Reviewer #2 (Public Review):
Traditional thinking has been that cortical oligodendrocyte progenitor cells (OPCs) arise in the development of the brain from the medial ganglionic eminence (MGE), lateral/caudal ganglionic eminence (LGE/CGE), and cortical radial glial cells (RGCs). Indeed a landmark study demonstrated some time ago that cortical OPCs are generated in three waves, starting with a ventral wave derived from the medial ganglionic eminence (MGE) or the anterior entopeduncular area (AEP) at embryonic day E12.5 (Nkx2.1+ lineage), followed by a second wave of cortical OLs derived from the lateral/caudal ganglionic eminences (LGE/CGE) at E15.5 (Gsx2+/Nkx2.1- lineage), and then a final wave occurring at P0, when OPCs originate from cortical glial progenitor cells (Emx1+ lineage). However, the authors challenge the idea in this paper that cortical progenitors are produced from the LGE. They have found previously that cortical glial progenitor cells were also found to express Gsx2, suggesting this may not have been the best marker for LGE-derived OPCs. They have used fate mapping experiments and lineage analyses to suggest that cortical OPCs do not derive from the LGE.
Strengths:<br /> (1) The data is high quality and very well presented, and experiments are thoughtful and elegant to address the questions being raised.
(2) The authors use two elegant approaches to lineage trace LGE derived cells, namely fate mapping of LGE-derived OPCs by combining IUE (intrauterine electroporation) with a Cre recombinase-dependent IS reporter, and Lineage tracing of LGE-derived OPCs by combining IUE with the PiggyBac transposon system. Both approaches show convincingly that labelled LGE-derived cells that enter the cortex do not express OPC markers, but that those co-labelling with oligodendrocyte markers remain in the striatum.
(3) The authors then use further approaches to confirm their findings. Firstly they lineage trace Emx1-Cre; Nkx2.1-Cre; H2B-GFP mice. Emx1-Cre is expressed in cortical RGCs and Nkx2.1-Cre is specifically expressed in MGE/AEP RGCs. They find that close to 98% of OPCs in the cortex co-label with GFP at later times, suggesting the contribution of OPCs from LGE is minimal.
(4) They use one further approach to strengthen the findings yet further. They cross Nkx2.1-Cre mice with Olig2 F/+ mice to eliminate Olig2 expression in the SVZ/VZ of the MGE/AEP (Figures 4A-B). The generation of MGE/AEP-derived OPCs is inhibited in these Olig2-NCKO conditional mice. They find that the number of cortical progenitors at E16.5 is reduced 10-fold in these mice, suggesting that LGE contribution to cortical OPCs is minimal.
Weaknesses:<br /> (1) The authors use IUE in experiments mentioned in point 2 of 'Strengths' above (Figures 1 and 2) and claim that the reporter was delivered specifically into LGE VZ at E13.5 using this IUE. It would be nice to see some sort of time course of delivery after IUE to show the reporter is limited to LGE VZ at early times post-IUE.
(2) In the experiments mentioned in point 3 of 'Strengths' (Figure 3), statistical analysis showed that only approximately 2% of OPCs were GFP-negative cells. This 2% could possibly be derived from the LGE/CGE so does not totally rule out that LGE contributes some cortical OPCs.
(3) In the experiments mentioned in point 4 of 'Strengths' (Figure 4), they do still find cortical OPCs at E16.5 in the Olig2-NCKO conditional mice. It is unclear whether this is due to the recombination efficiency of the CRE enzyme not being 100%, or whether there is some LGE contribution to the cortical OPCs.
Impact of Study:<br /> The authors show elegantly and convincingly that the contribution of the LGE to the pool of cortical OPCs is minimal. The title should perhaps be that the LGE contribution is minimal rather than no contribution at all, as they are not able to rule out some small contribution from the LGE. These findings challenge the traditional belief that the LGE contributes to the pool of cortical OPCs. The authors do show that the LGE does produce OPCs, but that they tend to remain in the striatum rather than migrate into the cortex. It is interesting to wonder why their migration patterns may be different from the MGE-derived OPCs which migrate to the cortex. The functional significance of these different sources of OPCs for adult cortex in homeostatic or disease states remains unclear though.