Reviewer #1 (Public Review):
This study used intersectional genetic approaches to stimulate a specific brainstem region while recording swallow/laryngeal motor responses. These results, coupled with histology, demonstrate that the PiCo region of the IRt mediates swallow/laryngeal behaviors, and their coordination with breathing. The data were gathered using solid methods and difficult electrophysiological techniques. This study and its findings are interesting and relevant. The analysis (and/or the presentation of the analysis) is incomplete, as there are analyses that need to be added to the manuscript. The interpretation of the data is mostly valid, but there are claims that are too speculative and are not well-supported by the results. The introduction and discussion would benefit from more citations and a deeper exploration of how this study relates to other work - especially a thorough accounting of and comparison to other studies concerning putative swallow gates.
General/major concerns:
• The field of respiratory control is far from unified regarding the role of PiCo in breathing or any other laryngeal behaviors. If anything, the current consensus does not support the triple-oscillator hypothesis (in which PiCo is one of 3 essential respiratory oscillators). The name "PiCo", short for "post-inspiratory complex", suggests a function that has not been well-supported by data - it is a putative post-inspiratory complex, at best. I suggest putting this area in context with other discussions i.e. IRt (such as in Toor et al., 2019) or Dhingra et al. 2020 showed broad activation of many brainstem sites at the post-I period (including pons, BotC, NTS)
• Did you perform control experiments in which the opto stimulations were done on animals without the genetic channels (for example, WT or uncrossed ChAT-ires-cre, etc.), or in mice with the genetic channels that weren't crossed (uncrossed Ai32 mice)? If so, please include. If not, why?
• How do you know that your opto activations simulate physiological activation? First, the intensive optical activation at the stim site does not occur in those neurons naturally. Doing a natural (water) stim for comparison is good, but it cannot necessarily be directly compared to the opto stim. The water stim would activate many other brainstem regions in addition to PiCo. A caveat is that opto PiCo stim =/= water stim (in terms of underlying mechanisms) should be included. Second, in looking at the differences between water vs opto swallows in Table S2: it appears that the ChAT animals (S2A) have something weaker than a swallow with opto stim. For the Vglut2 and ChAT/Vglut2 (S2B&C), the opto swallows also aren't as "strong" as the water swallows (the X and EMG amplitudes are smaller). The interpretation/discussion attributes this to the lack of sensory input during opto stim, but does not mention the strong possibility that there is a difference in central mechanisms occurring. It also seems to be dismissed with the characterization of the swallow as "all-or-none" (see note on Fig 3 results).
• The writing needs extensive copy editing to improve clarity and precision, and to fix errors.
• Results/Fig 1: What proportion had no/other motor response (non-swallow, non-laryngeal) to the opto stim? I can extrapolate by subtraction, but it would be nice to see the "no/other response" on the plot.
• The explanation of genetics is too spread out and confusing. There needs to be more detail about all the genetic tools used, using the standard language for such tools, in one spot. Please also provide a clear explanation of what those tools accomplish. Include a figure if necessary. Pick a conventional designator/abbreviation for the different strains, define them in the methods and in the first paragraph of the results section, and use those abbreviations throughout. I think that using ChAT as an abbreviation for your ChAT-ires-cre x Ai32 mice is confusing because it makes it sound like you're talking about the enzyme rather than the specific strain/neurons. Saying "ChAT stimulated swallows... swallows evoked by water or ChAT" makes it sound like the enzyme choline acetyltransferase itself is stimulating swallow. As is convention, pick a more precise abbreviation like ChAT-cre/Ai32 or ChAT:Ai32 or ChAT-ChR2 or ChAT/EYFP. This goes for the other strains as well.
• For Fig S2C&D, why does it say mCherry? Isn't it tdTomato? Is it just an anti-ChAT antibody and then the tdTomato Ai65 is only labeling Vglut2? I don't see this in the methods section.
• I also don't see methods for all the staining in Fig S3. The photomicrograph says Vglut2-cre Ai6, but there's no mention of Ai6 anywhere else. Which mice are these? Did you cross Vglut2-cre with an Ai6 reporter mouse? How can you image an Ai6 mouse (which I assume expresses ZsGreen? and that you excited at 488?) and a 488 anti-goat in the same section (that's the only secondary listed in the methods that would work with your goat anti-ChAT)? Is there an error in listing the fluorophores in the methods? Please give more details on the microscopy including which filters were used for the triple staining.
• Regarding the staining: I would expect the staining/maps in for the 2 different ChAT/Vglut2 intersectional strains to be similar (Fig 5A/B and S2C/D). The photomicrographs look very different to me, while the heat maps (this goes for all the heat maps in the paper) have barely distinguishable differences. In Fig 5, the staining looks much stronger than in Fig S2C. Why does it look like there are so many more transfected neurons in Fig 5A2 than there are red neurons in the corresponding panel Fig S2C2? And for Fig 5A4 and Fig S2C44? The plot and results text for Fig 5 says the avg number of neurons was 123+¬11. The plot for Fig S2D says 112+¬15, but the results text says 242+¬12 (not sure which is the correct number).
• The results text for Fig S2C also says the staining is "similar to the previous ChAT staining...", which I assume refers to S2A/B. The plot and results text for Fig S2B reports 403+¬39 neurons, while S2D is either 112 or 242 (not sure?). The plots have different Y scales, which should be changed to be the same. But why do the photomicrographs and the heat maps look so similar? I would expect far fewer neurons to be stained in the intersectional mice (Fig 5 and Fig S2C/D) than in the ChAT staining (Fig S2A/B). I am having trouble reconciling the different presentations/quantifications and making sense of the data in these histology figures.
• How can you distinguish PiCo from non-PiCo in the histology, especially in the ChAT-only staining? It seems that you have arbitrarily defined the PiCo region, and only counted neurons within that very constrained area. I can see stained neurons in the area immediately outside of PiCo, and I'd like to see lower-magnification images that show the staining distribution in a broader region surrounding PiCo as well, especially in the rest of the reticular formation.
• Similarly, how can you be sure you're stereotaxically targeting PiCo precisely (600um in diameter?) with your opto fiber (200um in diameter). Wouldn't small variations in anatomy put the fiber outside the tiny PiCo area?
• Please put N's and stats results in Table S1 for both swallow and laryngeal activity. I took what I assume to be the Ns (10, 11, and 4) and did some stats like the ones you presented for the laryngeal duration. The differences between vagus duration for 40 and 200 ms pulse durations are all significant for each strain, by my calculations. Also, I think there must be an error in the orange swallow plot in Fig 3A. The orange dots don't correspond to the table values. I plotted all the Table S1 values for each strain. Each line looks similar to the blue laryngeal activation plot in Fig 3A. The slopes of the Vglut2 were less than the other strains, and the slopes for the swallow behavior were less than the laryngeal behavior for all strains. Otherwise, they all look similar. Please double-check your values/stats to address these discrepancies. If it is indeed true that the stim pulse duration affects swallow duration, revise the interpretations and manuscript accordingly.
• Please add more details on stats in general, including the specific tests that were performed, F values and degrees of freedom, etc.
• How do you know that you're not just activating motoneurons in the NA when you stimulate your ChAT animals, especially given the results in Fig 1B? In this case, the phase-specific results could be explained by inhibitory inputs (during inspiration) to motoneurons in the region of the opto stim.
• While the study from Toor et al is cited, there needs to be a much more thorough discussion of how their findings relate to the current study. They demonstrated that PiCo isn't necessary for the apneic portion of swallow. Inhibiting this region also didn't affect TI. PiCo cannot be the sole source of post-I timing, and the evidence overwhelmingly favors the major involvement of other regions such as the pons. They also showed that inhibition of all neurons (not just ChAT/Vglut) in the PiCo region suppresses post-I activity in eupnea. This suppression was overcome by the increased respiratory drive during hypoxia.
• This study has not demonstrated some of the things that are depicted in Fig 7 and included in the discussion. While swallow can inhibit inspiration, there are many mechanisms by which this can happen other than a direct inhibitory connection from the DGS to PreBotC. You cite Sun et al., 2011 findings of "a group of neurons that inhibits inspiration" during SLN stim, but don't mention that it is the BotC and that the paper shows that swallow apnea is dependent on BotC. That is also supported by the Toor study. I don't understand how post-I (aka E) can be discussed without discussion of the BotC - this is a glaring omission.
• Why is it necessary for PiCo to innervate the cNTS? That is true if the conjecture that PiCo gates swallowing is true, as the cNTS is the only known region for central swallow gating. However, PiCo could influence afferent input to the NTS less directly, and therefore not function as a gating hub per se. The experimental evidence does not warrant the claim that PiCo gates swallowing. The definition of a swallow gate(s) is a topic of much debate and no conclusive experimental evidence has emerged for swallow gating regions to exist anywhere except in the NTS. The current study's evidence also does not meet the criteria necessary to conclusively call PiCo a swallow gate. The authors should soften this claim and language throughout the manuscript.<br />
It is also unclear that PiCo acts directly on the swallow pattern generator to gate swallowing. It is not just "conceivable that the gating mechanism involves" the pons, but nearly certain. Swallow gating by respiratory activity may not be able to be ascribed to one particular location. At a minimum, it likely involves the NTS/DSG, pons, and possibly IRt (inclusive of PiCo). The authors are correct that "further studies are necessary to understand the interaction between PiCo and the pontine respiratory group on the gating swallow and other airway protective behaviors." This is why it shouldn't be stated that "this small brainstem microcircuits acts as a central gating mechanism for airway protective behaviors."<br />
PiCo is likely part of the VSG (and thus the swallow pattern generator). PiCo, as part of the IRt/VSG could indeed be surveilling afferent information and providing output that affects swallow or other laryngeal activation and the coordination of these behaviors with breathing. However, this is not the responsibility of PiCo alone. This role is likely shared by other parts of the SPG, and may require distributed SPG network participation to be functional. If one were to stim other regions of the distributed SPG, similar results might be expected. When Toor et al silenced the PiCo area (and locations that lie at least lightly beyond the borders of what the present study defines as PiCo), stim-evoked fictive swallows were greatly suppressed. However, swallow-related apnea was unaffected. This supports the role of PiCo as a premotor relay for swallow motor activation, but not as the site that terminates inspiration. Therefore, it cannot be called a gate.
• Similarly, Fig 7 does not accurately depict things that are already well-supported by evidence. PiCo should be included as part of the swallow pattern generator (VSG), not as a separate entity acting on it. The BotC and pons are glaring omissions. This study has not demonstrated the labeled inhibitory connection from DSG to PreBotC. The legend states speculations as fact and needs to be dialed way back to either include statements with solid experimental evidence or to clearly mark things as putative/speculative.
• The discussion of expiratory laryngeal motoneurons needs to be expanded and integrated better into the discussion of swallow, post-I, and other laryngeal motor activation. Why can't PiCo just be premotor to ELMs?
• Concerning the discussion of "PiCo's influence as a gate for airway protective behaviors is blurred...": The incomplete swallow motor sequence didn't seem super different in timing or duration compared to the fully transfected animals (comparing plots from Fig 6 to Fig S1, and Table S2 to Table S3. The values for swallow durations (XII and X) for each group for water and opto seem within similar ranges, as do the differences between water & opto-evoked swallows between strains. While the motor pattern is distinctive from the normal swallow, with laryngeal activity rather than submental activity leading, one might not even be able to call that a swallow. Is it evidence against a classic all-or-nothing swallow behavior any more than the graded swallow results from (fully transfected) Table S1?
• Please expand on this point and put it into context with others' results: "This brings into question whether this is the first evidence against the classic dogma of swallow as an "all or nothing" behavior, and/or whether this is an indication that activating the cholinergic/glutamatergic neurons in PiCo is not only gating the SPG, but is actually involved in assembling the swallow motor pattern itself."