •Since the role of SKMc15 in adipogenesis has never been described, the authors could consider describing the single SKMc15 KO in addition to the dKO, or explain the rationale for focusing the study on dKO.

      Significance

      While the effects of DLK-1 on adipogenesis have been widely documented, the factors controlling DLK-1 expression and function remain poorly understood. Here the authors propose a novel mechanism for the regulation of DLK-1, and how it affects adipocyte differentiation. This study should therefore be of interest for researchers interested in the molecular control of adipogenesis and cell differentiation in general. Furthermore, the characterization of the function of SKMc15 in the control of translation may be of interest to a broader readership.

      Referees cross-commenting

      I agree with all the comments raised by the other reviewers. Addressing the often overlapping but also complementary questions would help to clarify the molecular mechanisms by which TIS7 and SKMc15 control adipogenesis, and support the conclusions raised by the authors.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This study by Viedor et al. examines the role of TIS7 (IFRD1) and its ortholog SKMc15 (IFRD2) in the regulation of adipogenesis via their ability to modulate the levels of DLK1 (Pref-1), a well-known inhibitor of adipogenesis. They generate SKMc15 KO mice and cross them to previously published TIS7 KO mice. All 3 mutant strains show decreased fat mass, with the effect being most pronounced in double KO mice (dKO). Using mouse embryonic fibroblasts (MEFs) from mutant mice, they authors ascribe a defect in adipogenic differentiation of mutant cells to an upregulation of DLK-1. In the case of TIS7, they propose that this is due to its known inhibition of Wnt signaling, which regulates DLK-1 expression. In the case of SKMc15, they suggest a new mechanism linked to its ability to suppress translation. Overall, the work is of interest, with the finding that SKMc15 regulates adipocyte differentiation being its novelty, and generally well done, though multiple aspects need to be improved to bolster the conclusions put forth.

      Major concerns:

      1)The main mechanism put forth by the authors to explain the inability of dKO cells to differentiate into adipocytes is the upregulation of DLK-1 levels. However, this notion is never directly tested. Authors should test if knockdown of DLK-1 in dKO cells is sufficient to correct the defect in differentiation, or if additional factors are involved.

      2)There are multiple instances were the authors refer to "data not shown", such as when discussing the body length of dKO mice. Please show the data in all cases (Supplementary Info is fine) or remove any discussion of data that is not shown and cannot be evaluated.

      3)Indirect calorimetry data shown in Fig. S1 should include an entire 24 hr cycle and plots of VO2, activity and other measured parameters shown (only RER and food intake are shown), not just alluded to in the legend.

      4)It is surprising that the dKO mice weight so much less than WT even though their food consumption and activity levels are similar, and their RER does not indicate a switch in fuel preference. An explanation could be altered lipid absorption. The authors indicate that feces were collected. An analysis of fat content in feces (NEFAs, TG) needs to be performed to examine this possibility. The discussion alludes to it, but no data is shown.

      5)It would be important to know if increased MEK/ERK signaling and SOX9 expression are seen in fat pads of mutant mice, not just on the MEF system. Similarly, what are the expression levels of PPARg and C/EBPa in WAT depots of mutant mice?

      6)Analysis of Wnt signaling in Fig. 3c should also include a FOPflash control reporter vector, to demonstrate specificity. Also, data from transfection studies should be shown as mean plus/minus STD and not SEM. This also applies to all other cell-based studies (e.g., Fig. 6b,c).

      7)It is unclear why the authors used the MEF model rather than adipocyte precursors derived from the stromal vascular fraction (SVF) of fat pads from mutant mice. If they did generate data from SVF progenitors, they should include it.

      8)Given that the authors' proposed mechanism involves both, transcriptional and post-transcriptional regulation of DLK-1 by TIS7 and SKMc15, Fig. 4d should be a Western blot capturing both of these events, and not just quantitation of mRNA levels.

      9)There is no mention of the impact on brown adipose tissue (BAT) differentiation of KO of TIS7, SKMc15, or the combination. Given the role of BAT in systemic metabolism beyond energy expenditure, the authors need to comment on this issue.

      Minor comments:

      10)The y axis in Fig. 2c is labeled as gain of body weight (g). Is it really the case that WT mice gained 30 g of body weight after just 3 weeks of HFD? This rate of increase seems extraordinary, and somewhat unlikely. Please re-check the accuracy of this panel.

      11)The Methods indicates all statistical analysis was performed using t tests, but this is at odds with some figure legends that indicate additional tests (e.g., ANCOVA).

      12)Please specify in all cases the WAT depot used for the analysis shown (e.g., Fig. 3d is just labeled as WAT, as are Fig. 4a,e, etc.).

      13)Fig. 5d is missing error bars, giving the impression that this experiment was performed only once (Fig. 5c). The legend has no details. Please amend.

      Significance

      The role of TIS7 in adipocyte differentiation is well established. The only truly novel finding in this work is the observation that SKMc15 also plays a role in adipogenesis. The molecular mechanisms proposed (modulation of DLK-1 levels) are not novel, but make sense. However, they need to be bolstered by additional data.

      Referees cross-commenting

      I think we are all in agreement that the findings in this work are of interest, but that significant additional work is required to discern the mechanisms involved. In my view, a direct and specific link between SKMc15 and translation of DLK-1 needs to be established and its significance for adipogenesis in cells derived from the SVF of fat pads determined. Reviewer 2 has suggested some concrete ways to provide evidence of a direct link.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      'The authors do not wish to provide a response at this time.'

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary: The manuscript analyzes how the constriction of a tissue by an enveloping basement membrane alters the migration of cells migrating through that tissue. The tissue analyzed is the Drosophila egg chamber, an important model for basement membrane studies in vivo, and the cells migrating through it are the border cells. The border cells migrate through the center of the egg chamber, moving as a cluster between the nurse cells, which are in turn surrounded by follicle cells, which secrete the basement membrane on the outside of the egg chamber. The authors decrease and increase the basement membrane stiffness with various genetic perturbations, and they find that the border cells move more rapidly when the stiffness is reduced. They then investigate how basement membrane stiffness is communicated to the border cells several cell layers inside, by measuring cortical tension with laser-recoil. They found that external basement membrane stiffness alters the cortical tension of the nurse cells and the follicle cells, such that reduced matrix stiffness causes reduced cortical tension; further, reducing cortical tension directly within the cells also results in increased border cell migration rates. They conclude that basement membrane stiffness can alter cell migration in a new way, by altering constriction and cortical tension, with an inverse relationship between stiffness and migration rate. This is a strong manuscript and I would request very few changes.

      The authors are commended on the rigor and completeness of their study. Several independent methods are used to alter basement membrane stiffness (loss of laminin, knock-down of laminin, knock-down of collagen IV, over-production of collagen IV - all of which end up changing collagen IV levels) and all show the same result. Further, they are extremely rigorous about testing and excluding an attractive alternative hypothesis, that the basement membrane of the border cell cluster itself controls its migration rate. The use of mirror-Gal4 is very elegant and convincing, as it expressed only in the central part of the egg chamber, and they found border cells responded differently only in that region. Moreover, the authors were exceptionally thorough in reproducing the basement membrane mechanical data in their own hands using the bursting assay. Overall, the experimental data support the claims of the paper. There is only one more control I would like to see, for the knockdown of laminin in the border cell cluster with a triple-Gal4 combination. Presumably using all three Gal4 lines was necessary to get complete knockdown, and it would be nice to see anti-laminin for the border cell cluster under these knockdown conditions.

      Despite the rigor, because all of the manipulations to the basement membrane alter the levels of collagen IV, the authors cannot formally exclude the possibility that collagen IV in the basement membrane has another function besides stiffness, perhaps sequestering a signaling ligand, and that this other function somehow alters the cortical tension of the egg chamber. In the paper by Crest et al, externally applied collagenase served as a control for this possibility, but collagenase will not work for the authors because this study is in vivo. I suggest the authors bring up this caveat in the discussion. If they wanted to extend the study (optional), they could knock down the crosslinking enzyme peroxidasin in the egg chamber, which ought to reduce basement membrane stiffness without changing the collagen content. The problem here is that it hasn't already been shown to work that way in the egg chamber, and so both stiffness and collagen levels would need to be measured. Testing the stiffness directly would be difficult, since the bursting assay is not actually a measurement of stiffness (more on that below). Rather than go this route, I suggest just acknowledging the formal possibility, which seems to me unlikely anyway.

      In terms of clarity, the manuscript absolutely needs a schematic at the beginning to introduce the egg chamber and border cell migration, labeling the cell types, showing the route and direction of border cell migration, and labeling the A/P axis. Without this the non-expert reader cannot readily understand the study.

      Finally, in terms of clarity, the authors repeatedly use statements such as "stiffness influences migration rate". Influences how? These results are not intuitive to me, and it would help enormously if the authors would make statements like, decreasing stiffness increases migration (as I tried to in my summary). Here are two examples of statements to refine: • Line 189 - "We found that reducing laminin levels affected the migration speed of both phases (Fig.1F, G)." Please say increased, not affected. • Line 245 -"Altogether, these results demonstrate that the stiffness of the follicle BM influences dynamics and mode of BC migration." Again, be specific about how. There are many such statements, from the abstract to the results to the discussion, where it would help the clarity to be more precise about what kind of influence.

      Minor comments: • The movies are beautiful! • All the quantitative data are shown in bar charts with means and errors. It is much better to show the individual data points, superimposing the means and distributions on top of the individual points. • The bursting assay does not actually measure basement membrane stiffness; rather, it measures failure after elastic expansion. These are related, as was found by Crest et al and the authors say that at one point, but stiffness and failure are not the same thing. Please change the language discussing this assay to "mechanical properties" rather than stiffness. • The laser-recoil assays are done well and are convincing. Throughout the results section, the authors describe these as measuring "cortical tension", which is correct. However, in the figure legends the language changes to "membrane tension" which is only one component of cortical tension. Change them all to cortical tension. • In the Discussion, it would be nice to include something on the two different modes of migration (tumbling and not tumbling). • I suggest changing the title to remove the word "forces", because forces are never directly measured from basement membrane. • Although Dai et al (Science 2020) is discussed near the end, I suggest bringing this reference up to the introduction, so the reader can have the background on the mechanical aspects of border cell migration at the start of this study. • Two typos (there may be more): At the bottom of Fig. 2, text turns strangely white that should probably be black; and in line 260, you mean Fig. S5 not S4 (laser ablation).

      Significance

      Mechanobiology, and mechanobiology of the basement membrane, is a vibrant area of study now, arising from the intersection of biophysics/engineering and genetics. There is general interest in how the basement membrane alters forces within the tissue, and this study is the first to my knowledge to relate basement membrane mechanics to migration via constriction and cortical tension. The authors do a great job of discussing the broader significance of their work in the Discussion. To greatly broaden the scope of this work in the future, the authors could collaborate with a mouse team to look for similar responses in a mammalian tissue, as they discuss. It is worth noting that there is a lot of work on matrix stiffness and migration showing that stiffness promotes migration speed; in these cases, matrix is a substrate, not a compression mechanism. But the opposite nature of the result in interesting and makes this work non-intutive and perhaps hard for some readers to grasp.<br /> As the paper is written now, I think the audience for this work would mostly be oogenesis, border cell migration, and/or basement membrane researchers in the Drosophila community, of which there are many (I am in this camp). With some rewriting to make it more accessible to other audiences, I think it would be interesting to a larger developmental biology audience. The content is not like any other paper I know, but it may be similar in scope and subject matter to the papers detailing how follicle cells and basement membrane interact during follicle rotation.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Ester and her colleagues described a force model that controls border cell migration by varying the stiffness of the basement membrane. It's based on the modification of laminin and Coll IV which are components of the basement membrane. To reduce BMs stiffness, they introduced LanB1RNAi or the LanB1 mutant to inhibit laminin production or vkgRNAi to reduce Coll IV. They also applied EHBP1mCh to enhance BM stiffness. Furthermore, they applied laser ablition to confirm that the BM stiffness affects the tension of nurse cells and follicle cells, thus regulating border cell behavour by changing environmental properties. It is a nice work revealing how the environment controls border cell migration; however, there are several points that concern me: 1. It's reported that actin polymerization at the front of the cell generates protrusions, as well as that myosin contractility helps to suppress lateral random protrusions, thus leading to a directed and efficient cell migration. So why do more lateral protrusions (tj>LanB1RNAi) produce a faster migration speed? 2. We know some labs also did experiments with those Kel/Dic mutant flies. And the Kel mutant is very sick, which sometimes leads to NC degeneration. As a result, we have serious doubts that this mutant's border cell migration will remain normal. 3. From figure4, we noticed that with mirrGal4, the vertex distance increase is much lower than tjGal4 (control of D, H and K), and even with expressing the EHPB1mCh, the distance is still lower than the tjGal4 control. These indicate the NC cortical tension is lower with mirrGal4 expression, which is patially against the paper's main point. (Similar issue in figure5 D and E). 4. Sfigure1 A and B seem not to have the right contrast (the blue and the red should have the same brightness), so the comparison of the intensities might be inaccurate and needs to be requantified after adjustment of the images. 5. Sfigure2 A-E showed that the vkgRNAi has the highest bursting frequency, whereas F and G do not. And the majority of the data from F does not fit with A-E, and it is unclear what timepoint sF.G. is at. 6. SFigure 6 only displayed a representative image of the control condition; the lack of representative images for the other conditions resulted in unconvincing results. 7. Some figures and movies have prominent variation of migrating stages, such as not-detached border cells compared with detached border cells. This might strongly cause the results inconsistent with each other. 8. There are numerous typos in both the manuscript and the figures. Based on all these concerns, I recommend authors to do some improvement before this manuscript is accepted by some reputed journals.

      Significance

      Strengths: the manuscript is well written and organised; limitation: figures and results are not supportive enough, and thus conclusion is not completely convincing, statistical quantification is not clear and somehow confusing.

      Advice: If the conclusion is solid, this story will fill the unclear importance of surrounding environment on cell-rich tissue for collective cell migration. Concept is very novel while needing more supporting data. It is a fundamental study for development biology.

      Audience: The story will fit well for developmental and cell biology, as well as people with biomechanical background.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript by Lopez et al have employed the ex vivo model of Border cell migration in Drosophila ovaries to examine the constriction forces imposed by basement membrane on migrating border cells. The authors have extensively employed live cell imaging coupled with genetics to demonstrate that basement membrane encasing fly eggs modulates the dynamics of migrating border cells. Through laser ablation experiments they show that basement influences the tension of the underlying follicle cell and nurse cells which in turn affects the migration efficiency of collectively moving border cells. Over all the experiments are well quantified with good degree of statistics that drive the claim of the authors.

      Major comments: Over in all the images, it is very hard to appreciate the overall contour of the egg chamber. This is important to get an insight regarding the stage of the egg chamber being evaluated.

      1. By depleting the constituents of basement membrane, the authors show that the speed of the migrating border cells increases. However in Supplementary Figure 1A and B where that authors have depleted LanB1, the migrating border cell cluster seems to lag while the control has reached the oocyte boundary. Is this a single off phenomena?

      2. This is regarding the osmotic swelling experiments. The frequency and speed of bursting of egg chambers in deionized water was used to evaluate the stiffness of basement membrane in different genetic background. As egg chambers of different stages have variable sizes, it would be fair to evaluate egg chambers of only a particular stage for this analysis as the tonocity of the egg chambers may depend on their size.

      3. Line 211, "Live time lapse imaging, showed that the overexpression of EHBP1mCh in all FCs delayed BC migration (tslGFP; tj> EHBP1mCh, Figure S4A-B', Movie S4, n=6)." Though the border cell cluster hasn't moved significantly in Fig S4B', the egg chamber development seems to be stalled as the movement of main body follicle cells is affected. My concern if over expression of EHBP1mCh in the follicle cells is stalling the oogenesis itself could that indirectly affect the border cell movement. Secondly though EHBP1 has been shown to affect secretion of the basement membrane constituents, it could also modulate asymmetric secretion of other components. Can the authors evaluate if over expression of EHBP1mCh rescues the delay in migrating border cells in Lanb1 heterozygous background to render stronger support to their claim.

      4. In Supplementary Fig 7 B and B' the nurse cell morphology seems to be affected. Could the distorted nurse cell morphology in the abi-depleted germline cell affecting the migration efficiency of border cells.

      5. Line 313-314 The authors state that "The radius of curvature of a spherical interface is inversely proportional to the difference in pressure between the two sides of the interface." This may be applicable to a smooth surface but may be not directly applicable to the cell membrane as there are local regional variations and thus any inference on the cytoplasmic pressure of nurse cells may be misleading.

      Minor comment:

      1. In supplementary figure 6D, the square boxes are obscuring the border cell membrane and it will be better if the authors can modify the figure to render more clarity.
      2. There are couple of places where sentence structure needs to be corrected.

      Referees cross-commenting

      I agree with all the comments of other reviewers. Overall I also feel that results do not strongly support the main conclusions. The authors draw major conclusions based on experiments that are merely suggestive rather than being conclusive. Some of the concerns are listed. Like Reviewer 3 raising the concern that Collagen IV may have other functions in the basement membrane other than providing stiffness. A similar concern I too have raised regarding over-expression of EHBP1. I agree with Reviewer 3 that there are several other factors that can affect the outcome of bursting assay besides the stiffness of the basement membrane itself. So the authors need to be careful in linking the bursting frequency of the egg chamber with the stiffness of the basement membrane itself.

      I agree with other reviewers that the quality of the images need to be better. In addition, the image presented should be representative of the population and should fit with the over claim made by the authors (Point No 3 of Reviewer 2 and Point No 1 of Reviewer1). I also agree that authors need to explain Reviewer 2's concern (Point No-1) as to why the lateral protrusion in tj>LanB1RNAi doesn't inhibit the movement of border cell clusters but rather produce faster migration speeds?

      Lastly it is important for the authors to verify that like Kel/Dic mutants are indeed effective or any genetic perturbation like overexpression of EHBP1mCh is not the stalling the oogenesis progression perse, thus giving a false impression of altered migratory speed of border cell clusters.

      Significance

      The role basement membrane is well documented in affecting the shape of neighbouring cells Here the authors claim that the stiffness of basement membrane is regulating the migration efficiency of the border cells. I believe that basement membrane encasing the follicle and underlying germline cells provides a very narrow passage for the border cells to migrate. Any mechanical perturbation that releases or increases the pressure or make the nurse cells membranes less or more taut will affect the dynamics of migrating border cells. Though the authors have demonstrated this with very elegant experiments, I am afraid that their findings are standard outcomes in any physically constrained system and somehow doesn't significantly advance the field.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2022-01776

      Corresponding author(s): David Bryant

      1. General Statements [optional]

      We describe an ARF6 GTPase module that controls integrin recycling to drive invasion in PTEN-null Ovarian Cancer (OC). We used high-throughput, time-lapse imaging and machine learning to characterise spheroid behaviours from a series of cell lines modelling common genetic lesions in OC patients. We identified that PTEN loss was associated with increased invasion, the formation of invasive protrusions enriched for the PTEN substrate PI(3,4,5)P3, and enhanced recycling of integrins in an ARF6-dependent matter. We utilised Mass Spectrometry proteomics and unbiased labelling to investigate the interactome of ARF6, identifying a single ARF GAP (AGAP1) and a single ARF GEF (CYTH2). Importantly, this ARF6-AGAP1-CYTH2 modality was associated with poor clinical outcome in patients.

      We thank all Reviewers for their highly complementary assessment of our manuscript, describing our paper as a "very impressive study, very well done and controlled with rigorous statistical analyses that uses sophisticated methods", a study that is "stunning in its thoroughness and depth and breadth of its molecular analysis", with "experiments are properly designed, and the data are well presented. The conclusions are appropriate and supported by the data". Finally, we would like to thank the reviewers for appreciating that our results are "of significance for both scientific discovery and clinical application, which will interest the broad audience in both basic and clinical research".

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      Reviewer comments in bold. Our response in non-bold.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This paper by Konstantinou et al aims at deciphering the mechanisms by which PTEN loss could be driving poorer prognosis in patients. The authors use their great high-throughput 3D screening method coupled to an unbiased proteomic method and a CRISPR screen to uncover a new pro-invasive axis driving collective invasion of high-grade serous ovarian carcinoma (HGSOC) cells. Overall, this is a very impressive study, very well done and controlled with rigorous statistical analyses that uses sophisticated methods to convincingly show that the CYTH2-ARF6-AGAP1-ITGA6/ITGB1 module is required for the pro-invasive effect of PTEN depletion and discriminates patients with poorest prognosis.

      __

      MAJOR COMMENTS __

      Below are listed all the claims that, in my opinion, are not adequately supported by the data.

      1) Choice of the cell line: More justification on the use of the ID8 cell line and on the p53 deletion is needed. The authors need to clearly state that most p53 mutations in ovarian cancer are missense mutations that lead to a strong accumulation of a p53 protein devoid of transcriptional activity. Nevertheless, it seems that p53 mutations are not associated to differences in patient survival. Hence the choice of studying PTEN loss in the complete absence of p53, a situation that does not mirror the clinical situation, needs to be explained. Moreover, the in vivo experiments already performed in the literature mentioned in the discussion should be mentioned in the introduction to provide more context and physiological relevance to this study (especially regarding the special focus on the p53 null/ dKO cells throughout the study).

      We will update the manuscript with a detailed explanation of the cell line of choice. Briefly, while indeed Tp53 is found mutated in HGSOC, approximately 30-35 % of these are classified as null mutations (PMID: 21552211), making models with null Trp53 representative of the clinical situation. Further, there is no difference in patient outcome in HGSOC by Tp53 mutation type (PMID: 20229506), while gene expression data from TCGA suggest that HGSC is marked by loss of wild-type P53 signalling regardless of Tp53 mutation type (PMID 25109877). Thus, we believe our choice of model can faithfully mirror the clinical situation.

      2) "Therefore, PTEN loss in ovarian cancer, particularly at the protein level, occurs in the tumour epithelium and is associated with upregulated AKT signalling and poor overall survival". This claim is an over-interpretation and over-generalisation of the data presented. I appreciate the honesty of the authors in showing all the ovarian datasets that are available and highlight the discrepancies in expression of the proteins they study in stroma and epithelium. I think the way to present these data in the text without over-interpreting and generalizing would be to show that there is a clear epithelial-specific downregulation of PTEN at the mRNA level. Most likely due to the contribution to other cell types in the stroma, only 3 out of 5 bulk tumour mRNA datasets show a tumour specific downregulation of PTEN and no association with survival based on a median split of PTEN mRNA expression. Nevertheless, although there is no direct correlation between PTEN mRNA and protein levels, patients with low PTEN protein levels have poorer survival that is associated to an upregulation of Akt signalling. This allows to have a clearer conclusion, based solely on the protein data presented and no over-generalisation using the mRNA data. This, to me, makes a stronger case for studying PTEN loss in ovarian cancer and is fully supported by the data presented.

      We will incorporate this reviewer suggestion into the modified manuscript.

      3) PTEN loss induces modest effects in 2D culture. The authors make claims regarding the fact that some of the phenotypes they look at happen after PTEN depletion alone or in combination with p53 loss and are more prominent in 3D vs 2D. Many of these are insufficiently backed up by data. A few key experiments are also only performed in 2D and should be done in 3D. Finally, some clarifications if the role of PTEN is most prominent on either collective, ECM-induced or 3D-dependent invasion.

      some clarifications if the role of PTEN is most prominent on either collective, ECM-induced or 3D-dependent invasion

      We believe that the reviewer may be confused. Both of our models, either spheroids or invading monolayers, are events occurring inside gels of ECM. Therefore, these are all are 3D, ECM-induced, collective invasion. We have not performed 2D migration assays. We apologise that the this was not clearer in the first submission. We will correct this in the updated manuscript.

      First, the authors claim that PTEN loss alone (i.e. without p53 deletion) leads to changes in Akt signalling. Supp fig 1H clearly shows that there is no significant increase in Akt activation, although there seems to be one in the Western Blot (WB) presented in supp fig 1G. There is a clear, significant increase in the Akt activation in all the PTEN KO clones when in association with p53 loss though. This claim is hence not backed up by data and the conclusion seems to be that the effect on Akt signalling requires both deletion of p53 and PTEN.

      The reviewer is correct: that the increase to pAKT levels upon PTEN KO is more robust with co-KO of TP53, thereby indicating synergy with p53. We will update the manuscript to note this, accordingly.

      It will be interesting to see a quantification of the pS473-Akt staining (supp fig S1J), as it seems from these images that pAkt is preferentially found on rounded cells. It should also be performed in 3D conditions to see if there is an enrichment at invasive tips and back-up the invasion data.

      This observation made us realise that the images we had included were giving the wrong impression (that pAkt levels would be highest in round cells). Based on the quantitation in Fig. S1M, PTEN KO cells (which have elevated pAkt levels), show a marked depletion of rounded cells. Therefore, pAkt elevated is not associated with being enriched in rounded cells. We will replace this image with cells mirroring the phenotypes quantified in Fig S1M.

      We used 2D for quantitation of pAKT staining, as we perform a like for like comparison. We cannot compare pAkt in 3D protrusions accurately between genotypes because of the frequency of protrusions: in p53 KO protrusion are rare. In 3D, therefore, it is not a situation where protrusions are present in both genotypes and we compare enrichment or depletion in a stable structure. Rather, what we can provide is whether when protrusions form, there is clear pAkt labelling in a protrusion. We will include for the revision a representative image of each phenotype in 3D, including a 3D Trp53-/-;Pten-/- spheroid stained for pAKT S473.

      Arf6 is recruited to the invasive tips of cells invading a 2D wound (fig4D). How do the authors reconcile the fact that all the machinery required for 3D invasion is present but that PTEN loss has a modest effect on cells in 2D? If the wound assay was done on glass, it should be done again on ECM coated glass to see if it recapitulates the effects seen in 3D. This experiment will help deconvolute if the effect of PTEN loss is more linked to collective behaviour than 3D organization or presence of ECM.

      We again apologise for not being clearer in our description. Both the wound assays and the IF of invading monolayer were performed with cell monolayers invading into Matrigel. Monolayers are grown on top of Matrigel, wounded, and then overlayed with Matrigel. Therefore, this is orthogonal to our spheroid assay, and completely 3D. We will address this comment by changing the text in the results section to highlight the 3D nature of the method.

      The recycling assays are all done in 2D, condition under which the authors claim that the PTEN phenotype is weakest. Although I understand that it is not possible to do this assay in 3D, its contribution to elucidating the mechanism by which integrins participate in the PTEN loss invasive phenotype is not clear. The requirement of integrins relies on the data showing that ITGB1 KO results in no collagen4-positive basement membrane of the cysts and greatly impaired invasion. Experiments looking at the integrin localisation would be helpful: can an enrichment at the invasive tips can be seen? Are ITGA6 and/or ITGB1 repartitions homogeneous between the cysts membranes and the invasive tips? In my opinion the Src/FAK data is not enough to draw the conclusions of fig7I schematic.

      We will endeavour to include images of 3D spheroids of Trp53-/-;Pten-/- cells and stained for β1 integrin (total and active) and α5 integrin to interrogate localisation at the tips.

      4) Expression of AGAP1 isoforms do not alter ARF6 levels. Data in fig 6C, D show a significant downregulation of Arf6 and Akt signalling after expression of AGAP1S. Can the authors clarify what they mean?

      We thank the reviewer for picking up that discrepancy between the results and the text. We will change the relevant text to highlight that expression of AGAP1S is associated with a statistically significant reduction of roughly 30% in ARF6 levels and 10% in p:t AKT. We do not know why AGAP1s may enact such an effect.

      5) Arf6 is not modulated in the different cell lines: data in fig4B (far right graph) and supp fig 4B, J seem to indicate otherwise. Can the authors clarify what they mean?

      It is not clear exactly what the reviewer is referring to here. If the reviewer is referring to Supplementary Figure 4B, this is an experiment examining the levels of ARF5 or ARF6 upon knockdown, so levels would be expected to vary. Fig S4B does not correspond to the experiment performed in S4J. Our interpretation is that loss of p53 alone or in combination with Pten does not seem to be consistently be accompanied with an increase in either the levels of total or bulk GTP-bound ARF6 that could explain the dependency of Trp53-/-;Pten-/- on the GTPase for the invasive phenotype. We will make our interpretation clearer in the text

      6) Immunofluorescence panels without quantifications: Quantifications for the different stainings shown in fig3A; 4D, E; 5H; 7B and supp fig S1L, J; S3 need to be included to fully back the conclusions of the authors. Indeed, these images are used to draw conclusions and not only as illustrations.

      It is not possible to do a direct comparison between protrusion vs no protrusion (see our response above). We will include a line scan to show clear enrichment at the end of the tip for image shown. Quantitation for Figure S1L is already included (S1K and M), quantitation for Figure S1J is presented in Fig S1I and for Fig 5H quantitation of the phenotype is present in Fig 5I.

      7) Quantifications of invasion show that WT cysts become hyper-protrusive at around the half experiment mark (around 30-40hrs). Nevertheless, all movies or galleries show spherical cysts, which does not seem representative. Can the authors change this or explain why these images/movies were chosen?

      We present the fold change at each time point because that is intuitively easier to understand rather than the raw number. The quantitation does not show that the cysts necessarily become hyper-protrusive at the specific timepoint, but rather that the proportion of hyper-protrusive cysts observed in this genotype peaks at the specific timepoint. This phenotype may still be in the minority of behaviours. As an example, something that occurs 5% of the time in the control, with a two-fold increase in behaviours, might still only be 10% of the population. Therefore, adding in a picture that may be representative of a small proportion of the population may not be a realistic depiction of what is happening across the entire population. We will provide the reviewer with the exact percentage of spheroids that are classified as hyper-protrusive at the specific cell line across timepoints, to make this clearer.

      8) Since it seems that the main effect of PTEN is to drive the localisation and intensity of recycling of Arf6 cargoes, it will be helpful to confirm that all the proteins involved in the Arf6 module be shown to be accumulated/present at the pro-invasive tips. Immunofluorescence stainings showing the presence of AGAP1 (could be done with the AGAP1S isoform that is mNeon-tagged), pS473-Akt, ITGB1 (active integrin if possible, otherwise total integrin), ITGA5, PI3K should be included if possible. A quantification comparing signal in the cysts and in the invasive tips should also be included to see if there is an accumulation to PIP3-enriched areas.

      We will endeavour to include the requested images.

      9) Data in fig5I convincingly show that PTEN loss induces a fragmented collagen4-positive basement membrane. The authors use this data to claim that this is one of the ways that PTEN could be driving invasion but no correlation between these structures and the hyper-protrusive phenotype is made. This experiment needs to be done to support this claim.

      This comment made us realise that in an attempt to make images simpler (displayed nuclei and COL4 only), we omitted a staining for where protrusions were moving through gaps in the ECM. We will update these times to demonstrate such events.

      __

      MINOR COMMENTS __

      1) Data visualization: I think that the heatmap representation is overkill when only 2 or 3 conditions are presented. A graph showing the evolution of area or spherical/Hyper-protrusive phenotype proportions across time would be easier to read and more impactful: each genotype could be presented with a colour and the spherical/hyper-protrusive phenotypes as either plain or dashed lanes across time. I understand that this representation allows for the stats to be done at each time points but they are generally pretty clear (especially for the PTEN KO or dKO phenotypes) and do not need to be done for each time point in my opinion. These heatmaps could be put in supplementary figures if the authors feel strongly about putting stats for each time points.

      We thank their reviewer for their suggestion. We believe that our approach, while complex, is the best visualisation to reflect both the changes across time but also between conditions while allowing appreciation of the statistical significance. This visualisation has been optimised by our lab over years of working with this type of data and we would prefer that they remain consistent with the accepted standard of our other publications. We are, however, happy to expand the explanation in the text on how to interpret the bubble heatmaps.

      Fig supp S1M, fig 5I should be presented as a stacked histogram to improve readability and merged with fig supp S1K.

      We will merge Figures S1M and S1K. We believe that Figure 5I is easier to read as is.

      Displaying fold change as antilog rather than log values would be easier for the reader to realise the magnitude of the differences.

      We disagree with the reviewer.

      A bar graph would be easier to read than the matrix representation for fig 6B.

      We disagree with the reviewer as we feel it makes it easier to directly compare each lipid between the two cell lines.

      The way Area data is presented throughout to me makes it very difficult to understand what is going on. Could the authors at least give some explanations in figure legends. A curve graph displaying the evolution of the area across time would be easier to read and see the differences between conditions.

      Please see our response to Minor point 1

      2) It is confusing that, in fig supp S1M, there is a significant decrease of the rounded phenotype after PTEN loss that is not associated to a significant change in another of the categories. Could the authors explain how?

      This can be simply explained from our data: while the rounded phenotype was reduced in a consistent way across replicate experiments (therefore resulting in significance), the effect on the other two phenotypes was not consistent (not set in magnitude and directionality). This therefore does not lead to a significant (i.e. consistent) effect on the latter two phenotypes. PTEN loss therefore seems to allow cells to undergo – at the expense of being round - a range of shape changes, rather than a set phenotype.

      3) One of the big differences of the PTEN KO cells seems their ability to invade through the matrigel bed and migration on the glass below (supp movie S2). From what I gather, these cysts would be considered out of focus and excluded from the analysis. Would it be possible that this would minimize some of the results? Would it be possible to include a quantification of this particular phenotype to confirm it is specific to PTEN KO cells?

      In the same spirit, could the authors provide the percentage of non-classified cysts, to make sure that the same proportion of cysts is quantified across all different genotypes.

      Indeed, we cannot exclude that we under-estimate the magnitude of the effect on the PTEN null. We will include this point in the discussion. We can include a reviewer-only figure showing the proportion of cysts and levels of the ‘OutOfFocus’ objects across cell lines.

      __

      4) Can the authors clarify how a 0 fold change (in log value) in fig 2D can be highly significant? __

      We believe that the reviewer is equating statistical significance with something being biologically meaningful. Statistical analysis does not indicate a priori whether something is biologically meaningful. Rather, it assesses the likelihood that an observed result is occurring by chance (or not). For instance, if a small change (e.g 0.04 in a log2 fold change) occurred repeatedly across experimental replicates this is unlikely to be a result of chance, and therefore could be statistically significant. Yet, such a small magnitude of effect is probably biologically minor. This is why our heatmaps provide both statistical significance, fold change, and consistency in magnitude of effect.

      5) Delta isoform of PI3K seems to have an effect on area in the middle of the experiment, but has no effect at all on invasion. Could the authors comment? Are these smaller cysts still as invasive? There might be an interesting uncoupling between proliferation and invasion there.

      The cysts are actually slightly larger with PI3Kδ inhibition and there is no change in invasion. We will expand our comments in text as well to account for this observation.

      6) ITGB1 depletion seems to induce a downregulation of Akt protein. Is that right? Does it change Akt localisation? Is there a dose effect whereby there is not enough Akt protein to mediate invasion?

      The p:t AKT ratio does not change consistently across all gRNAs (Figure 5C) but we can look at Akt (total) protein levels and include this information if needed.

      __

      7) Stats should be added directly on the graphs for the recycling assays, doing a pairwise comparison of the different genotypes for each time points. Can the authors clarify what the t-32min quantification graphs adds (fig7E, supp fig S8G-I)? I would advise to remove them, as this data is already presented in the recycling assay graphs. __

      We don't include these because although they are technical replicates, they are demonstrative of a single experiment. What we include instead is the quantitation across independent biological experiments (which each have their own internal multiple technical replicates), where it is appropriate to include statistical analysis.

      8) There is a substantial amount of typos and erroneous references to figures. I listed below the ones that I spotted and I encourage the authors to carefully check.

      1. there are some mistakes in referencing the number of cysts in supp table 1. There is for example no cysts experiments in Figure 1 but yet there are some references to figure 1 in supp table 1. Please correct it. I think it will be easier for the reader if the number of cysts quantified for each conditions was also indicated in the figure legends. Supp table 1 can still be included for readers that want additional details.
      2. comma missing page 3
      3. page 3 and 4: PI(3,4)2 means PI(3,4)P2? Can be shorten to PIP2 for ease of read and specify if it is another PIP2 specie otherwise
      4. define CYTH abbreviation: I suppose this is for cytohesin?
      5. fig1F-I: don't understand why TCGA.OV is specified on some but not all the graphs. It seems to me that all the data are from TCGA.OV? Makes it seems it is nit the case
      6. legend of fig1H, I: y axis is -Log10 values in 1I, not Log10 values
      7. page 6: dKO abbreviation is already specified above and should be used to avoid repetition and for ease of read
      8. supp fig S1D: missing legend for the second bar (after Wild Type)
      9. supp fig S1N: legend of the X-axis should be below the axis
      10. supp fig S1O: the numerotation of the X-axis needs to be below the line of the axis for ease of read, not above it
      11. legend of S2A: clones 1.12 and 1.15 are p53-/-;PTEN-/- and not PTEN-/-
      12. supp figS2C can the authors specify the different stages of matrigel (liquid or gel) that are used for the invasion assay, to make it easier for the non-specialist to understand what is going on. Please confirm that the 50% GFR matrigel makes a gel on top of the cells and fill in the wound to produce the 3D invasion assay setup.
      13. page 7: no parental cells are used in S3A, B only p53 null and p53 null and dKO. Please also specify what cells are being compared in the text
      14. description of arrow heads and colours need to be moved to figure legends and not in main text (page 7)
      15. fig 2D: the signification of the dot in the circles needs to be in the legends (since it is its first apparition in the manuscript). It only appears later on, in supp2A legend. Additional description of the matrices is necessary, as they contain a lot of information to digest to understand fully what is going on
      16. legend of fig3: error in figure reference: area data is D and not E, protrusive phenotypes are E and not F
      17. arrow missing in fig3B
      18. fig 3D,E, G, H: please indicate the cell line studied
      19. fig 3I: the different genotypes need to be stated on the galleries for clarity
      20. page 8: define Arf6-mNG in the text
      21. __ page 9: "We thank the reviewer for their careful examination of the manuscript. We will go through all above points and make the corresponding careful adjustments to the manuscript.

      OPTIONAL SUGGESTIONS

      1) Choice of cell line: There is a high number of patients (around 9% according to (Cole et al. 2016)) that present the R248Q gain-of-function mutation. A recent study has shown that this mutant p53 protein is associated to an activation of Akt signalling and an increase of the intercellular trafficking of EGFR (Lai et al. 2021). Given that EGFR was also a hit in this screen, that is seems to have a central role in Arf6 cargoes (fig 4G), I think it would be a great addition to this study. It could hence cooperate with PTEN loss to drive strong, robust invasion.

      This is an excellent observation and one we will likely follow-up in an independent study.

      2) Are MAPK involved in the PTEN KO pro-invasive phenotype? In particular Erk1/2, since EGFR is one of the PTEN loss induced Arf6 cargoes.

      This is an excellent observation and one we will likely follow-up in an independent study.

      __

      REFERENCE Cole, Alexander J., Trisha Dwight, Anthony J. Gill, Kristie-Ann Dickson, Ying Zhu, Adele Clarkson, Gregory B. Gard, et al. 2016. « Assessing Mutant P53 in Primary High-Grade Serous Ovarian Cancer Using Immunohistochemistry and Massively Parallel Sequencing ». Scientific Reports 6 (1): 26191. _https://doi.org/10.1038/srep26191_.

      Lai, Zih-Yin, Kai-Yun Tsai, Shing-Jyh Chang, et Yung-Jen Chuang. 2021. « Gain-of-Function Mutant TP53 R248Q Overexpressed in Epithelial Ovarian Carcinoma Alters AKT-Dependent Regulation of Intercellular Trafficking in Responses to EGFR/MDM2 Inhibitor ». International Journal of Molecular Sciences 22 (16): 8784. _https://doi.org/10.3390/ijms22168784_. __

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors have conducted a study of the molecular requirements for cancer invasion that is stunning in its thoroughness and depth and breadth of its molecular analysis. The writing is exceptionally precise though also very dense (see below). The molecular model proposed is that PTEN loss (in a p53 null background) leads to reliance upon ARF6 for invasion, with regulation through interactions with AGAP1 and beta1-integrin and it is convincingly demonstrated. They focus on interpreting the consequences of genetic and pharmacologic manipulations in a cell line, using a series of 2D and 3D assays. The phenotypes are more prominent in 3D assays.

      Concerns and Suggestions:

      • There is a disconnect between the essentially complete loss of protrusions and invasion in 3D (e.g. 4A) and the reduction in magnitude of protrusive invasion but the continued presence of elongated cells with protrusions in 2D (e.g. S4C). This discrepancy is present in a couple of comparisons and is glossed over in quick callouts to many figure panels.

        We thank the reviewer for mentioning this as this comment was very helpful in determining that we needed to clarify our description of the role of ARF6 to protrusion formation vs maturation. In the Trp53-/- genotype, protrusions can form, but they rapidly retract, failing to mature into structures that drive invasion through ECM (e.g. Figure S2E). This protrusion maturation occurs upon PTEN KO. When ARF6 depleted, PTEN-null cells can form protrusions, but now again lack the ability to mature into invasion-inducing structures.

      This concept of needing ARF6 for protrusion maturation and maintenance is underpinned by our model of ARF6 regulating recycling of active integrin back to the protrusion front. Indeed, we have observed ARF6 being required not for protrusion initiation, but rather ensuring protrusions are not retracted in other contexts (i.e. upon loss of the ARF6 GEF protein IQSEC1 in invading 3D culture of PC3 cells; PMID: 33712589).

      We also note that, as responded to Reviewer 1, the assay is a 3D invasion rather than 2D migration assay, with cells sandwiched between Matrigel.

      We will update the relevant sections of the results and discussion with the point above.

      Once a journal has been identified, it would be wise for the editor to allow some flexibility in word limit to enable some very dense sections to be expanded slightly to guide the reader through the experiments and results more clearly. For example, in the section "ARF6 regulates active integrin pools...", there are callouts like (Fig. 7C,E; S8A-C; G-I) and then (Fig. 7D,E; Fig. S8E-F, H-I). It takes a lot of time to unpack these different experimental claims based on a single sentence.

      We greatly appreciate the refreshing comments of this reviewer to advocate for actions to improve clarity in our reporting. We would take glad advantage of such a possibility.

      The patient data on CYTH2 and its relationship to survival is modestly convincing.

      In Ovarian Cancer, effects on survival are often minor. This is not a disease where one often sees large shifts in survival, which is why we are so excited about the large shifts that we do see with the ARF GTPase module we identified. However, we concede that the effects on CYTH2, although significant, are not vast changes. We will point this out and tone down our language.

      Very minor- search on %- there are a few inconsistencies in terms of spaces and commas vs. periods. The Methods also have some inconsistencies in terms of spaces between numbers and units or numbers and degrees Celsius. References are also in a different font. Overall it was extremely carefully written though (just dense).

      We thank the reviewer for their careful inspection of our manuscript. We will carefully go over the sections flagged before resubmission

      Reviewer #2 (Significance (Required)):

      One limitation of the experimental design is that the depth of molecular analysis in vitro comes at the expense of any in vivo validation, which the authors acknowledge in the Discussion. They attempt to make similar points using analysis of patient survival data from public databases but these analyses generally yielded small magnitude differences. The main audience for this study is likely to be cell biologists interested in cell migration, cell-ECM adhesion, cancer invasion, and GTPases. I don't see any need for new experiments- what can be done has been done and then some. I do think that it would benefit readers if the text could be made less dense.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: Using a murine HGSOC 3D cell model, in combination with analysis of human ovarian cancer datasets, the authors uncover a CYTH2-ARF6-AGAP1 signaling module regulated by PTEN and identify a biomarker for tumor invasion and targeted therapy.

      Major comments:

      __The findings of this study are significant as they reveal a critical signaling module that controls tumor invasion by mediating tumor cell interaction with the extracellular matrix. The experiments are properly designed, and the data are well presented. The conclusions are appropriate and supported by the data. The limitation of the study has also been discussed properly.

      One suggestion regarding the survival analysis in Fig. 6 and 7. __

      The authors noted that the CYTH2-ARF6-AGAP1 module is not specifically or only induced in Pten-null contexts, but rather that Pten-null cells become more dependent on the module for enacting the invasive phenotype. Based on this, it would be interesting to evaluate how the PTEN status impacts the survival difference by integrating the PTEN genomic status (WT versus mutation) or its expression level (protein or mRNA) into the survival analysis of patient cohorts in Fig. 6 and Fig. 7.

      We thank the reviewer for this excellent point. We will include such analysis, where possible. One consideration will be that extensive division of patients based on these molecular characteristics may results in patient numbers too low to draw conclusions of significance.

      **Referees cross-commenting**

      Gene deletion and mutation may elicit different functional outcomes. I therefore agree with Reviewer #1 that "the choice of studying PTEN loss in the complete absence of p53, a situation that does not mirror the clinical situation, needs to be explained".

      We will make our reasons for this choice clear in the text before submission. Please refer to response to Reviewer 1, Major comment 1.

      Reviewer #3 (Significance (Required)):

      The model used and data presented in this study are of significance for both scientific discovery and clinical application, which will interest the broad audience in both basic and clinical research.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      4. Description of analyses that authors prefer not to carry out

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Using a murine HGSOC 3D cell model, in combination with analysis of human ovarian cancer datasets, the authors uncover a CYTH2-ARF6-AGAP1 signaling module regulated by PTEN and identify a biomarker for tumor invasion and targeted therapy.

      Major comments:

      The findings of this study are significant as they reveal a critical signaling module that controls tumor invasion by mediating tumor cell interaction with the extracellular matrix. The experiments are properly designed, and the data are well presented. The conclusions are appropriate and supported by the data. The limitation of the study has also been discussed properly.

      One suggestion regarding the survival analysis in Fig. 6 and 7. The authors noted that the CYTH2-ARF6-AGAP1 module is not specifically or only induced in Pten-null contexts, but rather that Pten-null cells become more dependent on the module for enacting the invasive phenotype. Based on this, it would be interesting to evaluate how the PTEN status impacts the survival difference by integrating the PTEN genomic status (WT versus mutation) or its expression level (protein or mRNA) into the survival analysis of patient cohorts in Fig. 6 and Fig. 7.

      Referees cross-commenting

      Gene deletion and mutation may elicit different functional outcomes. I therefore agree with Reviewer #1 that "the choice of studying PTEN loss in the complete absence of p53, a situation that does not mirror the clinical situation, needs to be explained".

      Significance

      The model used and data presented in this study are of significance for both scientific discovery and clinical application, which will interest the broad audience in both basic and clinical research.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The authors have conducted a study of the molecular requirements for cancer invasion that is stunning in its thoroughness and depth and breadth of its molecular analysis. The writing is exceptionally precise though also very dense (see below). The molecular model proposed is that PTEN loss (in a p53 null background) leads to reliance upon ARF6 for invasion, with regulation through interactions with AGAP1 and beta1-integrin and it is convincingly demonstrated. They focus on interpreting the consequences of genetic and pharmacologic manipulations in a cell line, using a series of 2D and 3D assays. The phenotypes are more prominent in 3D assays.

      Concerns and Suggestions:

      1. There is a disconnect between the essentially complete loss of protrusions and invasion in 3D (e.g. 4A) and the reduction in magnitude of protrusive invasion but the continued presence of elongated cells with protrusions in 2D (e.g. S4C). This discrepancy is present in a couple of comparisons and is glossed over in quick callouts to many figure panels.
      2. Once a journal has been identified, it would be wise for the editor to allow some flexibility in word limit to enable some very dense sections to be expanded slightly to guide the reader through the experiments and results more clearly. For example, in the section "ARF6 regulates active integrin pools...", there are callouts like (Fig. 7C,E; S8A-C; G-I) and then (Fig. 7D,E; Fig. S8E-F, H-I). It takes a lot of time to unpack these different experimental claims based on a single sentence.
      3. The patient data on CYTH2 and its relationship to survival is modestly convincing.
      4. Very minor- search on %- there are a few inconsistencies in terms of spaces and commas vs. periods. The Methods also have some inconsistencies in terms of spaces between numbers and units or numbers and degrees Celsius. References are also in a different font. Overall it was extremely carefully written though (just dense).

      Significance

      One limitation of the experimental design is that the depth of molecular analysis in vitro comes at the expense of any in vivo validation, which the authors acknowledge in the Discussion. They attempt to make similar points using analysis of patient survival data from public databases but these analyses generally yielded small magnitude differences. The main audience for this study is likely to be cell biologists interested in cell migration, cell-ECM adhesion, cancer invasion, and GTPases. I don't see any need for new experiments- what can be done has been done and then some. I do think that it would benefit readers if the text could be made less dense.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This paper by Konstantinou et al aims at deciphering the mechanisms by which PTEN loss could be driving poorer prognosis in patients. The authors use their great high-throughput 3D screening method coupled to an unbiased proteomic method and a CRISPR screen to uncover a new pro-invasive axis driving collective invasion of high-grade serous ovarian carcinoma (HGSOC) cells. Overall, this is a very impressive study, very well done and controlled with rigorous statistical analyses that uses sophisticated methods to convincingly show that the CYTH2-ARF6-AGAP1-ITGA6/ITGB1 module is required for the pro-invasive effect of PTEN depletion and discriminates patients with poorest prognosis.

      Major comments

      Below are listed all the claims that, in my opinion, are not adequately supported by the data.

      1. Choice of the cell line: More justification on the use of the ID8 cell line and on the p53 deletion is needed. The authors need to clearly state that most p53 mutations in ovarian cancer are missense mutations that lead to a strong accumulation of a p53 protein devoid of transcriptional activity. Nevertheless, it seems that p53 mutations are not associated to differences in patient survival. Hence the choice of studying PTEN loss in the complete absence of p53, a situation that does not mirror the clinical situation, needs to be explained. Moreover, the in vivo experiments already performed in the literature mentioned in the discussion should be mentioned in the introduction to provide more context and physiological relevance to this study (especially regarding the special focus on the p53 null/ dKO cells throughout the study).
      2. "Therefore, PTEN loss in ovarian cancer, particularly at the protein level, occurs in the tumour epithelium and is associated with upregulated AKT signalling and poor overall survival". This claim is an over-interpretation and over-generalisation of the data presented. I appreciate the honesty of the authors in showing all the ovarian datasets that are available and highlight the discrepancies in expression of the proteins they study in stroma and epithelium. I think the way to present these data in the text without over-interpreting and generalizing would be to show that there is a clear epithelial-specific downregulation of PTEN at the mRNA level. Most likely due to the contribution to other cell types in the stroma, only 3 out of 5 bulk tumour mRNA datasets show a tumour specific downregulation of PTEN and no association with survival based on a median split of PTEN mRNA expression. Nevertheless, although there is no direct correlation between PTEN mRNA and protein levels, patients with low PTEN protein levels have poorer survival that is associated to an upregulation of Akt signalling. This allows to have a clearer conclusion, based solely on the protein data presented and no over-generalisation using the mRNA data. This, to me, makes a stronger case for studying PTEN loss in ovarian cancer and is fully supported by the data presented.
      3. PTEN loss induces modest effects in 2D culture. The authors make claims regarding the fact that some of the phenotypes they look at happen after PTEN depletion alone or in combination with p53 loss and are more prominent in 3D vs 2D. Many of these are insufficiently backed up by data. A few key experiments are also only performed in 2D and should be done in 3D. Finally, some clarifications if the role of PTEN is most prominent on either collective, ECM-induced or 3D-dependent invasion.

      First, the authors claim that PTEN loss alone (i.e. without p53 deletion) leads to changes in Akt signalling. Supp fig 1H clearly shows that there is no significant increase in Akt activation, although there seems to be one in the Western Blot (WB) presented in supp fig 1G. There is a clear, significant increase in the Akt activation in all the PTEN KO clones when in association with p53 loss though. This claim is hence not backed up by data and the conclusion seems to be that the effect on Akt signalling requires both deletion of p53 and PTEN.

      It will be interesting to see a quantification of the pS473-Akt staining (supp fig S1J), as it seems from these images that pAkt is preferentially found on rounded cells. It should also be performed in 3D conditions to see if there is an enrichment at invasive tips and back-up the invasion data.

      Arf6 is recruited to the invasive tips of cells invading a 2D wound (fig4D). How do the authors reconcile the fact that all the machinery required for 3D invasion is present but that PTEN loss has a modest effect on cells in 2D? If the wound assay was done on glass, it should be done again on ECM coated glass to see if it recapitulates the effects seen in 3D. This experiment will help deconvolute if the effect of PTEN loss is more linked to collective behaviour than 3D organization or presence of ECM.

      The recycling assays are all done in 2D, condition under which the authors claim that the PTEN phenotype is weakest. Although I understand that it is not possible to do this assay in 3D, its contribution to elucidating the mechanism by which integrins participate in the PTEN loss invasive phenotype is not clear. The requirement of integrins relies on the data showing that ITGB1 KO results in no collagen4-positive basement membrane of the cysts and greatly impaired invasion. Experiments looking at the integrin localisation would be helpful: can an enrichment at the invasive tips can be seen? Are ITGA6 and/or ITGB1 repartitions homogeneous between the cysts membranes and the invasive tips? In my opinion the Src/FAK data is not enough to draw the conclusions of fig7I schematic. 4. Expression of AGAP1 isoforms do not alter ARF6 levels. Data in fig 6C, D show a significant downregulation of Arf6 and Akt signalling after expression of AGAP1S. Can the authors clarify what they mean? 5. Arf6 is not modulated in the different cell lines: data in fig4B (far right graph) and supp fig 4B, J seem to indicate otherwise. Can the authors clarify what they mean? 6. Immunofluorescence panels without quantifications: Quantifications for the different stainings shown in fig3A; 4D, E; 5H; 7B and supp fig S1L, J; S3 need to be included to fully back the conclusions of the authors. Indeed, these images are used to draw conclusions and not only as illustrations. 7. Quantifications of invasion show that WT cysts become hyper-protrusive at around the half experiment mark (around 30-40hrs). Nevertheless, all movies or galleries show spherical cysts, which does not seem representative. Can the authors change this or explain why these images/movies were chosen? 8. Since it seems that the main effect of PTEN is to drive the localisation and intensity of recycling of Arf6 cargoes, it will be helpful to confirm that all the proteins involved in the Arf6 module be shown to be accumulated/present at the pro-invasive tips. Immunofluorescence stainings showing the presence of AGAP1 (could be done with the AGAP1S isoform that is mNeon-tagged), pS473-Akt, ITGB1 (active integrin if possible, otherwise total integrin), ITGA5, PI3K should be included if possible. A quantification comparing signal in the cysts and in the invasive tips should also be included to see if there is an accumulation to PIP3-enriched areas. 9. Data in fig5I convincingly show that PTEN loss induces a fragmented collagen4-positive basement membrane. The authors use this data to claim that this is one of the ways that PTEN could be driving invasion but no correlation between these structures and the hyper-protrusive phenotype is made. This experiment needs to be done to support this claim.

      Minor comments

      1. Data visualization: I think that the heatmap representation is overkill when only 2 or 3 conditions are presented. A graph showing the evolution of area or spherical/Hyper-protrusive phenotype proportions across time would be easier to read and more impactful: each genotype could be presented with a colour and the spherical/hyper-protrusive phenotypes as either plain or dashed lanes across time. I understand that this representation allows for the stats to be done at each time points but they are generally pretty clear (especially for the PTEN KO or dKO phenotypes) and do not need to be done for each time point in my opinion. These heatmaps could be put in supplementary figures if the authors feel strongly about putting stats for each time points.

      Fig supp S1M, fig 5I should be presented as a stacked histogram to improve readability and merged with fig supp S1K.

      Displaying fold change as antilog rather than log values would be easier for the reader to realise the magnitude of the differences.

      A bar graph would be easier to read than the matrix representation for fig 6B.

      The way Area data is presented throughout to me makes it very difficult to understand what is going on. Could the authors at least give some explanations in figure legends. A curve graph displaying the evolution of the area across time would be easier to read and see the differences between conditions. 2. It is confusing that, in fig supp S1M, there is a significant decrease of the rounded phenotype after PTEN loss that is not associated to a significant change in another of the categories. Could the authors explain how? 3. One of the big differences of the PTEN KO cells seems their ability to invade through the matrigel bed and migration on the glass below (supp movie S2). From what I gather, these cysts would be considered out of focus and excluded from the analysis. Would it be possible that this would minimize some of the results? Would it be possible to include a quantification of this particular phenotype to confirm it is specific to PTEN KO cells?

      In the same spirit, could the authors provide the percentage of non-classified cysts, to make sure that the same proportion of cysts is quantified across all different genotypes. 4. Can the authors clarify how a 0 fold change (in log value) in fig 2D can be highly significant? 5. Delta isoform of PI3K seems to have an effect on area in the middle of the experiment, but has no effect at all on invasion. Could the authors comment? Are these smaller cysts still as invasive? There might be an interesting uncoupling between proliferation and invasion there. 6. ITGB1 depletion seems to induce a downregulation of Akt protein. Is that right? Does it change Akt localisation? Is there a dose effect whereby there is not enough Akt protein to mediate invasion? 7. Stats should be added directly on the graphs for the recycling assays, doing a pairwise comparison of the different genotypes for each time points. Can the authors clarify what the t-32min quantification graphs adds (fig7E, supp fig S8G-I)? I would advise to remove them, as this data is already presented in the recycling assay graphs. 8. There is a substantial amount of typos and erroneous references to figures. I listed below the ones that I spotted and I encourage the authors to carefully check.

      • a. there are some mistakes in referencing the number of cysts in supp table 1. There is for example no cysts experiments in Figure 1 but yet there are some references to figure 1 in supp table 1. Please correct it. I think it will be easier for the reader if the number of cysts quantified for each conditions was also indicated in the figure legends. Supp table 1 can still be included for readers that want additional details.
      • b. comma missing page 3
      • c. page 3 and 4: PI(3,4)2 means PI(3,4)P2? Can be shorten to PIP2 for ease of read and specify if it is another PIP2 specie otherwise
      • d. define CYTH abbreviation: I suppose this is for cytohesin?
      • e. fig1F-I: don't understand why TCGA.OV is specified on some but not all the graphs. It seems to me that all the data are from TCGA.OV? Makes it seems it is nit the case
      • f. legend of fig1H, I: y axis is -Log10 values in 1I, not Log10 values
      • g. page 6: dKO abbreviation is already specified above and should be used to avoid repetition and for ease of read
      • h. supp fig S1D: missing legend for the second bar (after Wild Type)
      • i. supp fig S1N: legend of the X-axis should be below the axis
      • j. supp fig S1O: the numerotation of the X-axis needs to be below the line of the axis for ease of read, not above it
      • k. legend of S2A: clones 1.12 and 1.15 are p53-/-;PTEN-/- and not PTEN-/-
      • l. supp figS2C can the authors specify the different stages of matrigel (liquid or gel) that are used for the invasion assay, to make it easier for the non-specialist to understand what is going on. Please confirm that the 50% GFR matrigel makes a gel on top of the cells and fill in the wound to produce the 3D invasion assay setup.
      • m. page 7: no parental cells are used in S3A, B only p53 null and p53 null and dKO. Please also specify what cells are being compared in the text
      • n. description of arrow heads and colours need to be moved to figure legends and not in main text (page 7)
      • o. fig 2D: the signification of the dot in the circles needs to be in the legends (since it is its first apparition in the manuscript). It only appears later on, in supp2A legend. Additional description of the matrices is necessary, as they contain a lot of information to digest to understand fully what is going on
      • p. legend of fig3: error in figure reference: area data is D and not E, protrusive phenotypes are E and not F
      • q. arrow missing in fig3B
      • r. fig 3D,E, G, H: please indicate the cell line studied
      • s. fig 3I: the different genotypes need to be stated on the galleries for clarity
      • t. page 8: define Arf6-mNG in the text
      • u. page 9: "<" symbol should be an alpha symbol
      • v. fig 4A: indicate the cell line used on the figure
      • w. supp fig S4E: why is it specified mouse-specific for the shArf6?
      • x. 4H, I, J: indicate on the figure if these interactors are mostly unchanged, strong interactors or weak interactors for clarity
      • y. legend of fig4H: "coloured spots underneath denote the protein complex that each interactor belongs (in J)" should indicate panel G and not J
      • z. fig4I, J: are you sure of the legend for the fold change coloring? Log2 of 1 is a 0 fold change, i don't see how these could show any significant difference (i.e. some of the pale red circles are significant)
      • aa. page 11: description of the assay (starting with "Machine learning classification of...") is very confusing, please clarify
      • bb. page16: figure 4H should be 4I (PTEN-null specific association of Arf6 with ITGA5)
      • cc. supp fig S5H-P: choose Tumour or cancer to homogeneise naming across the graphs
      • dd. fig 5H: box are difficultly visible in green, change color to yellow or something more visible
      • ee. page 13: Fig6E, F should also refer to 6G
      • ff. LCM abbreviation on page 10 and 12 refers to LCMD? Otherwise please define it.

      Optional suggestions

      1. Choice of cell line: There is a high number of patients (around 9% according to (Cole et al. 2016)) that present the R248Q gain-of-function mutation. A recent study has shown that this mutant p53 protein is associated to an activation of Akt signalling and an increase of the intercellular trafficking of EGFR (Lai et al. 2021). Given that EGFR was also a hit in this screen, that is seems to have a central role in Arf6 cargoes (fig 4G), I think it would be a great addition to this study. It could hence cooperate with PTEN loss to drive strong, robust invasion.
      2. Are MAPK involved in the PTEN KO pro-invasive phenotype? In particular Erk1/2, since EGFR is one of the PTEN loss induced Arf6 cargoes.

      Reference

      Cole, Alexander J., Trisha Dwight, Anthony J. Gill, Kristie-Ann Dickson, Ying Zhu, Adele Clarkson, Gregory B. Gard, et al. 2016. « Assessing Mutant P53 in Primary High-Grade Serous Ovarian Cancer Using Immunohistochemistry and Massively Parallel Sequencing ». Scientific Reports 6 (1): 26191. https://doi.org/10.1038/srep26191.

      Lai, Zih-Yin, Kai-Yun Tsai, Shing-Jyh Chang, et Yung-Jen Chuang. 2021. « Gain-of-Function Mutant TP53 R248Q Overexpressed in Epithelial Ovarian Carcinoma Alters AKT-Dependent Regulation of Intercellular Trafficking in Responses to EGFR/MDM2 Inhibitor ». International Journal of Molecular Sciences 22 (16): 8784. https://doi.org/10.3390/ijms22168784.

      Significance

      It has only been recently appreciated that PTEN loss is a driver in ovarian cancer (Martins et al. 2020) but no studies to data have aimed at understanding the mechanisms. This study is hence the first to propose one and as such provides a very valuable advance for researchers interested in ovarian cancer. The authors also propose that the CYTH2-ARF6-AGAP1 high mRNA be used as a signature of worsen prognosis. This hence paves the way to better understanding and stratify patients with ovarian cancers.

      One of the main difference after PTEN loss is the accumulation of PIP3 in pro-invasive tips that correlates with the recruitment of Arf6 to these tips. The authors have developed a very powerful automated quantification pipeline to follow the behaviour of cysts grown in 3D that they have coupled to an unbiased proteomic method to identify interactors and a CRISPR screen to test their functional relevance. This is clearly the strongest aspect of the paper that allows them to gather very robust data and identify the machinery driving invasion in PTEN KO cells. The authors' model claims that this in turns recruit the Arf6 machinery, composed of CYTH2 2G (the only CYTH2 isoform correlated to a poorer prognosis, preferentially binding PIP3) and AGAP1 that leads to a local increase in active integrin recycling that mediates the more invasive phenotype of PTEN depleted cells. It is rightfully mentioned in the discussion that PTEN depletion only leads to a modest change in Arf6 interactors, and that most likely PTEN loss acts by locally directing the Arf6 machinery to the invasive tips. Indeed, the authors convincingly show that Arf6, AGAP1 and ITGB1 are required for the formation of these invasive protrusions.

      The limitation of this study is the combination of 2D and 3D experiments to drive general conclusions on the mechanism. These are listed in the previous section. Another big limitation, in my opinion, is the choice of the cell model: indeed, nearly all patients present a vast increase in the amount of the p53 protein present due to a very large number of mutations that in most cases prevent its binding to DNA. Throughout this paper the authors have used a p53 null cell line that expresses no p53 protein. This is not compatible with the clinical situation. Moreover, since p53 also present frequent gain-of-function mutations that have been shown to be associated to an increase of Akt signalling and intercellular trafficking of EGFR. Studying the implication of the Arf6 module identified here in a context of p53 WT or mutant protein overexpression would be of great interest.

      Reference

      Martins, Filipe Correia, Dominique-Laurent Couturier, Anna Paterson, Anthony N. Karnezis, Christine Chow, Tayyebeh M. Nazeran, Adekunle Odunsi, et al. 2020. « Clinical and Pathological Associations of PTEN Expression in Ovarian Cancer: A Multicentre Study from the Ovarian Tumour Tissue Analysis Consortium ». British Journal of Cancer 123 (5): 793‑802. https://doi.org/10.1038/s41416-020-0900-0.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We are grateful to the reviewers for highlighting the value and power of our 3D chimeric dataset to explore cancer/stellate interactions in pancreatic cancer invasion. We also appreciate their support of our findings identifying divergent roles for the two related enzymes ADAMTS2 and ADAMTS14. We thank the reviewers for their detailed comments, which have allowed us to prepare a significantly stronger and clearer manuscript.

      Following the reviewers comments we have made three major changes to the manuscript, which we will outline here in addition to the point-by-point rebuttal.

      1. i) Revised manuscript structure. We have modified the structure of the manuscript, which we hope improves the clarity and accessibility of the work.

      Figure 1 remains the description of our 3D invasion model and our approach to identify stellate cell and cancer cell transcriptomic information from this context.

      Figure 2 describes our focus on proteases and now includes concordance of our data with clinical data sets. This is also now where we describe the strikingly opposing roles for ADAMTS2 and ADAMTS14 in regulating invasion.

      Figure 3 is now the figure demonstrating that ADAMTS2 and ADAMTS14 have an equal contribution to collagen processing from stellate cells. This is an important experiment given that the main physiological roles for these enzymes are in the processing of collagen, and the importance of collagen for cancer progression. It was therefore reasonable to hypothesise that the effect of these enzymes on invasion could be due to differences in their collagen processing in this context. The finding that both have an equal effect on collagen processing points towards a wider, and more diverse, role for these enzymes in regulating biology.

      Figure 4 describes the divergent roles of these two enzymes on myofibroblast differentiation, and by extension TGFβ bioavailability. In this figure we now include experiments with TGFβ reporter constructs, which demonstrate an increase in active TGFβ following loss of ADAMTS14 and a reduction in TGFβ activity following loss of ADAMTS2.

      Figure 5 is our matrisomic experiment to identify enriched enzyme-specific substrates following knockdown of either ADAMTS2 or ADAMTS14.

      Figure 6 details our investigation into the substrate responsible for the reduction in invasion following loss of ADAMTS2. As the previous matrisomic experiment identified only two enriched ADAMTS2 substrates, we investigated both in our 3D assays, identifying SERPINE2 as the responsible substrate. Further analysis identified a reduction in plasmin activity in ADAMTS2 deficient cells. This was rescued with co-knockdown of SERPINE2, implicating this pathway as being crucial for mediating the effect of ADAMTS2. Additionally, we now include experiments demonstrating that concomitant knockdown of SERPINE2 alongside ADAMTS2 rescues the reduction in TGFβ activity observed with ADAMTS2 loss alone.

      Figure 7 describes our analysis of ADAMTS14 substrates. As the matrisomics identified a large change in proteins following ADAMTS14 knockdown, we performed an siRNA screen of candidates to identify those responsible for ADAMTS14 phenotype. This, followed by further validation in our 3D invasive assay, revealed Fibulin2 as the responsible substrate. Fibulin2 has a well-established role in regulating TGFβ release from the matrix. In accordance with this we present new data using TGFβ reporter constructs, which demonstrate that the increase in active TGFβ following ADAMTS14 knockdown can be reversed with co-knockdown of Fibulin2.

      1. ii) Improvement of the clinical significance of our chimeric data set and ADAMTS proteins. Ideally, we would like to present IHC images of ADAMTS2 and ADAMTS14 expression in PDAC tissue samples to corroborate our in vitro findings. However as these enzymes are secreted, this precludes antibody based imaging, as it would not provide cell type specific information. RNA scope presents an alternative, however we have experienced technical issues with this technique due to RNA degradation in PDAC tissue and unavailability of ADAMTS2/14 specific probes. In place of this we have used a range of publically available resources.

      We have compared our chimeric data set with human clinical data using the resource published by Maurer and colleagues (PMID: 30658994). This paper presents transcriptomic data from PDAC tumour and stromal compartments using laser microdissection of clinical tissue. In accordance with our data set, the majority of metzincins, including ADAMTS2 and ADAMTS14, are expressed in the stromal compartment. These data are presented in updated figure 2.

      We have also examined ADAMTS2 and ADAMTS14 expression in PDAC and CAF subtypes using publically available data sets. Using the TCGA dataset, we identified that ADAMTS2 and ADAMTS14 are highly expressed in PDAC tumours compared to normal counterparts. As the majority of PDAC is comprised of stroma, the bulk transcriptomic data from TCGA, combined with the results from the Maurer publication, lead us to conclude that this expression reflects the stromal origin of these proteases. In addition, using publically available single cell RNA sequencing data published by Luo and colleagues (PMID: 36333338), we identified ADAMTS2 and ADAMTS14 expression in the prominent PDAC CAF subtypes, inflammatory and myofibroblastic CAFs. Together these data demonstrate that these enzymes are enriched in clinical disease, which when combined with our mechanistic 3D studies implies a greater role for these enzymes in disease progression than previously appreciated.

      iii) Improved mechanistic link between ADAMTS2 and ADAMTS14 with TGFβ bioavailability

      To strengthen the association between ADAMTS2 and ADAMTS14 function, their substrates SERPINE2 and Fibulin2, and TGFβ bioavailability, we have performed the following experiments using TGFβ reporter constructs:

      We have taken conditioned media from stellate cells lacking either ADAMTS2 or ADAMTS14, along with co-knockdown of their substrate, and stimulated a recipient cell line expressing a SMAD Luciferase reporter. These cells express luciferase in response to TGFβ stimulation. In accordance with a role for ADAMTS14 and Fibulin2 in regulating TGFβ, we demonstrate that following ADAMTS14 knockdown there is a strong increase in active TGFβ in the media (Figure 4I), which is abrogated with co-knockdown of Fibulin2 (Figure 7F).

      We have also obtained a fluorescent reporter, CAGA-eGFP, which expresses GFP in response to TGFβ stimulation in order to examine TGFβ activity in 3D cultures. Stellate cells expressing this construct were embedded in collagen: Matrigel hydrogels following knockdown of either ADAMTS2 or ADAMTS14 and CAGA fluorescence recorded after 72 hours of culture. In accordance with our data, stellate cells deficient in ADAMTS14 showed increased fluorescence in 3D, indicative of increased TGFβ activity, which was abrogated with co-knockdown of Fibulin2 (Figure 4J, K and 7G, H). Equally, loss of ADAMTS2 reduced TGFβ activity in 3D culture, which was rescued with co-knockdown of SERPINE2 (Figure 4J, K and 6 D, E).

      These experiments confirm a link between the ADAMTS enzyme, its relevant substrate, and TGFβ bioavailability. Together with extensive published work linking SERPINE2 and Fibulin2 with TGFβ release we are confident in our proposed mechanism for the dichotomic relationship of ADAMTS2 and ADAMTS14 in regulating TGFβ and thus myofibroblast action.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      • *

      This study aims to explain the opposing contributions of stromal stellate cells/CAFs to PDAC. By first identifying stroma-specific proteases, followed by a process of candidate selection and elimination, the authors find that two specific metalloproteases that share enzymatic activity against collagen in fact have differential activity on TGFb availability. This could be interpreted as a way of shaping the CAF population and tumor-promotin or -restricting properties of the stroma.

      There are several flaws that the authors could address to improve the manuscript:

      1. In the flow of experiments and analyses, there is a strange mix of fully unbiased discovery phases followed by functional experiments that do not consider all possible candidates to test, and vice versa. For instance, from the mixed-species transcript analysis, ADAMTS2 and -14 are chosen based on their shared collagenase activity based on literature. However, the authors then perform again a proteomics analysis to identify things from the entire matrisome that are cleaved by these enzymes? Then, for ADAMTS2 a co-silencing approach is done on one selected candidate (Serpine2), but for ADAMTS14 an siRNA screen is performed? The problem of this approach is that the rationale for some studied enzymes is very strong, where as for others it is not.

      We thank the reviewer for their comment and trust the revised manuscript provides more clarity for the rationale of our approach. We performed the chimera sequencing as a discovery experiment to reveal the communication between cancer and stellate cells in a 3D, invasive context. We present the chimera experiment and data here as a resource for the community, with our analysis of ADAMTS2 and ADAMTS14 function serving as a first example of the biological insight this data set can reveal. Other insights revealed from this dataset are active avenues of research in our group.

      Our finding that ADAMTS2 and ADAMTS14 have dramatically opposing roles in regulating invasion was especially striking given their equal contribution to collagen processing in this context. This led us to conclude that the divergent nature of these enzymes must be due to enzyme-specific substrates. A substrate repertoire for these enzymes has been previously published (PMID: 26740262) and we reasoned that the responsible substrate would be enriched following knockdown of the relevant enzyme. Thus we preformed matrisomics on cells lacking either of these enzymes, which did indeed reveal enrichment of known, enzyme-specific substrates that we could use for further analysis.

      The matrisome following ADAMTS2 knockdown was minimally changed and only presented enrichment of two ADAMTS2 substrates. As there was only a minimal cellular phenotype in 2D following loss of ADAMTS2, we decided to concentrate our studies on the two identified substrates in our 3D assay. Conversely as the matrisome following ADAMTS14 knockdown was dramatically different from control cells, and ADAMTS14 knockdown presented a clear phenotype in αSMA expression, we decided to perform a screen of all matrisome hits. This highlighted the role of IL-1β in mediating myofibroblast differentiation, which has been reported elsewhere and validated our approach. Further, this refined the number of enriched ADAMTS14 substrates to two, MMP1 and Fibulin2, with Fibulin2 being identified as the responsible candidate in our 3D assays.

      The ECM is more than just collagen. Choosing these two metalloproteases based on their shared collagen substrate is an approach that perhaps oversimplifies the ECM a bit, and again, does not provide the strongest rationale that these metalloproteases are most likely to explain counteracting stromal activities on tumor growth and progression.

      We fully agree with the reviewers comment and feel our work acutely demonstrates this point. Loss of either ADAMTS2 or ADAMTS14 had similar effects on collagen processing; implicating their divergent roles on invasion was independent of their effects on collagen regulation. This work therefore showcases the incredible complexity of ECM regulation in tumour progression. As discussed in the manuscript, collagen along with other elements of the ECM can regulate tumour progression and we believe our work adds an additional facet to this.

      Related to the above: How were the stellate cells used for the matrisome analysis grown? In the suspension setup or adherent? This will have a large impact on the outcome. Is there for instance hyaluronic acid in this matrix?

      The matrisome analysis was conducted on cells cultured in 2D. Vitamin C was added to the media to promote matrix production. We agree that this is not truly reflective of the in vivo situation but as a discovery tool this led us to identify the ADAMTS2 and ADAMTS14 substrates responsible for the function observed in 3D.

      1. Performing the species-specific transcript analysis both ways is a neat approach, but why did the authors ignore the opportunity to formally overlay/compare the two stromal gene sets to define likely candidates based on statistics?

      We primarily used this approach as a discovery tool to identify key differences between cancer and stellate cell compartments. Comparing the two species data sets is problematic as the murine cancer cells express many elements found in the stellate cells, while the human data set presents a cleaner comparison. This is evident from comparing metzincin expression in the two data sets. The human data set (Figure 2A) shows clear separation between cancer and stellate compartments, which is less evident in the murine data set (Supp figure 2A). As noted in supplementary figure 1A, unlike the human cancer cells used in this study, the murine cancer cells are capable of invading without stellate support (although when cultured with stellate cells invasive projections are always stellate led). Nevertheless the murine data set matches the human, although with less clarity.

      Minor comments: The bioinformatics Methods need more details on how reads were mapped to the different genomes. How many mismatches were allowed and was the mapping done separately or using for instance Xenofilter?

      We have improved the methodology section to include more detail for this separation. Using STAR aligner, reads were mapped to host species using a combined human and mouse genome. Ambiguous reads were subsequently discarded from the analysis. While there are bioinformatic packages that seek to match ambiguous reads to parent species we did not use these for our analysis.

      The authors use the knowledge on the activities of both ADAMTS2 and -14 on collagen as a rationale to choose these two. Is there really a need for the paragraph (and associated figures) from line 102 on?

      Given the prominent role collagen has been shown to have in regulating PDAC progression and the primary role for ADAMTS2 and ADAMTS14 being collagen processing, we initially hypothesised that the divergent role for these enzymes on invasion could be due to differences in collagen processing in this context. The fact that both equally contribute to collagen processing is surprising and adds to the novelty of our findings that these enzymes have a more complex role in regulating stromal biology.

      We have altered the structure of the manuscript to emphasise this point. The divergent roles of ADAMTS2 and ADAMTS14 on invasion are now presented in Figure 2, with their equal role in collagen processing now presented after in Figure 3. Figure 4 onwards now details the opposing roles of these enzymes in myofibroblast differentiation and our investigation into the enzyme-specific substrates responsible for this.

      Abstract, line 21; some words are missing?

      We thank the reviewer for bringing this to our attention and have now amended the abstract.

      Were the siRNA screen hits validated?


      Yes, hits relevant for our further investigations, MMP1 and Fibulin2, are presented in the manuscript.

      What is the genotype of the mouse cancer cells? KPC-derived?

      DT6066 are KPC derived while R254 are derived from KPF mice. This has been added to the methods with relevant reference.

      Reviewer #1 (Significance (Required)):

      The trick of dissecting tumor from stromal signals in spheroid cocultures by RNA-Seq is a cool trick, but not new and the authors should probably cite some prior work.

      We have included reference to other work where researchers have used species deconvolution to explore heterocellular interactions (Lines 68-72). However, we believe our work is one of the first to use this approach to explore cellular interactions in an in vitro, 3D, invasive context.

      What this all means for patients (or in vivo tumors even) remains unclear. There is some debate on whether highly activated CAFs (ACTA2/aSMA+ cells, some call them myCAFs) are indeed tumor-restrictive or whether they promote invasion. The authors appear to argue the latter (which I can agree with) but without any translational work to show what the net outcome of this mechanism is, the study remains descriptive and perhaps of limited interest.

      We contend that our 3D invasion model is a powerful tool to understand the role of stellate cells in leading invasion. We have shown the utility of this model in several studies to dissect the biology of this cell type, revealing the importance of the nuclear translocation of FGFR1 in stellate invasion (PMID: 36357571), the role of the kinase PKN2 in regulating stellate heterogeneity (PMID: 35081338) and the influence of cancer cell-derived exosomes on stellate invasion (PMID: 33592190).

      CAFs within PDAC stroma are highly plastic and can adopt multiple functions depending on distinct environmental cues. Thus, identifying how they are regulated is of paramount importance if they are to be therapeutically targeted. We contend that our mechanistic studies using heterocellular 3D models can aid in the dissection of the biology of these cells with more granularity than offered by clinical or in vivo studies, particularly in the context of secreted proteases. To add clinical relevance for our findings we have compared our chimera data set with previously published laser microdissected tumour and stroma PDAC tissue (Figure 2B), and identified ADAMTS2 and ADAMTS14 expression in prominent CAF subtypes (inflammatory and myofibroblastic) from published single cell RNA seq data taken from tumours (Supp figure 2C). As these enzymes are produced in multiple CAF subtypes, genetically targeting them in vivo appears prohibitive. The generation of ADAMTS2 and ADAMTS14 specific inhibitors would be required to assess their roles in vivo.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Carter and colleagues examines that role of cancer-associated fibroblasts (CAFs) in regulation of invasion in a 3D co-culture assay with epithelial cells. The authors propose that invasive chains of cancer cells are led by fibroblasts. The authors utilise a system of co-culture to create chimeric human-mouse fibroblast-cancer cell spheroids (both directions utilised, to eliminate species bias) to allow for in situ sequencing of the co-operating transcriptional programmes of each cell type during 3D invasion. From this powerful approach, this allowed the authors to identify two key two collagen-processing enzymes, ADAMTS2 and ADAMTS14, as contributing to CAF function in their system. The authors identify that these two enzymes have opposing roles in invasion, and map some of their key substrates in invasion, which extend beyond collagen-processing. The authors propose that one key function is to control the processing of TGFbeta, the latter of which is a regulator of the myofibroblast subpopulation of CAF. Overall, the findings of the manuscript are interesting, but need some further proof-of-principal demonstrations to extend their findings to support the claims within.

      • The authors demonstrate a clear role of ADAMTS2 and ADAMTS14 in stellate function during differentiation and invasion. Is there any evidence of such changes in patient materials? Could the authors query publicly available databases of micro-dissected stroma vs epithelium to validate the translational relevance of their findings?

      We thank the reviewer for their suggestion; we have now explored clinical relevance of ADAMTS2 and ADAMTS14 expression in two ways. We have used previously published work by Maurer and colleagues (PMID: 30658994), which descibes transcriptomic analysis of laser microdissected tumour and stroma from pancreatic cancer tissue. In accordance with our chimeric data set the majority of metzincins, including ADAMTS2 and ADAMTS14, are expressed in the sromal compartment (Figure 2B). We have also used publically available scRNA seq data to examine ADAMTS2 and ADAMTS14 expression in distinct CAF subtypes (Supp Figure 2C). Both ADAMTS2 and ADAMTS14 are expressed in inflammatory and myofibroblastic CAFs, with ADAMTS14 expression lower than that of ADAMTS2. Given the complexity of CAF heterogeneity it is possible that ADAMTS2/14 secretion by one population regulates the resulting phenotype of surrounding CAFs, however this hypothesis if beyond the scope of our current work.

      Major comments: - Page no. 4, Line 71, The authors conclude that the invasion in the chimeric spheroids is "led by" stellate cells. This is a key concept in the manuscript. How do the authors define the "led by" phenomena? What is the frequency that this occurs?

      In our experience all invasive projections are stellate led, defined as a stellate-labelled nucleus present at the tip of invasive projections. Indeed the human cancer cells used in this study are incapable of invading in the absence of stellate cells (Supp figure 1 A). We have previously reported this model where we demonstrated FGFR1 activity in the stellate cells is crucial for invasion (PMID: 36357571). Others have demonstrated the general importance for fibroblasts in leading invasion (PMID: 18037882, 28218910). Interestingly in our study, mouse cancer cells were capable of invading in the absence of stellate cells. However, when cultured with stellate cells, projections were predominantly stellate led.

      • For Figure 2A and S2A, the text suggests that the heatmap represents the stellate vs cancer cell expression (as shown in Figure 1B and S1B) in the respective species but the labelling below the heatmap suggests they are all cancer cells (Mia, Pan, R2 and DT). Is this a typo? Could the authors clarify this?

      We use Mia, Pan, R2 and DT to define the sphere combination from which the data originated. We have improved the clarity of the heatmaps by colour coding the different cell types within each sphere, and matching it with the cell type data presented in the heat map. We hope this improved labelling makes the heatmaps more accessible.

      • The text and the figures are lacking information about the cell line names used in the experiment, e.g, Figure 2C, 2D, 2SB, 2SC and 2SD does not indicate what cell line was used in the study. This is the same with other figures as well. Please indicate in all instances exactly which samples are queried.

      We have now included reference to the cell type and stellate cell species used in each experiment in relevant figure legends. Key 3D invasive experiments were conducted with both human and mouse stellate cells.

      • It's mentioned in the text that the authors have used the cancer and stellate cells in a 1:2 ratio but the numbers of stellate cells look different between different spheroids confocal images. e.g. The numbers look very different between the Miapaca2:PS1 vs Miapaca2:mPSC spheroids. Is this simply the representative images, or are their bona fide differences. This, in turn, would impact on claims of cells being 'led' by stellate cells. Can the authors clarify?

      This is a consequence of the method by which the stellate cells were immortalised. Human PS1 stellate cells were immortalised with hTERT, while mouse stellate cells were immortalised with SV40. A consequence of this is that the mouse stellate cells proliferate faster in 3D than the human stellate cells, with both proliferating slower than the cancer cell compartment. So while spheroids start at 1000 cells (666 stellate, 333 cancer) with stellate cells as the prominent component they are quickly overtaken by the cancer cells. Despite this difference in proliferation we find no difference in the invasive capacity of the stellate cells, with invasive projections always stellate led irrespective of whether they are human or mouse.

      • While for most of the experiments the authors generated the chimeric spheroids first and then performed the respective experiments, it appears that for the invasion assay simply co-culture of Cancer cells and stellate cells was done. Is this correct? Have the authors tried performing the assay with the chimeric spheroids to see if the stellate cells still invade?

      The Boyden chamber migration assay was conducted by seeding a co-culture of stellate and cancer cells in the apical compartment then imaging their migration to the basolateral side. This provided a second method to predominantly showcase the enhanced migration of cells lacking ADAMTS14 in a manner that could be quantified over time. We have not tried placing spheroids in the apical compartment and imaging invasion through the pores.

      • The authors claim that ADAMTS2 and ADAMTS14 regulate the bioavailability of TGFB, and this is a key reason that these regulate CAF differentiation. However, there is no direct demonstration of this concept, which is conspicuous by absence. Could the authors either directly demonstrate this, or remove such notions from the results, and explicitly state that this is an untested speculation in discussion? Examples of this are:

      o Line 173, authors state "ADAMTS2 facilitates TGFβ release through degradation of the plasmin inhibitor, SERPINE2 (Figure 5D)"

      o Line 196 authors conclude "Together these data implicate 197 ADAMTS14 as a key regulator of TGFβ bioavailability (Figure 6F)."

      o Line 240 states "This reduces the activation of Plasmin, preventing the release of TGFβ (Figure 5C)." Since this is just a model without detailed experiments, It will be better to propose rather than conclude.

      We appreciate the reviewer’s concern and have now added additional experiments to strengthen the association of ADAMTS enzymes and TGFβ bioavailability.

      Using a TGFβ-responsive luciferase reporter we demonstrate that the media from stellate cells lacking ADAMTS14 has greatly increased amounts of active TGFβ (Figure 4), which is abrogated when Fibulin2 is knocked down alongside (Figure 7). This links ADAMTS14 and Fibulin2 to TGFβ activity. Given the extensive literature detailing a role for Fibulin2 in regulating matrix TGFβ release through interactions with fibrillin (e.g, PMID: 19349279, 12598898, 12429738) we believe this is how ADAMTS14 is regulating myofibroblast differentiation. As we do not directly examine the association of Fibulin2 with fibrillin in this manuscript we have amended the associated statements to reflect this.

      We have also used a TGFβ-responsive fluorescent reporter to examine TGFβ activity of stellate cells in 3D. Consistent with our results, loss of ADAMTS2 reduces, while loss of ADAMTS14 enhances, TGFβ activity (Figure 4), which can be reversed with concomitant knockdown of their respective substrates SERPINE2 (Figure 6) and Fibulin2 (Figure 7).

      • Figure S5C shows a less invasive phenotype in the NTCsi + ADAMTS14si spheroids compared to the NTCsi + NTCsi control. However, there appears no appreciable difference between NTCsi + ADAMTS14si and NTCsi + NTCsi spheroids' brightfield images in Figure 5SD.

      Could the authors comment on this?

      We thank the reviewer for bringing this to our attention and apologise for our mistake. The images were positioned erroneously. This has now been corrected and the images reflect the quantification that demonstrates a clear increase in invasion following loss of ADAMTS14, which is abrogated with co-knockdown of Fibulin2.

      Minor Comments: - Page no. 2, Line 20 has an incomplete sentence "Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation 21 of stellate cells into myofibroblasts that drive."

      Apologies for the error. This has been rectified.

      • Figure 2C; Figure S2C and Figure S5E lack quantification for the western blots.

      We have now included densitometry for all western blots, presenting values relative to the respective loading control and normalised to the experimental control. Values are averages taken from all biological repeats with significance indicated where relevant.

      • Why did the authors choose to investigate the Metzincin family? Could the authors provide their reasoning to investigate these proteins, to the exclusion of other candidates?

      We focused on the metzincin family, as they are best known for their involvement in cancer invasion. A goal for this manuscript is to present our chimera data set as a discovery tool for the community. While this initial manuscript focuses on protease activity, we have further projects on-going that have used this data set to identify important elements of cancer/stellate communication.

      • Info about the number of fields imaged per sample for the microscopy data is missing in the figure legends (e.g. Figure 2F and 2I, Figure 5SF).

      We have now included a statement in each relevant figure legend to indicate that quantification was performed on at least five fields of view per biological repeat.

      • Any particular reason why the ADAMTS2 expression was not checked through Western blotting like ADAMTS14 in Figure S2B.

      We attempted to examine ADAMTS2 by western blotting but were unable to find an antibody that produced consistent results with our samples, and corroborated consistent knockdown by PCR.

      • The legends for Figure 3SC and 5SF mention that "Images are representative of at least two biological replicates". How many technical replicates were used? It would be useful if the relative intensity of the images is measured and plotted in a graph.

      We have now moved these images to the main figure alongside quantification of αSMA intensity. Images are collected from two biological repeats with quantification obtained from at least five fields of view per image. Together these data strongly demonstrate that loss of ADAMTS14 increases αSMA fibre intensity, which is blocked by either an inhibitor of TGFβ signalling (Figure 4), or co-knockdown of Fibulin2 (Figure 7).

      Reviewer #2 (Significance (Required)):

      This work provides an examination of the cross talk between fibroblasts and cancer cells in a 3-Dimensional culture model of pancreatic tumour cell invasion. By using chimeric human-mouse spheroids, the authors are able to identify cell-type specific transcripts by bulk RNA sequencing in situ. This advance is not to be underestimated as a number of existing approaches for cell type-specific profiling (eg. single-cell sequencing) relies upon dissociation of cell communities prior to sequencing. It is very likely that transcriptional programmes change during this isolation process. This approach allows the authors to identify transcriptional co-operating programmes in situ. This data provides a resource to understand this key co-operation of these two cell types during tumourigenesis, and will be of interest to the pancreatic cancer field. In addition, the mapping of the key substrate of these enzymes provides further insights that may be useful in understanding the expanded target repertoire of these enzymes beyond collagen processing.

      We thank the reviewer for their strong support of our chimeric spheroid approach and resulting investigation into the dichotomic roles of ADAMTS2 and ADAMTS14.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      AMADTS2 and ADAMTS14 belong to the disintegrin and metalloproteinase with thrombospondin motif protein family, mainly produced by pancreatic stellate cells (PSC) and are related to cancer cell invasion. This study reveals that ADAMTS2 and ADAMTS14 have opposite roles in myofibroblast differentiation based on experiments testing HSC driven cancer cell invasion, variant expression of HSC activation makers and the related downstream targets analysed upon RNA sequencing analyses. The authors (TA) established PSC/cancer cell chimeric spheroids for investigating the crosstalk between these cell types in 3D in vitro. Based on their findings, they claim that ADAMTS2 and ADAMTS14 have different functions regarding PSC and TGF-β activation. However, their conclusions mainly rely on quantitatve data of invasion and mechanistic details are completely lacking.

      Comments: Typos, even in the abstract, e.g. first sentence incomplete

      We apologise for the error in the abstract and have rectified this in the revised manuscript.

      Introduction is rather sparce with one third of the text repeating the results of the study

      Our manuscript details a discovery experiment using chimeric spheroids to identify cancer cell and stellate cell transcriptomes in a 3D invasive context. We then showcase the power of this data set by using it to identify and then describe divergent roles for ADAMTS2 and ADAMTS14 in shaping stellate cell biology. Given this two-tiered approach we incorporated text that would normally be placed in the introduction into the results section (e.g. our description of the importance of collagen processing in PDAC, presented as a prelude to the results from figure 3). We feel this improves the flow of the manuscript, rather than having information that isn’t necessarily relevant to the reader at the outset.

      Some citations do not at all fit with the position where they are placed; needs approval

      We have examined this in detail and are confident in our use of appropriate references throughout.

      In this study, it is said that TS2 (AMADTS2) and TS14 (ADAMTS14) have opposite functions on myofibroblast differentiation, with individual depletion leading to distinct matrisomal phenotypes in PSC. However, both similarly contribute to collagen processing. As we know, collagen is increased in response to TGFβ signaling, since TS2 depletion (knock down, kd) inhibits and TS14 kd is suggested to promote TGFβ activation, it is expected that this has impact on the available collagen levels. How do the authors explain that nevertheless the kd effect on collagen is very similar?

      The primary effects of these enzymes are on the processing of pro-collagen to its mature form, rather than on the production of collagen. This is evidenced in figure 3B where collagen expression in the whole cell lysate is the same following ADAMTS2 knockdown, and slightly reduced with loss of ADAMTS14, but the mature form is lost in the cell culture supernatant.

      While myofibroblast differentiation is associated with increased collagen production, it is possible that this is perturbed in a situation where the cell is surrounded by collagen that is incompletely processed (e.g. through biomechanical feedback). Given that our results clearly indicated that the effect of ADAMTS2 and ADAMTS14 on invasion is independent of their roles in collagen processing, this avenue is beyond the scope of the current manuscript.

      The authors claim that TS2 facilitates TGFβ release and TS14 is a key regulator of TGFβ bioavailability. However, throughout the whole data, there is no experimental evidence for this conclusion. TGFβ activation, LAP concentration and downstream effects should be provided.

      Most of the conclusions in the manuscript are based on effects to invasion and the estimated quantification histograms. "Black boxes in between the treatment, e.g. knockdown and readout, that relate to the signals and mechanisms remain black boxes throughout. For example, the impact of the treatments on stellate cell activation markers, the cancer cells invasion signaling, the SERPINE2- and Fibulin2-dependent myofibroblast differentiation pathways should be mechanistically investigated.

      We disagree with this comment. Our invasive model shows a clear role for ADAMTS2 and ADAMTS14 in regulating invasion, which is mitigated by disrupting their substrates SERPINE2 and Fibulin2.

      ADAMTS2 loss is associated with a reduction in plasmin activity, which again is mitigated with concurrent loss of SERPINE2. Equally, inhibition of plasmin activity with Aprotinin matches the loss of invasion observed with loss of ADAMTS2. Plasmin has a well-established role in mediating TGFβ release from the matrix. We have now included additional experiments using a TGFβ fluorescent reporter in 3D culture. This demonstrates that loss of ADAMTS2 reduces TGFβ activity, which can be rescued with co-knockdown of SERPINE2 (Figure 6). Our data therefore support a mechanism where ADAMTS2 blocks TGFβ release from the matrix, and therefore myofibroblast differentiation, through its regulation of SERPINE2 activity.

      We have strengthened our proposed mechanism for ADAMTS14 regulation of TGFβ through Fibulin2 with the use of both luciferase and fluorescent TGFβ reporter constructs. Using these reporters, we demonstrate that stellate cells lacking ADAMTS14 exhibit increased TGFβ activity (Figure 4), which is mitigated with co-knockdown of Fibulin2 (Figure 7). Combined with the effects on αSMA expression and 3D invasion, our data fit with a model where ADAMTS14 regulates TGFβ bioavailability through Fibulin2.

      The authors investigate one cell line each for their conclusions; we know that different cell lines behave differently; can they confirm that the finding they present is of general validity or a finding that is specific for the tested cancer/PSC cell lines. Can the principle findings also be proven in primary cells. More importantly, the authors should proof their findings in PaCa tissue of patients as follows: Expression of the proteases in the tissue, related variation of matrisome signatures, e.g. by snRNASeq, to confirm relevance of the finding.

      All our key 3D invasive experiments are repeated with both human and mouse stellate cells, adding strength to our proposed association with ADAMTS2 and SERPINE2, and ADAMTS14 and Fibulin2, on the invasive capacity of stellate cells. As detailed above we have explored the clinical relevance of our findings by examining laser dissected tumour and stromal data from PDAC tissue, and scRNA fibroblast data. These data confirm that ADAMTS2 and ADAMTS14 are predominantly expressed in the stromal compartment of the tumour and are associated with key CAF subtypes present in the PDAC environment, inflammatory and myofibroblastic CAFs.

      Details related to the figures: Figure 1: Are the numbers of PSC and PaCa cells integrated in the spheres related to the numbers found in patients?

      The 2:1 ratio of stellate to cancer cells used to produce spheres is a technical requirement and reflects the numbers in patients (PMID: 23359139). Cancer cells will proliferate substantially faster than the stellate cells so at the end of the experiment (day 3) the spheres are predominantly cancer cells. Nevertheless the stellate cells are able to drive invasion of the cancer cells, which can be quantitatively assessed in this model.

      B, it seems that the PSC in the spheroid are not equally distributed but instead are all located in close vicinity to eachother in a cloud; is that the representative situation for the spheres and is this similar in the PaCa cancer tissue? Does this have influence on the results?

      We have replaced this image with a more representative image that shows mouse stellate cells dispersed throughout the sphere.

      Figure 2: It is interesting to hear that BMP1, which is actually a ligand for BMP signaling is a protease for Collagen. How does this work?

      While the BMP family generally belong to the TGFβ superfamily, BMP1 is the exception in that it is a C-terminal collagenase. Please refer to reference 21 in the manuscript (PMID: 33879793), which details the role of BMP1 on collagen processing and the resulting effect on PDAC progression.

      C, Quantification of all blots should be presented.

      We have now included densitometry for all western blots, presenting values relative to the loading control and normalised to the experimental control. Values are averages taken from all biological repeats with significance indicated by stars.

      Figure S2: TS2 kd and TS14 kd should be confirmed and provided by both qrt PCR and WB data.

      We were unable to assess ADAMTS2 knockdown by western blot due to the quality of available antibodies. We are confident that either western or PCR confirmation of knockdown is sufficient, especially given the strong phenotype observed with the resulting knockdown.

      Figure 3: F; this result is arguing against the conclusion that TGFb bioavailability is a function of the ADAMs, since the kd impacts on the treatment result with exogenous TGFb. This suggests an effect downstream of ligand activation by proteasomal cleavage, e.g. receptor activation or signal transduction; this needs clarification. H, I: TGFβR inhibitor reduces TS14kd enhanced αSMA expression. How is unclear and needs clarification, since from F we know that already activated TGFβ needs TS2 to fully induce αSMA expression.

      SupplFig.3: B, C, as above!

      αSMA expression in stellate cells requires continuous exposure to TGFβ over 48 hours. Active TGFβ has an incredibly short half-life (minutes) and so requires positive feedback to maintain signalling. We propose that following ADAMTS2 knockdown the cells are incapable of releasing further TGFβ to maintain the phenotype. Equally following ADAMTS14 knockdown the cells are able to release more TGFβ, which is incapable of initiating signalling when the receptor is blocked.

      Figure 4: TIMP1 is a canonical TGFb signaling target gene in fibrosis. How the authors explain that TIMP1 is upregulated in both knockdowns, when they claim that TS2 and 14 have opposing functions on TGFb activation. This result as well puts their conclusions as regards TGFb and also the myofibroblast phenotype into question. Especially, since TIMP1 signifies stellate cell activation not only in the pancreas, but also in the liver and kidney. C, D, E should be explained in more detail and all details of the results should be presented.

      TIMP1 is a substrate for both ADAMTS2 and ADAMTS14, so its enrichment following knockdown of either is unsurprising, reflective of reduced cleavage of TIMP1. Both our 3D invasive assessment in Figure 6 and αSMA imaging in supplementary figure 5 demonstrate that TIMP1 is not responsible for the effect observed as a consequence from loss of either ADAMTS2 or ADAMTS14.

      This holds also for the different myofibroblast phenotypes. All data should be included. From recent scRNASeq investigations, several myofibroblast populations were described and compared, e.g my-stellate cells vs i-stellate cells. To which of these phenotypes the identified populations belong?

      As mentioned above, we have interrogated publically available data sets and identified ADAMTS2 and ADAMTS14 expression in multiple CAF subtypes. As these proteases are secreted it is probable that one CAF subtype can control the phenotype of surrounding CAFs through ADAMTS2 and ADAMTS14 production. While intriguing, this hypotheses is beyond the scope of the current work.

      Figure 5: C, Only brightfield images are provided, confocal images are suggested for comparison of +/- Aprotinin treatment.

      We do not think the addition of confocal images will add to the comparison. Aprotinin clearly reduces invasion, which coupled with the action of stellate-derived SERPINE2 on invasion, and reduced plasmin activity following ADAMTS2 knockdown, suggests that plasmin is important for regulating the effects of ADAMTS2 on invasion.

      The efficiency of TS2 and Serpine2 kd should be provided by qrt PCR and WB.

      TS2 kd promoted SERPINE2 expression should also be presented by qrt PCR and WB.

      We are confident that either western or PCR confirmation of knockdown is sufficient. Of note is that following ADAMTS2 knockdown, SERPINE2 expression is unchanged (sup figure 4C). This would indicate that the enrichment of SERPINE2 observed in the matrisome following loss of ADAMTS2 is reflective of reduced cleavage, rather than a change in expression.

      Figure 6: A, why ta use aSMA and not invasive activity as a readout here?

      Increased αSMA expression following ADAMTS14 knockdown provides a strong, clear, 2D phenotype to act as a readout for an siRNA screen with high-content imaging. Performing such a screen with our 3D invasive model is currently impractical.

      There are many parameters leading to decreased aSMA expression upon kd; (1) why only MMP1 and Fibulin were selected as candidates?

      From our αSMA screen, MMP1 and Fibulin2 knockdown were the only candidates that were able to both prevent an increase in αSMA seen with ADAMTS14 loss alone, and are known ADAMTS14 substrates. Further validation in our 3D invasive model demonstrated that Fibulin2 and not MMP1 was responsible for the effect of ADAMTS14 loss on invasion.

      (2) the single kd control of the screen candidates is missing!

      We feel this control is not needed, as the goal of the experiment was to establish which candidate was responsible for mediating the effects brought about by ADAMTS14 knockdown. Increased αSMA expression with IL-1β loss validates our approach, as this is a known negative regulator of TGFβ signalling.

      (3) Can it be expected that all these matrisomal proteins are involved in aSMA expression regulation? I have doubts.

      We agree with the reviewers comment, from the siRNA screen (sup figure 5B) it is clear that the majority of the identified matrisome proteins have a minimal effect on αSMA expression following loss of ADAMTS14.

      C, D, E, why MMP1 was not also tested in these assays?

      Our spheroid assay clearly demonstrated that invasion was enhanced following ADAMTS14 knockdown even with co-knockdown of MMP1. Given the strong rescue observed with co-knockdown of Fibulin2 we proceeded to further analyse this candidate over MMP1.

      F, Fibrillin is shown in the figure but not described in the text. It would be quite interesting to see whether Fibrillin kd has the same effect as TS14 kd on LTGF-β activation (which of course need to be shown experimentally).

      The association of fibrillin with TGFβ release is well established as it underpins the biology behind Marfan syndrome. Loss of fibrillin, or mutations to its TGFβ binding sites results in a phenotype consistent with super active TGFβ signalling.

      E, what is the meaning of αSMA intensity quantification? By IF staining of αSMA? PSC αSMA expression should be quantified by qrt PCR and WB.

      We have now incorporated the confocal images analysing αSMA expression into the main figure and labelled the quantification accordingly. We feel this improves the clarity of the figures. Every western blot is now presented with quantification.

      Also here, kd efficiency of TS14 and Fibulin2 should be provided by qrt PCR and WB.

      Figure S5E should be part of figure 6, qrt PCR of Fibulin2 should be added.

      We have moved this western blot to the main figure (Fig 7C). We feel additional PCR validation of Fibulin 2 knockdown is not necessary.

      Figure 5/6 and throughout: It is claimed that ADAMTS2 and ADAMTS14 regulate TGFβ bioavailability through SREPINE2-Plasmin and Fibulin2. As mentioned above, TGFβ activation is only mentioned in the schemes, but no experimental evidence is given. In addition, according to previous studies, ADAMTSs can activate latent TGFβ directly by interaction with the LAP of latent TGFβ. .

      We have now included extra experimental evidence to support an association of ADAMTS proteins with TGFβ bioavailability. Using a TGFβ luciferase reporter construct, we demonstrate that active TGFβ is increased following loss of ADAMTS14, which is abrogated with concomitant loss of Fibulin2. This provides further evidence that ADAMTS14 is mediating its effects on myofibroblast differentiation / invasion through TGFβ release.

      Figure 3B, C, and 6D: We are confused from the migration/invasion assays. Invasion should be based on migration of tumor cells, whereas in the migration assays only stellate cells seem to be active? Can you explain this to us? According to Figure 3B, stellate and cancer cells are cocultured in the chamber. Is this the same condition as for the experiment presented as figure 6D?

      In our migration assay, stellate and cancer cells are co-cultured in the apical chamber and cell migration imaged over time. We pooled data of both cancer and stellate cell migration following stellate specific knockdown of either ADAMTS2 or ADAMTS14, which showed an increase in cell migration following loss of ADAMTS14. In figure 7, we again use this assay to demonstrate that Fibulin2 expression accounts for the phenotype observed from loss of ADAMTS14.

      In summary, this study for the first time found that ADAMTS2 and ADAMTS14 have opposite roles on myofibroblast differentiation, which is shown by using chimeric spheroids of stellate and pancreatic cancer cells. The authors claim a therapeutic potential for pancreatic cancer by regulating ADAMTS2/14-mediated stellate cell activation, which should avoid cancer cell invasion. The approach is interesting and there is preliminary evidence, however the study has many gaps and requires substantive workload.

      We thank the reviewer for their support of our findings. We hope the additional data, combined with the known role for these substrates in the regulation of TGFβ, strengthens the clarity of our manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      AMADTS2 and ADAMTS14 belong to the disintegrin and metalloproteinase with thrombospondin motif protein family, mainly produced by pancreatic stellate cells (PSC) and are related to cancer cell invasion. This study reveals that ADAMTS2 and ADAMTS14 have opposite roles in myofibroblast differentiation based on experiments testing HSC driven cancer cell invasion, variant expression of HSC activation makers and the related downstream targets analysed upon RNA sequencing analyses. The authors (TA) established PSC/cancer cell chimeric spheroids for investigating the crosstalk between these cell types in 3D in vitro. Based on their findings, they claim that ADAMTS2 and ADAMTS14 have different functions regarding PSC and TGF-β activation. However, their conclusions mainly rely on quantitatve data of invasion and mechanistic details are completely lacking.

      Comments:

      Typos, even in the abstract, e.g. first sentence incomplete Introduction is rather sparce with one third of the text repeating the results of the study Some citations do not at all fit with the position where they are placed; needs approval

      In this study, it is said that TS2 (AMADTS2) and TS14 (ADAMTS14) have opposite functions on myofibroblast differentiation, with individual depletion leading to distinct matrisomal phenotypes in PSC. However, both similarly contribute to collagen processing. As we know, collagen is increased in response to TGFβ signaling, since TS2 depletion (knock down, kd) inhibits and TS14 kd is suggested to promote TGFβ activation, it is expected that this has impact on the available collagen levels. How do the authors explain that nevertheless the kd effect on collagen is very similar?

      The authors claim that TS2 facilitates TGFβ release and TS14 is a key regulator of TGFβ bioavailability. However, throughout the whole data, there is no experimental evidence for this conclusion. TGFβ activation, LAP concentration and downstream effects should be provided.

      Most of the conclusions in the manuscript are based on effects to invasion and the estimated quantification histograms. "Black boxes in between the treatment, e.g. knockdown and readout, that relate to the signals and mechanisms remain black boxes throughout. For example, the impact of the treatments on stellate cell activation markers, the cancer cells invasion signaling, the SERPINE2- and Fibulin2-dependent myofibroblast differentiation pathways should be mechanistically investigated.

      The authors investigate one cell line each for their conclusions; we know that different cell lines behave differently; can they confirm that the finding they present is of general validity or a finding that is specific for the tested cancer/PSC cell lines. Can the principle findings also be proven in primary cells. More importantly, the authors should proof their findings in PaCa tissue of patients as follows: Expression of the proteases in the tissue, related variation of matrisome signatures, e.g. by snRNASeq, to confirm relevance of the finding.

      Details related to the figures:

      Figure 1: Are the numbers of PSC and PaCa cells integrated in the spheres related to the numbers found in patients? B, it seems that the PSC in the spheroid are not equally distributed but instead are all located in close vicinity to eachother in a cloud; is that the representative situation for the spheres and is this similar in the PaCa cancer tissue? Does this have influence on the results?

      Figure 2: It is interesting to hear that BMP1, which is actually a ligand for BMP signaling is a protease for Collagen. How does this work? C, Quantification of all blots should be presented.

      Figure S2: TS2 kd and TS14 kd should be confirmed and provided by both qrt PCR and WB data.

      Figure 3: F; this result is arguing against the conclusion that TGFb bioavailability is a function of the ADAMs, since the kd impacts on the treatment result with exogenous TGFb. This suggests an effect downstream of ligand activation by proteasomal cleavage, e.g. receptor activation or signal transduction; this needs clarification. H, I: TGFβR inhibitor reduces TS14kd enhanced αSMA expression. How is unclear and needs clarification, since from F we know that already activated TGFβ needs TS2 to fully induce αSMA expression.

      SupplFig.3: B, C, as above!

      Figure 4: TIMP1 is a canonical TGFb signaling target gene in fibrosis. How the authors explain that TIMP1 is upregulated in both knockdowns, when they claim that TS2 and 14 have opposing functions on TGFb activation. This result as well puts their conclusions as regards TGFb and also the myofibroblast phenotype into question. Especially, since TIMP1 signifies stellate cell activation not only in the pancreas, but also in the liver and kidney. C, D, E should be explained in more detail and all details of the results should be presented. This holds also for the different myofibroblast phenotypes. All data should be included. From recent scRNASeq investigations, several myofibroblast populations were described and compared, e.g my-stellate cells vs i-stellate cells. To which of these phenotypes the identified populations belong?

      Figure 5: C, Only brightfield images are provided, confocal images are suggested for comparison of +/- Aprotinin treatment. The efficiency of TS2 and Serpine2 kd should be provided by qrt PCR and WB. TS2 kd promoted SERPINE2 expression should also be presented by qrt PCR and WB.

      Figure 6: A, why ta use aSMA and not invasive activity as a readout here? There are many parameters leading to decreased aSMA expression upon kd; (1) why only MMP1 and Fibulin were selected as candidates? (2) the single kd control of the screen candidates is missing! (3) Can it be expected that all these matrisomal proteins are involved in aSMA expression regulation? I have doubts. C, D, E, why MMP1 was not also tested in these assays? F, Fibrillin is shown in the figure but not described in the text. It would be quite interesting to see whether Fibrillin kd has the same effect as TS14 kd on LTGF-β activation (which of course need to be shown experimentally). E, what is the meaning of αSMA intensity quantification? By IF staining of αSMA? PSC αSMA expression should be quantified by qrt PCR and WB. Also here, kd efficiency of TS14 and Fibulin2 should be provided by qrt PCR and WB.

      Figure S5E should be part of figure 6, qrt PCR of Fibulin2 should be added.

      Figure 5/6 and throughout: It is claimed that ADAMTS2 and ADAMTS14 regulate TGFβ bioavailability through SREPINE2-Plasmin and Fibulin2. As mentioned above, TGFβ activation is only mentioned in the schemes, but no experimental evidence is given. In addition, according to previous studies, ADAMTSs can activate latent TGFβ directly by interaction with the LAP of latent TGFβ. . Figure 3B, C, and 6D: We are confused from the migration/invasion assays. Invasion should be based on migration of tumor cells, whereas in the migration assays only stellate cells seem to be active? Can you explain this to us? According to Figure 3B, stellate and cancer cells are cocultured in the chamber. Is this the same condition as for the experiment presented as figure 6D?

      In summary, this study for the first time found that ADAMTS2 and ADAMTS14 have opposite roles on myofibroblast differentiation, which is shown by using chimeric spheroids of stellate and pancreatic cancer cells. The authors claim a therapeutic potential for pancreatic cancer by regulating ADAMTS2/14-mediated stellate cell activation, which should avoid cancer cell invasion. The approach is interesting and there is preliminary evidence, however the study has many gaps and requires substantive workload.

      Significance

      AMADTS2 and ADAMTS14 belong to the disintegrin and metalloproteinase with thrombospondin motif protein family, mainly produced by pancreatic stellate cells (PSC) and are related to cancer cell invasion. This study reveals that ADAMTS2 and ADAMTS14 have opposite roles in myofibroblast differentiation based on experiments testing HSC driven cancer cell invasion, variant expression of HSC activation makers and the related downstream targets analysed upon RNA sequencing analyses.

      The authors (TA) established PSC/cancer cell chimeric spheroids for investigating the crosstalk between these cell types in 3D in vitro. Based on their findings, they claim that ADAMTS2 and ADAMTS14 have different functions regarding PSC and TGF-β activation. However, their conclusions mainly rely on quantitatve data of invasion and mechanistic details are completely lacking.

      Comments:

      Typos, even in the abstract, e.g. first sentence incomplete Introduction is rather sparce with one third of the text repeating the results of the study Some citations do not at all fit with the position where they are placed; needs approval

      In this study, it is said that TS2 (AMADTS2) and TS14 (ADAMTS14) have opposite functions on myofibroblast differentiation, with individual depletion leading to distinct matrisomal phenotypes in PSC. However, both similarly contribute to collagen processing. As we know, collagen is increased in response to TGFβ signaling, since TS2 depletion (knock down, kd) inhibits and TS14 kd is suggested to promote TGFβ activation, it is expected that this has impact on the available collagen levels. How do the authors explain that nevertheless the kd effect on collagen is very similar?

      The authors claim that TS2 facilitates TGFβ release and TS14 is a key regulator of TGFβ bioavailability. However, throughout the whole data, there is no experimental evidence for this conclusion. TGFβ activation, LAP concentration and downstream effects should be provided.

      Most of the conclusions in the manuscript are based on effects to invasion and the estimated quantification histograms. "Black boxes in between the treatment, e.g. knockdown and readout, that relate to the signals and mechanisms remain black boxes throughout. For example, the impact of the treatments on stellate cell activation markers, the cancer cells invasion signaling, the SERPINE2- and Fibulin2-dependent myofibroblast differentiation pathways should be mechanistically investigated.

      The authors investigate one cell line each for their conclusions; we know that different cell lines behave differently; can they confirm that the finding they present is of general validity or a finding that is specific for the tested cancer/PSC cell lines. Can the principle findings also be proven in primary cells. More importantly, the authors should proof their findings in PaCa tissue of patients as follows: Expression of the proteases in the tissue, related variation of matrisome signatures, e.g. by snRNASeq, to confirm relevance of the finding.

      Details related to the figures:

      Figure 1: Are the numbers of PSC and PaCa cells integrated in the spheres related to the numbers found in patients? B, it seems that the PSC in the spheroid are not equally distributed but instead are all located in close vicinity to eachother in a cloud; is that the representative situation for the spheres and is this similar in the PaCa cancer tissue? Does this have influence on the results?

      Figure 2: It is interesting to hear that BMP1, which is actually a ligand for BMP signaling is a protease for Collagen. How does this work? C, Quantification of all blots should be presented.

      Figure S2: TS2 kd and TS14 kd should be confirmed and provided by both qrt PCR and WB data.

      Figure 3: F; this result is arguing against the conclusion that TGFb bioavailability is a function of the ADAMs, since the kd impacts on the treatment result with exogenous TGFb. This suggests an effect downstream of ligand activation by proteasomal cleavage, e.g. receptor activation or signal transduction; this needs clarification. H, I: TGFβR inhibitor reduces TS14kd enhanced αSMA expression. How is unclear and needs clarification, since from F we know that already activated TGFβ needs TS2 to fully induce αSMA expression.

      SupplFig.3: B, C, as above!

      Figure 4: TIMP1 is a canonical TGFb signaling target gene in fibrosis. How the authors explain that TIMP1 is upregulated in both knockdowns, when they claim that TS2 and 14 have opposing functions on TGFb activation. This result as well puts their conclusions as regards TGFb and also the myofibroblast phenotype into question. Especially, since TIMP1 signifies stellate cell activation not only in the pancreas, but also in the liver and kidney. C, D, E should be explained in more detail and all details of the results should be presented. This holds also for the different myofibroblast phenotypes. All data should be included. From recent scRNASeq investigations, several myofibroblast populations were described and compared, e.g my-stellate cells vs i-stellate cells. To which of these phenotypes the identified populations belong?

      Figure 5: C, Only brightfield images are provided, confocal images are suggested for comparison of +/- Aprotinin treatment. The efficiency of TS2 and Serpine2 kd should be provided by qrt PCR and WB. TS2 kd promoted SERPINE2 expression should also be presented by qrt PCR and WB.

      Figure 6: A, why ta use aSMA and not invasive activity as a readout here? There are many parameters leading to decreased aSMA expression upon kd; (1) why only MMP1 and Fibulin were selected as candidates? (2) the single kd control of the screen candidates is missing! (3) Can it be expected that all these matrisomal proteins are involved in aSMA expression regulation? I have doubts. C, D, E, why MMP1 was not also tested in these assays? F, Fibrillin is shown in the figure but not described in the text. It would be quite interesting to see whether Fibrillin kd has the same effect as TS14 kd on LTGF-β activation (which of course need to be shown experimentally). E, what is the meaning of αSMA intensity quantification? By IF staining of αSMA? PSC αSMA expression should be quantified by qrt PCR and WB. Also here, kd efficiency of TS14 and Fibulin2 should be provided by qrt PCR and WB.

      Figure S5E should be part of figure 6, qrt PCR of Fibulin2 should be added.

      Figure 5/6 and throughout: It is claimed that ADAMTS2 and ADAMTS14 regulate TGFβ bioavailability through SREPINE2-Plasmin and Fibulin2. As mentioned above, TGFβ activation is only mentioned in the schemes, but no experimental evidence is given. In addition, according to previous studies, ADAMTSs can activate latent TGFβ directly by interaction with the LAP of latent TGFβ. .

      Figure 3B, C, and 6D: We are confused from the migration/invasion assays. Invasion should be based on migration of tumor cells, whereas in the migration assays only stellate cells seem to be active? Can you explain this to us? According to Figure 3B, stellate and cancer cells are cocultured in the chamber. Is this the same condition as for the experiment presented as figure 6D?

      In summary, this study for the first time found that ADAMTS2 and ADAMTS14 have opposite roles on myofibroblast differentiation, which is shown by using chimeric spheroids of stellate and pancreatic cancer cells. The authors claim a therapeutic potential for pancreatic cancer by regulating ADAMTS2/14-mediated stellate cell activation, which should avoid cancer cell invasion. The approach is interesting and there is preliminary evidence, however the study has many gaps and requires substantive workload.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The manuscript by Carter and colleagues examines that role of cancer-associated fibroblasts (CAFs) in regulation of invasion in a 3D co-culture assay with epithelial cells. The authors propose that invasive chains of cancer cells are led by fibroblasts. The authors utilise a system of co-culture to create chimeric human-mouse fibroblast-cancer cell spheroids (both directions utilised, to eliminate species bias) to allow for in situ sequencing of the co-operating transcriptional programmes of each cell type during 3D invasion. From this powerful approach, this allowed the authors to identify two key two collagen-processing enzymes, ADAMTS2 and ADAMTS14, as contributing to CAF function in their system. The authors identify that these two enzymes have opposing roles in invasion, and map some of their key substrates in invasion, which extend beyond collagen-processing. The authors propose that one key function is to control the processing of TGFbeta, the latter of which is a regulator of the myofibroblast subpopulation of CAF. Overall, the findings of the manuscript are interesting, but need some further proof-of-principal demonstrations to extend their findings to support the claims within.

      • The authors demonstrate a clear role of ADAMTS2 and ADAMTS14 in stellate function during differentiation and invasion. Is there any evidence of such changes in patient materials? Could the authors query publicly available databases of micro-dissected stroma vs epithelium to validate the translational relevance of their findings?

      Major comments:

      • Page no. 4, Line 71, The authors conclude that the invasion in the chimeric spheroids is "led by" stellate cells. This is a key concept in the manuscript. How do the authors define the "led by" phenomena? What is the frequency that this occurs?
      • For Figure 2A and S2A, the text suggests that the heatmap represents the stellate vs cancer cell expression (as shown in Figure 1B and S1B) in the respective species but the labelling below the heatmap suggests they are all cancer cells (Mia, Pan, R2 and DT). Is this a typo? Could the authors clarify this?
      • The text and the figures are lacking information about the cell line names used in the experiment, e.g, Figure 2C, 2D, 2SB, 2SC and 2SD does not indicate what cell line was used in the study. This is the same with other figures as well. Please indicate in all instances exactly which samples are queried.
      • It's mentioned in the text that the authors have used the cancer and stellate cells in a 1:2 ratio but the numbers of stellate cells look different between different spheroids confocal images. e.g. The numbers look very different between the Miapaca2:PS1 vs Miapaca2:mPSC spheroids. Is this simply the representative images, or are their bona fide differences. This, in turn, would impact on claims of cells being 'led' by stellate cells. Can the authors clarify?
      • While for most of the experiments the authors generated the chimeric spheroids first and then performed the respective experiments, it appears that for the invasion assay simply co-culture of Cancer cells and stellate cells was done. Is this correct? Have the authors tried performing the assay with the chimeric spheroids to see if the stellate cells still invade?
      • The authors claim that ADAMTS2 and ADAMTS14 regulate the bioavailability of TGFB, and this is a key reason that these regulate CAF differentiation. However, there is no direct demonstration of this concept, which is conspicuous by absence. Could the authors either directly demonstrate this, or remove such notions from the results, and explicitly state that this is an untested speculation in discussion? Examples of this are:

        • Line 173, authors state "ADAMTS2 facilitates TGFβ release through degradation of the plasmin inhibitor, SERPINE2 (Figure 5D)"
        • Line 196 authors conclude "Together these data implicate 197 ADAMTS14 as a key regulator of TGFβ bioavailability (Figure 6F)."
        • Line 240 states "This reduces the activation of Plasmin, preventing the release of TGFβ (Figure 5C)." Since this is just a model without detailed experiments, It will be better to propose rather than conclude.
      • Figure S5C shows a less invasive phenotype in the NTCsi + ADAMTS14si spheroids compared to the NTCsi + NTCsi control. However, there appears no appreciable difference between NTCsi + ADAMTS14si and NTCsi + NTCsi spheroids' brightfield images in Figure 5SD. Could the authors comment on this?

      Minor Comments:

      • Page no. 2, Line 20 has an incomplete sentence "Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation 21 of stellate cells into myofibroblasts that drive."
      • Figure 2C; Figure S2C and Figure S5E lack quantification for the western blots.
      • Why did the authors choose to investigate the Metzincin family? Could the authors provide their reasoning to investigate these proteins, to the exclusion of other candidates?
      • Info about the number of fields imaged per sample for the microscopy data is missing in the figure legends (e.g. Figure 2F and 2I, Figure 5SF).
      • Any particular reason why the ADAMTS2 expression was not checked through Western blotting like ADAMTS14 in Figure S2B.
      • The legends for Figure 3SC and 5SF mention that "Images are representative of at least two biological replicates". How many technical replicates were used? It would be useful if the relative intensity of the images is measured and plotted in a graph.

      Significance

      This work provides an examination of the cross talk between fibroblasts and cancer cells in a 3-Dimensional culture model of pancreatic tumour cell invasion. By using chimeric human-mouse spheroids, the authors are able to identify cell-type specific transcripts by bulk RNA sequencing in situ. This advance is not to be underestimated as a number of existing approaches for cell type-specific profiling (eg. single-cell sequencing) relies upon dissociation of cell communities prior to sequencing. It is very likely that transcriptional programmes change during this isolation process. This approach allows the authors to identify transcriptional co-operating programmes in situ. This data provides a resource to understand this key co-operation of these two cell types during tumourigenesis, and will be of interest to the pancreatic cancer field. In addition, the mapping of the key substrate of these enzymes provides further insights that may be useful in understanding the expanded target repertoire of these enzymes beyond collagen processing.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This study aims to explain the opposing contributions of stromal stellate cells/CAFs to PDAC. By first identifying stroma-specific proteases, followed by a process of candidate selection and elimination, the authors find that two specific metalloproteases that share enzymatic activity against collagen in fact have differential activity on TGFb availability. This could be interpreted as a way of shaping the CAF population and tumor-promotin or -restricting properties of the stroma.

      There are several flaws that the authors could address to improve the manuscript:

      1. In the flow of experiments and analyses, there is a strange mix of fully unbiased discovery phases followed by functional experiments that do not consider all possible candidates to test, and vice versa. For instance, from the mixed-species transcript analysis, ADAMTS2 and -14 are chosen based on their shared collagenase activity based on literature. However, the authors then perform again a proteomics analysis to identify things from the entire matrisome that are cleaved by these enzymes? Then, for ADAMTS2 a co-silencing approach is done on one selected candidate (Serpine2), but for ADAMTS14 an siRNA screen is performed? The problem of this approach is that the rationale for some studied enzymes is very strong, where as for others it is not.
      2. The ECM is more than just collagen. Choosing these two metalloproteases based on their shared collagen substrate is an approach that perhaps oversimplifies the ECM a bit, and again, does not provide the strongest rationale that these metalloproteases are most likely to explain counteracting stromal activities on tumor growth and progression.
      3. Related to the above: How were the stellate cells used for the matrisome analysis grown? In the suspension setup or adherent? This will have a large impact on the outcome. Is there for instance hyaluronic acid in this matrix?
      4. Performing the species-specific transcript analysis both ways is a neat approach, but why did the authors ignore the opportunity to formally overlay/compare the two stromal gene sets to define likely candidates based on statistics?

      Minor comments:

      The bioinformatics Methods need more details on how reads were mapped to the different genomes. How many mismatches were allowed and was the mapping done separately or using for instance Xenofilter?

      The authors use the knowledge on the activities of both ADAMTS2 and -14 on collagen as a rationale to choose these two. Is there really a need for the paragraph (and associated figures) from line 102 on?

      Abstract, line 21; some words are missing?

      Were the siRNA screen hits validated?

      What is the genotype of the mouse cancer cells? KPC-derived?

      Significance

      The trick of dissecting tumor from stromal signals in spheroid cocultures by RNA-Seq is a cool trick, but not new and the authors should probably cite some prior work.

      What this all means for patients (or in vivo tumors even) remains unclear. There is some debate on whether highly activated CAFs (ACTA2/aSMA+ cells, some call them myCAFs) are indeed tumor-restrictive or whether they promote invasion. The authors appear to argue the latter (which I can agree with) but without any translational work to show what the net outcome of this mechanism is, the study remains descriptive and perhaps of limited interest.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      The authors do not wish to provide a response at this time

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      This study by Kordala et al reports the identification of new therapeutics to further improve the clinical outcomes of spinal muscular atrophy (SMA) patients. SMA is childhood neurological disease that is caused by insufficient levels of the survival motor neuron (SMN) protein. There are currently three approved therapies for SMA, yet the disease is not cured and many patients remain severely disabled. The authors conducted a screen of known epigenetic regulators to identify molecules that increase SMN protein. They identified MS023, which is a selectively PRMT inhibitor, that promotes SMN exon 7 inclusion and thus full length SMN protein. Importantly, MS023 improves the SMA phenotype alone or in combination with the SMN2 antisense oligonucleotide suggesting it can potentially be used by itself or in combinatorial approaches. While this is a generally well written paper with relatively straight forward experimental design there remains some concerns that should be addressed.

      Major Concerns:

      1. The mechanism of action needs further clarification. Does MS023 work similarly to Risdaplam? Also, if Nusinersen is already interfering with hnRNPA1 how does MS023 augment the splicing.
      2. MS023 alone did not increase improve exon 7 inclusion in the spinal cord of treated SMA mice yet the protein levels were increased (Fig. 3D,F). Are there alternative mechanisms through which MS023 is acting?
      3. Further explanation of why MS023 did not improve exon 7 inclusion in the spinal cord but enhanced the effect of the ASO (Fig. 4B) is needed.
      4. Nusinersen has been shown to almost completely rescue the SMA phenotype in mice. Was the dose used here chosen to be suboptimal?

      Minor Concern:

      Many neurological diseases are now moving to a multimodal approach. The manuscript could be improved with further discussion of why MS023 would be an attractive option compared to other synergistic strategies being employed for SMA, including the most obvious of combining some of the already approved therapies.

      Significance

      This is a generally well done study that works through a screening methodology to identify a molecule that increase the levels of SMN. Mechanistic studies suggest that the compound works through inhibiting the recruitment of hnRNPA1 to the SMN2 gene, thus promoting inclusion of exon 7 and the production of full-length SMN protein.

      The study does not provide definitive data that methyl transferase activity of PRMT promotes exon 7 exclusion or that the inhibitor changes the methylation state of any of the proteins involved. However, knockdown experiments does not exclude this possibility.

      This study would be of general interest to wider audience if more detail was included regarding the current SMA landscape and how MS023 fits in with what is currently available. The transcriptome data was potentially very interesting since it provided clues on how MS023 is exerting its synergistic effect(neuroinflammation angle is relatively unique), but that data was only briefly discussed.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary

      SMA is a severe, monogenetic, progressive neuromuscular disease that mostly affects young children. SMA is cause by homozygous loss of function of SMN1. The main modifier of disease severity - that ranges widely, from neonatal to adult onset - is the presence of a varying number of SMN2 copies in the human genome. Recently, several gene-targeting therapies for SMA have been approved. This has changed the outcome of SMA drastically for many patients, but, surprisingly, the effect of these treatments varies strongly between patients. This leads to significant uncertainty for patients, families and clinicians and poses a challenge to reliable prognosis.

      One of the drugs that has been approved for treating SMA is the antisense oligonucleotide nusinersen (Spinraza). Nusinersen improves SMA outcomes by enhancing the splicing of SMN2 -transcribed pre-mRNA, leading to an increase in the inclusion of exon 7 leading to an increase in the availability of full-length, functional SMN protein. In the current manuscript, Kordala and colleagues investigate the effect of a library of 54 compounds (focused on modulating epigenetic regulators) on SMN2 splicing and SMN protein in an SMA type II patient fibroblast cell line. They found the Type I PMRT inhibitor, MS023 to dose-dependently increase full length SMN2 splicing SMN protein levels, by decreasing hnRNPA1 binding to SMN2 pre-mRNA. Next, they show that MS023 monotreatment of the severe 'Taiwanese' (+/- SMA type I) mouse model of SMA leads to improved survival and weight gain. Moreover, they show that combinatorial treatment of the same mouse model with MS023 and nusinersen, significantly further improves survival compared to both nusinersen and MS023 monotreatment. Finally, transcriptome analysis suggests that the majority of misregulated transcripts in SMA is rescued by both nusinersen an combinatorial treatment but, importantly, the rescue observed in the combinatorial group seems more complete.

      Suggestions

      The authors state in the abstract that "transcriptomic analysis revealed that MS023 treatment has very minimal off-target effects". However, their transcriptomic analyses do not contain a condition that investigates the effects of MS023 on the transcriptome in WT and SMA animals on its own. I belief this would have been an essential addition to support the conclusion on off-target effects of MS023, especially considering the benefits that the authors list in the discussion when compared to e.g. VPA. I agree with their comments about the unspecificity of such drugs; however, I don't belief their current transcriptomics analysis on MS023 fully support this conclusion either. It may not be feasible to include such an experiment in a revised version of the manuscript, but in this case the authors should reflect on the wording of their conclusions.

      I agree with the authors that the effect of MS023 on SMN-FL RNA appears to be dose-dependent but I don't think the data fully supports that conclusion for SMN protein levels (compare e.g. 250 nM and 2.5 µM quantification). In fact, there are many inconsistencies between SMN RNA and SMN protein levels: in figure 3 (MS023 monotreatment), the authors observe in spinal cord no change in SMN RNA but a significant increase in SMN protein. In contrast, in the same figure, in muscle, both SMN RNA and protein increase significantly. This is a bit confusing and to me mostly means that the regulation of SMN RNA and protein expression in complex and likely depends on many more factors than PMRT activity and hnRNPA1 arginine methylation status. Indeed, the authors pick hnRNPA1 as a promising target from a list of proteins that contains 72 in total. Are there no other promising candidates in this list that would be able to explain the unclear and inconsistent correlation between SMN RNA splicing and SMN protein levels?

      The in vitro work was based on the use of one primary fibroblast cell line. It would be relatively straightforward to characterized the effect of MS023 on e.g. type 1 and type 3 patient-derived lines, thus providing a clearer overview of the use of this type of drug in SMA patients of different types. Both through the Corriell repository (as used in the current paper) and surely also through biobanks at Oxford it should be relatively straightforward to obtain such cell lines and for the authors to extend their analyses to include patients of different types (and with varying SMN2 copy number).

      The mechanism that the authors suggest in e.g. Fig. 2D about the interaction of hnRNPA1 with the SMN2-ISSN1 in relation to PMRT inhibition is very similar to how nusinersen prevents SMN2-ISSN1 binding of hnRNPA1 (as the authors mention in the discussion). How do the authors suggest this would work? Do they have suggestions for further experiments to investigate this interaction (e.g. using hnRNPA1 and nusinersen molecules with point mutations?)

      Minor comments

      Do I understand correctly that none of the screened molecules in figure 1 lead to significantly unregulated SMN protein levels (including MS023)? What causes the difference between figure 1 (no signficicant upregulation of SMN protein) vs figure 2 (a dose dependent increase of SMN protein)? Do the authors have an explanation for this difference? In relation to this point, I am somewhat surprised at the variability in protein quantifications in especially figures 1 and 2. In these figures, biological replicates are obtained from one cell line. Although I understand that there is not necessarily much benefit to including all western blots used for quantification in for example the supplementary files with the paper, it would be useful to see some examples for e.g. the western blots for the quantifications in fig. 1C. Similarly, I appreciate the complexity of the IPs and arginine-methylation specific blotting in fig 2E, but the current tightly cropped blots are not super convincing and the uncropped blots are not included in the supplementary data. Also how was this quantified; fig 2F lacks some indication of standard deviation or other indicator of reproducibility between measurements.

      There are some what appear to be reference formatting errors (e.g. lines 17 and 20 on page 15 of the manuscript PDF amongst others).

      The PDF version of Supplementary table 2 in its current format is not really usable or readable; an Excel version would be preferable.

      Significance

      The paper addresses an interesting question: it aims to improve the efficacy of existing drugs for SMA by identifying novel molecules that may improve the working mechanism of, in this case, nusinersen. Others have tried this before by using VPA, but the current molecule appears to be more specific. However, it would have been interesting to get more details on the effect of this novel compound: a wider range of cell lines, further mouse experiments (a control group in figs. 3 and 5) and analysis (e.g. pathological analysis of the neuromuscular system). It would in fact have been interesting to combine some of the analyses in the current work also with the other available SMN2 splicing modifier risdiplam: as risdiplam also modulates SMN2 splicing, MS023 might also have been suitable to improve risdiplam efficacy. Especially in the cell line the authors have used this would have been a relatively straightforward addition. I believe the paper may provide an interesting start, but without further analysis remains at that stage.

      The audience to likely be most interest are mostly colleagues from the SMA field, as the mechanisms in the current manuscript focus very much on ISS-N1-regulated SMN2 splicing which is highly specific for SMA.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2022-01785

      Corresponding author(s): Amélie, Fradet-Turcotte, and Louis, Flamand

      Title: The immediate early protein 1 of human herpesvirus 6B counteracts ATM activation in an NBS1-dependent manner

      Our manuscript received positive and constructive comments from all three Reviewers. First, they unanimously agreed that the biology uncovered in our study is novel and of broad scientific interest, including researchers studying host-pathogen, DNA damage response and repair processes. They highlighted that the manuscript is well-written and presents clear, rigorous, and convincing data. Second, they provided constructive comments to strengthen our model and the biological relevance of our findings. Here, we provide an overview of our findings and a point-by-point reply explaining the revisions, additional experimentations and analyses planned to address the points raised by the referees.

      1 - Description of the planned revisions

      1.1 *The three Reviewers agreed that we convincingly show that HHV-6B IE1 binds to NBS1 and inhibits ATM activation; however, they all raised concerns about whether the IE1-dependent inhibition of ATM is required for HHV-6B replication and integration. *

      We agree with the Reviewers that the biological data validating the impact of ATM on viral replication and integration could be solidified. Problematically, IE1 is essential to promote HHV-6B replication in infected cells, and thus any IE1 knockdown (KD) or knockout (KO) approach will generate data that are hard to interpret. As mentioned by Reviewers 1 and 3, the ideal experiment to address this concern would be to infect cells with an HHV-6B virus in which IE1 contains a small truncation or a mutation that specifically suppresses its ability to inhibit ATM. Creating IE1 deletion and single mutants in the HHV-6 genome is technically challenging and can only be achieved using herpesvirus bacterial artificial chromosome (BAC)(Warden et al., 2011). Although HHV-6A BAC was previously described (Borenstein & Frenkel, 2009; Tang et al., 2010), our multiple attempts at generating HHV-6B BAC remained unsuccessful. As an alternative, we will investigate if the inhibition of ATM by using the ATM inhibitor (KU-55933) or its depletion by an shRNA, impact HHV-6B replication and integration as proposed by Reviewers 1 and 3. Specifically, MOLT-3 cells will be either treated with 10 µM KU-55933 or depleted for ATM with shATM(Rodier et al., 2009) prior to infection. DMSO and shLUC will be used as controls, respectively. These experiments will allow us to determine if ATM inhibition enhances HHV-6B replication and/or integration.

      1.2 Reviewer 2: "Although they have nicely mapped the interaction (between IE1 and NBS1), the authors have not yet defined the mechanism of ATM inhibition. They propose a number of possibilities in the discussion, but none are yet tested experimentally. The manuscript would be strengthened by further exploration of these possibilities. Does the sequence or proposed structure give any insights into interactions that could be relevant? Is IE1 phosphorylated by ATM, and could this affect the binding of other proteins?"

      We thank the Reviewer for pinpointing that a deeper characterization of the mechanism of ATM inhibition would allow us to support our model. In the manuscript, we discuss the possibility that IE1 inhibits ATM activation by preventing the interaction between the FxF/Y motif of NBS1 and ATM. Although we do not detect a strong interaction between IE1 and ATM (Fig. 5A), we have not yet investigated if the ATM-inhibitory domain (ATMiD) is required for IE1 to prevent the recruitment of ATM by NBS1 at the LacO array (Fig. 5E). Thus, we will determine if an ∆ATMiD IE1 inhibits the interaction between NBS1 and ATM in this assay. If the ATMiD domain interferes with the interaction of NBS1 with ATM, we expect to see no inhibition of NBS1 activation of ATM in cells that express 3xFlag-HHV-6B IE1 ∆ATMiD.

      Another possibility is that IE1 inhibits ATM activation indirectly by interacting with the nucleosome. The latter possibility is based on the finding that the C-terminal domain of HHV-5 IE1 contains an arginine-serine (RS) motif that interacts with the acidic patch of the nucleosome(Fang et al., 2016). Interestingly, HHV-6B IE1 sequence analysis reveals two RS motifs at positions 852-53 and 1033-34. Thus, the conserved RS residues (R852A/S853A and R1033A/S1034A) will be mutated in the ATMiD domain of HHV-6B IE1 (810-1078), and their ability to inhibit ATM activation will be quantified by immunofluorescence approach as described in Fig 6 D-E. In parallel, GST-tagged recombinant ATMiD of HHV-6B IE1 will be produced, and pulldown experiments will investigate their ability to bind to nucleosomes. We already have purified nucleosomes in the lab and have the expertise for this type of analysis(Galloy et al., 2021; Sitz et al., 2019).

      Thanks to the Reviewer's comment, we performed sequence analyses for putative ATM phosphorylation sites (SQ/TQ) and found that the protein contains 6 of them, two of which are in the ATMiD of the protein. To determine if the viral protein is a substrate of ATM, we will immunoprecipitate IE1 from MOLT-3 infected cells and use the well-characterized pSQ/pTQ antibody in western blotting analyses. The immunoprecipitation will be done in denaturing conditions to avoid interference with other endogenous interactors of IE1. If the protein is phosphorylated in an ATM-dependent manner, we will test the impact of these mutants on ATM inhibition as done in Fig. 6 D-E.

      Altogether, these experiments will allow us to refine our understanding of the mechanism by which HHV-6B IE1 inhibits ATM activation in host cells.

      1.3* Reviewer 2: "Could the effects of IE1 be linked to other post-translational modifications? The literature suggests this protein to be SUMOylated. Is SUMOylation relevant to the effects on ATM activation?" *

      The Reviewer is right. Our group showed that IE1 is sumoylated on K802R in a SUMO interacting motif (SIM)-dependent manner (V775, I776, V777)(Collin et al., 2020). In the LacO/LacR assays, we already showed that the K802R and SIM mutant (775AAA777) do not impact the interaction of IE1 with NBS1. Although the sumoylated site and the SIM lie outside of the ATMiD, we cannot rule out the possibility that this post-tranlationnal modification impacts ATM inhibition by IE1 throughout a conformational interference. To address this possibility, we will characterize the ability of the single and double K802R/SIM mutant proteins to inhibit the activation of ATM, as described in Fig 6 D-E.

      2 - ____Description of the revisions already incorporated in the transferred manuscript

      The following comments and all minor comments raised by the Reviewers have been incorporated into the transferred manuscript:

      2.1 Reviewer 2: "In Figure 1, they look at micronuclei formation but MNi is not defined the main text."

      We thank the Reviewer for noticing this mistake. MNi is now defined as micronuclei in line 138.

      2.2 Reviewer 3: "As discussed by the authors, HHV-6B IE1 inhibits DSB signaling through NSB1, but we cannot know how this inhibition (might be increase genome instability of both host and virus) enhances viral replication and integration. The readers are easy to understand if the authors described it in the discussion or analyzed by KD or KO of IE1 in infected cells."

      The Reviewer is right. We cannot rule out that increased genomic instability enhances viral replication. Thus, we add the following sentences to clarify this point in the discussion.

      Line 371-374: "Finally, the model presented here assumes that NBS1 and ATM activity must be inhibited to prevent their detrimental effect on viral replication. However, it is impossible to rule out that enhanced viral replication and integration result from the increased level of genomic instability induced in host cells upon viral infection. Further studies will be required to address this question."

      2.3 Reviewer 3: "Described in lines 354-356 are the case of lytic cycle only. In the lytic cycle, the infected cells will die soon after viral replication. and there is no chance to become tumor. However, the state of ciHHV-6 or latently infected cells can be affected by genome instability during IE1 expression. Please add discussion."

      We thank the Reviewer for raising this important point. We agree that the real threat for the host cells regarding tumor development is genomic instability promoted by the expression of IE1 during latent infection or from an integrated form of the virus. Consistent with this possibility, our original manuscript contains this sentence in the abstract:

      Line 60-62: "Interestingly, as IE1 expression has been detected in cells of subjects with the inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases."

      To further emphasize this point, the following sentence has now been added to the discussion:

      Line 349-356: During the lytic cycle, the accumulation of genomic instability in the host cell genome is not a problem as these cells will die upon the lysis provoked by the virus to release new virus particles. However, more selective inhibition of ATM by IE1 during the latent cycle of HHV-6B or from iciHHV-6B would avoid a detrimental accumulation of genomic alterations in host cells. This model would be consistent with the fact that HHV-6B is not associated with a higher frequency of cancer development, as would be expected if global DSB signaling was inhibited in these cells. Alternatively, expression of IE1 upon the exit of latency may inhibit global DSB signaling, but this phenomenon is restricted to the early stages of the process, thereby minimizing the impact on the host cell's genomic stability.

      2.4 Reviewer 3: Line 114, Miura et al (J Infect Dis 223:1717-1723 [2021]) should be cited.

      This reference has been added in line 113. In the discussion, we also introduce the citation where we mention the link between HHV-6B integration and abortion, line 362 of the revised manuscript.

      3 - ____Description of the revisions that will not be carried out

      3.1 Reviewer 2: "Does it (HHV-6B IE1) also share other activities with herpesvirus proteins e.g. ubiquitinylation?"

      IE1 shares very little sequence homology with proteins from other herpesviruses (except HHV-6A and HHV-7), meaning that deductions based on primary sequence analysis are very limited. Any attempt at understanding the function of HHV-6B IE1 by structure analysis prediction software did not predict any known function or domain. Thus, most of our knowledge of IE1 relies on experiments that used IE1 truncation (this study and (Jaworska et al., 2007)) and point mutants(Collin et al., 2020). The protein contains no conserved RING or HECT domain that would hint at an E3-ligase activity and does not share homology with other herpes proteins that promote ubiquitylation events, such as ICPO from HSV-1(Rodríguez et al., 2020). We believe that, at this point, there is not enough evidence to investigate further if HHV-6B IE1 has an E3-ligase activity.

      3.2 Reviewer 3: Lines 52, "Expression of immediate early protein 1 (IE1) was sufficient to recapitulate this phenotype" is not right. The authors showed that IE1 blocked ATM signaling in transient experiments but they did not show any evidence in infected cells. Kock down or Kock out of IE1 is important to conclude it."

      We agree with the Reviewer HHV-6B IE1 knockdown, or knockout, would allow us to conclude that IE1 is the only protein to target DSB signaling in the infected cells. As mentioned by the Reviewer (see point 3.3 and 1.1), IE1 is essential to promote HHV-6B replication in infected cells. Thus, any knockdown or knockout approach will generate data that are hard to interpret. In contrast, the generation of an HHV-6 genome containing truncation or point mutation that abolishes its ability to inhibit ATM signaling should allow us to bypass this issue. While we believe this question is important, human resource shortages prevent us from addressing this point in an acceptable time frame. Instead, we propose investigating the role of ATM activity in HHV-6B replication and integration. We also rephrased the sentence highlighted by Reviewer 3:

      Line 51-52: "Expression of immediate early protein 1 (IE1) phenocopies this phenotype and blocks further homology-directed double-strand break (DSB) repair."

      3.3 Reviewer 3: The authors did not analyze the effect of viral manipulation as they did not analyze KO or KD of IE1. Even if HHV-6B IE1 is essential for viral replication, they can use dominant negative mutant of IE1 or NSB1 determined in this manuscript.

      Reviewer is right. As discussed in points 3.2 and 1.1, we haven’t tried to rescue IE1 knockdown, or knockout in infected cells. Rescue experiments of IE1 by transient transfection of dominant negative IE1 mutant would require a high level of transfection in MOLT-3 cells and small truncation or mutations of IE1 that revert the ATM inhibitory function of IE1. Screening additional sets of truncations/mutants of IE1 that abolish its ability to inhibit ATM and optimizing the poor transfection efficiency of the lymphoid cell line MOLT-3 will take time and resources that we don’t have at this moment. Thus, we believe that this point should be addressed in follow-up studies.

      REFERENCES

      Borenstein, R., & Frenkel, N. (2009). Cloning human herpes virus 6A genome into bacterial artificial chromosomes and study of DNA replication intermediates. Proceedings of the National Academy of Sciences of the United States of America, 106(45). https://doi.org/10.1073/pnas.0908504106

      Collin, V., Gravel, A., Kaufer, B. B., & Flamand, L. (2020). The promyelocytic leukemia protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathogens, 16(7). https://doi.org/10.1371/journal.ppat.1008683

      Fang, Q., Chen, P., Wang, M., Fang, J., Yang, N., Li, G., & Xu, R.-M. (2016). Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome. ELife, 5. https://doi.org/10.7554/elife.11911

      Galloy, M., Lachance, C., Cheng, X., Distéfano-Gagné, F., Côté, J., & Fradet-Turcotte. (2021). Approaches to study native chromatin-modifying activities and function. Frontiers in Cell and Developmental Biology, Section Epigenomics and Epigenetics, In Press.

      Jaworska, J., Gravel, A., Fink, K., Grandvaux, N., & Flamand, L. (2007). Inhibition of Transcription of the Beta Interferon Gene by the Human Herpesvirus 6 Immediate-Early 1 Protein. Journal of Virology, 81(11), 5737–5748. https://doi.org/10.1128/jvi.02443-06

      Rodier, F., Coppé, J. P., Patil, C. K., Hoeijmakers, W. A. M., Muñoz, D. P., Raza, S. R., Freund, A., Campeau, E., Davalos, A. R., & Campisi, J. (2009). Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology, 11(8). https://doi.org/10.1038/ncb1909

      Rodríguez, M. C., Dybas, J. M., Hughes, J., Weitzman, M. D., & Boutell, C. (2020). The HSV-1 ubiquitin ligase ICP0: Modifying the cellular proteome to promote infection. In Virus Research (Vol. 285). https://doi.org/10.1016/j.virusres.2020.198015

      Sitz, J., Blanchet, S. A. S. A., Gameiro, S. F. S. F., Biquand, E., Morgan, T. M. T. M., Galloy, M., Dessapt, J., Lavoie, E. G. E. G., Blondeau, A., Smith, B. C. B. C., Mymryk, J. S. J. S., Moody, C. A. C. A., & Fradet-Turcotte, A. (2019). Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proceedings of the National Academy of Sciences of the United States of America, 116(39), 19552–19562. https://doi.org/10.1073/pnas.1906102116

      Tang, H., Kawabata, A., Yoshida, M., Oyaizu, H., Maeki, T., Yamanishi, K., & Mori, Y. (2010). Human herpesvirus 6 encoded glycoprotein Q1 gene is essential for virus growth. Virology, 407(2). https://doi.org/10.1016/j.virol.2010.08.018

      Warden, C., Tang, Q., & Zhu, H. (2011). Herpesvirus BACs: Past, present, and future. In Journal of Biomedicine and Biotechnology (Vol. 2011). https://doi.org/10.1155/2011/124595

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this manuscript, the authors report that human herpesvirus 6B (HHV-6B) infection suppresses the host cell's ability to induce ATM-dependent signaling pathways. At least one of the viral proteins named IE1 block ATM signaling and further homology-directed double-strand break (DSB) repair in these cells. The ATM-dependent DNA damage response (DDR) is activated by infection of many viruses and suppresses their replications. Some of them induce the degradation of the MRE11/RAD50/NBS1 (MRN) complex and prevent subsequent DDR signaling. In the case of HHV-6B IE1, the N-terminal domain of it interacts with the MRN complex protein NBS1, the interaction of which might recruit IE1 to DSB and the C-terminal domain of IE1 inhibits ATM. The authors also showed that depletion of NBS1 enhanced HHV-6B replication. Viral integration of HHV-6B into the cellular chromosomes was enhanced by the NSB1 depletion in ATL-negative HeLa cells, supporting the models that the viral integration occurs via telomere elongation rather than through DNA repair.

      Major comments

      This manuscript is well written and will be of interest to the readers. The data seems convincing and statistical analysis is adequate. However, the role and significance of HHV-6B IE1 in infected cells was not analyzed well. If there are not analyzed, the data only show the role of the MRN complex or the only a single protein NSB1 for HHV-6B replication and they cannot conclude that HHV-6B IE1 hampers the ATM signaling for proper viral replication. I have a few comments listed below to improve this manuscript. All of them might be required for a couple of months.

      • (i) Lines 52, "Expression of immediate early protein 1 (IE1) was sufficient to recapitulate this phenotype" is not right. The authors showed that IE1 blocked ATM signaling in transient experiment but they did not show any evidence in infected cells. Kock down or Kock out of IE1 is important to conclude it.
      • (ii) In Fig7, the role of the other factors in the ATM-dependent DDR (such as ATM) should be analyzed by knock down or inhibitors.
      • (iii) The authors did not analyze the effect of viral manipulation as thy did not analyze KO or KD of IE1. Even if HHV-6B IE1 is essential for viral replication, they can use dominant negative mutant of IE1 or NSB1 determined in this manuscript.
      • (iv) As discussed by the authors, HHV-6B IE1 inhibit DSB signaling through NSB1, but we cannot know how this inhibition (might be increase genome instability of both host and virus) enhances viral replication and integration. The readers are easy to understand if the authors described it in the discussion or analyzed by KD or KO of IE1 in infected cells.

      Minor comments

      • (i) Described in lines 354-356 are the case of lytic cycle only. In the lytic cycle, the infected cells will die soon after viral replication. and there is no chance to become tumor. However, the state of ciHHV-6 or latently infected cells can be affected by genome instability during IE1 expression. Please add discussion.
      • (ii) Line114, Miura et al (J Infect Dis 223:1717-1723 [2021]) should be cited.

      Significance

      HHV-6B is ubiquitous herpesvirus which cause exanthem subitem and encephalitis, although effective antiviral is not established yet. Characteristically, HHV-6B has ability to integrate its genome into host. How HHV-6B replicate and integrate its genome in host cells is one of the most important question in this field. I am basic virologist mainly focusing on this virus and believe this manuscript includes important notion for our field.

      To counteract ATM-mediated signaling, many viruses induce the degradation of the MRN complex and prevent subsequent DDR signaling. The mechanism of HHV-6B IE1 described in this manuscript is unique and might be interested by the readers from many fields.

      Furthermore, around 1% of human populations harbor chromosomally integrated HHV-6B in their genome. The pathogenesis of it is not completely understand but must be important not only for virologist but also all of us.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Viruses have evolved different strategies by which they manipulate the host DNA damage response (DDR) in order to propagate in infected cells. This study shows how the human herpesvirus 6B (HHV-6B) blocks homology-directed double-stranded DNA break repair by the immediate early protein 1 (IE1) which they demonstrate inhibits the host ATM kinase. They employ microscopy and cytometry approaches to probe genomic instability, signaling, and interactions between virus and host. They use infection of MOLT-3 cells and induction of IE1 in U2OS cells to examine these mechanisms and the effects on genome stability. They show inhibition of H2AX phosphorylation, and inhibition of homology-directed repair with reporter assays. They discovered that IE1 interacts with the cellular NBS1 protein, localizes to DNA breaks, and inhibits activation of ATM kinase. They map two distinct domains that promote NBS1 interaction and the inhibition of ATM activation. They show that depletion of NBS1 promotes lytic replication in MOLT-3 cells, and also decreases the frequency of integration, at least in some semi-permissive cells.

      Major:

      1. Although they have nicely mapped the interactions, the authors have not yet defined the mechanism of ATM inhibition. They propose a number of possibilities in the Discussion but none are yet tested experimentally. The manuscript would be strengthened by further exploration of these possibilities. Does the sequence or proposed structure give any insights into interactions that could be relevant? Is IE1 phosphorylated by ATM and could this affect binding of other proteins?
      2. Could the effects of IE1 be linked to other post-translational modifications? The literature suggests this protein to be SUMOylated. Is SUMOylation relevant to the effects on ATM activation? Does it also share other activities with herpesvirus proteins e.g. ubiquitinylation?
      3. Are the effects on the lifecycle (lytic replication and integration) affected by ATM kinase in the same way as NBS1?

      Minor:

      1. In Figure 1 they look at micronuclei formation but MNi is not defined the main text.

      Significance

      Overall, the manuscript is well written the experiments are performed in a rigorous manner, and the biology uncovered is of broad scientific interest. It is now known that a number of DNA viruses inhibit aspects of the cellular DNA sensing and repair machinery to overcome antiviral responses and promote infection. Understanding how this achieved by different viral systems provides insights into cellular DNA damage signaling and repair. It also informs about how viruses can trigger genomic instability. In this case, the authors have uncovered a novel way that the ATM kinase is inhibited during HHV-6B infection by the IE1 protein. They show that HHV-6B infection induces genomic instability. Integration of the HHV-6 genome results in inherited chromosomally-integrated (ici)HHV-6A/B. They have some data to show that virus replication is inhibited by NBS1 and that viral integration may be partially impacted. These results have implications for understanding viral integration and genomic instability with this human pathogen. They advance the field and expand our understanding of how viruses manipulate repair pathways and lead to genomic instability. Strengths include the rigorous analysis of interactions with IE1 and impacts on cellular pathways. Limitations include the lack of mechanism for inhibition and the weaker links to viral biology. The results will be on interest to those studying virus-host interactions as well as those studying repair pathways beyond virus infection.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript Collin and colleagues found that the human herpesvirus 6B (HHV-6B) causes genomic instability in host cells by suppressing the host cell's ability to induce ATM-dependent signaling pathways. The authors show that the immediate early protein 1 (IE1) of HHV-6B is sufficient to block homology-directed double-strand break (DSB) repair and ATM-mediated DNA damage signaling. Interestingly, the authors show that IE1 does not affect the stability of the MRN complex, but instead uses two distinct domains to inhibit ATM activation. Finally, the authors show that suppression of NBS1 is critical for the ability of HHV-6B to replicate in permissive cells. In contrast, suppression of NBS1 increases the rate of integration in semi permissive cells. Overall, this study provides a mechanistic insight into HHV-6B infection and viral integration into telomeres may promote genomic instability and the development of certain diseases associated with inherited chromosomally integrated form of HHV-6B.

      Significance

      Overall, this is a superb manuscript, the data are clear, well controlled, and well presented. This reviewer has only a minor suggestion/ comment.

      The authors show convincingly that E1a can bind NBS1 and suppress ATM activation. However, it is not clear whether suppression of ATM is critical for HHV-6 replication. The ideal experiment would be an infection with a virus depleted of E1A (or expressing a defective E1A mutant). I realize that this would be a challenging experiment. An alternative experiment would be to test whether suppression of ATM has the same effect on HHV-6 replication and integration as NBS1 depletion.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2022-01803

      Corresponding author(s): Brittany A., Ahlstedt, Rakesh, Ganji, Sirisha Mukkavalli, Joao A., Paulo, Steve P., Gygi, Malavika, Raman

      If you wish to submit a full revision, please use our "Full Revision" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We thank the reviewers for their insightful comments and agree that the many of these revision experiments will improve the strength of our manuscript. Some of these we have already completed or are in the process of completing which will be outlined below. In particular, the reviewers asked that we investigate the mechanistic link between increased translation and UPR induction. We have detailed the studies that we will perform to establish this connection in detail below.

      Description of the planned revisions

      Response to Reviewer 1:

      1. The authors need to express UBXN1 and mutants lacking either the UBX or UBA domain in UBXN1 knockout cells to test whether the ER stress phenotype (Figure 1) and the protein upregulation phenotype (Figure 5A-F) can be rescued. This would eliminate the possibility that the reported phenotypes are the off-target effects of CRISPR.
      2. We will express the Myc-tagged wildtype UBXN1 and UBX or UBA point mutants (used in translation rescue studies in Figure 6) into UBXN1 knockout (KO) cells to determine whether the ER stress phenotype can be rescued. We will determine the level of xbp1s by real-time PCR and BiP by immunoblot.
      3. The studies in Figure 5 A-F were completed in cells depleted of UBXN1 with siRNA, not the CRISPR knockout cells. Thus, it is unlikely an off-target effect of CRISPR. We will attempt rescue of this phenotype with the wildtype and mutant constructs.

      For Figure 2, please indicate whether the repeat is a biological replicate or a technical replicate from RT-PCR.

      • We apologize for the omission. The data from the RT PCR studies in Figure 2 are biological replicates – the figure legend and main text of the manuscript will be edited to clarify this.

      In Figure 1A, the authors show that the knockout of UBXN1 causes an upregulation of phosphorylated eIF2alpha, which is known to suppress protein translation globally. In this regard, it is surprising to see the authors also concluded from Figure 7 that there is an upregulation of protein translation in UBXN1 knockout cells. The authors do not provide any explanation on how these seemingly contradictory phenotypes could be seen in the same cells.

      • We will provide a detailed discussion of the apparent paradox between upregulation of phosphorylated eIF2a and increased protein translation. Several prior studies have demonstrated that elevated expression of ATF4 (as we observe in UBXN1 KO cells) activates a transcriptional program that restarts translation. This occurs through the upregulation of the phosphatase PPP1R15a that dephosphorylates eiF2a, as well as aminoacyl tRNA synthetases and ribosomal subunits. We propose that elevated ATF4 levels leads to premature translational restart in UBXN1 KO cells. In addition, our data suggests that UBXN1 represses translation upstream of UPR activation and thus and increase in protein translation dysregulates ER-proteostasis which hyperactivates the UPR.

      Any evidence that UBXN1 is associated with translating ribosomes?

      • We now have new data that UBXN1 is associated with 40S, 60S, and 80S ribosomal fractions as well as actively translating polysome fractions that we isolated by polysome purification. In agreement with our finding that the role of UBXN1 in repressing translation is independent of p97, p97 appears to associate largely with the 40S, 60S, and 80S ribosomal fractions but not with the actively translating polysomes. This data will be included in the revised manuscript. Response to Reviewer 2:

      • Authors found that significant enrichment of the ER proteins in UBXN1 KO cells, while there is no change in the abundance of proteins in the cytosol or nucleus. Mitochondrial proteins are even down-regulated in UBXN1 KO cells. I found these observations very interesting. However, I was frustrated that authors did not investigated the reason why such differences are associated in UBXN1-suppressed cells. Authors demonstrate that depletion of UBXN1 resulted in suppression of protein synthesis, but did not address whether ER proteins are specifically repressed by UBXN1 or it represses translation globally, as noted in their Discussion section. Do the mRNAs encoding signal sequence at the N-terminus of their products are specifically translated in UBXN1-suppressed cells? Do the translations of mRNAs encoding mitochondria translocation signals are suppressed in UBXN1 KO cells? It should be possible to investigate these issues by using appropriate model ER- or mitochondrial proteins with or without specific signal sequences. Such kind of analysis should be necessary to support the claim of this manuscript.

      • Previous studies by Luke Wiseman’s group showed that PERK activation resulted in hyperfusion of the mitochondria and loss of Tim17 leading to decreased mitochondrial import. We already show that mitochondrial proteins are downregulated (by TMT proteomics and by immunoblotting). We now have preliminary data that mitochondria are more fused in UBXN1 KO cells consistent with data from the Wiseman group. We will include this in the resubmission.
      • In addition, we have re-analyzed our TMT proteomics data to parse out proteins with ER-signal sequences and define the topology of ER proteins (Type 1, 2, multimembrane spanning and luminal proteins) and those with mitochondrial targeting sequences. This data will be included in the revised manuscript.

      Related to my previous comments, ER-targeted mRNAs are known to be degraded by a process termed RIDD in the case of ER stressed condition. Since the rapid degradation of mRNAs through RIDD functions to alleviate ER stress by preventing the continued influx of new polypeptides into the ER, I wondered why UBXN1 depletion greatly stimulates ER protein synthesis, escaping IRE1-dependent mRNA degradations. Does UBXN1 depletion suppress RIDD?

      • In the revised manuscript, we will determine the relative mRNA abundance of the bona fide RIDD targets BLOC1S1 and CD59 by quantitative PCR in cells stressed with dithiothreitol (DTT). We will utilize previously published and validated primers for each target to quantify RIDD activity in wildtype and UBXN1 KO cells. These studies will address whether loss of UBXN1 impacts IRE1-dependent RIDD.

      Authors mentioned that the elevated levels of ER proteins are not due to increased transcription of target genes. However, they only provided the quantification of prp transcript levels, which was unchanged between wildtype and UBXN1 KO cells. To support this important conclusion, it is necessary to provide whole transcriptome data to compare the expression levels of corresponding ER proteins (quantified by their proteomics data) and transcripts (quantified by, for an example, RNA-seq analysis).

      • We thank the reviewer for this comment. Currently, we show that mRNA levels of Prp do not significantly change between control and siUBXN1 cells (Supplementary Figure 4). For a more comprehensive analysis, we will additionally assess the mRNA levels of the proteins we determinized to be significantly enriched in Figure 5 (AGAL, ALPP2 and TRAPa). RNA sequencing is currently beyond the scope of this study.

      Authors claimed that UBXN1 loss is detrimental to cell viability and have elevated levels of the apoptosis in the face of ER stress. However, authors did not examine apoptotic cell death in UBXN1 KO cells. They only provided evidence for defective proliferation of cells and transient induction of CHOP expression, but these are not enough to support the ER-stress induced apoptosis.

      • We will address the levels of apoptotic cell death in wildtype and UBXN1 KO cells by assessing PARP, caspase-3, or caspase-8 cleavage in these cells by immunoblot.

      Authors showed that UBA domain of UBXN1 is critical for suppressing protein synthesis. Could you provide a bit more detailed discussion how UBA domain modulates protein translational events and promote expressions of ER-related proteins. Have you ever checked whether UBA domain of UBXN1 is necessary for suppressing UPR-specific target gene expressions?

      • We will express the Myc-tagged wildtype UBXN1 and UBX or UBA point mutants (used in translation rescue studies in Figure 6) into UBXN1 knockout (KO) cells to determine whether the ER stress phenotype can be rescued.
      • We will also include a discussion on how the UBA domain in UBXN1 may recognize distinct ubiquitylation events on ribosomes that modulate their abundance and function. Response to Reviewer 3:

      (Major comments)

      1. My main reservation about the current manuscript is whether the UPR activation can be directly ascribed to the loss of UBXN1. The authors do not differentiate between acute depletion (through siRNA in Fig. 5) versus permanent UBXN1 knockout in most of the experiments. The latter may lead to extensive adaptation of the cellular proteome due to chronic stress. Prior studies from the authors have shown that UBXN1 knockout leads to loss of aggreasomes. This raises a major question whether the observed UPR activation can be directly attributed to UBXN1 loss or be an indirect result of adaptation in the knockout cells, for instance due to accumulation of BAG6 substrates in insoluble aggregates as the authors have shown previously (ref. 40). Along those lines, the authors already showed in the same study that UBXN1 knockout cells are more sensitive to proteotoxic stress.
      2. We agree with the reviewer that cells can adapt to CRISPR knockout. However, the IRE1a clustering studies found in Figure 1 were completed in the context of acute depletion of UBXN1 by siRNA and demonstrate a significant increase in IRE1a clustering when UBXN1 is depleted.
      3. We now have new data that that acute depletion of UBXN1 with siRNA results in a significant increase in BiP and ATF4 expression as well as ATF6 N-terminal processing.
      4. Furthermore, we have new data that acute depletion of UBXN1 with siRNA phenocopies UBXN1 KO in terms of increased puromycin incorporation into newly synthesized proteins.
      5. Thus, we will have both genetic knockout as well as siRNA acute depletion for all major studies. We will include these new studies in the revised manuscript.

      The later results in the study nicely show that the repressed protein translation phenotype is dependent on the ubiquitin binding domain of UBXN1. These segregation-of-function mutants and complementation experiments could be easily used to more clearly distinguish whether the UPR activation can be directly attributed to UBXN1 and the increase in protein translation. For instance, can overexpression of UBXN1 in the knockout background suppress the UPR activation? Is the UBX-domain mutant capable of suppressing the UPR phenotype? These results would provide critical support as to whether the UPR activation is a direct result of the loss of UBXN1.

      • We will express the Myc-tagged wildtype UBXN1 and UBX or UBA point mutants (used in translation rescue studies in Figure 6) into UBXN1 knockout (KO) cells to determine whether the ER stress phenotype can be rescued. We will determine the level of xbp1s by real-time PCR and BiP by immunoblot.
      • To delineate the relationship between UPR activation and protein translation, we will halt protein synthesis with the translational elongation inhibitor cycloheximide and assess UPR activation in wildtype and UBXN1 KO cells. If increased protein translation in UBXN1 KO cells is what causes UPR activation, we anticipate that cycloheximide will rescue UPR activation in UBXN1 KO cells back to wildtype levels.

      Similarly, the authors use transient siRNA knockdown of UBXN1 in Fig. 5 and Supp. Fig. 4, but do not reassess the UPR activation under these conditions. It would be important to validate that the acute UBXN1 knockdown can recapitulate the UPR activation phenotype.

      • Please see comment 1 above.

      I am puzzled by the interpretation of the AGAL degradation experiments in Supplemental Figure 4F. Clearly, the rate of AGAL degradation is much faster in WT cells than in UBXN1 knockout cells as indicated by the slope of the curves between 2-4 hours. I disagree with the interpretation that UBXN1 knockout does not impact AGAL turnover. It is not valid to make the comparison at 9 hours because hardly any AGAL substrate is remaining. Importantly, this experiment raises a larger question: Are other ER client degradation rates affected by the UBXN1 knockout? And is the UPR activation more generally due to accumulation of misfolded ER proteins? Their prior publication (ref. 40) evaluated several ERAD clients where UBXN1 was dispensable, but it could be possible that UBXN1 has a more specialized client pool. Showing quantification of the PrP CHX chase would also be helpful - from the single replicate it looks like more PrP remaining in the UBXN1 knockout at 8 hours (Supp. Figure 4G).

      • Our previous ERAD reporter study using three distinct ERAD clients that are routinely used to assess ERAD found no role for UBXN1 in ERAD (Ganji et al MCB 2018). We do agree with the reviewer that UBXN1 may have discrete roles in regulating the degradation of select p97 ER clients. Determining this in an unbiased and comprehensive manner would require pulse chase SILAC proteomics or similar methodologies which are beyond the scope of the current study. We will therefore evaluate whether loss of UBXN1 affects the rate of degradation of additional ER-client proteins that we identified via TMT. Additionally, we will include a quantification of PrP cycloheximide chase.

      It would be helpful for the manuscript to clearly distinguish between 1) upregulation of ER proteostasis factors because of ER stress/UPR, and 2) upregulation of secreted clients (AGAL, PrP) which may be partly due to increased translation rates but could also be due to reduced degradation. Many of the hits from the proteomics experiments are ER proteostasis factors that are part of the adaptive stress response (SEC61B, SEC63, CANX, SSR1/2/3, STT3B, RPN1, RPN2, SEC61A1 - compare to ref 12: most are direct IRE1/XBP1s targets). Their increased expression does not lead to increased ER stress as they are involved in the resolution of ER stress. It appears to be circular logic that increased expression of UPR targets would lead to more UPR activation. Currently, the authors do not clearly disentangle the increased expression of endogenous ER proteins from the proteomics experiment versus overexpression of exogenous secreted clients.

      • We identify many ER proteins with increased abundance in UBXN1 KO cells that are not transcriptional targets of the IRE1-UPR pathway. We will re-format the TMT data to more comprehensively characterize the proteins that we identify (known UPR transcriptional targets, membrane embedded, soluble clients etc.).
      • We will change the language in the current manuscript to clearly demarcate the difference between an increase of ER proteostasis factors in response to ER stress, and the upregulation of secreted proteins. Additionally, we will emphasize the secretory proteins that are significantly enriched in UBXN1 KO cells in our proteomics figures to demonstrate the increase of non-ER stress responsive clients.

      The authors should tone down on broad generalizations, for instance in lines 306-309: ER aggregation was only observed for a single client protein (AGAL). Further, only a single mitochondrial protein was observed to be downregulated (TOMM20).

      • We have included the quantifications of the relative expression levels of three mitochondrial proteins, two of which are significantly reduced (TOMM20 and CYC1).
      • Additionally, we have new data where we immunoblotted for additional mitochondrial import factors and observed significant reduction of the mitochondrial proteins TIMM23 and TOMM70A which will be included in the revised manuscript.
      • We also plan to examine the levels of the TIMM17A subunit of the TIMM23 complex in UBXN1-depleted cells. TIMM17A is degraded in response to ER stress to prevent protein import into the mitochondria. (Rainbolt, T. et al. Cell Metab 2013)
      • The language of the manuscript will be changed to tone down on broad generalizations. (Minor comments)

      Does UBXN1 localization to the ER/microsomes fraction depend on p97? What happens in UBX-domain mutant?

      • We will isolate ER-microsomes from UBXN1 KO cells where we have expressed wildtype and UBX/UBA domain mutants to address if localization is dependent on ubiquitin or p97 interaction.

      In Fig. 1A it is surprising that no BiP is detected at 0 hours as BiP is highly expressed even in the absence of ER stress. Can the authors comment on this discrepancy.

      • We provide low exposures of the immunoblots as the UBXN1 KO cells have very high levels of BiP compared to control. We will provide alternative blots where the BiP levels at t=0 in control cells is more obvious.

      The authors use different ER stressors interchangeably: DTT, Tunicamycin, Thapsigargin. While all results in UPR activation, they do so through different mechanisms and with slight nuances that may be worth considering for the experiments and interpretations.

      • We thank the reviewer for this comment and agree that these stressors can impact the ER and UPR activation in distinct ways. Our rationale for using these agents interchangeably was to demonstrate the UPR induction in UBXN1 null cells occurs irrespective of the type of stress.
      • DTT is a severe stressor and we used tunicamycin and thapsigargin in some assays (imaging etc.) as they are less toxic and more amenable to downstream analysis. We will include text that explains our rationale better.

      Line 198: "Hierarchical clustering analysis demonstrates that the gene expression pattern observed in UBXN1 KO cells more closely resembles wildtype cells stressed with DTT than untreated wildtype cells based on similar log2 fold change values (Figure 2)." Where is this clustering shown?

      • We apologize that this was not clear in the figure. We will edit the figure to make the clustering more obvious.

      What are the downregulated UPR genes in Fig. 2, and may this hold significance?

      • The reviewer points out an interesting observation. Many of the downregulated transcripts are ERAD components. The significance of this is presently unclear and we would require RNA-seq analysis to make a more educated conclusion. However, this finding may point to an environment that has a greater need to induce folding than degradative components. We will include a discussion of this in the revision.

      3. Description of the revisions that have already been incorporated in the transferred manuscript.

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      Response to Reviewer 1:

      1. Taking the increased protein translation phenotype as an example, does this indicate UBXN1 is a translation suppressor for those ER-associated proteins?
      2. We thank the reviewer for this comment. We are indeed very interested in determining whether UBXN1 represses the translation of ER proteins. We are in the process of identifying proteins that are translated in UBXN1 null cells using O-propargyl-puromycin (OPP) labelling and mass spectrometry. However, given the timeframe for these studies, this cannot be accomplished in this revision.

      How can UBXN1 selectively inhibit the translation of a subset of proteins?

      • Recent studies suggest that ribosome populations are quite heterogeneous, and ribosome associated proteins can help tune translation of select proteins. For example, pyruvate kinase muscle (PKM) associates with ER docked ribosomes to regulate the translation of ER proteins in particular. We find that UBXN1 is present on ER membranes and localizes to polysomes and thus may regulate the translation of specific proteins. Studies are underway to test this hypothesis but are beyond the scope for this present study. Response to Reviewer 2:

      • Authors found that significant enrichment of the ER proteins in UBXN1 KO cells, while there is no change in the abundance of proteins in the cytosol or nucleus. Mitochondrial proteins are even down-regulated in UBXN1 KO cells. I found these observations very interesting. However, I was frustrated that authors did not investigated the reason why such differences are associated in UBXN1-suppressed cells. Authors demonstrate that depletion of UBXN1 resulted in suppression of protein synthesis, but did not address whether ER proteins are specifically repressed by UBXN1 or it represses translation globally, as noted in their Discussion section. Do the mRNAs encoding signal sequence at the N-terminus of their products are specifically translated in UBXN1-suppressed cells? Do the translations of mRNAs encoding mitochondria translocation signals are suppressed in UBXN1 KO cells? It should be possible to investigate these issues by using appropriate model ER- or mitochondrial proteins with or without specific signal sequences. Such kind of analysis should be necessary to support the claim of this manuscript.

      • Please see comment 1 above.
    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Ahlstedt et al. investigate a new role for the p97 adapter protein UBXN1 in negatively regulating the ER unfolded protein response. The study starts from the observations that knockdown of UBXN1 in a previously generated HeLa cell line leads to induction of unfolded protein response markers, and the knockout cells display more pronounced UPR activation upon ER stress. This elevated UPR signaling renders the UBXN1 cells more prone to cell death. Global proteomics experiments similarly show an increased abundance of ER localized proteins, although it is not clearly delineated which of those are the result of UPR activation. The authors then probe the expression of two secretory client proteins, alpha-galactosidase (AGAL) and prion protein (PrP) and find that UBXN1 transient knockdown leads to ER accumulation of the two proteins and increased aggregation upon ER stress. The authors claim that degradation of these ER client proteins in unaffected by the UBXN1 knockdown, but accumulation may instead be due to increased protein translation. Indeed, they surprisingly find that UBXN1 knockout leads to constitutively elevated protein translation. This result points to a previously unknown role of UBXN1 in repressing protein synthesis. Complementation with UBXN1 mutants demonstrate that the translation repression is dependent on the ubiquitin binding activity of UBXN1 but that p97 is dispensable. Further investigation into the molecular mechanism for the translation repression remains reserved for a future manuscript.

      Major comments:

      1. My main reservation about the current manuscript is whether the UPR activation can be directly ascribed to the loss of UBXN1. The authors do not differentiate between acute depletion (through siRNA in Fig. 5) versus permanent UBXN1 knockout in most of the experiments. The latter may lead to extensive adaptation of the cellular proteome due to chronic stress. Prior studies from the authors have shown that UBXN1 knockout leads to loss of aggreasomes. This raises a major question whether the observed UPR activation can be directly attributed to UBXN1 loss or be an indirect result of adaptation in the knockout cells, for instance due to accumulation of BAG6 substrates in insoluble aggregates as the authors have shown previously (ref. 40). Along those lines, the authors already showed in the same study that UBXN1 knockout cells are more sensitive to proteotoxic stress.
      2. The later results in the study nicely show that the repressed protein translation phenotype is dependent on the ubiquitin binding domain of UBXN1. These segregation-of-function mutants and complementation experiments could be easily used to more clearly distinguish whether the UPR activation can be directly attributed to UBXN1 and the increase in protein translation. For instance, can overexpression of UBXN1 in the knockout background suppress the UPR activation? Is the UBX-domain mutant capable of suppressing the UPR phenotype? These results would provide critical support as to whether the UPR activation is a direct result of the loss of UBXN1.
      3. Similarly, the authors use transient siRNA knockdown of UBXN1 in Fig. 5 and Supp. Fig. 4, but do not reassess the UPR activation under these conditions. It would be important to validate that the acute UBXN1 knockdown can recapitulate the UPR activation phenotype.
      4. I am puzzled by the interpretation of the AGAL degradation experiments in Supplemental Figure 4F. Clearly, the rate of AGAL degradation is much faster in WT cells than in UBXN1 knockout cells as indicated by the slope of the curves between 2-4 hours. I disagree with the interpretation that UBXN1 knockout does not impact AGAL turnover. It is not valid to make the comparison at 9 hours because hardly any AGAL substrate is remaining. Importantly, this experiment raises a larger question: Are other ER client degradation rates affected by the UBXN1 knockout? And is the UPR activation more generally due to accumulation of misfolded ER proteins? Their prior publication (ref. 40) evaluated several ERAD clients where UBXN1 was dispensable, but it could be possible that UBXN1 has a more specialized client pool. Showing quantification of the PrP CHX chase would also be helpful - from the single replicate it looks like more PrP remaining in the UBXN1 knockout at 8 hours (Supp. Figure 4G).
      5. It would be helpful for the manuscript to clearly distinguish between 1) upregulation of ER proteostasis factors because of ER stress/UPR, and 2) upregulation of secreted clients (AGAL, PrP) which may be partly due to increased translation rates but could also be due to reduced degradation. Many of the hits from the proteomics experiments are ER proteostasis factors that are part of the adaptive stress response (SEC61B, SEC63, CANX, SSR1/2/3, STT3B, RPN1, RPN2, SEC61A1 - compare to ref 12: most are direct IRE1/XBP1s targets). Their increased expression does not lead to increased ER stress as they are involved in the resolution of ER stress. It appears to be circular logic that increased expression of UPR targets would lead to more UPR activation. Currently, the authors do not clearly disentangle the increased expression of endogenous ER proteins from the proteomics experiment versus overexpression of exogenous secreted clients.
      6. The authors should tone down on broad generalizations, for instance in lines 306-309: ER aggregation was only observed for a single client protein (AGAL). Further, only a single mitochondrial protein was observed to be downregulated (TOMM20).

      Minor comments

      • Does UBXN1 localization to the ER/microsomes fraction depend on p97? What happens in UBX-domain mutant?
      • In Fig. 1A it is surprising that no BiP is detected at 0 hours as BiP is highly expressed even in the absence of ER stress. Can the authors comment on this discrepancy.
      • The authors use different ER stressors interchangeably: DTT, Tunicamycin, Thapsigargin. While all results in UPR activation, they do so through different mechanisms and with slight nuances that may be worth considering for the experiments and interpretations.
      • Line 198: "Hierarchical clustering analysis demonstrates that the gene expression pattern observed in UBXN1 KO cells more closely resembles wildtype cells stressed with DTT than untreated wildtype cells based on similar log2 fold change values (Figure 2)." Where is this clustering shown?
      • What are the downregulated UPR genes in Fig. 2, and may this hold significance?

      Significance

      General assessment: The authors broadly characterize the UPR activation in the UBXN1 knockout cells, looking both at gene targets by Western blot and qPCR, and characterize the activation of individual sensors (ATF6 cleavage and IRE1alpha clustering). Proteomics results further corroborate the upregulation of ER-localized proteins, although the robustness of the findings is surprising considering that only 2 replicates were included in the mass spectrometry experiment. Most other experiments are technically sound, for instance the puromycilation translation assays. One of the key limitations of the is that the authors fail to make use of their extensive prior toolset on UBXN1, particularly the segregation-of-function mutations for p97 and ubiquitin binding, as well as the knockdown cell lines with inducible overexpression of UBXN1 to rescue the phenotypes. These tools could probe a direct involvement of UBXN1 in the UPR repression, and whether this activity is truly independent of p97. A related limitation is that results are often over-interpreted and too far generalized (see examples above), or wrongly interpreted (see AGAL degradation rates).

      Advance: The AAA+ ATPase VCP/p97 has many divergent cellular roles that are in part mediated by a variety of different adaptor proteins. The authors have previously discovered the important role for UBXN1 in recruiting p97 to mislocalized cytosolic proteins targeted to the BAG6 complex. The current study now aims to establish a new role for UBXN1 in regulating the unfolded protein response. As it stands, the findings that UBXN1 knockdown results in UPR activation and impacts translation rates are solid but largely descriptive in nature. These findings merit reporting but require that the authors tone down their conclusions about a direct role for UBXN1 as a regulator of the UPR. Alternatively, if the authors choose to stick with their current model for a direct involvement of UBXN1, they need to establish the mechanistic link more clearly.

      Audience: In the current form, the manuscript should appeal to a broad biochemistry and cell biology readership interested in topics related to proteostasis, protein quality control, and stress signaling.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      RC-2022-01803 "UBXN1 maintains ER proteostasis and represses UPR activation by modulating translation independently of the p97 ATPase" By Ahlstedt et al.

      Comments to the Author

      UBXN1 is a VCP adaptor UBX domain protein which is known to be involved in elimination of ubiquitylated cytosolic proteins bound to the BAG6 complex. In this study, authors demonstrated that cells depleted of UBXN1 have elevated UPR activation, even without external ER stresses. Cells devoid of UBXN1 have significant and global up-regulation of UPR-specific target genes, and these cells are more sensitive to ER stress than their wildtype counterparts. Using quantitative tandem mass tag proteomics of UBXN1 deleted cells, authors found that significant enrichment of the abundance of ER proteins involved in protein translocation, protein folding, quality control, and the ER stress response in an ERAD-independent manner. Notably, they observed no change in the abundance of proteins in the cytosol or nucleus, and significant decrease in the expression of several mitochondrial proteins when UBXN1 was depleted. Authors further demonstrate that UBXN1 is a translation repressor, and its UBA domain is critical for suppressing protein synthesis. Thus, increased influx of proteins into the ER in UBXN1 KO cells causes UPR activation. Authors concluded that they have identified a new regulator of protein translation and ER proteostasis.

      My specific comments were provided as follows.

      Comments

      1. Authors found that significant enrichment of the ER proteins in UBXN1 KO cells, while there is no change in the abundance of proteins in the cytosol or nucleus. Mitochondrial proteins are even down-regulated in UBXN1 KO cells. I found these observations very interesting. However, I was frustrated that authors did not investigated the reason why such differences are associated in UBXN1-suppressed cells. Authors demonstrate that depletion of UBXN1 resulted in suppression of protein synthesis, but did not address whether ER proteins are specifically repressed by UBXN1 or it represses translation globally, as noted in their Discussion section. Do the mRNAs encoding signal sequence at the N-terminus of their products are specifically translated in UBXN1-suppressed cells? Do the translations of mRNAs encoding mitochondria translocation signals are suppressed in UBXN1 KO cells? It should be possible to investigate these issues by using appropriate model ER- or mitochondrial proteins with or without specific signal sequences. Such kind of analysis should be necessary to support the claim of this manuscript.
      2. Related to my previous comments, ER-targeted mRNAs are known to be degraded by a process termed RIDD in the case of ER stressed condition. Since the rapid degradation of mRNAs through RIDD functions to alleviate ER stress by preventing the continued influx of new polypeptides into the ER, I wondered why UBXN1 depletion greatly stimulates ER protein synthesis, escaping IRE1-dependent mRNA degradations. Does UBXN1 depletion suppress RIDD?
      3. Authors mentioned that the elevated levels of ER proteins are not due to increased transcription of target genes. However, they only provided the quantification of prp transcript levels, which was unchanged between wildtype and UBXN1 KO cells. To support this important conclusion, it is necessary to provide whole transcriptome data to compare the expression levels of corresponding ER proteins (quantified by their proteomics data) and transcripts (quantified by, for an example, RNA-seq analysis).
      4. Authors claimed that UBXN1 loss is detrimental to cell viability and have elevated levels of the apoptosis in the face of ER stress. However, authors did not examine apoptotic cell death in UBXN1 KO cells. They only provided evidence for defective proliferation of cells and transient induction of CHOP expression, but these are not enough to support the ER-stress induced apoptosis.
      5. Authors showed that UBA domain of UBXN1 is critical for suppressing protein synthesis. Could you provide a bit more detailed discussion how UBA domain modulates protein translational events and promote expressions of ER-related proteins. Have you ever checked whether UBA domain of UBXN1 is necessary for suppressing UPR-specific target gene expressions?

      Significance

      Although the discovery in this manuscript might be potentially interesting for broad audience, the presented study did not provide enough mechanistic insights and their data lacks vital evidences to support their conclusion. I found that the data are preliminary to discuss the validity of this finding. The inadequacy of these points makes this manuscript unsuitable for publication at this stage.

      My expertise is cell biology and biochemistry for protein quality control.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript, Ahlstedt et al. study UBXN1, an adaptor of the p97/VCP AAA ATPase, using a cell line deficient for UBXN1. They found that the knockout of UBXN1 activates ER stress and sensitizes cells to ER stress-induced cell death. They used a proteomic approach to analyze the change in the global proteome in UBXN1 knockout cells. Interestingly, they found many proteins are upregulated in UBXN1 knockout cells, which appears to be regulated at a post-transcriptional level. Using puromycin labeling, they found that protein translation appears to be upregulated in UBXN1 knockout cells.

      Major comments:

      The conclusions of the manuscript are generally well supported by experimental data, which are of high quality. The presentation is clear. In my opinion, a few issues need to be addressed to further strengthen their conclusions. 1. The authors need to express UBXN1 and mutants lacking either the UBX or UBA domain in UBXN1 knockout cells to test whether the ER stress phenotype (Figure 1) and the protein upregulation phenotype (Figure 5A-F) can be rescued. This would eliminate the possibility that the reported phenotypes are the off-target effects of CRISPR. 2. For Figure 2, please indicate whether the repeat is a biological replicate or a technical replicate from RT-PCR. 3. In Figure 1A, the authors show that the knockout of UBXN1 causes an upregulation of phosphorylated eIF2alpha, which is known to suppress protein translation globally. In this regard, it is surprising to see the authors also concluded from Figure 7 that there is an upregulation of protein translation in UBXN1 knockout cells. The authors do not provide any explanation on how these seemingly contradictory phenotypes could be seen in the same cells.

      Significance

      p97/VCP is an important member of the AAA ATPase family that has a variety of functions. It interacts with a collection of adaptor proteins that all contain a UBX domain. These adaptors help to link the ATPase to the correct substrate in cells. The best-established function of p97/VCP is its role in ERAD, in which it acts together with its adaptors Ufd1-Npl4 and UBXD8 to extract retrotranslocated proteins from the ER for proteasomal degradation. UBXN1 is not required for ERAD. Instead, it appears to be a negative regulator of ERAD. Previous studies have also implicated it in mitophagy (Mengus C., Autophagy, 2022) and aggresome formation (from this group). Overall, the published studies did not pinpoint the precise cellular function of UBXN1.

      This work characterizes the cellular phenotypes associated with UBXN1 loss of function. The information reported here is important, but the biological significance is limited. This is mainly because the authors entirely rely on a genetic approach. While the reported phenotypes associated with UBXN1 deficiency is solid, it is unclear what the underlying mechanisms are. It is not clear whether or not these phenotypes are interconnected, nor is it clear whether UBXN1 is a direct regulator of these processes. Taking the increased protein translation phenotype as an example, does this indicate UBXN1 is a translation suppressor for those ER-associated proteins? How can UBXN1 selectively inhibit the translation of a subset of proteins? Any evidence that UBXN1 is associated with translating ribosomes?

      In summary, because of the limited mechanistic insights on UBXN1 function, the study may only be interesting to a specialized audience.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      • Reviewer #1 (Evidence, reproducibility and clarity (Required))*

      Summary: ER+ breast cancer is the most common form of cancer. Targeting ER-alpha transcriptional cofactors present one potential method to target the disease. The authors demonstrate that MYSM1 is a histone deubiquitinase and a novel ER cofactor, functioning by up-regulating ER action via histone deubiquitination. Loss of MYSM1 attenuated cell growth and increase breast cancer cell lines' sensitivity to anti-estrogens. The authors, therefore, propose MYSM1 as a potential therapeutic target for endocrine resistance in Breast cancer. *

      *Major Comments: *

      The data as presented is convincing, and the evidence for the role of MYSM1 as a co-activator of ER-alpha is extensive. Given the amount of data, I do not believe any additional experiments are needed. I could not find any description of ethics for the patient samples used.

      Response: Appreciate for the positive response from the reviewer. According to the important suggestions, the ethics approval for the patient specimens have been included in the “Materials and methods” part.

      Minor Comments:

      The data as presented is convincing, and the evidence for the role of MYSM1 as a co-activator of ER-alpha is extensive. Given the amount of data, I do not believe any additional experiments are needed. I could not find any description of ethics for the patient samples used.

      • Response: Appreciate for the positive response from the reviewer. According to the important suggestions, the ethics approval for the patient specimens have been included in the “Materials and methods” part.

        (1)- Figure 4C - is the increase of binding in response to Estrogen significant? It is an important control to show for MCF7 as Fig 4B is in T47D.

      Response: According to the comments from reviewers, we conducted statistical difference analysis in Figure 4C, our results have shown that the recruitment of MYSM1 or ERa on c-Myc ERE region is significantly increased upon E2 treatment in MCF-7 cells.

      *(2)- Figure 6 - Can we clarify that B = Before, A = After *

      Response: Apologize for the unclear description in Figure 6. As clarified by the reviewer, “B” represents before AI treatment, “A” represents after AI treatment. We have included the description in the “Figure legends” section.

      (3)- The use of Fig EV was confusing to me, I assume it means supplementary?

      Response: Thank you for your question. Since our priority affiliate journal is belong to EMBO Press, this manuscript was written according to the relevant requirements and “EV” is the abbreviation of “Expanded View”, which is the same as that of the supplementary figures.

      Reviewer #1 (Significance (Required)): - Discovery science to understand the regulation of the ER is critical in discovering new opportunities to target breast cancer. As far as I can tell this is the first study where MYSM1 is a co-regulator of the ER. - The significance would be greatly increased if the manuscript identified opportuinities to target the ER via this pathway using existing compounds. However, it is reasonable to consider this is beyond the scope of this study.

      Response: According to your valuable suggestion, we thus turned to screen the commercially-available compound in ZINC database to find the compounds that could spatially interact with MYSM1 protein, thereby inhibiting the activity of MYSM1. We plan to perform the additional biological function experiments to explore the effect of MYSM1-targeting compounds on the sensitivity of breast cell lines to anti-estrogen treatment.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      *Below I outline a few suggestions that can help clarify specific aspects of the study. *

      Fig. 2: Ideally a rescue study with a wild-type and catalytically mutant MYSM1 should be performed.

      Response: Thank you for your suggestion. To address this point, we will perform a rescue study with a wild-type and catalytically mutant MYSM1 in the breast cancer cells with stable knocked down of MYSM1 to examine the corresponding protein expression of ERa target genes.

      What is the ERa interactome in the presence and absence of MYSM1? Proteomics studies upon shMYSM1 should be performed. Alternatively, a better characterization of ERa-containing complexes upon shMYSM1 should be performed.

      Response: We agree with the reviewer’s suggestion to functionally address the influence of MYSM1 on ERa interactome. In breast cancer cells with the presence or absence of MYSM1, Co-IP experiments will be conducted to examine the influence of MYSM1 on the interaction between ERa and KAT2B, EP300 and CREBBP complex, which are predicted from String database.

      *Fig. 3: Does MYSM1 control its own protein via deubiquitination? *

      Response: We thank the reviewer for this suggestion and it provides us with a novel perspective upon MYSM1 investigation of whether MYSM1 is the deubiqutination substrate of itself. We would first transfect MYSM1-FL or MYSM1-ΔMPN plasmids and detect whether the endogenous MYSM1 expression changes. Next step, ubiquitination assays will be performed to determine whether MYSM1 control its own protein via deubiquitination.

      *Fig. 4: I propose that the authors perform MYSM1 ChIP-Seq to better show the MYSM1 distribution and overlap with ERa distribution. *

      Response: Appreciate for the reviewer for the valuable and important comments. ChIP-seq will be additionally performed in MCF-7 cells with MYSM1 antibody to examine the MYSM1 occupation on global chromatin in response to E2 and to show its overlap with ERa distribution.

      Fig. 7. Is there a correlation between MYSM1 mRNA and protein levels in cancer and physiological samples? How is the MYSM1 transcriptionally regulated in physiological and cancer cells?

      Response: We thank the reviewer for raising this issue. We will detect MYSM1 mRNA and protein levels in breast cancer and physiological samples, along with physiological and breast cancer cells. Statistics for MYSM1 transcriptional level will be further displayed.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      *Luan et al performed a detailed analysis on the potential coactivator MYSM1 and its role in regulating the expression of ER and ER-dependent genes by being a deubiquitinase of ER as well the repressive mark, H2Aub1. This study has demonstrated an excellent work on the biochemistry aspect of the story with meticulous work on the role of specific domains of MYSM1 and ER and how they interact and how the deubiquitination process is regulated. This was identified initially in Drosophila models, but eventually and promptly explored in multiple breast cancer cell lines and patient samples. *

      *Major Comments: *

        • It is really exciting to see how MYSM1 regulates ER activity and it looks like expression of ER is the first event of regulation by MYSM1's. However, H3Ac would be the very intermediate event of ER activity. This brings a question of whether ER complex itself is affected by MYSM1 - for example, does MYSM1 affect p300, SWI/SNF and other ER-associated coactivator binding? Does it affect chromatin accessibility? Which exact histone mark of H3Ac is affected, as different proteins are involved in the acetylation of histones. *

      Response: Appreciate the reviewer for the valuable questions. The Co-IP and ChIP experiments will be conducted respectively to assess the influence of MYSM1 on the binding of ERa with its associated co-activators and their recruitments on EREs upon MYSM1 knockdown. In addition, ChIP assays will also be performed to determine the effect of MYSM1 on histone modification levels (H3K9ac, H3K27ac, et al). MNase assay will be further performed to examine the function of MYSM1 on chromatin accessibility.

      • The regulation of MYSM1 is mainly shown on promoters of ER regulated genes. However, ER primarily bind to enhancers. Is there any general effect on enhancers? *

      Response: Thank you for your comments. We will perform ChIP assays to detect the regulation of MYSM1 on ERa binding to enhancers of ERa regulated genes in breast cancer cells.

      3. MYSM1 is not the complex usually cells prefer to deubiquitinate H2Aub, but BAP1. What is the role of BAP1 here? Are they redundant or any cross-talk?

      Response: Concerning this interesting question, it has been reported that BAP1 co-activator function correlated with increased H3K4me3 and concomitant deubiquitination of H2Aub at target genes. However, BAP1 has not been reported as an ERa co-regulator so far. Moreover, the interaction between ERa and BAP1 cannot be predicted using the STRING database. Whether BAP1 plays a similar role as MYSM1 in breast cancer and how MYSM1 cooperates with the other DUBs to regulate the genome-wide landscape of histone H2A ubiquitination and the gene expression profiles of different mammalian cell types remains to be elusive. It would be necessary to further study in the future.

      • Effect of MYSM1 on histone marks on the EREs - only one ERE is shown. Multiple EREs should be validated by qPCR. Enhancers should also be focused. Does it affect H3K27ac or H3K4me1?*

      Response: Thank you for your suggestions. ChIP experiments will be conducted to examine the effect of MYSM1 on histone marks on multiple EREs of ERa target genes. Furthermore, we will focus on the effect on MYSM1 on hitone marks (H3K27ac and H3K4me1 levels, et al) on enhancers of ERa target genes.

      • It is clear that MYSM1 is required for the response to antiestrogen therapies. However, the link to resistance is not completely clear. This should be investigated with multiple Tamoxifen resistant cell lines. There is one cell line used, but it is responding to tamoxifen even at lower concentrations in Crystal violet assays. MYSM1 overexpression in nonresponders doesn't mean that their activity is also more. Binding analyses should be analysed in proper Tamoxifen-resistant cell lines. Usually, Tamoxifen is used or works at concentrations from 100 nM - 1 uM in vitro to see the transcriptional effects. However, the authors claim that these are very high concentrations, but actually they aren't the concentrations which promote toxicity.*

      Response: We thank reviewer for the valuable comments. According to your suggestion, we will construct Tamoxifen-resistant MCF-7 or T47D cell lines carrying stable knockdown of MYSM1 to perform the biological function experiments with appropriate Tamoxifen concentrations to further confirm the effect of MYSM1 on the sensitivity of cells to anti-estrogen. In addition, we will examine the expression of MYSM1 and ERa target genes or histone H2Aub levels in nonresponders samples to preliminarily determine the activity of MYSM1 in AI-resistant samples.

      • Discussion about DUB inhibitors - how specific are these? Would they be useful to target MYSM1 activity and thus ER regulation in nonresponders or resistant cell lines? This would add up strongly on the clinical potential of the study. *

      Response: The DUB inhibitors mentioned in discussion are specific to USP14 and UCHL5, but not MYSM1. We thus turned to screen the commercially-available compound in ZINC database to find the compounds that could spatially interact with MYSM1 protein, thereby inhibiting the activity of MYSM1. We plan to perform the additional biological function experiments to explore the effect of MYSM1-targeting compounds on the sensitivity of breast cell lines to anti-estrogen treatment.

      • OPTIONAL: ChIP-seq analyses on the factors would be more informative to look at the unbiased mechanisms including enhancers. *

      Response: We appreciate your important comments. We plan to perform ChIP-seq in MCF-7 cells with MYSM1 antibody to examine the MYSM1 occupation on global chromatin in response to E2 and to show its overlap with ERa distribution.

      • Number of replicates aren't clear in figure legends. Are they biological or technical replicates?*

      Response: We thank for your comments. We have included the number of replicates in the “materials and methods” and “Figure legends” sections.

      *Minor comments: *

      • Please give page numbers and line numbers in the manuscript.*

      Response: We have given page numbers and line numbers in the revised manuscript.

      • Title - "MYSM1 co-activates ER action". "Action" is not needed to be mentioned here.*

      Response: We have modified the title according to the reviewer’s suggestion. The title has been modified as below: “MYSM1 acts as a novel co-activator of ERα via histone and non-histone deubiquitination to confer antiestrogen resistance in breast cancer”.

      • Abstract talks about the work on Drosophila mainly, but apart from the first experiment, everything else is done on mammalian cell culture and also clinically relevant patient samples. *

      Response: Thank you for your important comments. We have modified the abstract contents with breast cancer-derived cell lines instead of Drosophila experimental system.

      • Abstract Line 13 - the work is done many ER regulated genes and not gene.*

      Response: We've modified the text into “ERa-regulated genes” in Abstract section.

      • Pg 6 first paragraph - What/how many mutants were screened here? *

      Response: Thank you for your suggestion. In this study, about 300 fly lines carrying loss of function mutants obtained from Bloomington Stock Center were used for screening.

      • CoIP protocol is not clear. It says followed with manufacturer instructions but no kit information is provided.*

      Response: Apologize for the misrepresentation. Co-IP experiments were performed as that in the previous study. We have corrected the description for CoIP protocol and cited our previous study in the Materials and Methods section.

      • Fig. 1H, etc - can you show a zoomed in or DAPI removed (from merge) picture to show the interactions clearly? It's hard to follow the yellow co-interaction spots as they are hidden behind the blue colour. Any kind of quantification analyses would be wonderful.*

      Response: Thank you for your suggestion, we have merged the red and green colours to precisely show the co-location of MYSM1 and ERa.

      • Fig. EV1H - can you link this with the results from Fig. 1F to discuss if the delta SANT-MYSM1 lost the interaction with ER also in the IF studies? *

      Response: Thank you for your question. Commonly, the fluorescence intensity of confocal results mainly represents the amount of ectopic expression of MYSM1 or ERa, Co-IP experiments more exactly represent the association between proteins. It would be better to pick up the similar cell number in confocal experiments to assess the intensity of protein interaction. We will repeat the confocal again to show the exact fluorescence intensity.

      • Pg 7 - 3-4th line from last - These lines should move above where AF1 and AF2 are introduced. According to Fig. 1G, the interaction of AF2 and MYSM1 is important. Why do we see an effect on AF1 as well in Fig. 2B?*

      Response: Thank you for your comments. The GST ERa-AF1 and GST ERa-AF1 fusion proteins contain 29-180aa and 282-595aa of ERa truncated mutants respectively, while the ERa-AF1 and ERa-AF2 expression plasmids used in luciferase assay in Fig 2B encode 1-282aa and 178-595aa fragments. We can see the ERa-AF1 mutant in Fig 2B contains more amino acid segments than that in GST ERa-AF1 in Fig. 1G. We speculate that MYSM1 may interact with the extra segment (180aa-282aa) to upregulate ERa-AF1 induced transcription. To make it clear, we have included relevant description in the text along with a schematic representation of ERa, ERa-AF1, and ERa-AF2 plasmids used in luciferase reporter assays in Fig EV2B and in materials and methods section.

      • It's confusing to have HEK and breast cancer cell line datasets swapped inconsistently between main figures and Supplementary figures. It would be nice to keep them consistent. *

      Response: We have reverse the order of Fig 2B and Fig EV2C to maintain the consistency of the cell line datasets.

      • RPMI is spelled wrong in Pg. 19. *

      Response: We have corrected the spelling error of RPMI.

      • How long is the estrogen treatment done in each experiment? What is the concentration? This should be mentioned in the figure legends. 12 or 24 hrs time point is a later stage of estrogen receptor induction. Even 1-3 hrs would be sufficient to promote a stronger effect on RNA transcription than that of these later time points. What you are looking at is all effect on later time points and the effect should be observed on earlier time points to observe dynamic and immediate effects. p-values are required for the comparison on no E2 vs E2 here.*

      Response: We appreciate your valuable comment. We have rephrased the description on estrogen treatment in “Material and methods” and “Discussion” parts to more clearly state that E2 (100nM) was given for 4-6h in the experiments detecting transcriptional levels, while 16-18h in the experiments detecting translation levels. In addition, p-values have included to display the change of MYSM1 and ERa recruitment on ERE region upon E2 treatment.

      • Fig. 2G - effect on c-Myc after MYSM1 knockdown is not clear comparing to the previous WB in 2E.*

      Response: We will replace a clear image in Fig 2G to show the change of c-Myc protein expression after MYSM1 knockdown.

      • Pg. 8 - start of the last paragraph - "Unexpectedly, in Co-IP experiment as shown in Figure 2E and F" - These are not Co-IP experiments. *

      Response: Apologize for the writing error. We have re-written the sentence “Unexpectedly, in western blot experiments as shown in Figure 2E and F” in line 229.

      • Fig. 3C and E - Quantification with comparison needed.*

      Response: Relative ERa levels were semi-quantified by densitometry and normalized by the relative expression of 0 hour to compare the ERa degradation rate in Fig 3C and E.

      • Pg 10 - subtitle - multiple gene promoters have been looked, but the subtitle says "gene". Only ERE for c-MYC is looked at, but it says EREs.*

      Response: We have modified the word “genes” and “ERE” in correct forms in the text.

      • MYSM1 is in the nucleus in IF even before E2 treatment, however it is recruited after estrogen treatment in ChIP assays. Explain why there is a difference seen here. What other targets they might bind to in the nucleus?*

      Response: The aim of ChIP experiments is to examine the recruitment of MYSM1 protein on the DNA in the presence of E2, while IF results represent the MYSM1 subcellular distribution in the nucleus even in the absence of E2. MYSM1 has been reported to bind to promoters of numerous target genes, including Ebf1 in B cell progenitors, Pax5 in naïve B cells, miR150 in B1a cells, Id2 in NK cell progenitors, Flt3 in dendritic cell precursors, and Gfi1 in hematopoietic stem and progenitor cells. In our study, we plan to perform ChIP-seq to further show its potential binding elements on the global genome in ER-positive breast cancer.

      • Pg. 10 last line - the sentence should be combined with comma.*

      Response: Thank you for pointing this out, we have combined a comma in the sentence.

      • Fig. 5H - What about Ki67 which is a proliferative marker for cancer cell growth?*

      Response: We will further perform IHC experiments to compare Ki67 expression in the shCtrl and shMYSM1 group of xenograft tumors from nude mice.

      • Pg 12 - Samples were used from patients treated with AI adjuvant treatment. A small summary of details are needed here including n, arm, details of administration, etc even though mentioned in Methods.*

      Response: We have restated the patients’ condition and administration details in lines 342-250.

      • MYSM1 is upregulated in nonresponders, but it is also downregulated in responders which is ignored. What would this mean mechanistically? Don't patients need MYSM1 for the response or after treatment? Does estrogen inhibition regulate MYSM1 upstream? *

      Response: Appreciate for your important questions. The changes of intracellular environment caused by AI treatment are complicated and varied. The mechanism underlying such a phenomenon is largely unclear. We plan to perform western blot and ubiquitination assays to compare the expression and activity of MYSM1 in endocrine-resistant breast cancer cells treated or untreated with endocrine drugs to identify the effects of estrogen inhibition on MYSM1 expression. Moreover, we will detect whether MYSM1 expression is correlated with cell cycle and cell proliferation states.

      • Pg 13 - Is this data associated with any trial? More details are needed. *

      Response: We appreciate for your helpful comment. We have rearranged the logic of the article in order to clarify our reasoning for presenting this data. The modified contents included in lines 367-371 in the modified version are followed below: The regulation of MYSM1 on ERa action indicates that MYSM1 acts as a novel ERa co-activator, suggesting that MYSM1 may play an important role in breast cancer. We then conducted western blot and IHC experiments to estimate MYSM1 expression and the correlation between MYSM1 expression and clinicopathologic factors of the patients.

      • Last lines of Pg 15 - These were already introduced in the results. *

      Response: We thank reviewer for their highlighting this redundancy in our text. We have simplified the text in lines 442-444.

      • Pg 16 - third last line of the first paragraph - makes typo.*

      Response: Thanks for pointing out this typo. We have corrected the word “make” in line 456.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Luan et al performed a detailed analysis on the potential coactivator MYSM1 and its role in regulating the expression of ER and ER-dependent genes by being a deubiquitinase of ER as well the repressive mark, H2Aub1. This study has demonstrated an excellent work on the biochemistry aspect of the story with meticulous work on the role of specific domains of MYSM1 and ER and how they interact and how the deubiquitination process is regulated. This was identified initially in Drosophila models, but eventually and promptly explored in multiple breast cancer cell lines and patient samples.

      Major Comments:

      1. It is really exciting to see how MYSM1 regulates ER activity and it looks like expression of ER is the first event of regulation by MYSM1's. However, H3Ac would be the very intermediate event of ER activity. This brings a question of whether ER complex itself is affected by MYSM1 - for example, does MYSM1 affect p300, SWI/SNF and other ER-associated coactivator binding? Does it affect chromatin accessibility? Which exact histone mark of H3Ac is affected, as different proteins are involved in the acetylation of histones.
      2. The regulation of MYSM1 is mainly shown on promoters of ER regulated genes. However, ER primarily bind to enhancers. Is there any general effect on enhancers?
      3. MYSM1 is not the complex usually cells prefer to deubiquitinate H2Aub, but BAP1. What is the role of BAP1 here? Are they redundant or any cross-talk?
      4. Effect of MYSM1 on histone marks on the EREs - only one ERE is shown. Multiple EREs should be validated by qPCR. Enhancers should also be focused. Does it affect H3K27ac or H3K4me1?
      5. It is clear that MYSM1 is required for the response to antiestrogen therapies. However, the link to resistance is not completely clear. This should be investigated with multiple Tamoxifen resistant cell lines. There is one cell line used, but it is responding to tamoxifen even at lower concentrations in Crystal violet assays. MYSM1 overexpression in nonresponders doesn't mean that their activity is also more. Binding analyses should be analysed in proper Tamoxifen-resistant cell lines. Usually, Tamoxifen is used or works at concentrations from 100 nM - 1 uM in vitro to see the transcriptional effects. However, the authors claim that these are very high concentrations, but actually they aren't the concentrations which promote toxicity.
      6. Discussion about DUB inhibitors - how specific are these? Would they be useful to target MYSM1 activity and thus ER regulation in nonresponders or resistant cell lines? This would add up strongly on the clinical potential of the study.
      7. OPTIONAL: ChIP-seq analyses on the factors would be more informative to look at the unbiased mechanisms including enhancers.
      8. Number of replicates aren't clear in figure legends. Are they biological or technical replicates?

      Minor comments:

      1. Please give page numbers and line numbers in the manuscript.
      2. Title - "MYSM1 co-activates ER action". "Action" is not needed to be mentioned here.
      3. Abstract talks about the work on Drosophila mainly, but apart from the first experiment, everything else is done on mammalian cell culture and also clinically relevant patient samples.
      4. Abstract Line 13 - the work is done many ER regulated genes and not gene.
      5. Pg 6 first paragraph - What/how many mutants were screened here?
      6. CoIP protocol is not clear. It says followed with manufacturer instructions but no kit information is provided.
      7. Fig. 1H, etc - can you show a zoomed in or DAPI removed (from merge) picture to show the interactions clearly? It's hard to follow the yellow co-interaction spots as they are hidden behind the blue colour. Any kind of quantification analyses would be wonderful.
      8. Fig. EV1H - can you link this with the results from Fig. 1F to discuss if the delta SANT-MYSM1 lost the interaction with ER also in the IF studies?
      9. Pg 7 - 3-4th line from last - These lines should move above where AF1 and AF2 are introduced. According to Fig. 1G, the interaction of AF2 and MYSM1 is important. Why do we see an effect on AF1 as well in Fig. 2B?
      10. It's confusing to have HEK and breast cancer cell line datasets swapped inconsistently between main figures and Supplementary figures. It would be nice to keep them consistent.
      11. RPMI is spelled wrong in Pg. 19.
      12. How long is the estrogen treatment done in each experiment? What is the concentration? This should be mentioned in the figure legends. 12 or 24 hrs time point is a later stage of estrogen receptor induction. Even 1-3 hrs would be sufficient to promote a stronger effect on RNA transcription than that of these later time points. What you are looking at is all effect on later time points and the effect should be observed on earlier time points to observe dynamic and immediate effects. p-values are required for the comparison on no E2 vs E2 here.
      13. Fig. 2G - effect on c-Myc after MYSM1 knockdown is not clear comparing to the previous WB in 2E.
      14. Pg. 8 - start of the last paragraph - "Unexpectedly, in Co-IP experiment as shown in Figure 2E and F" - These are not Co-IP experiments.
      15. Fig. 3C and E - Quantification with comparison needed.
      16. Pg 10 - subtitle - multiple gene promoters have been looked, but the subtitle says "gene". Only ERE for c-MYC is looked at, but it says EREs.
      17. MYSM1 is in the nucleus in IF even before E2 treatment, however it is recruited after estrogen treatment in ChIP assays. Explain why there is a difference seen here. What other targets they might bind to in the nucleus?
      18. Pg. 10 last line - the sentence should be combined with comma.
      19. Fig. 5H - What about Ki67 which is a proliferative marker for cancer cell growth?
      20. Pg 12 - Samples were used from patients treated with AI adjuvant treatment. A small summary of details are needed here including n, arm, details of administration, etc even though mentioned in Methods.
      21. MYSM1 is upregulated in nonresponders, but it is also downregulated in responders which is ignored. What would this mean mechanistically? Don't patients need MYSM1 for the response or after treatment? Does estrogen inhibition regulate MYSM1 upstream?
      22. Pg 13 - Is this data associated with any trial? More details are needed.
      23. Last lines of Pg 15 - These were already introduced in the results.
      24. Pg 16 - third last line of the first paragraph - makes typo.

      Significance

      • The study seems to be novel as MYSM1 is never studied before as a coactivator for ER. This expands the wealth of knowledge we have on coactivators which can be explored for its potential targeting to treat advanced breast cancers. The study seems to be support the biochemical aspects of ER interaction, but vaguely uncovers the functional or epigenetic mechanisms.
      • Studies on coactivators/coregulators of ER is very important, as modulating ER alone is not efficient enough to solve the puzzle of antiestrogen resistance. The expression/activity levels of the coregulators are very important as these can be modulated in cancers due to epigenetic reprogramming during resistance and mutations on these genes dominate. They can also serve as potential targets especially when cells don't respond to classical ER targeting therapies.
      • Strength - Biochemical analyses of the interactions and detailed mechanistic information
      • Limitation - Studies are very much limited to the biochemical regulation on ER and not on the molecular or epigenetic mechanisms. Association of MYSM1 in resistance mechanisms isn't clear.
      • Audience - this can be interesting for both basic research and clinical audience. Biochemical knowledge would help people to understand how a nonclassical deubiquitinase can promote nuclear receptor associated transcription by targeting genomic and nongenomic targets simultaneously. Clinically this study would be relevant if the MYSM1-ER interaction can be targeted using DUB inhibitors, as requested.
      • Area of expertise of the reviewer - breast cancer, nuclear receptors, estrogen receptor biology, epigenetics, bioinformatics
    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Below I outline a few suggestions that can help clarify specific aspects of the study.

      Fig. 2: Ideally a rescue study with a wild-type and catalytically mutant MYSM1 should be performed. What is the ERa interactome in the presence and absence of MYSM1? Proteomics studies upon shMYSM1 should be performed. Alternatively, a better characterization of ERa-containing complexes upon shMYSM1 should be performed.

      Fig. 3: Does MYSM1 control its own protein via deubiquitination?

      Fig. 4: I propose that the authors perform MYSM1 ChIP-Seq to better show the MYSM1 distribution and overlap with ERa distribution.

      Fig. 7. Is there a correlation between MYSM1 mRNA and protein levels in cancer and physiological samples? How is the MYSM1 transcriptionally regulated in physiological and cancer cells?

      Significance

      This is a very comprehensive study characterizing the role of MYSM1 deubiquitinase in ERa transcriptional programs in breast cancer systems. Breast cancer therapy is an unmet need and the role of deubiquitinases warrants further investigation. This accounts for the high significance of the story.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      ER+ breast cancer is the most common form of cancer. Targeting ER-alpha transcriptional cofactors present one potential method to target the disease. The authors demonstrate that MYSM1 is a histone deubiquitinase and a novel ER cofactor, functioning by up-regulating ER action via histone deubiquitination.

      Loss of MYSM1 attenuated cell growth and increase breast cancer cell lines' sensitivity to anti-estrogens. The authors, therefore, propose MYSM1 as a potential therapeutic target for endocrine resistance in Breast cancer.

      Major Comments:

      • The data as presented is convincing, and the evidence for the role of MYSM1 as a co-activator of ER-alpha is extensive.
      • Given the amount of data, I do not believe any additional experiments are needed.
      • I could not find any description of ethics for the patient samples used.

      Minor

      • Figure 4C - is the increase of binding in response to Estrogen significant? It is an important control to show for MCF7 as Fig 4B is in T47D.
      • Figure 6 - Can we clarify that B = Before, A = After
      • The use of Fig EV was confusing to me, I assume it means supplementary?

      Significance

      • Discovery science to understand the regulation of the ER is critical in discovering new opportunities to target breast cancer. As far as I can tell this is the first study where MYSM1 is a co-regulator of the ER.
      • The significance would be greatly increased if the manuscript identified opportuinities to target the ER via this pathway using existing compounds. However, it is reasonable to consider this is beyond the scope of this study.
  2. Feb 2023
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We apologize for the delay in resubmitting this revised manuscript. We faced a number of challenges over the previous year unrelated to this project that slowed progress on completing the necessary revisions. However, we are happy to report we have addressed all of the reviewer’s valuable comments in this revised submission through the including of 27 new or improved figure panels and significant adaptations to the text. We highlight these changes below.

      REVIEWER #1.

      Reviewer #1 General Comments. “This study investigates changes in mitochondrial morphology in response to ER stress due to pharmacological inhibition or genetic dysfunction in vitro via two different cell models (MEFs and HeLa cells). The authors specifically implicate the PERK branch of the ER-stress induced pathway in this process based on the observation that mitochondria elongate in response to thapsigargin (Tg) treatment which is blocked by the pathway inhibitors GSK and ISRIB or by genetic ablation of Perk/PERK. Homozygous knockout cells lacking PERK exhibit a fragmented mitochondrial phenotype even in the absence of Tg, which is rescued by expression of the wildtype but not a hypomorphic allele (PERKPSP). One of the more interesting suppositions of this manuscript is that mitochondrial elongation is dependent on the abundance of phosphatidic acid (PA); treatment with Tg provokes an increase in mitochondrial PA, but PA does not accumulate in mitochondria from cells co-treated with GSK, an inhibitor of PERK. This correlation suggests that increased mitochondrial PA accumulation is PERK-dependent. In addition, predicted manipulation of PA levels achieved by a gain of function expression of the lipase Lipin diminished mitochondrial elongation in response to ER stress. Similar results were obtained by PA-PLA1 overexpression, a cytosolic lipase that converts PA into lysophosphatidic acid (LPA). To further describe the mechanistic link between ER stress and mitochondrial morphology, the authors found that PRELID1, which transports PA from the OMM to the intermembrane space, and TIM17A, a component of the protein translocation machinery, were stabilized by loss of PERK or YME1L [and possibly an effect of ATF4], regardless of ER stress via Tg treatment. The authors also report that Tg treatment prevents OPA1 cleavage in cells treated with CCCP, an uncoupler of the proton gradient, suggesting that the effect due to Tg treatment is not through ER stress but decreased mitochondrial fusion via mito-stress induced OPA1 cleavage. To address this, cells were treated with ionomycin which induces mitochondrial fragmentation independent of DRP1. The authors observed an increase in mitochondrial fragmentation in the presence of ionomycin. However, co-treatment with Tg prevented fragmentation, as did overexpression of mitoPLDGFP, which converts cardiolipin to PA on the OMM. These results support a model in which, under ER stress conditions, PERK activation leads to translational attenuation, which leads to a decrease in the steady state levels of PRELID1 via YME1L-dependent degradation and to the accumulation of PA on the OMM. Based on published work this PA accumulation is expected to inhibit the mitochondrial division dynamin, DRP1. The authors tested this by examining the dependence of mitochondrial elongation on PRELID1.”

      “Perturbances in PERK signaling evoke an alteration in mitochondrial morphology and have been extensively reported on, due to their clinical implications on neurodegenerative disorders such as Alzheimer's disease. The present work provides insight into the molecular basis for Stress Induced Mitochondrial Hyperfusion (SIMH) which can be triggered by ER stress. The authors find that this process occurs downstream of PERK and proceeds through accumulation of PA in the OMM by stabilization of Prelid, a mitochondrial resident protein that transports PA from the OMM to IMM for cardiolipin synthesis. The evidence of this work represents a substantial addition to the field of mitochondrial dynamics/SIMH and the Unfolded Protein Response”

      “The novelty of this work is in the inclusion of PRELID1 downstream of PERK signaling pathway for transmission of ER stress to the mitochondria, a process that involves phosphatidic acid (PA). Some studies have addressed how phosphatidic acid is a modulator and a signal in mitochondrial physiology. The role of the lipids in mitochondrial dynamics represent an important and emerging field that needs to be explored in order to understand how metabolites control mitochondrial fusion/fission.”

      __Our Response to Reviewer #1 General Comments. __We thank the reviewer for the positive comments related to our manuscript. We address specific comments brought up by the reviewer in our revised manuscript as highlighted below. We combined specific comments related to the same point in this response to best manage the various points brought up by the reviewer.

      Reviewer #1 Comment #1. __The Reviewer__ brought up the quality of our images numerous times in their review. A few examples are included below.

      Image quality of mitochondria is sub par and the images do not always appear representative of/match the accompanying histograms. When using a single fluorescent marker (mito-GFP), the images should be in grey scale.

      In several images there is substantial background GFP signal resulting in images that are fuzzy on the high quality PDF (printout is unintelligible). Example: Figure 2, Mock+veh. Example: Figure S2I, Mock+veh, +PA-PLA Tg. Example: Figure 3C mock+veh

      Images from prior paper (Lebeau J, et al. 2018) are of much higher quality and is much easier to discern mitochondrial”

      Mitochondrial morphology doesn't appear uniform even within the same cell so how is this accounted for in scoring of mitochondrial morphology? Also, how are authors scoring mitochondrial morphology? Due to the inconsistencies in the chosen images, we feel this manuscript would benefit from addition of a supplementary figure showing examples for each cell model expressing mtGFP (i.e. HeLa and MEFs) depicting the fragmented, tubular and elongated mitochondria. This should be able to be constructed from images already collected for these analyses that weren't already used in the paper.”

      __Our Response to Reviewer #1 Comment #1. __In the revised manuscript, we improved the quality of the images and converted all images to greyscale, as suggested by the reviewer.

      As described in Materials and Methods, we quantified mitochondrial morphology by cell, scoring whether a cell has primarily fragmented, tubular, or elongated mitochondria morphology. This scoring was performed by at least two blinded researchers for at least 3 independent experiments with a total of >60 cells/condition counted across all experiments. Scores for individual experiments were then combined and averaged. Statistics were calculated from these averaged scores. In the revised manuscript, the images presented are representative of each individual condition. In addition, we now include new panels showing the quantification of total cells counted/condition across all individual replicates by a representative researcher for the main text figures (e.g., see Fig. S1C). This provides an alternative representation of the observed phenotype across the individual experiments for these key figures.

      As suggested by the reviewer, in the revised submission we also now provide representative images of cells with primarily fragmented, tubular, and elongated mitochondria for both MEF and HeLa cells (Fig. S1A,B). We appreciate this suggestion as we feel it improves the clarity of our manuscript.

      Reviewer #1 Comment #2. ____“Mitochondria in Perk-/- MEFs are highly fragmented, which is potentially inconsistent with previous work (Lebeau J, et al. 2018) performed by the same research group. Can the authors comments on this discrepancy? Also, do the authors interpret this fragmentation to mean that Perk is required to maintain mitochondrial elongation in the absence of exogenous ER stress (Tg)? If so, the authors should test whether expression of a dominant negative version of DRP1 rescues this fragmented morphology. This would be an additional critical test of the authors' model.”

      “Vehicle treated Perk-/- cells have fragmented morphology which is different from Figure 2F in above publication by same group. Can the authors explain this discrepancy?”

      Our Response to Reviewer #1 Comment #2. In our previous publication, we did not quantify mitochondrial morphology in Perk-deficient cells. However, as reported in this current manuscript, we find that Perk-deficient cells display higher amounts of fragmented mitochondria, as compared to Perk+/+ MEFs (Fig. 1B,C). We quantified this result across 5 independent experiments. Moreover, we found that reconstitution with PERKWT restored tubular mitochondrial morphology in Perk-deficient cells, demonstrating that this effect can be attributed to loss of PERK.

      With respect to the increase in mitochondrial fragmentation observed in Perk-deficient MEFs, we attribute this to reduced mitochondrial membrane potential observed in these cells. We now show that Perk-deficient MEFs show 50% reductions in TMRE staining, as compared to controls. We include this data in the revised manuscript as __Fig. S1D __and the accompanying text below.

      Line 91. “*Perk-/- MEFs showed increases in fragmented mitochondria in the absence of treatment (Fig. 1B,C and Fig. S1C). This corresponds with reductions in the mitochondrial membrane potential in Perk-deficient cells, as measured by tetramethylrhodamine ethyl ester (TMRE) staining (Fig. S1D). This suggests that the increase of fragmentation in these cells can be attributed to mitochondrial depolarization. Tg-induced mitochondrial elongation was also impaired in Perk-deficient cells (Fig. 1B,C and Fig. S1C).”. *

      Reviewer #1 Comment #3. The authors postulate that mitochondrial elongation in response to Perk activation is specifically outer membrane PA-dependent negative regulation of DRP1. However, PA is readily convertible to other phospholipids, notably CL and LPA, both of which positively regulate mitochondrial fusion. The authors do not measure abundance of other phospholipids, particularly LPA or CL in their targeted lipidomics experiments, only PC. The authors need to consider this alternate possibility.”

      Reviewer #1 Comment #3. __Overexpression of PA-PLA1 (which converts PA to LPA) blocks ER stress induced mitochondrial elongation (__Fig. S2L-O). This indicates that the observed Tg-dependent increase in mitochondrial elongation are unlikely to be attributed to increases in LPA. mitoPLD converts CL to PA at the outer mitochondrial membrane. Since mitoPLD overexpression increases mitochondrial elongation (Fig. 3A,B), this again suggests that CL is not a major driver of mitochondrial elongation. These results combined with the sensitivity of ER stress induced mitochondrial elongation to two different PA lipases strongly support a model whereby increases in PA contribute to ER stress induced mitochondrial elongation.

      In the revised manuscript, we include measurements of CL in mitochondria isolated from MEFmtGFP cells treated with Tg and/or depleted of Prelid1. As expected, reductions of PRELID1 decrease CL in isolated mitochondria (Fig. S5C). Treatment with Tg reduced CL to similar extents in mitochondria isolated from MEFmtGFP cells expressing non-silencing shRNA. However, we did not observe further reductions of CL in Prelid1-depleted cells. This is consistent with a model whereby ER stress-dependent reductions in PRELID1 decrease PA trafficking across the IMS and lead to reductions in CL synthesis. These results are discussed in the revised manuscript as below:

      Line 214. “PRELID1 traffics PA from the outer to inner mitochondrial membrane, where it serves as a precursor to the formation of cardiolipin.56,66,67 Thus, reductions in PRELID1 should decrease cardiolipin. To test this, we shRNA-depleted Prelid1 from MEFmGFP cells and monitored cardiolipin in isolated mitochondria in the presence or absence of ER stress. We confirmed efficient PRELID1 knockdown by immunoblotting (Fig. S5A). Importantly, Prelid1 depletion did not alter Tg-induced reductions of TIM17A or increases of ATF4. Further, Tg-dependent increases in PA were observed in Prelid1-depleted MEFmtGFP cells (Fig. S5B). These results indicate that loss of PRELID1 does not impair PERK signaling in these cells. Prelid1 depletion reduced cardiolipin in mitochondria isolated from MEFmtGFP cells (Fig. S5B). Treatment of MEFmtGFP cells expressing non-silencing shRNA with Tg for 3 h also reduced cardiolipin to levels similar to those observed in Prelid1-deficient cells. However, Tg did not further reduce cardiolipin in Prelid-depleted cells. These results are consistent with a model whereby ER stress-dependent reductions in PRELID1 limit PA trafficking across the inner mitochondrial membrane and contribute to reductions in cardiolipin during acute ER stress”

      Reviewer #1 Comment #4. In Figure 5, the authors found very little difference in mitochondrial elongation following knockdown of Prelid1 (comparison between vehicle only conditions), which is potentially inconsistent with their model as decreased PRELID1 should lead to increased OMM PA [and subsequently mitochondrial fusion/elongation]. Therefore, these findings do not adequately support the authors' main model.”

      Our Response to Reviewer #1 Comment #4. __Our model predicts that ER stress induced mitochondrial elongation is mediated through a process involving both PERK kinase-dependent increases in total PA and YME1L-dependent PRELID1 degradation induced downstream of PERK-dependent translation attenuation (see __Fig. 6). Thus, we predict that PRELID1 degradation is required, but not sufficient, to promote mitochondrial elongation. Our results showing that PRELID1 depletion does not basally disrupt mitochondrial morphology or inhibit Tg-induced mitochondrial elongation are consistent with this model. Moreover, we show that genetic Prelid1 depletion rescues Tg-induced mitochondrial elongation in cells co-treated with the PERK signaling inhibitor ISRIB – a compound that blocks PERK-dependent PRELID1 degradation (Fig. 4D), but not increases in PA (Fig. 2B, S2E,F) – in both MEFmtGFP and HeLa cells (Fig. 5A-D). This is consistent with our proposed model whereby PRELID1 degradation is required but not sufficient for promoting mitochondrial elongation. We make this point clearer in the revised manuscript.

      Line 259: “Interestingly, Prelid1 depletion did not basally influence mitochondrial morphology or inhibit Tg-induced mitochondrial elongation (Fig. 5A,B and Fig. S5E). This indicates that reduction of PRELID1, on its own, is not sufficient to increase mitochondrial elongation, likely reflecting the importance of PERK kinase-dependent increases in PA in this process.53”

      Reviewer #1 Comment #5. The manuscript requires more careful editing - there were grammatical and punctuation errors.

      “… the text needs considerable editing to make the language clearer and formal whereas the figures are not always presented in a manner that is easily absorbed by the reader. Representative microscopy images chosen do not always match the corresponding graphical summary and are not clear even on PDF version compared to (Lebeau J, et al. 2018 - full citation above).”

      __Our Response to Reviewer #1 Comment #5. __We carefully edited the revised manuscript.We also confirmed that representative images match the observed quantifications.

      Reviewer #1 Comment #6. In order to further investigate the contribution PRELID1-dependent accumulation of PA in the OMM and its role in mitochondrial elongation, the authors should investigate the abundance of PA (and other lipids) in Perk, Prelid, Yme1l KO mutants. These experiments should quantitatively complement the results in Figure 5. KD of Prelid would be expected to increase mitochondrial elongation but there is no difference compared to WT in Figure 5.”

      Our Response to Reviewer #1 Comment #6. __We thank the reviewer for this comment and now include new data to further demonstrate that co-treatment with the PERK kinase inhibitor GSK2656157 inhibits Tg-dependent increases in PA, while the PERK signaling inhibitor ISRIB does not (__Fig. 2B __and __Fig. S2A-E). Further, it is published that Perk-deletion inhibits ER stress-induced increases in PA, while knockin cells expressing the non-phosphorylatable eIF2a S51A mutant do not (Bobrovnikova-Marjon et al (2012) Mol Cell Biol). This is consistent with a model whereby PERK-dependent increases in PA are attributed to a PERK kinase-dependent, yet eIF2a phosphorylation-independent, mechanism. In the revised manuscript, we include additional quantification of PA across other genetic manipulations, as requested. Notably, we confirm that Lipin1 overexpression reduced basal PA and prevents Tg-dependent increases in PA (Fig. 2C, Fig. S2F,G). Further, we show that PRELID1 depletion does not significantly impact Tg-dependent increases of PA (Fig. S5B).

      However, it is important to highlight that our work is specifically monitoring how acute ER stress-dependent PERK activation impacts mitochondria. Genetic manipulations that target many of the core components of these pathways are well established to globally disrupt many aspects of mitochondrial biology. Thus, these types of genetic manipulations often confound our ability to accurately monitor the contribution of specific stress-responsive signaling pathways in adapting mitochondria in response to acute insults. For example, a recent publication demonstrates that deletion of Perk impairs ER-mitochondrial phospholipid transport through mechanism independent of PERK kinase activity (Sassano et al (2023) J Cell Biol). While this problem can be limited if specific perturbations do not basally disrupt the phenotype being monitored (e.g., PRELID1 depletion does not significantly impact basal mitochondrial morphology; Fig. 5), our ability to evaluate how stress-responsive signaling regulates mitochondria in response to acute insults (e.g., ER stress) still requires temporal control to properly evaluate how these pathways impact aspects of mitochondrial biology. It is for this reason that we paired PRELID1 depletion with pharmacologic interventions that can be used to temporally inhibit PERK signaling (e.g., ISRIB, GSK), allowing us to best define the specific role for PERK-dependent reductions PRELID1 in promoting mitochondrial elongation in response to ER stress.

      Reviewer #1 Comment #7. “Title of the subsection: "hypomorphic PERK variants inhibit ER..." is inappropriate since authors only investigated a single hypomorphic variant (PSP). KO mutant is a null not hypomorphic mutant”

      __Our Response to Reviewer #1 Comment #7. __We agree and have made the suggested change in the revised manuscript.

      Reviewer #1 Comment #8. Can the authors elaborate on the possible biological relevance for the inhibition of OPA1 cleavage via Tg treatment?

      Our Response to Reviewer #1 Comment #8. __We show that Tg pretreatment inhibits mitochondrial depolarization induced by CCCP (__Fig. S3G). Thus, the impaired CCCP-induced, OMA1-dependent OPA1 processing observed in response to pretreatment with Tg likely reflects disruptions in mitochondrial uncoupling afforded by this treatment. We make this point clearer in the revised manuscript.

      Line 170: “However, Tg pretreatment inhibited CCCP-induced proteolytic cleavage of the inner membrane GTPase OPA1 (Fig. 3C) – a biological process upstream of DRP1 in mitochondrial fragmentation induced by membrane uncoupling.43-47,64 This appears to result from Tg-dependent increases in mitochondrial membrane polarity (Fig. S3G), preventing efficient uncoupling in CCCP-treated cells and precluding our ability to determine whether Tg pretreatment directly impairs DRP1 activity under these conditions..”

      Reviewer #1 Comment #9. PRELID is a known short-lived protein; can the authors elaborate on possible additional impact due to 3-6 hr Tg treatment which is sufficient to induce expression of ATF4 target genes (Figure S2G).

      Our Response to Reviewer #1 Comment #9. PRELID1 is a short-lived mitochondrial protein that is rapidly degraded in response to acute ER insults. As demonstrated in Fig. 4 of our manuscript, this reduction is mediated by the IMM protease YME1L downstream of PERK-regulated translation attenuation. This 3-6 h timecourse corresponds with the translational attenuation induced downstream of PERK-dependent eIF2a phosphorylation following treatment with Tg and corresponds with the loss of PRELID1 observed in Tg-treated cells.

      Note that the increase in ATF4 noted by the reviewer reflects the fact that ATF4 (and related proteins) are preferentially translated following eIF2a phosphorylation due to the presence of uORFs in their promoter. Thus, while global protein translation (including PRELID1 translation) is reduced by eIF2a phosphorylation, proteins like ATF4 are selectively translated.

      Reviewer #1 Comment #10. Thapsigargin induced ER stress does not only activate PERK arm of the ISR, correct? Could the authors comment on this?”

      __Our Response to Reviewer #1 Comment #10. __I believe the reviewer is asking whether Tg treatment activates other arms of the integrated stress response (ISR). At the short timepoints used in this work (3-6 h), Tg-dependent increases in ISR signaling can be fully attributed to PERK signaling. This is evident as Perk deletion or inhibition blocks markers of ISR signaling in cells treated with Tg for these shorter timepoints (e.g., __Fig. 4E __of this paper; Harding et al (2002) Mol Cell and Lebeau et al (2018) Cell Reports). While other ISR kinases can be activated in response to more prolonged ER stress, the ISR activation observed in these shorter treatments with Tg are well established to be attributed to PERK activity.

      Tg does induce all three arms of the unfolded protein response (i.e., ATF6, IRE1, and PERK) in the 3-6 h timeframe used in this manuscript. We previously showed that pharmacologic inhibition of ATF6 and IRE1 activity does not influence Tg-induced mitochondrial elongation (Lebeau et al (2018) Cell Reports). However, as reproduced in this manuscript, inhibition of PERK signaling blocks ER stress induced mitochondrial elongation. We make this point clearer in the revised manuscript.

      Line 86. “Pharmacologic inhibition of PERK signaling, but not other arms of the UPR, blocks mitochondrial elongation induced by ER stress.39

      Reviewer #1 Comment #11. “*Addition of drugs and duration (3-6 hrs) likely very toxic to cells; how does this treatment affect viability? Unhealthy cells will have unhealthy mitochondria so it's hard to be confident that subtle morphological differences are specific. Why do authors use 3 hrs Tg-treatment after initially using 6 hrs in Figure 1? Would be helpful to assay toxicity and mitochondrial morphology of thapsigargin and other drugs in WT vs. Perk KO MEFs over time.” *

      __Our Response to Reviewer #1 Comment #11. __Thapsigargin (Tg) is toxic to cells, but apoptosis is observed in cell culture models only after much longer treatments 24-72 h. We are using Tg to monitor how cells respond to acute ER stress. We chose the short 3-6 h timecourse because this is sufficient to induce PERK-dependent translation attenuation independent of cell death. Consistent with this, we observe no reductions in cellular viability or death in the short 3-6 h treatments used in this study. This timecourse is standard in the field when monitoring cellular changes induced by acute ER stress.

      Reviewer #1 Comment #12. Previously, an increase in fragmentation was observed at 0.5 hours but this subsided by 6 hours in WT (Lebeau J, et al. 2018) but is this the same for Perk KO MEFs?

      Our Response to Reviewer #1 Comment #12. __The increase in mitochondrial fragmentation observed following Tg treatment results from the rapid increase of mitochondrial Ca2+ induced by this treatment (Hom et al (2007) J Cell Phy). Consistent with this, we have found that pharmacologic inhibition of PERK signaling using the compound ISRIB, does not inhibit mitochondrial fragmentation in MEFmtGFP cells treated for 30 min with Tg. Since Perk-deficient MEFs already show increased fragmentation (__Fig. 1B,C), monitoring mitochondrial morphology in Perk-deficient cells treated with Tg for 30 min is unlikely to reveal additional insights into the mechanism outlined in this manuscript.

      Reviewer #1 Comment #13. “How much protein was loaded per lane and what was the percentage of polyacrylamide gel? Please clarify details in methodology.”

      Our Response to Reviewer #1 Comment #13. We loaded 100 µg of protein for our immunoblotting experiments. We used 10% or 12% SDS-PAGE gels. We included this information in the revised Materials and Methods.

      Reviewer #1 Comment #14. Figure 1A is virtually identical to Figure 2A (with exception of "MEF A/A") from previous publication: Lebeau J, Saunders JM, Moraes VWR, Madhavan A, Madrazo N, Anthony MC, Wiseman RL. The PERK Arm of the Unfolded Protein Response Regulates Mitochondrial Morphology during Acute Endoplasmic Reticulum Stress. Cell Rep. 2018 Mar 13;22(11):2827-2836. doi: 10.1016/j.celrep.2018.02.055. PMID: 29539413; PMCID: PMC5870888.”

      Our Response to Reviewer #1 Comment #14. __Yes. __Fig. 1A is a cartoon showing PERK-dependent regulation of mitochondria and the specific pharmacologic and genetic manipulations used in this paper to alter this pathway. This is adapted from our previous manuscript (Lebeau et al (2018) Cell Reports). We properly reference this adaptation in the revised manuscript. We feel it is important to show this figure to specifically highlight how different manipulations influence this signaling pathway.

      Reviewer #1 Comment #15. “If the authors' hypothesis is correct, overexpression of PRELID1 should have same effect as overexpression of Lipin”

      Our Response to Reviewer #1 Comment #15. Overexpressed PRELID1 will be sensitive to the same rapid YME1L-dependent degradation observed for the endogenous protein. Thus, overexpressing PRELID1 would be expected to have no effect (or a very minor effect) on mitochondrial morphology in Tg-treated cells. We show that Lipin1 overexpression basally increases mitochondrial fragmentation and blocks Tg-induced mitochondrial elongation (Fig. 2). Identical results were observed in cells overexpressing the alternative PA lipase PA-PLA1 (Fig. S2). We feel that these data, in combination with others shown in our manuscript, strongly support the dependence of this process on PA levels and localization.

      Reviewer #1 Comment #16. What is the selective marker used for HeLa cells expressing mitoPLDGFP since the HeLa parental cell background already expressed a mitochondrial targeted GFP, we assume it was puromycin but this was not clear in the Figure legend or methods? If so, it would be helpful to clarify this. If not, how can the authors observe a difference in morphology if the selectable marker is the same? Indeed, mitoPLDGFP is expressed, detectable by immunoblot, but this is on a cell population level so no way of knowing whether the specific cells scored expressed mitoPLDGFP unless another selectable marker was used (i.e. should have used CFP, RFP, etc.).”

      The authors state "Note the expression of mitoPLDGFP did not impair our ability to accurately monitor mitochondrial morphology in these cells." in Figure 3 legend and again basically the same in S3: "Note that the expression of the mitoPLDGFP did not impair our ability to monitor mitochondrial morphology in these cells." Could the authors explain their reasoning here?

      __Our Response to Reviewer #1 Comment #16. __We co-transfected the mitochondrial localized mitoPLD-GFP with mtGFP in HeLa cells using calcium phosphate transfection. In using this approach, we (and others) have consistently found that this method leads to the efficient transfection of cells with both plasmids. Thus, cells will express both mitoPLD-GFP and mtGFP. We used mitoPLD-GFP because we were reproducing published experiments (Adachi et al (2016) Mol Cell) and we wanted to use the same overexpression plasmid used in these previous studies. It is clear from our images that the presence of GFP-tagged mitoPLD did not influence our ability to accurately monitor mitochondrial elongation in these cells. Further, the robust increase in mitochondrial elongation observed in cells overexpressing mitoPLD-GFP and the further increase in elongation observed upon co-treatment with Tg demonstrate the effectiveness of this assay. This is consistent with published results (Adachi et al (2016) Mol Cell).

      Reviewer #1 Comment #17. ____“Figure S4C: the authors show that Tg treatment on MEF mtGFP cells for distinct hours to determine PRELID levels. However, in the Results section states that this treatment was with CHX, could the authors please check this and correct?”

      Our Response to Reviewer #1 Comment #17. __The data shown in __Fig. S4C from the previous version is in Tg-treated cells. We corrected this in the revised manuscript.

      Reviewer #1 Comment #18. Figure 6: A schematic representation should be a graphic summary of all findings reported in the text with no text except where absolutely essential. A good model should be easily understood without reading any description since all concepts were supported in the main text and by experimentation.”

      *“The model also contains some inaccuracies. The suggestion is that the authors re-do the model and clarify some aspects such as: *

      *The model suggests that ISRIB inhibits PRELID1 directly but there is no evidence for this whereas PRELID is directly regulated by YME1L (also typo here in figure: "Yme1" no "l"). *

      *This model incorrectly uses inhibition symbols; for example, mutation of Perk does not inhibit its activity as GSK does. The KO does not have Perk so cannot perform its function. These are not the same. *

      Similarly, the lipases (Lipin and PA-PLA1) should be depicted instead as altering flux of PA away from OMM not as inhibition.

      The authors should connect PA accumulation in the OMM graphically to mitochondrial elongation [instead of through text]. If the authors consider the numbered labels convenient, please use just the number and place the description in the figure legend instead.”

      Our Response to Reviewer #1 Comment #18. __We have adapted our model shown in __Fig. 6 and the accompanying legend to address points brought up by the reviewer. In particular, because the reviewer found it difficult to follow how specific manipulations impacted specific steps, we removed those parts from the revised figure for clarity.

      __Reviewer #1 Comment #19. __The reviewer made many suggestions to improve the Materials and Methods section of this manuscript in their review, which we do not include here for space considerations.

      __Our Response to Reviewer #1 Comment #19. __We have addressed all of the reviewer’s comments regarding the Materials and Methods section in our revised manuscript.

      Reviewer #1 Comment #20. The reviewer made many suggestions about the presentation of our figures that we do not include here for space considerations.

      Our Response to Reviewer #1 Comment #20. __We have addressed all of the reviewer’s comments regarding the Figures__ in our revised manuscript.

      REVIEWER #2.

      Reviewer #2 General Comments. Previous studies have shown that ER stress increases amounts of phosphatidic acid (PA) (PMID: 22493067) and induces elongation of mitochondria through the protein and lipid kinase PERK (PMID: 29539413, work by Wiseman's lab). The current work reports that ER stress by thapsigargin promotes the degradation of a mitochondrial protein PRELID1, which transfers PA from the outer membrane to the inner membrane. An inner membrane protease, YME1L, was identified as responsible for this degradation of PRELID1. Consistent with the notion that PA is required for the morphological change, overexpression of a PA phosphatase (Lipin) or a PA phospholipase (PA-PLA1) decreased ER-stress-induced mitochondrial elongation.”

      Overall, this manuscript is a nice extension of the authors' previous work and investigates the molecular mechanism underlying the regulation of mitochondrial elongation induced by ER stress. However, the current data do not strongly support the role of PRELID1 in either ER-stress-mediated PA level elevation or mitochondrial elongation, as described in Specific comments. The authors should address these points.”

      __Our Response to Reviewer #2 General Comments. __We thank the reviewer for the thorough and careful read of our manuscript. We address the specific points brought up by the reviewer in our revised manuscript, as described below.

      Reviewer #2 Comment #1. The authors report that PRELID1 knockdown did not promote mitochondrial elongation under either normal or ER-stress conditions (Fig. 5). If PRELID1 plays a vital role in mitochondrial elongation, PRELID1 depletion will restore elongation. Therefore, the presented data argue against the authors' conclusion. Since PRELID1 has multiple homologs, including PRELID3B, which is also a short-lived protein like PRELID1, these homologs might redundantly function in PA transport, especially when PRELID1 is absent. Therefore, the authors need to knock them down simultaneously. This possibility is consistent with the previous authors' data that YME1L depletion decreases ER-stress-induced mitochondrial elongation (PMID: 29539413). YME1L knockdown may rescue multiple short-lived PRELID1 homologs.”

      Our Response to Reviewer #2 Comment #1. __Our model indicates that ER stress-dependent increases in mitochondrial elongation require two steps: 1) PERK kinase-dependent increases in total PA and 2) YME1L-dependent degradation of PRELID1 downstream of PERK-dependent translation attenuation. Thus, it is not surprising that PRELID1 depletion did not induce mitochondrial elongation on its own. However, we do demonstrate that depletion of PRELID1 rescues Tg-induced mitochondrial elongation in cells co-treated with the PERK signaling inhibitor ISRIB – a compound that specifically blocks Tg-dependent PRELID1 degradation, but not PERK kinase dependent increases in total PA (__Fig. 6). This demonstrates that PRELID1 reductions are required, but not sufficient for promoting mitochondrial elongation. We make this point more clear in the revised manuscript.

      Line 259: “Interestingly, Prelid1 depletion did not basally influence mitochondrial morphology or inhibit Tg-induced mitochondrial elongation (Fig. 5A,B and Fig. S5E). This indicates that reduction of PRELID1, on its own, is not sufficient to increase mitochondrial elongation, likely reflecting the importance of PERK kinase-dependent increases in PA in this process.53”

      With respect to PRELID3B/SLMO2. This lipid transporter is primarily associated with trafficking phosphatidylserine (PS) from the outer to the inner mitochondrial membrane, where it is then converted to phosphatidylethanolamine (PE). As alluded to by the reviewer, we found that SLMO2, like PRELID1, is also a short-lived mitochondrial protein that is rapidly degraded by YME1L downstream of PERK-dependent translation attenuation. We have also found that Tg treatment disrupts mitochondrial PE levels through a PERK-dependent mechanism on a similar timescale to that observed for PA changes. However, shRNA depletion of SLMO2 in HeLa cells – a condition that mimics the reductions in SLMO2 observed during ER stress – increases basal mitochondrial fragmentation and inhibits Tg-induced mitochondrial elongation. Since chronic, genetic reductions in SLMO2 (which mirror the acute reduction in SLMO2 observed during ER stress) show opposite impacts on mitochondrial morphology to that observed upon Tg treatment, we interpreted this result to indicate that SLMO2 reductions are likely not involved in PERK-dependent regulation of mitochondrial elongation during acute ER stress. In contrast, depletion of PRELID1 is sufficient to rescue Tg-induced mitochondrial elongation in cells co-treated with ISRIB (Fig. 5A-D) – a compound that selectively blocks ER stress-dependent reductions in PRELID1. This implicates reductions in PRELID1 in this process. We are continuing to define the specific impact of PERK-dependent regulation of SLMO2 on mitochondrial morphology, ultrastructure, and/or function in work outside the scope of this current manuscript, but we felt it most appropriate to focus this manuscript on PA-dependent morphology remodeling based on the presented data.

      Reviewer #2 Comment #2. “Another possibility is that since a previous study has shown that PERK-produced PA activates the mTOR-AKT pathway (PMID: 22493067), this signaling pathway may contribute to mitochondrial morphology in addition to PRELID1. The authors should test the combined effects of mTOR-AKT inhibition in ER-stress-induced mitochondrial elongation.”

      Our Response to Reviewer #2 Comment #2. __As highlighted by the reviewer, PERK-dependent increases in PA can influence mTOR and AKT activity. To test this, we monitored mTOR-dependent S6K phosphorylation and AKT phosphorylation in MEFmtGFP and HeLa cells treated with Tg for 3 h. While we did observe increases in S6K phosphorylation in Tg-treated MEFmtGFP cells, mTOR activity was not changed in Tg-treated HeLa cells. AKT phosphorylation was not affected in MEFmtGFP or HeLa cells (not shown). We include these mTOR data in the revised manuscript (see __Fig. S3C,D). Since we observe PERK-dependent mitochondrial elongation in both MEFmtGFP and HeLa cells, we interpret these results to indicate that PA-dependent increases in mTOR activity is not primarily responsible for ER stress dependent increases in mitochondrial elongation across cell types. We describe these results in the revised manuscript.

      Line 156: “In contrast, PERK-dependent increases in PA can activate mTOR during ER stress.53 Consistent with this, we observe Tg-dependent increases in mTOR-dependent S6K phosphorylation in MEFmtGFP cells (Fig. S3C). However, despite increasing PA and promoting mitochondrial elongation, Tg did not increase S6K phosphorylation in HeLa cells (Fig. S3D). These results suggest that PERK-dependent alterations in mTOR activity are unlikely to be primary contributors to ER stress induced mitochondrial elongation across cell types.”

      Reviewer #2 Comment #3. “The authors' model suggests the loss of PRELID1 increases PA levels in the mitochondrial outer membrane (Fig. 6). The authors should test PA levels in mitochondria isolated from cells depleted for PRELID1 and its homologs (simultaneously). Since PA that is transported to the inner membrane is actively converted to other phospholipids, such as CDP-DAG, elevated levels of PA are likely seen if the outer membrane to inner membrane transport is blocked.

      Our Response to Reviewer #2 Comment #3. __We agree with the reviewer it is important to evaluate how PERK-dependent degradation of PRELID1 impacts other phospholipids dependent on PA trafficking to the IM where it can be converted to other lipids, most notably cardiolipin (CL). In the revised manuscript, we now show measurements of CL in MEFmtGFP cells treated with Tg and/or depleted of Prelid1. As expected, reductions in PRELID1 decrease CL in isolated mitochondria (__Fig. S5C). Treatment with Tg reduced CL to similar extents in MEFmtGFP-treated cells expressing non-silencing shRNA. However, we did not observe further reductions of CL in Prelid1-depleted cells. This is consistent with a model whereby ER stress-dependent reductions in PRELID1 decrease PA trafficking across the IMS and lead to reductions in CL synthesis. These results are discussed in the revised manuscript as below:

      Line 214. “PRELID1 traffics PA from the outer to inner mitochondrial membrane, where it serves as a precursor to the formation of cardiolipin.56,66,67* Thus, reductions in PRELID1 should decrease cardiolipin. To test this, we shRNA-depleted Prelid1 from MEFmGFP cells and monitored cardiolipin in isolated mitochondria in the presence or absence of ER stress. We confirmed efficient PRELID1 knockdown by immunoblotting (Fig. S5A). Importantly, Prelid1 depletion did not alter Tg-induced reductions of TIM17A or increases of ATF4. Further, Tg-dependent increases in PA were observed in Prelid1-depleted MEFmtGFP cells (Fig. S5B). These results indicate that loss of PRELID1 does not impair PERK signaling in these cells. Prelid1 depletion reduced cardiolipin in mitochondria isolated from MEFmtGFP cells (Fig. S5C). Treatment of MEFmtGFP cells expressing non-silencing shRNA with Tg for 3 h also reduced cardiolipin to levels similar to those observed in Prelid1-deficient cells. However, Tg did not further reduce cardiolipin in Prelid-depleted cells. These results are consistent with a model whereby ER stress-dependent reductions in PRELID1 limit PA trafficking across the inner mitochondrial membrane and contribute to reductions in cardiolipin during acute ER stress.” *

      We are continuing to define how PERK signaling influences other mitochondrial phospholipids during conditions of ER stress in work outside the scope of this manuscript. Notably, we are continuing to evaluate how ER stress and PERK signaling influences aspects of cardiolipin synthesis in response to both acute and chronic ER stress. Further, as discussed above, we are determining how PERK-dependent reductions in PRELID3B/SLMO2 influence PS trafficking and subsequent PE synthesis at the IM and the implications of these changes on mitochondrial biology. Initial experiments indicate that PERK signaling reduces PE during ER stress, indicating that other phospholipids can be influenced by this pathway. However, we view this work as being outside the scope of the current manuscript focused specifically on defining the impact of PA remodeling on mitochondrial morphology.

      Reviewer #2 Comment #4. “The authors need to test whether Lipin and PA-PLA1 overexpression decreased PA levels in mitochondria treated with thapsigargin. The current manuscript only shows the effect of Lipin and PA-PLA1 on PA levels in whole-cell lysate without ER stress (Fig. S2F).”

      Our Response to Reviewer #2 Comment #4. __We agree. In the revised manuscript, we now show that Lipin overexpression blocks Tg-dependent increases in PA (__Fig. 2C). Identical experiments are also shown for Prelid1-depleted cells (Fig. S5B).

      Reviewer #2 Comment #5. “The authors propose that PA inhibits DRP1 in mitochondrial division under ER stress. It has been shown that PA blocks DRP1 after recruitment to mitochondria (PMID: 27635761). Does thapsigargin induce mitochondrial accumulation of DRP1?”

      Our Response to Reviewer #2 Comment #5. __The reviewer is correct that our results suggest that ER stress promotes mitochondrial elongation through a model involving PA-dependent inhibition of mitochondrial fission at the outer membrane. In the revised manuscript, we now show that Tg treatment does not significantly influence the recovery of DRP1 in mitochondrial fractions (__Fig. S3A). Further, we recapitulate results from previous publications showing that Tg does not significantly influence DRP1 phosphorylation at either S637 or S616 (Fig. S3B). This indicates that DRP1 localization and posttranslational modification does not appear affected by Tg treatment. However, we do show that Tg pretreatment inhibits DRP1-dependent mitochondrial fission induced by ionomycin (Fig. 3D,E). Combined with other results, our data are consistent with a model whereby PERK-dependent increases in PA and PRELID1 degradation leads to the accumulation of PA on the OM where it can inhibit DRP1 activity (Fig. 6). We make this point clearer in the revised manuscript.

      Line 154: “However, as reported previously39, Tg did not influence DRP1 phosphorylation at either S637 or S616 (Fig. S3A) or alter the amount of DRP1 enriched in mitochondrial fractions from MEFmtGFP cells (Fig. S3B).”

      REVIEWER #3.

      Reviewer #3 General Comments. The authors investigated signaling pathways and molecular mechanisms leading to mitochondrial dysfunction after ER stress. This study extends their previous publication (Lebeau et al., 2018) by providing evidence on how PERK regulates mitochondrial structure and function in response to ER stress. Some key findings are that PERK induces mitochondrial elongation by increasing and retaining phosphatidic acid (PA) in the outer mitochondrial membrane which is important for cell adaptation and survival. This process requires PERK-dependent translational attenuation through YME1L-PRELID dependent mechanism. This is a very strong study with compelling evidence.”

      This study adds to our current knowledge on how ER stress affects mitochondria adaptation and proteostasis, which may contribute to the pathogenesis and progression of numerous neurodegenerative diseases. Specifically, this study establishes a new role for PERK in mitochondrial adaptive remodeling focused on trafficking and accumulation of phospholipids. Identifying molecular markers like PERK and its involvement with PRELID, YME1L, and PA to regulate mitochondrial remodeling during ER stress is important to understand the effects of drug-targeting this ER stress-responsive factor.”

      __Our Response to Reviewer #3 General Comments. __We thank the reviewer for the enthusiastic comments about our manuscript. We address the reviewers remaining concerns as outlined below.

      Reviewer #3 Comment #1. “Only one minor point should be addressed: In Fig S2G & H, the authors indicate that "Lipin1 overexpression did not significantly influence increases of ATF4 protein". The blots show a decrease in ATF4 in Tg-treated HeLa cells. The same effect is observed in Fig. S3F showing reduction in ATF4, but the authors described it as the "overexpression of mitoPLD did not significantly impact other aspects of PERK signaling in Tg-treated cells". The quantification of the blots or indication that the blots were quantified should be clarified and noted (at least in the legend).”

      Our Response to Reviewer #3 Comment #1. __We agree. We now include quantification of ATF4 in immunoblots from HeLA cells overexpressing lipin1 and treated with Tg (__Fig. S2J). As we suggested, these results confirm that Tg treatment does not significantly influence ATF4 expression in these cells. In addition, we now include additional data showing that lipin overexpression does not significantly reduce Tg-dependent expression of ISR target genes including Asns or Chop (Fig. S2I). This further supports other findings in the manuscript showing that different manipulations do not significantly impact ISR signaling (evident by ATF4 expression or TIM17A or PRELID1 degradation).

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The authors investigated signaling pathways and molecular mechanisms leading to mitochondrial dysfunction after ER stress. This study extends their previous publication (Lebeau et al., 2018) by providing evidence on how PERK regulates mitochondrial structure and function in response to ER stress. Some key findings are that PERK induces mitochondrial elongation by increasing and retaining phosphatidic acid (PA) in the outer mitochondrial membrane which is important for cell adaptation and survival. This process requires PERK-dependent translational attenuation through YME1L-PRELID dependent mechanism.

      This is a very strong study with compelling evidence. Only one minor point should be addressed: In Fig S2G & H, the authors indicate that "Lipin1 overexpression did not significantly influence increases of ATF4 protein". The blots show a decrease in ATF4 in Tg-treated HeLa cells. The same effect is observed in Fig. S3F showing reduction in ATF4, but the authors described it as the "overexpression of mitoPLD did not significantly impact other aspects of PERK signaling in Tg-treated cells". The quantification of the blots or indication that the blots were quantified should be clarified and noted (at least in the legend).

      Significance

      This study adds to our current knowledge on how ER stress affects mitochondria adaptation and proteostasis, which may contribute to the pathogenesis and progression of numerous neurodegenerative diseases. Specifically, this study establishes a new role for PERK in mitochondrial adaptive remodeling focused on trafficking and accumulation of phospholipids. Identifying molecular markers like PERK and its involvement with PRELID, YME1L, and PA to regulate mitochondrial remodeling during ER stress is important to understand the effects of drug-targeting this ER stress-responsive factor.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      Previous studies have shown that ER stress increases amounts of phosphatidic acid (PA) (PMID: 22493067) and induces elongation of mitochondria through the protein and lipid kinase PERK (PMID: 29539413, work by Wiseman's lab). The current work reports that ER stress by thapsigargin promotes the degradation of a mitochondrial protein PRELID1, which transfers PA from the outer membrane to the inner membrane. An inner membrane protease, YME1L, was identified as responsible for this degradation of PRELID1. Consistent with the notion that PA is required for the morphological change, overexpression of a PA phosphatase (Lipin) or a PA phospholipase (PA-PLA1) decreased ER-stress-induced mitochondrial elongation.

      Specific comments

      1. The authors report that PRELID1 knockdown did not promote mitochondrial elongation under either normal or ER-stress conditions (Fig. 5). If PRELID1 plays a vital role in mitochondrial elongation, PRELID1 depletion will restore elongation. Therefore, the presented data argue against the authors' conclusion. Since PRELID1 has multiple homologs, including PRELID3B, which is also a short-lived protein like PRELID1, these homologs might redundantly function in PA transport, especially when PRELID1 is absent. Therefore, the authors need to knock them down simultaneously. This possibility is consistent with the previous authors' data that YME1L depletion decreases ER-stress-induced mitochondrial elongation (PMID: 29539413). YME1L knockdown may rescue multiple short-lived PRELID1 homologs.
      2. Another possibility is that since a previous study has shown that PERK-produced PA activates the mTOR-AKT pathway (PMID: 22493067), this signaling pathway may contribute to mitochondrial morphology in addition to PRELID1. The authors should test the combined effects of mTOR-AKT inhibition in ER-stress-induced mitochondrial elongation.
      3. The authors' model suggests the loss of PRELID1 increases PA levels in the mitochondrial outer membrane (Fig. 6). The authors should test PA levels in mitochondria isolated from cells depleted for PRELID1 and its homologs (simultaneously). Since PA that is transported to the inner membrane is actively converted to other phospholipids, such as CDP-DAG, elevated levels of PA are likely seen if the outer membrane to inner membrane transport is blocked.
      4. The authors need to test whether Lipin and PA-PLA1 overexpression decreased PA levels in mitochondria treated with thapsigargin. The current manuscript only shows the effect of Lipin and PA-PLA1 on PA levels in whole-cell lysate without ER stress (Fig. S2F).
      5. The authors propose that PA inhibits DRP1 in mitochondrial division under ER stress. It has been shown that PA blocks DRP1 after recruitment to mitochondria (PMID: 27635761). Does thapsigargin induce mitochondrial accumulation of DRP1?

      Significance

      Overall, this manuscript is a nice extension of the authors' previous work and investigates the molecular mechanism underlying the regulation of mitochondrial elongation induced by ER stress. However, the current data do not strongly support the role of PRELID1 in either ER-stress-mediated PA level elevation or mitochondrial elongation, as described in Specific comments. The authors should address these points.

      Audience ER stress, mitochondrial dynamics, membrane lipids, proteases

      My Expertise mitochondrial dynamics, lipid biology

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      This study investigates changes in mitochondrial morphology in response to ER stress due to pharmacological inhibition or genetic dysfunction in vitro via two different cell models (MEFs and HeLa cells). The authors specifically implicate the PERK branch of the ER-stress induced pathway in this process based on the observation that mitochondria elongate in response to thapsigargin (Tg) treatment which is blocked by the pathway inhibitors GSK and ISRIB or by genetic ablation of Perk/PERK. Homozygous knockout cells lacking PERK exhibit a fragmented mitochondrial phenotype even in the absence of Tg, which is rescued by expression of the wildtype but not a hypomorphic allele (PERKPSP). One of the more interesting suppositions of this manuscript is that mitochondrial elongation is dependent on the abundance of phosphatidic acid (PA); treatment with Tg provokes an increase in mitochondrial PA, but PA does not accumulate in mitochondria from cells co-treated with GSK, an inhibitor of PERK. This correlation suggests that increased mitochondrial PA accumulation is PERK-dependent. In addition, predicted manipulation of PA levels achieved by a gain of function expression of the lipase Lipin diminished mitochondrial elongation in response to ER stress. Similar results were obtained by PA-PLA1 overexpression, a cytosolic lipase that converts PA into lysophosphatidic acid (LPA). To further describe the mechanistic link between ER stress and mitochondrial morphology, the authors found that PRELID1, which transports PA from the OMM to the intermembrane space, and TIM17A, a component of the protein translocation machinery, were stabilized by loss of PERK or YME1L [and possibly an effect of ATF4], regardless of ER stress via Tg treatment. The authors also report that Tg treatment prevents OPA1 cleavage in cells treated with CCCP, an uncoupler of the proton gradient, suggesting that the effect due to Tg treatment is not through ER stress but decreased mitochondrial fusion via mito-stress induced OPA1 cleavage. To address this, cells were treated with ionomycin which induces mitochondrial fragmentation independent of DRP1. The authors observed an increase in mitochondrial fragmentation in the presence of ionomycin. However, co-treatment with Tg prevented fragmentation, as did overexpression of mitoPLDGFP, which converts cardiolipin to PA on the OMM. These results support a model in which, under ER stress conditions, PERK activation leads to translational attenuation, which leads to a decrease in the steady state levels of PRELID1 via YME1L-dependent degradation and to the accumulation of PA on the OMM. Based on published work this PA accumulation is expected to inhibit the mitochondrial division dynamin, DRP1. The authors tested this by examining the dependence of mitochondrial elongation on PRELID1.

      Major comments:

      1. Are the key conclusions convincing? A considerable amount of work was performed by the authors in preparation of this manuscript and while we find the model exciting, there are several issues that need to be addressed in order for the model to be sufficiently supported.
        1. Image quality of mitochondria is sub par and the images do not always appear representative of/match the accompanying histograms. When using a single fluorescent marker (mito-GFP), the images should be in grey scale.
        2. Mitochondria in Perk-/- MEFs are highly fragmented, which is potentially inconsistent with previous work (Lebeau J, et al. 2018) performed by the same research group. Can the authors comments on this discrepancy? Also, do the authors interpret this fragmentation to mean that Perk is required to maintain mitochondrial elongation in the absence of exogenous ER stress (Tg)? If so, the authors should test whether expression of a dominant negative version of DRP1 rescues this fragmented morphology. This would be an additional critical test of the authors' model.
        3. The authors postulate that mitochondrial elongation in response to Perk activation is specifically outer membrane PA-dependent negative regulation of DRP1. However, PA is readily convertible to other phospholipids, notably CL and LPA, both of which positively regulate mitochondrial fusion. The authors do not measure abundance of other phospholipids, particularly LPA or CL in their targeted lipidomics experiments, only PC. The authors need to consider this alternate possibility.
        4. In Figure 5, the authors found very little difference in mitochondrial elongation following knockdown of Prelid1 (comparison between vehicle only conditions), which is potentially inconsistent with their model as decreased PRELID1 should lead to increased OMM PA [and subsequently mitochondrial fusion/elongation].
        5. The manuscript requires more careful editing - there were grammatical and punctuation errors.
      2. Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? In Figure 5, the authors found very little difference in mitochondrial elongation following knockdown of Prelid1 (comparison between vehicle only conditions), which is potentially inconsistent with their model as decreased PRELID1 should lead to increased OMM PA [and subsequently mitochondrial fusion/elongation]. Therefore, these findings do not adequately support the authors' main model.
      3. Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.
        • a. In order to further investigate the contribution PRELID1-dependent accumulation of PA in the OMM and its role in mitochondrial elongation, the authors should investigate the abundance of PA (and other lipids) in Perk, Prelid, Yme1l KO mutants. These experiments should quantitatively complement the results in Figure 5. KD of Prelid would be expected to increase mitochondrial elongation but there is no difference compared to WT in Figure 5.
        • b. The main premise is that ER-stress activates PERK which in turn leads to increased abundance of PA at the OMM in a PRELID1-dependent manner. PA has been shown to inactivate DRP1, resulting in decreased fission (and mitochondrial elongation). The authors should test their model by expressing a dominant negative allele of DRP1 to see if it rescues the fragmented morphology of Perk KO mutant.
      4. Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.
        • a. The authors have all the necessary cell line and methods in hand, so we consider these experiments to be doable.
      5. Are the data and the methods presented in such a way that they can be reproduced?
        • a. Not all are described in a way that could be easily reproduced (see specific comments below).
      6. Are the experiments adequately replicated and statistical analysis adequate?
        • a. The foundation of this paper is based on qualitative analysis of confocal fluorescence microscopy images, but the chosen images are often not of high quality so performing statistical analysis in these cases is misleading. Also, each imaging-based experiment was performed three times, but with only 20 cells for each replicate. Does this represent sufficient statistical power?

      Specific major comments by section

      Introduction - No additional major comments.

      Results - Title of the subsection: "hypomorphic PERK variants inhibit ER..." is inappropriate since authors only investigated a single hypomorphic variant (PSP). KO mutant is a null not hypomorphic mutant.

      Discussion - Can the authors elaborate on the possible biological relevance for the inhibition of OPA1 cleavage via Tg treatment? - PRELID is a known short-lived protein; can the authors elaborate on possible additional impact due to 3-6 hr Tg treatment which is sufficient to induce expression of ATF4 target genes (Figure S2G). - Thapsigargin induced ER stress does not only activate PERK arm of the ISR, correct? Could the authors comment on this?

      Methods - Addition of drugs and duration (3-6 hrs) likely very toxic to cells; how does this treatment affect viability? Unhealthy cells will have unhealthy mitochondria so it's hard to be confident that subtle morphological differences are specific. Why do authors use 3 hrs Tg-treatment after initially using 6 hrs in Figure 1? Would be helpful to assay toxicity and mitochondrial morphology of thapsigargin and other drugs in WT vs. Perk KO MEFs over time. Previously, an increase in fragmentation was observed at 0.5 hours but this subsided by 6 hours in WT (Lebeau J, et al. 2018) but is this the same for Perk KO MEFs? Figures/supplementary figures - General: - In several images there is substantial background GFP signal resulting in images that are fuzzy on the high quality PDF (printout is unintelligible). - Example: Figure 2, Mock+veh. - Example: Figure S2I, Mock+veh, +PA-PLA Tg. - Example: Figure 3C mock+veh. - Mitochondrial morphology doesn't appear uniform even within the same cell so how is this accounted for in scoring of mitochondrial morphology? Also, how are authors scoring mitochondrial morphology? Due to the inconsistencies in the chosen images, we feel this manuscript would benefit from addition of a supplementary figure showing examples for each cell model expressing mtGFP (i.e. HeLa and MEFs) depicting the fragmented, tubular and elongated mitochondria. This should be able to be constructed from images already collected for these analyses that weren't already used in the paper. - Images from prior paper (Lebeau J, et al. 2018) are of much higher quality and is much easier to discern mitochondrial phenotype. - How much protein was loaded per lane and what was the percentage of polyacrylamide gel? Please clarify details in methodology. - Figure 1: - See general comments. - Figure 1A is virtually identical to Figure 2A (with exception of "MEF A/A") from previous publication: Lebeau J, Saunders JM, Moraes VWR, Madhavan A, Madrazo N, Anthony MC, Wiseman RL. The PERK Arm of the Unfolded Protein Response Regulates Mitochondrial Morphology during Acute Endoplasmic Reticulum Stress. Cell Rep. 2018 Mar 13;22(11):2827-2836. doi: 10.1016/j.celrep.2018.02.055. PMID: 29539413; PMCID: PMC5870888. - Figure 1B: the complemented Perk KO + vehicle should be similar to WT vehicle, but those images look quite different, even so, the respective bars are equal. - Vehicle treated Perk-/- cells have fragmented morphology which is different from Figure 2F in above publication by same group. Can the authors explain this discrepancy? - Figure S1: - No additional major comments. - Figure 2: - See general comments. - If the authors' hypothesis is correct, overexpression of PRELID1 should have same effect as overexpression of Lipin. ● Figure S2: - Images in Figure S2I are not representative of corresponding bars in Figure S2J (specifically vehicle treated panels). The "+PA-PLA1+Tg" panel instead appears fragmented (in comparison with other images). - Do authors have clearer images to substitute for CHX-treated panels? ● Figure 3: - What is the selective marker used for HeLa cells expressing mitoPLDGFP since the HeLa parental cell background already expressed a mitochondrial targeted GFP, we assume it was puromycin but this was not clear in the Figure legend or methods? If so, it would be helpful to clarify this. If not, how can the authors observe a difference in morphology if the selectable marker is the same? Indeed, mitoPLDGFP is expressed, detectable by immunoblot, but this is on a cell population level so no way of knowing whether the specific cells scored expressed mitoPLDGFP unless another selectable marker was used (i.e. should have used CFP, RFP, etc.). - The authors state "Note the expression of mitoPLDGFP did not impair our ability to accurately monitor mitochondrial morphology in these cells." in Figure 3 legend and again basically the same in S3: "Note that the expression of the mitoPLDGFP did not impair our ability to monitor mitochondrial morphology in these cells." Could the authors explain their reasoning here? - Figure S3: - Same as in Figure 3; "mock+Veh" appears more fragmented than tubular so is there a more representative image that the authors can show? - Figure 4: - No major comments. - Figure S4: - Figure S4C: the authors show that Tg treatment on MEF mtGFP cells for distinct hours to determine PRELID levels. However, in the Results section states that this treatment was with CHX, could the authors please check this and correct? - Figure 5: - 5C: PLKO NS shRNA +Tg appears more fragmented than tubular; do the authors have a more representative image? - Figure S5: - No major comments. - Figure 6: - A schematic representation should be a graphic summary of all findings reported in the text with no text except where absolutely essential. A good model should be easily understood without reading any description since all concepts were supported in the main text and by experimentation. - The model also contains some inaccuracies. The suggestion is that the authors re-do the model and clarify some aspects such as: - The model suggests that ISRIB inhibits PRELID1 directly but there is no evidence for this whereas PRELID is directly regulated by YME1L (also typo here in figure: "Yme1" no "l"). - This model incorrectly uses inhibition symbols; for example, mutation of Perk does not inhibit its activity as GSK does. The KO does not have Perk so cannot perform its function. These are not the same. Similarly, the lipases (Lipin and PA-PLA1) should be depicted instead as altering flux of PA away from OMM not as inhibition. - The authors should connect PA accumulation in the OMM graphically to mitochondrial elongation [instead of through text]. If the authors consider the numbered labels convenient, please use just the number and place the description in the figure legend instead.

      Minor comments:

      1. Specific experimental issues that are easily addressable.
        • a. Yes, please see specific examples below.
      2. Are prior studies referenced appropriately?
        • a. References appeared adequate except in the Materials and Methods section (see specific examples below).
      3. Are the text and figures clear and accurate?
        • a. No, the text needs considerable editing to make the language clearer and formal whereas the figures are not always presented in a manner that is easily absorbed by the reader. Representative microscopy images chosen do not always match the corresponding graphical summary and are not clear even on PDF version compared to (Lebeau J, et al. 2018 - full citation above).
      4. Do you have suggestions that would help the authors improve the presentation of their data and conclusions?
        • a. Yes, please see specific examples below.

      Specific minor comments by section

      Introduction - This section contains minor grammatical errors and awkward writing which should be rephrased to be more concise. For example: - Incorrect use of commas (ex: absence of commas on page 3, bottom of paragraph 3).

      Results - Overall, this section contains many grammatical errors and awkward language but these are unevenly distributed as some subsections are well written and thoroughly edited whereas others need closer inspection. For example: - No period at end of first subsection title; this should be consistent throughout. - Text not consistently written in past tense/passive voice. - Post-translational should be hyphenated (page 5, 2x on bottom of page). - The use of dashes to conjoin thoughts is too casual and sentences should be restructured with the aid of parentheses or semicolons only when necessary (ex: page 6, paragraph 2 through page 7). - Homogenize the use of hyphens in all sentences such as: ER stress-induced, ER stress-dependent.

      Discussion

      • Minor grammatical errors and awkward wording throughout; description of ideas should be more concisely written. For example:
        • Page 13, paragraph 1: "Thus, an improved understanding of how different PERK-dependent alterations to mitochondrial morphology and function integrate will provide additional insight to the critical importance of this pathway in regulating mitochondria during conditions of ER stress."
        • Page 13, paragraph 2: "Further investigations will be required to determine the specific impact of altered PERK signaling on mitochondria morphology and function in the context of these diseases to reveal both the pathologic and potentially therapeutic implications of PERK activity on the mitochondrial dysfunction observed in the pathogenesis of these disorders."
      • Awkward/oxymoronic word choices. For example:
        • Page 11, paragraph 2: "...GSK2606414 reduces Tg-dependent increases of PA..." could be written as "... blocks/limits Tg-dependent increase of PA..." instead.
      • What is evidence that ionomycin is completely independent of DRP1?

      Methods

      • Please provide more description or a reference for the method used for CRISPR/Cas9 gene editing (page 15, paragraph 1).
      • Since different versions of chemicals are often available from the same company (for example in solution vs. powder, as a salt, different purities, etc.) it would be helpful for the authors to also include the catalog number for the purchased drugs and analytical standards (page 16, paragraph 1).
      • The authors did an excellent job of blinding these images and utilizing several researchers to score each. However, we feel that 20 cells per biological replicate (~60 total per condition) is insufficient when mitochondrial morphology in chosen representative images is unclear. We think it is reasonable to request the authors to score additional images they collected as part of this investigation.
      • The below two sentences contain some redundancies and should be combined/rephrased (page 16, paragraph 2).
        • "Three different researchers scored each set of images and these scores were averaged for each individual experiment. All quantifications shown were performed for at least 3 independent experiments, where averages in morphology quantified from each individual experiment were then combined."
      • Incorrect units, for example: "500g" should be "500 x g" on page 16, paragraph 3 and "g" should be italicized. Same for "200g" on page 17, paragraph 1.
      • Inconsistent abbreviation of chemicals, for example:
        • Chloroform and hydrochloric acid but not methanol in methods on page 17, paragraph 1. Also, the "l" in "HCL" should be lowercase.
      • "Solvents" (2x) on page 17, paragraph 2 should be singular not plural.
      • What does RT stand for on page 17, paragraph 2?
      • Tris buffered saline is abbreviated incorrectly as "TB" then correctly later in the same paragraph as "TBS" on page 18, paragraph 3.
      • Paragraph 4 on page 18 should be indented to be consistent with formatting of previous methods sections.
      • To remove any ambiguity, catalog numbers should be included for antibodies (also consider including the lot number as there can be lot to lot variability).
      • What percentage of tween v/v was supplemented in TBS buffer? Different concentrations of tween can impact antibody binding and would beneficial to include for reproducibility.
      • Please indicate the incubation time and conditions for the secondary antibodies.
      • The abbreviation for phosphate buffered saline is "PBS" not "PBD" (page 19, paragraph 1).
      • Could the authors state clearly the reference transcript used for RT-qPCR (assumed is RIBOP)?
      • Sometimes GIBCO is capitalized, sometimes not (Gibco), which should also be consistent.
      • Who is the supplier for CCCP and what is the catalog number? Similarly, what is the catalog number for TMRE (both on page 19, paragraph 3)?
      • Student's t-test is capitalized and possessive (similar to Tukey's) on page 19, paragraph 4.

      Figures/supplementary figures

      • General:
        • With respect to the lines overlaying histograms scoring mitochondrial morphology for designating statistical significance [with color-coded asterisks]:
          • It is assumed that the bars of the histogram being compared are those at the ends of each line but these aren't aligned perfectly. Please tidy up the figure by shifting these and consider capping lines to make more clear.
          • It appears that the authors provide these lines at all instances of statistically significant differences whether the comparison is important to their conclusions or not; including only the necessary comparisons will reduce the noise of these figures and make them easier to absorb and interpret. For example:
          • Figure 1C: why is comparison being made only for KO vs. complemented (+veh) - difference between KO and WT not statistically significant? Also, wouldn't the difference between WT and KO +Tg percent fragmented be statistically significant? The comparisons being made appear arbitrary or if not, was not clearly stated (same criticism for 2D, 3B, 3D, etc.).
        • The authors appear to use "transfection" and "transduction" interchangeably such that it is unclear whether expression of transgenes or shRNA is stably vs. transiently expressed. It would help if the authors could clarify their language here as well.
      • Figure 1:
        • Figure 1A - PERK is membrane bound not soluble; should this not be represented in the model? Model colors are not easily distinguishable from each other on printout and should be upgraded.
        • Figure 1C - phenotypic scoring is not easy to interpret; perhaps authors could rearrange the figure such that each treatment is adjacent since that is the more interesting comparison? All cells in figure 1 are MEFs so delete "MEFs" below Perk+/+ and Perk -/-.
      • Figure S1:
        • How much protein was loaded per lane and what percentage of polyacrylamide gel was used?
      • Figure 2:
        • See general comments.
        • Figure 2A - extra letter/typo in "Fold Change."
        • Why do authors switch to HeLa cells after measuring PA content in MEFs?
      • Figure S2:
        • Authors are now including ns for "not significant" and the p value where before they were not before. The intent for including the p-value in S2B appears to be because it suggests a trend towards statistical significance (actually a bit surprised it is not based on SEM error bars; authors should recheck their calculations) which is inappropriate. Either provide all the p-values, possibly as a separate table or none at all.
        • Now including double headed error bars for S2D-E which is inconsistent with rest of manuscript.
        • What is standard error for vehicle treated cells in 3B, 3D, and 3E? Given the above mistake it's reasonable to suspect that the error bars were omitted by accident.
      • Figure 3:
        • Title should have hyphen for "stress-induced" and ionomycin shouldn't be capitalized.
        • Now using double headed error bars for 3B which is inconsistent with majority of other figures.
      • Figure S3:
        • Title should have hyphen for "stress-induced" and ionomycin shouldn't be capitalized.
      • Figure 4:
        • What is the purpose of including 4A? This depicts a concept which is not particularly difficult to grasp, was not experimentally shown in this manuscript, and is somewhat redundant with Figure 6. We recommend removing from Figure 4 and combining with Figure 6.
        • Since all cells used in Figure 4 were MEFs, the authors can remove "MEFs" from figure and just include genotype.
        • Figure 4C: typo in Yme1l - has two 1's.
      • Figure S4:
        • See general comments.
      • Figure 5:
        • Figure 5C: What does PLKO abbreviation stand for in the control line? pLKO.1 vector (see methods but not explained further).
      • Figure S5:
        • Figure S5A-B: KD clearly worked but how efficient is unclear (quantitatively, i.e. 50, 90%, etc.?). The authors could perform serial dilutions of protein (i.e. 5, 10, 20 ug of the same samples for SDS-PAGE/immunoblot) or RT-qPCR. If knockdown is incomplete, this could explain the discrepancy in Figure 5 where depletion of Prelid should result in elongation [via OMM depletion of PA].
      • Figure 6:
        • This is a more appropriate location for panel 4A.

      Significance

      1. Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.
        • a. Perturbances in PERK signaling evoke an alteration in mitochondrial morphology and have been extensively reported on, due to their clinical implications on neurodegenerative disorders such as Alzheimer's disease. The present work provides insight into the molecular basis for Stress Induced Mitochondrial Hyperfusion (SIMH) which can be triggered by ER stress. The authors find that this process occurs downstream of PERK and proceeds through accumulation of PA in the OMM by stabilization of Prelid, a mitochondrial resident protein that transports PA from the OMM to IMM for cardiolipin synthesis. The evidence of this work represents a substantial addition to the field of mitochondrial dynamics/SIMH and the Unfolded Protein Response.
      2. Place the work in the context of the existing literature (provide references, where appropriate).
        • a. The novelty of this work is in the inclusion of PRELID1 downstream of PERK signaling pathway for transmission of ER stress to the mitochondria, a process that involves phosphatidic acid (PA). Some studies have addressed how phosphatidic acid is a modulator and a signal in mitochondrial physiology. The role of the lipids in mitochondrial dynamics represent an important and emerging field that needs to be explored in order to understand how metabolites control mitochondrial fusion/fission.

      References

      Yoshihiro Adachi, Kie Itoh, Tatsuya Yamada, Kara L. Cerveny, Takamichi L. Suzuki, Patrick Macdonald, Michael A. Frohman, Rajesh Ramachandran, Miho Iijima, Hiromi Sesaki. Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division. Molecular Cell. Volume 63, Issue 6. 2016. Pages 1034-1043. https://doi.org/10.1016/j.molcel.2016.08.013

      Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H, Morris AJ, Frohman MA. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell. 2011 Mar 15;20(3):376-87. https://doi.org/10.1016/j.devcel.2011.01.004 3. State what audience might be interested in and influenced by the reported findings. - a. Audiences of the fields such as Mitochondrial dynamics, UPR, lipid metabolism, neurodegenerative diseases, ER-stress response, Integrated Stress Response. 4. Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. - a. Mitochondrial morphology, mtDNA inheritance, mitochondrial metabolism, fluorescence/indirect immunofluorescence microscopy

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all the reviewers for having raised constructive criticism to fortify the main message and improve the clarity of the manuscript. We appreciate that all reviewers found that our work addresses an important topic and is of interest to a broad audience. We believe that we have thoroughly addressed the concerns of the reviewers, especially with regard to 1) performing another SMC3 chromatin immunoprecipitation and sequencing (ChIP-seq) replicate and control, 2) including a later time point for the transcriptional data, and 3) performing additional characterization of the growth phenotype of the SMC3 conditional knockdown.

      Reviewer #1

      (Evidence, reproducibility and clarity (Required)):*

      Summary The present work by Rosa et al., provides convincing data about the presence and functional relevance of the cohesin complex in Plasmodium falciparum blood stages. In accordance with other organisms, the composition of the cohesin complex containing SMC1, SMC3 RAD21 and putatively STAG could be confirmed via pulldown and mass spectrometry. Basic characterization of endogenous tagged SMC3 demonstrated the expression and nuclear localization during IDC, as well as the relatively stable accumulation at centromeric regions, consistent with the known cohesin function in chromatid separation. Furthermore, dynamic and stage-dependent binding to intergenic regions observed in ChIPseq and major transcriptome aberrations upon knockdown of SMC3 (__Response: __As we regularly perform ChIP-seq experiments in the lab, we have generated multiple negative control datasets. In our opinion, the most stringent negative control for an HA-tagged protein is performing ChIP with an HA antibody in a WT strain. We have recently published an in-depth analysis of this (and other) negative ChIP-seq controls (Baumgarten & Bryant, 2022, https://doi.org/10.12688/openreseurope.14836.2). We show in this publication that non-specific ChIP-seq experiments (such as negative controls) result in an over-representation of HP1-heterochromatinized regions due to differences in sonication efficiency of heterochromatin and technical challenges with mapping regions with high levels of homology. In the anti-HA in WT ChIP negative control (performed at 12hpi), we do not see any enrichment at centromeric regions, but rather at heterochromatinized regions where clonally variant gene families are located. We performed peak calling analysis and found no significant overlap between the negative control ChIP-seq and the SMC3-3HA ChIP-seq data at 12hpi.

      In addition, we have now performed a second biological replicate of the SMC3-3HA ChIP-seq with a different clone at all time points. We compared this data to that from the original clone and found significant overlap of the peaks called (see what is now Table 4 and Supp. Fig. 3A). We generated a stringent list of peaks that were shared between both clones at each time point and repeated all downstream analyses (see what are now Tables 5-8). We found that our conclusions were largely unchanged. Text describing these experiments and analyses have been added throughout the results section.

      • Proposed mechanism of repressive effect of SMC3 early in IDC on genes, that get de-repressed in late stages: To claim this mode of function, it would be necessary to include a KD on late stage parasites. If there is an early repressive role of SMC3, upregulated genes should not be affected by late SMC3-KD. __Response: __To be clear, we are most interested in the transcriptional role of SMC3 during interphase, where results are not confounded by its potential role in mitosis. However, we did collect a 36hpi time point in the SMC3-3HA-glmS and WT strain, with and without glucosamine. We have added this last time point and the WT data from the other two time points to the manuscript (see Tables 11-13). Unfortunately, and for reasons unknown, the WT replicates treated with glucosamine showed a significantly advanced “transcriptional age” compared to the other replicates at 36hpi (see what is now Supp. Fig. 5B). Thus, we did not feel comfortable performing the RNA-seq analysis as we did with the other two time points (i.e. subtracting up- and down-regulated genes from the WT control from the SMC3-3HA-glmS data sets). We have added this information to the results section (Lines 256 and 261). As the WT parasites treated with glucosamine were approximately 8 hours in advance of the untreated WT parasites for the 36hpi time point, any up- and down-regulated genes might have been due to differences in the cell cycle rather than due to glucosamine treatment. The glmS system of inducible knockdown is widely used in P. falciparum; however, to our knowledge, no lab has investigated whether glucosamine treatment affects transcription in wildtype cells over the course of the IDC. Thus, for accurate phenotypic characterization of any protein with this system with regard to transcriptomics, we thought it was important to provide an RNA-seq dataset to define the cohort of genes affected by glucosamine treatment in WT parasites. We hope that our study will demonstrate the importance of using stringent controls when using inducible knockdown systems.

      To address the question of whether genes that are upregulated upon depletion of SMC3 at early stages are affected at the 36hpi time point, we performed differential expression analysis of the SMC3-3HA-glmS parasites with and without glucosamine at 36hpi (we have added this data in Table 11). Again, significantly up- and down-regulated genes were not filtered using the WT dataset. With this analysis, we see only three genes from the list of invasion-related genes (Hu et al., 2010) that are up-regulated, but none of them have a significant q-value (Tab 5 of Table 18). Thus, depletion of SMC3 in late stage parasites does not lead to up-regulation of the same genes that are upregulated at 12 and 24hpi. We have added this information to the text (Line 273).

      Furthermore, the hypothesized repressive effect of SMC3 does not explain the numerous genes downregulated in KD.

      __Response: __As we state on line 350, we do not observe enrichment of SMC3 at downregulated genes, suggesting an indirect or secondary effect of SMC3 KD on these genes.

      • Due to the fact, that the KD was induced at the exact same timepoint and analysed 12h and 24h after induction it is possible that identified, differentially expressed genes at 24h are not directly regulated by SMC3, but rather due to a general deregulation of gene expression. Did the authors attempt to analyse gene expression upon induction at ring, trophozoite and schizont stage? Response: __As we state on line 230, in order to achieve SMC3 KD at the protein level, we had to treat the parasite with glucosamine for two cell cycles (approximately 96 hours). After two cell cycles of glucosamine treatment, the parasites were tightly synchronized and sampled 12 and 24 hours later. Thus, SMC3 KD takes place over the course of multiple days, but parasites are collected after stringent synchronization. Giemsa staining and bioinformatic analysis (line 250) of the RNA-seq data from parasites (with or without glucosamine) harvested at 12 and 24 hpi show that these parasites were synchronous and that there were no gross differences in genome-wide transcript levels. It is certainly possible that differentially expressed genes at 12 or 24hpi are not directly regulated by SMC3, and this is precisely why we perform ChIP-seq of SMC3: to provide evidence of direct involvement via binding, as stated on line 281. __

      • *Based on rapid parasite growth, the authors hypothesize a higher invasion rate due to upregulation of invasion genes. This hypothesis is not supported by quantitative invasion assays or quantification of invasion factors on the protein level. An alternative explanation could be a shorter cell cycle (__Response: __We have repeated the growth curve analysis with additional clones and no longer observe a growth phenotype in the SMC3 knockdown condition. We have added images of Giemsa-stained parasites from the knockdown time course we performed to what is now Supp. Fig. 5A. We see no obvious differences in cell morphology caused by glucosamine treatment in the WT or SMC3-3HA-glmS parasites.

      • Correlation of SMC3-occupancy/ATAC/expression profile of the exemplary genes rap2 and gap45 (Figure 4C,D,E): is this representative for all upregulated genes? __Response: __SMC3 occupancy shown at rap2 and gap45 is representative for all upregulated genes (see Fig. 4A and B). It is difficult to provide a general representation of the average expression profiles of all up-regulated genes over the course of the IDC, but Fig. 3E shows that the vast majority of up-regulated genes normally reach their peak expression in late stage parasites. With regard to ATAC-seq profiles, we have performed a metagene analysis of chromatin accessibility (data taken from (Toenhake et al., 2018)) at all up-regulated genes at time points that closely correspond to the time points used in our study: 15, 25, and 35, and 40 hpi (new Fig. 4C). This metagene analysis confirms what we observe at individual genes: increasing chromatin accessibility over the course of the IDC at these genes’ promoters. While metagene analyses offer important information, we always try to show the raw data (as in new Figs. 4D-F) from individual examples as proof of principle.

      • Given that SMC3 appears to be not essential for parasite growth, the authors could generate a null mutant for SMC3, which might allow for easier analysis of differences in gene regulation, cell cycle progression and/or invasion efficiency. __Response: __As we explain on line 327, very little cohesin is required for normal growth and/or mitosis in our study and two studies in S. cerevisiae and D. melanogaster. However, SMC3 is essential in S. cerevisiae. We were unable to knock out SMC3, and a recent mutagenesis study suggests that SMC3 and SMC1 are essential to the parasite during the intraerythrocytic developmental cycle (Zhang et al. Science, 2018). This is why we chose an inducible knockdown system.

      *Reviewer #1 (Significance (Required)):

      Own opinion The authors provide a basic characterization of the cohesin component SMC3 using NGS methods to investigate chromatin binding sites and its potential influence on gene expression. *

      __Response: __We respectfully disagree that our study offers only a basic characterization of SMC3. We combine IFA, mass spectrometry, and both ChIP-seq and RNA-seq of SMC3 across the entire intraerythrocytic developmental cycle to provide the most detailed and comprehensive functional analysis of SMC3 in P. falciparum to date.

      The localisation of SMC3 at centromers as described previously (Batugedara 2020) was confirmed. However, the dynamic binding to other regions in the genome, potentially mediated by other proteins, could not be resolved unequivocal with only one replicate of ChIPseq per time point.

      __Response: __With regard to the replicates for ChIP-seq, please see our response to this same point above.

      Similarly, the RNAseq data demonstrate the relevance of SMC3 for gene expression, but no clear picture of a regulatory mechanism can be drawn at his point. Lacking information about the mode of binding as well as the setup of transcriptome analysis (only two time-shifted sampling points after simultaneous glmS treatment for 96h resulting in incomplete knockdown) cannot definitely elucidate, if SMC3/cohesin is a chromatin factor that affects transcription of genes in general or a specific repressor of stage-specific genes. __Response: __We agree that we have not established a regulatory mechanism for how SMC3 achieves binding specificity. However, the combination of inducible knockdown (as SMC3 is essential to the cell cycle) and differential expression analysis with ChIP-seq from the same time points across the intraerythrocytic developmental cycle is the most stringent and standard approach in the field of epigenetics for determining the direct role of a chromatin-associated protein in gene expression. We provide a detailed explanation of how the transcriptome analysis was set up in the Results (lines 229-234) and Materials and Methods (lines 715-719) section. With regard to our sampling points being “time-shifted,” we provide bioinformatic analysis (line 246-251, what is now Supp. Fig. 5B) of the RNA-seq data from untreated and glucosamine-treated parasites showing highly similar “ages” with regard to progression through the intraerythrocytic developmental cycle. While we of course also monitor progression through the cell cycle with Giemsa staining (Supp. Fig. 5A), this bioinformatic analysis is the most stringent method of determining specific times in the cell cycle.

      *The work will be interesting to a general audience, interested in gene regulation and chromatin remodelling

      The reviewers are experts in Plasmodium cell biology and epigenetic regulation.*

      Reviewer #2

      (Evidence, reproducibility and clarity (Required)):

      Rosa et al, Review Commons The manuscript by Rosa et al. addresses the function of the cohesion subunit Smc3 in gene regulation during the asexual life cycle of P. falciparum. Cohesin is a conserved protein complex involved in sister chromatin cohesion during mitosis and meiosis in eukaryotic cells. Cohesin also modulates transcription and DNA repair by mediating long range DNA interactions and regulating higher order chromatin structure in mammals and yeast. In P. falciparum, the Cohesin complex remains largely uncharacterized. In this manuscript, the authors present mass spectrometry data from co-IPs showing that Smc3 interacts with Smc1 and a putative Rad21 orthologue (Pf3D7_1440100, consistent with published data from Batugedara et al and Hilliers et al), as well as a putative STAG domain protein orthologue (PF3D7_1456500). Smc3 protein appears to be most abundant in schizonts, but ChIPseq indicates predominant enrichment of Smc3 in centromers in ring and trophozoite stages. In addition, Smc3 dynamically binds with low abundance to other loci across the genome; however, the enrichment is rather marginal and only a single replicate was conducted for each time point making the data interpretation difficult. Conditional knock-down using a GlmS ribozyme approach indicates that parasites with reduced levels of Smc3 have a mild growth advantage, which is only evident after five asexual replication cycles and which the authors attribute to the transcriptional upregulation of invasion-linked genes following Smc3 KD. Indeed, Smc3 seems to be more enriched upstream of genes that are upregulated after Smc3 KD in rings than in downregulated genes, indicating that Smc3/cohesin may have a function in supressing transcription of these schizont specific genes until they are needed. The manuscript is concise and very well written, however it suffers from the lack of experimental replicates for ChIP experiments and a better characterization of the phenotype of conditional KD parasites. * Major comments • In the mass spectrometry analysis, many seemingly irrelevant proteins are identified at similar abundance to the putative rad21 and ssc3 orthologues, and therefore the association with the cohesion complex seems to be based mostly on analogy to other species rather than statistical significance. Hence, it would be really nice to see a validation of the novel STAG domain and Rad21 proteins, for example by Co-IP using double transgenic parasites.*

      __Response: __While our IP-MS data did not yield high numbers of peptides, the top most enriched proteins were SMC3 and SMC1. As we state on line 157, two previous studies have already shown a robust interaction between SMC1, SMC3, and RAD21 in Plasmodium, supporting the existence of a conserved cohesin complex. While the identification of the STAG domain-containing protein is interesting, the purpose of our IP-MS was less about redefining the cohesin complex in P. falciparum and more about confirming that the epitope-tagged SMC3 we generated was incorporated correctly into the cohesin complex and was specifically immunoprecipitated by the antibody we later use for western blot, immunofluorescence, and ChIP-seq analyses. However, to validate the results of ours and others’ mass spectrometry results, we generated two new parasite strains – SMC1-3HA-dd and STAG-3HA-dd – and an antibody against SMC3 (see what is now Supp. Fig. 1). We performed co-IP and western blot analysis with these strains and show an interaction between SMC1 and SMC3 and STAG and SMC3 (see what is now Supp. Fig. 2). This information has been added to the manuscript on lines 162-167.

      • *The ChIPseq analysis presented here is based on single replicates for each of the three time points. The significance cutoffs for the peaks are rather high (q __Response: __In our experience, a significance cutoff of FDR As we regularly perform ChIP-seq experiments in the lab, we have generated multiple negative control datasets. In our opinion, the most stringent negative control for an HA-tagged protein is performing ChIP with an HA antibody in a WT strain. We have recently published an in-depth analysis of this (and other) negative ChIP-seq controls (Baumgarten & Bryant, 2022, https://doi.org/10.12688/openreseurope.14836.2). We show in this publication that non-specific ChIP-seq experiments (such as negative controls) result in an over-representation of HP1-heterochromatinized regions due to differences in sonication efficiency of heterochromatin and technical challenges with mapping regions with high levels of homology. In the anti-HA in WT ChIP negative control (performed at 12hpi), we do not see any enrichment at centromeric regions, but rather at heterochromatinized regions where clonally variant gene families are located. We performed peak calling analysis and found no significant overlap between the negative control ChIP-seq and the SMC3-3HA ChIP-seq data at 12hpi.

      In addition, we have now performed a second biological replicate of the SMC3-3HA ChIP-seq with a different clone at all time points. We compared this data to that from the original clone and found significant overlap of the peaks called (see what is now Table 4 and Supp. Fig. 3A). We generated a stringent list of peaks that were shared between both clones at each time point and repeated all downstream analyses (see what are now Tables 5-8). We found that our conclusions were largely unchanged. Text describing these experiments and analyses have been added throughout the results section.

      The SMC3 ChIP from Batugedara et al., 2020 was performed with an in-house generated antibody (not a commercially available, widely validated antibody as we use) at a single time point in the IDC: trophozoites. Batugedara et al. performed one replicate and did not have an input sample for normalization. Rather, it seems that they incubated beads, which were not bound by antibody or IgG, with their chromatin and used any sequenced reads from this beads sample to subtract from their SMC3 ChIP signal as means of normalization. According to ENCODE ChIP-seq standards, this is not a standard nor stringent way of performing ChIP-seq and the subsequent analysis. Because they did not generate a dataset for their ChIP input, it is not possible to call peaks as we do in our study and compare those peaks with ours.

      • The authors argue that during schizogony, cohesin may no longer be required at centromers, explaining the low ChIPsignal at this stage (Line 301). However, during schizogony parasites undergo repeated rounds of DNA replication (S-phase) and mitosis (M-phase) to generate multinucleated parasites; and concentrated spots of Smc3 are observed in each nucleus in schizonts by IFA. In turn, the strong presence of Smc3 at centromers in ring stage parasites is surprising, particularly since the Western Blot in Figure 1D shows most expression of Smc3 in schizonts and least in rings; and Smc3 is undetectable in rings by IFA. Yet, the ChIP signal shows very strong enrichment at centromers, long before S phase produces sister chromatids. What could be the reason for this discrepancy? Again, ChIP replicates and controls would be helpful in distinguishing technical problems with the ChIP from biologically relevant differences. __Response: __We discuss in lines 337-342 not that cohesin is no longer required at centromeres during schizogony, but that its removal from centromeres may be required specifically for separation of sister chromatids, as is seen in other eukaryotes. We also discuss that the unique asynchronous mitosis in Plasmodium may lead to a mixed population of parasites at the time point sampled where there may be some centromeres with SMC3 present and some where it is absent to promote sister chromatid separation. Even though SMC3 may be evicted from centromeres to promote sister chromatid separation, it is likely re-loaded onto centromeres once this process is complete. This is most likely why we see foci of SMC3 in each nucleus of mature schizonts by IFA. With regard to the discrepancy between SMC3 levels in rings seen in total nuclear extracts (by western blot) and at centromeres (by ChIP-seq): the total level of a protein in the nucleus does not necessarily dictate the genome-wide binding pattern or the level of enrichment of that protein at specific loci in the genome. Moreover, if one molecule of SMC3 binds to each centromere, 14 molecules would be needed in a ring stage parasite while over 500 would be needed in a schizont (assuming that there are ~36 merozoites present). SMC3 binds to centromeres in interphase cells in other eukaryotes as well, and we speculate that this binding may play a role in the nuclear organization of centromeres, as we discuss starting on line 333.

      • It is surprising that a conserved protein like Smc3 shows such a subtle phenotype, given that it is predicted to be essential and its orthologues have a function in mitosis. Generally, only limited data are presented to characterize the Smc3 KD parasites, and more detail should be included. For example validation of the parasite line using a PCR screen for integration and absence of wt, parasite morphology after KD, and/or analysis of the KD parasites for cell cycle status. __Response: __First, we have repeated our growth curve analysis several times and with more clones and have concluded that there is not a significant growth phenotype in SMC3 KD parasites (see what is now Supp. Fig. 4B). As we discuss on line 342, very little intact cohesin complex seems to be required for normal growth and mitosis in S. cerevisiae and D. melanogaster, which is probably why we do not see an obvious growth or morphological phenotype. Because we could not generate SMC3 knockout parasites, there may be just enough SMC3 left to perform its vital function in our KD strain. We have added PCR data to demonstrate integration of the 3HA tag- and glmS ribozyme-encoding sequence in the clonal strains we are using for all experiments (see what is now Supp. Fig. 1A). Sanger sequencing was performed on these PCR products to confirm correct sequences. We also added images of Giemsa-stained parasites in untreated and glucosamine-treated parasites at all time points to demonstrate a lack of an obvious morphological phenotype in SMC3 KD parasites (see what is now Supp. Fig. 5A).

      • Synchronization was performed at the beginning of the growth time course, which would be expected to result in a stepwise increase in parasitemia every 48 hours; however, the parasitemia according to Fig. 4F rises steadily, which would indicate that the parasites are actually not very synchronous. __Response: __We did indeed tightly synchronize these parasites and hope that the stepwise increase in parasitemia is seen better in our new growth curve analysis (see what is now Supp. Fig. 4B).

      • The question of whether Smc3 causes a shorter parasite life cycle (quicker progression) or more invasion is important and could be experimentally addressed by purifying synchronous schizont stage parasites and determining their invasion rates as well as morphological examination of the Giemsa smears over the time course. __Response: __We have repeated our growth curve analysis several times and with more clones and have concluded that there is not a significant growth phenotype in SMC3 KD parasites (see what is now Supp. Fig. 4B).

      • Please also compare Smc3 transcriptional levels in transgenic parasites to those in wt parasites to rule out that the genetic modification has lead to artificial upregulation of Smc3 transcription. __Response: __We have added this data to what is now Supp. Fig. 4C, showing that there is no significant difference in SMC3 transcript levels between WT and SMC3-3HA-glmS strains. We have added this information to the text of the manuscript (Line 243). As we also generated an SMC3 antibody, we could demonstrate that there is no appreciable difference in SMC3 protein levels between WT and SMC3-3HA-glmS strains (see what is now Supp. Fig. 1D).

      • According to Figure S2, even more genes were deregulated at the 12 hpi time point in the WT parasites than in Smc3 parasites, and even to a much higher extent. What "transcriptional age" did the WT control parasites have at each time point? __Response: __We have now included the transcriptional age of all strains, replicates, and treatments in what is now Supp. Fig. 5B. At the 12 hpi time point in particular, regardless of glucosamine treatment, the SMC3-3HA-glmS and WT parasites were highly synchronous. The only large discrepancy we see in transcriptional age is between untreated and glucosamine-treated WT parasites at 36 hpi, which is why we did not include this time point in our transcriptional analysis. We were also surprised by the number of genes that were de-regulated with simple glucosamine treatment. The glmS system of inducible knockdown is widely used in P. falciparum; however, to our knowledge, no lab has investigated whether glucosamine treatment affects transcription in wildtype cells over the course of the IDC. Thus, for accurate phenotypic characterization of any protein with this system with regard to transcriptomics, we thought it was important to provide an RNA-seq dataset to define the cohort of genes affected by glucosamine treatment in WT parasites. We hope that our study will demonstrate the importance of using stringent controls when using inducible knockdown systems.

      • A negative correlation with transcription is well established in S. cerevisiae, particularly at inducible genes. How does Smc3 enrichment generally look like for genes that show maximal expression at each of the time point? __Response: __We have performed a metagene analysis of SMC3 enrichment at all genes at each respective time point, which we divided into quartiles of expression based on their FPKM values in the RNA-seq data from the corresponding time point in untreated SMC3-3HA-glmS parasites. This quartile analysis considers all genes, including genes that are not transcribed at all and regardless of whether a gene has a significant SMC3 peak or is differentially expressed upon SMC3 knockdown. At the 12 hpi time point, we do see an inverse correlation between SMC3 enrichment and gene transcription level, but this enrichment is most pronounced across genes bodies. We see the highest SMC3 enrichment at genes in the 4th (lowest) quartile category. For the other two time points, we do not see any obvious pattern of SMC3 enrichment with regard to transcriptional status.

      • Line 590: according to the methods, a 36 hpi KD time point was also harvested. Why are the data not shown/analysed? __Response: __To be clear, we are most interested in the transcriptional role of SMC3 during interphase, where results are not confounded by its potential role in mitosis. However, we did collect a 36hpi time point in the SMC3-3HA-glmS and WT strain, with and without glucosamine. We have added this last time point and the WT data from the other two time points to the manuscript (see Tables 11-13). Unfortunately, and for reasons unknown, the WT replicates treated with glucosamine showed a significantly advanced “transcriptional age” compared to the other replicates at 36hpi (see what is now Supp. Fig. 5B). Thus, we did not feel comfortable performing the RNA-seq analysis as we did with the other two time points (i.e. subtracting up- and down-regulated genes from the WT control from the SMC3-3HA-glmS data sets). We have added this information to the results section (Lines 256 and 261). As the WT parasites treated with glucosamine were approximately 8 hours in advance of the untreated WT parasites for the 36hpi time point, any up- and down-regulated genes might have been due to differences in the cell cycle rather than due to glucosamine treatment. The glmS system of inducible knockdown is widely used in P. falciparum; however, to our knowledge, no lab has investigated whether glucosamine treatment affects transcription in wildtype cells over the course of the IDC. Thus, for accurate phenotypic characterization of any protein with this system with regard to transcriptomics, we thought it was important to provide an RNA-seq dataset to define the cohort of genes affected by glucosamine treatment in WT parasites. We hope that our study will demonstrate the importance of using stringent controls when using inducible knockdown systems.

      Minor Comments • Line 103/104: the hinge domain and ATPase head domain are mentioned, please annotate these in Figure 1A.

      __Response: __We have annotated the hinge and ATPase domains.

      • Figure 1D: the kDa scale is missing from the H3 WB. __Response: __We have added a kDa scale.

      • What is the scale indicated by different colors in Fig. 2A? __Response: __The different colors (blue, coral, and green) only represent the 12, 24, and 36hpi time points, respectively. This color scheme is used throughout the manuscript. If the reviewer is referring to the color gradation within each circos plot, this does not indicate a specific scale. The maximum y-axis value for all circos plots is 24, as indicated in the figure legend.

      • Line 189: it would also be interesting how many peaks are "conserved" between the different time points studied, so not only to compare the gene lists of closest genes but also the intersecting peaks and then the closest genes to the intersecting peaks. __Response: __We have added this information in Table 7 and in the manuscript starting on Line 203. Using the new dataset of consensus peaks between two replicates, there were 88 genes associated with an SMC3 peak across all three time points, most of which were close to a centromeric region.

      • What is the distribution of the peaks over diverse genetic elements, such as gene bodies, introns, convergent/ divergent/ tandem intergenic regions? In yeast, cohesion is particularly enriched in convergent intergenic regions, so it would be interesting to see how this behaves in P. falciparum. __Response: __We would have liked to define how many peaks were in intergenic versus genic regions of the genome, but the dataset of “genes” from PlasmoDB includes UTRs. Thus, we would need a better annotation of the genome to perform this analysis. Regardless, we calculated the average SMC3 peak enrichment (shared between both replicates) in intergenic regions between convergent and divergent genes (see what is now Supp. Fig. 3B and Table 6). As we now state in the manuscript on line 198, we see a slight enrichment in regions between convergent genes at all time points, but the differences were not significant.

      • Line 130 intra-chromosomal interactions (word missing) __Response: __Thank you for pointing this out. We have corrected this.

      • Contrary to Figure 1D, the WB in Figure 3A indicates strong expression of Smc3 in rings. Please comment on this discrepancy. __Response: __While extracts from all time points were run on the same western blot in Fig. 1D and thus developed for the same amount of time, this was not the case for Fig. 3A. In Fig. 3A, the samples were run on different blots and exposed for different times, so while we can compare SMC3-HA levels between – and + glucosamine for each time point, the levels at 12 hpi cannot be quantitatively compared to those at 24 or 36hpi.

      • What time point after glucosamine addition represents the WB in Fig. 3A? __Response: __The “12hpi” parasites were sampled approximately 108 hours post glucosamine addition and the “24hpi” parasites sampled approximately 120 hours post glucosamine addition. Basically, the parasites were treated with glucosamine for 96 hours, synchronized, and then harvested 12 and 24 hours later.

      • Line 233 / Suppl Figure 3: Isn't it a bit concerning that the untreated control parasites at 24 hpi statistically corresponded to 18-19 hpi? And to what timepoint did the wt parasites correspond? __Response: __We are not concerned by this, and we have included the WT parasites in what is now Supp. Fig. 5B for better comparison. In the analysis presented in Supp. Fig. 5B, regardless of glucosamine presence or absence, the differences among replicates and strains at 12 and 24hpi are, in our opinion, minimal, amounting to one or two hours of the 48-hour IDC. In our extensive experience with RNA-seq across the P. falciparum lDC, this synchronization is extremely tight. As we describe on line 430 of the Materials and Methods, there is a ±3 hour window in our synchronization method, meaning that parasites harvested at 24hpi could be anywhere from 21-27hpi. In addition, the dataset that was used for comparison (from Bozdech et al., 2003) was generated in 2003 in a different laboratory using different strains with microarray. While comparing more recent RNA-seq data to this classic study has become well-established practice and is useful for comparing transcriptional age between replicates and strains, it is inevitable that the calculated “hpi” from (Bozdech et al., 2003) will differ somewhat from our experimental “hpi”. We have indeed seen this small discrepancy in predicted transcriptional age in several of our RNA-seq datasets (unrelated to this study) from trophozoites harvested at 24hpi.

      • Line 264: "whether naturally or via knockdown" - the meaning of this sentence is not entirely clear __Response: __We are referring to depletion of SMC3 at promoters, either naturally (i.e. lack of binding at the promoter at 36hpi that is not the result of SMC3 knockdown, as we show in Fig. 4B) or via SMC3 knockdown, which is not natural but artificial.

      • Figure 4 Legend: A, B, C etc. are mixed up. Response: Thank you for pointing this out. We have corrected this.

      • Figure 4D: the differences seem to be marginally significant, even not significant at all (q=0.8) for gap45 at 12hpi. __Response: __If one defines a significance cutoff of q = 0.05 (as is common practice in differential expression analyses), then the differences are significant. For a small minority of invasion genes (such as gap45), we do observe significance at either 12 hpi or 24 hpi, but not both. Thus, we have removed the word “significant” from the descriptions of each dataset in Tab 1 of what is now Table 18. however, we do not believe that this rules out a role for SMC3 at such a gene during interphase. What is now Table 18 offers a longer list of invasion-related genes, most of which are more “significantly” affected than rap2 and gap45.

      • Figure 4F shows FACS data using SYBR green as a DNA stain. The authors could exploit this data to look at the relative DNA content per cell as a measure of parasite stage, since more mature parasites will have more DNA (mean fluorescence intensity). How did the corresponding parasite cultures look in Giemsa smears? Response: We have repeated our growth curve analysis several times and with more clones and have concluded that there is not a significant growth phenotype in SMC3 KD parasites (see what is now Supp. Fig. 4B). We have added images of Giemsa-stained parasites in untreated and glucosamine-treated parasites at all time points to demonstrate a lack of an obvious morphological phenotype in SMC3 KD parasites (see what is now Supp. Fig. 5A).

      • Are RNAseq replicates biological replicates from independent experiments or technical replicates? __Response: __RNA-seq replicates are technical replicates from the same parasite clone.

      • Why does the number of genes analysed for differential gene expression differ between the comparisons? __Response: __If the reviewer is referring to the discrepancy between the total number of genes for different time points [for example, between what is now Table 9 (12hpi) and Table 10 (24hpi)], this is because in the RNA-seq/differential expression analysis, there have to be reads mapping back to a gene in order for that gene to be included in the analysis. Thus, if a gene is not transcribed at a given time point in the treated or untreated samples, it will not be included in the analysis. Gene transcription fluctuates significantly over the course of the IDC, so different time points will have different total numbers of transcribed genes.

      • Line 372: Do you mean the proteins or the genes? AP2-I has a peak at 24 hpi and 36 hpi, and its interacting AP2 factor Pf3D7_0613800 at all time points. __Response: __We are referring to the genes. With the new ChIP-seq analysis including the second replicate, there are no consensus SMC3 peaks associated with ap2-I, bdp1, or Pf3D7_0613800 (see what is now Table 7).

      • Line 480: no aldolase was shown. __Response: __We have removed this sentence.

      • Line 838: include GO analysis in methods __Response: __We have added this.

      Reviewer #2 (Significance (Required)): The paper addresses the function of the cohesin complex in gene regulation of malaria parasites for the first time. Due to the conserved nature of the complex, the data may be interesting for a broad audience of scientists interested in nuclear biology and cell division/ gene regulation.

      Reviewer #3

      (Evidence, reproducibility and clarity (Required)):

      *Summary:

      In the presented manuscript by Rosa et al. the authors investigate the longstanding question of how P. falciparum achieves the tight transcriptional regulation of its genome despite the apparent absence of many canonical sequence specific transcription factor families found in other eukaryotes. To do this the authors investigate the role of the spatial organization of the genome in this context, by performing a functional characterization of the conserved cohesion subunit SMC3 and its putative role in transcriptional regulation in P. falciparum. Using Cas9 mediated genome editing the authors generated a SMC3-3xHA-glmS parasite line, which they subsequently used to show expression of the protein over the asexual replication cycle by western blot and IFA analysis. In addition, using co-IP experiments coupled with mass spectrometry they identified the additional components of the cohesion complex also found in other eukaryotes as interaction partners of SMC3 in the parasite, thereby confirming the presence of the conserved cohesin complex in P. falciparum. By using a combination of ChIP-seq and RNA-seq experiments in SMC3 knockdown parasites the authors furthermore show that a reduction of SMC3 resulted in the up-regulation of a specific set of genes involved in invasion and egress in the early stages of the asexual replication cycle and that this up-regulation in transcription is correlated with a loss of SMC3 enrichment at these genes. From these observations the authors conclude, that SMC3 binds dynamically to a subset of genes and works as a transcriptional repressor, ensuring the timely expression of the bound genes. Overall, the presented data is intriguing, of high quality and very well presented. However, there are some points, which should be addressed to bolster the conclusions drawn by the authors.

      Major points: I was not able to find the deposited datasets in the BioProject database under the given accession number. This should obviously be addressed and would have been nice to be able to have a look at these datasets also for the review process. *__Response: __We apologize for not giving the reviewers access. As the manuscript has been made available as a pre-print (which includes data accession numbers), but has not yet been published, we have not activated access to the data on the database.

      *SMC3-ChIP-seq experiments:

      "168 were bound by SMC3 across all three time points (Fig. 2D). However, most SMC3-bound genes showed a dynamic binding pattern, with a peak present at only one or two time points (Fig. 2B,D)."

      Here it would be interesting to actually have more than one replicate of each of these ChIP-seq time points. This could provide a better idea of how "dynamic" these binding patterns actually are. Furthermore, I was missing a list of these 168 genes, which are constantly bound by SMC3. Anything special about those? What actually happens to this subset of genes in the SMC3 knockdown parasites? Do they show similar transcriptional changes?*

      __Response: __We have now performed a second biological replicate of the SMC3-3HA ChIP-seq with a different clone at all time points. We compared this data to that from the original clone and found significant overlap of the peaks called (see what is now Table 4 and Supp. Fig. 3A). We generated a stringent list of peaks that were shared between both clones at each time point and repeated all downstream analyses (see what are now Tables 5-8). We found that our conclusions were largely unchanged. Text describing these experiments and analyses have been added throughout the results section. Using the new dataset of consensus peaks between two replicates, there were 88 genes associated with an SMC3 peak across all three time points (see what is now Table 7). The genes that are associated with an SMC3 peak at all time points are, in general, those closest to centromeric/pericentromeric regions and show no obvious functional relationship to each other. Out of these 88 genes, four are significantly up- or downregulated at 12 hpi and 26 are significantly up- or downregulated at 24 hpi. The most significantly downregulated of these genes in both datasets is smc3 itself.

      *SMC3-knockdown experiments:

      In Sup. Fig. 1 there is a double band in the HA-western blot in the 2nd cycle -GlcN. sample. This second band is absent in all other HA-western shown. Have the authors any idea where that second band comes from?*

      __Response: __As the reviewer says, we do not see this second band in most of our western blots. It is possible that it is just a small amount of degradation in the lysate.

      In Figure 3A, the WB data shown is slightly contrasting the RNA-seq quantification (3B). The knock-down on protein level seems to be stronger in the 12 hpi samples here than in the 24 hpi samples. Although the band for HA-SMC3 is stronger at the 12 hpi TP there's no band visible in the + GlcN. sample. There's however in the 24 hpi samples. Could the authors comment on this?

      Response: __With regard to the discrepancy of the knockdown and protein versus RNA level, it is quite common for transcript levels to not agree with protein levels. This is why we always confirm a transcriptional knockdown with western blot analysis using appropriate loading controls. We are not sure why there is a more dramatic knockdown of SMC3 at 12hpi than at 24hpi, as these samples came from the same culture, but were simply harvested 12 hours apart. __

      *"Comparison of our RNA-seq data to the time course transcriptomics data from (Painter et al., 2018) revealed that SMC3 depletion at 12 hpi caused downregulation of genes that normally reach their peak expression in the trophozoite stage (18-30 hpi), with the majority of upregulated genes normally reaching their peak expression in the schizont and very early ring stages (40-2 hpi) (Fig. 3E). At 24 hpi, a similar trend is observed, with most downregulated genes normally peaking in expression in trophozoite stage (24-32 hpi) and the majority of upregulated genes peaking in expression at very early ring stage (2 hpi) (Fig. 3F)."

      I'm not fully convinced by these presented results/conclusions. This dataset would greatly benefit from the inclusion of additional later time points.*

      __Response: __To be clear, we are most interested in the transcriptional role of SMC3 during interphase, where results are not confounded by its potential role in mitosis. However, we did collect a 36hpi time point in the SMC3-3HA-glmS and WT strain, with and without glucosamine. We have added this last time point and the WT data from the other two time points to the manuscript (see Tables 11-13). Unfortunately, and for reasons unknown, the WT replicates treated with glucosamine showed a significantly advanced “transcriptional age” compared to the other replicates at 36hpi (see what is now Supp. Fig. 5B). Thus, we did not feel comfortable performing the RNA-seq analysis as we did with the other two time points (i.e. subtracting up- and down-regulated genes from the WT control from the SMC3-3HA-glmS data sets). We have added this information to the results section (Lines 256 and 261). As the WT parasites treated with glucosamine were approximately 8 hours in advance of the untreated WT parasites for the 36hpi time point, any up- and down-regulated genes might have been due to differences in the cell cycle rather than due to glucosamine treatment. The glmS system of inducible knockdown is widely used in P. falciparum; however, to our knowledge, no lab has investigated whether glucosamine treatment affects transcription in wildtype cells over the course of the IDC. Thus, for accurate phenotypic characterization of any protein with this system with regard to transcriptomics, we thought it was important to provide an RNA-seq dataset to define the cohort of genes affected by glucosamine treatment in WT parasites. We hope that our study will demonstrate the importance of using stringent controls when using inducible knockdown systems.

      We performed differential expression analysis of the SMC3-3HA-glmS parasites with and without glucosamine at 36hpi (we have added this data in Table 11). Again, significantly up- and down-regulated genes were not filtered using the WT dataset. With this analysis, we see only three genes from the list of invasion-related genes (Hu et al., 2010) that are up-regulated, but none of them have a significant q-value (Tab 5 of Table 18). Thus, depletion of SMC3 in late stage parasites does not lead to up-regulation of the same genes that are upregulated at 12 and 24hpi. We have added this information to the text (Line 277).

      *The presented upregulation of the egress and invasion related genes is hard to pinpoint to be a direct effect of transcriptional changes due to the SMC3 knockdown. While there's a slight upregulation of these genes they still seem to be regulated in their normal overall transcriptional program as shown in Figure 4D/E. *

      __Response: __We provide evidence of a direct effect of SMC3 binding by combining differential expression analysis performed upon SMC3 knockdown with SMC3 ChIP-seq at corresponding time points. As we show in what is now Fig. 4C and D, promoter accessibility of these egress/invasion genes correlates with their transcriptional activity. However, SMC3 binding to the promoters of these same genes shows inverse correlation with their transcriptional activity (what is now Fig. 4B and D). While we believe that SMC3 does contribute to the repression of these genes at specific time points during the cell cycle, it is highly likely that SMC3 is just one protein of many that regulates these genes. Moreover, and especially since we do not see a growth phenotype in the SMC3 KD, it is possible that another protein or even SMC1 could compensate for loss of SMC3 at these promoter regions. We now state these possibilities on lines 346 383 of the Discussion.

      *So the changes could in theory also be explained by the differences in cell cycle progression which are present between +/- GlcN. cultures (Sup. Fig. 3). The presented normalization to the microarray data is a well-established practice to correct for this but, as presented seems to have its limitation with these parasite lines (line 233, glucosamine treated parasites harvested at 24 hpi correspond statistically to approximately 18-19 hpi (Supp. Fig. 3).) *

      __Response: __In the analysis presented in what is now Supp. Fig. 5B, regardless of glucosamine presence or absence, the differences among replicates and strains at 12 and 24hpi are, in our opinion, minimal, amounting to one or two hours of the 48-hour IDC. In our extensive experience with RNA-seq across the P. falciparum lDC, this synchronization is extremely tight. As we describe on lines 416-421 of the Materials and Methods, there is a ±3 hour window in our synchronization method, meaning that parasites harvested at 24hpi could be anywhere from 21-27hpi. In addition, the dataset that was used for comparison (from Bozdech et al., 2003) was generated in 2003 in a different laboratory using different strains with microarray. While comparing more recent RNA-seq data to this classic study has become well-established practice and is useful for comparing transcriptional age between replicates and strains, it is inevitable that the calculated “hpi” from (Bozdech et al., 2003) will differ somewhat from our experimental “hpi”. We have indeed seen this small discrepancy in predicted transcriptional age in several of our RNA-seq datasets from trophozoites harvested at 24hpi.

      By including additional later time points, one could actually follow the expression profiles over the whole cycle and elucidate if there's an actual transcriptional up-regulation of the genes, or if the + GlcN. parasites show a faster cell cycle progression, with a shifted peak expression timing compared to the - GlcN. parasites. __Response: __We did collect a 36hpi time point in the SMC3-3HA-glmS and WT strain, with and without glucosamine. We have added this last time point and the WT data from the other two time points to what is now Supp. Fig. 5. Unfortunately, and for reasons unknown, the WT replicates treated with glucosamine showed a significantly advanced “transcriptional age” compared to the other replicates at 36hpi. Thus, we did not feel comfortable performing the RNA-seq analysis as we did with the other two time points (i.e. subtracting up- and down-regulated genes from the WT control from the SMC3-3HA-glmS data sets). We have added this information to the results section (Lines 256 and 261). As the WT parasites treated with glucosamine were approximately 8 hours in advance of the untreated WT parasites for the 36hpi time point, any up- and down-regulated genes might have been due to differences in the cell cycle rather than due to glucosamine treatment. The glmS system of inducible knockdown is widely used in P. falciparum; however, to our knowledge, no lab has investigated whether glucosamine treatment affects transcription in wildtype cells over the course of the IDC. Thus, for accurate phenotypic characterization of any protein with this system with regard to transcriptomics, we thought it was important to provide an RNA-seq dataset to define the cohort of genes affected by glucosamine treatment in WT parasites. We hope that our study will demonstrate the importance of using stringent controls when using inducible knockdown systems.

      *"These genes show SMC3 enrichment at their promoter regions at 12 and 24 hpi, but not at 36 hpi (Fig. 4C), and depletion of SMC3 resulted in upregulation at both 12 and 24 hpi (Fig. 4D). Comparison of the SMC3 ChIP-seq data with published Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data (Toenhake et al., 2018) and mRNA dynamics data (Painter et al., 2018) from similar time points in the IDC revealed that SMC3 binding at the promoter regions of these genes inversely correlates with chromatin accessibility (Fig. 4C) and their mRNA levels (Fig. 4E), which both peak in schizont stages. These data are consistent with a role of SMC3 in repressing this gene subset until their appropriate time of expression in the IDC."

      The presented correlations certainly make an intriguing point towards the authors conclusion that SMC3/cohesin depletion from the promoter regions of the genes results in a de-repression of these genes and their transcriptional activation. However, the SMC3 knockdown is not complete and only up to 69% as presented on RNA level in these parasites. Therefore a control experiment which needs to be done is to actually show the loss of SMC3 from the presented activated example genes in the knockdown parasites. This could easily be done by ChIP-qPCR or even ChIP-seq, to get a global picture of the actual changes in SMC3 occupation in the knockdown parasites in correlation with changes in transcript levels. *__Response: __While SMC3-3HA-glmS knockdown is not complete at the RNA level, it is fairly robust at the protein level, especially at 12hpi (Fig. 3A).

      *"These data suggest that SMC3 knockdown results in a faster progression through the cell cycle or a higher rate of egress/invasion."

      The authors could greatly strengthen their conclusions by investigating this thoroughly. Pinpointing the observed phenotype to an actual increase in invasion or egress would add to the authors main conclusion that the loss of SMC3 de-regulates the timing of gene expression for these invasion related genes thereby increasing their transcript levels and thus leading to a higher rate of egress/invasion. To determine cell cycle progression simple comparisons between DNA content using a flow cytometer at timepoints together with visual inspection of Giemsa stained blood smears would give a ggod indication towards changes in cell cycle progression. In addition invasion/egress assays by counting newly invaded rings per schizont could reveal, if there are changes in the rate of egress/invasion upon SMC3 knockdown.*

      Response: __We have repeated our growth curve analysis several times and with more clones and have concluded that there is not a significant growth phenotype in SMC3 KD parasites (see what is now Supp. Fig. 4B). We have added images of Giemsa-stained parasites from the knockdown time course we performed to what is now Supp. Fig. 5A. We see no obvious differences in cell morphology caused by glucosamine treatment in the WT or SMC3-3HA-glmS parasites. As we discuss on line 327, very little intact cohesin complex seems to be required for normal growth and mitosis in S. cerevisiae and D. melanogaster, which is probably why we do not see an obvious growth or morphological phenotype. We believe that SMC3 is probably only a part of a complex controlling transcription of these invasion or egress genes. Thus, the up-regulation of these genes upon SMC3 KD might not be enough to lead to a significant growth or invasion phenotype. __

      *Minor points:

      In the MM section on the Cas9 experiments it says dCas9 where it should be Cas9 (line 425)*

      __Response: __Thank you for pointing this out. We have corrected this.

      It would be great to add which HP1 antibody was used in which dilution in the IFAs to the MM section. __Response: __We have added this information to the Materials and Methods section.

      In Figure 4C for the gap45 gene there's is some green peak floating around which should not be there. __Response: __Thank you for pointing this out, we have corrected it.

      *Reviewer #3 (Significance (Required)):

      Significance: The manuscript investigates a very timely topic by trying to uncover new molecular mechanisms of transcriptional regulation in P. falciparum. Investigating the role of the cohesin complex/SMC3 in this context provides valuable new insights to the field. While the first part with the description of the SMC3 cell line and the co-IP experiments largely confirms published data on the existence and composition of the cohesin complex in Plasmodium and its enrichment at the centromeres, the second part is especially intriguing since it investigates the molecular function of SMC3 in more detail. The results pointing to a role of SMC3/cohesin as a transcriptional repressor are of great interest to the field and will open up new concepts for future investigation.*

      *Audience: The work is particularly interesting for people interested in gene regulatory processes in Plasmodium and Apicomplexan parasites in general. At the same time it also nicely points towards shared principles of gene regulation to other eukaryotes in relation to the spatial organization of the genome making the work also very interesting for a broader audience with interest in the general principles of gene regulatory processes in eukaryotic organisms.

      Expertise: P. falciparum epignetics and chromatin biology / gene regulation / Cas9 gene editing*

      CROSS-CONSULTATION COMMENTS

      All reviewers agree that the paper addresses an important topic and provides convincing evidence for enrichment of the cohesin component Smc3 at P. falciparum centromers. In contrast, evidence for a function of Smc3 as a transcriptional repressor of genes in the first part of the parasite life cycle is less well supported. All reviewers agree that the statistical significance of the ChIP experiments needs to be impoved by including biological replicates. In addition, the phenotype of the conditional knock-down should be analysed in more detail by clarifying whether faster cell cycle progression or higher invasion rate are responsible for the observed growth adavantage. Inclusion of transcriptional data from a later time point in addition to the presented data for 12 hpi and 24 hpi was also requested by all reviewers. Finally, several inconsistencies require clarification.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      In the presented manuscript by Rosa et al. the authors investigate the longstanding question of how P. falciparum achieves the tight transcriptional regulation of its genome despite the apparent absence of many canonical sequence specific transcription factor families found in other eukaryotes. To do this the authors investigate the role of the spatial organization of the genome in this context, by performing a functional characterization of the conserved cohesion subunit SMC3 and its putative role in transcriptional regulation in P. falciparum.

      Using Cas9 mediated genome editing the authors generated a SMC3-3xHA-glmS parasite line, which they subsequently used to show expression of the protein over the asexual replication cycle by western blot and IFA analysis. In addition, using co-IP experiments coupled with mass spectrometry they identified the additional components of the cohesion complex also found in other eukaryotes as interaction partners of SMC3 in the parasite, thereby confirming the presence of the conserved cohesin complex in P. falciparum. By using a combination of ChIP-seq and RNA-seq experiments in SMC3 knockdown parasites the authors furthermore show that a reduction of SMC3 resulted in the up-regulation of a specific set of genes involved in invasion and egress in the early stages of the asexual replication cycle and that this up-regulation in transcription is correlated with a loss of SMC3 enrichment at these genes. From these observations the authors conclude, that SMC3 binds dynamically to a subset of genes and works as a transcriptional repressor, ensuring the timely expression of the bound genes.

      Overall, the presented data is intriguing, of high quality and very well presented. However, there are some points, which should be addressed to bolster the conclusions drawn by the authors.

      Major points:

      I was not able to find the deposited datasets in the BioProject database under the given accession number. This should obviously be addressed and would have been nice to be able to have a look at these datasets also for the review process.

      SMC3-ChIP-seq experiments:

      "168 were bound by SMC3 across all three time points (Fig. 2D). However, most SMC3-bound genes showed a dynamic binding pattern, with a peak present at only one or two time points (Fig. 2B,D)."

      Here it would be interesting to actually have more than one replicate of each of these ChIP-seq time points. This could provide a better idea of how "dynamic" these binding patterns actually are. Furthermore, I was missing a list of these 168 genes, which are constantly bound by SMC3. Anything special about those? What actually happens to this subset of genes in the SMC3 knockdown parasites? Do they show similar transcriptional changes?

      SMC3-knockdown experiments:

      In Sup. Fig. 1 there is a double band in the HA-western blot in the 2nd cycle -GlcN. sample. This second band is absent in all other HA-western shown. Have the authors any idea where that second band comes from?

      In Figure 3A, the WB data shown is slightly contrasting the RNA-seq quantification (3B). The knock-down on protein level seems to be stronger in the 12 hpi samples here than in the 24 hpi samples. Although the band for HA-SMC3 is stronger at the 12 hpi TP there's no band visible in the + GlcN. sample. There's however in the 24 hpi samples. Could the authors comment on this?

      "Comparison of our RNA-seq data to the time course transcriptomics data from (Painter et al., 2018) revealed that SMC3 depletion at 12 hpi caused downregulation of genes that normally reach their peak expression in the trophozoite stage (18-30 hpi), with the majority of upregulated genes normally reaching their peak expression in the schizont and very early ring stages (40-2 hpi) (Fig. 3E). At 24 hpi, a similar trend is observed, with most downregulated genes normally peaking in expression in trophozoite stage (24-32 hpi) and the majority of upregulated genes peaking in expression at very early ring stage (2 hpi) (Fig. 3F)."

      I'm not fully convinced by these presented results/conclusions. This dataset would greatly benefit from the inclusion of additional later time points. The presented upregulation of the egress and invasion related genes is hard to pinpoint to be a direct effect of transcriptional changes due to the SMC3 knockdown. While there's a slight upregulation of these genes they still seem to be regulated in their normal overall transcriptional program as shown in Figure 4D/E. So the changes could in theory also be explained by the differences in cell cycle progression which are present between +/- GlcN. cultures (Sup. Fig. 3). The presented normalization to the microarray data is a well-established practice to correct for this but, as presented seems to have its limitation with these parasite lines (line 233, glucosamine treated parasites harvested at 24 hpi correspond statistically to approximately 18-19 hpi (Supp. Fig. 3).) By including additional later time points, one could actually follow the expression profiles over the whole cycle and elucidate if there's an actual transcriptional up-regulation of the genes, or if the + GlcN. parasites show a faster cell cycle progression, with a shifted peak expression timing compared to the - GlcN. parasites.

      "These genes show SMC3 enrichment at their promoter regions at 12 and 24 hpi, but not at 36 hpi (Fig. 4C), and depletion of SMC3 resulted in upregulation at both 12 and 24 hpi (Fig. 4D). Comparison of the SMC3 ChIP-seq data with published Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data (Toenhake et al., 2018) and mRNA dynamics data (Painter et al., 2018) from similar time points in the IDC revealed that SMC3 binding at the promoter regions of these genes inversely correlates with chromatin accessibility (Fig. 4C) and their mRNA levels (Fig. 4E), which both peak in schizont stages. These data are consistent with a role of SMC3 in repressing this gene subset until their appropriate time of expression in the IDC."

      The presented correlations certainly make an intriguing point towards the authors conclusion that SMC3/cohesin depletion from the promoter regions of the genes results in a de-repression of these genes and their transcriptional activation. However, the SMC3 knockdown is not complete and only up to 69% as presented on RNA level in these parasites. Therefore a control experiment which needs to be done is to actually show the loss of SMC3 from the presented activated example genes in the knockdown parasites. This could easily be done by ChIP-qPCR or even ChIP-seq, to get a global picture of the actual changes in SMC3 occupation in the knockdown parasites in correlation with changes in transcript levels.

      "These data suggest that SMC3 knockdown results in a faster progression through the cell cycle or a higher rate of egress/invasion."

      The authors could greatly strengthen their conclusions by investigating this thoroughly. Pinpointing the observed phenotype to an actual increase in invasion or egress would add to the authors main conclusion that the loss of SMC3 de-regulates the timing of gene expression for these invasion related genes thereby increasing their transcript levels and thus leading to a higher rate of egress/invasion. To determine cell cycle progression simple comparisons between DNA content using a flow cytometer at timepoints together with visual inspection of Giemsa stained blood smears would give a ggod indication towards changes in cell cycle progression. In addition invasion/egress assays by counting newly invaded rings per schizont could reveal, if there are changes in the rate of egress/invasion upon SMC3 knockdown.

      Minor points:

      In the MM section on the Cas9 experiments it says dCas9 where it should be Cas9 (line 425)

      It would be great to add which HP1 antibody was used in which dilution in the IFAs to the MM section.

      In Figure 4C for the gap45 gene there's is some green peak floating around which should not be there.

      Significance

      The manuscript investigates a very timely topic by trying to uncover new molecular mechanisms of transcriptional regulation in P. falciparum. Investigating the role of the cohesin complex/SMC3 in this context provides valuable new insights to the field. While the first part with the description of the SMC3 cell line and the co-IP experiments largely confirms published data on the existence and composition of the cohesin complex in Plasmodium and its enrichment at the centromeres, the second part is especially intriguing since it investigates the molecular function of SMC3 in more detail. The results pointing to a role of SMC3/cohesin as a transcriptional repressor are of great interest to the field and will open up new concepts for future investigation.

      Audience:

      The work is particularly interesting for people interested in gene regulatory processes in Plasmodium and Apicomplexan parasites in general. At the same time it also nicely points towards shared principles of gene regulation to other eukaryotes in relation to the spatial organization of the genome making the work also very interesting for a broader audience with interest in the general principles of gene regulatory processes in eukaryotic organisms.

      Expertise:

      P. falciparum epignetics and chromatin biology / gene regulation / Cas9 gene editing

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Rosa et al, Review Commons

      The manuscript by Rosa et al. addresses the function of the cohesion subunit Smc3 in gene regulation during the asexual life cycle of P. falciparum. Cohesin is a conserved protein complex involved in sister chromatin cohesion during mitosis and meiosis in eukaryotic cells. Cohesin also modulates transcription and DNA repair by mediating long range DNA interactions and regulating higher order chromatin structure in mammals and yeast. In P. falciparum, the Cohesin complex remains largely uncharacterized. In this manuscript, the authors present mass spectrometry data from co-IPs showing that Smc3 interacts with Smc1 and a putative Rad21 orthologue (Pf3D7_1440100, consistent with published data from Batugedara et al and Hilliers et al), as well as a putative STAG domain protein orthologue (PF3D7_1456500). Smc3 protein appears to be most abundant in schizonts, but ChIPseq indicates predominant enrichment of Smc3 in centromers in ring and trophozoite stages. In addition, Smc3 dynamically binds with low abundance to other loci across the genome; however, the enrichment is rather marginal and only a single replicate was conducted for each time point making the data interpretation difficult. Conditional knock-down using a GlmS ribozyme approach indicates that parasites with reduced levels of Smc3 have a mild growth advantage, which is only evident after five asexual replication cycles and which the authors attribute to the transcriptional upregulation of invasion-linked genes following Smc3 KD. Indeed, Smc3 seems to be more enriched upstream of genes that are upregulated after Smc3 KD in rings than in downregulated genes, indicating that Smc3/cohesin may have a function in supressing transcription of these schizont specific genes until they are needed. The manuscript is concise and very well written, however it suffers from the lack of experimental replicates for ChIP experiments and a better characterization of the phenotype of conditional KD parasites.

      Major comments

      • In the mass spectrometry analysis, many seemingly irrelevant proteins are identified at similar abundance to the putative rad21 and ssc3 orthologues, and therefore the association with the cohesion complex seems to be based mostly on analogy to other species rather than statistical significance. Hence, it would be really nice to see a validation of the novel STAG domain and Rad21 proteins, for example by Co-IP using double transgenic parasites.
      • The ChIPseq analysis presented here is based on single replicates for each of the three time points. The significance cutoffs for the peaks are rather high (q < 0.05). Therefore, the relevance of the marginally enriched dynamic peaks (average relative enrichment of <1.2 fold for genes upregulated in rings 12 hpi in Figure 4A and B) does not appear to be very robust. Even in ChIPseq experiments using non-immune IgG, hundreds of peaks are usually called with MACS2 with a similar magnitude. So, to substantiate the data for extra-centromeric peaks convincingly, replicates and more stringent statistics are necessary. In addition, the authors should also compare their data to published PfSmc3 ChIP data from Batugedara et al 2020 (GSE116219).
      • The authors argue that during schizogony, cohesin may no longer be required at centromers, explaining the low ChIPsignal at this stage (Line 301). However, during schizogony parasites undergo repeated rounds of DNA replication (S-phase) and mitosis (M-phase) to generate multinucleated parasites; and concentrated spots of Smc3 are observed in each nucleus in schizonts by IFA. In turn, the strong presence of Smc3 at centromers in ring stage parasites is surprising, particularly since the Western Blot in Figure 1D shows most expression of Smc3 in schizonts and least in rings; and Smc3 is undetectable in rings by IFA. Yet, the ChIP signal shows very strong enrichment at centromers, long before S phase produces sister chromatids. What could be the reason for this discrepancy? Again, ChIP replicates and controls would be helpful in distinguishing technical problems with the ChIP from biologically relevant differences.
      • It is surprising that a conserved protein like Smc3 shows such a subtle phenotype, given that it is predicted to be essential and its orthologues have a function in mitosis. Generally, only limited data are presented to characterize the Smc3 KD parasites, and more detail should be included. For example validation of the parasite line using a PCR screen for integration and absence of wt, parasite morphology after KD, and/or analysis of the KD parasites for cell cycle status.
      • Synchronization was performed at the beginning of the growth time course, which would be expected to result in a stepwise increase in parasitemia every 48 hours; however, the parasitemia according to Fig. 4F rises steadily, which would indicate that the parasites are actually not very synchronous.
      • The question of whether Smc3 causes a shorter parasite life cycle (quicker progression) or more invasion is important and could be experimentally addressed by purifying synchronous schizont stage parasites and determining their invasion rates as well as morphological examination of the Giemsa smears over the time course.
      • Please also compare Smc3 transcriptional levels in transgenic parasites to those in wt parasites to rule out that the genetic modification has lead to artificial upregulation of Smc3 transcription.
      • According to Figure S2, even more genes were deregulated at the 12 hpi time point in the WT parasites than in Smc3 parasites, and even to a much higher extent. What "transcriptional age" did the WT control parasites have at each time point?
      • A negative correlation with transcription is well established in S. cerevisiae, particularly at inducible genes. How does Smc3 enrichment generally look like for genes that show maximal expression at each of the time point?
      • Line 590: according to the methods, a 36 hpi KD time point was also harvested. Why are the data not shown/analysed?

      Minor Comments

      • Line 103/104: the hinge domain and ATPase head domain are mentioned, please annotate these in Figure 1A.
      • Figure 1D: the kDa scale is missing from the H3 WB.
      • What is the scale indicated by different colors in Fig. 2A?
      • Line 189: it would also be interesting how many peaks are "conserved" between the different time points studied, so not only to compare the gene lists of closest genes but also the intersecting peaks and then the closest genes to the intersecting peaks.
      • What is the distribution of the peaks over diverse genetic elements, such as gene bodies, introns, convergent/ divergent/ tandem intergenic regions? In yeast, cohesion is particularly enriched in convergent intergenic regions, so it would be interesting to see how this behaves in P. falciparum.
      • Line 130 intra-chromosomal interactions (word missing)
      • Contrary to Figure 1D, the WB in Figure 3A indicates strong expression of Smc3 in rings. Please comment on this discrepancy.
      • What time point after glucosamine addition represents the WB in Fig. 3A?
      • Line 233 / Suppl Figure 3: Isn't it a bit concerning that the untreated control parasites at 24 hpi statistically corresponded to 18-19 hpi? And to what timepoint did the wt parasites correspond?
      • Line 264: "whether naturally or via knockdown" - the meaning of this sentence is not entirely clear
      • Figure 4 Legend: A, B, C etc. are mixed up.
      • Figure 4D: the differences seem to be marginally significant, even not significant at all (q=0.8) for gap45 at 12hpi.
      • Figure 4F shows FACS data using SYBR green as a DNA stain. The authors could exploit this data to look at the relative DNA content per cell as a measure of parasite stage, since more mature parasites will have more DNA (mean fluorescence intensity). How did the corresponding parasite cultures look in Giemsa smears?
      • Are RNAseq replicates biological replicates from independent experiments or technical replicates?
      • Why does the number of genes analysed for differential gene expression differ between the comparisons?
      • Line 372: Do you mean the proteins or the genes? AP2-I has a peak at 24 hpi and 36 hpi, and its interacting AP2 factor Pf3D7_0613800 at all time points.
      • Line 480: no aldolase was shown.
      • Line 838: include GO analysis in methods

      Referees cross-commenting

      All reviewers agree that the paper addresses an important topic and provides convincing evidence for enrichment of the cohesin component Smc3 at P. falciparum centromers. In contrast, evidence for a function of Smc3 as a transcriptional repressor of genes in the first part of the parasite life cycle is less well supported. All reviewers agree that the statistical significance of the ChIP experiments needs to be impoved by including biological replicates. In addition, the phenotype of the conditional knock-down should be analysed in more detail by clarifying whether faster cell cycle progression or higher invasion rate are responsible for the observed growth adavantage. Inclusion of transcriptional data from a later time point in addition to the presented data for 12 hpi and 24 hpi was also requested by all reviewers. Finally, several inconsistencies require clarification.

      Significance

      The paper addresses the function of the cohesin complex in gene regulation of malaria parasites for the first time. Due to the conserved nature of the complex, the data may be interesting for a broad audience of scientists interested in nuclear biology and cell division/ gene regulation.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary

      The present work by Rosa et al., provides convincing data about the presence and functional relevance of the cohesin complex in Plasmodium falciparum blood stages. In accordance with other organisms, the composition of the cohesin complex containing SMC1, SMC3 RAD21 and putatively STAG could be confirmed via pulldown and mass spectrometry. Basic characterization of endogenous tagged SMC3 demonstrated the expression and nuclear localization during IDC, as well as the relatively stable accumulation at centromeric regions, consistent with the known cohesin function in chromatid separation. Furthermore, dynamic and stage-dependent binding to intergenic regions observed in ChIPseq and major transcriptome aberrations upon knockdown of SMC3 (<70% mRNA reduction via glmS-system) suggest an important function in transcriptional regulation. The underlying mechanism of gene regulation by cohesin via the creation of chromatin clusters or DNA loops as well as its specificity to target sites remain speculation.

      Major criticism

      • Accuracy of ChIPseq with only one replicate per time point (and lacking negative controls without antibody) is not convincing. The authors should include more replicates.
      • Proposed mechanism of repressive effect of SMC3 early in IDC on genes, that get de-repressed in late stages: To claim this mode of function, it would be necessary to include a KD on late stage parasites. If there is an early repressive role of SMC3, upregulated genes should not be affected by late SMC3-KD. Furthermore, the hypothesized repressive effect of SMC3 does not explain the numerous genes downregulated in KD.
      • Due to the fact, that the KD was induced at the exact same timepoint and analysed 12h and 24h after induction it is possible that identified, differentially expressed genes at 24h are not directly regulated by SMC3, but rather due to a general deregulation of gene expression. Did the authors attempt to analyse gene expression upon induction at ring, trophozoite and schizont stage?
      • Based on rapid parasite growth, the authors hypothesize a higher invasion rate due to upregulation of invasion genes. This hypothesis is not supported by quantitative invasion assays or quantification of invasion factors on the protein level. An alternative explanation could be a shorter cell cycle (<48h), as the different cell cycle progression estimation of KD/WT could indicate (SuppFigure 3). Giemsa-stain images of KD/WT parasites should be included to show normal stage development over time.
      • Correlation of SMC3-occupancy/ATAC/expression profile of the exemplary genes rap2 and gap45 (Figure 4C,D,E): is this representative for all upregulated genes?
      • Given that SMC3 appears to be not essential for parasite growth, the authors could generate a null mutant for SMC3, which might allow for easier analysis of differences in gene regulation, cell cycle progression and/or invasion efficiency.

      Significance

      Own opinion

      The authors provide a basic characterization of the cohesin component SMC3 using NGS methods to investigate chromatin binding sites and its potential influence on gene expression. The localisation of SMC3 at centromers as described previously (Batugedara 2020) was confirmed. However, the dynamic binding to other regions in the genome, potentially mediated by other proteins, could not be resolved unequivocal with only one replicate of ChIPseq per time point. Similarly, the RNAseq data demonstrate the relevance of SMC3 for gene expression, but no clear picture of a regulatory mechanism can be drawn at his point. Lacking information about the mode of binding as well as the setup of transcriptome analysis (only two time-shifted sampling points after simultaneous glmS treatment for 96h resulting in incomplete knockdown) cannot definitely elucidate, if SMC3/cohesin is a chromatin factor that affects transcription of genes in general or a specific repressor of stage-specific genes.

      The work will be interesting to a general audience, interested in gene regulation and chromatin remodelling

      The reviewers are experts in Plasmodium cell biology and epigenetic regulation.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      The authors do not wish to provide a response at this time. The full point-by-point reply is attached together with the manuscript files.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Review Commons recommends including the following components in referee reports:

      1. Evidence, reproducibility and clarity

      Summary:

      Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate). Please place your comments about significance in section 2.

      The manuscript by Awoniyi et al is an elegant study that addresses the protein composition of the lipid rafts upon BCR activation. The authors use an elegant system, employing the enzyme ascorbate peroxidase (APEX2), which in cellulo generates short-lived biotin radicals, that in turn randomly bind to proteins in their vicinity (10-20 nm) within 1 min. APEX2 is furthermore fused with the 7-amino acid sequence MGCVCSS, which allows its targeting to lipid rafts (Raft-APEX2) and with an mCherry marker. Using modern microscopy methods as well as quantitative mass-spectrometry proteomics, the authors provide a spatially and temporally resolved dynamic insight into the changes within the lipid raft and. are able to enrich multiple proteins in the lipid rafts previously not associated with BCR signaling. Furthermore, they identify Golga3 and Vti1b as proteins proximally responding to BCR activation possibly enabling vesicle transport.

      The manuscript is generally well written, the study is well-conceived and well-controlled. Nevertheless, the authors may answer some important questions (see below)

      Major comments:

      • Are the key conclusions convincing?

      Yes, the key conclusions of the study are convincing and based on elegant experiments

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      • In Figure 2, the HEL-specific A20 B cells are stimulated with anti-IgM F(ab)'2. While, beyond a doubt, anti-IgM F(ab)'2 is a potent stimulus, which triggers BCR signaling activation, I am curious why the authors chose it over the HEL antigen.

      • Describing figures 4 and 5, the authors state that they did not identify prominent BCR signaling pathway regulators. My major concern here is that the authors employ cancerous B cells for their analyses. The lipid raft composition and proteins recruited to the rafts in these cells may vary from those in primary wild-type B cells. While the authors do keep in mind that the signaling protein composition may vary between cell lines, it may vary even more between lymphoma B cell line and primary wild-type cells. Therefore, it may be beneficial to verify the expression of the "unexpected" proteins, such as Golga3, Kif20a, and Vtib1b in primary cells using immunofluorescence analyses similar to the ones presented in Fig 6.

      • The authors mention in the discussion, that Syk was not identified in their data set. This is surprising as Syk has been attributed with an important role in the proximal BCR signaling (Kulathu et al, https://doi.org/10.1111/j.1600-065X.2009.00837.x)

      • Would it be possible to detect Syk using the immunofluorescence technique from Figure 6?

      • Additionally, as stated in the text, A20 cells express endogenous IgG2a. Have the authors tried to conduct similar experiments stimulating with anti-IgG antibodies instead of anti-IgM F(ab)'2?

      • Have the authors tried to co-express the IgD-BCR to mimic mature peripheral B cells?

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      I cannot estimate the cost but if conducted, some experiments might take several months

      • Are the data and the methods presented in such a way that they can be reproduced?

      Yes

      • Are the experiments adequately replicated and statistical analysis adequate?

      Yes

      Minor comments:

      • Specific experimental issues that are easily addressable.

      • Are prior studies referenced appropriately?

      Yes

      • Are the text and figures clear and accurate?

      Yes, but, if possible, please provide the data instead of writing "data not shown"

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      Fig. 1D and Supp. Fig. S1C: the authors state that after IgM cross-linking, the non-transfected and Raft-APEX2-transfected cells showed "indistinguishable" p-Tyr levels. From my perspective, the Raft-APEX2-transfected cells show higher levels of p-Tyr. It is possible to quantify it?

      Some paragraph titles are very short and descriptive (e.g. Proteomic analysis, membrane-proximal proteome etc.). It could improve the reading if the paragraph titles consisted of respective key findings

      Significance

      2. Significance

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      • This study dissects in a spatio-temporal manner the early events upon BCR stimulation and the enrichment of various proteins in the vicinity of lipid rafts. While conceptually not novel, the study provides novel methodology to address this question. This is technically relevant and worth to be published after a major revision.

      • Place the work in the context of the existing literature (provide references, where appropriate).

      *This study prominently overlooks a bulk of literature that supports the BCR dissociation activation model and does not comment that (reviewed in Maity et al, Volume 1853, Issue 4, April 2015, Pages 830-840)

      • State what audience might be interested in and influenced by the reported findings.

      The findings of this manuscript are specifically interesting for researchers who study early events of B cells activation, specifically the changes in the membrane composition and early BCR signaling

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Immunology, Molecular and Cell Biology

      Referee Cross-commenting

      I agree totally that "the article would greatly benefit from a follow-up investigation on the functional/physiological relevance of the proposed players", however only if this is easily done with the CRISP mediated knock out as mentioned by both reviewers. In addition it s interesting to see data on cells stimulated with the antigen instead of anti IgM fab'2.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      Awoniyi et al. utilizes APEX2-mediated proximity proteomics to investigate the protein composition of lipid rafts and their dynamics in the context of B cell receptor (BCR) signaling. The authors add a 7 amino acid guide sequence to an APEX2-mCherry construct to specifically target the fusion protein into lipid raft plasma membrane domains and thereby spatially label and identify contained proteins. While a larger number of lipid raft-related proteins were verified, the study focuses on a smaller subset that is proposed to be specifically related to BCR signaling. Unexpectedly, this approach suggests key players of BCR signaling to be excluded from lipid rafts in an inducible manner. Finally, two of the identified proteins, Golga3 and Vti1b, were further investigated by immunofluorescence microscopy. Since both proteins are shown to be recruited to the plasma membrane and to colocalize with antigen, the authors propose Golga3 and Vti1b as novel targets of BCR activation and drivers of subsequent antigen internalization.

      Major Comments

      • A major claim of this study is that the majority of BCR signaling proteins (including CD79a and CD79b as parts of the BCR as well as BLNK) get excluded from lipid rafts upon stimulation. Moreover, many components of the endocytosis/vesicle trafficking pathways have been identified and the authors raise interesting points regarding the BCR as signaling platform versus the BCR as antigen internalization complex. This is intriguing and could even be explored further (e.g. by presenting Figure S3 in the main manuscript). However, the claim that Vti1b and Golga3 (and possibly Kif20) play key roles in the endocytic processes underlying BCR/antigen endocytosis and subsequent processing needs further verification e.g. by gene targeting experiments. In its present form, the manuscript links these proteins to B cell activation but does not convincingly back up the implied functional relevance to antigen/BCR endocytosis and/or trafficking leading to antigen presentation via MHC II.
      • It should be explained why the proteomic experiments were conducted using anti-IgM antibodies as opposed to the more physiological stimulation via HEL antigen, used for the microscopy studies.
      • Even though it is the central approach, the number of figures derived from the APEX2 proteomic experiments is quite high and should be condensed. For example, Figures 4 and 5 could be merged.
      • Figure 1D/E and Figure S1C seem to be the same pictures.
      • In contrast to Golga3, Vti1b is not mentioned in Figure 4 and the authors should explain why this particular protein was chosen for further investigation among all others (as opposed to proteins enriched upon anti-IgM treatment).
      • In Figures 6 and S4, the most apparent changes in Golga3 staining appear to be the increased (cytoplasmic and peripheral) vesicle size and intensity. For the analysis and quantitation of peripheral Golga3 staining, a tubulin-based masking algorithm was used to segment the image. This raises three concerns: 1) The tubulin staining that was used for masking appears to be rather blurry and the expected microtubule network is barely visible. 2) More information is needed on how the masking algorithm treated Golga3 vesicles touching the mask border. Based on the images in S4, there seems to be substantial overlap between (visibly peripheral) Golga3 vesicles and tubulin, so this will likely have an impact on quantification results. 3) Authors should comment on the overall increase in Golga3 upon activation.

      Minor Comments

      • While the APEX2 construct is globally targeted into the lipid raft environment, the study uses this approach to investigate proteins that are in the proximity of the IgM-BCR. The authors mention in the discussion that there have been "challenges" to target the BCR directly. It may be beneficial to briefly discuss those problems the authors have been facing with.
      • Figure 5B: It will be informative to show the BCR-induced (fold change) enrichment of Golga3 and Vti1b (and Kif20) in relation to IgM /kappa LC and the "classical" BCR signaling-related players.
      • Figure 6AB: Please clearly indicate that unmasked images are displayed, but masked images were quantified for Golga3 staining.
      • Figure 6CD: Since the quantification protocol of vesicle positioning involves nuclear staining, please depict respective DAPI stainings.
      • Figure S1D: It should be indicated that AF633-streptavidin was used for the flow cytometry experiment in Figure S1D (x axis).

      Significance

      Overall, the presented study offers an interesting approach and provides a novel, unbiased view on BCR-mediated lipid raft dynamics. The method is appealing in its technicality and its presentation, and hence, might attract the attention of a larger community working on plasma membrane localization of signaling platforms. It proposes two candidate signaling proteins and verifies their BCR-dependent colocalization with lipid rafts and antigen. While Golga3 and Vti1b are novel and interesting target proteins in the context of BCR activation, a functional assessment of these proteins is not presented. Certainly, the article would greatly benefit from a follow-up investigation on the functional/physiological relevance of the proposed players. As it stands, the manuscript largely remains on the level of exploration.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This is an interesting study identifying membrane RAFT associated proteins in a mouse B cell line, before and after BCR stimulation, using a proximity biotinylation method. This method relies on the expression of an biotinylating enzyme APEX2 with a RAFT targeting domain that is activated by H2O2 addition. The system is well controlled by comparing transfected to non-transfected cells and by titrating H2O2 etc. The expected anti-IgM induced recruitment of the BCR to the RAFT domain is well documented in this system. The authors identify by proteome analysis over 1600 proteins in proximity to the membrane-targeted APEX2, most of which are constitutively labelled, i.e. do not change upon BCR stimulation. Only a minority of proteins (less than 100) changes dynamically between resting and stimulated state. Some results are surprising, as the authors discuss, as the known players of the BCR signalling pathway hardly change in their Raft association. Interesting is also the exclusion of signalling proteins such as Btk, BLNK and Ig-alpha/Ig-beta from BCR clusters upon activation. The strength of the system is that the APEX2 system causes a biotinylation with 1 min, which is an advantage to other systems and that the authors analyse 3 time points after BCR stimulation. The data are thoroughly analysed and discussed. The following points should be addressed: 1. Why did the authors not use the HEL antigen to stimulate their cells, as the A20 line expresses a Ag-specific BCR? Would this not be more physiological than Fab2-anti IgM? 2. Many proteins of pathways like RNA transport, Spliceosome, mRNA surveillance, mismatch repair etc. are identified. Although the authors try to explain some of these data, they should also consider unspecific labelling or unspecific enrichment of these proteins which have nothing to do with raft association. This should be more openly discussed. 3. The authors follow up two proteins that dynamically change during activation, Golga3 and Vti1b, and demonstrate their membrane association upon activation. This is of course relevant. What is missing, is some genetic studies. CRISPR-mediated KO is not difficult to do in cell lines. Have the authors produced such mutants for these two genes and analysed possible phenotypes in BCR signalling or other aspects? This would certainly strengthen the study.

      Significance

      This is a unique approach to globally identify proteins associated with the BCR in Rafts upon BCR stimulation. Comparable studies with other methods have been published before for B cell lines. Gupta et al. used quantitative proteomics of isolated RAFT-associated proteins before and after BCR stimulation. They also found that the association of most proteins to RAFTs was not changed after BCR stimulation. Saeki et al. used a proteomic approach in another B cell line to identify RAFT associated proteins, but without comparing stimulated to unstimulated cells. The approach used here has the advantage of not selecting only membrane bound proteins, but equally identifiying cytosolic proteins in vicinity to the Raft as well. Furthermore, dynamic changes are better analysed than in the other two studies. Therefore, the findings are relevant and a good advance in the field.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Thank you for conducting the peer-review of our manuscript. We really appreciate the constructive criticism of the reviewers, and we are happy to note the positive appreciation of our core findings regarding the role of the decapping machinery during apical hook and lateral root formation and the identification of ASL9 as a target of the decapping machinery. However, both reviewers note we over-interpretate about the function of ASL9 in cytokinin and auxin responses which is not always supported by our data. Based on their feedback, we have toned down our claims and performed additional experiments and analyses and addressed all the comments raised by both reviewers. We hope this substantially revised and improved version of our manuscript will be better accepted.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors describe the role of the mRNA decay machinery in apical hook formation during germination in darkness in A.thaliana. As reported, this machinery is predominantly described in literature in stress response processes, whereas little is known about its involvement during developmental processes. In detail, the authors demonstrated, via RNA immunoprecipitation (RIP) and genetic experiments, the direct regulation of the LATERAL ORGAN BOUNDARIES DOMAIN 3 (LBD3)/ASYMMETRIC LEAVES 2-19 LIKE 9 (ASL9) mRNA stability by the mRNA decapping machinery subunits DCPs. According to the manuscript, ASL9 controls apical hooking, LR development and primary root growth is regulating cytokinin signalling and hence its regulation helps to maintain a correct balance of auxin/cytokinin. Indeed, they showed an impair apical hooking and LR defects both in mRNA decapping mutants, where they observed more capped ASL9 compared to WT, and in ASL9 over-expressor lines. Moreover, they reported a largely restoration of over-expressor lines phenotype in the arr10-5arr12-1 double mutants. This work present simple but interesting data that corroborate the authors hypothesis.

      Our response: We thank the reviewer for acknowledging the significance of our findings although we wonder what it´s meant by “simple data”. Through a combination of (complicated) genetics, phenotyping, cell imaging and molecular biology, we have provided mechanistic evidence on the function of the decapping machinery during 2 different post embryonic developmental events. Please see our detailed answers to the reviewer’s comments in the following.

      Nonetheless, I have both major comments and minor comments to improve the manuscript: MAJOR COMMENTS: 1. I am a bit concerned by the fact that cytokinin, auxin, LBD3, ARR12 and ARR10 have been largely involved in vasculature development and that the obtained results might be due to their role in vasculature development more than in LBD3 mRNA decapping process. Authors should provide evidence that their results are independent from vasculature defects present in those backgrounds or in case discuss this possibility.

      __Our response: __We are a bit puzzled on how vasculature development could explain the apical hook phenotype observed in the decapping mutant. Data like the rapid assembly of P-bodies upon IAA (Fig. 3C) treatments and the overall decreased DR5 signal in dcp mutants (Fig.S5&6) are all consistent with a process precluding vasculature formation. However, we still discuss the possibility that the developmental defects observed in mRNA decapping mutants and ASL9 overexpressor might be related to the vasculature development in these plants (Line 239-244).

      The interaction between the described players and auxin is not clear. From the reported experiments it is difficult to understand what authors wants to report as in S4 and S5 are reported experiments not fully described in the text (authors report about introgression of DR5::GFP in dcp1 and 2 mutants, but SD4 reports ACC treatments of DR5::GFP,dcp2 mutants and SD5 of 7 dpg root meristems of this strain ). Please describe and discuss better the experiment. Also, to this reviewer it is difficult to understand whether the absence of auxin activity in the dcp2 mutants hypocotyl is merely an effect of the lack of the hook formation in this background or a cause. Please clarify this point including new experiments (axr1 or axr3 mutants might help in understand this point).

      __Our response: __We follow the reviewer’s suggestions and trust we now describe and discuss Fig S5&6 (old Fig S4&S5) clear in Line 188-193. As axr1 has been published with apical hook and lateral root defect (old Line 42, new Line 39&169), we did not repeat it in new experiments but emphasize it in Line 169.

      Authors conclude that mRNA decapping is also involved in root growth. However, they do not report direct evidences regarding root growth but mostly regarding the mere root lenght at a precise developmental stage. Please eliminate this point or provide new experiments (e.g., root length and root meristem activity over time)

      __Our response: __We follow the reviewer’s suggestions and eliminate the data regarding to primary root growth (Fig. 3-6 &S2)

      Regarding root growth defects, these might be due to defect in the vasculature development, please analyse this point or report new experiments (e.g., vasculature analysis of dcp1,2 mutants or tissue specific expression of DCP2).

      __Our response: __We largely agree with the reviewer, all the decapping components DCP1, DCP2, DCP5 and PAT1 exhibit high expression in xylem cells and low expression in procambium cells (Brady et al., 2007) indicating functions of decapping components in vasculature development. However, we did not include this knowledge in our manuscript since we decided to eliminate the primary root growth data (Fig.3-6&S2).

      For consistency the last paragraph of result section: "ASL9 directly contributes to apical hooking, LR formation and primary root growth" should be part of the result section entitled "Accumulation of ASL9 suppresses LR formation and primary root growth". Authors should move this result in the paragraph before "Interference of a cytokinin pathway and/or exogenous auxin restores developmental defects of ASL9 over-expressor and mRNA decay deficient mutants".

      __Our response: __We agree thus we reorganize the result sections and move "ASL9 directly contributes to apical hooking and LR formation" before "Interference of a cytokinin pathway and/or exogenous auxin restores developmental defects of ASL9 over-expressor and mRNA decay deficient mutants" (Line 152).

      I suggest being consistent in the description of the statistical analysis. In particular: - I suggest reporting the meaning of ANOVA letters and the P-value in each figure as sometimes these information are missing, especially in Fig.2.

      __Our response: __We used ANOVA letters when comparing among genotypes and treatments, for example Fig 2A; and we used stars when comparing to controls, for example old Fig 2F. For consistency, we use letters for all the statistical analysis now and we report the meaning of the letters clearly in the figure legends (Fig. 1-6, S1-5&7). However, we think that putting the P-values in each figure would not be reader-friendly, and thus we have not done this.

      • in Fig.S3 please report the statistical significance on bars and the statistical analysis performed.

      __Our response: __We thank the reviewer for pointing it out, we report the statistical analysis now in new Fig. S2 (old Fig. S3).

      MINOR COMMENTS: L31- please replace "normal" with "proper"

      __Our response: __We thank the reviewer for the suggestion, now we replace "normal" with "proper"(Line 30)

      L42-please report the acronym of axr1

      __Our response: __The acronym of axr1 is correctly reported (Line 40).

      L57, L59-please include the entire name of DCP2 and XRN

      __Our response: __The entire name of DCP2 and XRN are correctly included (Line 55 &57).

      -Please report how many plants were analysed in legend or in methods section

      __Our response: __The numbers of plants in analysis are now reported in figure legends (Fig. 1-6, S1,2&7).

      -Please report how many transgenic independent lines were obtained in methods section

      __Our response: __The numbers of transgenic independent lines are now reported in methods (Line 292)

      • Please, try to change the colours of the graph in Fig.S2A-B, as it quite difficult to distinguish light grey shades.

      __Our response: __We thank the reviewer’s suggestions, the colours of new Fig.S3&4 (old Fig.S2) are changed.

      • In Fig. 5A and S5A scale bars are missing.

      __Our response: __We thank the reviewer for pointing this out, scale bars are correctly added in new Fig 4 &S6 (old Fig 5 &S5).

      Reviewer #1 (Significance (Required)): The manuscript is interesting and analyse important and overlooked aspects of the role of mRNA decapping in development. Nonetheless experiments reported are not particularly innovative and not always sound. Also authors analysis are a bit superficial probably because they decide to utilize too many systems in their research (root development, hook development and lateral root development).

      Our response: We thank the reviewer again for acknowledging the significance of our findings and hope we satisfied the reviewer with our answers above. However, we would like to ask what is the purpose of writing “experiments are not particularly innovative”? We admit we used established and robust experiments which we found sufficient to answer the overlooked aspects of the role of mRNA decpping in apical hook and lateral root development as also noted by the reviewer, but maybe we simply don't understand the comment.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Major Comments 1. My main concern is about the authors' conclusions on the role of mRNA decay and ASL9/LBD3 in the control over cytokinin and auxin responses. I don't think that based on the data presented the authors may do the conclusions stated on lines 184-185, see also the points below.

      __Our response: __We agree thus we tone down our conclusion in our new manuscript (Line 197-199), see answers below for detail.

      The conclusion about the role of ASL9 and its direct involvement in the apical hook formation and lateral root development/main root growth is a bit exaggerated, based on rather tiny effects mediated by the introduction of asl9-1 into the dcp5-1. Rather, the data suggest that misregulation of other transcripts in the mRNA decay-deficient lines might be responsible for the observed defects. That is also apparent from slightly different phenotypes seen in dcp5-1/pat triple compared to oxASL9 (Fig. 3A). The strong dependency of oxASL9 phenotype on the presence of functional ARR10 and ARR12 implies cytokinin signaling-dependent mechanism of ASL9/LBD3 action (see also point 3 below). Considering the aforementioned phenotype differences between the dcp5-1/pat triple and oxASL9, it would be interesting to see the possible dependence of the mRNA decay-deficient line phenotypes on the cytokinin signaling, too.

      __Our response: __We note restoration of dcp5-1 developmental defects in asl9 backgrounds is partial, indicating other ASLs or non-ASLs also contributing to apical hook and lateral root development (old Line 224-225, new Line 229-230 &234-235). We also note that partial suppression is a common phenomenon when studying discrete developmental traits. Two such examples could include the knockout of TPXL5 which partially suppressed the increase of LR density in the hy5 mutant and the introduction of a point mutation in SnRK2.6 in the gsnor1-3/ost1-3 double-mutant partially suppressed the effect of gsnor1-3 on ABA-induced stomatal closure (Qian et al., 2022 The Plant Cell doi.org/10.1093/plcell/koac358; Wang et al., 2015 PNAS 112, 613). In addition to such discrete developmental traits, more dramatic phenotypes like autoimmunity may also only be partially suppressed (Zhang et al., 2012 CH&M 11, 253). However, we agree that it’s interesting to check the dependence of cytokinin signaling of the developmental defects in mRNA decay-deficient mutants. Unfortunately, we were only able to cross arr10 arr12 into dcp5-1. This line showed similar partial restoration of dcp5-1 developmental defects as seen for dcp5-1asl9-1. Overall, these data indicates that contribution of mRNA decapping targeting ASL9 transcripts during apical hook and LR formation depends on ARR10 and ARR12 (Fig. 4&6, Line 180-186).

      Also the hypothesis on the upregulation of cytokinin signaling in the mRNA decay mutants and Col-0/oxASL9 is very indirect and should be tested using e.g. TCSn:GFP. The type A ARRs (RRAs) are not only the negative regulators of cytokinin signaling, but also the cytokinin primary response genes. Thus, the downregulation of RRAs could mean the downregulation of the cytokinin signaling pathway in the mRNA decay mutants and/or Col-0/oxASL9. The latter seems to be the case as shown recently (Ye et al., 2021).

      __Our response: __We thank the reviewer for suggesting a different annotation of our result regarding to type-A ARRs. Ye et al reported accumulation of ASL9/LBD3 induced downregulation of cytokinin pathway based on weaker ARR5 and TCSn-GFP signal(Ye et al., 2021). However, the fact that knocking out cytokinin signaling activator genes ARR10 and ARR12 largely restored developmental defects in ASL9 over-expressors lead to the hypothesis of upregulated cytokinin signaling in ASL9 over-expressors (Fig 5). Therefore, we substitute “upregulation” with “misregulation” for cytokinin signaling to compromise in our new manuscript (Line 174).

      The hypothesis on the causal link between the observed auxin-related defects and upregulated cytokinin signaling (Discussion, lines 214-216) is more than speculation. This could be tested by introducing arr10 arr12 into the dcp2-1/DR5-GFP and/or dcp5-1/DR5-GFP.

      __Our response: __We thank the reviewer for the suggestions, due to time and funds management, we decided to check auxin related gene expression in dcp5-1arr10-5arr12-1 mutants instead of making transgenic plants in triple mutant. The repressed expression of SAUR23 and TAR2 in dcp5-1 is partially restored (Fig. S4), indicating possible repression of auxin signaling caused by upregulated cytokinin signaling. However, for consistency in cytokinin signaling description, we tone down the hypothesis on the link between auxin-related defects and cytokinin signaling (Line 218-220).

      Compared to the text/quantification of the effect of asl9-1 mutant on the hook formation (Fig. S1D), I see exaggerated hook formation both in the presence and absence of ACC in asl9-1, at least on the figures shown in Fig. S1C. Are the shown seedlings not representative?

      __Our response: __We thank the reviewer for pointing our mistakes out, the shown seedlings are representative but mislabeled and the mistakes are corrected now in our new manuscript (Fig. S1C).

      Minor Comments 1. Syntax problem in the sentence on lines 45-46 (?).

      __Our response: __We thank the reviewer for pointing it out, syntax problem of this sentence is solved now in new manuscript (Line 41-44).

      The sentence on lines 48-49 should be rephrased. It implies the cytokinins regulate the amount of RRBs, which is not correct (cytokinins control phosphorylation of RRBs, not their abundance, RRAs are not TFs).

      __Our response: __We now rephrase the sentence in a correct way (Line 46)

      In the FL for Fig. 2F there is mentioned that MYC-YFP was used as a control compared to the main text mentioning YFP-WAVE (?).

      __Our response: __We thank the reviewer for pointing this out, the YFP-WAVE line we used is MYC-YFP transgenic plants, we now include this information in our manuscript (Line 136) and for consistency we changed MYC-YFP to YFP-WAVE in Fig. 2F.

      Naito et al. (2007) suggest ASL9 as a target of cytokinin signaling, but I don't think they imply the involvement of ASL9 in the cytokinin signaling as mentioned e.g. on line 166 (?)

      __Our response: __We largely agree with the reviewer thus we also cite Ye’s paper here in our new manuscript (Line 165)

      References Ye L, Wang X, Lyu M, Siligato R, Eswaran G, Vainio L, Blomster T, Zhang J, Mahonen AP. 2021. Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Curr Biol 31(15): 3365-3373 e3367.

      Reviewer #2 (Significance (Required)):

      The authors provide interesting data suggesting possible role of mRNA decay machinery in the hook and lateral root formation and main root growth via decapping-mediated control over ASL9/LBD3 transcript abundance. Based on the observed interaction of the observed phenotypes with hormonal regulations, the authors' conclude mechanistic link between the mRNA decay/ASL9 and cytokinin and auxin responses.

      Our response: We thank the reviewer for acknowledging the significance of our findings.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Major Comments

      1. My main concern is about the authors' conclusions on the role of mRNA decay and ASL9/LBD3 in the control over cytokinin and auxin responses. I don't think that based on the data presented the authors may do the conclusions stated on lines 184-185, see also the points below.
      2. The conclusion about the role of ASL9 and its direct involvement in the apical hook formation and lateral root development/main root growth is a bit exaggerated, based on rather tiny effects mediated by the introduction of asl9-1 into the dcp5-1. Rather, the data suggest that misregulation of other transcripts in the mRNA decay-deficient lines might be responsible for the observed defects. That is also apparent from slightly different phenotypes seen in dcp5-1/pat triple compared to oxASL9 (Fig. 3A). The strong dependency of oxASL9 phenotype on the presence of functional ARR10 and ARR12 implies cytokinin signaling-dependent mechanism of ASL9/LBD3 action (see also point 3 below). Considering the aforementioned phenotype differences between the dcp5-1/pat triple and oxASL9, it would be interesting to see the possible dependence of the mRNA decay-deficient line phenotypes on the cytokinin signaling, too.
      3. Also the hypothesis on the upregulation of cytokinin signaling in the mRNA decay mutants and Col-0/oxASL9 is very indirect and should be tested using e.g. TCSn:GFP. The type A ARRs (RRAs) are not only the negative regulators of cytokinin signaling, but also the cytokinin primary response genes. Thus, the downregulation of RRAs could mean the downregulation of the cytokinin signaling pathway in the mRNA decay mutants and/or Col-0/oxASL9. The latter seems to be the case as shown recently (Ye et al., 2021).
      4. The hypothesis on the causal link between the observed auxin-related defects and upregulated cytokinin signaling (Discussion, lines 214-216) is more than speculation. This could be tested by introducing arr10 arr12 into the dcp2-1/DR5-GFP and/or dcp5-1/DR5-GFP.
      5. Compared to the text/quantification of the effect of asl9-1 mutant on the hook formation (Fig. S1D), I see exaggerated hook formation both in the presence and absence of ACC in asl9-1, at least on the figures shown in Fig. S1C. Are the shown seedlings not representative?

      Minor Comments

      1. Syntax problem in the sentence on lines 45-46 (?).
      2. The sentence on lines 48-49 should be rephrased. It implies the cytokinins regulate the amount of RRBs, which is not correct (cytokinins control phosphorylation of RRBs, not their abundance, RRAs are not TFs).
      3. In the FL for Fig. 2F there is mentioned that MYC-YFP was used as a control compared to the main text mentioning YFP-WAVE (?).
      4. Naito et al. (2007) suggest ASL9 as a target of cytokinin signaling, but I don't think they imply the involvement of ASL9 in the cytokinin signaling as mentioned e.g. on line 166 (?)

      References

      Ye L, Wang X, Lyu M, Siligato R, Eswaran G, Vainio L, Blomster T, Zhang J, Mahonen AP. 2021. Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Curr Biol 31(15): 3365-3373 e3367.

      Significance

      The authors provide interesting data suggesting possible role of mRNA decay machinery in the hook and lateral root formation and main root growth via decapping-mediated control over ASL9/LBD3 transcript abundance. Based on the observed interaction of the observed phenotypes with hormonal regulations, the authors' conclude mechanistic link between the mRNA decay/ASL9 and cytokinin and auxin responses.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript, the authors describe the role of the mRNA decay machinery in apical hook formation during germination in darkness in A.thaliana. As reported, this machinery is predominantly described in literature in stress response processes, whereas little is known about its involvement during developmental processes. In detail, the authors demonstrated, via RNA immunoprecipitation (RIP) and genetic experiments, the direct regulation of the LATERAL ORGAN BOUNDARIES DOMAIN 3 (LBD3)/ASYMMETRIC LEAVES 2-19 LIKE 9 (ASL9) mRNA stability by the mRNA decapping machinery subunits DCPs. According to the manuscript, ASL9 controls apical hooking, LR development and primary root growthis regulating cytokinin signalling and hence its regulation helps to maintain a correct balance of auxin/cytokinin. Indeed, they showed an impair apical hooking and LR defects both in mRNA decapping mutants, where they observed more capped ASL9 compared to WT, and in ASL9 over-expressor lines. Moreover, they reported a largely restoration of over-expressor lines phenotype in the arr10-5arr12-1 double mutants.

      This work present simple but interesting data that corroborate the authors hypothesis. Nonetheless, I have both major comments and minor comments to improve the manuscript:

      Major comments

      1. I am a bit concerned by the fact that cytokinin, auxin, LBD3,ARR12 and ARR10 have been largely involved in vasculature development and that the obtained results might be due to their role in vasculature development more than in LBD3 mRNA decapping process. Authors should provide evidence that their results are independent from vasculature defects present in those backgrounds or in case discuss this possibility.
      2. The interaction between the described players and auxin is not clear. From the reported experiments it is difficult to understand what authors wants to report as in S4 and S5 are reported experiments not fully described in the text (authors report about introgression of DR5::GFP in dcp1 and 2 mutants, but SD4 reports ACC treatments of DR5::GFP,dcp2 mutants and SD5 of 7 dpg root meristems of this strain ). Please describe and discuss better the experiment. Also, to this reviewer it is difficult to understand whether the absence of auxin activity in the dcp2 mutants hypocotyl is merely an effect of the lack of the hook formation in this background or a cause. Please clarify this point including new experiments (axr1 or axr3 mutants might help in understand this point).
      3. Authors conclude that mRNA decapping is also involved in root growth. However, they do not report direct evidences regarding root growth but mostly regarding the mere root lenght at a precise developmental stage. Please eliminate this point or provide new experiments (e.g., root length and root meristem activity over time)
      4. Regarding root growth defects, these might be due to defect in the vasculature development, please analyse this point or report new experiments (e.g., vasculature analysis of dcp1,2 mutants or tissue specific expression of DCP2).
      5. For consistency the last paragraph of result section: "ASL9 directly contributes to apical hooking, LR formation and primary root growth" should be part of the result section entitled "Accumulation of ASL9 suppresses LR formation and primary root growth". Authors should move this result in the paragraph before "Interference of a cytokinin pathway and/or exogenous auxin restores developmental defects of ASL9 over-expressor and mRNA decay deficient mutants".
      6. I suggest being consistent in the description of the statistical analysis. In particular:
        • I suggest reporting the meaning of ANOVA letters and the P-value in each figure as sometimes these information are missing, especially in Fig.2.
        • in Fig.S3 please report the statistical significance on bars and the statistical analysis performed.

      Minor comments

      L31- please replace "normal" with "proper"

      L42-please report the acronym of axr1

      L57, L59-please include the entire name of DCP2 and XRN

      • Please report how many plants were analysed in legend or in methods section
      • Please report how many transgenic independent lines were obtained in methods section
      • Please, try to change the colours of the graph in Fig.S2A-B, as it quite difficult to distinguish light grey shades.
      • In Fig. 5A and S5A scale bars are missing.

      Significance

      The manuscript is interesting and analyse important and overlooked aspects of the role of mRNA decapping in development. Nonetheless experiments reported are not particularly innovative and not always sound. Also authors analysis are a bit superficial probably because they decide to utilize too many systems in their research (root development, hook development and lateral root development).

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision Plan

      Manuscript number: RC-2022-01765

      Corresponding author(s): Dr. Huiqing Zhou (Radboud University)

      1. General Statements [optional]

      We like to thank the editor and reviewers for their constructive comments and suggestions for improving the manuscript. We here address the comments point-by-point using the template of the revision plan.

      2. Description of the planned revisions

      Reviewer #1:

      • While the study is complete and describes well, a strong conclusion, including validation of the role of some TFs such as FOSL2 through knock out experiments in model organisms or cell culture will elevate the paper more (optional). *

      To address this point, we will perform siRNA knockdown experiments of TFs identified in our study, including FOSL2, in primary LSCs, and examine the transcriptional consequences of knocking down these TFs by RNA-seq or RT-qPCR analyses.

      Reviewer #2:

        • The findings provide an overview of transcriptional regulators and targets in two essential tissues. This is a valuable tool for future discoveries regarding the processes governing cell differentiation and those involved in the disease mechanism of the cornea. Although the presented predictions are interesting, what is missing is an examination of the functional significance of the findings. * Indeed, we fully agree with the reviewer that additional functional examinations are important and relevant and would strengthen the manuscript. We propose to do the following functional analyses to further demonstrate the importance of the key TFs.
      1. Immunostaining of the key TFs in the human cornea and in LSCs and KCs.

      2. As described above, we will perform siRNA experiments for key TFs identified in our study, followed by RNA-seq or RT-qPCR analysis, to assess the transcriptional program controlled by these key TFs.
      3. The gene regulatory network controlled by these tested TFs will be analysed, to examine the interplay of these TFs in transcriptional regulation and in cell fate determination. Reviewer #2:

      4. Also, the findings indicate an interaction between FOXL2 and other TFS is important for maintaining the corneal epithelium. These interesting predictions indicate an important role for FoxL2 in corneal function. It would be important to verify these predictions by experimental studies, for example, by presenting the association of FOXL2 with the predicted co-factors and presenting data on the effect of the identified mutation on FOXL2 transcriptional activity.

      *

      We assume that Reviewer #2 refers to FOSL2 instead of FOXL2. We agree with this reviewer’s suggestion to functionally address the importance of FOSL2 in the cornea. In order to answer this, we plan to perform FOSL2 staining and FOSL2 siRNA knockdown in LSCs, followed by RNA-seq, as described above. This will show the FOSL2 importance in LSCs and in cornea, and will identify the affected downstream gene networks.

      Regarding the clinical effect of the specific FOSL2 variant reported in our study, we agree that functional validation would strengthen our work even more. We believe that the main message of the study is the use of integrative omics analyses to uncover new transcription factors involved in corneal and limbal fates, and to highlight new candidate genes in corneal disease. Therefore we feel that the disease mechanism behind the specific FOSL2 variant, albeit interesting, is beyond the scope of this study. Nonetheless, we reinforced the pathogenicity of the variant with various in silico prediction platforms (supplementary table 9). Interestingly, a recent study reported that FOSL2 truncating mutations are involved in a new syndrome with ectodermal defects and cataract. This is in line with our findings that FOSL2 is an important shared TF in both LSCs and KCs, and strengthens the predicted role of FOSL2 in the epithelium of the eye and associated diseases. We have included additional discussion on this study in the Discussion line 662-668.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #2:

      In Figure 1, the authors compare the transcriptome and epigenome (ATAC-seq and histone modifications) of basal KCs from skin donors and cultured LSCs established from limbal biopsies. The authors should clarify the source of the cells in the published studies - specifically, why more data were needed and if these were comparable to their datasets.

      We have included the cell sources and cultured conditions from the published studies and added additional columns in the supplementary tables 1, 2 and 3. Briefly, LSC publicly available samples were extracted from post-mortem cornea and cultured in DMEM/F12, or KSFM.

      Regarding the questions on the necessity of incorporating more data, our reasoning was two-fold. First of all, we have taken an integrated approach to perform our analysis, using both our own and publicly available datasets. We see this as a strength, as the most important differences between cell types that determine cell fates should be consistent with cells generated from different donors and labs. Second, we choose to generate more data in our own lab in order to make sure to have comparisons without the influence of technical differences between publicly available datasets. We include text about this approach in the Discussion (lines) 578-580. Furthermore, to show that the datasets we used are consistent and can be integrated, we have performed a PCA correlation analysis for the RNA-seq analysis (supplementary figures 1A&1B lines 834-837), and added a spearman correlation analysis for the ATAC-seq datasets (supplementary figure 5F & lines 818-820). Both indicated clear biological signal similarities between cell types across different labs and techniques.

      Reviewer #2:

      3.Next, they compared the transcriptomes of LSCs and KCs to the transcription profile of LSCs from two aniridia patients and control. They need to specify the stage of the donors' disease and provide details on the control samples.

      Both aniridia samples were from patients of stage 4 on the Lagali Stages (Lagali, N. et al. (2020) ‘Early phenotypic features of aniridia-associated keratopathy and association with PAX6 coding mutations’, The Ocular Surface, 18(1), pp. 130–140. We have included this information in Material and Methods (lines 738-739). For healthy control cells, no information regarding the stage and gender is available, as they are from anonymous individuals. We added more information on the aniridia and control samples regarding the culture conditions and passage numbers (lines 747:750).

      Reviewer #2:

      • In addition, and as indicated above, when combining published datasets, one should clarify whether the methods of collecting/growing the cells and the disease stage are comparable. This is important with samples from aniridia as it is unclear if the patient LSCs survive the isolation or if other cells take over.*

      Healthy LSC cells used in the direct comparison with aniridia LSC cells were grown using the same expansion and culture conditions. Furthermore, the method of culture, extraction and expansion between the earlier published aniridia cell data and our data are exactly the same (lines 735:750). As described above, we have included the cell sources from the aniridia samples, and added additional columns in the supplementary table 1.

      Reviewer #2:

      • It would be valuable to the community if the presented data were also provided online in a web tool so that CRE activity or gene expression could be easily examined.*

      We have expanded the UCSC track hub to highlight the identified variable CRE elements. This will enable a searchable tool for differential CREs close to genes of interest between KCs and LSCs. We have furthermore added a sentence to explicitly mention the presence of this track hub in the result section (lines 248-249).

      4. Description of analyses that authors prefer not to carry out

      Reviewer #1:

      1. By identifying differential cis regulatory elements in two cells, they identify TFs that are associated with overexpression or repression of genes of interest. However, this approach of relying solely upon nearest genes of CREs is very cursory and the authors could have used methods such as Activity-by-Contact to establish CREs and their target genes and then assessed their correlation with expression (optional). Activity-by-Contact incorporation would be an exciting inclusion in the data analysis, and for the next step in GRN modelling. However, this is out of the scope of this manuscript. In addition, we would like to point out that we did not solely rely on the method of mapping CREs to the nearest genes. Instead, for H3K27ac and ATAC-seq signals, our analysis uses a weighted TSS distance method, within windows of up to 100kb, similar to the method ANANSE and other published gene regulatory network tools. For H3K4me3 and H3K27me3 marks which correlate far better with an expression of the closest genes, we use a window of 2kb at the closest gene.

      Reviewer #2:

      When ATAC-seq was combined with histone modification analyses, about a third of these regions showed different characteristics, inferring tissue-specific activities. These data may be valuable for identifying tissue-specific cis-regulatory elements (CREs) for the key TFs. This, however, remains to be examined experimentally.

      It is not fully clear to us what ‘experimentally examination’ was referred to by this reviewer, whether to test these tissue-specific CREs individually or globally. We agree that it is important to test tissue-specific CREs experimentally to examine their function, e.g., which genes they are regulating, and which role they play in tissue-specificity. However, this is out of the scope of this manuscript.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Multi-omics analyses identify transcription factor interplay in corneal epithelial fate determination and disease The authors of this manuscript describe their work on identifying transcriptional regulators and their interplay in cornea using limbal stem cells and epidermic using keratinocytes. This is a very well written and well described comprehensive manuscript. The authors performed various analyses which were in line with logical workflow of the research question. The authors begin by first identifying differential gene expression signals for the two tissues along with enriched biological processes using GSEA and PROGENy. The strength of this manuscript also includes usage of epigenetic data to determine the cell fate and its drivers. The authors study various epigenetic assays and correlate them expression levels of TFs and genes to identify regulatory patterns that mark differences between LSCs and KCs. By identifying differential cis regulatory elements in two cells, they identify TFs that are associated with overexpression or repression of genes of interest. However, this approach of relying solely upon nearest genes of CREs is very cursory and the authors could have used methods such as Activity-by-Contact to establish CREs and their target genes and then assessed their correlation with expression (optional). In logical progression, the authors use gene regulatory networks using to compare LSC and KC with Embryonic Stem Cells (ESC) to identify most influential TFs to differentiate them. Along with identifying key TFs, they also identify TF regulatory hierarchy to find TFs that regulate other TFs in context-specific manner. They identify "p63, FOSL2, EHF, TFAP2A, KLF5, RUNX1, CEBPD, and FOXC1 are among the shared epithelial TFs for both LSCs and KCs. PAX6, SMAD3, OTX1, ELF3, and PPARD are LSC specific TFs for the LSC fate, and HOXA9, IRX4, CEBPA, and GATA3 were identified as KC specific TFs." And "p63, KLF4 and TFAP2A can potentially co-regulate PAX6 in LSCs." To compare in vitro findings with in vivo results, they also generate single cell data and identify specific TFs that may play pathobiological role in disease development and progression. While the study is complete and describes well, a strong conclusion, including validation of role of some TFs such as FOSL2 through knock out experiments in model organisms or cell culture will elevate the paper more (optional). This study merits publication in high quality journal (IF:10-15)

      Reviewer #1 (Significance (Required)):

      The study is very significant not only in the context of corneal disease biology. The imbalance in interplay of TFs is often envisaged behind disease development but very few efforts of detailed analysis are undertaken. This study is performed very well and the methods are described in clear manner. Appropriate statistical methods are used where required.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The study by Smits et al. presents detailed multi-omics (transcripts, ATAC-seq, histone marks) analyses comparing human limbal stem cells (LSCs) to skin keratinocytes (KCs). The authors compared these two cell types because they have a shared origin in the epidermal progenitors and because LSC diseases occasionally accompany a transition to KC-like phenotypes. The authors analyzed the "omics" data using several bioinformatic analysis tools. Their analyses resulted in a detailed list of the critical transcription factors (TFs) and their gene regulatory networks shared between the two lineages and those unique to either LSCs or KCs.

      The findings provide an overview of transcriptional regulators and targets in two essential tissues. This is a valuable tool for future discoveries regarding the processes governing cell differentiation and those involved in the disease mechanism of the cornea. Although the presented predictions are interesting, what is missing is an examination of the functional significance of the findings. Also, as detailed below, there is a need to clarify the source of the cells used for the different analyses.

      Comments and suggestions: 1. In Figure 1, the authors compare the transcriptome and epigenome (ATAC-seq and histone modifications) of basal KCs from skin donors and cultured LSCs established from limbal biopsies. The authors should clarify the source of the cells in the published studies - specifically, why more data were needed and if these were comparable to their datasets. 2. Next, they compared the transcriptomes of LSCs and KCs to the transcription profile of LSCs from two aniridia patients and control. They need to specify the stage of the donors' disease and provide details on the control samples. In addition, and as indicated above, when combining published datasets, one should clarify whether the methods of collecting/growing the cells and the disease stage are comparable. This is important with samples from aniridia as it is unclear if the patient LSCs survive the isolation or if other cells take over. The finding that LSC genes are reduced in aniridic LSCs may suggest that the cells resemble KCs, although specific KC genes are not elevated. 3. Figure 2: The authors characterized the regulatory regions in the two cell types based on ATAC-seq and histone marks. Based on ATAC-seq, 80% of the open areas were shared between the two lineages. When ATAC-seq was combined with histone modification analyses, about a third of these regions showed different characteristics, inferring tissue-specific activities. These data may be valuable for identifying tissue-specific cis-regulatory elements (CREs) for the key TFs. This, however, remains to be examined experimentally. 4. It would be valuable to the community if the presented data were also provided online in a web tool so that CRE activity or gene expression could be easily examined. 5. Using motif predictions, the authors point to the TF families that likely control the differential CREs (Figure 3). Next, the authors constructed the gene regulatory network based on the (ANANSE) pipeline, which integrates CRE and TF motif predictions with the expression of TFs and their target genes. To gain further insight into the shared gene regulatory networks, they compared each to similar data from embryonic stem cells. Their analysis further suggests shared TFs regulating each other and some of the tissue-specific transcription factors. Differential gene expression of the TFs was partially validated by analyzing available single-cell data (Figure 4). 6. In the final section of the study, the authors aimed to identify TFs in LSCs that are relevant to corneal disease. They examined whether the LSC TFs are bound to genes associated with LSC deficiency and inherited corneal diseases. To accomplish this task, the authors incorporated single-cell data on corneal gene expression and available datasets on genetic analyses of families. Through this analysis, they identified a mutation in FOSL2 that may be causing corneal opacity in the carriers. Also, the findings indicate an interaction between FOXL2 and other TFS is important for maintaining the corneal epithelium. These interesting predictions indicate an important role for FoxL2 in corneal function. It would be important to verify these predictions by experimental studies, for example, by presenting the association of FOXL2 with the predicted co-factors and presenting data on the effect of the identified mutation on FOXL2 transcriptional activity.

      Reviewer #2 (Significance (Required)):

      The analysis provides an overview of transcriptional regulators and targets in two essential tissues. This is a valuable tool for future discoveries regarding the processes governing cell differentiation and those involved in the disease mechanism of the cornea. The results predict a role for FoxL2 in corneal function.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The study by Smits et al. presents detailed multi-omics (transcripts, ATAC-seq, histone marks) analyses comparing human limbal stem cells (LSCs) to skin keratinocytes (KCs). The authors compared these two cell types because they have a shared origin in the epidermal progenitors and because LSC diseases occasionally accompany a transition to KC-like phenotypes. The authors analyzed the "omics" data using several bioinformatic analysis tools. Their analyses resulted in a detailed list of the critical transcription factors (TFs) and their gene regulatory networks shared between the two lineages and those unique to either LSCs or KCs.

      The findings provide an overview of transcriptional regulators and targets in two essential tissues. This is a valuable tool for future discoveries regarding the processes governing cell differentiation and those involved in the disease mechanism of the cornea. Although the presented predictions are interesting, what is missing is an examination of the functional significance of the findings. Also, as detailed below, there is a need to clarify the source of the cells used for the different analyses.

      Comments and suggestions:

      1. In Figure 1, the authors compare the transcriptome and epigenome (ATAC-seq and histone modifications) of basal KCs from skin donors and cultured LSCs established from limbal biopsies. The authors should clarify the source of the cells in the published studies - specifically, why more data were needed and if these were comparable to their datasets.
      2. Next, they compared the transcriptomes of LSCs and KCs to the transcription profile of LSCs from two aniridia patients and control. They need to specify the stage of the donors' disease and provide details on the control samples. In addition, and as indicated above, when combining published datasets, one should clarify whether the methods of collecting/growing the cells and the disease stage are comparable. This is important with samples from aniridia as it is unclear if the patient LSCs survive the isolation or if other cells take over. The finding that LSC genes are reduced in aniridic LSCs may suggest that the cells resemble KCs, although specific KC genes are not elevated.
      3. Figure 2: The authors characterized the regulatory regions in the two cell types based on ATAC-seq and histone marks. Based on ATAC-seq, 80% of the open areas were shared between the two lineages. When ATAC-seq was combined with histone modification analyses, about a third of these regions showed different characteristics, inferring tissue-specific activities. These data may be valuable for identifying tissue-specific cis-regulatory elements (CREs) for the key TFs. This, however, remains to be examined experimentally.
      4. It would be valuable to the community if the presented data were also provided online in a web tool so that CRE activity or gene expression could be easily examined.
      5. Using motif predictions, the authors point to the TF families that likely control the differential CREs (Figure 3). Next, the authors constructed the gene regulatory network based on the (ANANSE) pipeline, which integrates CRE and TF motif predictions with the expression of TFs and their target genes. To gain further insight into the shared gene regulatory networks, they compared each to similar data from embryonic stem cells. Their analysis further suggests shared TFs regulating each other and some of the tissue-specific transcription factors. Differential gene expression of the TFs was partially validated by analyzing available single-cell data (Figure 4).
      6. In the final section of the study, the authors aimed to identify TFs in LSCs that are relevant to corneal disease. They examined whether the LSC TFs are bound to genes associated with LSC deficiency and inherited corneal diseases. To accomplish this task, the authors incorporated single-cell data on corneal gene expression and available datasets on genetic analyses of families. Through this analysis, they identified a mutation in FOSL2 that may be causing corneal opacity in the carriers. Also, the findings indicate an interaction between FOXL2 and other TFS is important for maintaining the corneal epithelium. These interesting predictions indicate an important role for FoxL2 in corneal function. It would be important to verify these predictions by experimental studies, for example, by presenting the association of FOXL2 with the predicted co-factors and presenting data on the effect of the identified mutation on FOXL2 transcriptional activity.

      Significance

      The analysis provides an overview of transcriptional regulators and targets in two essential tissues. This is a valuable tool for future discoveries regarding the processes governing cell differentiation and those involved in the disease mechanism of the cornea. The results predict a role for FoxL2 in corneal function.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Multi-omics analyses identify transcription factor interplay in corneal epithelial fate determination and disease The authors of this manuscript describe their work on identifying transcriptional regulators and their interplay in cornea using limbal stem cells and epidermic using keratinocytes. This is a very well written and well described comprehensive manuscript. The authors performed various analyses which were in line with logical workflow of the research question. The authors begin by first identifying differential gene expression signals for the two tissues along with enriched biological processes using GSEA and PROGENy. The strength of this manuscript also includes usage of epigenetic data to determine the cell fate and its drivers. The authors study various epigenetic assays and correlate them expression levels of TFs and genes to identify regulatory patterns that mark differences between LSCs and KCs. By identifying differential cis regulatory elements in two cells, they identify TFs that are associated with overexpression or repression of genes of interest. However, this approach of relying solely upon nearest genes of CREs is very cursory and the authors could have used methods such as Activity-by-Contact to establish CREs and their target genes and then assessed their correlation with expression (optional). In logical progression, the authors use gene regulatory networks using to compare LSC and KC with Embryonic Stem Cells (ESC) to identify most influential TFs to differentiate them. Along with identifying key TFs, they also identify TF regulatory hierarchy to find TFs that regulate other TFs in context-specific manner. They identify "p63, FOSL2, EHF, TFAP2A, KLF5, RUNX1, CEBPD, and FOXC1 are among the shared epithelial TFs for both LSCs and KCs. PAX6, SMAD3, OTX1, ELF3, and PPARD are LSC specific TFs for the LSC fate, and HOXA9, IRX4, CEBPA, and GATA3 were identified as KC specific TFs." And "p63, KLF4 and TFAP2A can potentially co-regulate PAX6 in LSCs." To compare in vitro findings with in vivo results, they also generate single cell data and identify specific TFs that may play pathobiological role in disease development and progression. While the study is complete and describes well, a strong conclusion, including validation of role of some TFs such as FOSL2 through knock out experiments in model organisms or cell culture will elevate the paper more (optional). This study merits publication in high quality journal (IF:10-15)

      Significance

      The study is very significant not only in the context of corneal disease biology. The imbalance in interplay of TFs is often envisaged behind disease development but very few efforts of detailed analysis are undertaken. This study is performed very well and the methods are described in clear manner. Appropriate statistical methods are used where required.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      This manuscript describes studies that indicate roles for the ALK and LTK receptors in neuronal polarity, cortical patterning and behavior in mice. I really liked the study and overall think that it deserves publication in a high-ranking journal. It reports important and novel results and benefits from a comprehensive analysis at multiple levels, including cell biological, biochemical and behavior. The points raised below are suggestions for consideration at the discretion of the authors.

      We thank the reviewer for the positive and enthusiastic comments on our study and especially for noting that it is appropriate for publication in a high-ranking journal. We greatly appreciate the valuable suggestions, the majority of which we have incorporated into the revised manuscript.

      1. The term "DKO" appears in the Introduction without explanation. I assume this means double KO mice lacking both receptors from birth. It should be indicated here, just in case.

      We have added text at the first appearance of DKO (ie results section) to indicate that this refers to double knockout mice that lack both Ltk and Alk from birth.

      1. The last paragraph of the Introduction is redundant with the Abstract. This is a stylistic question, which is up to the authors. Nevertheless, as a suggestion, they could take the opportunity here to explain the rationale of the study and why they did what they did._

      We have made some modifications to provide an indication of the rationale for the studies.

      1. Is "single cell in situ mRNA analysis" standard in situ hybridization or something else? Why is it called "single-cell"? It could be misleading.

      This was a typographical error and has been corrected to single molecule in situ.

      1. In Fig. S1B, could the authors please include expression patterns of LTK in adult brain? It'd seem that is the most relevant place to look given the analysis that follows in the paper.

      We have replaced the previous panels with new plots (now Fig. S1G) showing the relative expression of Ltk, Alk and their ligand, Alkal2 in embryos (E15.5), newborn (P0) and post-natal Day 2 (P2) and Day 7 (P7) and in adults both in the cortex and whole brain. The results confirm that Alk and Ltk are both expressed in the cortex and brain but in varying patterns with Alk expression decreasing with age and Ltk increasing, particularly in the cortex. In contrast, Alkal2 expression is relatively constant throughout.

      Related comments #5, #7, #8 and #9.

      1. I have an issue in general in the first part of the manuscript with regards to the labeling of cortical layers. How were CP, IZ and SVZ/VZ defined? Specific markers should be used to identify their actual boundaries. Guesswork from the DAPI pattern (if that is what was used) is not really appropriate.

      2. In Fig. 1F, again, how were the boundaries between the cortical areas (dotted lines) determined? This is particularly important for the mutant sections....

      3. In Fig. S3C-F, the all-critical quantification of Ctip2 cells at P2 seems to be missing in this figure. It would important to provide this in light of the comments above. Again, the same problem with the layer boundaries is clear here.....

      4. In Figure 2A and B, % positive cells is plotted but we are not told what is the reference (100%) level. ... Also, the idea of drawing a little rectangle in the IZ and CP and counting only there is flawed. ...Finally, again, we are not told how the boundaries of the different cortex areas were established. ...

      Response to related comments #5, #7, #8 and #9.

      As exemplified in the related comments above, the reviewer indicated that they “__have an issue in general in the first part of the manuscript with regards to the labeling of cortical layers.”

      We thank the reviewer for this insightful comment. Development of the mouse cortex follows a stereotypical pattern, thus we used a combination of DAPI ( ie nuclear density is characteristic of some layers), and layer specific markers (Satb2, Ctip2, Pax6, Sox2, Tbr2) to label the cortical layers. While this is generally acceptable for wild type mice, we agree with the reviewer’s comment that this may not be appropriate in mutant mice. Accordingly, we have now taken a more unbiased approach and repeated all of the quantitation after creating equally sized bins that span the entire cortical length and have plotted the quantitation by bin location. The general location of layers in WT mice has been marked on the images for reference. Our conclusions that there are defects in early patterning that are resolving by ~P7 is unchanged.

      With this re-quantitation, some of the previous reviewer comments within #5, 7, 8 and 9 no longer apply (ie a missing plot, box placement being subjective, etc) and so have not been responded to. With regards to the question of what is the reference (ie 100%) for the plots showing the y-axis as % positive; this was determined based on the total number of DAPI+ cells counted in each region. This information has been added to the legends and methods along with details of the new quantitation method.

      1. Comparing Fig. 1 and Fig. S2, there would seem to be little or no additive nor synergistic effects of the double mutation, as the phenotype in the DKO appears to be completely attributable to the Ltk KO. What does this mean? Providing the expression patterns of the two receptors at the ages used here (i.e., P2 and P7) would also be helpful.

      The relative contribution of Alk or Ltk in comparison to the DKO, varies as a function of age (E15.5, P2, P7) that generally correlates with their level of expression, as per the Reviewer’s suggestion. For example, at E15.5, a reduction in the number of Sox2+ or Tbr2+ cells is observed for either Alk or Ltk knockouts alone, with a more prominent reduction in the case of Alk alone, and with the DKOs showing the greatest reduction. In contrast, when examining Ctip2 levels at P2, the loss of Ltk alone yields a stronger effect. In agreement with these observations, analysis of mRNA expression levels show that Alk levels are highest in the embryonic cortex and brain and steadily decline until adulthood, while Ltk expression increases with maximal levels occurring post-natally. As indicated for our reply to comment #4, we have now added plots showing the relative level of expression of Alk and Ltk at various ages from embryos to adults (Fig S1G).

      1. At the end of page 8, it is concluded that Alk/Ltk promote neuronal migration. Is this a cell-autonomous effect? Given the very sparse expression of these receptors (Fig S1), cell-autonomy (which is being implied by the authors) is not at all clear. Is the migration of Alk+ cells affected in the Ltk mutant? Vice-versa?

      In our analysis of mRNA expression using RNAscope we originally included a widefield image that depicts the entire cortex where it is difficult to see expression at the cell level. We now also provide a magnified image of the E15.5 SVZ/VZ that shows that most cells do express the receptors (Fig. S1B). Thus, the results are consistent with the idea that the defect in migration is a cell autonomous effect.

      1. In Fig. S4A, as every cell in these panels bears probe signal, it'd be important to present a negative control, perhaps from KO cultures or wild type cells lacking receptor expression in the same field as expressing cells. At a 75%, 1 in 4 cells in any field should be receptor-negative.

      As requested, we now provide images with a wider field of view that includes negative cells.

      1. Figure S4B is difficult to interpret in the absence of Tau and MAP2 markers, as GFP does not discriminate between axons and dendrites.

      In the original submission we quantitated Tau-1 and MAP2 co-stained neurons in many experiments to demonstrate that Ltk/Alk act on axons, but in some cases, we used Tuj1 to more easily visualize and quantitate neurites. Nevertheless, as requested by the reviewers, in the revised manuscript we have repeated and replaced most of the results with Tuj1 or phalloidin staining with experiments using Tau-1 and MAP2 antibodies, including Fig. 5B-D and Fig. 6A-D and G as well as for Fig. S4B. The new data is consistent with our results using Tuj1 staining and further support our conclusions that Ltk/Alk act via Igf1-r to regulate neuronal polarity.

      In general, the authors are recommended to show more than one cell per condition in their figures. Readers need to be convinced that these are robust phenotypes easily observed on many cells in the same field.

      Due to space constraints, we included only a single representative image for each condition and then provided quantitation to support our conclusions. We have numerous images for all of the presented data and could provide a collage for all panels if considered appropriate. In the meantime, we have added additional images for several experiments in the Main Figures (Fig. 5A-D, Fig. 6A, C) and in Suppl. Figure S4A, B, C where sufficient space was readily available.

      1. In Fig. S4C and D, do the KO neurons become bipolar? I don't see examples of multipolar neurons in the images provided.

      Upon siRNA mediated knockdown of Ltk and/or Alk, we observe about 50% of the neurons are bipolar (ie display the typical wild type single axon phenotype) while roughly 40% display the multiple axon phenotype. With the exception of the control (siCTL), the images provided were selected to show neurons with multiple axons. However, in some of the images, the arrowheads pointing to the axons were inadvertently omitted. These have now been added.

      1. Is there a way to quantify the effects shown in Fig. 3E?

      We attempted to quantitate the number and direction of neurites in the brain sections but because this is a dense tissue, even with Golgi staining, we found it impossible to trace individual neurites back to the cell body and thus were unable to quantitate the effects. As an alternative, we have provided additional images (Fig. S3B) from distinct mice to support our observations of aberrant horizontal neurites in the adult cortex.

      1. The DKO display a dramatically different behavior phenotype compared to single Kos. How can this result be explained given that DKOs are indistinguishable from single KOs in all other parameters studied?

      The reviewer is correct, that the single KO mice do not manifest noticeable behavioural defects except when older and challenged with the most demanding task, the Puzzle box, which measures complex executive functions. We speculate that alternative cortical re-wiring in the single knockouts is sufficient to maintain normal circuitry that cannot be compensated when both Ltk and Alk receptors are deleted. It is also possible that Ltk/Alk regulated signalling events, besides Igf-1r/PI3K could contribute to the behavioural defects observed in the DKO mice, such as the ALK-LIMK-cofilin pathway which regulates synaptic scaling mentioned by the reviewer (Zhou et al., Cell Rep. 2021). Nevertheless, the strong phenotype of the DKOs confirms that Ltk/Alk are important for proper brain function, thus our preference is to retain the behavioural data in the manuscript but to discuss that alternative Ltk/Alk pathways could contribute to the phenotype (which we have now incorporated into the text).

      1. At the end of the behavior section, the authors attribute the phenotypes observed to defects in neuronal polarization. Given that polarization was only studied in vitro, it may be a premature to conclude that neurons fail to polarize in vivo in the absence of direct evidence showing this.

      We agree and have modified the text to remove this inaccurate assertation.

      1. Regarding P-AKT studies, it would be interesting to assess the effects of the ALK7LTK ligands (e.g., from conditioned medium) on the levels of P-AKT in WT neurons.

      We agree that this would be interesting and we had attempted this experiment, but found that treatment of WT cortical neurons with medium conditioned with the ALKAL2 ligand did not change the levels of pAKT under our experimental conditions (namely 20-30 min treatment with ACM). Because the data is negative, it makes it difficult to make a firm conclusion, but if true, it is possible that other pathways might be involved when WT cortical neurons are stimulated with ligand.

      1. In the mid part of page 14, the sentence "Treatment of WT cortical neurons with AG1024 at a dose (1 μM) at which only IGF-1R but not InsR was inhibited restored the single axon phenotype in DKO neurons" is confusing. Treatment performed in WT neurons but assessed in DKO neurons? This must be a typo.

      Thank you for pointing out this typo. It has been corrected.

      1. For completion, it would be informative to test whether IGF-1 antagonizes the effects of ALK and LTK ligands in axon formation.

      As suggested, we performed the requested experiment (with 3 independent repeats). In brief, four hours post-plating neurons were treated with control or ALKAL2-conditioned media and Igf-1 was added after 1 hour. Neurons were fixed at 36 hours, stained for MAP2 and Tau-1 and axons (Tau-1+) quantitated. Consistent with our previous findings, Igf-1 promotes the formation of multiple axons while ligand inhibits axon formation. In the ligand-treated neurons, addition of Igf-1 did not result in a statistically-significant change in the number of axons. These findings are consistent with our model that activation of Ltk/Alk promotes a decrease in cell-surface Igf1-r. This data has been added to the manuscript (Fig. 7J).

      1. The quality of the blot provided to illustrate levels of activated Igf-1r in Fig. 7A is clearly suboptimal. It is not apparent from that blot that phosphorylation of Igf1r is increased in the mutant neurons as the band intensities are indistinguishable. Was this performed in cortex extracts or cultured neurons? Is it affected by treatment with ALK/LTK ligands?

      We apologize for a labelling error that has caused confusion for both reviewers. We have replaced the blots and corrected the labels. We have noted in the legend that the experiments were performed using cultured cortical neurons.

      1. Given the physical interaction between ALK/LTK and IGF-R1, these receptors are presumably co-internalized upon ligand treatment, or? Does treatment with IGF1 induces internalization of ALK or LTK?

      This is a very interesting question. Unfortunately, due to the lack of suitable antibodies for the mouse versions of Alk or Ltk, we are not able to perform these experiments in cortical neurons with endogenous receptor expression. However, our co-immunoprecipitation experiments and in vitro kinase assays, indicate that only versions of LTK and/or ALK with active kinase domains can interact with IGF-1R and that the activated LTK/ALK receptors then phosphorylate IGF-1R and trigger IGF-1R internalization (Fig. 7 and Fig. 8 model). Thus, we would expect that treatment with IGF-1 in the absence of LTK/ALK activation will not affect LTK/ALK internalization but will trigger IGF-1R endocytosis.

      1. The last paragraph in the Results section may be more appropriate for Discussion to avoid repetition. But it is of course up to the authors to decide on stylistic issues.

      We prefer to include a summary of the experimental findings and the model figure at the end of the results.

      1. There is a discussion of possible redundancies between ALK and LTK in the Discussion section which appears to contradict itself. It is first stated (end of p. 18) that the two receptors are not redundant but both required for function. But in p. 19, the significant behavioral phenotypes observed in DKO mice, but not in single KO mice, are attributed to redundancy and compensation between the receptors. This needs some clarification. It's difficult to understand how there can be redundancy for behavior but not for structure or function.

      We have clarified in the discussion, that both receptors are required in the context of neuronal polarity and migration whereas in the case of behaviour, compensatory mechanisms in neural circuitry or perhaps non-redundant Igf-1r independent pathways result in a strong phenotype only in DKO and can compensate for single but not double knockouts.

      Reviewer #1 (Significance):

      see above

      Reviewer #2 (Evidence, reproducibility and clarity):

      Christova et al. analyzed single and double knockout mice for Alk and Ltk to investigate their function in the nervous system and describe defects in cortical development and behavioral deficits. The defects in the formation of cortical layers suggest a delay in radial migration. In culture, 40% of cortical neurons from knockout embryos extend multiple axons. The mechanism responsible for this phenotype is explored in some detail. The authors conclude that Alk and Ltk function non-redundantly to regulate the Igf-1 receptor (Igf-1r). Inactivation of Alk or Ltk increases surface expression and activity of Igf-1r, which induces the formation of multiple axons. The authors propose that Alk and Ltk interact with Igf-1r and promote its endocytosis after activation by their ligand Alkal2, thereby preventing the formation of additional axons. However, the defects in neurogenesis, migration and behavior may have a different cause and should not be attributed only to Igf-1r.

      We would like to thank the reviewer for all the insightful comments and suggestions which we feel have strengthened our study.

      We appreciate the reviewer’s acknowledgement that we have shown that Igf-1r is in involved in Alk/Ltk-mediated regulation of axon outgrowth. To provide evidence that Igf-1r is also important for Ltk/Alk regulated migration in vivo, we explored the effect of the Igf-1r inhibitor, PPP on the migration of neurons in WT and DKO mice by BrdU labelling. Excitingly, this analysis revealed that PPP administration resulted in a partial rescue of the migration defect in Ltk/Alk DKO mice, with BrdU+ neurons being localized to the most superficial layers in P2 mice (Fig. 6F). Thus, these data are consistent with our model that loss of Ltk/Alk can disrupt both neuronal polarity and migration via IGF-1r. We do agree with the reviewer that we have not directly shown that the behavioural defects can be attributed to Igf-1r and it is certainly possible that other pathways or mechanisms may be involved in the complex phenotype. We have updated the manuscript and discuss the potential involvement of other pathways in the discussion.

      Major comments<br /> 1) The role of Alk/Ltk in suppressing the formation of multiple axons is demonstrated by culturing neurons from knockout mice, suppression with siRNAs and treatment with inhibitors. These experiments consistently show that about 40% of cultured neurons extend more than one axon when Alk, Ltk or both are inactivated. Single and double knockout mice are largely normal with the exception of a delay in the formation of distinct cortical layers. The phenotypes of the knockout lines indicate a function in cortical development but Alk and Ltk are not "indispensable" as suggested (p. 18)._

      We will modify the wording to remove the statement that Alk and Ltk are “indispensable” for cortical patterning and rather will indicate that the receptors ‘contribute’ to the timing of cortical patterning.

      The morphology of cortical neurons was analyzed by Golgi staining. A few potential axons (Fig. 3E) were identified only by an absence of dendritic spines and their aberrant trajectory. These results indicate that there are ectopic extensions in the cortex but do not demonstrate that neurons extend multiple axons also in vivo. It has to be confirmed that these extensions are positive for axon-specific markers and that several axons originate from one soma to demonstrate a multiple axon phenotype in vivo. A quantification of the number of neurons with multiple axons would be required to conclude that this phenotype occurs at a similar frequency in vivo.

      As indicated in response to reviewer #1, we attempted to quantitate the Golgi stained images but found it impossible to trace individual neurites to the cell body and thus could not unambiguously identify and quantitate axons. Accordingly, and as suggested by the reviewer, we have modified our conclusion to simply state there are aberrant extensions in the cortex in vivo. Although we were unable to do quantitation, to further support our conclusions, we have provided additional Golgi stained images of WT and DKO mice from an independent experiment (Fig. S3B).

      2) According to the model presented in Fig. 7, Alkal2 activates Alk and Ltk, which stimulate the endocytosis of Igf-1r and thereby prevents the formation of additional axons. A quantification of Igf-1r surface levels by the biotinylation of surface proteins and Western blot shows an increase in knockout neurons. The authors suggest that Alk/Ltk activation stimulates Igf-1r endocytosis but do not demonstrate this directly. An increase in surface expression could also result from a stimulation of exocytosis or recycling.

      We showed that ligand-induced activation of Ltk/Alk in WT neurons resulted in a loss of biotin-labelled cell-surface Igf-1r, which is strongly indicative of increased internalization and cannot be explained by exocytosis. However, the reviewer is correct, that we cannot exclude the possibility that changes in exocytosis or recycling might also occur and that in the unstimulated DKO neurons, the increase in surface expression of Igf-1r could also result from a stimulation of exocytosis or recycling. Indeed, several papers (Laurino et al, 2005, PMID: 16046480; Oksdath et al, 2017, PMID: 27699600; Quiroga et al, 2018, PMID: 29090510) have reported that exocytosis mediated transport of IGF-1R and activation of IGF-1R/PI3K pathway is essential for the regulation of membrane expansion during axon formation. Accordingly, we have modified the discussion text to incorporate this possibility.

      3) The localization of Alk, Ltk and Alkal2 was determined by in situ hybridization. The signals are weak and it is not clear if they are specific because a negative control is missing. An analysis by immunofluorescence staining would be more informative.

      RNAscope is designed so that a single molecule of RNA is visualized as a punctuate signal dot with high specificity. In lower magnification images, such as those we showed to provide an overall view of expression in the cortex, it is difficult to discern the individual ‘dots’, particularly for genes with low expression, giving the impression that the signal is weak. However, at high magnification (63X) the signals are readily visible as seen in a new panel in Fig. S1B). We also neglected to mention that positive probes with all 3 labels (POLR2A: Channel C1, PPIB: Channel C2, UBC:Channel C3) as well as a negative probe (Bacterial dap gene) supplied by the manufacturer were used on our samples to validate specificity. We have corrected the oversight and have now added this information to the methods section.

      Regarding immunofluorescence, we have rigorously tested numerous commercially-available antibodies and have undertaken repeated attempts to produce our own antibodies that recognize mouse Ltk or Alk, and are appropriate for immunofluorescence, but have had no success. The high specificity enabled by the RNAscope technology is thus currently the most reliable way we can examine expression, with the added advantage that we can simultaneously assess expression of both receptors and the ligand in an individual cell within a section.

      Alk appears to be expressed mainly in the ventricular zone (VZ) while Ltk shows a low expression in the SVZ and the cortical plate (CP). This expression pattern is not consistent with a function in regulating axon formation in multipolar neurons, which extend axons in the lower intermediate zone (IZ) (Namba et al., Neuron 2014) and not in the VZ or SVZ (p. 18).

      It is well described that multipolar neurons can be found in the SVZ, while bipolar neurons are preferentially in the IZ. Neurons expressing Ltk, Alk and their ligand, Alkal2 can be found in both compartments (albeit levels appear higher in the SVZ), thus we feel our results are consistent with a role for the receptors in regulating neuronal polarization.

      It is also essential to analyze the subcellular localization of Alk and Ltk at least in cultured neurons. Ltk has been reported as an ER-resident protein that regulates the export from the ER (Centonze et al., 2019), which would not be consistent with the model.

      Unfortunately, the lack of antibodies with mouse reactivity prevents us from analyzing the subcellular localization of Alk and Ltk in cultured neurons. As mentioned by the reviewer, LTK has been reported as an ER-resident protein (in cancer cells) and similarly, many other tyrosine kinase receptors including IGF1R, have been reported to be localized to diverse intracellular compartments like Golgi, nucleus or mitochondria (reviewed in Rieger and O’Connor, 2021, Front Endocrinol:PMID: 33584548). However, since extracellular ligands for LTK and ALK are known, we feel it is a reasonable expectation that they will have a role as cell-surface receptors. Understanding the functions of RTK receptors and the interplay between the various compartments would nevertheless be an interesting area for future research.

      4) The results convincingly show that an increased activity of Igf-1r is responsible for the formation of additional axons by cultured knockout neurons. The model in Fig. 7 explains how Alk/Ltk suppress the formation of multiple axons in culture but a key question remains to be addressed: why does Igf-1r remain active in the future axon? Are Alk/Ltk restricted to or selectively activated in dendrites? It is important to determine if Alk and Ltk are absent from the future axon before or after neuronal polarity is established.

      We thank the reviewer for acknowledging that we have provided convincing data that increased activity of Igf-1r is responsible for the formation of multiple axons. Addressing why Igf-1r remains active in the future axon and if and how Ltk/Alk are selectively activated in dendrites and axons are all excellent questions, which we plan to pursue in future work, particularly when antibodies for Alk and Ltk become available.

      Which cells produce Alkal2 in neuronal cultures and in vivo?_ _These points can be easily addressed and should be investigated.

      We have confirmed that Alkal2 is expressed in the isolated cortical neurons, consistent with our demonstration that siRNA-mediated abrogation of Alkal2 expression in cultured neurons regulates polarity and that ligand levels do not change in Ltk/Alk double knock out mice (Fig. S1G and S6A). Whether other non-neuronal cell types also express Alkal2 would be an interesting future direction.

      Why does an increase of Igf-1r surface expression in knockout neurons result in a stimulation of Igf-1r autophosphorylation? Neurons are cultured in a defined medium without Igf-1 and increased surface levels by themselves should not lead to an increased activity.

      We have not mechanistically determined why/how Igf-1r displays enhanced autophosphorylation in DKO neurons. Thus, we can only speculate about possibilities. Perhaps there are low levels of Igf-1 in the cortical cell extracts, or is produced by the cortical neurons; there may be compensatory mechanisms engaged when Ltk/Alk are lost to ensure neuronal survival, or perhaps the increase in cell-surface Igf-1r promotes ligand-independent activation of receptors in the absence of ligand.

      The results presented in this manuscript are consistent with a role of Igf-1r in the formation of multiple axons in the absence of Alk/Ltk. However, inhibition of Igf-1r by various means does not prevent axon formation in controls. Igf-1 has been implicated in axon formation (Sosa at al., 2006) but a knockout of Igf-1r does not result in a loss of axons but a reduction of axon length in cultured neurons (Jin et al., PLoS One 2019). Axon-specific markers are used only for some experiments but not in Figs. 3D, 5B-D and 6 where the neuronal marker Tuj1 does not allow the unambiguous identification of axons. Staining with an axonal marker and a quantification of axon length are required to distinguish between a block in axon formation and a reduction in axon growth in Figs. 3A, 5 and 6.

      In the original submission we quantitated Tau-1 and MAP2 co-stained neurons in many experiments to demonstrate that Ltk/Alk act on axons, but in some cases we used Tuj1 to more easily visualize and quantitate neurites. Nevertheless, as requested by the reviewers, in the revised manuscript we have repeated and replaced most of the results with Tuj1 or phalloidin staining with experiments using Tau-1 and MAP2 antibodies, including Fig. 5B-D and Fig. 6A-D and G, as well as for Fig. S4B requested by reviewer #1). The new data is consistent with our results using Tuj1 staining and further support our conclusions that Ltk/Alk act via Igf1-r to regulate neuronal polarity. With regards to Fig. 3D, we have been experiencing ongoing technical issues in generating human stem cell derived cortical neurons and have been unable to undertake Tau1/MAP2 staining of the human cortical neurons. Given that the point being made is minor, we have removed this panel from the paper.

      With regards to the comment on that inhibition of Igf1-r did not prevent basal axon formation: in our prior quantitation of WT neurons in which Igf1-r was inhibited using either siIgf1-r or PPP, we noticed a trend towards an increase in the number of neurons with no axons, but this was not statistically significant. Upon the repeat of experiments and re-quantitation with Tau-1/MAP2 co-staining, we do see a statistically-significant increase in the number of WT neurons without axons. This is in agreement with several prior studies (including one cited by the reviewer) indicating Igf1-r is important for neuronal polarity (Sosa, 2006; PMID:16845384, Neito Guil 2017 PMID:28794445). The text has been modified accordingly.

      5) The analysis with layer specific markers and BrdU labeling reveals defects in the formation of cortical layers that suggest a delay in neuronal migration. The number of Sox2+ and Tbr2+ cells is lower in knockout neurons indicating a possible reduction in the number of proliferating progenitors and a defect in neurogenesis (Fig. 1). The number of neurons positive for layer-specific markers or BrdU was quantified as the percent of DAPI-positive cells. This does not allow distinguishing between a change in the distribution and a reduction in the number of neurons due to defects in neurogenesis. It would be more informative to quantify the total number Ctip+, Satb2+ or BrdU+ cells in the VZ, SVZ, IZ and CP._

      In the in vivo BrdU labelling experiment, we did not co-stain sections with DAPI. However, in the immunofluorescence analysis in mice of the same ages, we did determine the total number of cells (ie by DAPI) that is shown in the plots in Fig. 1A and Fig. S2A/B. These results show that there are a similar number of cells in WT and mutant SVZ/VZ, consistent with the notion that there is a change in distribution rather than in reduction in the number of neurons due to defective neurogenesis. We neglected to mention this important point in the results and have now modified the text accordingly.

      6) The deficits observed in behavioral tests do not correlate with the defects in neuronal development. While the single knockouts show defects in cortical development only the double knockout displays behavioral deficits. The behavioral phenotype could be completely independent of Igf-1r. Alk has been implicated in regulating retrograde transport (Fellows et al., EMBO Rep. 2020) and synaptic scaling (Zhou et al., Cell Rep. 2021). Since there is no clear correlation between structural and behavioral changes these data are not obviously linked to the other results.

      The reviewer is correct, that the single KO mice do not manifest noticeable behavioural defects except when older and challenged with the most demanding task, the Puzzle box, which measures complex executive functions. We speculate that alternative cortical re-wiring in the single knockouts is sufficient to maintain normal circuitry that cannot be compensated when both Ltk and Alk receptors are deleted. However, we do agree that Ltk/Alk regulated signalling events, besides Igf-1r/PI3K could contribute to the behavioural defects observed in the DKO mice, such as the ALK-LIMK-cofilin pathway which regulates synaptic scaling as cited by the reviewer (Zhou et al., Cell Rep. 2021). Nevertheless, the strong phenotype of the DKOs confirms that Ltk/Alk are important for proper brain function, thus our preference is to retain the behavioural data in the manuscript but to discuss that alternative Ltk/Alk pathways could contribute to the phenotype (which we have now incorporated into the text).

      It should be noted that the study by Fellows et al in EMBO Rep 2020 shows Igf1-r, not ALK regulates retrograde transport so we have not included this study in the updated text.

      Minor comments

      1) Fig. 3 shows defects in the corpus callosum where axons are restricted to the upper half in the wild type but not the knockout. These results could indicate a guidance defect but do not show a "failure in axon migration through the corpus callosum" (p. 17). It is also not demonstrated "that the aberrant axon tracts may be the result of effects on neuronal morphology" (p. 19). Without additional experiments to trace axonal projections e.g. by DiI labeling it is not possible to determine the actual cause for the observation shown in Fig. 3F._

      We agree with the reviewer and have modified the concluding sentence so that the defects are described without attributing the cause to the defects on neuronal morphology.

      2) Active kinases from SignalChem are used for the in vitro kinase assays. The increased phosphorylation of Igf-1r could also result from a stimulation of auto-phosphorylation and not a direct phosphorylation by Ltk. Previous results indicate that phosphorylation of Y1250/1251 leads to increased internalization and degradation (Rieger et al., Sci. Signal. 2020), which would be an alternative explanation how Alk/Ltk regulate surface expression. Antibodies that are specific for Igf-1r phosphorylation at Y1135/1136 or Y1250/1251 could address this possibility (Rieger at al., Sci. Signal. 2020).

      It is rather surprising that for the Igf-1r, which is such a well-studied receptor, the mechanisms that regulate trafficking, exocytosis recycling, etc are so poorly understood and that this topic is currently an active area of investigation. The focus of our study was on understanding the role of Ltk/Alk in the brain and as part of this effort we demonstrated that Ltk/Alk can control neuronal polarity through Igf-1r phosphorylation. We believe that shedding light on the detailed mechanism of how enhanced Igf-1r phosphorylation induced by Ltk/Alk activation regulates Igf-1r trafficking is an exciting project for future work, but we feel that to thoroughly investigate this question is beyond the scope of the current study. We have, nevertheless, highlighted these points with additional references in the discussion.

      3) The specificity of the siRNAs has to be verified in neurons by rescue experiments and the suppression of the targeted proteins confirmed by immunofluorescence staining.

      We agree that rescue experiments are the gold standard, and we attempted to do this. However, we found that nucleofection of both siRNAs and cDNAs encoding either EGFP alone or Ltk/Alk was highly toxic to neurons with few surviving the treatment. As an alternative we used a pool of siRNAs, to minimize off-target effects and used genetic KOs or chemical inhibitors to verify the observations.

      4) The position of molecular weight markers is missing for most Western blots.

      We added the position of molecular weight markers for all the western blots in the revised manuscript.

      5) It is not indicated which conditions show a significant difference in Fig. 6.

      We thank the reviewer for pointing this out. We added the significant differences to all figures, including Fig. 6.

      6) Why does the Western blot in Fig. 7A show a double band with the anti-phospho-Igf-1r antibody in the knockout? Which of the bands was used for the quantification?

      We apologize for a labelling error that has caused confusion for both reviewers. We have replaced the blots and corrected the labels.

      7) Details of the plasmids used and information (catalog number) for recombinant GST-Ltk and His-Igf-1r should be included in Materials and Methods.

      The additional information and catalog numbers have been added to the Materials and Methods.

      Reviewer #2 (Significance):

      The receptor tyrosine kinase Alk has been studied mainly for its involvement in several types of cancer but the physiological functions of Alk and its close relative Ltk remain poorly understood. The regulation of Igf-1r is an interesting and important result to understand the physiological function of Alk and Ltk. However, several points have to be addressed before the manuscript would be suitable for publication.

      We thank the reviewer for indicating that this is interesting and important study. We trust that the additional data and clarifications provided, have addressed the reviewers concerns.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Christova et al. analyzed single and double knockout mice for Alk and Ltk to investigate their function in the nervous system and describe defects in cortical development and behavioral deficits. The defects in the formation of cortical layers suggest a delay in radial migration. In culture, 40% of cortical neurons from knockout embryos extend multiple axons. The mechanism responsible for this phenotype is explored in some detail. The authors conclude that Alk and Ltk function non-redundantly to regulate the Igf-1 receptor (Igf-1r). Inactivation of Alk or Ltk increases surface expression and activity of Igf-1r, which induces the formation of multiple axons. The authors propose that Alk and Ltk interact with Igf-1r and promote its endocytosis after activation by their ligand Alkal2, thereby preventing the formation of additional axons. However, the defects in neurogenesis, migration and behavior may have a different cause and should not be attributed only to Igf-1r.

      Major comments

      1. The role of Alk/Ltk in suppressing the formation of multiple axons is demonstrated by culturing neurons from knockout mice, suppression with siRNAs and treatment with inhibitors. These experiments consistently show that about 40% of cultured neurons extend more than one axon when Alk, Ltk or both are inactivated. Single and double knockout mice are largely normal with the exception of a delay in the formation of distinct cortical layers. The phenotypes of the knockout lines indicate a function in cortical development but Alk and Ltk are not "indispensable" as suggested (p. 18). The morphology of cortical neurons was analyzed by Golgi staining. A few potential axons (Fig. 3E) were identified only by an absence of dendritic spines and their aberrant trajectory. These results indicate that there are ectopic extensions in the cortex but do not demonstrate that neurons extend multiple axons also in vivo. It has to be confirmed that these extensions are positive for axon-specific markers and that several axons originate from one soma to demonstrate a multiple axon phenotype in vivo. A quantification of the number of neurons with multiple axons would be required to conclude that this phenotype occurs at a similar frequency in vivo.
      2. According to the model presented in Fig. 7, Alkal2 activates Alk and Ltk, which stimulate the endocytosis of Igf-1r and thereby prevents the formation of additional axons. A quantification of Igf-1r surface levels by the biotinylation of surface proteins and Western blot shows an increase in knockout neurons. The authors suggest that Alk/Ltk activation stimulates Igf-1r endocytosis but do not demonstrate this directly. An increase in surface expression could also result from a stimulation of exocytosis or recycling.
      3. The localization of Alk, Ltk and Alkal2 was determined by in situ hybridization. The signals are weak and it is not clear if they are specific because a negative control is missing. An analysis by immunofluorescence staining would be more informative. Alk appears to be expressed mainly in the ventricular zone (VZ) while Ltk shows a low expression in the SVZ and the cortical plate (CP). This expression pattern is not consistent with a function in regulating axon formation in multipolar neurons, which extend axons in the lower intermediate zone (IZ) (Namba et al., Neuron 2014) and not in the VZ or SVZ (p. 18).<br /> It is also essential to analyze the subcellular localization of Alk and Ltk at least in cultured neurons. Ltk has been reported as an ER-resident protein that regulates the export from the ER (Centonze et al., 2019), which would not be consistent with the model.
      4. The results convincingly show that an increased activity of Igf-1r is responsible for the formation of additional axons by cultured knockout neurons. The model in Fig. 7 explains how Alk/Ltk suppress the formation of multiple axons in culture but a key question remains to be addressed: why does Igf-1r remain active in the future axon? Are Alk/Ltk restricted to or selectively activated in dendrites? Which cells produce Alkal2 in neuronal cultures and in vivo? These points can be easily addressed and should be investigated. It is important to determine if Alk and Ltk are absent from the future axon before or after neuronal polarity is established. Why does an increase of Igf-1r surface expression in knockout neurons result in a stimulation of Igf-1r autophosphorylation? Neurons are cultured in a defined medium without Igf-1 and increased surface levels by themselves should not lead to an increased activity.<br /> The results presented in this manuscript are consistent with a role of Igf-1r in the formation of multiple axons in the absence of Alk/Ltk. However, inhibition of Igf-1r by various means does not prevent axon formation in controls. Igf-1 has been implicated in axon formation (Sosa at al., 2006) but a knockout of Igf-1r does not result in a loss of axons but a reduction of axon length in cultured neurons (Jin et al., PLoS One 2019). Axon-specific markers are used only for some experiments but not in Figs. 3D, 5B-D and 6 where the neuronal marker Tuj1 does not allow the unambiguous identification of axons. Staining with an axonal marker and a quantification of axon length are required to distinguish between a block in axon formation and a reduction in axon growth in Figs. 3A, 5 and 6.
      5. The analysis with layer specific markers and BrdU labeling reveals defects in the formation of cortical layers that suggest a delay in neuronal migration. The number of Sox2+ and Tbr2+ cells is lower in knockout neurons indicating a possible reduction in the number of proliferating progenitors and a defect in neurogenesis (Fig. 1). The number of neurons positive for layer-specific markers or BrdU was quantified as the percent of DAPI-positive cells. This does not allow distinguishing between a change in the distribution and a reduction in the number of neurons due to defects in neurogenesis. It would be more informative to quantify the total number Ctip+, Satb2+ or BrdU+ cells in the VZ, SVZ, IZ and CP.
      6. The deficits observed in behavioral tests do not correlate with the defects in neuronal development. While the single knockouts show defects in cortical development only the double knockout displays behavioral deficits. The behavioral phenotype could be completely independent of Igf-1r. Alk has been implicated in regulating retrograde transport (Fellows et al., EMBO Rep. 2020) and synaptic scaling (Zhou et al., Cell Rep. 2021). Since there is no clear correlation between structural and behavioral changes these data are not obviously linked to the other results.

      Minor comments

      1. Fig. 3 shows defects in the corpus callosum where axons are restricted to the upper half in the wild type but not the knockout. These results could indicate a guidance defect but do not show a "failure in axon migration through the corpus callosum" (p. 17). It is also not demonstrated "that the aberrant axon tracts may be the result of effects on neuronal morphology" (p. 19). Without additional experiments to trace axonal projections e.g. by DiI labeling it is not possible to determine the actual cause for the observation shown in Fig. 3F.
      2. Active kinases from SignalChem are used for the in vitro kinase assays. The increased phosphorylation of Igf-1r could also result from a stimulation of auto-phosphorylation and not a direct phosphorylation by Ltk. Previous results indicate that phosphorylation of Y1250/1251 leads to increased internalization and degradation (Rieger et al., Sci. Signal. 2020), which would be an alternative explanation how Alk/Ltk regulate surface expression. Antibodies that are specific for Igf-1r phosphorylation at Y1135/1136 or Y1250/1251 could address this possibility (Rieger at al., Sci. Signal. 2020).
      3. The specificity of the siRNAs has to be verified in neurons by rescue experiments and the suppression of the targeted proteins confirmed by immunofluorescence staining.
      4. The position of molecular weight markers is missing for most Western blots.
      5. It is not indicated which conditions show a significant difference in Fig. 6.
      6. Why does the Western blot in Fig. 7A show a double band with the anti-phospho-Igf-1r antibody in the knockout? Which of the bands was used for the quantification?
      7. Details of the plasmids used and information (catalog number) for recombinant GST-Ltk and His-Igf-1r should be included in Materials and Methods.

      Significance

      The receptor tyrosine kinase Alk has been studied mainly for its involvement in several types of cancer but the physiological functions of Alk and its close relative Ltk remain poorly understood. The regulation of Igf-1r is an interesting and important result to understand the physiological function of Alk and Ltk. However, several points have to be addressed before the manuscript would be suitable for publication.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This manuscript describes studies that indicate roles for the ALK and LTK receptors in neuronal polarity, cortical patterning and behavior in mice. I really liked the study and overall think that it deserves publication in a high-ranking journal. It reports important and novel results and benefits from a comprehensive analysis at multiple levels, including cell biological, biochemical and behavior. The points raised below are suggestions for consideration at the discretion of the authors.

      1. The term "DKO" appears in the Introduction without explanation. I assume this means double KO mice lacking both receptors from birth. It should be indicated here, just in case.
      2. The last paragraph of the Introduction is redundant with the Abstract. This is a stylistic question, which is up to the authors. Nevertheless, as a suggestion, they could take the opportunity here to explain the rationale of the study and why they did what they did.
      3. Is "single cell in situ mRNA analysis" standard in situ hybridization or something else? Why is it called "single-cell"? It could be misleading.
      4. In Fig. S1B, could the authors please include expression patterns of LTK in adult brain? It'd seem that is the most relevant place to look given the analysis that follows in the paper.
      5. I have an issue in general in the first part of the manuscript with regards to the labeling of cortical layers. How were CP, IZ and SVZ/VZ defined? Specific markers should be used to identify their actual boundaries. Guesswork from the DAPI pattern (if that is what was used) is not really appropriate.
      6. Comparing Fig. 1 and Fig. S2, there would seem to be little or no additive nor synergistic effects of the double mutation, as the phenotype in the DKO appears to be completely attributable to the Ltk KO. What does this mean? Providing the expression patterns of the two receptors at the ages used here (i.e., P2 and P7) would also be helpful.
      7. In Fig. 1F, again, how were the boundaries between the cortical areas (dotted lines) determined? This is particularly important for the mutant sections, as apparent cortical thickness would be easily be affected by the plane of the section. Simply assuming that the CP is of equal thickness than the one in the WT may be incorrect. I feel the authors cannot just place dotted lines in the figure without explaining the criteria that was used to determine their location. Also, there is a significant (many fold) increase in Ctip2 cells in the IZb of the mutant (1F) that it's not explained in the text. The quantification of Ctip2 cells in the CP and IZa of the mutant is missing in the histogram. It should be indicated, even if very low. Again, the key point here is the criteria used for the<br /> boundaries between areas. May be what it's marked as IZa in the mutant is still part of the CP, in which case the number of Ctip2 cells would be increased there, not decreased, as claimed in the text.
      8. In Fig. S3C-F, the all-critical quantification of Ctip2 cells at P2 seems to be missing in this figure. It would important to provide this in light of the comments above. Again, the same problem with the layer boundaries is clear here. The Ltk KO would have normal levels of Ctip2 cells if the CP thickness were to be larger (due to e.g., the plane of the section not being perfectly perpendicular to the brain surface).
      9. In Figure 2A and B, % positive cells is plotted but we are not told what is the reference (100%) level. Was it the total number of cells in the entire cortex (including SVZ and VZ)? That cannot be the case, since CP+IZ in WT alone reaches almost 100%. What is 100% here please? Also, the idea of drawing a little rectangle in the IZ and CP and counting only there is flawed. The values would change drastically depending on where the rectangle is placed. They need to count the whole field of view, as it was done in the previous figures. Finally, again, we are not told how the boundaries of the different cortex areas were established. As explained earlier, distance from the surface (or from<br /> the bottom) of the cortex would be greatly affected by the plane of the section. This problem will need a more satisfying solution for the data to be interpreted in the way it has been done.
      10. At the end of page 8, it is concluded that Alk/Ltk promote neuronal migration. Is this a cell-autonomous effect? Given the very sparse expression of these receptors (Fig S1), cell-autonomy (which is being implied by the authors) is not at all clear. Is the migration of Alk+ cells affected in the Ltk mutant? Vice-versa?
      11. In Fig. S4A, as every cell in these panels bears probe signal, it'd be important to present a negative control, perhaps from KO cultures or wild type cells lacking receptor expression in the same field as expressing cells. At a 75%, 1 in 4 cells in any field should be receptor-negative.
      12. Figure S4B is difficult to interpret in the absence of Tau and MAP2 markers, as GFP does not discriminate between axons and dendrites. In general, the authors are recommended to show more than one cell per condition in their figures. Readers need to be convinced that these are robust phenotypes easily observed on many cells in the same field.
      13. In Fig. S4C and D, do the KO neurons become bipolar? I don't see examples of multipolar neurons in the images provided.
      14. Is there a way to quantify the effects shown in Fig. 3E?
      15. The DKO display a dramatically different behavior phenotype compared to single Kos. How can this result be explained given that DKOs are indistinguishable from single KOs in all other parameters studied?
      16. At the end of the behavior section, the authors attribute the phenotypes observed to defects in neuronal polarization. Given that polarization was only studied in vitro, it may be a premature to conclude that neurons fail to polarize in vivo in the absence of direct evidence showing this.
      17. Regarding P-AKT studies, it would be interesting to assess the effects of the ALK7LTK ligands (e.g., from conditioned medium) on the levels of P-AKT in WT neurons.
      18. In the mid part of page 14, the sentence "Treatment of WT cortical neurons with AG1024 at a dose (1 μM) at which only IGF-1R but not InsR was inhibited restored the single axon phenotype in DKO neurons" is confusing. Treatment performed in WT neurons but assessed in DKO neurons? This must be a typo.
      19. For completion, it would be informative to test whether IGF-1 antagonizes the effects of ALK and LTK ligands in axon formation.
      20. The quality of the blot provided to illustrate levels of activated Igf-1r in Fig. 7A is clearly suboptimal. It is not apparent from that blot that phosphorylation of Igf1r is increased in the mutant neurons as the band intensities are indistinguishable. Was this performed in cortex extracts or cultured neurons? Is it affected by treatment with ALK/LTK ligands?
      21. Given the physical interaction between ALK/LTK and IGF-R1, these receptors are presumably co-internalized upon ligand treatment, or? Does treatment with IGF1 induces internalization of ALK or LTK?
      22. The last paragraph in the Results section may be more appropriate for Discussion to avoid repetition. But it is of course up to the authors to decide on stylistic issues.
      23. There is a discussion of possible redundancies between ALK and LTK in the Discussion section which appears to contradict itself. It is first stated (end of p. 18) that the two receptors are not redundant but both required for function. But in p. 19, the significant behavioral phenotypes observed in DKO mice, but not in single KO mice, are attributed to redundancy and compensation between the receptors. This needs some clarification. It's difficult to understand how there can be redundancy for behavior but not for structure or function.

      Significance

      see above

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      The manuscript from Li et al. describes the authors' attempt to redirect the exocytic Rab Sec4 to endocytic vesicles by fusing the GEF-domain of Sec2 to the CUE domain of the endosomal GEF Vps9, which binds to ubiquitin. The authors show that the localization of the Sec2GEF-GFP-CUE construct is slightly shifted from polarized towards non-polarized sites. Sec2GFP-CUE positive structures acquire Sec4 and Sec4 effectors like exocytic vesicles but are less motile and show delayed plasma membrane fusion. Expression of Sec2GEF-GFP-CUE was enhanced if expressed in a subset of secretory and endocytic mutants and cause delayed Mup1 uptake from the plasma membrane. As Vps9, Sec2GEF-GFP-CUE accumulated on Class E compartments in vps4Δ strains.<br /> The authors ask here whether vesicular identity is largely predetermined by the correct localization of the specific GEFs of small GTPases and thus localization of the Rab. Although this an interesting hypothesis, the authors observed that endocytic traffic was not reversed by relocating Sec4 to these vesicles. This seems to be due to the strong affinity of the Sec2 GEF-domain for Sec4 but probably also due to the rather weak relocalization via the CUE domain. Thus, only a portion of Sec2 was displaced from its native site. Since the efficiency of this rewiring was not defined, it remains unclear whether the observed mild effects indeed speak against the assumed dominant role of the GEFs and small GTPases in shaping organelle identity or whether they are rather due to an inefficient relocalization.

      Our data demonstrate a dramatic relocalization of Sec2-GEF-GFP-CUE relative to Sec2-GEF-GFP. In the case of Sec2-GEF-GFP or Sec2-GEF-GFP-CUE M419D the cytoplasmic pool is predominant and only 30% of cells exhibit a detectable concentration, while in the case of Sec2-GEF-GFP-CUE 80% of cells show bright puncta and there is little or no detectable cytoplasmic pool (Fig 1A). Clearly the CUE domain can function as a localization domain that relies upon ubiquitin binding. Furthermore, half of the Sec2-GEF-GFP-CUE puncta colocalize with Vps9 (Fig S1). The high cytoplasmic background of Vps9 could mask additional colocalization, therefore we reexamined colocalization in a vps4__D_ _mutant in which the Vps9 cytoplasmic pool is reduced due to increased association with the expanded Class E late endosomes. In this situation we observe about 80% colocalization with Vps9 as well as substantial colocalization with Ypt51 and Vps8 (Fig 2). We now also show significant colocalization with PI(3)P (Fig S3D). Thus, our data demonstrate that addition of the CUE domain does indeed relocalize Sec2GEF to endocytic membranes. The Sec2 GEF activity then leads to the recruitment of Sec4 and Sec4 effectors, including Myo2 which in turn leads to their delivery to polarized sites. We now show by EM that the bright Sec2-GEF-GFP-CUE puncta correlate with clusters of 80 nm vesicles (Fig 5B). Our data argues that these are hybrid compartments carrying both endocytic and exocytic markers. We have restructured our paper to help clarify and emphasize this key point.

      Specific comments:<br /> 1. The authors state decidedly that the recruitment of Vps9 occurs ubiquitin-dependent via the CUE-domain. While the CUE-domain is the only known and a likely localization determinant of Vps9, it was not a strong localization determinant. Apart from being present in some puncta, Vps9 localized strongly to the cytosol (Paulsel et al. 2013, Nagano et al. 2019). Shideler et al. also showed that ubiquitin-binding is not required for Vps9 function in vivo, which indicates that other localizing mechanisms may play a role e. g. by positive feedback of GEF-domain-Rab5 interactions which might be initiated by the other Rab5-GEF Muk1 or as suggested by transport from the Golgi (Nagano et al. 2019). These observations indicate that the CUE-domain is a rather weak recruitment domain, which was not discussed in this manuscript. The localization of the Sec2GEF-GFP-control to the polarized sites in 30% of the cells furthermore suggests that the used Sec2GEF-GFP-CUE retains some native localization via the GEF-domain. Since the relocation efficiency of Sec2GEF-GFP-CUE was not defined, the obtained phenotypic effects allow for only vague conclusions. Although the mild endo- and exocytosis defects as well as the accumulation of Sec2GEF-GFP-CUE at Class E compartments indicate that the CUE-domain indeed conferred some relocation to endosomes, this was not shown for the sec2Δ strain e. g. by looking at colocalizations with endocytic versus exocytic markers and comparing their relative abundance at the Sec2GEF-GFP-CUE-positive structures. While some of the Sec2GEF-GFP-CUE-positive structures colocalized with Mup1 in the Mup1-uptake assay, it would be important to clarify how many endosomal properties are retained and how many exocytic properties are gained by these chimeric vesicles e. g. by looking for the presence of specific phosphoinositides, or Rab5 and Rab5 effectors. A competition between endosomal and the acquired exocytic factors could also be another possible explanation for the immobility of the Sec2GEF-GFP-CUE structures and less efficient recruitment of Sec4 effectors in addition to the proposed lack of PI4P.

      As summarized above, we observed dramatic relocalization of Sec2GEF that was strongly dependent upon the ability of the CUE domain to bind to ubiquitin. We also observed colocalization with Ypt51 and Vps8 as well as transient colocalization with internalized Mup1. We now also show significant colocalization with PI(3)P (Fig S3D). Full length Vps9 is probably subject to additional levels of regulation, perhaps autoinhibitory in nature, however our construct contains only the CUE domain which can clearly function as an efficient localization domain on its own. The high cytoplasmic pool of Vps9 reflects the rapid turnover of its ubiquitin binding sites, since it is efficiently recruited to membranes in vps4__D_ cells. The relocalized Sec2GEF domain was quite effective in recruiting Sec4 as well as most known Sec4 effectors. The recruitment of Myo2 leads to localization to sites of polarized growth. All of our studies were done in a sec2__D _background except for the analysis of dominant growth effects, as now explicitly stated at the beginning of the Results section.

      1. While the colocalization of the Sec2GEF-GFP-CUE-signal with Sec4 indicates that this GEF-construct is generally active, it remains unclear whether the activity of the tagged constructs differ from that of the wild type Sec2 protein. This could be analyzed in vitro via a MANT-GDP GEF-activity assay (Nordmann et al., 2010). Again, it remains unclear how much of the Sec2GEF-Sec4 colocalization represents the retained native localization versus synthetic localization at chimeric endo-exocytic vesicles.

      The structure and nucleotide exchange mechanism of the Sec2 GEF domain have been thoroughly analyzed in prior studies and are well understood. There is no reason to think that the constructs we generated here would alter the exchange activity as the fusions are far removed from the Sec4 binding site and our analysis here confirms that they are active in vivo. We do not feel that there would be much to be gained by doing in vitro exchange assays and it would entail a great deal of work.

      1. The authors mention that tagging with GFP increases the stability of the expressed constructs. However, it remains unclear whether this is also the case for the other tags (NeonGreen, mCherry) used in the other experiments. Are the constructs expressed at similar levels?

      We have compared the levels of the various tagged constructs and they appear to be similar (Fig S5A).

      1. In Figure 5: The incomplete colocalization of Sec2GEF-GFP-CUE with Vps9 is explained by the short-timed accessibility of ubiquitin moieties. Apart from the likely retained native localization or weak CUE-domain-function, this observation could also be due to competition between Vps9 and Sec2GEF-GFP-CUE for the available ubiquitin target structures.

      As previously shown, Vps9 normally displays a prominent cytoplasmic pool. Deletion of Vps4 leads to recruitment of this pool to expanded endosomes through an increase in the lifetime of the ubiquitin binding sites. The high cytoplasmic background in VPS4 cells could obscure some colocalization with Sec2GEF-GFP-CUE and indeed we observe increased colocalization in vps4__D_ _cells in which the cytoplasmic pool of Vps9 has been recruited to endosomes. Expression of Sec2GEF-GFP-CUE does not appear to significantly alter the localization of Vps9.

      Minor remarks:<br /> 1. Fig. 3C do not contain the arrowheads as indicated in the legend, making it harder to interpret.

      These have been added.

      1. The image chosen for Sec2-GFP in Fig. 4B suggests less colocalization between Sec2-GFP and Sec8 than between Sec2GEF-GFP-CUE and Sec8. They rather look next to each other.

      The images initially chosen were not representative. We have replaced them with better images from the same experiment.

      1. Figure 5: While resolution limits are possibly reached regarding endosomes, it might be interesting to check by thin section electron microscopy whether and how class E compartment formation is affected by Sec2GEF-GFP-CUE expression.

      We have now done EM using permanganate fixation of both VPS4 and vps4__D_ cells (Fig 5B and below). In both backgrounds Sec2GEF-GFP-CUE expression leads to the formation of clusters of 80 nm vesicles that appear to correlate with the fluorescent puncta visible by light microscopy. The vps4__D _cells have in addition curved linear membrane structures that represent class E endosomes (see images at end of this file). The class E endosomes appear similar in cells expressing Sec2GEF-GFP-CUE, Sec2-GFP or Sec2. We did not observe any obvious spatial relationship between the class E structures and the vesicle clusters.

      1. Discussion: "Furthermore, delivery of Mup1-GFP to the vacuole was slowed in Sec2GEF-GFP-CUE cells..." - The authors studied "the clearance of Mup1-GFP from the plasma membrane" and not vacuolar delivery. They did not show much vacuolar localization.

      We now include quantitation of Mup1-GFP at both the plasma membrane and vacuole (Fig 6 and Fig S8). This shows a reduced rate of depletion from the plasma membrane and a delayed appearance in the vacuole.

      Literature:<br /> Nagano, M., Toshima, J. Y., Siekhaus, D. E., & Toshima, J. (2019): Rab5-mediated endosome formation is regulated at the trans-Golgi network. Nature Communications Biology, 2 (1), 1-12.<br /> Nordmann, M., Cabrera, M., Perz, A., Bröcker, C., Ostrowicz, C., Engelbrecht-Vandré, S., & Ungermann, C. (2010): The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Current Biology, 20(18), 1654-1659.<br /> Paulsel, A. L., Merz, A. J., & Nickerson, D. P. (2013): Vps9 family protein Muk1 is the second Rab5 guanosine nucleotide exchange factor in budding yeast. Journal of Biological Chemistry, 288 (25), 18162-18171.<br /> Shideler, T., Nickerson, D. P., Merz, A. J., & Odorizzi, G. (2015): Ubiquitin binding by the CUE domain promotes endosomal localization of the Rab5 GEF Vps9. Molecular Biology of the Cell, 26 (7), 1345-1356.

      Reviewer #1 (Significance):

      • see above
      • has some deficits in interpretation as the Rab relocalization was not complete and thus conclusions are limiting

      Reviewer #2 (Evidence, reproducibility and clarity):

      This paper tries to address a fundamental question in cell biology, namely, what machinery is sufficient to tell a vesicle know where to go and what to do when it gets there. Several groups have shown that localization of some Rab/Ypt GEFs to an orthogonal compartment can lead to redirecting a Rab/Ypt to that membrane, where they can bind their partners abnormally. This story tries to explore what happens next.

      Here, Novick and colleagues took a part of the SEC2 GEF for secretory vesicle SEC4 Rab/Ypt and anchored it to endocytic structures to ask whether that was enough to relocalize those structures and drive inappropriate trafficking events. A challenge and advantage in the study is the fact that not all of the GEF relocalized-and that enables the cells to survive as SEC4p is needed for cell growth and membrane delivery--but this incomplete relocalization complicates phenotypic analysis--some SEC4 is on secretory vesicles and some is relocalized apparently to endocytic structures. Another challenge is that the two compartments both show "polarized" distributions so it is hard to know what compartment the reader is looking at, in a given figure. This makes the story very challenging to digest for a non-yeast expert trying to understand the conclusions.

      The authors show that the CUE domain can serve to partially localize SEC2GEF-GFP-CUE and this function relies on its ability to interact with ubiquitin. The localization is distinct from that of full length Sec2, nonetheless "many structures bearing Sec2GEF-GFP-CUE localize close to the normal sites of cell surface growth despite their abnormal appearance". The authors conclude that SEC4p and its effectors were recruited to these puncta with variable efficiency and the puncta were static; normal secretion was not blocked. This is not really a surprise as some SEC4p is still directed to secretory granules and cells do not show a vesicle accumulation phenotype by EM. Missing seems to be a clear-cut visual assay for exocytosis of secretory granules or endocytic structures despite attempts to include live cell imaging.

      We now show that the bright Sec2GEF-GFP-CUE_ puncta correspond to clusters of 80nm vesicles (Fig 5B). Our FRAP analysis demonstrates that Sec2GEF-GFP-CUE _is able to enter into pre-existing, bleached puncta (Fig 1E). One interpretation is that the vesicle cluster remains static, while individual vesicles enter and exit the cluster.

      The authors showed that SEC2-GFP-CUE structures fail to acquire Sro7 and do not seem to be able to assemble a complex with the tSNARE SEC9. Is this because Sro7 is being retained on the remaining secretory vesicles that also have SEC4 and other effectors that may be recruited to those structures by coordinate recognition?

      We demonstrate that at least half of the Sec2GEF-GFP-CUE puncta colocalize with Vps9 and this becomes even more evident in a vps4__D_ _mutant (Fig 2A). There is also substantial colocalization with the Rab5 homolog Ypt51, the endocytic marker Vps8 and PI(3)P (Fig 2 and Fig S3D). Nearly all of these puncta also colocalize with Sec4 and most of its downstream effectors. Thus, it seems that we have generated a hybrid compartment, as we intended. The surprise is how well the cells can cope with this situation. One possible explanation is offered in the Discussion: In yeast the TGN is thought to play the role of the early endosome and may be the site of Vps9 membrane recruitment. Thus Sec2GEF-GFP-CUE might be initially recruited to the TGN and the hybrid vesicles formed from this compartment might function to bring secretory cargo from the TGN to the cell surface just like normal secretory vesicles, with the caveat that the presence of endocytic machinery is somewhat inhibitory to Sro7 function, slowing fusion.

      There seem to be no issues with data as presented; a diagram of the SEC2-GFP-CUE would help the reader as would use of terms "secretory vesicle" and "endocytic vesicle" and how they were always distinguished rather than "polarized structure" which cannot distinguish these compartments.

      We have tried to be careful in our use of terms. We refer to the Sec2-GFP-CUE puncta using the unbiased terms “structures” or “puncta” until we show EM demonstrating that these puncta represent clusters of 80 nm vesicles.

      CROSS-CONSULTATION COMMENTS<br /> The two assessments come to the same conclusion--I agree that better definition of the precise phenotypes could be valuable but the limitation of incomplete relocalization will be hard to overcome in the absence of enormous effort.

      Reviewer #2 (Significance):

      This story represents a valiant effort and presents clean data but the impact and significance of the findings are limited due to the difficult phenotypic starting points (SEC4 in two places), and lack powerful exo- or endocytosis assays and better compartment-specific markers.

      The work will be of interest to yeast cell biologists studying the secretory and endocytic pathways. My expertise is mammalian cell biology of the secretory and endocytic pathways.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      This paper tries to address a fundamental question in cell biology, namely, what machinery is sufficient to tell a vesicle know where to go and what to do when it gets there. Several groups have shown that localization of some Rab/Ypt GEFs to an orthogonal compartment can lead to redirecting a Rab/Ypt to that membrane, where they can bind their partners abnormally. This story tries to explore what happens next.

      Here, Novick and colleagues took a part of the SEC2 GEF for secretory vesicle SEC4 Rab/Ypt and anchored it to endocytic structures to ask whether that was enough to relocalize those structures and drive inappropriate trafficking events. A challenge and advantage in the study is the fact that not all of the GEF relocalized-and that enables the cells to survive as SEC4p is needed for cell growth and membrane delivery--but this incomplete relocalization complicates phenotypic analysis--some SEC4 is on secretory vesicles and some is relocalized apparently to endocytic structures. Another challenge is that the two compartments both show "polarized" distributions so it is hard to know what compartment the reader is looking at, in a given figure. This makes the story very challenging to digest for a non-yeast expert trying to understand the conclusions.

      The authors show that the CUE domain can serve to partially localize SEC2GEF-GFP-CUE and this function relies on its ability to interact with ubiquitin. The localization is distinct from that of full length Sec2, nonetheless "many structures bearing Sec2GEF-GFP-CUE localize close to the normal sites of cell surface growth despite their abnormal appearance". The authors conclude that SEC4p and its effectors were recruited to these puncta with variable efficiency and the puncta were static; normal secretion was not blocked. This is not really a surprise as some SEC4p is still directed to secretory granules and cells do not show a vesicle accumulation phenotype by EM. Missing seems to be a clear-cut visual assay for exocytosis of secretory granules or endocytic structures despite attempts to include live cell imaging.

      The authors showed that SEC2-GFP-CUE structures fail to acquire Sro7 and do not seem to be able to assemble a complex with the tSNARE SEC9. Is this because Sro7 is being retained on the remaining secretory vesicles that also have SEC4 and other effectors that may be recruited to those structures by coordinate recognition?

      There seem to be no issues with data as presented; a diagram of the SEC2-GFP-CUE would help the reader as would use of terms "secretory vesicle" and "endocytic vesicle" and how they were always distinguished rather than "polarized structure" which cannot distinguish these compartments.

      Referees cross-commenting

      The two assessments come to the same conclusion--I agree that better definition of the precise phenotypes could be valuable but the limitation of incomplete relocalization will be hard to overcome in the absence of enormous effort.

      Significance

      This story represents a valiant effort and presents clean data but the impact and significance of the findings are limited due to the difficult phenotypic starting points (SEC4 in two places), and lack powerful exo- or endocytosis assays and better compartment-specific markers.

      The work will be of interest to yeast cell biologists studying the secretory and endocytic pathways. My expertise is mammalian cell biology of the secretory and endocytic pathways.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript from Li et al. describes the authors' attempt to redirect the exocytic Rab Sec4 to endocytic vesicles by fusing the GEF-domain of Sec2 to the CUE domain of the endosomal GEF Vps9, which binds to ubiquitin. The authors show that the localization of the Sec2GEF-GFP-CUE construct is slightly shifted from polarized towards non-polarized sites. Sec2GFP-CUE positive structures acquire Sec4 and Sec4 effectors like exocytic vesicles, but are less motile and show delayed plasma membrane fusion. Expression of Sec2GEF-GFP-CUE was enhanced if expressed in a subset of secretory and endocytic mutants and cause delayed Mup1 uptake from the plasma membrane. As Vps9, Sec2GEF-GFP-CUE accumulated on Class E compartments in vps4Δ strains.<br /> The authors ask here whether vesicular identity is largely predetermined by the correct localization of the specific GEFs of small GTPases and thus localization of the Rab. Although this an interesting hypothesis, the authors observed that endocytic traffic was not reversed by relocating Sec4 to these vesicles. This seems to be due to the strong affinity of the Sec2 GEF-domain for Sec4 but probably also due to the rather weak relocalization via the CUE domain. Thus, only a portion of Sec2 was displaced from its native site. Since the efficiency of this rewiring was not defined, it remains unclear whether the observed mild effects indeed speak against the assumed dominant role of the GEFs and small GTPases in shaping organelle identity or whether they are rather due to an inefficient relocalization.

      Specific comments:

      1. The authors state decidedly that the recruitment of Vps9 occurs ubiquitin-dependent via the CUE-domain. While the CUE-domain is the only known and a likely localization determinant of Vps9, it was not a strong localization determinant. Apart from being present in some puncta, Vps9 localized strongly to the cytosol (Paulsel et al. 2013, Nagano et al. 2019). Shideler et al. also showed that ubiquitin-binding is not required for Vps9 function in vivo, which indicates that other localizing mechanisms may play a role e. g. by positive feedback of GEF-domain-Rab5 interactions which might be initiated by the other Rab5-GEF Muk1 or as suggested by transport from the Golgi (Nagano et al. 2019). These observations indicate that the CUE-domain is a rather weak recruitment domain, which was not discussed in this manuscript. The localization of the Sec2GEF-GFP-control to the polarized sites in 30% of the cells furthermore suggests that the used Sec2GEF-GFP-CUE retains some native localization via the GEF-domain. Since the relocation efficiency of Sec2GEF-GFP-CUE was not defined, the obtained phenotypic effects allow for only vague conclusions. Although the mild endo- and exocytosis defects as well as the accumulation of Sec2GEF-GFP-CUE at Class E compartments indicate that the CUE-domain indeed conferred some relocation to endosomes, this was not shown for the sec2Δ strain e. g. by looking at colocalizations with endocytic versus exocytic markers and comparing their relative abundance at the Sec2GEF-GFP-CUE-positive structures. While some of the Sec2GEF-GFP-CUE-positive structures colocalized with Mup1 in the Mup1-uptake assay, it would be important to clarify how many endosomal properties are retained and how many exocytic properties are gained by these chimeric vesicles e. g. by looking for the presence of specific phosphoinositides, or Rab5 and Rab5 effectors. A competition between endosomal and the acquired exocytic factors could also be another possible explanation for the immobility of the Sec2GEF-GFP-CUE structures and less efficient recruitment of Sec4 effectors in addition to the proposed lack of PI4P.
      2. While the colocalization of the Sec2GEF-GFP-CUE-signal with Sec4 indicates that this GEF-construct is generally active, it remains unclear whether the activity of the tagged constructs differ from that of the wild type Sec2 protein. This could be analyzed in vitro via a MANT-GDP GEF-activity assay (Nordmann et al., 2010). Again, it remains unclear how much of the Sec2GEF-Sec4 colocalization represents the retained native localization versus synthetic localization at chimeric endo-exocytic vesicles.
      3. The authors mention that tagging with GFP increases the stability of the expressed constructs. However, it remains unclear whether this is also the case for the other tags (NeonGreen, mCherry) used in the other experiments. Are the constructs expressed at similar levels?
      4. In Figure 5: The incomplete colocalization of Sec2GEF-GFP-CUE with Vps9 is explained by the short-timed accessibility of ubiquitin moieties. Apart from the likely retained native localization or weak CUE-domain-function, this observation could also be due to competition between Vps9 and Sec2GEF-GFP-CUE for the available ubiquitin target structures.

      Minor remarks:

      1. Fig. 3C do not contain the arrowheads as indicated in the legend, making it harder to interpret.
      2. The image chosen for Sec2-GFP in Fig. 4B suggests less colocalization between Sec2-GFP and Sec8 than between Sec2GEF-GFP-CUE and Sec8. They rather look next to each other.
      3. Figure 5: While resolution limits are possibly reached regarding endosomes, it might be interesting to check by thin section electron microscopy whether and how class E compartment formation is affected by Sec2GEF-GFP-CUE expression.
      4. Discussion: "Furthermore, delivery of Mup1-GFP to the vacuole was slowed in Sec2GEF-GFP-CUE cells..." - The authors studied "the clearance of Mup1-GFP from the plasma membrane" and not vacuolar delivery. They did not show much vacuolar localization.

      Literature:

      Nagano, M., Toshima, J. Y., Siekhaus, D. E., & Toshima, J. (2019): Rab5-mediated endosome formation is regulated at the trans-Golgi network. Nature Communications Biology, 2 (1), 1-12.

      Nordmann, M., Cabrera, M., Perz, A., Bröcker, C., Ostrowicz, C., Engelbrecht-Vandré, S., & Ungermann, C. (2010): The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Current Biology, 20(18), 1654-1659.

      Paulsel, A. L., Merz, A. J., & Nickerson, D. P. (2013): Vps9 family protein Muk1 is the second Rab5 guanosine nucleotide exchange factor in budding yeast. Journal of Biological Chemistry, 288 (25), 18162-18171.

      Shideler, T., Nickerson, D. P., Merz, A. J., & Odorizzi, G. (2015): Ubiquitin binding by the CUE domain promotes endosomal localization of the Rab5 GEF Vps9. Molecular Biology of the Cell, 26 (7), 1345-1356.

      Significance

      • see above
      • has some deficits in interpretation as the Rab relocalization was not complete and thus conclusions are limiting
    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      This manuscript by Gouignard et al., reports that a matrix metalloproteinase MMP28 regulates neural crest EMT and migration by transcriptional control rather than matrix remodeling. The manuscript is clearly written and provides sufficient evidence and control experiments to demonstrate that the MMP28 can translocate into nucleus of non-producing cells and that nuclear localization and catalytic activity are essential for the activity of MMP28 to regulate gene transcription. ChIP-PCR analysis also suggests that MMP28 can bind to the proximal promoters of Twist and others. However, since weak binding is also detected between MMP14 and the promoters, a more direct evidence that such binding can indeed promote Twist expression will be more appreciated.

      Thank you for this comment. First, to represent the data from our ChIP assays we normalized all intensities to the GFP condition such that all levels are expressed fold change to GFP and we performed statistical comparisons. This shows that the enrichment of promoter regions by MMP28 and MMP14 are not equivalent.

      Second, to substantiate our previous ChIP data, we performed a new set of ChIP experiments, by performing three independent chromatin immunoprecipitations (biological replicates), and used primers targeting three new domains in the proximal promoter of Twist and primers against two domains in the proximal promoter of E-cadherin and one domain 1kb away from transcription start of E-cadh. We found that pull down with MMP28 significantly enriches the three tested domains within the proximal promoter of Twist but not those of the E-cadherin promoter, compared to GFP pull down. These data were added to Figure 7.

      However, we do not propose that MMP28 might act as a transcription factor and be able to promote Twist expression on its own. We apologize if some of the initial description of our data were too blunt and might have misled the reviewers. First, the protein sequence of MMP28, like those of all other MMPs, does not contain any typical DNA binding sites. In addition, ectopic overexpression of MMP28 is not sufficient to promote ectopic Twist expression (as shown in supplementary Figure 4) whereas, by contrast, Twist is able to promote ectopic expression of Cadherin-11 (see new Supplementary Figure 11). This indicates that MMP28 has an effect on Twist expression in the context of neural crest only and is not capable of activating Twist expression by itself.

      Also, it should be added that enrichments of promoter domains by MMP28 pull-down are very modest in comparison to enrichments obtain with Twist pull-downs. Therefore, a more plausible role for MMP28 is to be part of a regulatory cascade with other factors involved in regulating the expression of the target genes important for EMT. Other MMPs such as MMP14 and MMP3 have been shown to interact with chromatin with some transcriptional downstream effects but multiple domains of these proteins seem to equally mediate such interactions. None of the data published in these studies rules out a relay via cofactors. We extensively modified the text describing our data and provided additional context.

      Identifying the putative partners and their functional relationship with MMP28 is a project on its own and beyond the scope of this study.

      While the nuclear translocation and transcription regulation activity of MMP28 is clearly the focus of the study, there are some minor issues that should be further clarified in the functional studies in the earlier part of the manuscript.

      First, the effect of the splicing MO is somewhat unexpected. I would think that the splicing MO would lead to the retention of intron one and therefore premature termination or frameshift of the protein product, but RT-PCR or RT-qPCR suggest that there is no retention of intron 1, but a reduction in the full-length transcript, exon 1, or exon 7-8. Why is that?

      Thank you for this comment. This is presumably due to nonsense mediated RNA decay. We have not explored the biochemistry of MMP28 RNA following injection with MOspl. Splicing MOs can have multiple effects. As explained on the GeneTools website splicing MOs disturb the normal processing of pre-mRNA and cells have various ways to deal with this and there are multiple possible outcomes. The PCR with E1-I1 suggests that intron 1 is not retained. Therefore, a putative concern would be that MOspl led to exon-skipping and to the generation of a truncated form of MMP28. However, we have checked that it is not the case. The fact that the PCR using E7-E8 primers indicates a reduction as well suggests an overall degradation of the mRNA for MMP28. Importantly, the effect of MOspl can be rescued using MMP28 mRNA indicating that the knockdown is specific.

      Second, the effect of the splicing MO and ATG MO in NC explant spreading seems to be somewhat different, with ATG MO strongly repressed explant spreading, cell protrusion, and cell dispersion, while splicing MO does not affect cell dispersion, but affects the formation of cell protrusions. Does this reflects different severity of the phenotype or does the product of splicing MO display some activity?

      Thank you for this comment. However, we think that there may be a confusion. Data on Fig2 (MOatg) and Fig3 (MOspl) both show a decrease of neural crest migration in vivo (Figure 2a-b) and of neural crest dispersion ex vivo (Fig2c, Fig3i-k). Along the course of the project we have never observed a difference in penetrance or intensity of the phenotypes between the two MOs.

      Also, the switch between ATG MO and splicing MO is a bit confusing, maybe it is better to keep splicing MO only in the main text and move results involving ATG MO to supplementary studies.

      The reason is purely historical. We had an effect with MOatg that can be rescued but there is no available anti-Xenopus MMP28 to assess its efficiency. So we turned to MOspl to have an internal control of efficiency by PCR. This provides an independent knockdown method reinforcing the findings. Both MOs have been controlled for specificity by rescue with MMP28 and display similar effect on NC migration/dispersion. We see no harm in keeping both in the main figures but if the reviewer feels strongly about this we could perform the suggested redistribution of data between main and supp figures.

      Lastly, in Figure 3C and 3J, it says that the distance of migration or explant areas were normalized to CMO, while normalization against the contralateral uninjected side, or explant area at time 0 makes more sense.

      Thank you for this comment as it will allow us to explain better these quantifications. Regarding in vivo measurements (Figure 3c), it is indeed the ratio between injected and non-injected sides that is performed in all conditions and then the ratios are normalized to CMO. We have now clarified this point on all instances throughout the figures.

      Regarding ex vivo measurements (Figure 3j), NC explants are placed onto fibronectin and left to adhere for 1 hour before time-lapse imaging starts. NC cells extracted from MMP28 morphant embryos are not as efficient at adhering and spreading as control NC cells. Therefore, normalizing to t0 would erase that initial difference between control and MMP28 conditions. By normalizing to CMO at t_final we can visualize the initial defect of adhesion and spreading as well as the overall defects since CMO at t_final represents the 100% dispersion possible over the time course of the movie.

      Referee Cross-commenting

      I agree with comments from both Reviewers 2 and 3, especially that whether MMP28 regulates placode development (through Six1 expression) should be addressed.

      Reviewer #1 (Significance):

      This work provides novel insights of how a metalloprotease that is normally considered to function extracellularly can transfer into the nucleus of neighboring cells and regulate transcription. This would be of interest to researchers studying EMT, cell migration, and the functions of extracellular proteins in general. My expertise is in neural crest EMT and migration, and cytoskeletal regulation of cell behavioral changes. I do not have enough background on biochemical analysis.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary:

      In this study, Gouignard et al. beautifully use the Xenopus neural crest as a model system to examine the role of the matrix metalloproteinase MMP28 during EMT. The authors show that mmp28 is expressed by the placodes adjacent to the neural crest. Using in vivo and in vitro perturbation experiments, they show that the catalytic function of MMP28 is necessary for the expression of several neural crest markers, as well as neural crest migration and adhesion. Next, the authors use grafting, confocal imaging, and biochemistry to convincingly demonstrate that MMP28 is translocated into the nucleus of neural crest cells from the adjacent placodes. Finally, nuclear localization of MMP28-GFP is necessary to rescue twist and sox10 expression in MMP28 morphants, and ChIP-PCR experiments suggest direct interactions between MMPs and the proximal promoters of several neural crest genes. These results have significant implications on the field of EMT and highlight an underappreciated role for MMPs as direct regulators of gene expression.

      Major comments:

      Overall, the experiments presented in this study are thoroughly controlled and the results are clearly quantitated and rigorously analyzed. Most claims are well supported by multiple lines of experimental evidence; however, there are a few experiments or observations that this reviewer thinks should be reconsidered for more clarity and accuracy.

      1. Supplementary Figure 1 shows the effect of MMP28-MOspl on additional ectodermal markers and shows that there is a significant loss of six1 expression from the placodal domain following MMP28 knockdown. The authors note this as a "slight reduction" on line 95, but since this shows a larger reduction in gene expression than some of the neural crest markers (snai2, sox8, foxd3), this reviewer thinks these results warrant a more significant discussion in this study.

      Thank you for this comment. We apologize for the poor choice of word regarding the description of the effect on Six1 expression. We corrected the associated paragraph.

      Although we do observe a reduction of Six1 expression upon MMP28 knockdown, this cannot explain the observed downregulation of some neural crest genes in our MMP28 experiments. There are noticeable differences between the effects of Six1 loss of function that have been reported in the literature and the MMP28 knockdown phenotypes we describe. As suggested by the reviewer, we added a paragraph in the discussion.

      Does MMP28 localize to the nucleus of placodal cells as it does with neural crest? If so, is it through interaction with the six1 proximal promoter? If MMP28 does not localize to the nucleus, that would suggest MMP28 function with a different mechanism between epithelial cells distinct from role in EMT. These questions could be addressed by analysis of the placode cells in the images in Figure 5 and use of primers against the six1 proximal promoter on any remaining samples from the ChIP experiment.

      Thank you for this comment. To address whether nuclear entry is specific to the neural crest-placodes interaction, we performed new grafts:

      • 1/ we replaced neural crest cells from embryos expressing MMP28-GFP by placodal cells injected with Rhodamine-dextran. This generates grafted embryos with control placodes next to placodes overexpressing MMP28-GFP. There, we can analyze entry of MMP28-GFP in placodal cells that do not overexpress it. We detected MMP28 in the cytoplasm and in the nucleus of these placodal cells. However, the rate of nuclear entry was lower than in NC cells.

      • 2/ To assess the importance of the cell type producing MMP28, we grafted NC cells injected with Rhodamine-dextran next to caudal ectoderm expressing MMP28-GFP. MMP28 was detected in cytoplasm and the nucleus of the NC cells but with a lower efficiency than when NC are grafted next to placodes expressing MMP28-GFP.

      • 3/ We made animal caps sandwiches with animal caps injected with Rhodamine-dextran and animal caps expressing MMP28-GFP. In this case MMP28-GFP is detected in the cytoplasm but fails to reach the nucleus.

      Collectively, these data indicate that placodes can import MMP28 produced by placodes and that NC can import MMP28 produced by other cells than placodes. However, in both cases the rate of nuclear entry was lower than in the NC-placode situation. Finally, the animal cap sandwiches indicate that entry into the cells does not predict entry into the nucleus. All these data were added to Supp Figure 7. Statistical comparisons of the proportion of cells with cytoplasmic and nuclear MMP28-GFP in all grafts were added to Figure 5.

      The Six1 promoter analysis suggested is beyond the scope of this study as our focus is primarily on the role of MMP28 in neural crest development.

      1. In Figure 2c, the authors rescue MMP28-MOatg with injection of MMP28wt mRNA. Does the MOatg bind to the exogenous mRNA? If so, this may just reflect titration of the MOatg. If this is the case, this experiment should be repeated with MOspl instead of MOatg.

      Thank you for this comment. MOatg is designed upstream of the ATG and thus the binding site is not included in the expression construct. We added this important technical information in the methods. Of note, we already have the suggested equivalent of Fig2C with the MOspl on figure 3.

      1. Is there a missing data point in Figure 2d corresponding to the upper bounds of the whisker in the 6 hour time point for the MMP28-MOatg dataset?

      Thank you for pointing this out. The top data point was indeed missing from the graph, and we apologize for this oversight. We have now updated the figure with the correct graph.

      1. The authors present ChIP-PCR results in Figure 7 as the major evidence to support the mechanism of nuclear MMP28 in regulating neural crest EMT through physical interaction with target gene promoters. However, the experimental design and presentation in Figure 7 are somewhat unconventional, and as such, difficult to interpret. First, instead of displaying the band brightness across the gel, the authors should normalize their bands to their negative GFP control, thus allowing for interpretation as a "fold enrichment over GFP control". It would be most clear to present these results in the form of a plot similar to Shimizu-Hirota et al., 2012, Figure 6D. Using qPCR instead of gel-based quantitation would further increase reproducibility by removing any bias in image analysis.

      Thank you for this comment. For each band the value of the adjacent local background was subtracted. We have now normalized to GFP to provide graphs showing the fold change to GFP enrichment as requested.

      However, we would like to point out that we do not propose that MMP28 might act as a transcription factor and be able to promote Twist expression on its own. First, the protein sequence of MMP28 does not contain any typical DNA binding sites, as is the case for any other MMPs. In addition, ectopic overexpression of MMP28 is not sufficient to promote ectopic Twist expression (see sup figure 4) contrary to Twist that can ectopically induce Cadherin-11 for instance (see sup figure 11). Further, enrichments of promoter domains by MMP28 pull downs are very modest in comparison of the enrichments promoted by Twist pull downs.

      A more plausible role for MMP28 is that it is recruited via an interaction with other factors involved in regulating the expression of the target genes related to EMT. Identifying the partners and their functional relationship with MMP28 is a project on its own, and beyond the scope of this study.

      Second, a proximal promoter sequence represents only ~250 bp upstream from the transcriptional start site. What is the rationale for testing multiple loci up to 3 kb upstream?

      Thank you for pointing this out. The use of the term “proximal” was indeed misleading we have now corrected this part in the text. Regulatory sequences can be located anywhere so we initially had a broader approach to test for interactions. Following on this reviewer’s comment, we removed the data points corresponding to the very distal sites. In addition, we performed three new independent ChIP-PCR assays with primers in the proximal portion of Twist and E-cadherin promoters and found enrichment in ChIP with MMP28-GFP compared to GFP for Twist but not for E-cadherin (whose expression was not affected by MMP28 knockdown). These data were added to Figure 7.

      It is surprising to see that most of these proteins do not show significant enrichment to a particular locus across this ~3 kb territory, while this reviewer would expect to see enrichment close to the TSS that quickly is lost as you move further upstream. Can you explain why MMP28, MMP14, and often Twist, show similar enrichment across this long genomic region?

      Thank you for this comment. Our initial choice of representation did not allow to compare profiles properly. Fold-enrichment to GFP, as suggested by this reviewer, now shows that Twist, MMP28 and MMP14 do not display the same pattern of enrichment across the various loci and that MMP28 pull downs leads to significant enrichments of some of the domains tested in Cad11 and Twist promoters.

      Third, the authors should include additional genomic loci to act as negative controls. For example, E-cadherin was unaffected by MMP28-MOspl, thus there may be no physical interaction between the E-cadherin locus and MMP28. It would be ideal to display results from at least one neural crest-related and one non-neural crest-related gene. Finally, this experiment requires statistical analyses to increase confidence in these interactions.

      Thank you for this comment. We tested binding to E-cadherin promoter for GFP and MMP28-GFP and found no enrichment with MMP28. We also performed statistics as requested. These data were added to Figure 7.

      Minor comments:

      1. The authors should expand their abstract to more explicitly describe the experiments and results presented within this study.

      Done

      1. In the introduction, line 57 is unclear. "MMP28 is the latest member..." Is this chronologically? Evolutionarily? After this, the authors' statement that the roles of MMP28 are "poorly described" (lines 59-60) seems contradicting with their next sentences citing several studies that document the roles of MMP28 in diverse systems.

      Thank you for this comment. The term “poorly described” was meant with respect to other MMPs with more extensive literature. We have now rephrased this part. Regarding the “latest member” we meant the last to be identified. We have now rephrased this part.

      1. To increase clarity, the authors should define which cell types are labeled by in situ hybridization for sox10 and foxi4.1 in Figure 1e.

      Thank you, we performed the requested clarifications and expanded the change to add the cell types labelled by the other genes used on the figure (see figure legend).

      1. The PCR analysis for mmp28 splicing shown in Figure 1g is very clear and well demonstrates the efficacy of the MMP28-MOspl. However, the authors should note in the figure legend what the "ODC" row represents as this is unclear.

      We added the definition of ODC in the figure legends and in the methods.

      1. On line 118 the authors first reference "MOatg" but should explicitly define this reagent and its mechanism of action for clarity.

      We performed the requested clarification.

      Referee Cross-commenting

      As with Reviewer #1, I was surprised that the RT-PCR analysis presented in support of the splicing MO lacked retention of intron one. I reasoned this might be due to reduced transcript abundance through a mechanism such as nonsense-mediated decay, but I agree that this data raises questions that the authors should address.

      Thank you for this comment. Indeed, this is presumably due to nonsense mediated RNA decay. We have not explored the biochemistry of MMP28 RNA following injection with MOspl. Splicing MOs can have multiple effects. As explained on the GeneTools website splicing MOs disturb the normal processing of pre-mRNA and cells have various ways to deal with this and there are multiple possible outcomes. The PCR with E1-I1 suggests that intron 1 is not retained. Therefore, a putative concern would be that MOspl led to exon-skipping and to the generation of a truncated form of MMP28. However, we have checked that it is not the case. The fact that the PCR using E7-E8 primers indicates a reduction as well suggest an overall degradation of the mRNA for MMP28. Importantly, the effect of MOspl can be rescued using MMP28 mRNA indicating that the knockdown is specific.

      I also agree with the other comments from Reviewers 1 and 3.

      Reviewer #2 (Significance):

      This study by Gouignard et al. provides compelling evidence for the role of MMP28 during neural crest EMT. As neural crest cells share similar EMT and migration mechanisms with cancer progression, they represent a powerful system in which to study these biological processes in vivo. Previous work on MMP function has focused primarily on extracellular matrix remodeling and the effect on cell migration, with less attention given to the role of MMPs during EMT. More recent reports in other systems have begun to elucidate a role for MMP translocation into the nucleus, indicating a surprising and novel mechanism for these proteins. This work would be of particular interest to audiences interested in cancer, cell, and developmental biology, as it highlights the importance of the non-canonical function of metalloproteinases during EMT and migration.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary

      This study by Gouignard and colleagues explores the mechanisms involving the matrix-metalloprotease MMP28 in the epithelial-to-mesenchymal transition (EMT) of neural crest cells. Interestingly and provocatively, they focus not only on the extracellular functions of this protease but also on the roles of MMP28 in the nucleus. This in non-conventional sub-cellular localization is shared with other MMPs, but its significance remains poorly understood. Here, the authors show that the nuclear function of MMP28 impacts the expression of key EMT regulators in neural crest cells in vivo.

      Using Xenopus laevis as a powerful animal model to explore the early development, the authors show that mmp28 expression is found in the ectodermal placodal tissue adjacent to the neural crest prior and after EMT.<br /> In the first part of the study, the authors show that MMP28 depletion affects a subset of neural crest marker gene expression (snai2, twi, sox10) but not others (sox9, snai1), suggesting a specific role on a subset of the genes important for neural crest EMT. The MMP28 depletion phenotype is restored by coinjecting MMP28 MO and MMP28 mRNA, provided that the catalytic activity of the encoded protein is maintained. Next, epistasis (rescue) experiments show that Twist1 can compensate MMP28 depletion.<br /> The second part of the study elegantly shows that MMP28 produced by host adjacent tissues can translocate into the nucleus of neural crest cells grafted from a donor embryo (devoid of MMP28-GFP expression). It also shows that MMP28 nuclear localization as well as its catalytic activity are both required for activating the neural crest gene twist1 and sox10; and that MMP28 is found bound on the chromatin of twist1, cad11 and sox10.<br /> Altogether, these experiments strongly support a model for the nuclear role of MMP28 in the activation (or maintenance) of key genes of the EMT program in vertebrate neural crest cells.

      Major comments

      The key conclusions are:

      Conclusion 1: MMP28, expressed and secreted by placodes, is important for complete neural crest patterning prior to EMT, including activation of twist1 and EMT effector cadherin 11 genes. MMP28 is important for neural crest EMT and migration in vivo and in explant assay in vitro.

      However, this conclusion omits potential indirect effect of interfering with placode formation itself, as indicated by the strong decrease in six1 expression in morphant embryos. The effect of MMP28MO on the expression of six1 is as strong as for neural crest markers snai2, twi, for example. Line 95, "slight reduction" should be modified.

      Thank you or this comment. We have now modified the associated text.

      What this may mean for placodal development itself, as well as for indirect effects on neural crest cells need to be discussed.

      Following this comment, we added a paragraph in the discussion about Six1.

      Conclusion 2: Gain of Twist 1 (but not Cadherin 11) rescues MMP28 morphant phenotype, allowing EMT to occur and restoring several parameters of cell migration in vivo and in explant assay

      Conclusion 3: When secreted from adjacent cells, MMP28 is translocated into the nucleus of neural crest cells and displays a nuclear function important for the activation of twist1 expression.

      Both conclusions 2 and 3 are supported by multiple elegant and convincing experimental data. These conclusions do not depend on mmp28 exclusive expression by the placodal ectoderm, and would still be important if there was a minor expression in the neural crest cells themselves (and thus an autocrine effect).

      Additional experiments to strengthen the conclusions<br /> Related to Conclusion 1:

      • line 102-106: In the rescue experiment, is six1 expression rescued too?

      Thank you for this comment. As detailed in the newly added discussion paragraph about the effects of Six1 loss of function that have been described in the literature, it is very unlikely that our NC phenotypes stem from the observed reduction of Six1 expression.

      Nonetheless, following this comment we checked for Six1 expression in the placodal domain following MMP28 knockdown and rescue condition. In the rescue condition, only 25% of the embryos had recovered Six1 expression in placodes while 75% of the embryos recovered Sox10 expression in neural crest cells. These data further confirm that rescue of placodal genes is not a pre-requisite for the rescue of neural crest genes and were added in Supp Figure 5.

      Although MMP28 is likely to have a role in placodes as well, the expansion of Sox2 and Pax3 expression domain and the loss of Eya1 expression typically associated with Six1 knockdown did not occur in MMP28 knockdown. Our story being focused on neural crest cells, we did not investigate further how the MMP28-dependent effect on Six1 might impair placode development.

      • Figure 2g: qPCR analysis suggests that mmp28 is expressed in the neural crest explants themselves, levels being lowered by the MO injection. The levels of this potential expression in the neural crest itself should be compared to the levels in the placodal ectoderm. How do the authors exclude an effect of the MO within the neural crest tissue, independently of roles from the placodal tissue?

      Thank you for this comment. There is a very small subpopulation of NC cells called the medial crest that expresses MMP28. They are along a thin line along the edge of the neural folds. We previously described this in Gouignard et al Phil Trans Royal Soc B 2020. It is useful for us as an internal control for MO efficiency but the expression in placodes is much stronger and involves many more cells. However, this expression called our attention at the onset of the project and we performed some experiments to assess whether some of the observed effects were due to a NC-autonomous effect, as suggested by this reviewer. To test for this we performed targeted injected of the MO such that the medial crest would receive the MO but not the placodes. Targeting the medial crest with MMP28-MO had no effect on Sox10 expression. These data were added to new supp Figure 1.

      The cost and time for these additional experiments is limited (about 3 weeks), and uses reagents already available to the authors.

      Data and Methods are described with details including all necessary information to replicate the study. Replication is carefully done and statistical analysis seems convincing.

      Minor comments

      Experimental suggestions to further strengthen the conclusions.<br /> Related to Conclusion 1: - Figure 1e, frontal histological sections would help distinguishing between placodal tissue and neural crest mesenchyme.

      Thank you for this comment. We previously published a detailed expression pattern with such sections (Gouignard et al Phil Trans Royal Soc B, 2020). We rephrased the text to better refer to this previous publication.

      Related to Conclusion 2: - Figure 3: in explants co-injected with twist1 mRNA, is cad11 expression restored? Could this indicate if cad11 is (or is not) part of the program controlled by Twist1 (as suggested by the last main figure)?

      Thank you for this comment. We checked for Cadherin-11 expression in control MO, MMP28-MOspl and MOspl+Twist mRNA and Twist is indeed capable of inducing Cadherin-11 and even leads to ectopic activation of Cad11 on the injected side. These data were added to new Supp Figure 11.

      Related to Conclusion 3: is MMP28 translocation seen in any cell context? Could the authors repeat experiments in Figure 6a with animal cap ectoderm? And with sandwich animal cap ectoderm, one expressing MMP28-GFP versions (wt, deltaSPNLS) and the other Rhodamine Dextran only? This would allow to generalize the mechanism or on the contrary to show a neural crest specificity.

      Thank you for this comment. Following this suggestion and comments from the other reviewers, we performed new grafting experiments.

      • 1/ we replaced neural crest cells from embryos expressing MMP28-GFP by placodal cells injected with Rhodamine-dextran. This generates grafted embryos with control placodes next to placodes overexpressing MMP28-GFP. There, we can analyze entry of MMP28-GFP in placodal cells that do not overexpress it. We detected MMP28 in the cytoplasm and in the nucleus of these placodal cells. However, the rate of nuclear entry was lower than in NC cells.
      • 2/ To assess the importance of the cell type producing MMP28 we grafted NC cells injected with Rhodamine-dextran next to caudal ectoderm expressing MMP28-GFP. MMP28 was detected in cytoplasm and the nucleus of the NC cells but with a lower efficiency than when NC are grafted next to placodes expressing MMP28-GFP.
      • 3/ We made animal caps sandwiches with animal caps injected with Rhodamine-dextran and animal caps expressing MMP28-GFP. In this case MMP28-GFP is detected in the cytoplasm but fails to reach the nucleus. These data indicate that placodes can import MMP28 produced by placodes and that NC can import MMP28 produced by other cells than placodes. However, in both cases the rate of nuclear entry was lower than in the NC-placode situation. Finally the animal cap sandwiches indicate that entry into the cells does not predict entry into the nucleus. All these data were added to new Supp Figure 7 and quantifications of import of MMP28-GFP in the cytoplasm and the nucleus all conditions added to Figure 5.

      In supplementary figure 4a, the grey (RDx) is not visible in the zoom in images.

      As the grey channel interferes with visualizing the green channel, we only show the grey channel on the first low magnification image so that the position of grafted cells can be seen. We found it better to omit it from the zoomed in images to avoid masking the GFP signal.

      In figure 7a,b MMP14 is green, GFP is grey (mentioned wrongly in line 276)

      Thank you for pointing this out. We have extensively modified Figure 7 and such issues are now resolved.

      Bibliographical references are accurate. Clarity of the text and figures is excellent, except maybe Figure 7, where a qPCR analysis would be easier to visualize, especially with low-level or fuzzy bands on the gel.

      Thank you. We have now modified Figure 7, including normalization to GFP to show fold-change enrichment and have added new data from three independent ChIP assays for proximal Twist and E-cadherin promoters that we hope further substantiate our initial observations.

      Reviewer #3 (Significance):

      Place of the work in the field's context:

      In cancer, the MMP proteins are widely described in multiple tumor contexts and promote cell invasion. In development, several studies have focused on their functions in the extracellular space. The nuclear localization of MMP family proteins has been described previously but remained poorly understood so far. This work is thus a pioneer study aiming to understand MMP28 nuclear function.

      Advance:

      This study makes a significant advance in the field, by unraveling the importance of the MMP28 activity in the cell nucleus for the expression of key EMT regulators. Moreover, the study suggests that extracellular MMP28 secreted by adjacent cells or tissues can be internalized and transported to cell nucleus into cells located several cell diameters away. This study thus supports a novel facet of MMP proteins activity, complementary to their previously described role on the extracellular matrix, and further favoring cell invasion, in development and potentially in cancer too.

      The target audience goes without doubt beyond developmental biologists (the primary interest) and also includes cell and cancer biologists, and any biologist interested by MMPs or cell invasion mechanisms in vivo.

      My field of expertise is developmental biology focused on neural and neural crest early development, mainly using animal models in vivo and some cell culture experiments. I also focus on some aspects of cancer cell migration.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      This study by Gouignard and colleagues explores the mechanisms involving the matrix-metalloprotease MMP28 in the epithelial-to-mesenchymal transition (EMT) of neural crest cells. Interestingly and provocatively, they focus not only on the extracellular functions of this protease but also on the roles of MMP28 in the nucleus. This in non-conventional sub-cellular localization is shared with other MMPs, but its significance remains poorly understood. Here, the authors show that the nuclear function of MMP28 impacts the expression of key EMT regulators in neural crest cells in vivo.

      Using Xenopus laevis as a powerful animal model to explore the early development, the authors show that mmp28 expression is found in the ectodermal placodal tissue adjacent to the neural crest prior and after EMT.<br /> In the first part of the study, the authors show that MMP28 depletion affects a subset of neural crest marker gene expression (snai2, twi, sox10) but not others (sox9, snai1), suggesting a specific role on a subset of the genes important for neural crest EMT. The MMP28 depletion phenotype is restored by coinjecting MMP28 MO and MMP28 mRNA, provided that the catalytic activity of the encoded protein is maintained. Next, epistasis (rescue) experiments show that Twist1 can compensate MMP28 depletion.<br /> The second part of the study elegantly shows that MMP28 produced by host adjacent tissues can translocate into the nucleus of neural crest cells grafted from a donor embryo (devoid of MMP28-GFP expression). It also shows that MMP28 nuclear localization as well as its catalytic activity are both required for activating the neural crest gene twist1 and sox10; and that MMP28 is found bound on the chromatin of twist1, cad11 and sox10.<br /> Altogether, these experiments strongly support a model for the nuclear role of MMP28 in the activation (or maintenance) of key genes of the EMT program in vertebrate neural crest cells.

      Major comments

      The key conclusions are:

      Conclusion 1: MMP28, expressed and secreted by placodes, is important for complete neural crest patterning prior to EMT, including activation of twist1 and EMT effector cadherin 11 genes. MMP28 is important for neural crest EMT and migration in vivo and in explant assay in vitro.

      However, this conclusion omits potential indirect effect of interfering with placode formation itself, as indicated by the strong decrease in six1 expression in morphant embryos. The effect of MMP28MO on the expression of six1 is as strong as for neural crest markers snai2, twi, for example. Line 95, "slight reduction" should be modified. What this may mean for placodal development itself, as well as for indirect effects on neural crest cells need to be discussed.

      Conclusion 2: Gain of Twist 1 (but not Cadherin 11) rescues MMP28 morphant phenotype, allowing EMT to occur and restoring several parameters of cell migration in vivo and in explant assay

      Conclusion 3: When secreted from adjacent cells, MMP28 is translocated into the nucleus of neural crest cells and displays a nuclear function important for the activation of twist1 expression.

      Both conclusions 2 and 3 are supported by multiple elegant and convincing experimental data. These conclusions do not depend on mmp28 exclusive expression by the placodal ectoderm, and would still be important if there was a minor expression in the neural crest cells themselves (and thus an autocrine effect).

      Additional experiments to strengthen the conclusions<br /> Related to Conclusion 1:

      • line 102-106: In the rescue experiment, is six1 expression rescued too?
      • Figure 2g: qPCR analysis suggests that mmp28 is expressed in the neural crest explants themselves, levels being lowered by the MO injection. The levels of this potential expression in the neural crest itself should be compared to the levels in the placodal ectoderm. How do the authors exclude an effect of the MO within the neural crest tissue, independently of roles from the placodal tissue?

      The cost and time for these additional experiments is limited (about 3 weeks), and uses reagents already available to the authors.

      Data and Methods are described with details including all necessary information to replicate the study. Replication is carefully done and statistical analysis seems convincing.

      Minor comments

      Experimental suggestions to further strengthen the conclusions.<br /> Related to Conclusion 1: - Figure 1e, frontal histological sections would help distinguishing between placodal tissue and neural crest mesenchyme.<br /> Related to Conclusion 2: - Figure 3: in explants co-injected with twist1 mRNA, is cad11 expression restored? Could this indicate if cad11 is (or is not) part of the program controlled by Twist1 (as suggested by the last main figure)?<br /> Related to Conclusion 3: is MMP28 translocation seen in any cell context? Could the authors repeat experiments in Figure 6a with animal cap ectoderm? And with sandwich animal cap ectoderm, one expressing MMP28-GFP versions (wt, deltaSPNLS) and the other Rhodamine Dextran only? This would allow to generalize the mechanism or on the contrary to show a neural crest specificity.

      In supplementary figure 4a, the grey (RDx) is not visible in the zoom in images.<br /> In figure 7a,b MMP14 is green, GFP is grey (mentioned wrongly in line 276)<br /> Bibliographical references are accurate. Clarity of the text and figures is excellent, except maybe Figure 7, where a qPCR analysis would be easier to visualize, especially with low-level or fuzzy bands on the gel.

      Significance

      Place of the work in the field's context:

      In cancer, the MMP proteins are widely described in multiple tumor contexts and promote cell invasion. In development, several studies have focused on their functions in the extracellular space. The nuclear localization of MMP family proteins has been described previously but remained poorly understood so far. This work is thus a pioneer study aiming to understand MMP28 nuclear function.

      Advance:

      This study makes a significant advance in the field, by unraveling the importance of the MMP28 activity in the cell nucleus for the expression of key EMT regulators. Moreover, the study suggests that extracellular MMP28 secreted by adjacent cells or tissues can be internalized and transported to cell nucleus into cells located several cell diameters away. This study thus supports a novel facet of MMP proteins activity, complementary to their previously described role on the extracellular matrix, and further favoring cell invasion, in development and potentially in cancer too.

      The target audience goes without doubt beyond developmental biologists (the primary interest) and also includes cell and cancer biologists, and any biologist interested by MMPs or cell invasion mechanisms in vivo.

      My field of expertise is developmental biology focused on neural and neural crest early development, mainly using animal models in vivo and some cell culture experiments. I also focus on some aspects of cancer cell migration.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      In this study, Gouignard et al. beautifully use the Xenopus neural crest as a model system to examine the role of the matrix metalloproteinase MMP28 during EMT. The authors show that mmp28 is expressed by the placodes adjacent to the neural crest. Using in vivo and in vitro perturbation experiments, they show that the catalytic function of MMP28 is necessary for the expression of several neural crest markers, as well as neural crest migration and adhesion. Next, the authors use grafting, confocal imaging, and biochemistry to convincingly demonstrate that MMP28 is translocated into the nucleus of neural crest cells from the adjacent placodes. Finally, nuclear localization of MMP28-GFP is necessary to rescue twist and sox10 expression in MMP28 morphants, and ChIP-PCR experiments suggest direct interactions between MMPs and the proximal promoters of several neural crest genes. These results have significant implications on the field of EMT and highlight an underappreciated role for MMPs as direct regulators of gene expression.

      Major comments:

      Overall, the experiments presented in this study are thoroughly controlled and the results are clearly quantitated and rigorously analyzed. Most claims are well supported by multiple lines of experimental evidence; however, there are a few experiments or observations that this reviewer thinks should be reconsidered for more clarity and accuracy.

      1. Supplementary Figure 1 shows the effect of MMP28-MOspl on additional ectodermal markers and shows that there is a significant loss of six1 expression from the placodal domain following MMP28 knockdown. The authors note this as a "slight reduction" on line 95, but since this shows a larger reduction in gene expression than some of the neural crest markers (snai2, sox8, foxd3), this reviewer thinks these results warrant a more significant discussion in this study. Does MMP28 localize to the nucleus of placodal cells as it does with neural crest? If so, is it through interaction with the six1 proximal promoter? If MMP28 does not localize to the nucleus, that would suggest MMP28 function with a different mechanism between epithelial cells distinct from role in EMT. These questions could be addressed by analysis of the placode cells in the images in Figure 5 and use of primers against the six1 proximal promoter on any remaining samples from the ChIP experiment.
      2. In Figure 2c, the authors rescue MMP28-MOatg with injection of MMP28wt mRNA. Does the MOatg bind to the exogenous mRNA? If so, this may just reflect titration of the MOatg. If this is the case, this experiment should be repeated with MOspl instead of MOatg.
      3. Is there a missing data point in Figure 2d corresponding to the upper bounds of the whisker in the 6 hour time point for the MMP28-MOatg dataset?
      4. The authors present ChIP-PCR results in Figure 7 as the major evidence to support the mechanism of nuclear MMP28 in regulating neural crest EMT through physical interaction with target gene promoters. However, the experimental design and presentation in Figure 7 are somewhat unconventional, and as such, difficult to interpret. First, instead of displaying the band brightness across the gel, the authors should normalize their bands to their negative GFP control, thus allowing for interpretation as a "fold enrichment over GFP control". It would be most clear to present these results in the form of a plot similar to Shimizu-Hirota et al., 2012, Figure 6D. Using qPCR instead of gel-based quantitation would further increase reproducibility by removing any bias in image analysis. Second, a proximal promoter sequence represents only ~250 bp upstream from the transcriptional start site. What is the rationale for testing multiple loci up to 3 kb upstream? It is surprising to see that most of these proteins do not show significant enrichment to a particular locus across this ~3 kb territory, while this reviewer would expect to see enrichment close to the TSS that quickly is lost as you move further upstream. Can you explain why MMP28, MMP14, and often Twist, show similar enrichment across this long genomic region? Third, the authors should include additional genomic loci to act as negative controls. For example, E-cadherin was unaffected by MMP28-MOspl, thus there may be no physical interaction between the E-cadherin locus and MMP28. It would be ideal to display results from at least one neural crest-related and one non-neural crest-related gene. Finally, this experiment requires statistical analyses to increase confidence in these interactions.

      Minor comments:

      1. The authors should expand their abstract to more explicitly describe the experiments and results presented within this study.
      2. In the introduction, line 57 is unclear. "MMP28 is the latest member..." Is this chronologically? Evolutionarily? After this, the authors' statement that the roles of MMP28 are "poorly described" (lines 59-60) seems contradicting with their next sentences citing several studies that document the roles of MMP28 in diverse systems.
      3. To increase clarity, the authors should define which cell types are labeled by in situ hybridization for sox10 and foxi4.1 in Figure 1e.
      4. The PCR analysis for mmp28 splicing shown in Figure 1g is very clear and well demonstrates the efficacy of the MMP28-MOspl. However, the authors should note in the figure legend what the "ODC" row represents as this is unclear.
      5. On line 118 the authors first reference "MOatg" but should explicitly define this reagent and its mechanism of action for clarity.

      Referee Cross-commenting

      As with Reviewer #1, I was surprised that the RT-PCR analysis presented in support of the splicing MO lacked retention of intron one. I reasoned this might be due to reduced transcript abundance through a mechanism such as nonsense-mediated decay, but I agree that this data raises questions that the authors should address.

      I also agree with the other comments from Reviewers 1 and 3.

      Significance

      This study by Gouignard et al. provides compelling evidence for the role of MMP28 during neural crest EMT. As neural crest cells share similar EMT and migration mechanisms with cancer progression, they represent a powerful system in which to study these biological processes in vivo. Previous work on MMP function has focused primarily on extracellular matrix remodeling and the effect on cell migration, with less attention given to the role of MMPs during EMT. More recent reports in other systems have begun to elucidate a role for MMP translocation into the nucleus, indicating a surprising and novel mechanism for these proteins. This work would be of particular interest to audiences interested in cancer, cell, and developmental biology, as it highlights the importance of the non-canonical function of metalloproteinases during EMT and migration.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This manuscript by Gouignard et al., reports that a matrix metalloproteinase MMP28 regulates neural crest EMT and migration by transcriptional control rather than matrix remodeling. The manuscript is clearly written and provides sufficient evidence and control experiments to demonstrate that the MMP28 can translocate into nucleus of non-producing cells and that nuclear localization and catalytic activity are essential for the activity of MMP28 to regulate gene transcription. ChIP-PCR analysis also suggests that MMP28 can bind to the proximal promotors of Twist and others. However, since weak binding is also detected between MMP14 and the promoters, a more direct evidence that such binding can indeed promote Twist expression will be more appreciated.

      While the nuclear translocation and transcription regulation activity of MMP28 is clearly the focus of the study, there are some minor issues that should be further clarified in the functional studies in the earlier part of the manuscript.

      First, the effect of the splicing MO is somewhat unexpected. I would think that the splicing MO would lead to the retention of intron one and therefore premature termination or frameshift of the protein product, but RT-PCR or RT-qPCR suggest that there is no retention of intron 1, but a reduction in the full-length transcript, exon 1, or exon 7-8. Why is that?

      Second, the effect of the splicing MO and ATG MO in NC explant spreading seems to be somewhat different, with ATG MO strongly repressed explant spreading, cell protrusion, and cell dispersion, while splicing MO does not affect cell dispersion, but affects the formation of cell protrusions. Does this reflects different severity of the phenotype or does the product of splicing MO display some activity? Also, the switch between ATG MO and splicing MO is a bit confusing, maybe it is better to keep splicing MO only in the main text and move results involving ATG MO to supplementary studies.

      Lastly, in Figure 3C and 3J, it says that the distance of migration or explant areas were normalized to CMO, while normalization against the contralateral uninjected side, or explant area at time 0 makes more sense.

      Referee Cross-commenting

      I agree with comments from both Reviewers 2 and 3, especially that whether MMP28 regulates placode development (through Six1 expression) should be addressed.

      Significance

      This work provides novel insights of how a metalloprotease that is normally considered to function extracellularly can transfer into the nucleus of neighboring cells and regulate transcription. This would be of interest to researchers studying EMT, cell migration, and the functions of extracellular proteins in general. My expertise is in neural crest EMT and migration, and cytoskeletal regulation of cell behavioral changes. I do not have enough background on biochemical analysis.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      *All three referee reports are very supportive. The referees acknowledge the insight obtained for NF2 tumor suppressor function, and they state unanimously that the appeal to the broader audience stems from the systematic deep mutational scanning approach employed. *

      Indeed, the goal of the study was to utilize conformation dependent NF2 protein interaction partners as a read out in deep mutational scanning interaction perturbation, which lead to the identification of an novel region, the F3 part of the FERM domain, important for NF2 conformation. The referees recognized the advance of the study and provided constructive feedback with excellent opportunities to improve the manuscript.

      *The points raised by the referees relate to the deep scanning analyses which needs additional explanations. Referee 1 has several comments with respect to experimental details, which we will address through text revisions and addition of data. Referee 2 suggests to include the Y2H in full (as supplemental part) and asks for more methodological discussion. We plan to include the data and will provide a new advantage / disadvantage discussion section for the deep scanning results. This is in line with Referee 3 who similarly says that “the deep mutational scanning interaction perturbation assay … message is somewhat lost in the main text”. *

      2. Description of the planned revisions

      Referee 1:

      In his/her first point the referee asks about justification of the use of the kinase in the Y2H experiments. Here we will report in more detail which kinases were used, in fact it was a discovery that ABL2 in contrast to all others tested did promote the NF2-PIK3R3 interaction. However, in the manuscript we provide evidence that the kinase dependency does not necessarily relate to NF2 phosphorylation. Rather we find mutations that relieved the PIK3R3-NF2 interaction from the kinase dependency. We show that the kinase promotes the PIK3R3 dimerization. We will make this point more clear in text revisions.

      We want to address the minor points 1-3 and 6-8 through revisions in the text, as we feel confident that the points can be addressed through better explanations and more detail.

      *Point 4: *

      We have examined expression of the YFP construct and will include the data in the revision.

      *Point 5: *

      We will reexamine the fluorescence images and provide better resolution pictures. Depending on the data we have, this may include new data were we record the localization of the NF2 variants again at higher resolution.

      Referee 2:

      Point 1: The bait construct which is missing from the panel was tested, but is autoactive and therefore the result can not be included in the figure. This will be clearly stated in the manuscript.

      *Point 2: The methodological part of the paper is important, however we failed to provide a discussion on the deep scanning result and agree that a critical discussion of advantages and disadvantages is warranted. *

      Minor points 1,2,4,5,6,7,9,10,12,13,14,15 can be addressed in full through text revisions.

      Point 3: Data will be added to supplemental Figure S1, however as we mentioned in the main text, the Iso1N and Iso7N, when used as prey do not result any interactions.

      Point 8: Taking the suggestion of the referee on board, we will provide a new Supplemental figure showing all variants that did not change the interaction patterns.

      *Point 11: We will fix the inconsistencies in Figure 5. We will include Q147 in the overall structure, S265 is a surface residue providing little structural information. *

      Referee 3:

      We thank referees 3 for their time and effort providing an assessment as experts on the molecular and clinical aspects of NF2.

      In response to the comments, we will strengthen the deep mutational scanning message through a new critical discussion part and fix the mistakes pointed at in the text.

      *We agree with the referees that “The use of isoform 7 as a construct is helpful to locate protein binding regions, but its physiological relevance is unclear.” This is exactly the point, to use a non-tumor suppressive isoform as a construct contrasting the binding behavior of the canonical isoform 1. We tried to summarize the knowledge about the non-canonical isoforms in the introduction (page2 bottom to page 3 top paragraph) as well as in Supplemental Figure 1. Unfortunately literature information is sparse. *

      Finally, we will check carefully (again) whether we used isoform 1 numbering throughout the manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      The authors developed a deep mutational scanning interaction perturbation technique, based on reverse yeast two-hybrid analysis, to identify important regions influencing conformation dependent protein function in NF2.

      They test the tumor suppressive NF2 isoform 1 and a shorter non-tumor suppressive isoform 7 (lacking exons 2 and 3 and containing exon 16 instead of 17) and find three interacting proteins, KDM1A, EMILIN1 and PIK3R3 (KDM1A and EMILIN1 have been identified previously). They map binding regions of these proteins using fragments of NF2 isoforms 1 and 7 and by large-scale interaction perturbation mutation scanning.

      Major comments:

      The main scientific advancement in the study is the development of the deep mutational scanning interaction perturbation assay, but this message is somewhat lost in the main text of the results.

      The relevance of the binding protein that did not bind isoform 1 is unclear (PIK3R3) and the relevance of characterising the binding domains for three proteins with an unknown function is not made clear. Were these the only binding partners identified in the yeast screen? The use of isoform 7 as a construct is helpful to locate protein binding regions, but its physiological relevance is unclear. Does it have known expression or a known function in human cells?

      Minor comments:

      Nomenclature should be updated in line with the new guidelines (i.e. NF2 vs neurofibromin)

      The two major isoforms are 1 and 2, differentiated by their C-terminal region (exon 17 or Exon 16). It would be helpful to describe protein binding regions using the amino acid numbering of the full-length transcripts throughout the manuscript, rather than using isoform 7 numbering in some sections.

      "Closeness", should perhaps be changed to closed-ness

      The significance of the RT4-D6P2T and HEI-193 cell lines should be explained/indicated in the text.

      PPI should be expanded at first use.

      Results are included in the context of previous studies, but it needs to be made clearer in some places which results were found in previous studies and which were identified in the current study.

      Specific recommendations

      1. 'NF2 (Neurofibromine 2, merlin)' -delewte 'neurofibromine' this has been deleted by HGNC
      2. 'Genetic mutations or deletion of NF2 cause neurofibromatosis type 2,' -Replace neurofibromatosis type 2 with NF2 related-schwannomatosis and cite Legius et al Genet Med 2022

      Referees cross-commenting

      I cannot see any changes to this manuscript. In particular the terms 'neurofibromine' and neurofibromatosis should be deleted

      Significance

      The authors developed a deep mutational scanning interaction perturbation technique, based on reverse yeast two-hybrid analysis, to identify important regions influencing conformation dependent protein function in NF2.

      They test the tumor suppressive NF2 isoform 1 and a shorter non-tumor suppressive isoform 7 (lacking exons 2 and 3 and containing exon 16 instead of 17) and find three interacting proteins, KDM1A, EMILIN1 and PIK3R3 (KDM1A and EMILIN1 have been identified previously). They map binding regions of these proteins using fragments of NF2 isoforms 1 and 7 and by large-scale interaction perturbation mutation scanning.

      The main scientific advancement in the study is the development of the deep mutational scanning interaction perturbation assay, but this message is somewhat lost in the main text of the results.

      Dr Smith and Professor Evans are experts on the molecular and clinical aspects of NF2

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      In this manuscript the authors describe the use of a reverse Y2H-based, systematic mutational analysis method to study effects on conformation-dependent interactions of the NF2 tumor suppressor protein. Using this approach, they identified regions important for NF2 protein interaction and homomer formation and correlated some of these with cellular proliferation and matched patterns of known disease mutations. Overall, this work provides useful insight into NF2 tumor suppressor function (by identifying amino acids critical for NF2 conformational regulation) while demonstrating the power of their mutational scanning approach.

      Major Comments

      1. Why does Figure 1b not include interaction results for the NF2-Iso1N fragment as bait? Did the authors test this?
      2. The authors state that the majority of retested interactions behaved like WT (i.e., could not be confirmed; page 7 last paragraph) and claim this may be due to a difference in sensitivity between the deep scanning screen and pair wise spot testing. This seems like a very vague justification for the differences between the two assays; also, it's not immediately clear to me that the high-throughput scanning assay would necessarily be more sensitive than the lower-throughput pairwise comparison assay. The authors should provide a bit more discussion on this and address the possibility of false positives in their deep mutational scanning assay.

      Minor Comments

      1. Page 4, Line 3 from the bottom - should ready 'three isoform-specific protein interaction partners' not 'partner'.
      2. In Figure 1b, the interaction of NF2-Iso7-ex17 with PIK3R3 in the absence of ABL3 suggests that the observed kinase-dependence interaction of the NF2-Iso7 form may actually not be solely due to PIK3R3 homodimerization driven by phosphorylation. The authors should make note of this possibility in the text.
      3. On page 5 the authors mention that Iso1N and Iso7N, when used as preys, did not interact with full-length NF2. I don't see this experiment in the figures, however.
      4. On Page 6 (first paragraph) the authors state that the PIK3R3 interaction was 'promoted through pY-dependent PIK3R3 homodimerization'. While this is a likely and reasonable conclusion, they haven't explicitly shown this, so they should be careful about making such a strong statement. I'd recommend saying 'likely promoted' or something similar instead.
      5. In Figure S2, the Iso7 / EMILIN1 interaction does not appear to be giving the expected result in the rY2H (i.e., there is strong growth under both Y2H and r2H conditions). The authors should comment on/acknowledge this.
      6. For the deep mutagenesis screen, why wasn't an ABL2 condition used for NF2-Iso1C (see Fig. S2b)?
      7. For KDM1A and EMILIN1 the authors ran mutagenesis screens with both active and kinase dead ABL2, yet results were pooled. Were any differences observed in the effects of mutations on interaction between the two kinase conditions?
      8. Why aren't the yeast plates shown for most of the unconfirmed interactions? These could still be included in the Supplementary Material.
      9. On page 7, under Assessing Single Site Mutations, the authors refer to the Q147E mutation and reference Figure 3. However, Figure 3 shows only a Q147A mutation. Q147A is also referred to elsewhere. Which is the correct mutation?
      10. Figure S3b shows the 20 mutations presented in Figure 3. The DMS row indicates that some of these did not produce perturbations in the DMS experiments. Perhaps I'm misunderstanding here, but weren't the 20 mutations shown (and 60 total mutations) selected based on activity in the DMS assay? Or did some of the ones selected correspond to mutations which not produce an effect? Please clarify in the text.
      11. Why was the S265 mutation not considered in the structural analysis (other than being shown in Figure 4a, it isn't discussed). Also, Q147 (in the F2 region) is discussed and shown in Figure 4b, but not shown in the larger overall structure in Figure 4a.
      12. The cell proliferation results are very difficult to meaningfully interpret. While it is clear that certain mutations do affect proliferation, consistency between different types of experiments and cell lines appears to be low.
      13. Perhaps a bit more discussion of the possible consequences of using yeast to study human NF2 interactions and how these might affect results would be useful (i.e., due to differences in membrane composition, cellular environment, post-translational modifications etc. between yeast and mammalian cells).
      14. Page 13, line 10 says 'your hypothesis'. Believe should read 'the hypothesis'.
      15. Page 13, line 15 refers to '15' NF2 variants showing altered PPI patterns; however, 16 were described in the manuscript.

      Significance

      This work provides insight into how NF2 conformational changes relate to tumor suppressor function, which is particularly valuable since this area is still not well understood and published results have sometimes appeared contradictory. In addition to the insights into NF2 biology provided, the manuscript also demonstrates the value of the deep scanning mutagenesis approach. Overall, the presented research is very solid and, assuming the comments presented above (most of which are minor) are addressed I have no trouble recommending it for publication.

      I believe that the NF2 biology section will be of interest to a more specialized audience, while the general demonstration of the utility of the deep scanning mutagenesis will have broader appeal.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript "Missense variant interaction scanning reveals a critical role of the FERM-F3 domain for tumor suppressor protein NF2 conformation and function" examines the effect of a reasonably exhaustive set of point mutations on the NF2 protein on protein-protein interactions and intra-protein interactions for two isoforms of NF2 (1 and 7), finding an interesting pattern of mutations in the region not associated with bindings nevertheless impact binding, and that this binding is sometimes dependent on the presence of kinase ABL2. Authors justify this by arguing conformation shifts in the protein, potentially regulated by phosphorylation, and with distinct conformations between isoforms 1 and 7 creating different interaction patterns, must explain the differences in binding properties. The paper specifically examines mutations to phosphomimetic (i.e., charged, so as to mimic phosphorylation) amino acid residues, with relevance for the probable biological regulation of this binding. Authors note that previous work has found inconsistent protein binding properties for phosphomimetic or phosphor-inhibiting substitutions on S518, in different conditions, which would be explained by other regulation of these conformational changes, a reasonable argument. Structural modeling of the mutants and their potential effects on a "closed" NF2 structure are intriguing and well-appreciated to support the paper's conclusions, and the paper is overall well-reasoned and convincing, and it should be published.

      Concerns:

      The kinase ABL2 is used to perturb NF2 phosphorylation, and this is not adequately justified. Kinases such as PAK2 (PMID: 11782491, PMID: 11719502) and PKA (PMID: 14981079) target NF2. In the methods referred to (Grossmann et al), nine tyrosine kinases were used for their screen, and while ABL2 was used in this paper and generated numerous interactions, it is not clear that ABL2 is the appropriate kinase to use here. The exhaustive use of many kinases would obviously be impractical and unreasonable for this study, but the choice of this kinase should be clearly explained.

      Minor issues:

      1. In the intro, authors write "While the other ERM protein family members do not have activities directly linked to cancer, NF2 tumor suppressor activity was initially characterized in flies and mice". While "directly" makes the statement technically true, it could be argued that ERM protein involvement is as legitimate as the tumor suppression activity of NF2 (PMID: 11092524, PMID: 24421310), and therefore the suggested contrast is slightly misleading. This has no relevance to the broader paper or its findings.
      2. Figure 2b: Authors state mutational coverage is fairly even across the protein, however there appears to be a notable spike around a.a. 180? This does not match any of the site mutations later found to be particularly relevant for interactions, which cluster around 250 and 450, and is therefore not a significant issue.
      3. In the methods, cell concentration is at one point said to be 'concentrated to an OD600 of 40-80'. I have never seen cell concentration expressed this way. Authors no doubt grew cells to an OD between 1 and 2 and concentrated ~40-fold as is standard, and wish perhaps to avoid estimating concentrations as cell numbers, which would only be approximate and cell size-dependent? However, OD is only linear between 1 and 2 for cell concentrations. An OD above 4 simply cannot be observed, as all light would be blocked. Methodology here is sound, this is merely an unusual way of expressing things.
      4. Page 10: The authors point out that they cannot see any difference in the expression levels of the NF2 mutants. However there is no quantification of the immunofluorescence signal supporting this information. Maybe a western blot could suffice this argument.
      5. It is very difficult to see the localization of NF2 mutants with the immunofluorescence images as they are very small. May be try with a 63X objective or focusing on just one or two cells or adding insets with higher magnification would allow the reader to view the details of Nf2 localization.
      6. 5th line from the bottom on page 8: allowed to model -> allowed us to model
      7. Line 8 from the top on page 12: inY2H -> in Y2H
      8. Line 10 from the top on page 13: your hypothesis -> our hypothesis

      Significance

      Dear Editor,

      The manuscript "Missense variant interaction scanning reveals a critical role of the FERM-F3 domain for tumor suppressor protein NF2 conformation and function" examines the effect of a reasonably exhaustive set of point mutations on the NF2 protein on protein-protein interactions and intra-protein interactions for two isoforms of NF2 (1 and 7), finding an interesting pattern of mutations in the region not associated with bindings nevertheless impact binding, and that this binding is sometimes dependent on the presence of kinase ABL2. Authors justify this by arguing conformation shifts in the protein, potentially regulated by phosphorylation, and with distinct conformations between isoforms 1 and 7 creating different interaction patterns, must explain the differences in binding properties. The paper specifically examines mutations to phosphomimetic (i.e., charged, so as to mimic phosphorylation) amino acid residues, with relevance for the probable biological regulation of this binding. Authors note that previous work has found inconsistent protein binding properties for phosphomimetic or phosphor-inhibiting substitutions on S518, in different conditions, which would be explained by other regulation of these conformational changes, a reasonable argument. Structural modeling of the mutants and their potential effects on a "closed" NF2 structure are intriguing and well-appreciated to support the paper's conclusions, and the paper is overall well-reasoned and convincing, and it should be published.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Response to reviewers' comments

      We thank the reviewers for their constructive evaluation of our manuscript. In the following point-by-point response, we explain how we will implement the suggested modifications.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary:

      The formation of meiotic double-stranded DNA breaks is the starting point of meiotic recombination. DNA breaks are made by the topoisomerase-like SPO11, which interacts with a number of regulatory factors including REC114, MEI4 and IHO1. Despite the key role this process has in the continuation, and genetic variation, or eukaryotic life, there is very little known about how this process is regulated. Laroussi et al make use of biochemical, biophysical and structural biological approaches to extensively characterise the REC114-MEI4-IHO1 complex.

      This is an outstanding biochemical paper. The experiments are well planned and beautifully executed. The protein purifications used are very clean, and the figures well presented. Importantly Laroussi et. al describe, and carefully characterise through point mutational analysis, the direct physical interaction between IHO1 and REC114-MEI4. This is an interaction that has, at least in yeast, previously been suggested to be driven by liquid-liquid separation. The careful and convincing work presented here represents an important paradigm-shift for the field.

      I am fully supportive of publication of this excellent and important study.

      We thank the reviewer for his/her positive comments, appreciation of the importance of our study and suggested modifications.

      Major comments:

      Point 1:

      My only major concern is regarding Figure 4, and specifically the AF2 model of the coiled-coil tetramer of IHO1. Given the ease with which MSAs of coiled-coils can become "contaminated" with non-orthologous sequences, I would urge some caution with this model. This is especially since the yeast ortholog of IHO1, Mer2, has been previously reported to be an anti-parallel tetramer (albeit, not very well supported by the data). The authors have several choices here. 1) They could simply reduce the visibility of the IHO1 tetramer model, and indicate caution in the parallel tetramer model. 2) They could consider using a structure prediction algorithm that doesn't use an MSA (e.g. ESMFold). 3) They could try to obtain experimental evidence for a parallel coiled-coil tetramer, e.g. through EM, SAXS or FRET approaches. I would like to make it crystal clear, however, that I would be *very* supportive of approach 1) or 2). An experimental approach is *not* necessary.

      Assuming the authors don't take a wet-lab approach, this shouldn't take more than a couple of weeks.

      This is a very good suggestion. We are aware of the previously reported anti-parallel architecture of the yeast IHO1 ortholog Mer2 (Claeys Bouuaert et al., Nature 2021). It should be noted, that in the recent preprint, posted by the Claeys Bouuaert lab (BioRxiv, https://doi.org/10.1101/2022.12.16.520760), a high confidence model of yeast Mer2 (and for human) parallel tetrameric coliled-coil is presented, apparently consistent with their previous XL-MS results (Claeys Bouuaert et al., Nature 2021).

      To clarify this issue we will follow the suggestions of Reviewer 1 and 2.

      1. As suggested also by Reviewer 2, we will produce a tethered dimer of IHO1125-260, connected by a short linker and determine its MW by SEC-MALLS (and SAXS).
      2. In the meantime we followed the suggestion of Reviewer 1 and modelled the IHO1130-281 by the ESMfold, which is another recent powerful AI-based program that does not use multiple sequence alignments. Remarkably, the predicted structure is very similar to the one predicted by AlphaFold, also predicting the parallel arrangement of IHO1. This model will be included as a supplementary figure.
      3. We will also point out in the text that these models, despite being very convincing, remain models.

        Minor comments:

      Point 2:

      The observation that REC114 and MEI4 can also form a 4:2 complex is very interesting and potentially important. Did the authors also try to model this higher order complex in AF2?

      Yes, we did this with the hope that we could identify residues whose mutation could limit the fast exchange between the 2:1 and 4:2 states. Unfortunately, no convincing additional contacts are modelled by AlphaFold. This PAE plot will be included as a supplementary figure.

      Point 3:

      Similarly to above, what does the prediction of the full-length REC114:MEI4 2:1 complex look like? Presumably the predicted interaction regions align well with experimental data, but it would be interesting to see (and easy to run).

      The AlphaFold modelling of the FL REC114:MEI4 (2:1) complex will be included as supplementary figure. It is consistent with the model comprising only the interacting regions. No additional convincing contacts are predicted.

      Point 4:

      Did the authors carry out SEC-MALS experiments on any IHO1 fragment lacking the coiled-coil domain? It was previously reported for Mer2 that the C-terminal region can form dimers, for example (OPTIONAL).

      We can easily do that. We have the N- and C- terminal regions lacking the coiled-coil expressed as MBP fusions and they will be analysed by SEC-MALLS.

      Point 5:

      Given that full-length REC114 is used for the IHO1 interaction studies, do the authors have any data as to the stoichiometry of the REC114FL-MEI41-127 complex? (OPTIONAL)

      We have repeatedly analysed the REC114-MEI4-IHO1 complex sample by SEC-MALLS and native mass spectrometry, but in both cases the sample is too complex to be interpreted. This is like due to the fast exchange between REC114-MEI4 2:1 and 4:2 complexes and low binding affinity of IHO1 for REC114.

      Point 6:

      Did the authors try AF2 modelling of the REC114-IHO1 interaction using orthologs from other species?

      Yes, but not extensively. We will repeat this modelling again.

      **Referees cross commenting**

      I will add cross-comments to the comments of Reviewer #2

      Firstly, the comments made by Reviewer #2 are technically correct. Firstly, reviewer #2 points out that the oligomerization states that the authors report could, in part, be artifactual the based on the his-tag purification method. This is indeed correct. However, given that none of the oligomerization states reported are per se unusual, given what is already known (including pre-prints from the Keeney and Claeys Bouuaert laboratories), I think the authors could forego this step.

      Secondly, the use of an experimental structural method, such as SAXS, would certainly add value to the paper. Also Reviewer #2 is correct in pointing out the availability of the ESRF beamlines to the authors. However, while SAXS is a useful method, I personally consider the use of mutants to validate the interactions, an even stronger piece of evidence that the AlphaFold2 interactions are correct. I must disagree somewhat with Reviewer #2 with their argument that SAXS would validate the fold. Certainly if one of the AF2 predicted structures is radically wrong, then SAXS would produce scattering data, and a subsequent distance distribution plot that is incompatible with the AF2 model. However, a partly correct AF2 model, of roughly the right shape, might still fit into a SAXS envelope.

      Reviewer #2 shares my concern on the parallel coiled-coil of IHO1, and their suggested solution is very elegant.

      In my view, due to the time constraints imposed by the partially competing work from the Keeney and Claeys Bouuaert laboratories (recently on biorxiv). I would support the authors if they chose the quickest route to publication.

      Reviewer #1 (Significance (Required)):

      General assessment: The strengths of the paper are as follows:

      1) Quality of experiments - The proteins used have been properly purified (SEC) and properly handled. The experiments are carefully carried out and controlled.

      2) Detail - The authors carry out the considerable effort of characterising protein interactions. through separation-of-function mutants. This adds to the quality of the paper, and renders the AF2 models as convincing as experimentally determined structures

      3) Conceptual advances - The most important conceptual advance is the direct binding of the N-term of IHO1 to REC114. That this is the same region as used by both TOPOVIBL and ANKRD31 points to a complex regulation.

      4) Integrity - the authors have taken great care not to "oversell" the results. The data are presented, and analysed, without hyperbole.

      Limitations - The only limitation of the paper is the lack of in vivo experiments to test their findings. However given the time and effort required, and the pressing need to publish this exciting study, this is not a problem.

      Advance: The paper provides advances from a number of directions, both conceptual and mechanistic. Mechanistically the description of the REC114-MEI14 complex is important, and in particular the observation that it can also form a higher order 4:2 structure. Likewise, while IHO1 was inferred to be a tetramer (based on work on Mer2) this was never proven formally. Most importantly, is the physical linkage between IHO1 and REC114, and that this is an interaction that is incompatible with TOPOVIBL and ANKRD31.

      Audience:

      Given the central role of meiotic recombination in eukaryotic life, any studies that shed additional light on the regulation of meiosis are suitable for a broad audience. However, this subject paper will be more specifically of interest to the meiosis community. The elegant methodology will also be of interest to structural biologists and protein biochemists.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      This manuscript addresses the structure of the REC114-MEI4-IHO1 complex, which controls the essential process of programmed DSB induction by SPO11/TOPOVIBL in meiosis.

      The manuscript carefully combines biochemistry, biophysics and modelling in an integrative manner to report the architecture of the full REC114-MEI4-IHO1 complex that is not itself amenable to direct structure elucidation such as by X-ray crystallography. These are important results that will be of interest to the recombination and meiosis fields. The data are generally convincing and interpretations appear correct, so the manuscript is certainly suitable for publication. I have included some suggestions below that I believe would strengthen the manuscript and enhance our confidence in the findings. Whilst the manuscript is publishable in its current format, I believe the suggestions given below would make it into a much stronger paper.

      We thank the reviewer for his/her positive comments on our study and the suggestions below.

      I have two general suggestions:

      Point 1:

      Analyses have been performed on fusion proteins (His, His-MBP etc). we have previously observed that bulky tags such as MBP can interfere with oligomeric state through steric hindrance, and that His-tags can mediated formation of larger oligomers, seemingly through coordination of metals leached from IMAC purification. This latter point has also been observed by others

      https://www.sciencedirect.com/science/article/pii/S1047847722000946.

      Where possible, I would repeat SEC-MALS experiments using untagged proteins, or at least following incubation with EDTA to mitigate the potential for His-mediated oligomerization.

      We agree with this reviewer’s comment that expression tags can have unexpected impact of the protein behaviour.

      1. For REC114-MEI4 complex the stoichiometry is assessed by several techniques. Figure 1f,g shows analytical ultracentrifugation, which was performed on the minimal REC114226-254-MEI41-43 complex that contains no fusion tag showing that this stoichiometry is independent of fusion tags. We will nevertheless repeat the SEC-MALLS on REC114-MEI41-127 after removing the His-tag of MEI4 as suggested.
      2. For the REC114 dimer, we cannot remove the His-MBP tag since this short fragment of REC114226-254 is no stable without MBP. The dimerization of Rec114 was already reported in (Claeys Bouuaert et al., Nature 2021). The dimerization is sensitive to specific point mutations within REC114. We will however, repeat the SEC-MALLS experiment following incubation with EDTA to mitigate the potential for His-mediated oligomerization.
      3. The presented SEC-MALLS on IHO1 fragments (Figure 4b) was done on proteins without fusion tags. Reviewer 1 and 2 also agreed that additional repeats of the experiments without fusion tags are not necessary.

      The authors have relied upon mutagenesis to validate Alphafold2 models. Their results are convincing but only confirm that contacts involved in structures rather than the specific fold per se. Their finding would be greatly strengthen by collecting SEC-SAXS data and fitting models directly to the scattering data. This is extremely sensitive, so a close fit provides the best possible evidence of accuracy of the model. SAXS is affected by unstructured regions and tags, so would have to be performed using structural cores of untagged proteins rather than full-length constructs. Given the local availability of world-class SAXS beamlines at the ESRF, which is next door to the leading author's institute, it seems that the collection of SAXS data would be practical for them.

      The usage of SAXS is discussed in the specific points below. We will attempt to do SEC-SAXS on the REC114-MEI4 complex. Due to instability of REC114226-254 without MBP, SAXS cannot be done. We will also do SAXS on the IHO1 tetramer.

      My specific comments are below:

      Point 2:

      Figure 1d

      The SEC-MALS shows multiple species, with 2:1 and 4:2 representing a minority of total species present. What are the larger oligomers? Could these be an artefactual consequence of the His-tags (as described above)?

      This SEC-MALLS will be repeated without the His-tag on MEI4.

      Point 3:

      Figure 1f,g

      The AUC changes over concentration and pH are intriguing - have they tried MALS in these conditions? This would be much more informative as it would reveal the range of species present. Low concentrations could be analysed by peak position even if scattering is insufficient to provide interpretable MW fits. I would advise doing this without his tag or adding EDTA (as described above).

      We will perform this experiment as suggested.

      Point 4:

      Figure 2

      I would like to see the models validated by SAXS using minimum core untagged constructs. This could be sued to test the validity of the 2:1 model directly, and to model the 4:2 complex by multiphase analysis and/or docking together of 2:1 complexes.

      The hydrophobic LALALAII region of MEI4 is interesting and the mutagenesis data do agree with the model. However, it is important to point out that any decent model would place this hydrophobic helix in the core of the complex, and so would be disrupted by mutagenesis. Hence, the mutagenesis results confirm that the hydrophobic helix is critical for the interaction, but does not confirm that the specific alphafold model is more valid than any other model in which the helix is similarly in a core position.

      We will attempt to perform the SEC-SAXS measurements. The challenge here will be obtaining a sample that is monodisperse in solution being required for SAXS. We showed the fast exchange between the 2:1 and 4:2 oligomeric state. The AUC data indicates that the sample has a predominantly 2:1 stoichiometry at 0.2 mg/ml, pH 4.5 and 500mM NaCl. Given the small size of the complex, the signal at 0.2 mg/ml is likely to be noisy.

      Point 5:

      Figure 3

      This would also benefit from SAXS validation of the structural core. The mutagenesis here provides convincing evidence in favour of the structure as specific hydrophobics ether disrupt or have no effect, exactly as predicted. Hence, their data strongly support the dimer model. As this provides the framework for the 2:1 complex, these data make me far more confident of the previous 2:1 model in figure 2. I am wondering whether it would be better to present these data first such that the reader can see the 2:1 model being built upon these strong foundations?

      We agree with this suggestion and will present the REC114 dimerization data before the REC114-MEI4 complex. However, REC114226-254 is not stable without the MBP tag so is not suitable for SAXS analysis.

      Point 6:

      Figure 4

      The MALS data convincingly show formation of a tetramer. How do we know that it is parallel? The truncation supports this but coiled-coils do sometimes form alternative structures when truncated (e.g. anti-parallel can become parallel when sequence is removed), and alphafold seems to have a tendency of predicting parallel coiled-coils even when the true structure of anti-parallel (informal observation by us and others). A simple test would be to make a tethered dimer of 110-240, with a short flexible linker between two copies of the same sequence - if parallel it should form a tetramer of double the length, if anti-parallel it should form a dimer of the same length - determinable by MALS (and SAXS).

      To address this point we will perform this experiment as suggested by Reviewer 2. We will produce a tethered dimer of IHO1 110-240, connected by a short linker and determine its MW by MALS (and possibly SAXS). We also performed ESMfold modelling (Reviewer 1, Point 1), resulting in the same model. As the IHO1 tetramer is likely suitable for SAXS analysis, we will also perform SAXS on it.

      Point 7:

      Figures 5/6

      The interaction is clear albeit low affinity (but within the biologically interesting range). It would be nice to obtain MALS (using superose 6) data showing the stoichiometry of the complex - are the data too noisy to be interpretable owing to dissociation? The alpahfold model and mutagenesis data strongly support the conclusion that the IHO1 N-term binds to the PH domain, as presented.

      We have repeatedly analysed the REC114-MEI4-IHO1 complex sample by SEC-MALLS (on Superose 6) and native mass spectrometry, but in both cases the sample is too complex to be interpreted. This is likely due to the fast exchange between REC114-MEI4 2:1 and 4:2 complexes and low binding affinity of IHO1 for REC114.

      **Referees cross commenting**

      Just to clarify a couple of points regarding consultation comments from reviewer 1:

      The suggestion regarding tags was mostly directed to the cases in which MALS data are noisy, with multiple oligomeric species (such as figure 1d). In these cases, i wondered whether the large MW species may be artefactual and could be resolved by removal of the tags. In cases where oligomers agree with those reported by other labs, I agree that there's no need to explore these further.

      In terms of SAXS, I agree that fitting models into envelopes will not distinguish between similar folds. However, fitting models directly to raw scattering data is extremely sensitive and I have never seen good fits with low chi2 values for incorrect models (even when very similar in overall shape to the correct structure).

      Reviewer #2 (Significance (Required)):

      The manuscript carefully combines biochemistry, biophysics and modelling in an integrative manner to report the architecture of the full REC114-MEI4-IHO1 complex that is not itself amenable to direct structure elucidation such as by X-ray crystallography. These are important results that will be of interest to the recombination and meiosis fields. The data are generally convincing and interpretations appear correct, so the manuscript is certainly suitable for publication. I have included some suggestions below that I believe would strengthen the manuscript and enhance our confidence in the findings. Whilst the manuscript is publishable in its current format, I believe the suggestions given below would make it into a much stronger paper.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Laroussi et al used Alphafold models to predict the assembly of REC114-MEI4-IHO1 complex, and verified the structure using different biochemical experiments. Both Alphafold predictions and experiment data are convincing for the overall protein complex assembly. Importantly, they identified a motif on IHO1 that share the same binding site on REC114 with TOPOVIBL and ANKRD31, suggesting that REC114 acts as a regulatory base coordinating different binding partners during meiosis progression. Overall, I believe this is a nice biochemistry paper, but lacks insights into the biology (I believe those in vivo data is beyond the scope of this paper), at least more discussions are needed in terms of these findings.

      We thank the reviewer for the supportive comments on our manuscript and its evaluation. We agree with the reviewer, that including in vivo data, that might provide further biological insights, would be useful. However, there is currently no good cellular model for meiotic recombination in mouse and thus our structure-based mutations will need to be tested in transgenic mice. Such data will take a long time to obtain and would delay the publication these in-vitro results that already provide novel insight into the REC114-MEI4-IHO1 complex architecture. We will, nevertheless, as suggested, strengthen the discussion of the biological implications of our findings.

      Some minor points:

      Point 1:

      Any data showing MEI4 forms a dimer on its own?

      As mentioned in the manuscript, full-length MEI4 is difficult to produce in bacteria or insect cells. Thus, we worked with the N-terminal fragment which in absence of REC114 is nor very stable. We will perform SEC-MALLS to assess its oligomeric state. Alphafold suggests dimeric arrangement of MEI4, but only with low confidence.

      Point 2:

      In Fig2 and Sup Fig4, HisMBP-MEI4, you see more MBP than the fusion protein, especially more obvious in the mutants. What's your explanation?

      The N-terminus of MEI4 is well produced when co-expressed with REC114. For the pull-down experiments in Figure 2 we expressed it as His-MBP fusion in absence of REC114. In this situation, there is a degradation between MBP and MEI4. We find this very often for proteins that not very stable, which is the case of MEI4 without REC114. This is the best way we could produce at least some MEI4 in absence of REC114. The MBP protein could probably be removed by other chromatography techniques, but we think that for the purpose of the pull-down its presence is not interfering with the REC114-MEI4 binding.

      Point 3:

      TOPOVIBL and ANKRD31, I am curious if you have looked at the conserved residues on these motifs.

      We show a strong conservation of the IHO1 among vertebrates (Fig. 6c). We will further analyse the sequence conservation in more distant species.

      Point 4:

      Reference needed when stating that IHO1 was not interacting with REC114 in previous biochemical assay in the discussion part.

      This will be corrected

      Point 5:

      Also, have you run AlphaFold that gives multiple models? Sometimes, with short motifs, 1 or 2 models of several models give good confidence for the interaction.

      Using in-house Alphafold installation producing 25 models did not reveal better models.

      Reviewer #3 (Significance (Required)):

      While most of the interactions between REC114 and MEI4 or IHO1 were established with Y2H or other biochemical assays before. This paper used the AlphaFold, and finally verified the findings with biochemical experiments, which helps to establish the exact motifs/residues involved in the interaction. For example, the MEI4-REC114 interfaces are novel, more interestingly, the IHO1 shares the same interface with ANKRD31 and TOPOVIBL. Thus, this finding of REC114-MEI4-IHO1 complex assembly would be interesting to people with different working areas. I would like to see more studies on the coordination IHO1 with ANKRD31 or TOPOVIBL in the future.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Laroussi et al used Alphafold models to predict the assembly of REC114-MEI4-IHO1 complex, and verified the structure using different biochemical experiments. Both Alphafold predictions and experiment data are convincing for the overall protein complex assembly. Importantly, they identified a motif on IHO1 that share the same binding site on REC114 with TOPOVIBL and ANKRD31, suggesting that REC114 acts as a regulatory base coordinating different binding partners during meiosis progression. Overall, I believe this is a nice biochemistry paper, but lacks insights into the biology (I believe those in vivo data is beyond the scope of this paper), at least more discussions are needed in terms of these findings.

      Some minor points:

      Any data showing MEI4 forms a dimer on its own? In Fig2 and Sup Fig4, HisMBP-MEI4, you see more MBP than the fusion protein, especially more obvious in the mutants. What's your explanation? Nice finding on the IHO1 N terminus, which shares the same binding sites on REC114 with TOPOVIBL and ANKRD31, I am curious if you have looked at the conserved residues on these motifs. Reference needed when stating that IHO1 was not interacting with REC114 in previous biochemical assay in the discussion part. Also, have you run AlphaFold that gives multiple models? Sometimes, with short motifs, 1 or 2 models of several models give good confidence for the interaction.

      Significance

      While most of the interactions between REC114 and MEI4 or IHO1 were established with Y2H or other biochemical assays before. This paper used the AlphaFold, and finally verified the findings with biochemical experiments, which helps to establish the exact motifs/residues involved in the interaction. For example, the MEI4-REC114 interfaces are novel, more interestingly, the IHO1 shares the same interface with ANKRD31 and TOPOVIBL. Thus, this finding of REC114-MEI4-IHO1 complex assembly would be interesting to people with different working areas. I would like to see more studies on the coordination IHO1 with ANKRD31 or TOPOVIBL in the future.