10,000 Matching Annotations
  1. Jun 2025
    1. eLife Assessment

      Using a combination of connectomics, optogenetics, behavioral analysis, and modeling, this study provides important findings on the role of two populations of inhibitory neurons in the generation of leg grooming movements in Drosophila. The data as presented provide incomplete evidence that the identified neuronal populations contribute to the alternation of flexion and extension by inhibiting specific sets of motor neurons while disinhibiting their counterparts. While the manuscript provides comprehensive details about the 13A/B neuronal populations involved in grooming control, updates on statistics, and explicit mentioning of experimental/modeling caveats would strengthen the study. The work will interest neuroscientists, and particularly those working on motor control.

    2. Reviewer #1 (Public review):

      Summary:

      Syed et al. investigate the circuit underpinnings for leg grooming in the fruit fly. They identify two populations of local interneurons in the right front leg neuromere of ventral nerve cord, i.e. 62 13A neurons and 64 13B neurons. Hierarchical clustering analysis identifies 10 morphological classes for both populations. Connectome analysis reveals their circuit interactions: these GABAergic interneurons provide synaptic inhibition either between the two subpopulations, i.e., 13B onto 13A, or among each other, i.e., 13As onto other 13As, and/or onto leg motoneurons, i.e., 13As and 13Bs onto leg motoneurons. Interestingly, 13A interneurons fall into two categories, with one providing inhibition onto a broad group of motoneurons, being called "generalists", while others project to a few motoneurons only, being called "specialists". Optogenetic activation and silencing of both subsets strongly affect leg grooming. As well aas ctivating or silencing subpopulations, i.e., 3 to 6 elements of the 13A and 13B groups, has marked effects on leg grooming, including frequency and joint positions, and even interrupting leg grooming. The authors present a computational model with the four circuit motifs found, i.e., feed-forward inhibition, disinhibition, reciprocal inhibition, and redundant inhibition. This model can reproduce relevant aspects of the grooming behavior.

      Strengths:

      The authors succeeded in providing evidence for neural circuits interacting by means of synaptic inhibition to play an important role in the generation of a fast rhythmic insect motor behavior, i.e., grooming. Two populations of local interneurons in the fruit fly VNC comprise four inhibitory circuit motifs of neural action and interaction: feed-forward inhibition, disinhibition, reciprocal inhibition, and redundant inhibition. Connectome analysis identifies the similarities and differences between individual members of the two interneuron populations. Modulating the activity of small subsets of these interneuron populations markedly affects the generation of the motor behavior, thereby exemplifying their important role in generating grooming.

      Weaknesses:

      Effects of modulating activity in the interneuron populations by means of optogenetics were conducted in the so-called closed-loop condition. This does not allow for differentiation between direct and secondary effects of the experimental modification in neural activity, as feedforward and feedback effects cannot be disentangled. To do so, open loop experiments, e.g., in deafferented conditions, would be important. Given that many members of the two populations of interneurons do not show one, but two or more circuit motifs, it remains to be disentangled which role the individual circuit motif plays in the generation of the motor behavior in intact animals.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript by Syed et al. presents a detailed investigation of inhibitory interneurons, specifically from the 13A and 13B hemilineages, which contribute to the generation of rhythmic leg movements underlying grooming behavior in Drosophila. After performing a detailed connectomic analysis, which offers novel insights into the organization of premotor inhibitory circuits, the authors build on this anatomical framework by performing optogenetic perturbation experiments to functionally test predictions derived from the connectome. Finally, they integrate these findings into a computational model that links anatomical connectivity with behavior, offering a systems-level view of how inhibitory circuits may contribute to grooming pattern generation.

      Strengths:

      (1) Performing an extensive and detailed connectomic analysis, which offers novel insights into the organization of premotor inhibitory circuits.

      (2) Making sense of the largely uncharacterized 13A/13B nerve cord circuitry by combining connectomics and optogenetics is very impressive and will lay the foundation for future experiments in this field.

      (3) Testing the predictions from experiments using a simplified and elegant model.

      Weaknesses:

      (1) In Figure 4, while the authors report statistically significant shifts in both proximal inter-leg distance and movement frequency across conditions, the distributions largely overlap, and only in Panel K (13B silencing) is there a noticeable deviation from the expected 7-8 Hz grooming frequency. Could the authors clarify whether these changes truly reflect disruption of the grooming rhythm? More importantly, all this data would make the most sense if it were performed in undusted flies (with controls) as is done in the next figure.

      (2) In Figure 4-Figure Supplement 1, the inclusion of walking assays in dusted flies is problematic, as these flies are already strongly biased toward grooming behavior and rarely walk. To assess how 13A neuron activation influences walking, such experiments should be conducted in undusted flies under baseline locomotor conditions.

      (3) For broader lines targeting six or more 13A neurons, the authors provide specific predictions about expected behavioral effects-e.g., that activation should bias the limb toward flexion and silencing should bias toward extension based on connectivity to motor neurons. Yet, when using the more restricted line labeling only two 13A neurons (Figure 4 - Figure Supplement 2), no such prediction is made. The authors report disrupted grooming but do not specify whether the disruption is expected to bias the movement toward flexion or extension, nor do they discuss the muscle target. This is a missed opportunity to apply the same level of mechanistic reasoning that was used for broader manipulations.

      (4) Regarding Figure 5: The 70ms on/off stimulation with a slow opsin seems problematic. CsChrimson off kinetics are slow and unlikely to cause actual activity changes in the desired neurons with the temporal precision the authors are suggesting they get. Regardless, it is amazing that the authors get the behavior! It would still be important for the authors to mention the optogenetics caveat, and potentially supplement the data with stimulation at different frequencies, or using faster opsins like ChrimsonR.

      Overall, I think the strengths outweigh the weaknesses, and I consider this a timely and comprehensive addition to the field.

    4. Reviewer #3 (Public review):

      Summary:

      The authors set out to determine how GABAergic inhibitory premotor circuits contribute to the rhythmic alternation of leg flexion and extension during Drosophila grooming. To do this, they first mapped the ~120 13A and 13B hemilineage inhibitory neurons in the prothoracic segment of the VNC and clustered them by morphology and synaptic partners. They then tested the contribution of these cells to flexion and extension using optogenetic activation and inhibition and kinematic analyses of limb joints. Finally, they produced a computational model representing an abstract version of the circuit to determine how the connectivity identified in EM might relate to functional output. The study, in its current form, makes an important but overclaimed contribution to the literature due to a mismatch between the claims in the paper and the data presented.

      Strengths:

      The authors have identified an interesting question and use a strong set of complementary tools to address it:

      (1) They analysed serial‐section TEM data to obtain reconstructions of every 13A and 13B neuron in the prothoracic segment. They manually proofread over 60 13A neurons and 64 13B neurons, then used automated synapse detection to build detailed connectivity maps and cluster neurons into functional motifs.

      (2) They used optogenetic tools with a range of genetic driver lines in freely behaving flies to test the contribution of subsets of 13A and 13B neurons.

      (3) They used a connectome-constrained computational model to determine how the mapped connectivity relates to the rhythmic output of the behavior.

      Weaknesses:

      The manuscript aims to reveal an instructive, rhythm-generating role for premotor inhibition in coordinating the multi-joint leg synergies underlying grooming. It makes a valuable contribution, but currently, the main claims in the paper are not well-supported by the presented evidence.

      Major points

      (1) Starting with the title of this manuscript, "Inhibitory circuits generate rhythms for leg movements during Drosophila grooming", the authors raise the expectation that they will show that the 13A and 13B hemilineages produce rhythmic output that underlies grooming. This manuscript does not show that. For instance, to test how they drive the rhythmic leg movements that underlie grooming requires the authors to test whether these neurons produce the rhythmic output underlying behavior in the absence of rhythmic input. Because the optogenetic pulses used for stimulation were rhythmic, the authors cannot make this point, and the modelling uses a "black box" excitatory network, the output of which might be rhythmic (this is not shown). Therefore, the evidence (behavioral entrainment; perturbation effects; computational model) is all indirect, meaning that the paper's claim that "inhibitory circuits generate rhythms" rests on inferred sufficiency. A direct recording (e.g., calcium imaging or patch-clamp) from 13A/13B during grooming - outside the scope of the study - would be needed to show intrinsic rhythmogenesis. The conclusions drawn from the data should therefore be tempered. Moreover, the "black box" needs to be opened. What output does it produce? How exactly is it connected to the 13A-13B circuit? The context in which the 13A and 13B hemilineages sit also needs to be explained. What do we know about the other inputs to the motorneurons studied? What excitatory circuits are there? Furthermore, the introduction ignores many decades of work in other species on the role of inhibitory cell types in motor systems. There is some mention of this in the discussion, but even previous work in Drosophila larvae is not mentioned, nor crustacean STG, nor any other cell types previously studied. This manuscript makes a valuable contribution, but it is not the first to study inhibition in motor systems, and this should be made clear to the reader.

      (2) The experimental evidence is not always presented convincingly, at times lacking data, quantification, explanation, appropriate rationales, or sufficient interpretation.

      (3) The statistics used are unlike any I remember having seen, essentially one big t-test followed by correction for multiple comparisons. I wonder whether this approach is optimal for these nested, high‐dimensional behavioral data. For instance, the authors do not report any formal test of normality. This might be an issue given the often skewed distributions of kinematic variables that are reported. Moreover, each fly contributes many video segments, and each segment results in multiple measurements. By treating every segment as an independent observation, the non‐independence of measurements within the same animal is ignored. I think a linear mixed‐effects model (LMM) or generalized linear mixed model (GLMM) might be more appropriate.

      (4) The manuscript mentions that legs are used for walking as well as grooming. While this is welcome, the authors then do not discuss the implications of this in sufficient detail. For instance, how should we interpret that pulsed stimulation of a subset of 13A neurons produces grooming and walking behaviours? How does neural control of grooming interact with that of walking?

      (5) The manuscript needs to be proofread and edited as there are inconsistencies in labelling in figures, phrasing errors, missing citations of figures in the text, or citations that are not in the correct order, and referencing errors (examples: 81 and 83 are identical; 94 is missing in text).

    1. eLife Assessment

      This study presents a valuable finding on the perturbed pyruvate metabolism in models of repetitive traumatic brain injury. The evidence supporting the main claims of the authors is solid, but much of the accompanying analysis and interpretation relies on incomplete evidence. The work will be of interest to those working on the imaging of traumatic brain injury.

    2. Joint Public Review:

      Summary:

      The authors present a metabolic imaging study of pyruvate metabolism in a mouse model of repetitive traumatic brain injury in the chronic recovery stage. They measure pyruvate metabolism with hyperpolarised 13C magnetic resonance spectroscopic imaging. This is acquired alongside semi-quantitative MR imaging metrics, a behavioural measure, and postmortem measures of relevant enzyme activity and expression of metabolic transporter proteins. They find that the MRSI-measured cortical lactate/pyruvate ratio (and signal from pyruvate and lactate independently) can differentiate the rTBI group from the sham group. They additionally find that postmortem, cortical pyruvate dehydrogenase activity is a statistically significant discriminator. All other metrics (MRI and enzyme/transporter measures) are not significantly different between groups. Finally, using a machine learning approach, the authors investigate the predictive power of combinations of all measures.

      Strengths:

      The primary strength of this work is the likely robustness of the primary finding - that hyperpolarised 13C lactate/pyruvate metabolite ratios are perturbed in this chronic rTBI model compared to the sham control.

      Weaknesses:

      Focal alterations in blood-brain-barrier permeability may affect the primary lactate/pyruvate measures. Whilst 13C urea measures perfusion, urea remains purely extracellular; whilst in the metabolism of the healthy brain, pyruvate must be transported through two levels of monocarboxylate transporters (MCTs) - in the endothelium surrounding the capillary bed and then into the parenchyma. By mechanically disrupting the brain, tight junctions in the BBB may be disrupted, therefore increasing the flux of pyruvate across the BBB and increasing pyruvate availability. In this case, lac/pyr would be a poor measure of metabolism as "delivery" has changed. While the authors assess perfusion using HP urea, it is unclear whether or how this metric would change in the presence of BBB disruption in relatively large and well-vascularised voxels.

      The finding that "HP [1-13C]pyruvate levels were 1.05 fold higher" indicates that delivery of pyruvate might be increased. It is unclear if normalisation to the combined amplitude of lactate and pyruvate is fair in the case that the volume fraction in the voxel might have increased. Ideally, the authors would estimate polarisation separately as a normalisation.

      No estimate of uncertainty is provided for the primary metabolic measures. Note that the lactate-pyruvate ratio is not normally distributed (see doi: 10.1002/mrm.26615), and this should be accounted for when carrying out statistical tests.

      All metabolic maps are shown masked to the brain and interpolated to the structural MRI resolution (around 20 times). Nor is there any characterisation of the spectroscopic imaging's voxel volume, including the effect of the point spread function. It is, therefore, hard to have confidence in any spatial effects or potential partial volume effects from the tissue surrounding the brain.

      The t2-weighted and SWI MRI measures used in this work are not quantitative. Normalisation in each case is carried out without regard to any spatially variable transmit and receive coil sensitivities (B1{plus minus}), which vary per subject. This adds intersubject variance, which could mask any effect between groups. No quality metrics (SNR or uncertainty estimates) are given for the MRI metrics.

      Spectroscopic imaging was conducted 16 s after injection. Given the high heart rate of a mouse, measures of perfusion (using urea) could , therefore, be considered in a steady state, lowering sensitivity to any changes in perfusion or metabolite delivery. Furthermore, it is unclear how any changes in BBB permeability would manifest with the relatively low spatial resolution of MRSI. Would signal always be dominated by vascular compartments?

      There is no apparent attempt to understand if an immune response occurs at this chronic time point. Macrophages are glycolytic and could affect the pyruvate measurement. Furthermore, is there any evidence for cellular changes in this model, namely density, cell type fraction, or microstructure? Are there any expected changes in glucose uptake?

      There is no information or references provided for the accuracy or precision of the postmortem assays or their correlation with in vivo processes. What is the effect of cell density changes after injury on the assay kits?

      The proposed interpretation of T1 as a measure of oxidative stress would seem to ignore the many confounding interpretations of T1.

      Aims and impact:

      In summary, the authors broadly achieve one aim, which is to find that HP 13C measured lac/pyruvate is a biomarker for the chronic effects of rTBI in a mouse model. As the authors themselves highlight in the discussion, the interpretation of this finding is tricky alongside their post-mortem assay results. The MR imaging in this work seems inconclusive, given the potential for inter-subject variance in the normalisation method.

      The work, therefore, continues to highlight that HP 13C MRSI is a highly promising avenue of investigation to identify, characterise, and understand traumatic brain injury. It suggests that HP 13C MRSI is more promising in this sense than some standard MRI contrasts. The work currently fails to convincingly interpret the HP 13C MR results in conjunction with the other metrics.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Ray et al. provides a theoretical framework to study tissue mechanics and the solid-to-fluid transition phenomenon observed in many tissues. The authors advanced previous models by directly incorporating cell-cell adhesion in force calculation with flexible cell geometries. They performed an in-depth analysis of the model and found that reducing cell-cell adhesion in near-confluent tissues can result in spontaneous cell rearrangements and transition to tissue fluidity. This is in contrast with previous predictions of Vertex models, which require higher adhesion for solid-to-fluid transition.

      Strengths:

      The authors provided a more general formulation of a 2D active foam model by directly incorporating cell-cell adhesion and performed a careful analysis of cell dynamics and cell shape in their simulations. They measured various quantities such as the mean-squared displacement of the cell center and shape index, which was introduced in previous studies to analyze jamming transition in tissues. By careful analysis of their simulations, they found a universal length scale in their simulations, explaining the observed heterogeneity. They provided a qualitative connection to previous experimental observations, where a reduction in cell adhesion caused tissue fluidity.

      Weaknesses:

      The phenomenon of tissue fluidity is an important and open question in biology. While theoretical models provide guidance to study such complex phenomena, the details in these models should go hand-in-hand with quantitative comparison with experiments. The study by Ray et al. indeed provided a more detailed description of deformable and adhesive cell collectives, but without a quantitative comparison with experiment, it is not clear if one needs all these details, or maybe more is needed. For example, do we need a more detailed mechanical model of the vertices, how the friction with substrate should be incorporated in such models, and is there a feedback between cell dynamics and its internal cytoskeleton organization?

      While the manuscript by Ray et al. is an interesting theoretical study, without a quantitative comparison with experiments, it is not clear if it truly advances our understanding of tissue mechanics.

    2. Reviewer #2 (Public review):

      Summary:

      Ray and coworkers introduce a discrete model of cellular layers aimed at investigating the role of inter-cellular adhesion in collective cell migration. The model combines aspects of particle-based models, in which cells are treated as simple point-particles with pair-interactions, and "morphological models", where interactions primarily depend on the cellular shape. In this case, cells are modeled as rings of beads connected by springs, thus allowing for exploration of the role of cell morphology while treating intercellular interactions as particle-like. Upon exploring the parameter space of this model, the authors recover physical behaviors reminiscent of reconstituted cell layers, including the onset of collective cell migration, when the forces leading to cell propulsion overweight inter-cellular adhesion, and various signatures of glassy dynamics.

      Strengths:

      The model presented in the article is simple, easy to implement, and scalable. The analysis appears solid and delivers a number of clear physical properties that could be tested in more depth in experiments and future numerical studies (e.g., distribution of displacements, etc.). The authors make an appreciable effort to make contact with other models and share their ideas for further investigations.

      Weaknesses:

      I found two main weaknesses in the original version of this manuscript, which I strongly encourage the authors to address.

      (1) The manuscript explicitly aims at resolving an apparent contradiction of tessellation-based models, such as the Vertex and the Voronoi model. Both models used the so-called shape index p0 - i.e. the ratio between the preferential perimeter and the preferential area of the cells - to drive a solid/liquid phase transition in the presence of Brownian and/or rotational noise. Specifically, for sufficiently large p0 values, these in silico cell layers undergo a transition to a state of collective migration, where a rigid junction network becomes unstable to T1 events. Because p0 is often interpreted as "adhesion strength", this leads to the paradoxical conclusion that cell intercalation is favored by intercellular adhesion. The paradox, however, only lies in this interpretation, which assigns to the shape index p0 a biophysical role that is too specific. To illustrate this concept, let us consider the energy of an individual cell of area A and perimeter P: i.e. e = (a-1)^2+c*(p-p0)^2, where a=A/A_0, with A_0 the preferred area, p=P/sqrt(A_0) and p_0 = P_0/sqrt(A_0), with P_0 the preferred perimeter. Expanding the square in the second term gives e ~ p^2 - 2p_0 p. Thus, increasing p_0, favors longer cell junctions, from which it appears reasonable to interpret p0 as a dimensionless measure of intercellular adhesion. Such an increase in the length of the junctions is, however, only a byproduct of the effect of p0 on the overall shape of the cell, which becomes progressively less rounded as p0 is increased (e.g., for a circle, p0≈3.55, for an equilateral triangle, p0≈4.56). The roundness of an individual cell, on the other hand, cannot single-handedly be ascribed to intercellular adhesion, despite intercellular adhesion being undoubtedly one of the biophysical properties affecting this geometrical feature. Moreover, the shape index p0 ​enters the energy functional at the single-cell level, implying that even in isolation, without intercellular adhesion, an increase in p0 leads to a less rounded cell morphology. These peculiarities of the Vertex/Voronoi model do raise questions about its accuracy and validity, thus justify seeking for alternative cell-resolved models such as that introduced here by Ray et al., but, on the other hand, make the interpretation of p0 as an exclusive measure of adhesion evidently dubious.

      (2) The spring-bead model by Ray and coworkers has at least two predecessors in the recent literature, none of which have been cited in the present manuscript. These are Boromand et al., Phys. Rev. Lett. 121, 248003 (2018) and Pasupalak et al. arXiv:2409.16128 (2024). The former paper investigates the packing of flexible polygons and is not specific to epithelial layers, while the latter is specifically designed to address various outstanding problems in tissue mechanics, including collective migration and wound healing. While none of these models is identical to that by Ray et al., it would be fair to present the latter as a member of the family rather than the first one of its kind and possibly comment about the differences and similarities with these previous models.

    3. Reviewer #3 (Public review):

      Summary:

      This is a very focused and well-performed study that uses a somewhat less common approach in the field of tissue mechanics, a deformable particle model, to propose a solution to some important phenomenological inconsistencies between the standard vertex- and SPV-model approaches and experiments. The authors' focus in their study is on the role of adhesion in glassy dynamics and solid-fluid transition of epithelia.

      Strengths:

      It is a carefully performed study with an important technical edge compared to "mainstream" vertex and SPV models: the ability to describe cell-cell boundaries with two distinct membranes. This may have an important implication for the phenomenology, like the role of adhesion in solid-fluid transition.

      Weaknesses:

      Apart from some specific suggestions for improvement and clarification, I believe the authors could do a better job in comparing their results and their approach to other similar models, such as the one by Kim et al (Reference 7).

    1. eLife Assessment

      This is a valuable and rigorous study that addresses the question of what determines the spatial organization of endocytic zones at synapses. The authors use compelling approaches, in both Drosophila and rodent model systems, to define the role of activity and active zone structure on the organization of the peri-active zone. While the findings are primarily negative, they are carefully executed and contribute to the field by refining existing models of presynaptic organization.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Emperador-Melero et al. seek to determine whether recruitment of endocytic machinery to the periactive zone is activity-dependent or tethered to delivery of active zone machinery. They use genetic knockouts and pharmacological block in two model synapses - cultured mouse hippocampal neurons and Drosophila neuromuscular junctions - to determine how well endocytic machinery localizes after chronic inhibition or acute depolarization by super-resolution imaging. They find that acute depolarization in both models has minimal to no effect on the localization of endocytic machinery at the periactive zone, suggesting that these proteins are constitutively maintained rather than upregulated in response to transient activity. Interestingly, chronic inhibition slightly increases endocytic machinery levels, implying a potential homeostatic upregulation in preparation for rebound depolarization. Using genetic knockouts, the authors show that localization of endocytic machinery to periactive zones occurs independently of proper active zone assembly, even in the absence of upstream organizers like Liprin-α.

      Overall, they propose that the constitutive deployment of endocytic machinery reflects its critical role in facilitating rapid and reliable membrane internalization during synaptic functions beyond classical endocytosis, such as regulation of the exocytic fusion pore and dense-core vesicle fusion. Although many experiments reveal limited changes in the localization or abundance of endocytic machinery, the findings are thorough, and data substantially support a model in which endocytic components are organized through a pathway distinct from that of the active zone. This work advances our understanding of synaptic dynamics by supporting a model in which endocytic machinery is constitutively recruited and regulated by distinct upstream organizers compared to active zone proteins. It also highlights the utility of super-resolution imaging across diverse synapse types to uncover functionally conserved elements of synaptic biology.

      Strengths:

      The study's technical strengths, particularly the use of super-resolution microscopy and rigorous image analyses developed by the group, bolster their findings.

      Weaknesses:

      One notable limitation, however, is the absence of interrogation of endocytic proteins previously suggested to be recruited in an activity-dependent manner, in particular, endophilin.

    3. Reviewer #2 (Public review):

      Summary:

      This study examines whether the localization of endocytic proteins to presynaptic periactive zones depends on synaptic activity or active zone scaffolds. Using a combination of genetic and pharmacological perturbations in Drosophila and mouse neurons, the authors show that proteins such as Dynamin, Amphiphysin, AP-180, and others are still recruited to periactive zones even when evoked release or active zone architecture is disrupted. While the results are mostly negative, the study is methodologically solid and contributes to a more nuanced understanding of synaptic vesicle recycling machinery.

      Strengths:

      (1) The experimental design is careful and systematic, covering both fly and mammalian systems.

      (2) The use of advanced genetic models (e.g., Liprin-α quadruple knockout mice) is a notable strength.

      (3) High-resolution imaging (STED, Airyscan) is well used to assess spatial localization.

      (4) The findings clarify that certain core assumptions - such as strict activity dependence of endocytic recruitment - may not hold universally.

      Weaknesses:

      (1) The study would benefit from a clearer positive control to demonstrate activity-dependent recruitment (e.g., Endophilin).

      (2) The reliance on Tetanus toxin in the Drosophila NMJ experiments in my eyes is a limitation, as it does not block all presynaptic fusion events; this should be discussed more directly.

      (3) The potential role of Dynamin in organizing other periactive zone proteins is not addressed and could be an important next step.

      (4) Some small changes in protein levels upon silencing are reported; their biological meaning (e.g., compensation vs. variability) is not fully clarified.

      (5) While alternative organizing mechanisms (actin, lipids, adhesion molecules) are mentioned, a more forward-looking discussion of how to test these models would be helpful.

      (6) The authors should consider including, or at least discussing, a well-established activity-dependent endocytic protein (e.g., Endophilin) as a positive control to help contextualize the negative findings.

    4. Reviewer #3 (Public review):

      Summary:

      This study examines how synaptic endocytic zones are positioned using a combination of cultured neurons and the Drosophila neuromuscular junction. The authors test whether neuronal activity, active zone assembly, or liprin-α function is required to localize endocytic zone markers, including Dynamin, Amphiphysin, Nervous Wreck, PIPK1γ, and AP-180. None of the manipulations tested caused a coordinated disruption in the localization or abundance of these markers, leading to the conclusion that endocytic zones form independently of synaptic activity and active zone scaffolds.

      Strengths:

      The work is systematic and carefully executed, using multiple manipulations and two complementary model systems. The authors consistently examine multiple molecular markers, strengthening the interpretation that endocytic zone positioning is robust to changes in activity and structural assembly.

      Weaknesses:

      The main limitation is that the study does not test whether the methods used are sensitive enough to detect subtle functional disruption, and no condition tested produces clear disorganization of the endocytic zone. As a result, the conclusion that these zones assemble independently is supported by negative data, without a strong positive control for disassembly or mislocalization.

      This paper addresses a longstanding question in synaptic biology and provides a well-supported boundary on the types of mechanisms that are likely to govern endocytic zone localization. The conclusions are well justified by the data, though additional evidence would be needed to define the assembly mechanism itself.

    1. eLife Assessment

      The authors conducted a valuable study that investigates a molecular pathway mediating the transformation of a cell aggregate into a sheet known as the nucleus laminaris, a crucial site for auditory processing. While the study offers a comprehensive view of the sequence of developmental events and suggests possible roles for FGF signaling, the transcription factor Mafb, and the cell surface adhesive molecule Cadherin-23 in this process, the current data were considered incomplete.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, the authors sought to define a molecular pathway that mediates the transformation of an aggregate of cells into a sheet known as the nucleus laminaris, a key site for auditory processing. The data offer a comprehensive view of the sequence of developmental events and suggest possible roles for FGF signaling, the transcription factor Mafb, and the cell surface adhesive molecule Cadherin-23 in this process.

      Strengths:

      The description of nL development is thorough and well-done, with extensive quantification of the overall structure of the nucleus and also of neuron number. Additionally, the study implicates several molecules in nL development, starting with a clear description of when and where FGF8, Mafb, and several cadherins are expressed, including antibody stains suggesting that one cadherin, cdh2, is localized to the neuronal dendrites. A series of perturbation experiments supports the idea that these three molecules play a role in nL formation. The computational model is an interesting addition that helps to conceptualize how cadherin-mediated adhesion might influence nL morphogenesis.

      Weaknesses:

      A number of weaknesses limit the impact of this work.

      One problem is how the data is interpreted. The logic is often circular in that the same molecules are used both as markers of nL and also as players in its development. An independent measure of nL formation is needed. Along the same lines, while the experiments implicate each molecule, the data do not actually demonstrate that FGF directly modulates Mafb, which in turn modulates cadherin expression, especially as overexpression of cdh2 has no effect on FGF8 expression or lamina organization, and no manipulations of cdh22 are presented.

      The other type of problem relates to how the experiments were performed and analyzed. Important details about the experiments, as well as key controls, are missing throughout. Sample sizes are rarely presented, and there is no evidence that either dominant negative construct actually acts as proposed. Some results are not well quantified, which further undermines the strength of the conclusions. For instance, the changes in mafb and cdh22 expression (Figure 7) are subtle and were not quantified for any of the conditions. Likewise, the claim that FGF8 has a dose-dependent effect on lamina size and neuron number needs to be supported by statistics.

      There are also some questions about the quality of the data. Much of the histology is of poor quality and does not always show the same piece of brain in the same orientation from experiment to experiment, which makes it challenging to interpret the results. In particular, the quality of the in situ hybridization varies, with much more background in some cases than others, which makes it hard to know what signal is real.

      Finally, there are some misstatements and problems with citations that weaken the scholarly nature of the paper. FGF signaling has been studied extensively in the hindbrain and even in auditory nucleus development (Abraira et al., 2007), but this literature is not discussed at all.

      Due to these weaknesses, the authors have achieved their aims only in part. The data are suggestive, but the results do not yet fully support their conclusions.

      Few labs study how populations of neurons assemble into spatially organized structures. This work has the potential to be very interesting to other developmental neuroscientists studying brain morphogenesis.

    3. Reviewer #2 (Public review):

      Summary:

      The overall goal of this study by Smith et al. was to understand the mechanisms through which groups of cells form specific nuclei during development. These cell groupings may have importance for the development of nervous system connections. Smith et al. have taken advantage of the ordered structure of the nucleus laminaris of the chick, which plays an important role in sound source localization. They used a candidate gene approach to both mark cells in nL and to test for signaling pathways that regulate nucleogenesis. They found that MafB, FGF8, and cadherins were expressed in the auditory hindbrain at the critical ages. They used in ovo electroporation to test gene function effects on nL lamina formation. They found that both increasing and decreasing FGF signaling (through introduction of mouse FGF8 and expression of a dominant negative FGF receptor, respectively) reduced lamina formation in the nL. An optimal concentration of FGF needed for this process was obtained using cultured hindbrain slices. Misexpression of cadherins also perturbed the normal lamina formation. The authors showed that FGF regulates MafB expression, which in turn regulates cadherin expression, suggesting a pathway that shapes lamina development. They constructed computational models of adhesion on the development of nL cells and found that laminar formation is favored by nL cells modeled as bipolar adhesive units. Overall, the study has demonstrated the importance of these adhesion pathways for the formation of the nucleus laminaris, and the findings likely have significance for the development of other nuclei as well.

      Strengths:

      The experiments have used in situ hybridization, immunofluorescence, electroporation, and brainstem slice cultures to test their hypotheses, which were based on well-selected candidate molecules. The modeling adds to the rigor of the studies, particularly in light of the observation that cadherin expression is localized to nL dendrites.

      Weaknesses:

      (1) Some references should be considered more carefully for accuracy, and additional references may be needed (introduction and results).

      (2) Information on animal numbers and statistical tests should be added.

    1. eLife Assessment

      This manuscript provides valuable information on the neurodynamics of emotional processing while participants were watching movie clips. The methods and results were solid in deciphering the temporal-spatial dynamics of emotional processing. This work will be of interest to affective neuroscientists.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors endeavor to capture the dynamics of emotion-related brain networks. They employ slice-based fMRI combined with ICA on fMRI time series recorded while participants viewed a short movie clip. This approach allowed them to track the time course of four non-noise independent components at an effective 2s temporal resolution at the BOLD level. Notably, the authors report a temporal sequence from input to meaning, followed by response, and finally default mode networks, with significant overlap between stages. The use of ICA offers a data-driven method to identify large-scale networks involved in dynamic emotion processing. Overall, this paradigm and analytical strategy mark an important step forward in shifting affective neuroscience toward investigating temporal dynamics rather than relying solely on static network assessments

      Strengths:

      (1) One of the main advantages highlighted is the improved temporal resolution offered by slice-based fMRI. However, the manuscript does not clearly explain how this method achieves a higher effective resolution, especially since the results still show a 2s temporal resolution, comparable to conventional methods. Clarification on this point would help readers understand the true benefit of the approach.

      (2) While combining ICA with task fMRI is an innovative approach to study the spatiotemporal dynamics of emotion processing, task fMRI typically relies on modeling the hemodynamic response (e.g., using FIR or IR models) to mitigate noise and collinearity across adjacent trials. The current analysis uses unmodeled BOLD time series, which might risk suffering from these issues.

      (3) The study's claims about emotion dynamics are derived from fMRI data, which are inherently affected by the hemodynamic delay. This delay means that the observed time courses may differ substantially from those obtained through electrophysiology or MEG studies. A discussion on how these fMRI-derived dynamics relate to - or complement - is critical for the field to understand the emotion dynamics.

      (4) Although using ICA to differentiate emotion elements is a convenient approach to tell a story, it may also be misleading. For instance, the observed delayed onset and peak latency of the 'response network' might imply that emotional responses occur much later than other stages, which contradicts many established emotion theories. Given the involvement of large-scale brain regions in this network, the underlying reasons for this delay could be very complex.

      Concerns and suggestions:

      However, I have several concerns regarding the specific presentation of temporal dynamics in the current manuscript and offer the following suggestions.

      (1) One selling point of this work regarding the advantages of testing temporal dynamics is the application of slice-based fMRI, which, in theory, should improve the temporal resolution of the fMRI time course. Improving fMRI temporal resolution is critical for a research project on this topic. The authors present a detailed schematic figure (Figure 2) to help readers understand it. However, I have difficulty understanding the benefits of this method in terms of temporal resolution.

      a) In Figure 2A, if we examine a specific voxel in slice 2, the slice acquisitions occur at 0.7s, 2.7s, and 4.7s, which implies a temporal resolution of 2s rather than 0.7s. I am unclear on how the temporal resolution could be 0.7s for this specific voxel. I would prefer that the authors clarify this point further, as it would benefit readers who are not familiar with this technology.

      b) Even with the claim of an increased temporal resolution (0.7s), the actual data (Figure 3) still appears to have a 2s resolution. I wonder what specific benefit slice-based fMRI brings in terms of testing temporal dynamics, aside from correcting the temporal distortions that conventional fMRI exhibits.

      (2) In task-fMRI, the hemodynamic response is usually estimated using a specific model (e.g., FIR, IR model; see Lindquist et al., 2009). These models are effective at reducing noise and collinearity across adjacent trials. The current method appears to be conducted on unmodeled BOLD time series.

      a) I am wondering how the authors avoid the issues that are typically addressed by these HRF modeling approaches. For example, if we examine the baseline period (say, -4 to 0s relative to stimulus onset), the activation of most networks does not remain around zero, which could be due to delayed influences from the previous trial. This suggests that the current time course may not be completely accurate.

      b) A related question: if the authors take the spatial map of a certain network and apply a modeling approach to estimate a time series within that network, would the results be similar to the current ICA time series?

      (3) Human emotion should be inherently fast to ensure survival, as shown in many electrophysiology and MEG studies. For example, the dynamics of a fearful face can occur within 100ms in subcortical regions (Méndez-Bértolo et al., 2016), and general valence and arousal effects can occur as early as 200ms (e.g., Grootswagers et al., 2020; Bo et al., 2022). In contrast, the time-to-peak or onset timing in the BOLD time series spans a much larger time range due to the hemodynamic delay. fMRI findings indeed add spatial precision to our understanding of the temporal dynamics of emotion, but could the authors comment on how the current temporal dynamics supplement those electrophysiology studies that operate on much finer temporal scales?

      (4) The response network shows activation as late as 15 to 20s, which is surprising. Could the authors discuss further why it takes so long for participants to generate an emotional response in the brain?

      (5) Related to 4. In many theories, the emotion processing stages-including perception, valuation, and response-are usually considered iterative processes (e.g., Gross, 2015), especially in real-world scenarios. The advantage of the current paradigm is that it incorporates more dynamic elements of emotional stimuli and is closer to reality. Therefore, one might expect some degree of dynamic fluctuation within the tested brain networks to reflect those potential iterative processes (input, meaning, response). However, we still do not observe much brain dynamics in the data. In Figure 5, after the initial onset, most network activations remain sustained for an extended period of time. Does this suggest that emotion processing is less dynamic in the brain than we thought, or could it be related to limitations in temporal resolution? It could also be that the dynamics of each individual trial differ, and averaging them eliminates these variations. I would like to hear the authors' comments on this topic.

      (6) The activation of the default mode network (DMN), although relatively late, is very interesting. Generally, one would expect a deactivation of this network during ongoing external stimulation. Could this suggest that participants are mind-wandering during the later portion of the task?

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript examined the neural correlates of the temporal-spatial dynamics of emotional processing while participants were watching short movie clips (each 12.5 s long) from the movie "Forrest Gump". Participants not only watched each film clip, but also gave emotional responses, followed by a brief resting period. Employing fMRI to track the BOLD responses during these stages of emotional processing, the authors found four large-scale brain networks (labeled as IC0,1,2,4) were differentially involved in emotional processing. Overall, this work provides valuable information on the neurodynamics of emotional processing.

      Strengths:

      This work employs a naturalistic movie watching paradigm to elicit emotional experiences. The authors used a slice-based fMRI method to examine the temporal dynamics of BOLD responses. Compared to previous emotional research that uses static images, this work provides some new data and insights into how the brain supports emotional processing from a temporal dynamics view.

      Weaknesses:

      Some major conclusions are unwarranted and do not have relevant evidence. For example, the authors seemed to interpret some neuroimaging results to be related to emotion regulation. However, there were no explicit instructions about emotional regulation, and there was no evidence suggesting participants regulated their emotions. How to best interpret the corresponding results thus requires caution.

      Relatedly, the authors argued that "In turn, our findings underscore the utility of examining temporal metrics to capture subtle nuances of emotional processing that may remain undetectable using standard static analyses." While this sentence makes sense and is reasonable, it remains unclear how the results here support this argument. In particular, there were only three emotional categories: sad, happy, and fear. These three emotional categories are highly different from each other. Thus, how exactly the temporal metrics captured the "subtle nuances of emotional processing" shall be further elaborated.

      The writing also contained many claims about the study's clinical utility. However, the authors did not develop their reasoning nor elaborate on the clinical relevance. While examining emotional processing certainly could have clinical relevance, please unpack the argument and provide more information on how the results obtained here can be used in clinical settings.

      Importantly, how are the temporal dynamics of BOLD responses and subjective feelings related? The authors showed that "the time-to-peak differences in IC2 ("response") align closely with response latency results, with sad trials showing faster response latencies and earlier peak times". Does this mean that people typically experience sad feelings faster than happy or fear? Yet this is inconsistent with ideas such that fear detection is often rapid, while sadness can be more sustained. Understandably, the study uses movie clips, which can be very different from previous work, mostly using static images (e.g., a fearful or a sad face). But the authors shall explicitly discuss what these temporal dynamics mean for subjective feelings.

    1. Author Response:

      The following is the authors’ response to the previous reviews.

      We carefully read through the second-round reviews and the additional reviews. To us, the review process is somewhat unusual and very much dominated by referee 2, who aggressively insists that we mixed up the trigeminal nucleus and inferior olive and that as a consequence our results are meaningless. We think the stance of referee 2 and the focus on one single issue (the alleged mix-up of trigeminal nucleus and inferior olive) is somewhat unfortunate, leaves out much of our findings and we debated at length on how to deal with further revisions. In the end, we decided to again give priority to addressing the criticism of referees 2, because it is hard to go on with a heavily attacked paper without resolving the matter at stake. The following is a summary of, what we did:

      Additional experimental work:

      (1) We checked if the peripherin-antibody indeed reliably identifies climbing fibers.

      To this end, we sectioned the elephant cerebellum and stained sections with the peripherin-antibody. We find: (i) the cerebellar white matter is strongly reactive for peripherin-antibodies, (ii) cerebellar peripherin-antibody staining of has an axonal appearance. (iii) Cerebellar Purkinje cell somata appear to be ensheated by peripherin-antibody staining. (iv) We observed that the peripherin-antibody reactivity gradually decreases from Purkinje cell somata to the pia in the cerebellar molecular layer. This work is shown in our revised Figure 2. All these four features align with the distribution of climbing fibers (which arrive through the white matter, are axons, ensheat Purkinje cell somata, and innervate Purkinje cell proximally not reaching the pia). In line with previous work, which showed similar cerebellar staining patterns in several species (Errante et al. 1998), we conclude that elephant climbing fibers are strongly reactive for peripherin-antibodies.

      (2) We delineated the elephant olivo-cerebellar tract.

      The strong peripherin-antibody reactivity of elephant climbing fibers enabled us to delineate the elephant olivo-cerebellar tract. We find the elephant olivo-cerebellar tract is a strongly peripherin-antibody reactive, well-delineated fiber tract several millimeters wide and about a centimeter in height. The unstained olivo-cerebellar tract has a greyish appearance. In the anterior regions of the olivo-cerebellar tract, we find that peripherin-antibody reactive fibers run in the dorsolateral brainstem and approach the cerebellar peduncle, where the tract gradually diminishes in size, presumably because climbing fibers discharge into the peduncle. Indeed, peripherin-antibody reactive fibers can be seen entering the cerebellar peduncle. Towards the posterior end of the peduncle, the olivo-cerebellar disappears (in the dorsal brainstem directly below the peduncle. We note that the olivo-cerebellar tract was referred to as the spinal trigeminal tract by Maseko et al. 2013. We think the tract in question cannot be the spinal trigeminal tract for two reasons: (i) This tract is the sole brainstem source of peripherin-positive climbing fibers entering the peduncle/ the cerebellum; this is the defining characteristic of the olivo-cerebellar tract. (ii) The tract in question is much smaller than the trigeminal nerve, disappears posterior to where the trigeminal nerve enters the brainstem (see below), and has no continuity with the trigeminal nerve; the continuity with the trigeminal nerve is the defining characteristic of the spinal trigeminal tract, however.

      The anterior regions of the elephant olivo-cerebellar tract are similar to the anterior regions of olivo-cerebellar tract of other mammals in its dorsolateral position and the relation to the cerebellar peduncle. In its more posterior parts, the elephant olivo-cerebellar tract continues for a long distance (~1.5 cm) in roughly the same dorsolateral position and enters the serrated nucleus that we previously identified as the elephant inferior olive. The more posterior parts of the elephant olivo-cerebellar tract therefore differ from the more posterior parts of the olivo-cerebellar tract of other mammals, which follows a ventromedial trajectory towards a ventromedially situated inferior olive. The implication of our delineation of the elephant olivo-cerebellar tract is that we correctly identified the elephant inferior olive.

      (3) An in-depth analysis of peripherin-antibody reactivity also indicates that the trigeminal nucleus receives no climbing fiber input.

      We also studied the peripherin-antibody reactivity in and around the trigeminal nucleus. We had also noted in the previous submission that the trigeminal nucleus is weakly positive for peripherin, but that the staining pattern is uniform and not the type of axon bundle pattern that is seen in the inferior olive of other mammals. To us, this observation already argued against the presence of climbing fibers in the trigeminal nucleus. We also noted that the myelin stripes of the trigeminal nucleus were peripherin-antibody-negative. In the context of our olivo-cerebellar tract tracing we now also scrutinized the surroundings of the trigeminal nucleus for peripherin-antibody reactivity. We find that the ventral brainstem surrounding the trigeminal nucleus is devoid of peripherin-antibody reactivity. Accordingly, no climbing fibers, (which we have shown to be strongly peripherin-antibody-positive, see our point 1) arrive at the trigeminal nucleus. The absence of climbing fiber input indicates that previous work that identified the (trigeminal) nucleus as the inferior olive (Maseko et al 2013) is unlikely to be correct.

      (4) We characterized the entry of the trigeminal nerve into the elephant brain.

      To better understand how trigeminal information enters the elephant’s brain, we characterized the entry of the trigeminal nerve. This analysis indicated to us that the trigeminal nerve is not continuous with the olivo-cerebellar tract (the spinal trigeminal tract of Maseko et al. 2013) as previously claimed by Maseko et al. 2013. We show some of this evidence in Referee-Figure 1 below. The reason we think the trigeminal nerve is discontinuous with the olivo-cerebellar tract is the size discrepancy between the two structures. We first show this for the tracing data of Maseko et al. 2013. In the Maseko et al. 2013 data the trigeminal nerve (Referee-Figure 1A, their plate Y) has 3-4 times the diameter of the olivocerebellar tract (the alleged spinal trigeminal tract, Referee-Figure 1B, their plate Z). Note that most if not all trigeminal fibers are thought to continue from the nerve into the trigeminal tract (see our rat data below). We plotted the diameter of the trigeminal nerve and diameter of the olivo-cerebellar (the spinal trigeminal tract according to Maseko et al. 2013) from the Maseko et al. 2013 data (Referee-Figure 1C) and we found that the olivocerebellar tract has a fairly consistent diameter (46 ± 9 mm2, mean ± SD). Statistical considerations and anatomical evidence suggest that the tracing of the trigeminal nerve into the olivo-cerebellar (the spinal trigeminal tract according to Maseko et al. 2013) is almost certainly wrong. The most anterior point of the alleged spinal trigeminal tract has a diameter of 51 mm2 which is more than 15 standard deviations different from the most posterior diameter (194 mm2) of the trigeminal tract. For this assignment to be correct three-quarters of trigeminal nerve fibers would have to spontaneously disappear, something that does not happen in the brain. We also made similar observations in the African elephant Bibi, where the trigeminal nerve (Referee-Figure 1D) is much larger in diameter than the olivocerebellar tract (Referee-Figure 1E). We could also show that the olivocerebellar tract disappears into the peduncle posterior to where the trigeminal nerve enters (Referee-Figure 1F). Our data are very similar to Maseko et al. indicating that their outlining of structures was done correctly. What appears to have been oversimplified, is the assignment of structures as continuous. We also quantified the diameter of the trigeminal nerve and the spinal trigeminal tract in rats (from the Paxinos & Watson atlas; Referee-Figure 1D); as expected we found the trigeminal nerve and spinal trigeminal tract diameters are essentially continuous.

      In our hands, the trigeminal nerve does not continue into a well-defined tract that could be traced after its entry. In this regard, it differs both from the olivo-cerebellar tract of the elephant or the spinal trigeminal tract of the rodent, both of which are well delineated. We think the absence of a well-delineated spinal trigeminal tract in elephants might have contributed to the putative tracing error highlighted in our Referee-Figure 1A-C.

      We conclude that a size mismatch indicates trigeminal fibers do not run in the olivo-cerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013).

      Author response image 1.

      The trigeminal nerve is discontinuous with the olivo-cerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013). A, Trigeminal nerve (orange) in the brain of African elephant LAX as delineated by Maseko et al. 2013 (coronal section; their plate Y). B, Most anterior appearance of the spinal trigeminal tract of Maseko et al. 2013 (blue; coronal section; their plate Z). Note the much smaller diameter of the spinal trigeminal tract compared to the trigeminal nerve shown in C, which argues against the continuity of the two structures. Indeed, our peripherin-antibody staining showed that the spinal trigeminal tract of Maseko corresponds to the olivo-cerebellar tract and is discontinuous with the trigeminal nerve. C, Plot of the trigeminal nerve and olivo-cerebellar tracts (the spinal trigeminal tract according to Maseko et al. 2013) diameter along the anterior-posterior axis. The trigeminal nerve is much larger in diameter than the olivocerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013). C, D measurements, for which sections are shown in panels C and D respectively. The olivocerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013) has a consistent diameter; data replotted from Maseko et al. 2013. At mm 25 the inferior olive appears. D, Trigeminal nerve entry in the brain of African elephant Bibi; our data, coronal section, the trigeminal nerve is outlined in orange, note the large diameter. E, Most anterior appearance of the olivo-cerebellar tract in the brain of African elephant Bibi; our data, coronal section, approximately 3 mm posterior to the section shown in A, the olivocerebellar tract is outlined in blue. Note the smaller diameter of the olivo-cerebellar tract compared to the trigeminal nerve, which argues against the continuity of the two structures. F, Plot of the trigeminal nerve and olivo-cerebellar tract diameter along the anterior-posterior axis. The nerve and olivo-cerebellar tract are discontinuous and the trigeminal nerve is much larger in diameter than the olivocerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013); our data. D, E measurements, for which sections are shown in panels D and E respectively. At mm 27 the inferior olive appears. G, In the rat the trigeminal nerve is continuous in size with the spinal trigeminal tract. Data replotted from Paxinos and Watson.

      Reviewer 2 (Public Review):

      As indicated in my previous review of this manuscript (see above), it is my opinion that the authors have misidentified, and indeed switched, the inferior olivary nuclear complex (IO) and the trigeminal nuclear complex (Vsens). It is this specific point only that I will address in this second review, as this is the crucial aspect of this paper - if the identification of these nuclear complexes in the elephant brainstem by the authors is incorrect, the remainder of the paper does not have any scientific validity.

      Comment: We agree with the referee that it is most important to sort out, the inferior olivary nuclear complex (IO) and the trigeminal nuclear complex, respectively.Change: We did additional experimental work to resolve this matter as detailed at the beginning of our response. Specifically, we ascertained that elephant climbing fibers are strongly peripherin-positive. Based on elephant climbing fiber peripherin-reactivity we delineated the elephant olivo-cerebellar tract. We find that the olivo-cerebellar connects to the structure we refer to as inferior olive to the cerebellum (the referee refers to this structure as the trigeminal nuclear complex). We also found that the trigeminal nucleus (the structure the referee refers to as inferior olive) appears to receive no climbing fibers. We provide indications that the tracing of the trigeminal nerve into the olivo-cerebellar tract by Maseko et al. 2023 was erroneous (Author response image 1). These novel findings support our ideas but are very difficult to reconcile with the referee’s partitioning scheme.

      The authors, in their response to my initial review, claim that I "bend" the comparative evidence against them. They further claim that as all other mammalian species exhibit a "serrated" appearance of the inferior olive, and as the elephant does not exhibit this appearance, that what was previously identified as the inferior olive is actually the trigeminal nucleus and vice versa. 

      For convenience, I will refer to IOM and VsensM as the identification of these structures according to Maseko et al (2013) and other authors and will use IOR and VsensR to refer to the identification forwarded in the study under review. <br /> The IOM/VsensR certainly does not have a serrated appearance in elephants. Indeed, from the plates supplied by the authors in response (Referee Fig. 2), the cytochrome oxidase image supplied and the image from Maseko et al (2013) shows a very similar appearance. There is no doubt that the authors are identifying structures that closely correspond to those provided by Maseko et al (2013). It is solely a contrast in what these nuclear complexes are called and the functional sequelae of the identification of these complexes (are they related to the trunk sensation or movement controlled by the cerebellum?) that is under debate.

      Elephants are part of the Afrotheria, thus the most relevant comparative data to resolve this issue will be the identification of these nuclei in other Afrotherian species. Below I provide images of these nuclear complexes, labelled in the standard nomenclature, across several Afrotherian species. 

      (A) Lesser hedgehog tenrec (Echinops telfairi) 

      Tenrecs brains are the most intensively studied of the Afrotherian brains, these extensive neuroanatomical studies undertaken primarily by Heinz Künzle. Below I append images (coronal sections stained with cresol violet) of the IO and Vsens (labelled in the standard mammalian manner) in the lesser hedgehog tenrec. It should be clear that the inferior olive is located in the ventral midline of the rostral medulla oblongata (just like the rat) and that this nucleus is not distinctly serrated. The Vsens is located in the lateral aspect of the medulla skirted laterally by the spinal trigeminal tract (Sp5). These images and the labels indicating structures correlate precisely with that provide by Künzle (1997, 10.1016, see his Figure 1K,L. Thus, in the first case of a related species, there is no serrated appearance of the inferior olive, the location of the inferior olive is confirmed through connectivity with the superior colliculus (a standard connection in mammals) by Künzle (1997), and the location of Vsens is what is considered to be typical for mammals. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report. 

      (B) Giant otter shrew (Potomogale velox) 

      The otter shrews are close relatives of the Tenrecs. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see hints of the serration of the IO as defined by the authors, but we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      (C) Four-toed sengi (Petrodromus tetradactylus) 

      The sengis are close relatives of the Tenrecs and otter shrews, these three groups being part of the Afroinsectiphilia, a distinct branch of the Afrotheria. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see vague hints of the serration of the IO (as defined by the authors), and we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report. 

      (D) Rock hyrax (Procavia capensis) 

      The hyraxes, along with the sirens and elephants form the Paenungulata branch of the Afrotheria. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per the standard mammalian anatomy. Here we see hints of the serration of the IO (as defined by the authors), but we also see evidence of a more "bulbous" appearance of subnuclei of the IO (particularly the principal nucleus), and we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report. 

      (E) West Indian manatee (Trichechus manatus) 

      The sirens are the closest extant relatives of the elephants in the Afrotheria. Below I append images of cresyl violet (top) and myelin (bottom) stained coronal sections (taken from the University of Wisconsin-Madison Brain Collection, https://brainmuseum.org, and while quite low in magnification they do reveal the structures under debate) through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see the serration of the IO (as defined by the authors). Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      These comparisons and the structural identification, with which the authors agree as they only distinguish the elephants from the other Afrotheria, demonstrate that the appearance of the IO can be quite variable across mammalian species, including those with a close phylogenetic affinity to the elephants. Not all mammal species possess a "serrated" appearance of the IO. Thus, it is more than just theoretically possible that the IO of the elephant appears as described prior to this study. 

      So what about elephants? Below I append a series of images from coronal sections through the African elephant brainstem stained for Nissl, myelin, and immunostained for calretinin. These sections are labelled according to standard mammalian nomenclature. In these complete sections of the elephant brainstem, we do not see a serrated appearance of the IOM (as described previously and in the current study by the authors). Rather the principal nucleus of the IOM appears to be bulbous in nature. In the current study, no image of myelin staining in the IOM/VsensR is provided by the authors. However, in the images I provide, we do see the reported myelin stripes in all stains - agreement between the authors and reviewer on this point. The higher magnification image to the bottom left of the plate shows one of the IOM/VsensR myelin stripes immunostained for calretinin, and within the myelin stripes axons immunopositive for calretinin are seen (labelled with an arrow). The climbing fibres of the elephant cerebellar cortex are similarly calretinin immunopositive (10.1159/000345565). In contrast, although not shown at high magnification, the fibres forming the Sp5 in the elephant (in the Maseko description, unnamed in the description of the authors) show no immunoreactivity to calretinin. 

      Comment: We appreciate the referee’s additional comments. We concede the possibility that some relatives of elephants have a less serrated inferior olive than most other mammals. We maintain, however, that the elephant inferior olive (our Figure 1J) has the serrated appearance seen in the vast majority of mammals.

      Change: None.

      Peripherin Immunostaining 

      In their revised manuscript the authors present immunostaining of peripherin in the elephant brainstem. This is an important addition (although it does replace the only staining of myelin provided by the authors which is unusual as the word myelin is in the title of the paper) as peripherin is known to specifically label peripheral nerves. In addition, as pointed out by the authors, peripherin also immunostains climbing fibres (Errante et al., 1998). The understanding of this staining is important in determining the identification of the IO and Vsens in the elephant, although it is not ideal for this task as there is some ambiguity. Errante and colleagues (1998; Fig. 1) show that climbing fibres are peripherin-immunopositive in the rat. But what the authors do not evaluate is the extensive peripherin staining in the rat Sp5 in the same paper (Errante et al, 1998, Fig. 2). The image provided by the authors of their peripherin immunostaining (their new Figure 2) shows what I would call the Sp5 of the elephant to be strongly peripherin immunoreactive, just like the rat shown in Errant et al (1998), and more over in the precise position of the rat Sp5! This makes sense as this is where the axons subserving the "extraordinary" tactile sensitivity of the elephant trunk would be found (in the standard model of mammalian brainstem anatomy). Interestingly, the peripherin immunostaining in the elephant is clearly lamellated...this coincides precisely with the description of the trigeminal sensory nuclei in the elephant by Maskeo et al (2013) as pointed out by the authors in their rebuttal. Errante et al (1998) also point out peripherin immunostaining in the inferior olive, but according to the authors this is only "weakly present" in the elephant IOM/VsensR. This latter point is crucial. Surely if the elephant has an extraordinary sensory innervation from the trunk, with 400 000 axons entering the brain, the VsensR/IOM should be highly peripherin-immunopositive, including the myelinated axon bundles?! In this sense, the authors argue against their own interpretation - either the elephant trunk is not a highly sensitive tactile organ, or the VsensR is not the trigeminal nuclei it is supposed to be. 

      Comment: We made sure that elephant climbing fibers are strongly peripherin-positive (our revised Figure 2). As we noted in already our previous ms, we see weak diffuse peripherin-reactivity in the trigeminal nucleus (the inferior olive according to the referee), but no peripherin-reactive axon bundles (i.e. climbing fibers) that are seen in the inferior olive of other species. We also see no peripherin-reactive axon bundles (i.e. the olivo-cerebellar tract) arriving in the trigeminal nucleus as the tissue surrounding the trigeminal nucleus is devoid of peripherin-reactivity. Again, this finding is incompatible with the referee’s ideas. As far as we can tell, the trigeminal fibers are not reactive for peripherin in the elephant, i.e. we did not observe peripherin-reactivity very close to the nerve entry, but unfortunately, we did not stain for peripherin-reactivity into the nerve. As the referee alludes to the absence of peripherin-reactivity in the trigeminal tract is a difference between rodents and elephants.

      Change: Our novel Figure 2.

      Summary: 

      (1) Comparative data of species closely related to elephants (Afrotherians) demonstrates that not all mammals exhibit the "serrated" appearance of the principal nucleus of the inferior olive. 

      (2) The location of the IO and Vsens as reported in the current study (IOR and VsensR) would require a significant, and unprecedented, rearrangement of the brainstem in the elephants independently. I argue that the underlying molecular and genetic changes required to achieve this would be so extreme that it would lead to lethal phenotypes. Arguing that the "switcheroo" of the IO and Vsens does occur in the elephant (and no other mammals) and thus doesn't lead to lethal phenotypes is a circular argument that cannot be substantiated. 

      (3) Myelin stripes in the subnuclei of the inferior olivary nuclear complex are seen across all related mammals as shown above. Thus, the observation made in the elephant by the authors in what they call the VsensR, is similar to that seen in the IO of related mammals, especially when the IO takes on a more bulbous appearance. These myelin stripes are the origin of the olivocerebellar pathway, and are indeed calretinin immunopositive in the elephant as I show. 

      (4) What the authors see aligns perfectly with what has been described previously, the only difference being the names that nuclear complexes are being called. But identifying these nuclei is important, as any functional sequelae, as extensively discussed by the authors, is entirely dependent upon accurately identifying these nuclei. 

      (4) The peripherin immunostaining scores an own goal - if peripherin is marking peripheral nerves (as the authors and I believe it is), then why is the VsensR/IOM only "weakly positive" for this stain? This either means that the "extraordinary" tactile sensitivity of the elephant trunk is non-existent, or that the authors have misinterpreted this staining. That there is extensive staining in the fibre pathway dorsal and lateral to the IOR (which I call the spinal trigeminal tract), supports the idea that the authors have misinterpreted their peripherin immunostaining.

      (5) Evolutionary expediency. The authors argue that what they report is an expedient way in which to modify the organisation of the brainstem in the elephant to accommodate the "extraordinary" tactile sensitivity. I disagree. As pointed out in my first review, the elephant cerebellum is very large and comprised of huge numbers of morphologically complex neurons. The inferior olivary nuclei in all mammals studied in detail to date, give rise to the climbing fibres that terminate on the Purkinje cells of the cerebellar cortex. It is more parsimonious to argue that, in alignment with the expansion of the elephant cerebellum (for motor control of the trunk), the inferior olivary nuclei (specifically the principal nucleus) have had additional neurons added to accommodate this cerebellar expansion. Such an addition of neurons to the principal nucleus of the inferior olive could readily lead to the loss of the serrated appearance of the principal nucleus of the inferior olive, and would require far less modifications in the developmental genetic program that forms these nuclei. This type of quantitative change appears to be the primary way in which structures are altered in the mammalian brainstem. 

      Comment: We still disagree with the referee. We note that our conclusions rest on the analysis of 8 elephant brainstems, which we sectioned in three planes and stained with a variety of metabolic and antibody stains and in which assigned two structures (the inferior olive and the trigeminal nucleus). Most of the evidence cited by the referee stems from a single paper, in which 147 structures were identified based on the analysis of a single brainstem sectioned in one plane and stained with a limited set of antibodies. Our synopsis of the evidence is the following.

      (1) We agree with the referee that concerning brainstem position our scheme of a ventromedial trigeminal nucleus and a dorsolateral inferior olive deviates from the usual mammalian position of these nuclei (i.e. a dorsolateral trigeminal nucleus and a ventromedial inferior olive).

      (2) Cytoarchitectonics support our partitioning scheme. The compact cellular appearance of our ventromedial trigeminal nucleus is characteristic of trigeminal nuclei. The serrated appearance of our dorsolateral inferior olive is characteristic of the mammalian inferior olive; we acknowledge that the referee claims exceptions here. To our knowledge, nobody has described a mammalian trigeminal nucleus with a serrated appearance (which would apply to the elephant in case the trigeminal nucleus is situated dorsolaterally).

      (3) Metabolic staining (Cyto-chrome-oxidase reactivity) supports our partitioning scheme. Specifically, our ventromedial trigeminal nucleus shows intense Cyto-chrome-oxidase reactivity as it is seen in the trigeminal nuclei of trigeminal tactile experts.

      (4) Isomorphism. The myelin stripes on our ventromedial trigeminal nucleus are isomorphic to trunk wrinkles. Isomorphism is a characteristic of somatosensory brain structures (barrel, barrelettes, nose-stripes, etc) and we know of no case, where such isomorphism was misleading.

      (5) The large-scale organization of our ventromedial trigeminal nuclei in anterior-posterior repeats is characteristic of the mammalian trigeminal nuclei. To our knowledge, no such organization has ever been reported for the inferior olive.

      (6) Connectivity analysis supports our partitioning scheme. According to our delineation of the elephant olivo-cerebellar tract, our dorsolateral inferior olive is connected via peripherin-positive climbing fibers to the cerebellum. In contrast, our ventromedial trigeminal nucleus (the referee’s inferior olive) is not connected via climbing fibers to the cerebellum.

      Change: As discussed, we advanced further evidence in this revision. Our partitioning scheme (a ventromedial trigeminal nucleus and a dorsolateral inferior olive) is better supported by data and makes more sense than the referee’s suggestion (a dorsolateral trigeminal nucleus and a ventromedial inferior olive). It should be published.

      Reviewer #3 (Public Review):

      Summary: 

      The study claims to investigate trunk representations in elephant trigeminal nuclei located in the brainstem. The researchers identify large protrusions visible from the ventral surface of the brainstem, which they examined using a range of histological methods. However, this ventral location is usually where the inferior olivary complex is found, which challenges the author's assertions about the nucleus under analysis. They find that this brainstem nucleus of elephants contains repeating modules, with a focus on the anterior and largest unit which they define as the putative nucleus principalis trunk module of the trigeminal. The nucleus exhibits low neuron density, with glia outnumbering neurons significantly. The study also utilizes synchrotron X-ray phase contrast tomography to suggest that myelin-stripe-axons traverse this module. The analysis maps myelin-rich stripes in several specimens and concludes that based on their number and patterning that they likely correspond with trunk folds; however this conclusion is not well supported if the nucleus has been misidentified. 

      Comment: The referee provides a summary of our work. The referee also notes that the correct identification of the trigeminal nucleus is critical to the message of our paper.

      Change: In line with these assessments we focused our revision efforts on the issue of trigeminal nucleus identification, please see our introductory comments and our response to Referee 2.

      Strengths: 

      The strength of this research lies in its comprehensive use of various anatomical methods, including Nissl staining, myelin staining, Golgi staining, cytochrome oxidase labeling, and synchrotron X-ray phase contrast tomography. The inclusion of quantitative data on cell numbers and sizes, dendritic orientation and morphology, and blood vessel density across the nucleus adds a quantitative dimension. Furthermore, the research is commendable for its high-quality and abundant images and figures, effectively illustrating the anatomy under investigation.

      Comment: We appreciate this positive assessment.

      Change: None

      Weaknesses: 

      While the research provides potentially valuable insights if revised to focus on the structure that appears to be inferior olivary nucleus, there are certain additional weaknesses that warrant further consideration. First, the suggestion that myelin stripes solely serve to separate sensory or motor modules rather than functioning as an "axonal supply system" lacks substantial support due to the absence of information about the neuronal origins and the termination targets of the axons. Postmortem fixed brain tissue limits the ability to trace full axon projections. While the study acknowledges these limitations, it is important to exercise caution in drawing conclusions about the precise role of myelin stripes without a more comprehensive understanding of their neural connections. 

      Comment: We understand these criticisms and the need for cautious interpretation. As we noted previously, we think that the Elife-publishing scheme, where critical referee commentary is published along with our ms, will make this contribution particularly valuable.

      Change: Our additional efforts to secure the correct identification of the trigeminal nucleus.

      Second, the quantification presented in the study lacks comparison to other species or other relevant variables within the elephant specimens (i.e., whole brain or brainstem volume). The absence of comparative data to different species limits the ability to fully evaluate the significance of the findings. Comparative analyses could provide a broader context for understanding whether the observed features are unique to elephants or more common across species. This limitation in comparative data hinders a more comprehensive assessment of the implications of the research within the broader field of neuroanatomy. Furthermore, the quantitative comparisons between African and Asian elephant specimens should include some measure of overall brain size as a covariate in the analyses. Addressing these weaknesses would enable a richer interpretation of the study's findings. 

      Comment: We understand, why the referee asks for additional comparative data, which would make our study more meaningful. We note that we already published a quantitative comparison of African and Asian elephant facial nuclei (Kaufmann et al. 2022). The quantitative differences between African and Asian elephant facial nuclei are similar in magnitude to what we observed here for the trigeminal nucleus, i.e. African elephants have about 10-15% more facial nucleus neurons than Asian elephants. The referee also notes that data on overall elephant brain size might be important for interpreting our data. We agree with this sentiment and we are preparing a ms on African and Asian elephant brain size. We find – unexpectedly given the larger body size of African elephants – that African elephants have smaller brains than Asian elephants. The finding might imply that African elephants, which have more facial nucleus neurons and more trigeminal nucleus trunk module neurons, are neurally more specialized in trunk control than Asian elephants.

      Change: We are preparing a further ms on African and Asian elephant brain size, a first version of this work has been submitted.

      Reviewer #4 (Public Review): 

      Summary: 

      The authors report a novel isomorphism in which the folds of the elephant trunk are recognizably mapped onto the principal sensory trigeminal nucleus in the brainstem. Further, they identifiy the enlarged nucleus as being situated in this species in an unusual ventral midline position. 

      Comment: The referee summarizes our work.

      Change: None.

      Strengths: 

      The identity of the purported trigeminal nucleus and the isomorphic mapping with the trunk folds is supported by multiple lines of evidence: enhanced staining for cytochrome oxidase, an enzyme associated with high metabolic activity; dense vascularization, consistent with high metabolic activity; prominent myelinated bundles that partition the nucleus in a 1:1 mapping of the cutaneous folds in the trunk periphery; near absence of labeling for the anti-peripherin antibody, specific for climbing fibers, which can be seen as expected in the inferior olive; and a high density of glia.

      Comment: The referee again reviews some of our key findings.

      Change: None. 

      Weaknesses: 

      Despite the supporting evidence listed above, the identification of the gross anatomical bumps, conspicuous in the ventral midline, is problematic. This would be the standard location of the inferior olive, with the principal trigeminal nucleus occupying a more dorsal position. This presents an apparent contradiction which at a minimum needs further discussion. Major species-specific specializations and positional shifts are well-documented for cortical areas, but nuclear layouts in the brainstem have been considered as less malleable. 

      Comment: The referee notes that our discrepancy with referee 2, needs to be addressed with further evidence and discussion, given the unusual position of both inferior olive and trigeminal nucleus in the partitioning scheme and that the mammalian brainstem tends to be positionally conservative. We agree with the referee. We note that – based on the immense size of the elephant trigeminal ganglion (50 g), half the size of a monkey brain – it was expected that the elephant trigeminal nucleus ought to be exceptionally large.

      Change: We did additional experimental work to resolve this matter: (i) We ascertained that elephant climbing fibers are strongly peripherin-positive. (ii) Based on elephant climbing fiber peripherin-reactivity we delineated the elephant olivo-cerebellar tract. We find that the olivo-cerebellar connects to the structure we refer to as inferior olive to the cerebellum. (iii) We also found that the trigeminal nucleus (the structure the referee refers to as inferior olive) appears to receive no climbing fibers. (iv) We provide indications that the tracing of the trigeminal nerve into the olivo-cerebellar tract by Maseko et al. 2023 was erroneous (Referee-Figure 1). These novel findings support our ideas.

      Reviewer #5 (Public Review): 

      After reading the manuscript and the concerns raised by reviewer 2 I see both sides of the argument - the relative location of trigeminal nucleus versus the inferior olive is quite different in elephants (and different from previous studies in elephants), but when there is a large disproportionate magnification of a behaviorally relevant body part at most levels of the nervous system (certainly in the cortex and thalamus), you can get major shifting in location of different structures. In the case of the elephant, it looks like there may be a lot of shifting. Something that is compelling is that the number of modules separated but the myelin bands correspond to the number of trunk folds which is different in the different elephants. This sort of modular division based on body parts is a general principle of mammalian brain organization (demonstrated beautifully for the cuneate and gracile nucleus in primates, VP in most of species, S1 in a variety of mammals such as the star nosed mole and duck-billed platypus). I don't think these relative changes in the brainstem would require major genetic programming - although some surely exists. Rodents and elephants have been independently evolving for over 60 million years so there is a substantial amount of time for changes in each l lineage to occur.

      I agree that the authors have identified the trigeminal nucleus correctly, although comparisons with more out groups would be needed to confirm this (although I'm not suggesting that the authors do this). I also think the new figure (which shows previous divisions of the brainstem versus their own) allows the reader to consider these issues for themselves. When reviewing this paper, I actually took the time to go through atlases of other species and even look at some of my own data from highly derived species. Establishing homology across groups based only on relative location is tough especially when there appears to be large shifts in relative location of structures. My thoughts are that the authors did an extraordinary amount of work on obtaining, processing and analyzing this extremely valuable tissue. They document their work with images of the tissue and their arguments for their divisions are solid. I feel that they have earned the right to speculate - with qualifications - which they provide. 

      Comment: The referee summarizes our work and appears to be convinced by the line of our arguments. We are most grateful for this assessment. We add, again, that the skeptical assessment of referee 2 will be published as well and will give the interested reader the possibility to view another perspective on our work.

      Change: None. 

      Recommendations for the authors: 

      Reviewer #1 (Recommendations For The Authors):

      With this manuscript being virtually identical to the previous version, it is possible that some of the definitive conclusions about having identified the elephant trigeminal nucleus and trunk representation should be moderated in a more nuanced manner, especially given the careful and experienced perspective from reviewers with first hand knowledge elephant neuroanatomy.

      Comment: We agree that both our first and second revisions were very much centered on the debate of the correct identification of the trigeminal nucleus and that our ms did not evolve as much in other regards. This being said we agree with Referee 2 that we needed to have this debate. We also think we advanced important novel data in this context (the delineation of elephant olivo-cerebellar tract through the peripherin-antibody).

      Changes: Our revised Figure 2. 

      The peripherin staining adds another level of argument to the authors having identified the trigeminal brainstem instead of the inferior olive, if differential expression of peripherin is strong enough to distinguish one structure from the other.

      Comment: We think we showed too little peripherin-antibody staining in our previous revision. We have now addressed this problem.

      Changes: Our revised Figure 2, i.e. the delineation of elephant olivo-cerebellar tract through the peripherin-antibody).

      There are some minor corrections to be made with the addition of Fig. 2., including renumbering the figures in the manuscript (e.g., 406, 521). 

      I continue to appreciate this novel investigation of the elephant brainstem and find it an interesting and thorough study, with the use of classical and modern neuroanatomical methods.

      Comment: We are thankful for this positive assessment.

      Reviewer #2 (Recommendations For The Authors):

      I do realise the authors are very unhappy with me and the reviews I have submitted. I do apologise if feelings have been hurt, and I do understand the authors put in a lot of hard work and thought to develop what they have; however, it is unfortunate that the work and thoughts are not correct. Science is about the search for the truth and sometimes we get it wrong. This is part of the scientific process and why most journals adhere to strict review processes of scientific manuscripts. As I said previously, the authors can use their data to write a paper describing and quantifying Golgi staining of neurons in the principal olivary nucleus of the elephant that should be published in a specialised journal and contextualised in terms of the motor control of the trunk and the large cerebellum of the elephant. 

      Comment: We appreciate the referee’s kind words. Also, no hard feelings from our side, this is just a scientific debate. In our experience, neuroanatomical debates are resolved by evidence and we note that we provide evidence strengthening our identification of the trigeminal nucleus and inferior olive. As far as we can tell from this effort and the substantial evidence accumulated, the referee is wrong.

      Reviewer #4 (Recommendations For The Authors):

      As a new reviewer, I have benefited from reading the previous reviews and Author response, even while having several new comments to add. 

      (1) The identification of the inferior olive and trigeminal nuclei is obviously center stage. An enlargement of the trigeminal nuclei is not necessarily problematic, given the published reports on the dramatic enlargement of the trigeminal nerve (Purkart et al., 2022). At issue is the conspicuous relocation of the trigeminal nuclei that is being promoted by Reveyaz et al. Conspicuous rearrangements are not uncommon; for example, primary sensory cortical fields in different species (fig. 1 in H.H.A. Oelschlager for dolphins; S. De Vreese et al. (2023) for cetaceans, L. Krubitzer on various species, in the context of evolution). The difficult point here concerns what looks like a rather conspicuous gross anatomical rearrangement, in BRAINSTEM - the assumption being that the brainstem bauplan is going to be specifically conservative and refractory to gross anatomical rearrangement. 

      Comment: We agree with the referee that the brainstem rearrangements are unexpected. We also think that the correct identification of nuclei needs to be at the center of our revision efforts.

      Change: Our revision provided further evidence (delineation of the olivo-cerebellar tract, characterization of the trigeminal nerve entry) about the identity of the nuclei we studied.

      Why would a major nucleus shift to such a different location? and how? Can ex vivo DTI provide further support of the correct identification? Is there other "disruption" in the brainstem? What occupies the traditional position of the trigeminal nuclei? An atlas-equivalent coronal view of the entire brainstem would be informative. The Authors have assembled multiple criteria to support their argument that the ventral "bumps" are in fact a translocated trigeminal principal nucleus: enhanced CO staining, enhanced vascularization, enhanced myelination (via Golgi stains and tomography), very scant labeling for a climbing fiber specific antibody ( anti-peripherin), vs. dense staining of this in the alternative structure that they identify as IO; and a high density of glia. Admittedly, this should be sufficient, but the proposed translocation (in the BRAINSTEM) is sufficiently startling that this is arguably NOT sufficient. <br /> The terminology of "putative" is helpful, but a more cogent presentation of the results and more careful discussion might succeed in winning over at least some of a skeptical readership. 

      Comment: We do not know, what led to the elephant brainstem rearrangements we propose. If the trigeminal nuclei had expanded isometrically in elephants from the ancestral pattern, one would have expected a brain with big lateral bumps, not the elephant brain with its big ventromedial bumps. We note, however, that very likely the expansion of the elephant trigeminal nuclei did not occur isometrically. Instead, the neural representation of the elephant nose expanded dramatically and in rodents the nose is represented ventromedially in the brainstem face representation. Thus, we propose a ‘ventromedial outgrowth model’ according to which the elephant ventromedial trigeminal bumps result from a ventromedially direct outgrowth of the ancestral ventromedial nose representation.

      We advanced substantially more evidence to support our partitioning scheme, including the delineation of the olivo-cerebellar tract based on peripherin-reactivity. We also identified problems in previous partitioning schemes, such as the claim that the trigeminal nerve continues into the ~4x smaller olivocerebellar tract (Referee-Figure 1C, D); we think such a flow of fibers, (which is also at odds with peripherin-antibody-reactivity and the appearance of nerve and olivocerebellar tract), is highly unlikely if not physically impossible. With all that we do not think that we overstate our case in our cautiously presented ms.

      Change: We added evidence on the identification of elephant trigeminal nuclei and inferior olive.

      (2) Role of myelin. While the photos of myelin are convincing, it would be nice to have further documentation. Gallyas? Would antibodies to MBP work? What is the myelin distribution in the "standard" trigeminal nuclei (human? macaque or chimpanzee?). What are alternative sources of the bundles? Regardless, I think it would be beneficial to de-emphasize this point about the role of myelin in demarcating compartments. <br /> I would in fact suggest an alternative (more neutral) title that might highlight instead the isomorphic feature; for example, "An isomorphic representation of Trunk folds in the Elephant Trigeminal Nucleus." The present title stresses myelin, but figure 1 already focuses on CO. Additionally, the folds are actually mentioned almost in passing until later in the manuscript. I recommend a short section on these at the beginning of the Results to serve as a useful framework.

      Here I'm inclined to agree with the Reviewer, that the Authors' contention that the myelin stipes serve PRIMARILY to separate trunk-fold domains is not particularly compelling and arguably a distraction. The point can be made, but perhaps with less emphasis. After all, the fact that myelin has multiple roles is well-established, even if frequently overlooked. In addition, the Authors might make better use of an extensive relevant literature related to myelin as a compartmental marker; for example, results and discussion in D. Haenelt....N. Weiskopf (eLife, 2023), among others. Another example is the heavily myelinated stria of Gennari in primate visual cortex, consisting of intrinsic pyramidal cell axons, but where the role of the myelination has still not been elucidated. 

      Comment: (1) Documentation of myelin. We note that we show further identification of myelinated fibers by the fluorescent dye fluomyelin in Figure 4B. We also performed additional myelin stains as the gold-myelin stain after the protocol of Schmued (Referee-Figure 2). In the end, nothing worked quite as well to visualize myelin-stripes as the bright-field images shown in Figure 4A and it is only the images that allowed us to match myelin-stripes to trunk folds. Hence, we focus our presentation on these images.

      (2) Title: We get why the referee envisions an alternative title. This being said, we would like to stick with our current title, because we feel it highlights the major novelty we discovered.

      (3) We agree with many of the other comments of the referee on myelin phenomenology. We missed the Haenelt reference pointed out by the referee and think it is highly relevant to our paper

      Change: 1. Review image 2. Inclusion of the Haenelt-reference.

      Author response image 2.

      Myelin stripes of the elephant trunk module visualized by Gold-chloride staining according to Schmued. A, Low magnification micrograph of the trunk module of African elephant Indra stained with AuCl according to Schmued. The putative finger is to the left, proximal is to the right. Myelin stripes can easily be recognized. The white box indicates the area shown in B. B, high magnification micrograph of two myelin stripes. Individual gold-stained (black) axons organized in myelin stripes can be recognized.

      Schmued, L. C. (1990). A rapid, sensitive histochemical stain for myelin in frozen brain sections. Journal of Histochemistry & Cytochemistry,38(5), 717-720.

      Are the "bumps" in any way "analogous" to the "brain warts" seen in entorhinal areas of some human brains (G. W. van Hoesen and A. Solodkin (1993)? 

      Comment: We think this is a similar phenomenon.

      Change: We included the Hoesen and A. Solodkin (1993) reference in our discussion.

      At least slightly more background (ie, a separate section or, if necessary, supplement) would be helpful, going into more detail on the several subdivisions of the ION and if these undergo major alterations in the elephant.

      Comment: The strength of the paper is the detailed delineation of the trunk module, based on myelin stripes and isomorphism. We don’t think we have strong evidence on ION subdivisions, because it appears the trigeminal tract cannot be easily traced in elephants. Accordingly, we find it difficult to add information here.

      Change: None.

      Is there evidence from the literature of other conspicuous gross anatomical translocations, in any species, especially in subcortical regions? 

      Comment: The best example that comes to mind is the star-nosed mole brainstem. There is a beautiful paper comparing the star-nosed mole brainstem to the normal mole brainstem (Catania et al 2011). The principal trigeminal nucleus in the star-nosed mole is far more rostral and also more medial than in the mole; still, such rearrangements are minor compared to what we propose in elephants.

      Catania, Kenneth C., Duncan B. Leitch, and Danielle Gauthier. "A star in the brainstem reveals the first step of cortical magnification." PloS one 6.7 (2011): e22406.

      Change: None.

      (3) A major point concerns the isomorphism between the putative trigeminal nuclei and the trunk specialization. I think this can be much better presented, at least with more discussion and other examples. The Authors mention about the rodent "barrels," but it seemed strange to me that they do not refer to their own results in pig (C. Ritter et al., 2023) nor the work from Ken Catania, 2002 (star-nosed mole; "fingerprints in the brain") or other that might be appropriate. I concur with the Reviewer that there should be more comparative data. 

      Comment: We agree.

      Change: We added a discussion of other isomorphisms including the the star-nosed mole to our paper.

      (4) Textual organization could be improved. 

      The Abstract all-important Introduction is a longish, semi "run-on" paragraph. At a minimum this should be broken up. The last paragraph of the Introduction puts forth five issues, but these are only loosely followed in the Results section. I think clarity and good organization is of the upmost importance in this manuscript. I recommend that the Authors begin the Results with a section on the trunk folds (currently figure 5, and discussion), continue with the several points related to the identification of the trigeminal nuclei, and continue with a parallel description of ION with more parallel data on the putative trigeminal and IO structures (currently referee Table 1, but incorporate into the text and add higher magnification of nucleus-specific cell types in the IO and trigeminal nuclei). Relevant comparative data should be included in the Discussion.

      Comment: 1. We agree with the referee that our abstract needed to be revised. 2. We also think that our ms was heavily altered by the insertion of the new Figure 2, which complemented Figure 1 from our first submission and is concerned with the identification of the inferior olive. From a standpoint of textual flow such changes were not ideal, but the revisions massively added to the certainty with which we identify the trigeminal nuclei. Thus, although we are not as content as we were with the flow, we think the ms advanced in the revision process and we would like to keep the Figure sequence as is. 3. We already noted above that we included additional comparative evidence.

      Change: 1. We revised our abstract. 2. We added comparative evidence.

      Reviewer #5 (Recommendations For The Authors): 

      The data is invaluable and provides insights into some of the largest mammals on the planet. 

      Comment: We are incredibly thankful for this positive assessment.

    2. Reviewer #2 (Public Review):

      Here I submit my previous review and a great deal of additional information following on from the initial review and the response by the authors.

      * Initial Review *

      Assessment:

      This manuscript is based upon the unprecedented identification of an apparently highly unusual trigeminal nuclear organization within the elephant brainstem, related to a large trigeminal nerve in these animals. The apparently highly specialized elephant trigeminal nuclear complex identified in the current study has been classified as the inferior olivary nuclear complex in four previous studies of the elephant brainstem. The entire study is predicated upon the correct identification of the trigeminal sensory nuclear complex and the inferior olivary nuclear complex in the elephant, and if this is incorrect, then the remainder of the manuscript is merely unsupported speculation. There are many reasons indicating that the trigeminal nuclear complex is misidentified in the current study, rendering the entire study, and associated speculation, inadequate at best, and damaging in terms of understanding elephant brains and behaviour at worst.

      Original Public Review:

      The authors describe what they assert to be a very unusual trigeminal nuclear complex in the brainstem of elephants, and based on this, follow with many speculations about how the trigeminal nuclear complex, as identified by them, might be organized in terms of the sensory capacity of the elephant trunk.<br /> The identification of the trigeminal nuclear complex/inferior olivary nuclear complex in the elephant brainstem is the central pillar of this manuscript from which everything else follows, and if this is incorrect, then the entire manuscript fails, and all the associated speculations become completely unsupported.

      The authors note that what they identify as the trigeminal nuclear complex has been identified as the inferior olivary nuclear complex by other authors, citing Shoshani et al. (2006; 10.1016/j.brainresbull.2006.03.016) and Maseko et al (2013; 10.1159/000352004), but fail to cite either Verhaart and Kramer (1958; PMID 13841799) or Verhaart (1962; 10.1515/9783112519882-001). These four studies are in agreement, but the current study differs.

      Let's assume for the moment that the four previous studies are all incorrect and the current study is correct. This would mean that the entire architecture and organization of the elephant brainstem is significantly rearranged in comparison to ALL other mammals, including humans, previously studied (e.g. Kappers et al. 1965, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Volume 1 pp. 668-695) and the closely related manatee (10.1002/ar.20573). This rearrangement necessitates that the trigeminal nuclei would have had to "migrate" and shorten rostrocaudally, specifically and only, from the lateral aspect of the brainstem where these nuclei extend from the pons through to the cervical spinal cord (e.g. the Paxinos and Watson rat brain atlases), the to the spatially restricted ventromedial region of specifically and only the rostral medulla oblongata. According to the current paper the inferior olivary complex of the elephant is very small and located lateral to their trigeminal nuclear complex, and the region from where the trigeminal nuclei are located by others appears to be just "lateral nuclei" with no suggestion of what might be there instead.

      Such an extraordinary rearrangement of brainstem nuclei would require a major transformation in the manner in which the mutations, patterning, and expression of genes and associated molecules during development occur. Such a major change is likely to lead to lethal phenotypes, making such a transformation extremely unlikely. Variations in mammalian brainstem anatomy are most commonly associated with quantitative changes rather than qualitative changes (10.1016/B978-0-12-804042-3.00045-2).

      The impetus for the identification of the unusual brainstem trigeminal nuclei in the current study rests upon a previous study from the same laboratory (10.1016/j.cub.2021.12.051) that estimated that the number of axons contained in the infraorbital branch of the trigeminal nerve that innervate the sensory surfaces of the trunk is approximately 400 000. Is this number unusual? In a much smaller mammal with a highly specialized trigeminal system, the platypus, the number of axons innervating the sensory surface of the platypus bill skin comes to 1 344 000 (10.1159/000113185). Yet, there is no complex rearrangement of the brainstem trigeminal nuclei in the brain of the developing or adult platypus (Ashwell, 2013, Neurobiology of Monotremes), despite the brainstem trigeminal nuclei being very large in the platypus (10.1159/000067195). Even in other large-brained mammals, such as large whales that do not have a trunk, the number of axons in the trigeminal nerve ranges between 400,000 and 500,000 (10.1007/978-3-319-47829-6_988-1). The lack of comparative support for the argument forwarded in the previous and current study from this laboratory, and that the comparative data indicates that the brainstem nuclei do not change in the manner suggested in the elephant, argues against the identification of the trigeminal nuclei as outlined in the current study. Moreover, the comparative studies undermine the prior claim of the authors, informing the current study, that "the elephant trigeminal ganglion ... point to a high degree of tactile specialization in elephants" (10.1016/j.cub.2021.12.051). While clearly the elephant has tactile sensitivity in the trunk, it is questionable as to whether what has been observed in elephants is indeed "truly extraordinary".

      But let's look more specifically at the justification outlined in the current study to support their identification of the unusually located trigeminal sensory nuclei of the brainstem.

      (1) Intense cytochrome oxidase reactivity<br /> (2) Large size of the putative trunk module<br /> (3) Elongation of the putative trunk module<br /> (4) Arrangement of these putative modules correspond to elephant head anatomy<br /> (5) Myelin stripes within the putative trunk module that apparently match trunk folds<br /> (6) Location apparently matches other mammals<br /> (7) Repetitive modular organization apparently similar to other mammals.<br /> (8) The inferior olive described by other authors lacks the lamellated appearance of this structure in other mammals

      Let's examine these justifications more closely.

      (1) Cytochrome oxidase histochemistry is typically used as an indicative marker of neuronal energy metabolism. The authors indicate, based on the "truly extraordinary" somatosensory capacities of the elephant trunk, that any nuclei processing this tactile information should be highly metabolically active, and thus should react intensely when stained for cytochrome oxidase. We are told in the methods section that the protocols used are described by Purkart et al (2022) and Kaufmann et al (2022). In neither of these cited papers is there any description, nor mention, of the cytochrome oxidase histochemistry methodology, thus we have no idea of how this histochemical staining was done. In order to obtain the best results for cytochrome oxidase histochemistry, the tissue is either processed very rapidly after buffer perfusion to remove blood or in recently perfusion-fixed tissue (e.g., 10.1016/0165-0270(93)90122-8). Given: (1) the presumably long post-mortem interval between death and fixation - "it often takes days to dissect elephants"; (2) subsequent fixation of the brains in 4% paraformaldehyde for "several weeks"; (3) The intense cytochrome oxidase reactivity in the inferior olivary complex of the laboratory rat (Gonzalez-Lima, 1998, Cytochrome oxidase in neuronal metabolism and Alzheimer's diseases); and (4) The lack of any comparative images from other stained portions of the elephant brainstem; it is difficult to support the justification as forwarded by the authors. It is likely that the histochemical staining observed is background reactivity from the use of diaminobenzidine in the staining protocol. Thus, this first justification is unsupported.<br /> Justifications (2), (3), and (4) are sequelae from justification (1). In this sense, they do not count as justifications, but rather unsupported extensions.

      (4) and (5) These are interesting justifications, as the paper has clear internal contradictions, and (5) is a sequelae of (4). The reader is led to the concept that the myelin tracts divide the nuclei into sub-modules that match the folding of the skin on the elephant trunk. One would then readily presume that these myelin tracts are in the incoming sensory axons from the trigeminal nerve. However, the authors note that this is not the case: "Our observations on trunk module myelin stripes are at odds with this view of myelin. Specifically, myelin stripes show no tapering (which we would expect if axons divert off into the tissue). More than that, there is no correlation between myelin stripe thickness (which presumably correlates with axon numbers) and trigeminal module neuron numbers. Thus, there are numerous myelinated axons, where we observe few or no trigeminal neurons. These observations are incompatible with the idea that myelin stripes form an axonal 'supply' system or that their prime function is to connect neurons. What do myelin stripe axons do, if they do not connect neurons? We suggest that myelin stripes serve to separate rather than connect neurons." So, we are left with the observation that the myelin stripes do not pass afferent trigeminal sensory information from the "truly extraordinary" trunk skin somatic sensory system, and rather function as units that separate neurons - but to what end? It appears that the myelin stripes are more likely to be efferent axonal bundles leaving the nuclei (to form the olivocerebellar tract). This justification is unsupported.

      (6) The authors indicate that the location of these nuclei matches that of the trigeminal nuclei in other mammals. This is not supported in any way. In ALL other mammals in which the trigeminal nuclei of the brainstem have been reported they are found in the lateral aspect of the brainstem, bordered laterally by the spinal trigeminal tract. This is most readily seen and accessible in the Paxinos and Watson rat brain atlases. The authors indicate that the trigeminal nuclei are medial to the facial nerve nucleus, but in every other species, the trigeminal sensory nuclei are found lateral to the facial nerve nucleus. This is most salient when examining a close relative, the manatee (10.1002/ar.20573), where the location of the inferior olive and the trigeminal nuclei matches that described by Maseko et al (2013) for the African elephant. This justification is not supported.

      (7) The dual to quadruple repetition of rostro-caudal modules within the putative trigeminal nucleus as identified by the authors relies on the fact that in the neurotypical mammal, there are several trigeminal sensory nuclei arranged in a column running from the pons to the cervical spinal cord, these include (nomenclature from Paxinos and Watson in roughly rostral to caudal order) the Pr5VL, Pr5DM, Sp5O, Sp5I, and Sp5C. But, these nuclei are all located far from the midline and lateral to the facial nerve nucleus, unlike what the authors describe in the elephants. These rostrocaudal modules are expanded upon in Figure 2, and it is apparent from what is shown that the authors are attributing other brainstem nuclei to the putative trigeminal nuclei to confirm their conclusion. For example, what they identify as the inferior olive in figure 2D is likely the lateral reticular nucleus as identified by Maseko et al (2013). This justification is not supported.

      (8) In primates and related species, there is a distinct banded appearance of the inferior olive, but what has been termed the inferior olive in the elephant by other authors does not have this appearance, rather, and specifically, the largest nuclear mass in the region (termed the principal nucleus of the inferior olive by Maseko et al, 2013, but Pr5, the principal trigeminal nucleus in the current paper) overshadows the partial banded appearance of the remaining nuclei in the region (but also drawn by the authors of the current paper). Thus, what is at debate here is whether the principal nucleus of the inferior olive can take on a nuclear shape rather than evince a banded appearance. The authors of this paper use this variance as justification that this cluster of nuclei could not possibly be the inferior olive. Such a "semi-nuclear/banded" arrangement of the inferior olive is seen in, for example, giraffe (10.1016/j.jchemneu.2007.05.003), domestic dog, polar bear, and most specifically the manatee (a close relative of the elephant) (brainmuseum.org; 10.1002/ar.20573). This justification is not supported.

      Thus, all the justifications forwarded by the authors are unsupported. Based on methodological concerns, prior comparative mammalian neuroanatomy, and prior studies in the elephant and closely related species, the authors fail to support their notion that what was previously termed the inferior olive in the elephant is actually the trigeminal sensory nuclei. Given this failure, the justifications provided above that are sequelae also fail. In this sense, the entire manuscript and all the sequelae are not supported.

      What the authors have not done is to trace the pathway of the large trigeminal nerve in the elephant brainstem, as was done by Maseko et al (2013), which clearly shows the internal pathways of this nerve, from the branch that leads to the fifth mesencephalic nucleus adjacent to the periventricular grey matter, through to the spinal trigeminal tract that extends from the pons to the spinal cord in a manner very similar to all other mammals. Nor have they shown how the supposed trigeminal information reaches the putative trigeminal nuclei in the ventromedial rostral medulla oblongata. These are but two examples of many specific lines of evidence that would be required to support their conclusions. Clearly tract tracing methods, such as cholera toxin tracing of peripheral nerves cannot be done in elephants, thus the neuroanatomy must be done properly and with attention to detail to support the major changes indicated by the authors.

      So what are these "bumps" in the elephant brainstem?

      Four previous authors indicate that these bumps are the inferior olivary nuclear complex. Can this be supported?

      The inferior olivary nuclear complex acts "as a relay station between the spinal cord (n.b. trigeminal input does reach the spinal cord via the spinal trigeminal tract) and the cerebellum, integrating motor and sensory information to provide feedback and training to cerebellar neurons" (https://www.ncbi.nlm.nih.gov/books/NBK542242/). The inferior olivary nuclear complex is located dorsal and medial to the pyramidal tracts (which were not labelled in the current study by the authors but are clearly present in Fig. 1C and 2A) in the ventromedial aspect of the rostral medulla oblongata. This is precisely where previous authors have identified the inferior olivary nuclear complex and what the current authors assign to their putative trigeminal nuclei. The neurons of the inferior olivary nuclei project, via the olivocerebellar tract to the cerebellum to terminate in the climbing fibres of the cerebellar cortex.

      Elephants have the largest (relative and absolute) cerebellum of all mammals (10.1002/ar.22425), this cerebellum contains 257 x109 neurons (10.3389/fnana.2014.00046; three times more than the entire human brain, 10.3389/neuro.09.031.2009). Each of these neurons appears to be more structurally complex than the homologous neurons in other mammals (10.1159/000345565; 10.1007/s00429-010-0288-3). In the African elephant, the neurons of the inferior olivary nuclear complex are described by Maseko et al (2013) as being both calbindin and calretinin immunoreactive. Climbing fibres in the cerebellar cortex of the African elephant are clearly calretinin immunopositive and also are likely to contain calbindin (10.1159/000345565). Given this, would it be surprising that the inferior olivary nuclear complex of the elephant is enlarged enough to create a very distinct bump in exactly the same place where these nuclei are identified in other mammals?

      What about the myelin stripes? These are most likely to be the origin of the olivocerebellar tract and probably only have a coincidental relationship to the trunk. Thus, given what we know, the inferior olivary nuclear complex as described in other studies, and the putative trigeminal nuclear complex as described in the current study, is the elephant inferior olivary nuclear complex. It is not what the authors believe it to be, and they do not provide any evidence that discounts the previous studies. The authors are quite simply put, wrong. All the speculations that flow from this major neuroanatomical error are therefore science fiction rather than useful additions to the scientific literature.

      What do the authors actually have?<br /> The authors have interesting data, based on their Golgi staining and analysis, of the inferior olivary nuclear complex in the elephant.

      * Review of Revised Manuscript *

      Assessment:

      There is a clear dichotomy between the authors and this reviewer regarding the identification of specific structures, namely the inferior olivary nuclear complex and the trigeminal nuclear complex, in the brainstem of the elephant. The authors maintain the position that in the elephant alone, irrespective of all the published data on other mammals and previously published data on the elephant brainstem, these two nuclear complexes are switched in location. The authors maintain that their interpretation is correct, but this reviewer maintains that this interpretation is erroneous. The authors expressed concern that the remainder of the paper was not addressed by the reviewer, but the reviewer maintains that these sequelae to the misidentification of nuclear complexes in the elephant brainstem render any of these speculations irrelevant as the critical structures are incorrectly identified. It is this reviewer's opinion that this paper is incorrect. I provide a lot of detail below in order to provide support to the opinion I express.

      Public Review of Current Submission:

      As indicated in my previous review of this manuscript (see above), it is my opinion that the authors have misidentified, and indeed switched, the inferior olivary nuclear complex (IO) and the trigeminal nuclear complex (Vsens). It is this specific point only that I will address in this second review, as this is the crucial aspect of this paper - if the identification of these nuclear complexes in the elephant brainstem by the authors is incorrect, the remainder of the paper does not have any scientific validity.

      The authors, in their response to my initial review, claim that I "bend" the comparative evidence against them. They further claim that as all other mammalian species exhibit a "serrated" appearance of the inferior olive, and as the elephant does not exhibit this appearance, what was previously identified as the inferior olive is actually the trigeminal nucleus and vice versa.

      For convenience, I will refer to IOM and VsensM as the identification of these structures according to Maseko et al (2013) and other authors and will use IOR and VsensR to refer to the identification forwarded in the study under review.<br /> The IOM/VsensR certainly does not have a serrated appearance in elephants. Indeed, from the plates supplied by the authors in response (Referee Fig. 2), the cytochrome oxidase image supplied and the image from Maseko et al (2013) shows a very similar appearance. There is no doubt that the authors are identifying structures that closely correspond to those provided by Maseko et al (2013). It is solely a contrast in what these nuclear complexes are called and the functional sequelae of the identification of these complexes (are they related to the trunk sensation or movement controlled by the cerebellum?) that is under debate.

      Elephants are part of the Afrotheria, thus the most relevant comparative data to resolve this issue will be the identification of these nuclei in other Afrotherian species. Below I provide images of these nuclear complexes, labelled in the standard nomenclature, across several Afrotherian species.

      (A) Lesser hedgehog tenrec (Echinops telfairi)

      Tenrecs brains are the most intensively studied of the Afrotherian brains, these extensive neuroanatomical studies were undertaken primarily by Heinz Künzle. Below I append images (coronal sections stained with cresol violet) of the IO and Vsens (labelled in the standard mammalian manner) in the lesser hedgehog tenrec. It should be clear that the inferior olive is located in the ventral midline of the rostral medulla oblongata (just like the rat) and that this nucleus is not distinctly serrated. The Vsens is located in the lateral aspect of the medulla skirted laterally by the spinal trigeminal tract (Sp5). These images and the labels indicating structures correlate precisely with that provided by Künzle (1997, 10.1016/S0168- 0102(97)00034-5), see his Figure 1K,L. Thus, in the first case of a related species, there is no serrated appearance of the inferior olive, the location of the inferior olive is confirmed through connectivity with the superior colliculus (a standard connection in mammals) by Künzle (1997), and the location of Vsens is what is considered to be typical for mammals. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 1.

      (B) Giant otter shrew (Potomogale velox)

      The otter shrews are close relatives of the Tenrecs. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see hints of the serration of the IO as defined by the authors, but we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 2.

      (C) Four-toed sengi (Petrodromus tetradactylus)

      The sengis are close relatives of the Tenrecs and otter shrews, these three groups being part of the Afroinsectiphilia, a distinct branch of the Afrotheria. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see vague hints of the serration of the IO (as defined by the authors), and we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 3.

      (D) Rock hyrax (Procavia capensis)

      The hyraxes, along with the sirens and elephants form the Paenungulata branch of the Afrotheria. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per the standard mammalian anatomy. Here we see hints of the serration of the IO (as defined by the authors), but we also see evidence of a more "bulbous" appearance of subnuclei of the IO (particularly the principal nucleus), and we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 4.

      (E) West Indian manatee (Trichechus manatus)

      The sirens are the closest extant relatives of the elephants in the Afrotheria. Below I append images of cresyl violet (top) and myelin (bottom) stained coronal sections (taken from the University of Wisconsin-Madison Brain Collection, https://brainmuseum.org, and while quite low in magnification they do reveal the structures under debate) through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see the serration of the IO (as defined by the authors). Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 5.

      These comparisons and the structural identification, with which the authors agree as they only distinguish the elephants from the other Afrotheria, demonstrate that the appearance of the IO can be quite variable across mammalian species, including those with a close phylogenetic affinity to the elephants. Not all mammal species possess a "serrated" appearance of the IO. Thus, it is more than just theoretically possible that the IO of the elephant appears as described prior to this study.

      So what about elephants? Below I append a series of images from coronal sections through the African elephant brainstem stained for Nissl, myelin, and immunostained for calretinin. These sections are labelled according to standard mammalian nomenclature. In these complete sections of the elephant brainstem, we do not see a serrated appearance of the IOM (as described previously and in the current study by the authors). Rather the principal nucleus of the IOM appears to be bulbous in nature. In the current study, no image of myelin staining in the IOM/VsensR is provided by the authors. However, in the images I provide, we do see the reported myelin stripes in all stains - agreement between the authors and reviewer on this point. The higher magnification image to the bottom left of the plate shows one of the IOM/VsensR myelin stripes immunostained for calretinin, and within the myelin stripes axons immunopositive for calretinin are seen (labelled with an arrow). The climbing fibres of the elephant cerebellar cortex are similarly calretinin immunopositive (10.1159/000345565). In contrast, although not shown at high magnification, the fibres forming the Sp5 in the elephant (in the Maseko description, unnamed in the description of the authors) show no immunoreactivity to calretinin.

      Review image 6.

      Peripherin Immunostaining

      In their revised manuscript the authors present immunostaining of peripherin in the elephant brainstem. This is an important addition (although it does replace the only staining of myelin provided by the authors which is unusual as the word myelin is in the title of the paper) as peripherin is known to specifically label peripheral nerves. In addition, as pointed out by the authors, peripherin also immunostains climbing fibres (Errante et al., 1998). The understanding of this staining is important in determining the identification of the IO and Vsens in the elephant, although it is not ideal for this task as there is some ambiguity. Errante and colleagues (1998; Fig. 1) show that climbing fibres are peripherin-immunopositive in the rat. But what the authors do not evaluate is the extensive peripherin staining in the rat Sp5 in the same paper (Errante et al, 1998, Fig. 2). The image provided by the authors of their peripherin immunostaining (their new Figure 2) shows what I would call the Sp5 of the elephant to be strongly peripherin immunoreactive, just like the rat shown in Errant et al (1998), and moreover in the precise position of the rat Sp5! This makes sense as this is where the axons subserving the "extraordinary" tactile sensitivity of the elephant trunk would be found (in the standard model of mammalian brainstem anatomy). Interestingly, the peripherin immunostaining in the elephant is clearly lamellated...this coincides precisely with the description of the trigeminal sensory nuclei in the elephant by Maskeo et al (2013) as pointed out by the authors in their rebuttal. Errante et al (1998) also point out peripherin immunostaining in the inferior olive, but according to the authors this is only "weakly present" in the elephant IOM/VsensR. This latter point is crucial. Surely if the elephant has an extraordinary sensory innervation from the trunk, with 400,000 axons entering the brain, the VsensR/IOM should be highly peripherin-immunopositive, including the myelinated axon bundles?! In this sense, the authors argue against their own interpretation - either the elephant trunk is not a highly sensitive tactile organ, or the VsensR is not the trigeminal nuclei it is supposed to be.

      Summary:

      (1) Comparative data of species closely related to elephants (Afrotherians) demonstrates that not all mammals exhibit the "serrated" appearance of the principal nucleus of the inferior olive.

      (2) The location of the IO and Vsens as reported in the current study (IOR and VsensR) would require a significant, and unprecedented, rearrangement of the brainstem in the elephants independently. I argue that the underlying molecular and genetic changes required to achieve this would be so extreme that it would lead to lethal phenotypes. Arguing that the "switcheroo" of the IO and Vsens does occur in the elephant (and no other mammals) and thus doesn't lead to lethal phenotypes is a circular argument that cannot be substantiated.

      (3) Myelin stripes in the subnuclei of the inferior olivary nuclear complex are seen across all related mammals as shown above. Thus, the observation made in the elephant by the authors in what they call the VsensR, is similar to that seen in the IO of related mammals, especially when the IO takes on a more bulbous appearance. These myelin stripes are the origin of the olivocerebellar pathway and are indeed calretinin immunopositive in the elephant as I show.

      (4) What the authors see aligns perfectly with what has been described previously, the only difference being the names that nuclear complexes are being called. But identifying these nuclei is important, as any functional sequelae, as extensively discussed by the authors, is entirely dependent upon accurately identifying these nuclei.

      (4) The peripherin immunostaining scores an own goal - if peripherin is marking peripheral nerves (as the authors and I believe it is), then why is the VsensR/IOM only "weakly positive" for this stain? This either means that the "extraordinary" tactile sensitivity of the elephant trunk is non-existent, or that the authors have misinterpreted this staining. That there is extensive staining in the fibre pathway dorsal and lateral to the IOR (which I call the spinal trigeminal tract), supports the idea that the authors have misinterpreted their peripherin immunostaining.

      (5) Evolutionary expediency. The authors argue that what they report is an expedient way in which to modify the organisation of the brainstem in the elephant to accommodate the "extraordinary" tactile sensitivity. I disagree. As pointed out in my first review, the elephant cerebellum is very large and comprised of huge numbers of morphologically complex neurons. The inferior olivary nuclei in all mammals studied in detail to date, give rise to the climbing fibres that terminate on the Purkinje cells of the cerebellar cortex. It is more parsimonious to argue that, in alignment with the expansion of the elephant cerebellum (for motor control of the trunk), the inferior olivary nuclei (specifically the principal nucleus) have had additional neurons added to accommodate this cerebellar expansion. Such an addition of neurons to the principal nucleus of the inferior olive could readily lead to the loss of the serrated appearance of the principal nucleus of the inferior olive and would require far less modifications in the developmental genetic program that forms these nuclei. This type of quantitative change appears to be the primary way in which structures are altered in the mammalian brainstem.

    1. Author Response:

      Reviewer #1 (Public Review):

      Force sensing and gating mechanisms of the mechanically activated ion channels is an area of broad interest in the field of mechanotransduction. These channels perform important biological functions by converting mechanical force into electrical signals. To understand their underlying physiological processes, it is important to determine gating mechanisms, especially those mediated by lipids. The authors in this manuscript describe a mechanism for mechanically induced activation of TREK-1 (TWIK-related K+ channel. They propose that force induced disruption of ganglioside (GM1) and cholesterol causes relocation of TREK-1 associated with phospholipase D2 (PLD2) to 4,5-bisphosphate (PIP2) clusters, where PLD2 catalytic activity produces phosphatidic acid that can activate the channel. To test their hypothesis, they use dSTORM to measure TREK-1 and PLD2 colocalization with either GM1 or PIP2. They find that shear stress decreases TREK-1/PLD2 colocalization with GM1 and relocates to cluster with PIP2. These movements are affected by TREK-1 C-terminal or PLD2 mutations suggesting that the interaction is important for channel re-location. The authors then draw a correlation to cholesterol suggesting that TREK-1 movement is cholesterol dependent. It is important to note that this is not the only method of channel activation and that one not involving PLD2 also exists. Overall, the authors conclude that force is sensed by ordered lipids and PLD2 associates with TREK-1 to selectively gate the channel. Although the proposed mechanism is solid, some concerns remain.

      1) Most conclusions in the paper heavily depend on the dSTORM data. But the images provided lack resolution. This makes it difficult for the readers to assess the representative images.

      The images were provided are at 300 dpi. Perhaps the reviewer is referring to contrast in Figure 2? We are happy to increase the contrast or resolution.

      As a side note, we feel the main conclusion of the paper, mechanical activation of TREK-1 through PLD2, depended primarily on the electrophysiology in Figure 1b-c, not the dSTORM. But both complement each other.

      2) The experiments in Figure 6 are a bit puzzling. The entire premise of the paper is to establish gating mechanism of TREK-1 mediated by PLD2; however, the motivation behind using flies, which do not express TREK-1 is puzzling.

      The fly experiment shows that PLD mechanosensitivity is more evolutionarily conserved than TREK-1 mechanosensitivity. We should have made this clearer.

      -Figure 6B, the image is too blown out and looks over saturated. Unclear whether the resolution in subcellular localization is obvious or not.

      Figure 6B is a confocal image, it is not dSTORM. There is no dSTORM in Figure 6. This should have been made clear in the figure legend. For reference, only a few cells would fit in the field of view with dSTORM.

      -Figure 6C-D, the differences in activity threshold is 1 or less than 1g. Is this physiologically relevant? How does this compare to other conditions in flies that can affect mechanosensitivity, for example?

      Yes, 1g is physiologically relevant. It is almost the force needed to wake a fly from sleep (1.2-3.2g). See ref 33. Murphy Nature Pro. 2017.

      3) 70mOsm is a high degree of osmotic stress. How confident are the authors that a. cell health is maintained under this condition and b. this does indeed induce membrane stretch? For example, does this stimulation activate TREK-1?

      Yes, osmotic swell activates TREK1. This was shown in ref 19 (Patel et al 1998). We agree the 70 mOsm is a high degree of stress. This needs to be stated better in the paper.

      Reviewer #2 (Public Review):

      This manuscript by Petersen and colleagues investigates the mechanistic underpinnings of activation of the ion channel TREK-1 by mechanical inputs (fluid shear or membrane stretch) applied to cells. Using a combination of super-resolution microscopy, pair correlation analysis and electrophysiology, the authors show that the application of shear to a cell can lead to changes in the distribution of TREK-1 and the enzyme PhospholipaseD2 (PLD2), relative to lipid domains defined by either GM1 or PIP2. The activation of TREK-1 by mechanical stimuli was shown to be sensitized by the presence of PLD2, but not a catalytically dead xPLD2 mutant. In addition, the activity of PLD2 is increased when the molecule is more associated with PIP2, rather than GM1 defined lipid domains. The presented data do not exclude direct mechanical activation of TREK-1, rather suggest a modulation of TREK-1 activity, increasing sensitivity to mechanical inputs, through an inherent mechanosensitivity of PLD2 activity. The authors additionally claim that PLD2 can regulate transduction thresholds in vivo using Drosophila melanogaster behavioural assays. However, this section of the manuscript overstates the experimental findings, given that it is unclear how the disruption of PLD2 is leading to behavioural changes, given the lack of a TREK-1 homologue in this organism and the lack of supporting data on molecular function in the relevant cells.

      We agree, the downstream effectors of PLD2 mechanosensitivity are not known in the fly. Other anionic lipids have been shown to mediate pain see ref 46 and 47. We do not wish to make any claim beyond PLD2 being an in vivo contributor to a fly’s response to mechanical force.

      That said we do believe we have established a molecular function at the cellular level. We showed PLD is robustly mechanically activated in a cultured fly cell line (BG2-c2) Figure 6a of the manuscript. And our previous publication established mechanosensation of PLD (Petersen et. al. Nature Com 2016) through mechanical disruption of the lipids. At a minimum, the experiments show PLDs mechanosensitivity is evolutionarily better conserved across species than TREK1.

      This work will be of interest to the growing community of scientists investigating the myriad mechanisms that can tune mechanical sensitivity of cells, providing valuable insight into the role of functional PLD2 in sensitizing TREK-1 activation in response to mechanical inputs, in some cellular systems.

      The authors convincingly demonstrate that, post application of shear, an alteration in the distribution of TREK-1 and mPLD2 (in HEK293T cells) from being correlated with GM1 defined domains (no shear) to increased correlation with PIP2 defined membrane domains (post shear). These data were generated using super-resolution microscopy to visualise, at sub diffraction resolution, the localisation of labelled protein, compared to labelled lipids. The use of super-resolution imaging enabled the authors to visualise changes in cluster association that would not have been achievable with diffraction limited microscopy. However, the conclusion that this change in association reflects TREK-1 leaving one cluster and moving to another overinterprets these data, as the data were generated from static measurements of fixed cells, rather than dynamic measurements capturing molecular movements.

      When assessing molecular distribution of endogenous TREK-1 and PLD2, these molecules are described as "well correlated: in C2C12 cells" however it is challenging to assess what "well correlated" means, precisely in this context. This limitation is compounded by the conclusion that TREK-1 displayed little pair correlation with GM1 and the authors describe a "small amount of TREK-1 trafficked to PIP2". As such, these data may suggest that the findings outlined for HEK293T cells may be influenced by artefacts arising from overexpression.

      The changes in TREK-1 sensitivity to mechanical activation could also reflect changes in the amount of TREK-1 in the plasma membrane. The authors suggest that the presence of a leak currently accounts for the presence of TREK-1 in the plasma membrane, however they do not account for whether there are significant changes in the membrane localisation of the channel in the presence of mPLD2 versus xPLD2. The supplementary data provide some images of fluorescently labelled TREK-1 in cells, and the authors state that truncating the c-terminus has no effect on expression at the plasma membrane, however these data provide inadequate support for this conclusion. In addition, the data reporting the P50 should be noted with caution, given the lack of saturation of the current in response to the stimulus range.

      We thank the reviewer for his/her concern about expression levels. We did test TREK-1 expression. mPLD decreases TREK-1 expression ~two-fold (see Author response image 1). We did not include the mPLD data since TREK-1 was mechanically activated with mPLD. For expression to account for the loss of TREK-1 stretch current (Figure 1b), xPLD would need to block surface expression of TREK-1. The opposite was true, xPLD2 increased TREK-1 expression increased (see Figure S2c). Furthermore, we tested the leak current of TREK-1 at 0 mV and 0 mmHg of stretch. Basal leak current was no different with xPLD2 compared to endogenous PLD (Figure 1d; red vs grey bars respectively) suggesting TREK-1 is in the membrane and active when xPLD2 is present. If anything, the magnitude of the effect with xPLD would be larger if the expression levels were equal.

      Author response image 1.

      TREK expression at the plasma membrane. TREK-1 Fluorescence was measured by GFP at points along the plasma membrane. Over expression of mouse PLD2 (mPLD) decrease the amount of full-length TREK-1 (FL TREK) on the surface more than 2-fold compared to endogenously expressed PLD (enPLD) or truncated TREK (TREKtrunc) which is missing the PLD binding site in the C-terminus. Over expression of mPLD had no effect on TREKtrunc.

      Finally, by manipulating PLD2 in D. melanogaster, the authors show changes in behaviour when larvae are exposed to either mechanical or electrical inputs. The depletion of PLD2 is concluded to lead to a reduction in activation thresholds and to suggest an in vivo role for PA lipid signaling in setting thresholds for both mechanosensitivity and pain. However, while the data provided demonstrate convincing changes in behaviour and these changes could be explained by changes in transduction thresholds, these data only provide weak support for this specific conclusion. As the authors note, there is no TREK-1 in D. melanogaster, as such the reported findings could be accounted for by other explanations, not least including potential alterations in the activation threshold of Nav channels required for action potential generation. To conclude that the outcomes were in fact mediated by changes in mechanotransduction, the authors would need to demonstrate changes in receptor potential generation, rather than deriving conclusions from changes in behaviour that could arise from alterations in resting membrane potential, receptor potential generation or the activity of the voltage gated channels required for action potential generation.

      We are willing to restrict the conclusion about the fly behavior as the reviewers see fit. We have shown PLD is mechanosensitivity in a fly cell line, and when we knock out PLD from a fly, the animal exhibits a mechanosensation phenotype.

      This work provides further evidence of the astounding flexibility of mechanical sensing in cells. By outlining how mechanical activation of TREK-1 can be sensitised by mechanical regulation of PLD2 activity, the authors highlight a mechanism by which TREK-1 sensitivity could be regulated under distinct physiological conditions.

      Reviewer #3 (Public Review):

      The manuscript "Mechanical activation of TWIK-related potassium channel by nanoscopic movement and second messenger signaling" presents a new mechanism for the activation of TREK-1 channel. The mechanism suggests that TREK1 is activated by phosphatidic acids that are produced via a mechanosensitive motion of PLD2 to PIP2-enriched domains. Overall, I found the topic interesting, but several typos and unclarities reduced the readability of the manuscript. Additionally, I have several major concerns on the interpretation of the results. Therefore, the proposed mechanism is not fully supported by the presented data. Lastly, the mechanism is based on several previous studies from the Hansen lab, however, the novelty of the current manuscript is not clearly stated. For example, in the 2nd result section, the authors stated, "fluid shear causes PLD2 to move from cholesterol dependent GM1 clusters to PIP2 clusters and this activated the enzyme". However, this is also presented as a new finding in section 3 "Mechanism of PLD2 activation by shear."

      For PLD2 dependent TREK-1 activation. Overall, I found the results compelling. However, two key results are missing. 1. Does HEK cells have endogenous PLD2? If so, it's hard to claim that the authors can measure PLD2-independent TREK1 activation.

      Yes, there is endogenous PLD (enPLD). We calculated the relative expression of xPLD2 vs enPLD. xPLD2 is >10x more abundant (Fig. S3d of Pavel et al PNAS 2020, ref 14 of the current manuscript). Hence, as with anesthetic sensitivity, we expect the xPLD to out compete the endogenous PLD, which is what we see. This should have been described more carefully in this paper and the studies pointed out that establish this conclusion.

      1. Does the plasma membrane trafficking of TREK1 remain the same under different conditions (PLD2 overexpression, truncation)? From Figure S2, the truncated TREK1 seem to have very poor trafficking. The change of trafficking could significantly contribute to the interpretation of the data in Figure 1.

      If the PLD2 binding site is removed (TREK-1trunc), yes, the trafficking to the plasma membrane is unaffected by the expression of xPLD and mPLD (Figure R1 above). For full length TREK1 (FL-TREK-1), co-expression of mPLD decreases TREK expression (Figure R1) and co-expression with xPLD increases TREK expression (Figure S2). This is exactly opposite of what one would expect if surface expression accounted for the change in pressure currents. Hence, we conclude surface expression does not account for loss of TREK-1 mechanosensitivity with xPLD2.

      For shear-induced movement of TREK1 between nanodomains. The section is convincing, however I'm not an expert on super-resolution imaging. Also, it would be helpful to clarify whether the shear stress was maintained during fixation. If not, what is the time gap between reduced shear and the fixed state. lastly, it's unclear why shear flow changes the level of TREK1 and PIP2.

      Shear was maintained during the fixing. We do not know why shear changes PIP2 and TREK-1 levels. Presumably endocytosis and or release of other lipid modifying enzymes affect the system. The change in TREK-1 levels appears to be directly through an interaction with PLD as TREKtrunc is not affected by over expression of xPLD or mPLD.

      For the mechanism of PLD2 activation by shear. I found this section not convincing. Therefore, the question of how does PLD2 sense mechanical force on the membrane is not fully addressed. Particularly, it's hard to imagine an acute 25% decrease cholesterol level by shear - where did the cholesterol go? Details on the measurements of free cholesterol level is unclear and additional/alternative experiments are needed to prove the reduction in cholesterol by shear.

      The question “how does PLD2 sense mechanical force on the membrane” we addressed and published in Nature Comm. In 2016. The title of that paper is “Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D” see ref 13 Petersen et. al. PLD is a soluble protein associated to the membrane through palmitoylation. There is no transmembrane domain, which narrows the possible mechanism of its mechanosensation to disruption.

      The Nature Comm. reviewer identified as “an expert in PLD signaling” wrote the following of our data and the proposed mechanism:

      "This is a provocative report that identifies several unique properties of phospholipase D2 (PLD2). It explains in a novel way some long established observations including that the enzyme is largely regulated by substrate presentation which fits nicely with the authors model of segregation of the two lipid raft domains (cholesterol ordered vs PIP2 containing). Although PLD has previously been reported to be involved in mechanosensory transduction processes (as cited by the authors) this is the first such report associating the enzyme with this type of signaling... It presents a novel model that is internally consistent with previous literature as well as the data shown in this manuscript. It suggests a new role for PLD2 as a force transduction tied to the physical structure of lipid rafts and uses parallel methods of disruption to test the predictions of their model."

      Regarding cholesterol. We use a fluorescent cholesterol oxidase assay which we described in the methods. This is an appropriate assay for determining cholesterol levels in a cell which we use routinely. We have published in multiple journals using this method, see references 28, 30, 31. Working out the metabolic fate of cholesterol after sheer is indeed interesting but well beyond the scope of this paper. Furthermore, we indirectly confirmed our finding using dSTORM cluster analysis (Figure 3d-e). The cluster analysis shows a decrease in GM1 cluster size consistent with our previous experiments where we chemically depleted cholesterol and saw a similar decrease in cluster size (see ref 13). All the data are internally consistent, and the cholesterol assay is properly done. We see no reason to reject the data.

      Importantly, there is no direct evidence for "shear thinning" of the membrane and the authors should avoid claiming shear thinning in the abstract and summary of the manuscript.

      We previously established a kinetic model for PLD2 activation see ref 13 (Petersen et al Nature Comm 2016). In that publication we discussed both entropy and heat as mechanisms of disruption. Here we controlled for heat which narrowed that model to entropy (i.e., shear thinning) (see Figure 3c). We provide an overall justification below. But this is a small refinement of our previous paper, and we prefer not to complicate the current paper. We believe the proper rheological term is shear thinning. The following justification, which is largely adapted from ref 13, could be added to the supplement if the reviewer wishes.

      Justification: To establish shear thinning in a biological membrane, we initially used a soluble enzyme that has no transmembrane domain, phospholipase D2 (PLD2). PLD2 is a soluble enzyme and associated with the membrane by palmitate, a saturated 16 carbon lipid attached to the enzyme. In the absence of a transmembrane domain, mechanisms of mechanosensation involving hydrophobic mismatch, tension, midplane bending, and curvature can largely be excluded. Rather the mechanism appears to be a change in fluidity (i.e., kinetic in nature). GM1 domains are ordered, and the palmate forms van der Waals bonds with the GM1 lipids. The bonds must be broken for PLD to no longer associate with GM1 lipids. We established this in our 2016 paper, ref 13. In that paper we called it a kinetic effect, however we did not experimentally distinguish enthalpy (heat) vs. entropy (order). Heat is Newtonian and entropy (i.e., shear thinning) is non-Newtonian. In the current study we paid closer attention to the heat and ruled it out (see Figure 3c and methods). We could propose a mechanism based on kinetic disruption, but we know the disruption is not due to melting of the lipids (enthalpy), which leaves shear thinning (entropy) as the plausible mechanism.

      The authors should also be aware that hypotonic shock is a very dirty assay for stretching the cell membrane. Often, there is only a transient increase in membrane tension, accompanied by many biochemical changes in the cells (including acidification, changes of concentration etc). Therefore, I would not consider this as definitive proof that PLD2 can be activated by stretching membrane.

      Comment noted. We trust the reviewer is correct. In 1998 osmotic shock was used to activate the channel. We only intended to show that the system is consistent with previous electrophysiologic experiments.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We thank you for sending our manuscript for the second round of review.  We are encouraged by the comments from reviewer #2 that our supplementary work on naïve T cells and antibody blockade work satisfied their previous concerns and is important for our work.

      The Editors raised concerns that we have shared preliminary data on Nrn1 and AMPAR double knockout mice.  We apologize for our enthusiasm for these studies.  Because of the publication model by eLife, we shared that data not because we needed to persuade the reviewer for publication purposes but rather to agree with the reviewer that the molecular target of Nrn1 is important, and we are progressing in understanding this subject.


      The following is the authors’ response to the original reviews.

      To Reviewer #1:

      Thank you for your thorough review and comments on our work, which you described as “the role of neuritin in T cell biology studied here is new and interesting.”.  We have summarized your comments into two categories: biology and investigation approach, experimental rigor, and data presentation.

      Biology and Investigation approach comments:

      (1) Questions regarding the T cell anergy model:

      Major point “(4) Figure 1E-H. The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this. It would be useful to show that T cells are indeed anergic in this model, especially those that are OVA-specific. The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVA-specific cells, rather than by an anergic status.”

      T cell anergy is a well-established concept first described by Schwartz’s group. It refers to the hyporesponsive T cell functional state in antigen-experienced CD4 T cells (Chappert and Schwartz, 2010; Fathman and Lineberry, 2007; Jenkins and Schwartz, 1987; Quill and Schwartz, 1987).  Anergic T cells are characterized by their inability to expand and to produce IL2 upon subsequent antigen re-challenge. In this paper, we have borrowed the existing in vivo T cell anergy induction model used by Mueller’s group for T cell anergy induction (Vanasek et al., 2006).  Specifically, Thy1.1+ Ctrl or Nrn1-/- TCR transgenic OTII cells were co-transferred with the congenically marked Thy1.2+ WT polyclonal Treg cells into TCR-/- mice.  After anergy induction, the congenically marked TCR transgenic T cells were recovered by sorting based on Thy1.1+ congenic marker, and subsequently re-stimulation ex vivo with OVA323-339 peptide. We evaluated the T cell anergic state based on OTII cell expansion in vivo and IL2 production upon OVA323-339 restimulation ex vivo.  

      “The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this.”

      Because the anergy model by Mueller's group is well established (Vanasek et al., 2006), we did not feel that additional effort was required to validate this model as the reviewer suggested. Moreover, the limited IL2 production among the control cells upon restimulation confirms the validity of this model.

      “The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVAspecific cells, rather than by an anergic status”.

      Cells from Ctrl and Nrn1-/- mice on a homogeneous TCR transgenic (OTII) background were used in these experiments. The possibility that substantial variability of TCR expression or different expression levels of the transgenic TCR could have impacted IL2 production rather than anergy induction is unlikely.

      Overall, we used this in vivo anergy model to evaluate the Nrn1-/- T cell functional state in comparison to Ctrl cells under the anergy induction condition following the evaluation of Nrn1 expression, particularly in anergic T cells.  Through studies using this anergy model, we observed a significant change in Treg induction among OTII cells. We decided to pursue the role of Nrn1 in Treg cell development and function rather than the biology of T cell anergy as evidenced by subsequent experiments.

      Minor points “(6) On which markers are anergic cells sorted for RNAseq analysis?”

      Cells were sorted out based on their congenic marker marking Ctrl or Nrn1-/- OTII cells transferred into the host mice.  We did not specifically isolate anergic cells for sequencing.

      (2) Question regarding the validity of iTreg differentiation model.

      Major point: “(5) Figure 2A-C and Figure 3. The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance. In any case, they are different from pTreg cells generated in vivo. Working with pTreg may be challenging, that is why I would suggest generating data with purified nTreg. Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript. Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”.

      We thank Reviewer #1 for their feedback. While it is true that iTregs made in vitro and in vivo generated pTregs display several distinctions (e. g., differences in Foxp3 expression stability, for example), we strongly disagree with this statement by Revieweer#1 “The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance.”  The induced Treg cell (iTreg) model was established over 20 years ago (Chen et al., 2003; Zheng et al., 2002), and the model is widely adopted with over 2000 citations. Further, it has been instrumental in understanding different aspects of regulatory T cell biology (Hurrell et al., 2022; John et al., 2022; Schmitt and Williams, 2013; Sugiura et al., 2022).   

      Because we have observed reduced pTreg generation in vivo, we choose to use the in vitro iTreg model system to understand the mechanistic changes involved in Treg cell differentiation and function, specifically, neuritin’s role in this process. We have made no claim that iTreg cell biology is identical to pTreg generated in vivo or nTreg cells. However, the iTreg culture system has proved to be a good in vitro system for deciphering molecular events involved in complex processes. As such, it remains a commonly used approach by many research groups in the Treg cell field (Hurrell et al., 2022; John et al., 2022; Sugiura et al., 2022). Moreover, applying the iTreg in vitro culture system has been instrumental in helping us identify the cell electrical state change in Nrn1-/- CD4 cells and revealed the biological link between Nrn1 and the ionotropic AMPA receptor (AMPAR), which we will discuss in the subsequent discussion. It is technically challenging to use nTreg cells for T cell electrical state studies due to their heterogeneous nature from development in an in vivo environment and the effect of manipulation during the nTreg cell isolation process, which can both affect the T cell electrical state.   

      “Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript.” 

      We have also carried out nTreg studies in vitro in addition to iTreg cells. Similar to Gonzalez-Figueroa et al.'s findings, we did not observe differences in suppression function between Nrn1-/- and WT nTreg using the in vitro suppression assay. However, Nrn1-/- nTreg cells revealed reduced suppression function in vivo (Fig. 2D-L). In fact, Gonzalez-Figueroa et al. observed reduced plasma cell formation after OVA immunization in Treg-specific Nrn1-/- mice, implicating reduced suppression from Nrn1-/- follicular regulatory T (Tfr) cells. Thus, our observation of the reduced suppression function of Nrn1-/- nTreg toward effector T cell expansion, as presented in Fig. 2D-L, does not contradict the results from Gonzalez-Figueroa et al. Rather, the conclusions of these two studies agree that Nrn1 can play important roles in immune suppression observable in vivo that are not captured readily by the in vitro suppression assay.

      “Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”

      We have stated in the manuscript on page 7 line 208 that “Similar proportions of Foxp3+ cells were observed in Nrn1-/- and Ctrl cells under the iTreg culture condition, suggesting that Nrn1 deficiency does not significantly impact Foxp3+ cell differentiation”. In the revised manuscript, we will include the data on the proportion of Foxp3+ cells before iTreg restimulation.

      (3) Confirmation of transcriptomic data regarding amino acids or electrolytes transport change

      Minor point“(3) Would not it be possible to perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane? This would be a more interesting demonstration than transcriptomic data.”

      We appreciate Review# 1’s suggestion regarding “perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane”.  We have indeed already performed such experiments corroborating the transcriptomics data on differential amino acid and nutrient transporter expression. Specifically, we loaded either iTreg or Th0 cells with membrane potential (MP) dye and measured MP level change after adding the complete set of amino acids (complete AA).  Upon entry, the charge carried by AAs may transiently affect cell membrane potential. Different AA transporter expression patterns may show different MP change patterns upon AA entry, as we showed in Author response image 1. We observed reduced MP change in Nrn1-/- iTreg compared to the Ctrl, whereas in the context of Th0 cells, Nrn1-/- showed enhanced MP change than the Ctrl. We can certainly include these data in the revised manuscript.

      Author response image 1.

      Membrane potential change induced by amino acids entry. a. Nrn1-/- or WT iTreg cells loaded with MP dye and MP change was measured upon the addition of a complete set of AAs. b. Nrn1-/- or WT Th0 cells loaded with MP dye and MP change was measured upon the addition of a complete set of AAs.

      (4) EAE experiment data assessment

      Minor point ”(5) Figure 5F. How are cells re-stimulated? If polyclonal stimulation is used, the experiment is not interesting because the analysis is done with lymph node cells. This analysis should either be performed with cells from the CNS or with MOG restimulation with lymph node cells.”

      In the EAE study, the Nrn1-/- mice exhibit similar disease onset but a protracted non-resolving disease phenotype compared to the WT control mice.  Several reasons may contribute to this phenotype: 1. Enhanced T effector cell infiltration/persistence in the central nervous system (CNS); 2. Reduced Treg cell-mediated suppression to the T effector cells in the CNS; 3. Protracted non-resolving inflammation at the immunization site has the potential to continue sending T effector cells into CNS, contributing to persistent inflammation. Based on this reasoning, we examined the infiltrating T effector cell number and Treg cell proportion in the CNS.  We also restimulated cells from draining lymph nodes close to the inflammation site, looking for evidence of persistent inflammation.  When mice were harvested around day 16 after immunization, the inflammation at the local draining lymph node should be at the contraction stage.  We stimulated cells with PMA and ionomycin intended to observe all potential T effector cells involved in the draining lymph node rather than only MOG antigen-specific cells.  We disagree with Reviewer #1’s assumption that “This analysis should either be performed with cells from the CNS or with MOG restimulation with lymph node cells.”. We think the experimental approach we have taken has been appropriately tailored to the biological questions we intended to answer.

      Experimental rigor and data presentation.

      (1) data labeling and additional supporting data

      Major points

      (2) The authors use Nrn1+/+ and Nrn1+/- cells indiscriminately as control cells on the basis of similar biology between Nrn1+/+ and Nrn1+/- cells at homeostasis. However, it is quite possible that the Nrn1+/- cells have a phenotype in situations of in vitro activation or in vivo inflammation (cancer, EAE). It would be important to discriminate Nrn1+/- and Nrn1+/+ cells in the data or to show that both cell types have the same phenotype in these conditions too.

      (3) Figure 1A-D. Since the authors are using the Nrp1 KO mice, it would be important to confirm the specificity of the anti-Nrn1 mAb by FACS. Once verified, it would be important to add FACS results with this mAb in Figures 1A-C to have single-cell and quantitative data as well.

      Minor points  

      (1) Line 119, 120 of the text. It is said that one of the most up-regulated genes in anergic cells is Nrn1 but the data is not shown.

      (2) For all figures showing %, the titles of the Y axes are written in an odd way. For example, it is written "Foxp3% CD4". It would be more conventional and clearer to write "% Foxp3+ / CD4+" or "% Foxp3+ among CD4+".

      (4) For certain staining (Figure 3E, H) it would be important to show the raw data, in addition to MFI or % values.

      We can adapt the labeling and provide additional data, including Nrn1 staining on Treg cells and flow graphs for pmTOR and pS6 staining (Fig. 3H), as requested by Reviewer #1.

      (2) Experimental rigor:

      General comments:

      “However, it is disappointing that reading this manuscript leaves an impression of incomplete work done too quickly.”

      We were discouraged to receive the comment, “this manuscript leaves an impression of incomplete work done too quickly.” Our study of this novel molecule began without any existing biological tools such as antibodies, knockout mice, etc.  Over the past several years, we have established our own antibodies for Nrn1 detection, obtained and characterized Nrn1 knockout mice, and utilized multiple approaches to identify the molecular mechanism of Nrn1 function. Through the use of the in vitro iTreg system described in this manuscript, we identified the association of Nrn1 deficiency with cell electrical state change, potentially connected to AMPAR function. We have further corroborated our findings by generating Nrn1 and AMPAR T cell specific double knockout mice and confirmed that T cell specific AMPAR deletion could abrogate the phenotype caused by the Nrn1 deficiency (see Support Figure 2).  We did not include the double knockout data in the current manuscript because AMPAR function has not yet been studied thoroughly in T cell biology, and we feel this topic warrants examination in its own right.  However, the unpublished data support the finding that Nrn1 modulates the T cell electrical state and, consequently, metabolism, ultimately influencing tolerance and immunity.  In its current form, the manuscript represents the first characterization of the novel molecule Nrn1 in anergic cells, Tregs, and effector T cells. While this work has led to several exciting additional questions, we disagree that the novel characterization we have presented Is incomplete. We feel that our present data set, which squarely highlights Nrn1’s role as an important immune regulator while shedding unprecedented light on the molecular events involved, will be of considerable interest to a broad field of researchers.

      “Multiple models have been used, but none has been studied thoroughly enough to provide really conclusive and unambiguous data. For example, 5 different models were used to study T cells in vivo. It would have been preferable to use fewer, but to go further in the study of mechanisms.”

      We have indeed used multiple in vivo models to reveal Nrn1's function in Treg differentiation, Treg suppression function, T effector cell differentiation and function, and the overall impact on autoimmune disease. Because the impact of ion channel function is often context-dependent, we examined the biological outcome of Nrn1 deficiency in several in vivo contexts.  We would appreciate it if Reviewer#1 would provide a specific example, given the Nrn1 phenotype, of how to proceed deeper to investigate the electrical change in the in vivo models.

      “Major points

      (1) A real weakness of this work is the fact that in most of the results shown, there are few biological replicates with differences that are often small between Ctrl and Nrn1 -/-. The systematic use of student's t-test may lead to thinking that the differences are significant, which is often misleading given the small number of samples, which makes it impossible to know whether the distributions are Gaussian and whether a parametric test can be used. RNAseq bulk data are based on biological duplicates, which is open to criticism.”

      We respectfully disagree with Reviewer #1 on the question of statistical power and significance to our work. We have used 5-8 mice/group for each in vivo model and 3-4 technical replicates for the in vitro studies, with a minimum of 2-3 replicate experiments. These group sizes and replication numbers are in line with those seen in high-impact publications. While some differences between Ctrl and Nrn1-/- appear small, they have significant biological consequences, as evidenced by the various Nrn1-/- in vivo phenotypes. Furthermore, we believe we have subjected our data to the appropriate statistical tests to ensure rigorous analysis and representation of our findings.

      To Reviewer #2.

      We thank Reviewer #2 for the careful review of the manuscript. We especially appreciate the comments that “The characterizations of T cell Nrn1 expression both in vitro and in vivo are comprehensive and convincing. The in vivo functional studies of anergy development, Treg suppression, and EAE development are also well done to strengthen the notion that Nrn1 is an important regulator of CD4 responsiveness.”

      “The major weakness of this study stems from a lack of a clear molecular mechanism involving Nrn1. “  

      We fully understand this comment from Reviewer #2. The main mechanism we identified contributing to the functional defect of Nrn1-/- T cells involves novel effects on the electric and metabolic state of the cells. Although we referenced neuronal studies that indicate Nrn1 is the auxiliary protein for the ionotropic AMPA-type glutamate receptor (AMPAR) and may affect AMPAR function, we did not provide any evidence in this manuscript as the topic requires further in-depth study.   

      For the benefit of this discussion, we include our preliminary Nrn1 and AMPAR double knockout data (Author response image 2), which indicates that abrogating AMPAR expression can compensate for the defect caused by Nrn1 deficiency in vitro and in vivo. This preliminary data supports the notion that Nrn1 modulates AMPAR function, which causes changes in T cell electric and metabolic state, influencing T cell differentiation and function.  

      Author response image 2.

      Deletion of AMPAR expression in T cells compensates for the defect caused by Nrn1 deficiency. Nrn1-/- mice were crossed with T cell-specific AMPAR knockout mice (AMPARfl/flCD4Cre+) mice. The following mice were generated and used in the experiment: T cell specific AMPAR-knockout and Nrn1 knockout mice (AKONKO), Nrn1 knockout mice (AWTNKO), Ctrl mice (AWTNWT). a. Deletion of AMPAR compensates for the iTreg cell defect observed in Nrn1-/- CD4 cells. iTreg live cell proportion, cell number, and Ki67 expression among Foxp3+ cells 3 days after aCD3 restimulation. b. Deletion of AMPAR in T cells abrogates the enhanced autoimmune response in Nrn1-/- Mouse in the EAE disease model. Mouse relative weight change and disease score progression after EAE disease induction.  

      Ion channels can influence cell metabolism through multiple means (Vaeth and Feske, 2018; Wang et al., 2020). First, ion channels are involved in maintaining cell resting membrane potential. This electrical potential difference across the cell membrane is essential for various cellular processes, including metabolism (Abdul Kadir et al., 2018; Blackiston et al., 2009; Nagy et al., 2018; Yu et al., 2022). Second, ion channels facilitate the movement of ions across cell membranes. These ions are essential for various metabolic processes. For example, ions like calcium (Ca2+), potassium (K+), and sodium (Na+) play crucial roles in signaling pathways that regulate metabolism (Kahlfuss et al., 2020). Third, ion channel activity can influence cellular energy balance due to ATP consumption associated with ion transport to maintain ion balances (Erecińska and Dagani, 1990; Gerkau et al., 2019). This, in turn, can impact processes like ATP production, which is central to cellular metabolism. Thus, ion channel expression and function determine the cell’s bioelectric state and contribute to cell metabolism (Levin, 2021).

      Because the AMPAR function has not been thoroughly studied using a genetic approach in T cells, we do not intend to include the double knockout data in this manuscript before fully characterizing the T cell-specific AMPAR knockout mice.  

      “Although the biochemical and informatics studies are well-performed, it is my opinion that these results are inconclusive in part due to the absence of key "naive" control groups. This limits my ability to understand the significance of these data.

      Specifically, studies of the electrical and metabolic state of Nrn1-/- inducible Treg cells (iTregs) would benefit from similar data collected from wild-type and Nrn1-/- naive CD4 T cells.”

      We appreciate the reviewer’s comments. This comment reflects two concerns in data interpretation:

      (1) Are Nrn1-/- naïve T cells fundamentally different from WT cells? Does this fundamental difference contribute to the observed electrical and metabolic phenotype in iTreg or Th0 cells? This is a very good question we will perform the experiments as the reviewer suggested. While Nrn1 is expressed at a basal (low) level in naïve T cells, deletion of Nrn1 may cause changes in naïve T cell phenotype.   

      (2) Is the Nrn1-/- phenotype caused by Nrn1 functional deficiency or due to the secondary effect of Nrn1 deletion, such as non-physiological cell membrane structure changes?

      We have done the following experiment to address this concern.  We have cultured WT T cells in the presence of Nrn1 antibody and compared the outcome with Nrn1-/- iTreg cells (Figure 3-figure supplement 2D,E,F). WT iTreg cells under antibody blockade exhibited similar changes as Nrn1-/- iTreg cells, confirming the physiological relevance of the Nrn1-/- phenotype.

      Manuscript Revision based on the Reviewer’s suggestions:

      Reviewer #1:

      Major points (3) Figure 1A-D. Since the authors are using the Nrp1 KO mice, it would be important to confirm the specificity of the anti-Nrn1 mAb by FACS. 

      Following the suggestion by Reviewer#1, We have included the Nrn1 Ab staining on activated Nrn1-/- CD4 cells in Figure 1D. We have also added the staining of cell surface Nrn1 on Treg cells in Figure 1-figure supplement 1D.

      Major point: (5) “Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”

      In the revised manuscript, we have included the proportion of Foxp3+ cells among Nrn1-/- and ctrl iTreg cells developed under the iTreg culture condition in Figure 2A.

      Minor points  

      (2) For all figures showing %, the titles of the Y axes are written in an odd way. For example, it is written "Foxp3% CD4". It would be more conventional and clearer to write "% Foxp3+ / CD4+" or "% Foxp3+ among CD4+".

      Following reviewer#1’s suggestion, we have changed the Y-axis label in all the relevant figures.

      (3) Would not it be possible to perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane? This would be a more interesting demonstration than transcriptomic data.”

      We appreciate Review# 1’s suggestion regarding “perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane”.  We have used AAinduced cellular MP changes to confirm differential AA transporter expression patterns and their impact on cellular MP levels.  The data are included in the revised manuscript in Figure 3H and Figure 4K.

      (4) For certain staining (Figure 3E, H) it would be important to show the raw data, in addition to MFI or % values.

      We appreciated Reviewer #1’s suggestion and have included the histogram staining data for Figure 3E. We have moved the original Figure 3H to the supplemental figure and included the histogram staining data in Figure 3-figure supplement 1C.  Similarly, we have included the histogram staining data in Figure 4-figure supplement 1C.

      Reviewer#2:

      “Although the biochemical and informatics studies are well-performed, it is my opinion that these results are inconclusive in part due to the absence of key "naive" control groups. This limits my ability to understand the significance of these data.

      Specifically, studies of the electrical and metabolic state of Nrn1-/- inducible Treg cells (iTregs) would benefit from similar data collected from wild-type and Nrn1-/- naive CD4 T cells.”

      We greatly appreciate Reviewer#2’s suggestion and have carried out experiments on naïve CD4 cells derived from Nrn1-/- and WT mice. We have compared membrane potential, AA-induced MP change between Nrn1-/- and WT naïve T cells, and the metabolic state of Nrn1-/- and WT naïve T cells by carrying out glucose stress tests and mitochondria stress tests using a seahorse assay.  Moreover, to investigate whether the phenotype revealed in Nrn1-/- CD4 cells was caused by a secondary effect of cell membrane structure change due to Nrn1 deletion, we carried out Nrn1 antibody blockade in WT CD4 cells and investigated the phenotypic change. These new results are included in Figure 3-figure supplement 2.

      Reference:

      Abdul Kadir, L., M. Stacey, and R. Barrett-Jolley. 2018. Emerging Roles of the Membrane Potential: Action Beyond the Action Potential. Front Physiol 9:1661.

      Blackiston, D.J., K.A. McLaughlin, and M. Levin. 2009. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527-3536.

      Chappert, P., and R.H. Schwartz. 2010. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Current opinion in immunology 22:552-559.

      Chen, W., W. Jin, N. Hardegen, K.J. Lei, L. Li, N. Marinos, G. McGrady, and S.M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. The Journal of experimental medicine 198:1875-1886.

      Erecińska, M., and F. Dagani. 1990. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes. J Gen Physiol 95:591-616.

      Fathman, C.G., and N.B. Lineberry. 2007. Molecular mechanisms of CD4+ T-cell anergy. Nat Rev Immunol 7:599-609.

      Gerkau, N.J., R. Lerchundi, J.S.E. Nelson, M. Lantermann, J. Meyer, J. Hirrlinger, and C.R. Rose. 2019. Relation between activity-induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. The Journal of physiology 597:5687-5705.

      Hurrell, B.P., D.G. Helou, E. Howard, J.D. Painter, P. Shafiei-Jahani, A.H. Sharpe, and O. Akbari. 2022. PD-L2 controls peripherally induced regulatory T cells by maintaining metabolic activity and Foxp3 stability. Nature communications 13:5118.

      Jenkins, M.K., and R.H. Schwartz. 1987. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. The Journal of experimental medicine 165:302-319.

      John, P., M.C. Pulanco, P.M. Galbo, Jr., Y. Wei, K.C. Ohaegbulam, D. Zheng, and X. Zang. 2022. The immune checkpoint B7x expands tumor-infiltrating Tregs and promotes resistance to anti-CTLA-4 therapy. Nature communications 13:2506.

      Kahlfuss, S., U. Kaufmann, A.R. Concepcion, L. Noyer, D. Raphael, M. Vaeth, J. Yang, P. Pancholi, M. Maus, J. Muller, L. Kozhaya, A. Khodadadi-Jamayran, Z. Sun, P. Shaw, D. Unutmaz, P.B. Stathopulos, C. Feist, S.B. Cameron, S.E. Turvey, and S. Feske. 2020. STIM1-mediated calcium influx controls antifungal immunity and the metabolic function of nonpathogenic Th17 cells. EMBO molecular medicine 12:e11592.

      Levin, M. 2021. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184:1971-1989.

      Nagy, E., G. Mocsar, V. Sebestyen, J. Volko, F. Papp, K. Toth, S. Damjanovich, G. Panyi, T.A. Waldmann, A. Bodnar, and G. Vamosi. 2018. Membrane Potential Distinctly Modulates Mobility and Signaling of IL-2 and IL-15 Receptors in T Cells. Biophys J 114:2473-2482.

      Quill, H., and R.H. Schwartz. 1987. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. Journal of immunology (Baltimore, Md. : 1950) 138:3704-3712.

      Schmitt, E.G., and C.B. Williams. 2013. Generation and function of induced regulatory T cells. Frontiers in immunology 4:152.

      Sugiura, A., G. Andrejeva, K. Voss, D.R. Heintzman, X. Xu, M.Z. Madden, X. Ye, K.L. Beier, N.U. Chowdhury, M.M. Wolf, A.C. Young, D.L. Greenwood, A.E. Sewell, S.K. Shahi, S.N. Freedman, A.M. Cameron, P. Foerch, T. Bourne, J.C. Garcia-Canaveras, J. Karijolich, D.C. Newcomb, A.K. Mangalam, J.D. Rabinowitz, and J.C. Rathmell. 2022. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 55:65-81.e69.

      Vaeth, M., and S. Feske. 2018. Ion channelopathies of the immune system. Current opinion in immunology 52:39-50.

      Vanasek, T.L., S.L. Nandiwada, M.K. Jenkins, and D.L. Mueller. 2006. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. Journal of immunology (Baltimore, Md. : 1950) 176:5880-5889.

      Wang, Y., A. Tao, M. Vaeth, and S. Feske. 2020. Calcium regulation of T cell metabolism. Current opinion in physiology 17:207-223.

      Yu, W., Z. Wang, X. Yu, Y. Zhao, Z. Xie, K. Zhang, Z. Chi, S. Chen, T. Xu, D. Jiang, X. Guo, M. Li, J. Zhang, H. Fang, D. Yang, Y. Guo, X. Yang, X. Zhang, Y. Wu, W. Yang, and D. Wang. 2022. Kir2.1-mediated membrane potential promotes nutrient acquisition and inflammation through regulation of nutrient transporters. Nature communications 13:3544.

      Zheng, S.G., J.D. Gray, K. Ohtsuka, S. Yamagiwa, and D.A. Horwitz. 2002. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. Journal of immunology (Baltimore, Md. : 1950) 169:4183-4189.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):  

      Summary:

      In this study, Setogawa et al. employ an auditory discrimination task in freely moving rats, coupled with small animal imaging, electrophysiological recordings, and pharmacological inhibition/lesioning experiments to better understand the role of two striatal subregions: the anterior Dorsal Lateral Striatum (aDLS) and the posterior Ventrolateral Striatum (pVLS), during auditory discrimination learning. Attempting to better understand the contribution of different striatal subregions to sensory discrimination learning strikes me as a highly relevant and timely question, and the data presented in this study are certainly of major interest to the field. The authors have set up a robust behavioral task and systematically tackled the question about a striatal role in learning with multiple observational and manipulative techniques. Additionally, the structured approach the authors take by using neuroimaging to inform their pharmacological manipulation experiments and electrophysiological recordings is a strength.

      However, the results as they are currently presented are not easy to follow and could use some restructuring, especially the electrophysiology. Also, the main conclusion that the authors draw from the data, that aDLS and pVLS contribute to different phases of discrimination learning and influence the animal's response strategy in different ways, is not strongly supported by the data and deserves some additional caveats and limitations of the study in the discussion. 

      We appreciate the reviewer’s valuable feedback, which has been beneficial for improvement of our manuscript. In response to the reviewer’s comments, we have revised multiple parts of the manuscript, including explanations of electrophysiological data. We have also provided additional data to support our main conclusion and addressed caveats and limitations related to the data in the Discussion section. For more details, please refer to the responses to each comment.

      Comment 1: The authors have rigorously used PET neuroimaging, which is an interesting noninvasive method to track brain activity during behavioral states. However, in the case of a freely moving behavior where the scans are performed ~30 minutes after the behavioral task, it is unclear what conclusions can be drawn about task-specific brain activity. The study hinges on the neuroimaging findings that both areas of the lateral striatum (aDLS and pVLS) show increased activity during acquisition, but the DMS shows a reduction in activity during the late stages of behavior, and some of these findings are later validated with complementary experiments. However, the limitations of this technique can be further elaborated on in the discussion and the conclusions.

      As described in our response to the following two comments (a, b) from the reviewer, in the PET imaging study we first analyzed task-related activity by comparing <sup>18</sup>F-FDG uptake on different days of the auditory discrimination task with that on Day 4 of the single lever press task as a control. Next, we analyzed learning-dependent activity by comparing the uptake on different days of the discrimination task with that on Day 2 of the same task. Based on the results of both analyses, we concluded that the activity in the striatal subregions changes during the progress of discrimination learning. The behavioral significance of striatal subregions was tested by excitotoxic lesion and pharmacological blockade experiments. The explanation of imaging data analysis may have been insufficient to fully communicate dynamic changes in the activity of striatal subregions. Therefore, we have clarified our voxel-based statistical parametric analysis method to better explain the dynamic activity changes in the striatal subregions. Please refer to the following responses to comments 1 (a, b).

      Comment 1 (a): In commenting on the unilateral shifts in brain striatal activity during behavior, the authors use the single lever task as a control, where many variables affecting neuronal activity might be different than in the discriminatory task. The study might be better served using Day 2 measurements as a control against which to compare activity of all other sessions since the task structures are similar.

      We initially analyzed task-related activity by comparing <sup>18</sup>F-FDG uptake on one of Days 2, 6, 10, or 24 of auditory discrimination task with that on Day 4 of the single lever press task. This task was used as a control that does not require a decision process based on the auditory stimulus. We observed significant increases in the activity of the unilateral aDLS on Day 6 and in that of the bilateral pVLS on Day 10 of the discrimination task. We also observed a significant decrease in the unilateral DMS on Day 24 (see Figures 2F and 2G). Next, as suggested, we compared the uptake on one of Days 6, 10, or 24 with that on Day 2 as a control to evaluate learning-dependent activity. The activity showed significant increases in the bilateral aDLS on Day 6 and in the unilateral pVLS on Day 10, and a significant decrease in the bilateral DMS on Day 24 (see Figures 2H). 

      The reviewer has suggested a discrepancy in the activity of the unilateral or bilateral striatal subregions under certain conditions between the image data (shown in Figures 2F–H) and plot data (Figures 2J–L). This discrepancy is also suggested in the following Comment 1 (b). For example, in the image data the brain activity was increased in the unilateral (left) aDLS on Day 6 of the discrimination task as compared to Day 4 of the single lever task (Figure 2F). In the plot data, <sup>18</sup>F-FDG uptake reached a peak on Day 6 in both the left and right sides of the aDLS (Figure 2J), and the uptake in the left aDLS on Day 6 significantly increased relative to the value of the single lever press, whereas the value in the right aDLS on Day 6 tended to increase relative to that of the single lever press with no significant difference. The plot data showing the unilaterality in the aDLS activation relative to the single lever press are consistent with the image data. On the other hand, the <sup>18</sup>F-FDG uptake in the aDLS on Day 6 compared to the value on Day 2 was significantly increased in both sides. Similar observations were made in the activity in the pVLS on Day 10 compared to that on Day 2, as well as in the DMS activity on Day 24 relative to that of the single lever press. 

      Our analysis of both task-related and learning-dependent activities revealed dynamic changes in striatal subregions during discrimination learning. We investigated the brain regions in which <sup>18</sup>F-FDG uptake significantly increased or decreased during the learning processes, applying a statistical significance threshold (p < 0.001, uncorrected) and an extent threshold, by using a voxel-based statistical parametric analysis. In the image data, the voxels showing significant differences between two conditions are visualized on the brain template. The plot data show the amount of <sup>18</sup>FFDG uptake in the voxels, which was detected by the voxel-based analysis. The insufficient explanation of the data analysis of PET imaging in the initial manuscript may have led to a misunderstanding regarding the activity in the unilateral or bilateral striatal subregions. Therefore, we have revised the explanation for voxel-based statistical parametric analysis, adding a more detailed description of the thresholds in the text (page 7, lines 143–145) and Methods (page 27, lines 672–675).

      Comment 1 (b): From the plots in J, K, and L, it seems that shifts in activity in the different substructures are not unilateral but consistently bilateral, in contrast to what is mentioned in the text. Possibly the text reflects comparisons to the single lever task, and here again, I would emphasize comparing within the same task.

      Please see our response to the first comment (a) regarding our explanation of the consistency in the activity of the unilateral or bilateral striatal subregions between the image and plot data. We have also revised the explanation in the corresponding sections of the manuscript, as described above.

      Comment 2: In Figure 2, the authors present compelling data that chronic excitotoxic lesions with ibotenic acid in the aDLS, pVLS, and DMS produce differential effects on discrimination learning. However, the significant reduction in success rate of performance happens as early as Day 6 in both IBO groups in both aDLS and pVLS mice. This would seem to agree with conclusions drawn about the role of aDLS in the middle stages of learning in Figure 2, but not the pVLS, which only shows an increased activity during the late stages of the behavior.  

      Figure 3 shows the behavioral effects of ibotenic acid injections into striatal subregions in rats. For the aDLS injection, we performed two-way repeated ANOVA, which revealed a significant main effect of group or day and a significant interaction of group × day, and added the simple main effects between the treatments to the figure (Figure 3G). We observed significant differences in the success rate mainly at the middle stage of learning. In contrast, for the pVLS injection there was no significant interaction for group × day, although the main effects of group or day was significant by two-way repeated ANOVA (Figure 3H). Consequently, it was unclear as to when exactly the significant reduction occurred. These results indicate that the aDLS and pVLS are necessary for the acquisition of auditory discrimination, and that the aDLS is mainly required for the middle stage. Similar results were observed in the win-shift-win strategy in the aDLS and pVLS (Figures 3J and 3K).

      Next, we performed temporal inhibition of neuronal activity in striatal subregions by muscimol treatment in order to examine whether the activity in the subregions is linked with learning processes at different stages. In this experiment, muscimol was injected into the aDLS or pVLS at the middle or late stage, and the resultant effects on the success rate were investigated. The success rate in the muscimol-injected groups into the aDLS significantly decreased at the middle stage, but not at the early and late stages (Figure 4C). In contrast, the rate in the muscimol groups into the pVLS significantly decreased at the late stage, but not at the early or middle stages (Figure 4D). The results indicate that the aDLS and pVLS are mainly involved in the processes at the middle and late stages, respectively, and support the PET imaging data showing the activation of two striatal subregions at the various stages.

      We have now provided the results of simple main effects analysis for the aDLS lesion (Figures 3G and 3J) and revised the description of the Results section (page 8, lines 174–178, page 8, lines 186–188, and page 9, line 205-206) and Figure legend (page 44, lines 1000‒1003, and page 44, lines 1010–1013). We have also added the results of simple main effects analysis in Figure 3J.

      Comment 3: In Figure 4, the authors show interesting data with transient inactivation of subregions of the striatum with muscimol, validating their findings that the aDLS mediates the middle and the pVLS the late stages of learning, and the function of each area serves different strategies. However, the inference that aDLS inactivation suppresses the WSW strategy "moderately" is not reflected in the formal statistical value p=0.06. While there still may be a subtle effect, the authors would need to revise their conclusions appropriately to reflect the data. In addition, the authors could try a direct comparison between the success rate during muscimol inhibition in the mid-learning session between the aDLS and pVLS-treated groups in Figure 4C (middle) and 4D (middle). If this comparison is not significant, the authors should be careful to claim that inhibition of these two areas differentially affects behavior.

      In Figure 4E, aDLS inhibition showed a tendency to reduce slightly win-shift-win strategy at the middle stage (t[14] = 2.038, p = 0.061, unpaired Student’s t-test). In accordance with the reviewer’s comment, we changed the word “moderate” to “subtle” (page 12, line 272).

      In the temporal inhibition of the striatal subregions, the aDLS and pVLS experiments (panels C and D, respectively) were conducted separately. Since it is difficult to directly compare the data obtained from different experiments, we did not carry out a direct comparison of the success rate between the aDLS and pVLS injections. 

      Comment 4: The authors have used in vivo electrophysiological techniques to systematically investigate the roles of the aDLS and the pVLS in discriminatory learning, and have done a thorough analysis of responses with each phase of behavior over the course of learning. This is a commendable and extremely informative dataset and is a strength of the study. However, the result could be better organized following the sequence of events of the behavioral task to give the reader an easier structure to follow. Ideally, this would involve an individual figure to compare the responses in both areas to Cue, Lever Press, Reward Sound, and First Lick (in this order).

      We first showed changes in the proportion of event-related neurons during the acquisition phase (Figure S5). Next, we conducted a detailed analysis of the characteristics of aDLS and pVLS neuronal activity. Specifically, we found several types of event-related neurons, including: (1) reward sound-related neurons representing behavioral outcomes in the aDLS; (2) first licking-related neurons showing sustained activity after the reward in the aDLS and pVLS; and (3) cue-onset and cue-response neurons associated with the beginning and ending of a behavior in the pVLS.

      Descriptions of the characteristics of event-related neurons according to the sequence of events in a trial, as the reviewer has suggested, is another way to provide an easy structure for understandings on the electrophysiological data. However, we focused on the characteristics of aDLS neurons at the middle stage and pVLS neurons at the late stage of discrimination learning. Therefore, we explained the electrophysiological data based on the order of learning stages rather than the sequence of events in the trial, as described above.

      Comment 5: An important conceptual point presented in the study is that the aDLS neurons, with learning, show a reduction in firing rates and responsiveness to the first lick as well as the behavioral outcome, and don't play a role in other task-related events such as cue onset. However, the neuroimaging data in Figure 2 seems to suggest a transient enhancement of aDLS activity in the mid-stage of discriminatory learning, that is not reflected in the electrophysiology data. Is there an explanation for this difference?

      In the <sup>18</sup>F-FDG PET imaging study, the brain activity in the aDLS reached a peak at the middle stage of the acquisition phase of auditory discrimination (Figure 2J). In the multi-unit electrophysiological recording experiment, the firing activity of the aDLS neuron subpopulations related to the behavioral outcome showed no significant differences among the three stages (Figure 5E), while the proportion of these subpopulations were gradually reduced through the progress of learning stages (Figure 5F). The extent of the firing activity and length of the firing period of other subpopulations showing sustained activation after the reward appeared to show a learning-dependent decrease (Figures 6B and 6C), although the proportion of these subpopulations indicated no correlation with the progress of the learning (Figure 6D). Patterns of the temporal changes in brain activity in striatal subregions across the learning stages did not match completely the time variation in the property or proportion of specific event-related neurons. In our electrophysiological analysis, we identified well-isolated neurons from the striatal subregions during the auditory discrimination task, focusing on putative medium spiny neurons (Figures S4E–S4G). Based on the combinatorial pattern of the tone instruction cue (high tone/H or low tone /L), and lever press (right/R or left/L), we categorized the electrophysiological data into the four trials, including the HR, LL. LR, and HL. We identified HR or LL type neurons showing significant changes in the firing rate related to specific events, such as cue onset, choice response, reward sound, and first licking compared to the baseline firing rate. These neurons were further divided into two groups with increased or decreased activity relative to the baseline firing (Figures S5A and S5B). In the present study, we focused on event-related neurons with increased activity. Because of the analysis limited to neuronal subpopulations related to specific events with the increased activity, it is difficult to fully explain dynamic shifts in the brain activity of striatal subregions dependent on the progress of learning by the time variation of firing activity of individual event-related neurons. The activity of other subpopulations in the striatum may be involved in the shift in brain activity during the learning processes. In addition, recent studies have reported that the activity of glial cells influences the uptake of <sup>18</sup>FFDG (Zimmer et al., Nat Neurosci., 2017) and that these cells regulate spike timingdependent plasticity (Valtcheva and Venance, Nat Commun, 2016). Changes in glial cellular activity, through the control of synaptic plasticity, may partly contribute to the pattern formation of learning-dependent shifts in brain activity.

      To explain the difference in the time course between the brain activity and the firing activity of specific event-related neurons, we have added the aforementioned information to the Limitations section (pages 21 to 22, lines 512–539). 

      Comment 6: A significant finding of the study is that CO-HR and CO-LL responses are strikingly obvious in the pVLS, but not in the aDLS, in line with the literature that the posterior (sensory) striatum processes sound. This study also shows that responses to the highfrequency tone indicating a correct right-lever choice increase with learning in contrast to the low-frequency tone responses. To further address whether this difference arises from the task contingency, and not from the frequency representation of the pVLS, an important control would be to switch the cue-response association in a separate group of mice, such that high-frequency tones require a left lever press and vice versa. This would also help tease apart task-evoked responses in the aDLS, as I am given to understand all the recording sites were in the left striatum.

      We did not conduct an experiment switching cue-response association in the auditory discrimination task. However, the transient activity of cue onset-related neurons in the pVLS, as the reviewer has suggested, did not appear at the early stage of learning, but was observed in a learning-dependent manner (Figures 7A and S8E). In addition, the cue onset-HR activity showed a slight but notable difference between the HR and LL trials at the middle and late stages (Figure 7B), but there was no difference in activity in the HL and LR incorrect trials at the corresponding stages (Wilcoxon signed rank test; early, p = 0.375, middle, p = 0.931, and late, p = 0.668). These results suggest that the activity of cue onset-related neurons in the pVLS is associated with the stimulus and response association (task contingency) rather than the tone frequency.

      Reviewer #1 (Recommendations For The Authors):

      Minor comment 1: The readability and appeal of this study would be improved by explaining the various neuronal response types, and task-related events in slightly more detail in the results section, and minimizing the use of non-standard abbreviations wherever possible.

      As suggested, we have replaced the abbreviations related to electrophysiological events (CO, CR, RS, and FL) with the original terms, and improved the explanation for neuronal response types and event-related neurons. 

      Minor comment 2: It would be helpful to label DLS and VLS recordings more clearly on the figures instead of only in the figure caption.

      Thank you for pointing this out. The terms “aDLS” and “pVLS” have now been added to the panels showing firing pattern of neurons: “aDLS” in Figures 5D, 6A, S6A, S7A, S8A, S8B. S8C, and S8D; and “pVLS” in Figures 6F, 7A, 7D, S6D, S6E, S7F, S8E, and S8F.

      Minor comment 3: The authors suggest that aDLS HR- and LL- neurons are more sensitive to the behavioral outcome than those in pVLS (Fig 5 and S5). However, their conclusions are based on sample sizes as low as n=3 for each response type.

      We identified event-related neurons from single neurons detected in both the aDLS and pVLS using the same criteria. In the pVLS, we found a small number of neurons that increased their activity during the period when the reward sound is presented (Figures S6D and S6E) (6, 4, and 17 HR type neurons at the early, middle, and late stages, respectively; 3, 5, and 15 LL type neurons at the early, middle, and late stages, respectively). The number of LL type neurons at the early stage was particularly lower, as the reviewer has suggested. However, when we plotted the firing rates of these neurons around the event, their activity did not reflect behavioral outcome. In the aDLS, we detected a large number of reward sound-related neurons representing behavioral outcome (Figures 5 and S6A) (43, 37, and 44 HR type neurons at the early, middle, and late stages, respectively; 49, 62, and 59 LL type neurons at the early, middle, and late stages, respectively). These observations suggest that aDLS neurons are more sensitive to behavioral outcomes than pVLS neurons.

      Minor comment 4: Typo in Figure 4C and D, right plots, y-axis label: "subtracted".

      The typographic errors in Figures 4C–4H have now been corrected to “subtracted”.

      Reviewer #2 (Public Reviews):

      The study by Setogawa et al. aims to understand the role that different striatal subregions belonging to parallel brain circuits have in associative learning and discrimination learning (S-O-R and S-R tasks). Strengths of the study are the use of multiple methodologies to measure and manipulate brain activity in rats, from microPET imaging to excitotoxic lesions and multielectrode recordings across anterior dorsolateral (aDLS), posterior ventral lateral (pVLS)and dorsomedial (DMS) striatum. The main conclusions are that the aDLS promotes stimulus-response association and suppresses response-outcome associations. The pVLS is engaged in the formation and maintenance of the stimulus-response association. There is a lot of work done and some interesting findings however, the manuscript can be improved by clarifying the presentation and reasoning. The inclusion of important controls will enhance the rigor of the data interpretation and conclusions.

      We appreciate the reviewer’s valuable feedback, which has been beneficial in our endeavor to improve our manuscript. In response to the comments, we have revised the description of the experimental methods and underlying rationale, as well as the Results section. We have also provided additional data for some of the experiments that support the conclusions. For more details, please refer to the responses to each comment, included below.

      Reviewer #2 (Recommendations For The Authors):

      Comment 1: Generally, the manuscript is hard to read because of the cumbersome sentence structure, overuse of poorly defined acronyms, and lack of clarity on the methods used.

      According to the following comments (a)–(d), we have revised the corresponding text in the manuscript to clarify the sentence structure, definitions of terms, and methodology. 

      Comment 1 (a): For example, the single lever task used as a control for the auditory discrimination task could be introduced better, explaining the reasoning and the strategy for subtracting it from the images obtained during the discrimination phase at the start of the section.

      We analyzed task-related activity by comparing <sup>18</sup>F-FDG uptake on Days 2, 6, 10, or 24 of auditory discrimination task with that on Day 4 of the single lever press task. This task was used as a control that does not require a decision process based on the auditory stimulus. For clarification, we have provided a more detailed explanation of the flow of the single lever press task used in the PET experiment, including the rationale for employing this task as a control (page 6, lines 129–135). We have also revised the explanation of voxel-based statistical parametric analysis, adding a more detailed description of the thresholds (page 7, lines 143–145).

      Comment 1 (b): Another example is that important methodological information is buried deep in the text and complicates the interpretation of the results.

      We have revised the following sentences in the manuscript in order to provide clearer methodological information.

      (1) As described above, explanations for the single lever task (page 6, lines 129–135) and voxel-based statistical parametric analysis were added (page 7, lines 143–145). 

      (2) Definition of the early, middle, and late stages were described in the initial behavioral experiment (page 6, lines 113–119). 

      (3) Abbreviations related to behavioral strategies (WSW and LSL) and electrophysiological events (CO, CR, RS, and FL) were replaced with the original terms. 

      Comment 1 (c): The specie being studied is not stated in the abstract, nor the introduction, and only in the middle of the result section. Please include the specie in the abstract and the first part of the result also for clarity.

      We included the name of the species (rats) in the Abstract (page 3, line 47), at the end of the Introduction (page 5, lines 87–88) and at the beginning of the Results (page 5, line 109).

      Comment 1 (d): The last part of the intro is copied/pasted from the abstract. Please revise.

      The last part of the Introduction was revised accordingly (page 5, lines 97–104).

      Comment 2: The glucose microPET imaging is carried out 30 mins after the rats performed the task and it is expected to capture activation during the task. Is this correct? This assumption has to be validated with an experiment, which is a control showing a validation of the microPET approach used, and this way can report activation of brain areas during the task completed 20-30 minutes before. For example, V1 or A1 would be a control that we would expect to be activated during the task.

      Our PET experiment was conducted in accordance with previously established methods (Cui et al, Neuroimage, 2015), where rats received intravenous administration of <sup>18</sup>FFDG solution just before the start of the behavioral session, which lasted for 30 min. The <sup>18</sup>F-FDG uptake in the brain starts immediately and reaches the maximum level until 30 min after the administration, and the level is kept at least for 1 h (Mizuma et al., J Nucl Med, 2010). The rats were returned to their home cages, and a 30-min PET scan started 25 min after the session. The start time of the scan was chosen to allow for sufficient reduction of 18F radioactivity in arterial blood to increase the S/N ratio of the radioactivity (Mizuma et al., J Nucl Med, 2010). As shown in Table S1, we confirmed that the brain activity in the medial geniculate body (auditory thalamus) was increased on Days 6 and 10 in the acquisition phase, although the activity in the auditory cortex was not changed, which is consistent with the results of a previous study reporting that the auditory cortex does not show the causality for the pure-tone discrimination task (Gimenez et al., J Neurophysiol., 2015).

      Comment 3: Why are Days 2, 6, 10, and 13 chosen and compared for the behavior? Why aren't these the same days chosen in the other part of the study? It is unclear why authors focused on these days and why the focus changed later.

      We conducted daily training of the discrimination task. The success rate reached a plateau on Day 13 and was maintained until Day 24 (Figure 1B). Based on these results, we categorized the learning processes into the acquisition and learned phases, and then divided the acquisition phase into the early (< 60%), middle (60–80%), and late (> 80%) stages. In the PET experiment, we selected Days 2, 6, and 10 as the representatives of each stage during the acquisition phase. In addition, we also selected Day 24 for the learned phase.  However, no scan was performed on Day 13 due to the transition between the two phases.   

      Comment 4: (A) Is the learning and acquisition of the single lever press and discrimination task completed by day 4? Or are rats still learning? The authors claimed no changes in DMS activity between single lever press & discrimination, and therefore DMS isn't involved in learning. But to make this claim we should have measures that the learning has already happened, which I am not sure have been provided. (B) On this same point, the DMS activity is elevated on Day 4 of a single lever press compared to the aDLS and pVLS. So is it possible that the activity in DMS was already elevated on Day 4 of single lever press training? Especially given that DMS is supposedly involved in goal-directed behavior?

      (A) In the single lever press task, the number of lever presses plateaued on Day 2 (Figure 1C). In addition, we analyzed response time and its variability, which plateaued from Day 3 and Day 2, respectively (see Author response image 1). These results indicate that the learning in the task was completed by Day 4. In the auditory discrimination task, Day 4 corresponded to the transition period from the early-tomiddle stages of the acquisition phase, suggesting that learning was still progressing. 

      In the imaging analysis, we examined task-related activity by comparing <sup>18</sup>F-FDG uptake on either day of the discrimination task with that on Day 4 of the single lever press task, and did not find any changes in the brain activity in the DMS. In addition, we investigated learning-related activity, and the DMS activity did not change during acquisition phase. These results suggest that the DMS is not involved in the acquisition phase of learning. Furthermore, comparisons between Days 10 and Day 24 showed a decrease in DMS activity during the learned phase, suggesting that DMS activity was downregulated during the learned phase. In addition, chronic lesion in the DMS indicated that the success rate in the discrimination task was comparable between the control and lesioned groups (Figure 3I), whereas the response time lengthened throughout the learning in the lesioned group compared to the controls (Figure S1C). These results support our notion that the DMS contributes to the execution, but not learning, of discriminative behavior (Figure 3I and S1C).

      Author response image 1.

      Performance of single lever press task conducted before auditory discrimination task. (A) Number of lever presses. (B) Response time (Kruskal-Wallis test, χ<sup>2</sup> = 38.063, p = 2.7 × 10<sup>-8</sup>, post hoc Tukey–Kramer test, p = 0.047 for Day 1 vs. Day 2; p = 2.3 × 10<sup>-7</sup> for Day 1 vs. Day 3; and p = 4.0 × 10<sup>-6</sup> for Day 1 vs. Day 4; p = 0.019 for Day 2 vs. Day 3; p = 0.082 for Day 2 vs. Day 4; p = 0.951 for Day 3 vs. Day 4). (C) Response time variability (Kruskal-Wallis test, χ<sup>2</sup> = 28.929, p = 2.3 × <sup>-6</sup>, post hoc Tukey–Kramer test, p = 0.077 for Day 1 vs. Day 2; p = 5.7 × 10<sup>-6</sup> for Day 1 vs. Day 3; and p = 1.3 × 10<sup>-4</sup> for Day 1 vs. Day 4; p = 0.060 for Day 2 vs. Day 3; p = 0.253 for Day 2 vs. Day 4; p = 0.912 for Day 3 vs. Day 4). Data obtained from the task shown in Figure 2C are plotted as the median and quartiles with the maximal and minimal values. *p < 0.05, **p < 0.01, and ***p < 0.001.

      (B) We compared <sup>18</sup>F-FDG uptakes among striatal subregions on Day 4 of the single lever press task (334.8 ± 2.86, 299.0 ± 1.71, and 336.8 ± 2.18 for the aDLS, pVLS, and DMS, respectively; one-way ANOVA, F[2,41] = 104.767, p = 2.1 × 10<sup>-16</sup>). The uptake was comparable between the aDLS and DMS (post hoc Tukey-Kramer test, p = 0.058), but it was significantly lower in the pVLS compared to either of the other two subregions (post hoc Tukey-Kramer test, aDLS vs. pVLS, p = 5.1 × 10<sup>-9</sup>, post hoc Tukey-Kramer test, pVLS vs. DMS, p = 5.1 × 10<sup>-9</sup>). However, since we did not measure the brain activity in the single lever task outside of Day 4, it is unclear whether there was an increase in DMS activity during the acquisition of the task. Similarly, since we did not confirm the behavioral modes, which include goal-directed and habitual actions, it is difficult to conclude that the lever presses in the task were controlled by the goaldirected mode. However, our chronic lesion experiment suggests that the DMS is involved in the execution of discrimination behavior (Figure S1C). A clearer understanding of the DMS function in discrimination learning is an important challenge in the future.

      Comment 5: It seems like the procedure of microPET imaging affects performance on the task. The anesthesia used maybe? Figures 2C and D show evidence that the behavior was negatively affected on the days on which microPET imaging was performed after the training. Can the author clarify/comment?

      Isoflurane anesthesia may slightly reduce behavioral performance. We carried out anesthesia (median [interquartile range]: 6 [5–8] min) during the insertion of the catheter for FDG injection, and set a recovery period of at least 2 h until the beginning of the behavioral session, to minimize the impact of anesthesia. The performances in Figure 2E were similar to those in the intact rats (compared to Figures 1C–1F), suggesting that the procedure for PET scans does not affect the acquisition of discrimination. 

      We have added detailed information on the isoflurane anesthesia to the Methods section (page 26, lines 649–653).

      Comment 6: More on clarity. Section 3 of the results (muscimol inactivation) refers a lot to "the behavioral strategies" without really clarifying what these are - are they referring to WSW / LSL (which also could use a better introduction) or goal-directed/habitual or stimulus-response/stimulus-outcome?

      The dorsal striatum is involved in both behavioral strategies based on stimulus-response association and the response-outcome association during instrumental learning. To assess the impact of striatal lesions on the behavioral strategies, we analyzed the proportion of response attributed to two strategies in all responses of each session. One is the “win-shift-win” strategy, which is considered to reflect the behavioral strategy based on the stimulus-response association. In this strategy, after a correct response in the previous trial, the rats press the opposite lever in the current trial in response to a shift of the instruction cue, resulting in the correct response.  Another strategy is the “lose-shift-lose” strategy, which is considered to appear as a consequence of the behavioral strategy based on the response-outcome association. In this strategy, after an error response in the previous trial, the rats press the opposite lever in the current trial despite a shift of the instruction cue, leading to another error response.

      We have revised the explanations of the behavioral strategies in the section of the Results section (page 9, lines 192–201). 

      Comment 7: Related to WSW / LSL needing a better introduction, on lines 192/193 authors describe a result where they saw the WSW and LSL strategies increase and decrease, respectively, in saline-injected mice. Is the change in performance expected or an undesired effect of the saline injection? This is not clear now and it should be clarified.

      The explanations of the win-shift-win and lose-shift-lose strategies have been revised in the Results section on excitotoxic lesion experiment (page 9, lines 192–201) as described in our response to Comment 6. Win-shift-win is an indicator of correct responses, while lose-shift-lose indicates errors. Therefore, win-shift-win is predicted to increase, and lose-shift-lose decrease, as discrimination learning progresses. Indeed, in the results of the behavioral experiments, shown in Figure 1, both indicators change in a similar pattern to those in the results of the lesion experiments (Figure 3).

      We have added the explanation of the proportions of both strategies in intact rats (page 9, lines 203–204) with a supplementary figure (Figure S2) and accompanying legend (page 56, lines 1173–1177).

      Comment 8: Muscimol experiments - two questions/comments. How often do rats receive muscimol?

      In this section, muscimol is given on day 2 and on days after the animals hit a 60% or 80% success rate. Can the authors provide a mean and SEM for when are those injections?

      The first injection was conducted on Day 2 to target the early stage. The second and third injections were conducted on the days after the success rate had reached 60% and 80% for the first time through the training, respectively, to target the middle and late stage. respectively. These conditions are described in the Results (page 10, lines 234– 237) and Methods (page 26, lines 633–636). The mean and s.e.m. of the injection day at the middle and late stages were not significantly different between the saline and muscimol-injected groups into the aDLS (see Author response image 2A) and pVLS (see Author response image 2B).

      Author response image 2.

      Injection days during auditory discrimination learning. Injections with saline (SAL) and muscimol (MUS) into the aDLS (A) or pVLS (B) were performed after the success rate had reached 60% (middle stage) and 80% (late stage) for the first time through the training, respectively (A, Wilcoxon signed rank test, middle, Z = 65, p = 0.772, late, Z = 56.5, p = 0.242 for the aDLS; B, Wilcoxon signed rank test, middle, Z = 39, p = 1.000, late, Z = 43, p = 0.587). Data are indicated as the median and quartiles with the maximal and minimal values. 

      Comment 9: Muscimol experiments. Can the authors comment on the effects on performance vs learning? What happens on the days after Muscimol? Does performance bounce back or is it still impaired?

      We conducted a transient inhibition experiment with muscimol to examine whether the neuronal activity in the striatal subregions is linked with the processes at different stages. In this experiment, to lower the possibility that compensation of learning may occur during a session after the muscimol injection (Day N), we limited the session time to 15 min (45 trials) and evaluated the impact of the injection on the success rate at specific stages. The success rate in the muscimol-injected groups into the aDLS significantly decreased at the middle stage compared to the corresponding salineinjected groups, but not at the early and late stages (Figure 4C), and the rate in the muscimol groups into the pVLS significantly decreased at the late stage compared with the respective saline groups, but not at the early and middle stages (Figure 4D). Our results demonstrated that the aDLS and pVLS mainly function at the middle and late stages of the auditory discrimination task, respectively. 

      In addition, we here reply to comment 10 as for the comparison of success rates before (Day N-1) and after (Day N+1) the injections (see Author response image 3). We focused on two injections into the aDLS at the middle stage and into the pVLS at the late stage, in which the rate was reduced soon after the muscimol injection on Day N. The success rate for the two injections showed no significant main effect regarding group (saline/muscimol) or day (Days N-1/N+1) and no significant interactions for group × day. Moreover, the success rate was not significantly increased on Day N+1 as compared to Day N-1, even in the saline-injected control group, probably because of the limited session time soon after the injection. Therefore, we consider that it was difficult to define the effects of drug injection on the learning of auditory discrimination in our behavioral protocol for the transient inhibition experiment, and that the reduced rates observed in the muscimol-injected group on Day N mostly reflect the impacts of muscimol at least partly on the performance of discriminative behavior. 

      Author response image 3.

      Comparison of success rate between days before (Day N1) and after (Day N+1) the injections into striatal subregions. Success rate in the saline (SAL)- and muscimol (MUS)-injected groups into the aDLS (A) or pVLS (B) at the early, middle, and late stages of auditory discrimination learning (two-way repeated ANOVA; early, day, F[1,14] = 5.266, p = 0.038, group, F[1,14] = 0.276, p = 0.608, day × group, F[1,14] = 0.118, p = 0.736; middle, day, F[1,14] = 4.110, p = 0.062, group, F[1,14] = 0.056, p = 0.816, day × group, F[1,14] = 1.150, p = 0.302; late, day, F[1,14] = 6.408, p = 0.024, group, F[1,14] = 0.229, p = 0.640, day × group, F[1,14] = 1.277, p = 0.278 for the aDLS; and early, day, F[1,10] = 0.115, p = 0.746, group, F[1,10] = 2.414, p = 0.151, day × group, F[1,10] = 0.157, p = 0.700; middle, day, F[1,10] = 0.278, p = 0.610, group, F[1,10] = 0.511, p = 0.491, day × group, F[1,10] = 4.144, p = 0.069; late, day, F[1,10] = 0.151, p = 0.705, group, F[1,10] = 0.719, p = 0.416, day × group, F[1,10] = 0.717, p = 0.417 for the pVLS). Data are indicated as the mean ± s.e.m.

      Comment 10: Muscimol data has a pair before and after, can the authors show this comparison at early, middle, and late training? Not just the subtraction.

      The comparison of success rates before and after drug injection is shown in Author response image 3.

      Comment 11: Ephys recordings. These are complex figures and include a large number of acronyms. It would help to define them again and help the reader through these figures so the reader can focus on understanding the finding more than the figure presentation.

      We replaced the abbreviations related to electrophysiological events (CO, CR, RS, and FL) with the original terms, and improved the explanation in the text and figures. 

      Comment 12: Figure 7B/E - on correct trials, they see a difference in the cue response to high tone / low tone but no difference in the choice. This is the one that seemed like a topography issue.

      The transient activity of cue onset-related neurons in the pVLS did not appear at the early stage of learning, but was observed in a learning-dependent manner (Figures 7A and S8E). In addition, the cue onset-HR activity showed a slight but notable difference between the HR and LL trials at the middle and late stages (Figure 7B), whereas there was no difference between activities in the HL and LR incorrect trials at the corresponding stages (Wilcoxon signed rank test; early, p = 0.375, middle, p = 0.931, and late, p = 0.668). These results suggest that the cue onset-related neurons in the pVLS represents the stimulus and response association (task contingency) rather than the topography of tone frequency.

      Comment 13: Animals were normally trained for 60 minutes but on muscimol days only trained for 15 mins. On PET days only trained for 30 minutes. Ephys sessions were 60 mins. Is this correct? Why?

      We determined the session time for each experiment by considering both technical and behavioral aspects. In the initial behavioral experiment, the session time was set to 60 min per day. Under this condition, the rats acquired the discrimination learning within 13 days. In the imaging experiment, the session without a PET scan was conducted for 60 min, while the session with a PET scan was carried out for 30 min as described previously (Cui et al, Neuroimage, 2015). This time schedule produced a learning curve similar to that of the initial behavioral experiment. In the transient inhibition experiment, the sessions without drug injections lasted for 60 min. As described in our response to the comment 2, the time of the session soon after the injection was limited to 15 min to lower the possibility of compensation of learning during the session. In the chronic lesion and electrophysiological experiments, all sessions were conducted for 60 min, corresponding to the initial experiment. 

      References

      Mizuma, H., Shukuri, M., Hayashi, T., Watanabe, Y. & Onoe, H. Establishment of in vivo brain imaging method in conscious mice. Journal of Nuclear Medicine 51, 10681075 (2010).

      Cui, Y., et al. A voxel-based analysis of brain activity in high-order trigeminal pathway in the rat induced by cortical spreading depression. Neuroimage 108, 17-22 (2015).

      Zimmer, E.R., et al. [18 F] FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci 20, 393-395 (2017).

      Valtcheva, S. & Venance, L. Astrocytes gate Hebbian synaptic plasticity in the striatum. Nature communications 7, 13845 (2016).

      Gimenez T.L., Lorenc M., Jaramillo S. Adaptive categorization of sound frequency does not require the auditory cortex in rats. J Neurophysiol 114:1137-1145 (2015).

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript explores the impact of serotonin on olfactory coding in the antennal lobe of locusts and odor-evoked behavior. The authors use serotonin injections paired with an odorevoked palp-opening response assay and bath application of serotonin with intracellular recordings of odor-evoked responses from projection neurons (PNs).

      Strengths:

      The authors make several interesting observations, including that serotonin enhances behavioral responses to appetitive odors in starved and fed animals, induces spontaneous bursting in PNs, directly impacts PN excitability, and uniformly enhances PN responses to odors.

      Weaknesses:

      The one remaining issue to be resolved is the theoretical discrepancy between the physiology and the behavior. The authors provide a computational model that could explain this discrepancy and provide the caveat that while the physiological data was collected from the antennal lobe, but there could be other olfactory processing stages involved. Indeed other processing stages could be the sites for the computational functions proposed by the model. There is an additional caveat which is that the physiological data were collected 5-10 minutes after serotonin application whereas the behavioral data were collected 3 hours after serotonin application. It is difficult to link physiological processes induced 5 minutes into serotonin application to behavioral consequences 3 hours subsequent to serotonin application. The discrepancy between physiology and behavior could easily reflect the timing of action of serotonin (i.e. differences between immediate and longer-term impact).

      For our behavioral experiments, we waited 3 hours after serotonin injection to allow serotonin to penetrate through the layers of air sacks and the sheath, and for the locusts to calm down and recover their baseline POR activity levels. For the physiology experiments, we noticed that the quality of the patch decreased over time after serotonin introduction. Hence, it was difficult to hold cells for that long. However, the point raised by the reviewer is well-taken. We have performed additional experiments to show that the changes in POR levels to different odorants are rapid and can be observed within 15 minutes of injecting serotonin (Author response image 2) and that the physiological changes in PNs (bursting spontaneous activity, maintenance of temporal firing patterns, and increase odor-evoked responses) persists when the cells are held for longer duration (i.e. 3 hours akin to our behavioral experiments). It is worth noting that 3-hour in-vivo intracellular recordings are not easily achievable and come with many experimental constraints. So far, we have managed to record from two PNs that were held for this long and add them to this rebuttal to support our conclusions. (Author response image 1).

      Author response image 1.

      Spontaneous and odor-evoked responses in individual PNs remain consistent for three hours after serotonin introduction into the recording chamber/bath. (A) Representative intracellular recording showing membrane potential fluctuations in a projection neuron (PN) in the antennal lobe. Spontaneous and odor-evoked responses to four odorants (pink color bars, 4 s duration) are shown before (control) and after serotonin application (5HT). Voltage traces 30 minutes (30min), 1 hour (1h), 2 hours (2h), and 3 hours (3h) after 5HT application are shown to illustrate the persisting effect of serotonin during spontaneous and odor-evoked activity periods. (B) Rasterized spiking activities in two recorded PNs are shown. Spontaneous and odor-evoked responses are shown in all 5 consecutive trials. Note that the odor-evoked response patterns are maintained, but the spontaneous activity patterns are altered after serotonin introduction.

      Author response image 2.

      Palp-opening response (POR) patterns to different odorants remain consistent following serotonin introduction. The probability of PORs is shown as a bar plot for four different odorants; hexanol (green), benzaldehyde (blue), linalool (red), and ammonium (purple). PORs before serotonin injection (solid bars) are compared against response levels after serotonin injection (striped bars). As can be noted, PORs to the four odorants remain consistent when tested 15 minutes and 3 hours after (5HT) serotonin injection.

      Overall, the study demonstrates the impact of serotonin on odor-evoked responses of PNs and odor-guided behavior in locusts. Serotonin appears to have non-linear effects including changing the firing patterns of PNs from monotonic to bursting and altering behavioral responses in an odor-specific manner, rather than uniformly across all stimuli presented.

      We thank the reviewer for again providing very useful feedback for improving our manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigate the influence of serotonin on feeding behavior and electrophysiological responses in the antennal lobe of locusts. They find that serotonin injection changes behavior in an odor-specific way. In physiology experiments, they can show that projection neurons in the antennal lobe generally increase their baseline firing and odor responses upon serotonin injection. Using a modeling approach the authors propose a framework on how a general increase in antennal lobe output can lead to odor-specific changes in behavior.

      Strengths:

      This study shows that serotonin affects feeding behavior and odor processing in the antennal lobe of locusts, as serotonin injection increases activity levels of projection neurons. This study provides another piece of evidence that serotonin is a general neuromodulator within the early olfactory processing system across insects and even phyla.

      Weaknesses:

      I still have several concerns regarding the generalizability of the model and interpretation of results. The authors cannot provide evidence that serotonin modulation of projection neurons impacts behavior.

      This is true and likely to be true for any study linking neural responses to behavior. There are multiple circuits and pathways that would get impacted by a neuromodulator like serotonin. What we showed with our physiology is how spontaneous and odor-evoked responses in the very first neural network that receives olfactory sensory neuron input are altered by serotonin. Given the specificity of the changes in behavioral outcomes (i.e. odor-specific increase and decrease in an appetitive behavior) and non-specificity in the changes at the level of individual PNs (general increase in odor-evoked spiking activity), we presented a relatively simple computational model to address the apparent mismatch between neural and behavioral responses. (Author response image 4).

      The authors show that odor identity is maintained after 5-HT injection, however, the authors do not show if PN responses to different odors were differently affected after serotonin exposure.

      The PN responses to different odorants changed in a qualitatively similar fashion. (Author response image 3)

      Author response image 3.

      PN activity before and after 5HT application are compared for different cellodor combinations. As can be noted, the changes are qualitatively similar in all cases. After 5HT application, the baseline activity became more bursty, but the odor-evoked response patterns were robustly maintained for all odorants.

      Regarding the model, the authors show that the model works for odors with non-overlapping PN activation. However, only one appetitive, one neutral, and one aversive odor has been tested and modeled here. Can the fixed-weight model also hold for other appetitive and aversive odors that might share more overlap between active PNs? How could the model generate BZA attraction in 5-HT exposed animals (as seen in behavior data in Figure 1) if the same PNs just get activated more?

      Author response image 4.

      Testing the generality of the proposed computational model. To test the generality of the model proposed we used a published dataset [Chandak and Raman, 2023]: Neural dataset – 89 PN responses to a panel of twenty-two odorants; Behavioral dataset – probability of POR responses to the same twenty-two odorants. We built the model using just the three odorants overlapping between the two datasets: hexanol, benzaldehyde and linalool. The true probability of POR values of the twenty odorants and the POR probability predicted by the model are shown for all twenty-two odorants as a scatter plot. As can be noted, there is a high correlation (0.79) between the true and the predicted values.

      The authors should still not exclude the possibility that serotonin injections could affect behavior via modulation of other cell types than projection neurons. This should still be discussed, serotonin might rather shut down baseline activation of local inhibitory neurons - and thus lead to the interesting bursting phenotypes, which can also be seen in the baseline response, due to local PN-to-LN feedback.

      As we agreed, there could be other cells that are impacted by serotonin release. Our goal in this study was to characterize how spontaneous and odor-evoked responses in the very first neural network that receives olfactory sensory neuron input are altered by serotonin. Within this circuit, there are local inhibitory neurons (LNs), as correctly indicated by this reviewer. Surprisingly, our preliminary data indicates that LNs are not shut down but also have an enhanced odor-evoked neural response. (Author response image 5.) Further data would be needed to verify this observation and determine the mechanism that mediate the changes in PN excitability. Irrespective, since PN activity should incorporate the effects of changes in the local neuron responses and is the sole output from the antennal lobe that drives all downstream odor-evoked activity, we focused on them in this study.

      Author response image 5.

      Representative traces showing intracellular recording from a local neuron in the antennal lobe. Five consecutive trials are shown. Note that LNs in the locust antennal lobe are non-spiking. The LN activity before, during, and after the presentation of benzaldehyde and hexanol (colored bar; 4s) are shown. The Left and Right panels show LN activity before and after the application of 5HT. As can be noted, 5HT did not shut down odor-evoked activity in this local neuron.

      The authors did not fully tone down their claims regarding causality between serotonin and starved state behavioral responses. There is no proof that serotonin injection mimics starved behavioral responses.

      Specific minor issues:<br /> It is still unclear how naturalistic the chosen odor concentrations are. This is especially important as behavioral responses to different concentrations of odors are differently modulated after serotonin injection (Figure 2: Linalool and Ammonium). The new method part does not indicate the concentrations of odors used for electrophysiology.

      All odorants were diluted to 0.01-10% concentration by volume in either mineral oil or distilled water. This information is included in the Methods section. For most odorants used in the study, the lower concentrations only evoked a very weak neural response, and the higher concentrations evoked more robust responses. The POR responses for these odorants at various concentrations chosen are included in Figure 2. Note, that the responses to linalool and ammonium remained weak throughout the concentration changes, compared to hexanol and benzaldehyde.

      Did all tested PNs respond to all odorants?

      No, only a subset of them responses to each odorant. These responses have been well characterized in earlier publications [included refs].

      The authors do not show if PN responses to different odors were differently affected after serotonin exposure. They describe that ON responses were robust, but OFF responses were less consistent after 5-HT injection. Was this true across all odors tested? Example traces are shown, but the odor is not indicated in Figure 4A. Figure 4D shows that many odor-PN combinations did not change their peak spiking activity - was this true across odorants? In Figure 5 - are PNs ordered by odor-type exposure?

      Also, Figure 6A only shows example trajectories for odorants - how does the average look? Regarding the data used for the model - can the new dataset from the 82 odor-PN pairs reproduce the activation pattern of the previously collected dataset of 89 pairs?

      What is shown in Figure 6A is the trial-averaged response trajectory combining activities of all 82 odor-PN pairs. 82 odor-PN pair was collected intracellularly examining the responses to four odorants before and after 5HT application. The second dataset involving 89 PN responses to 22 odorants was collected extracellularly. They have qualitative similarities in each odorant activate a unique subset of those neurons.

      The authors toned down their claims that serotonin injection can mimic the starved state behavioral response. However, some sentences still indicate this finding and should also be toned down:

      last sentence of introduction - "In sum, our results provide a more systems-level view of how a specific neuromodulator (serotonin) alters neural circuits to produce flexible behavioral outcomes."

      We believe we showed this with our computational model, how uniform changes in the neural responses could lead to variable and odor-specific changes in behavioral PORs.

      discussion: "Finally, fed locusts injected with serotonin generated similar appetitive responses to food-related odorants as starved locusts indicating the role of serotonin in hunger statedependent modulation of odor-evoked responses." This claim is not supported.

      Figure 7 shows that the fed locusts had lower POR to hex and bza. The POR responses significantly increased after the 5HT application. However, we have rephrased this sentence to limit our claims to this result. "Finally, fed locusts injected with serotonin generated similar appetitive palp-opening responses to food-related odorants as observed in starved locusts”

      last results: "However, consistent with results from the hungry locusts, the introduction of serotonin increased the appetitive POR responses to HEX and BZA. Intriguingly, the appetitive responses of fed locusts treated with 5HT were comparable or slightly higher than the responses of hungry locusts to the same set of odorants."

      Again this sentence simply describes the result shown in Figure 7.

      In Figure 7 - BZA response seems unchanged in hungry and fed animals and only 5-HT injection enhances the response. There is only one example where 5-HT application and starvation induce the same change in behavior - N=1 is not enough to conclude that serotonin influences food-driven behaviors.

      The reviewer is ignoring the lack of changes to PORs to linalool and ammonium. Taken together, serotonin increased PORs to only two of the four odorants in starved locusts. The responses after 5HT modulation to these four odorants were similar in fed locusts treated with 5HT and starved locusts.

      Also, this seems to be wrongly interpreted in Figure 7: "It is worth noting that responses to LOOL and AMN, non-food related odorants with weaker PORs, remained unchanged in fed locusts treated with 5HT." The authors indicate a significant reduction in POR after 5-HT injection on LOOL response in Figure 7.

      Revised.<br /> It is worth noting that responses to LOOL and AMN, non-food related odorants with weaker PORs, and reduced in fed locusts treated with 5HT."

      Also, the newly added sentence at the end of the discussion does not make sense: "However, since 5HT increased behavioral responses in both fed and hungry locusts, the precise role of 5HT modulation and whether it underlies hunger-state dependent modulation of appetitive behavior still remains to be determined."<br /> The authors did not test 5-HT injection in starved animals

      The results shown in Figure 1 compare the POR responses of starved locusts before and after 5HT introduction.

      We again thank the reviewer for useful feedback to further improve our manuscript.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript explores the impact of serotonin on olfactory coding in the antennal lobe of locusts and odor-evoked behavior. The authors use serotonin injections paired with an odor-evoked palp-opening response assay and bath application of serotonin with intracellular recordings of odor-evoked responses from projection neurons (PNs).

      Strengths:

      The authors make several interesting observations, including that serotonin enhances behavioral responses to appetitive odors in starved and fed animals, induces spontaneous bursting in PNs, and uniformly enhances PN responses to odors. Overall, I had no technical concerns. Weaknesses:

      While there are several interesting observations, the conclusions that serotonin enhanced sensitivity specifically and that serotonin had feeding-state-specific effects, were not supported by the evidence provided. Furthermore, there were other instances in which much more clarification was needed for me to follow the assumptions being made and inadequate statistical testing was reported.

      Major concerns.

      • To enhance olfactory sensitivity, the expected results would be that serotonin causes locusts to perceive each odor as being at a relatively higher concentration. The authors recapitulate a classic olfactory behavioral phenomenon where higher odor concentrations evoke weaker responses which is indicative of the odors becoming aversive. If serotonin enhanced the sensitivity to odors, then the dose-response curve should have shifted to the left, resulting in a more pronounced aversion to high odor concentrations. However, the authors show an increase in response magnitude across all odor concentrations. I don't think the authors can claim that serotonin enhances the behavioral sensitivity to odors because the locusts no longer show concentration-dependent aversion. Instead, I think the authors can claim that serotonin induces increased olfactory arousal.

      The reviewer makes a valid point. Bath application of serotonin increased POR behavioral responses across all odor concentrations, and concentration-dependent aversion was also not observed. Furthermore, the monotonic relationship between projection neuron responses and the intensity of current injection is altered when serotonin is exogenously introduced (see Author response image 1; see below for more explanation). Hence, our data suggests that serotonin alters the dose-response relationship between neural/behavioral responses and odor intensity. As recommended, we have followed what the reviewer has suggested and revised our claim to serotonin inducing increase in olfactory arousal. The new physiology data has been added as Supplementary Figure 3 to the revised manuscript.

      • The authors report that 5-HT causes PNs to change from tonic to bursting and conclude that this stems from a change in excitability. However, excitability tests (such as I/V plots) were not included, so it's difficult to disambiguate excitability changes from changes in synaptic input from other network components.

      To confirm that the PN excitability did indeed change after serotonin application, we performed a new set of current-clamp recordings. In these experiments, we monitored the spiking activities in individual PNs as we injected different levels of current injections (200 – 1000 pico Amperes). Note that locust LNs that provide recurrent inhibition arborize and integrate inputs from a large number of sensory neurons and projection neurons. Therefore, activating a single PN should not activate the local neurons and therefore the antennal lobe network.

      We found that the total spiking activity monotonically increased with the magnitude of the current injection in all four PNs recorded (Author response image 1). However, after serotonin injection, we found that the spiking activity remained relatively stable and did not systematically vary with the magnitude of the current injection. While the changes in odor-evoked responses may incorporate both excitability changes in individual PNs and recurrent feedback inhibition through GABAergic LNs, these results from our current injection experiments unambiguously indicate that there are changes in excitability at the level of individual PNs. We have added this result to the revised manuscript.

      Author response image 1.

      Current-injection induced spiking activity in individual PNs is altered after serotonin application. (A) Representative intracellular recordings showing membrane potential fluctuations as a function of time for one projection neuron (PNs) in the locust antennal lobe. A two-second window when a positive 200-1000pA current was applied is shown. Firing patterns before (left) and after (right) serotonin application are shown for comparison. Note, the spiking activity changes after the 5HT application. The black bar represents the 20mV scale. (B) Dose-response curves showing the average number of action potentials (across 5 trials) during the 2second current pulse before (green) and after (purple) serotonin for each recorded PN. Note that the current intensity was systematically increased from 200 pA to 1000 pA. The (C) The mean number of spikes across the four recorded cells during current injection is shown. The color progression represents the intensity of applied current ranging 200pA (leftmost bar) to 1000pA (rightmost bar). The dose-response trends before (green) and after (purple) 5HT application are shown for comparison. The error bars represent SEM across the four cells.

      • There is another explanation for the theoretical discrepancy between physiology and behavior, which is that odor coding is further processing in higher brain regions (ie. Other than the antennal lobe) not studied in the physiological component of this study. This should at least be discussed.

      This is a valid argument. For our model of neural mapping onto behavior to work, we only need the odorant that evokes or suppresses PORs to activate a distinct set of neurons. Having said that, our extracellular recording results (Fig. 6E) indicate that hexanol (high POR) and linalool (low POR) do activate highly non-overlapping sets of PNs in the antennal lobe. Hence, our results suggest that the segregation of neural activity based on behavioral relevance already begins in the antennal lobe. We have added this clarification to the discussion section.

      • The authors cannot claim that serotonin underlies a hunger state-dependent modulation, only that serotonin impacts responses to appetitive odors. Serotonin enhanced PORs for starved and fed locusts, so the conclusion would be that serotonin enhances responses regardless of the hunger state. If the authors had antagonized 5-HT receptors and shown that feeding no longer impacts POR, then they could make the claim that serotonin underlies this effect. As it stands, these appear to be two independent phenomena.

      This is also a valid point. We have clarified this in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigate the influence of serotonin on feeding behavior and electrophysiological responses in the antennal lobe of locusts. They find that serotonin injection changes behavior in an odorspecific way. In physiology experiments, they can show that antennal lobe neurons generally increase their baseline firing and odor responses upon serotonin injection. Using a modeling approach the authors propose a framework on how a general increase in antennal lobe output can lead to odorspecific changes in behavior. The authors finally suggest that serotonin injection can mimic a change in a hunger state.

      Strengths:

      This study shows that serotonin affects feeding behavior and odor processing in the antennal lobe of locusts, as serotonin injection increases activity levels of antennal lobe neurons. This study provides another piece of evidence that serotonin is a general neuromodulator within the early olfactory processing system across insects and even phyla. Weaknesses:

      I have several concerns regarding missing control experiments, unclear data analysis, and interpretation of results.

      A detailed description of the behavioral experiments is lacking. Did the authors also provide a mineral oil control and did they analyze the baseline POR response? Is there an increase in baseline response after serotonin exposure already at the behavioral output level? It is generally unclear how naturalistic the chosen odor concentrations are. This is especially important as behavioral responses to different concentrations of odors are differently modulated after serotonin injection (Figure 2: Linalool and Ammonium).

      POR protocol: Sixth instar locusts (Schistocera americana) of either sex were starved for 24-48 hours before the experiment or taken straight from the colony and fed blades of grass for the satiated condition. Locusts were immobilized by placing them in the plastic tube and securing their body with black electric tape (see Author response image 2). Locusts were given 20 - 30 minutes to acclimatize after placement in the immobilization tube. As can be noted, the head of the locusts along with the antenna and maxillary palps protruded out of this immobilization tube so they can be freely moved by the locusts. Note that the maxillary palps are sensory organs close to the mouth parts that are used to grab food and help with the feeding process.

      It is worth noting that our earlier studies had shown that the presentation of ‘appetitive odorants’ triggers the locust to open their maxillary palps even when no food is presented (Saha et al., 2017; Nizampatnam et al., 2018; Nizampatnam et al., 2022; Chandak and Raman, 2023.) Furthermore, our earlies results indicate that the probability of palp opening varies across different odorants (Chandak and Raman, 2023). We chose four odorants that had a diverse range of palp-opening: supra-median (hexanol), median (benzaldehyde), and sub-median (linaool). Therefore, each locust in our experiments was presented with one concentration of four odorants (hexanol, benzaldehyde, linalool, and ammonium) in a pseudorandomized order. The odorants were chosen based on our physiology results such that they evoked different levels of spiking activities.

      The odor pulse was 4 s in duration and the inter-pulse interval was set to 60 s. The experiments were recorded using a web camera (Microsoft) placed right in front of the locusts. The camera was fully automated with the custom MATLAB script to start recording 2 seconds before the odor pulse and end recording at odor termination. An LED was used to track the stimulus onset/offset. The POR responses were manually scored offline. Responses to each odorant were scored a 0 or 1 depending on if the palps remained closed or opened. A positive POR was defined as a movement of the maxillary palps during the odor presentation time window as shown on the locust schematic (Main Paper Figure 1).

      Author response image 2.

      Pictures showing the behavior experiment setup and representative palp-opening responses in a locust.

      As the reviewer inquired, we performed a new series of POR experiments, where we explored POR responses to mineral oil and hexanol, before and after serotonin injection. For this study, we used 10 locusts that were starved 24-48 hours before the experiment. Note that hexanol was diluted at 1% (v/v) concentration in mineral oil. Our results reveal that locusts PORs to hexanol (~ 50% PORs) were significantly higher than those triggered by mineral oil (~10% PORs). Injection of serotonin increased the POR response rate to hexanol but did not alter the PORs evoked by mineral oil (Author response image 3).

      Author response image 3.

      Serotonin does not alter the palp-opening responses evoked by paraffin oil. The PORs before and after (5HT) serotonin injection are summarized and shown as a bar plot for hexanol and paraffin oil. Striped bars signify the data collected after 5HT injection. Significant differences are identified in the plot (one-tailed paired-sample t-test; (*p<0.05).

      Regarding recordings of potential PNs - the authors do not provide evidence that they did record from projection neurons and not other types of antennal lobe neurons. Thus, these claims should be phrased more carefully.

      In the locust antennal lobe, only the cholinergic projection neurons fire full-blown sodium spikes. The GABAergic local neurons only fire calcium ‘spikelets’ (Laurent, TINS, 1996; Stopfer et al., 2003; see Author response image 4 for an example). Hence, we are pretty confident that we are only recording from PNs. Furthermore, due to the physiological properties of the LNs, their signals being too small, they are also not detected in the extracellular recordings from the locust antennal lobe. Hence, we are confident with our claims and conclusion.

      Author response image 4.

      PN vs LN physiological differences: Left: A representative raw voltage traces recorded from a local neuron before, during, and after a 4-second odor pulse are shown. Note that the local neurons in the locust antennal lobe do not fire full-blown sodium spikes but only fire small calcium spikelets. On the right: A representative raw voltage trace recorded from a representative projection neuron is shown for comparison. Clear sodium spikes are clearly visible during spontaneous and odor-evoked periods. The gray bar represents 4 seconds of odor pulse. The vertical black bar represents the 40mV.

      The presented model suggests labeled lines in the antennal lobe output of locusts. Could the presented model also explain a shift in behavior from aversion to attraction - such as seen in locusts when they switch from a solitarious to a gregarious state? The authors might want to discuss other possible scenarios, such as that odor evaluation and decision-making take place in higher brain regions, or that other neuromodulators might affect behavioral output. Serotonin injections could affect behavior via modulation of other cell types than antennal lobe neurons. This should also be discussed - the same is true for potential PNs - serotonin might not directly affect this cell type, but might rather shut down local inhibitory neurons.

      There are multiple questions here. First, regarding solitary vs. gregarious states, we are currently repeating these experiments on solitary locusts. Our preliminary results (not included in the manuscript) indicate that the solitary animals have increased olfactory arousal and respond with a higher POR but are less selective and respond similarly to multiple odorants. We are examining the physiology to determine whether the model for mapping neural responses onto behavior could also explain observations in solitary animals.

      Second, this reviewer makes the point raised by Reviewer 1. We agree that odor evaluation and decisionmaking might take place in higher brain regions. All we could conclude based on our data is that a segregation of neural activity based on behavioral relevance might provide the simplest approach to map non-specific increase in stimulus-evoked neural responses onto odor-specific changes in behavioral outcome. Furthermore, our results indicate that hexanol and linalool, two odorants that had an increase and decrease in PORs after serotonin injection, had only minimal neural response overlap in the antennal lobe. These results suggest that the formatting of neural activity to support varying behavioral outcomes might already begin in the antennal lobe. We have added this to our discussion.

      Third, regarding serotonin impacting PNs, we performed a new set of current-clamp experiments to examine this issue (Author response image 1). Our results clearly show that projection neuron activity in response to current injections (that should not incorporate feedback inhibition through local neurons) was altered after serotonin injection. Therefore, the observed changes in the odor-evoked neural ensemble activity should incorporate modulation at both individual PN level and at the network level. We have added this to our discussion as well.

      Finally, the authors claim that serotonin injection can mimic the starved state behavioral response. However, this is only shown for one of the four odors that are tested for behavior (HEX), thus the data does not support this claim.

      We note that Hex is the only appetitive odorant in the panel. But, as reviewer 1 has also brought up a similar point, we have toned down our claims and will investigate this carefully in a future study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • Was the POR of the locusts towards linalool and ammonium higher than towards a blank odor cartridge? I ask because the locusts appear to be less likely to respond to these odors and so I am concerned that this assay is not relevant to the ecological context of these odors. In other words, perhaps serotonin did not enhance the responses to these odors in this assay, because this is not a context in which locusts would normally respond to these odors.

      The POR response to linalool and ammonium is lower and comparable to that of paraffin oil. Serotonin does not increase POR responses to paraffin oil but does increase response to hexanol (an appetitive odorant). We have clarified this using new data (Author response image 5).

      • It seems to me that Figure 5C is the crux for understanding the potential impact of 5-HT on odor coding, but it is somewhat confusing and underutilized. Is the implication that 5-HT decorrelates spontaneous activity such that when an odor stimulus arrives, the odor-evoked activity deviates to a greater degree? The authors make claims about this figure that require the reader to guess as to the aspect of the figure to which they are referring.

      The reviewer makes an astute observation. Yes, the spontaneous activity in the antennal lobe network before serotonin introduction is not correlated with the ensemble spontaneous activity after serotonin bath application. Remarkably, the odor-evoked responses were highly similar, both in the reduced PCA space and when assayed using high-dimensional ensemble neural activity vectors. Whether the changes in network spontaneous activity have a function in odor detection and recognition is not fully understood and cannot be convincingly answered using our data. But this is something that we had pondered.

      • The modeling component summarized in Figure 6 needs clarification and more detail. Perhaps example traces associated with positive weighting within neural ensemble 1 relative to neural ensemble 2? I struggled to understand conceptually how the model resolved the theoretical discrepancy between physiology and behavior.

      As recommended, here is a plot showing the responses of four PNs that had positive weights to hexanol and linalool. As can be expected, each PN in this group had higher responses to hexanol and no response to linalool. Further, the four PNs that received negative weights had response only to linalool.

      Author response image 5.

      Odor-evoked responses of four PNs that received positive weights in the model (top panel), and four PNs that were assigned negative weights in the model (bottom).

      • Was there a significant difference between the PORs of hungry vs. fed locusts? The authors state that they differ and provide statistics for the comparisons to locusts injected with 5-HT, but then don't provide any statistical analyses of hungry vs. fed animals.

      The POR responses to HEX (an appetitive odorant) were significantly different between the hungry and starved locusts.

      Author response image 6.

      A bar plot summarizing PORs to all four odors for satiated locust (highlighted with stripes), before (dark shade), and after 5HT injection (lighter shade). To allow comparison before 5HT injection for starved locust plotted as well (without stripes). The significance was determined using a one-tailed paired-sample ttest(*p<0.05).

      • Were any of the effects of 5-HT on odor-evoked PN responses significant? No statistics are provided.

      We examined the distribution of odor-evoked responses in PNs before and after 5HT introduction. We found that the overall distribution was not significantly different between the two (one-tailed pairedsample t-test; p = 0.93).

      Author response image 7.

      Comparison of the distribution of odor-evoked PN responses before (green) and after (purple) 5HT introduction. One-tailed paired sample t-test was used to compare the two distributions.

      • The authors interchangeably use "serotonin", "5HT" and "5-HT" throughout the manuscript, but this should be consistent.

      This has been fixed in the revised manuscript.

      • On page 2 the authors provide an ecological relevance for linalool as being an additive in pesticides, however, linalool is a common floral volatile chemical. Is the implication that locusts have learned to associate linalool with pesticides?

      Linalool is a terpenoid alcohol that has a floral odor but has also been used as a pesticide and insect repellent [Beier et al., 2014]. As shown in Author response image 2, it evoked the least POR responses amongst a diverse panel of 22 odorants that were tested. We have clarified how we chose odorants based on the prior dataset in the Methods section.

      • In Figure 1, there should be a legend in the figure itself indicating that the black box indicates the absence of POR and the white box indicates presence, rather than just having it in the legend text.

      Done.

      • In Figure 2, the raw data from each animal can be moved to the supplements. The way it is presented is overwhelming and the order of comparisons is difficult to follow.

      Done.

      • For the induction of bursting in PNs by the application of 5-HT, were there any other metrics observed such as period, duration of bursts, or peak burst frequency? The authors rely on ISI, but there are other bursting metrics that could also be included to understand the nature of this observation. In particular, whether the bursts are likely due to changes in intrinsic biophysical properties of the PNs or polysynaptic effects.

      We could use other metrics as the reviewer suggests. Our main point is that the spontaneous activity of individual PNs changed. We have added a new current-injection experiments to show that the PNs output to square pulses of current becomes different after serotonin application (Author response image 1)

      • Were 4-vinyl anisole, 1-nonanol, and octanoic acid selected as additional odors because they had particular ecological relevance, or was it for the diversity of chemical structure?

      These odorants were selected based on both, chemical structure and ecological relevance. The logic behind this was to have a very diverse odor panel that consisted of food odorant – Hexanol, aggregation pheromone – 4-vinyl anisole, sex pheromone – benzaldehyde, acid – octanoic acid, base – ammonium, and alcohol – 1-nonanol. Additionally, we selected these odors based on previous neural and behavioral data on these odorants (Chandak and Raman, 2023, Traner and Raman, 2023, Nizampatnam et al, 2022 & 2018; Saha et al., 2017 & 2013).

      Reviewer #2 (Recommendations For The Authors):

      The electrophysiology dataset combines all performed experiments across all tested different PN-odor pairs. How many odors have been tested in a single PN and how many PNs have been tested for a single odor? This information is not present in the current manuscript. Can the authors exclude that there are odor-specific modulations?

      In total, our dataset includes recordings from 19 PNs. Seven PNs were tested on a panel of seven odorants (4-vinyl anisole, 1-nonanol, octanoic acid, Hex, Bza, Lool, and Amn), and the remaining twelve were tested with the four main odorants used in the study (Hex, Bza, Lool, and Amn). This information has been added to the Methods section

      How did the authors choose the concentrations of serotonin injections and bath applications - is this a naturalistic amount?

      The serotonin concentration for ephys experiments was chosen based on trial-error experiments:

      0.01mM was the highest concentration that did not cause cell death. For the behavioral experiments, we increased the concentration (0.1 M) due to the presence of anatomical structures in the locust's head such as air sacks, sheath as well as hemolymph which causes some degree of dilution that we cannot control.

      Behavior experiments were performed 3 hours after injection - ephys experiments 5-10 minutes following bath application. Can the authors exclude that serotonin affects neural processing differently on these different timescales?

      We cannot exclude this possibility. We did ePhys experiments 5-10 minutes after bath application as it would be extremely hard to hold cells for that long.

      A longer delay was required for our behavioral experiments as the locusts tended to be a bit more agitated with larger spontaneous movements of palps as well as exhibited unprompted vomiting. A 3hour period allowed the locust to regain its baseline level movements after 5HT introduction. [This information has been added to the methods section of the revised manuscript]

      Concerning the analysis of electrophysiological data. The authors should correct for changes in the baseline before performing PCA analysis. And how much of the variance is explained by PC1 and PC2?

      We did not correct for baseline changes or subtract baseline as we wanted to show that the odor-evoked neural responses still robustly encoded information about the identity of the odorant.

      The authors should perform dye injections after recordings to visualize the cell type they recorded from. Serotonin might affect also other cell types in the antennal lobe.

      As mentioned above, in the locust antennal lobe only PNs fire full-blown sodium spikes, and LNs only fire calcium spikelets (Author response image 4). Since these signals are small, they will be buried under the noise floor when using extracellular recording electrodes for monitoring responses in the AL antennal lobe.

      Hence we are pretty certain what type of cells we are recording from.

      There were several typos in the manuscript, please check again.

      We have fixed many of the grammatical errors and typos in the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The Notch signaling pathway plays an important role in many developmental and disease processes. Although well-studied there remain many puzzling aspects. One is the fact that as well as activating the receptor through trans-activation, the transmembrane ligands can interact with receptors present in the same cell. These cis-interactions are usually inhibitory, but in some cases, as in the assays used here, they may also be activating. With a total of 6 ligands and 4 receptors, there is potentially a wide array of possible outcomes when different combinations are co-expressed in vivo. Here the authors set out to make a systematic analysis of the qualitative and quantitative differences in the signaling output from different receptor-ligand combinations, generating sets of "signaling" (ligand expressing) and "receiving" (receptor +/- ligand expressing cells).

      The readout of pathway activity is transcriptional, relying on the fusion of GAL4 in the intracellular part of the receptor. Positive ligand interactions result in the proteolytic release of Gal4 that turns on the expression of H2B-citrine. As an indicator of ligand and receptor expression levels, they are linked via TA to H2B mCherry and H2B mTurq expression respectively. The authors also manipulate the expression of the glycosyltransferase Lunatic-Fringe (LFng) that modifies the EGF repeats in the extracellular domains impacting their interactions. The testing of multiple ligand-receptor combinations at varying expression levels is a tour de force, with over 50 stable cell lines generated, and yields valuable insights although as a whole, the results are quite complex.

      Strengths:

      Taking a reductionist approach to testing systematically differences in the signaling strength, binding strength, and cis-interactions from the different ligands in the context of the Notch1 and Notch 2 receptors (they justify well the choice of players to test via this approach) produces a baseline understanding of the different properties and leads to some unexpected and interesting findings. Notably:

      -                Jag1 ligand expressing cells failed to activate Notch1 receptor although were capable of activating Notch2. Conversely, Jag2 cells elicited the strongest activation of both receptors. The results with

      Jag1 are surprising also because it exhibits some of the strongest binding to plate-bound ligands. The failure to activate Notch1 has major functional significance and it will be important in the future to understand the mechanistic basis.

      -                Jagged ligands have the strongest cis-inhibitory effects and the receptors differ in their sensitivity to cis-inhibition by Dll ligands. These observations are in keeping with earlier in vivo and cell culture studies. More referencing of those would better place the work in context but it nicely supports and extends previous studies that were conducted in different ways.

      -                Responses to most trans-activating ligands showed a degree of ultrasensitivity but this was not the case for cis-interactions where effects were more linear. This has implications for the way the two mechanisms operate and for how the signaling levels will be impacted by ligand expression levels.

      -                Qualitatively similar results are obtained in a second cell line, suggesting they reflect fundamental properties of the ligands/receptors.

      We appreciate the positive and constructive feedback.

      Weaknesses:

      One weakness is that the methods used to quantify the expression of ligands and receptors rely on the co-translation of tagged nuclear H2B proteins. These may not accurately capture surface levels/correctly modified transmembrane proteins. In general, the multiple conditions tested partly compensate for the concerns - for example, as Jag1 cells do activate Notch2 even if they do not activate Notch1 some Jag1 must be getting to the surface. But even with Notch2, Jag1 activities are on the lower side, making it important to clarify, especially given the different outcomes with the plated ligands. Similarly, is the fact that all ligands "signalled strongest to Notch2" an inherent property or due to differences in surface levels of Notch 2 compared to Notch1? The results would be considerably strengthened by calibration of the ligand/receptor levels (and ideally their sub-cellular localizations). Assessing the membrane protein levels would be relatively straightforward to perform on some of the basic conditions because their ligand constructs contain Flag tags, making it plausible to relate surface protein to H2B, and there are antibodies available for Notch1 and Notch2.

      We agree that mCherry fluorescence does not provide a direct readout of active surface ligand levels. As the reviewer points out, the ability of Jag1 to activate Notch2 demonstrates that expressed Jag1 is competent for signaling. Further, in some cases, Jag1-Notch2 activation can be comparable to Dll1-Notch2 activation (Figure 2A). Following the reviewer’s suggestion, we performed a Western blot for multiple expression levels for each of three surface ligands (Dll1, Dll4, Jag1) (Figure 2—figure supplement 2). This blot revealed a signal for surface expression of Jag1. Interpretation is complicated by the expected dependence of the efficiency of surface protein purification on the number of primary amines in the protein, which varies among these ligands, and qualitatively correlates with the staining intensity. While this makes quantitative interpretation difficult, this result further supports the notion that Jag1 is present on the cell surface. Finally, we note that high signaling activity need not, in general, directly correlate with surface expression levels. In fact, one study showed an example in which increased ligand activity occurred with decreased basal ligand surface levels (Antfolk et al., 2017). While one would ideally like to know all parameters of the system, including surface protein levels, rates of recycling, etc. the perspective taken here is that the net effect of these many post-translational processing steps can be subsumed into the overall relationship between the expression of the protein (which, in our case, is read out by the co-translational reporter) and its activity, which is relevant for the behavior of developmental circuits, among other systems. To address this comment, we now explicitly mention the limitation of mCherry as a proxy for surface protein, and add a reference to previous work highlighting the relationship between surface levels and ligand activity.

      In terms of the dependence of signaling on Notch levels, the metric of signaling activity used here is explicitly normalized by the mTurquoise co-translational reporter of Notch expression to account for differences in receptor expression across receiver clones. We have added a new figure to show the variation in expression (Figure 1—figure supplement 1A) and to demonstrate this normalization (Figure 1—figure supplement 5). Having said that, as the reviewer correctly points out, we cannot directly address the dependence on surface receptor levels with mTurquoise alone. To address this comment, we have added a figure that shows cotranslational and surface receptor expression for a subset of our receiver clones (Figure 1—figure supplement 1B). Although antibody binding strengths may vary, it appears unlikely that higher surface levels could explain most ligands’ preferential activation of Notch2 over Notch1, since Notch2 levels were lower than Notch1 levels in both surface expression and cotranslational expression.

      Cis-activation as a mode of signaling has only emerged from these synthetic cell culture assays raising questions about its physiological relevance. Cis-activation is only seen at the higher ligand (Dll1, Dll4) levels, how physiological are the expression levels of the ligands/receptors in these assays? Is it likely that this would make a major contribution in vivo? Is it possible that the cells convert themselves into "signaling" and "receiving" sub-populations within the culture by post-translational mechanism? Again some analysis of the ligand/receptors in the cultures would be a valuable addition to show whether or not there are major heterogeneities.

      The cis-activation results in this paper are, as the reviewer points out, conducted in synthetic cell culture assays. Cis-activation is observed across a large dynamic range of ligand expression, possibly including non-physiologically high levels. However, our previous work (Nandagopal et al, eLife 2019) showed that cis-activation does not require over-expression, as it occurred in unmodified Caco-2 and NMuMG cells with their endogenous ligand and receptor expression levels. As shown here in Figure 4B, cis-activation for Notch2 increases monotonically and is substantial even at intermediate ligand concentrations. In other cases, cis-activation is maximal at intermediate concentrations. We agree that the in vivo role remains unclear, and is difficult to determine due to the typical close contacts among cells in tissues. Therefore, these assays do not speak to in vivo relevance. Note that we can, however, rule out the possibility of trans signaling between well-mixed cell populations at these densities (Figure 4A).

      It is hard to appreciate how much cell-to-cell variability in the "output" there is. For example, low "outputs" could arise from fewer cells becoming activated or from all cells being activated less. As presented, only the latter is considered. That may be already evident in their data, but not easy for the reader to distinguish from the way they are presented. For example, in many of the graphs, data have been processed through multiple steps of normalization. Some discussion/consideration of this point is needed.

      We agree that in different experiments changes in a mean response can reflect changes in fraction of activated cells, or level of activation or some combination of both. In this work, most assays were conducted by flow cytometry, which provides a full distribution of cellular responses. We provided distributions for some experiments in the supplementary figures (i.e., Figure 4—figure supplement 1, and Figure 5—figure supplement 4). The sheer number of experiments and samples prevents us from displaying all underlying histograms. Therefore, we have provided all flow data sets in an extensive archive that is publicly available on data.caltech.edu (https://doi.org/10.22002/gjjkn-wrj28).

      Impact:

      Overall, cataloging the outcomes from the different ligand-receptor combinations, both in cis and trans, yields a valuable baseline for those investigating their functional roles in different contexts. There is still a long way to go before it will be possible to make a predictive model for outcomes based on expression levels, but this work gives an idea about the landscape and the complexities. This is especially important now that signaling relationships are frequently hypothesized based on single-cell transcriptomic data. The results presented here demonstrate that the relationships are not straightforward when multiple players are involved.

      We appreciate this concise impact summary, and agree with its conclusions.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors extend their previous studies on trans-activation, cis-inhibition (PMID: 25255098), and cis-activation (PMID: 30628888) of the Notch pathway. Here they create a large number of cell lines using CHO-K1 and C2C12 cells expressing either Notch1-Gal4 or Notch2-Gal4 receptors which express a fluorescent protein upon receptor activation (receiver cells). For cis-inhibition and cis-activation assays, these cells were engineered to express one of the four canonical Notch ligands (Dll1, Dll4, Jag1, Jag2) under tetracycline control. Some of the receiver cells were also transfected with a Lunatic fringe (Lfng) plasmid to produce cells with a range of Lfng expression levels. Sender cells expressing all of the canonical ligands were also produced. Cells were mixed in a variety of co-culture assays to highlight trans-activation, cis-activation, and cis-inhibition. All four ligands were able to trans-activate Notch1 and Notch 2, except Jag1 did not transactivate Notch1. Lfng enhanced trans-activation of both Notch receptors by Dll1 and Dll2, and inhibited Notch1 activation by Jag2 and Notch2 activation by both Jag 1 and Jag2. Cis-expression of all four ligands was predominantly inhibitory, but Dll1 and Dll4 showed strong cis-activation of Notch2. Interestingly, cis-ligands preferentially inhibited trans-activation by the same ligand, with varying effects on other trans-ligands.

      Strengths:

      This represents the most comprehensive and rigorous analysis of the effects of canonical ligands on cis- and trans-activation, and cis-inhibition, of Notch1 and Notch2 in the presence or absence of Lfng so far. Studying cis-inhibition and cis-activation is difficult in vivo due to the presence of multiple Notch ligands and receptors (and Fringes) that often occur in single cells. The methods described here are a step towards generating cells expressing more complex arrays of ligands, receptors, and Fringes to better mimic in vivo effects on Notch function.

      In addition, the fact that their transactivation results with most ligands on Notch1 and 2 in the presence or absence of Lfng were largely consistent with previous publications provides confidence that the author's assays are working properly.

      We appreciate the thoughtful comments and feedback.

      Weaknesses:

      It was unusual that the engineered CHO cells expressing Notch1-Gal4 were not activated at all by co-culture with Jag1-expressing CHO cells. Many previous reports have shown that Jag1 can activate Notch1 in co-culture assays, including when Notch1 was expressed in CHO cells. Interestingly, when the authors used Jag1-Fc in a plate coating assay, it did activate Notch1 and could be inhibited by the expression of Lfng.

      In our assays, we do in fact also see some signaling of Jag1 to Notch1, especially when dLfng is coexpressed (Figure 2—figure supplement 4, formerly Figure 2—figure supplement 3). While these levels are lower than those observed for other ligand-receptor combinations, they are significantly elevated compared to baseline. In specific natural contexts, it will be important to determine whether the weak but non-zero Jag1-Notch1 signaling acts negatively to suppress signaling from other ligands, or provides weak but potentially functionally important levels of signaling. Evidence for both modes exists in the literature. To address this, we have expanded the discussion of Jag1-Notch1 signaling and added references to other work on Jag1-Notch1 signaling to the Discussion section.

      The cell surface level of the ligands was determined by flow cytometry of a co-translated fluorescent protein. Some calibration of the actual cell surface levels with the fluorescent protein would strengthen the results.

      This issue was also raised by Reviewers #1 and #3. Please see responses to Reviewer #1, above.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript reports a comprehensive analysis of Notch-Delta/Jagged signaling inclusive of the human Notch1 and Notch2 receptors and DLL1, DLL4, JAG1, and JAG2 ligands. Measurements

      encompassed signaling activity for ligand trans-activation, cis-activation, cis-inhibition, and activity modulation by Lfng. The most striking observations of the study are that JAG1 has no detectable activity as a Notch1 ligand when presented on a cell (though it does have activity when immobilized on a surface), even though it is an effective cis-inhibitor of Notch1 signaling by other ligands, and that DLL1 and DLL4 exhibit cis-activating activity for Notch1 and especially for Notch2. Notwithstanding the artificiality of the system and some of its shortcomings, the results should nevertheless be a valuable resource for the Notch signaling community.

      Strengths:

      (1)  The work is systematic and comprehensive, addressing questions that are of importance to the community of researchers investigating mammalian Notch proteins, their activation by ligands, and the modulation of ligand activity by LFng.

      (2)  A quantitative and thorough analysis of the data is presented.

      Weaknesses:

      (1) The manuscript is primarily descriptive and does not delve into the underlying, mechanistic origin or source of the different ligand activities.

      We agree that the goals of this paper were largely to discover the range of signaling modes that occur. A mechanistic analysis would be beyond the scope of this work, but we agree it is an important next step.

      (2) The amount of ligand or receptor expressed is inferred from the flow cytometry signal of a co-translated fluorescent protein-histone fusion, and is not directly measured. The work would be more compelling if the amount of ligand present on the cell surface were directly measured with anti-ligand antibodies, rather than inferred from measurements of the fluorescent protein-histone fusion.

      This issue was also raised by Reviewers #1 and #2. Please see responses to Reviewer #1, above.

      (3) It would be helpful to see plots of the raw activity data before transformation and normalization, because the plots present data after several processing steps, and it is not clear how the processed data relate to the original values determined in each measurement.

      We included examples showing how raw data is processed in Figure 4—figure supplement 1 and Figure 5—figure supplement 4. The sheer number of experiments precludes including similar figures for all data sets. However, all raw and processed data and data analysis code is publicly available at (https://doi.org/10.22002/gjjkn-wrj28).

      (4) The authors use sparse plating of engineered cells with parental (no ligand or receptor-expressing cell to measure cis activation). However, the cells divide within the cultured period of 22-24 h and can potentially trans-activate each other.

      If measured cis-activation signal arises solely from trans-activation, then the measured cis-activation signal per cell should increase with cell density, since trans-activation per cell does depend on cell density (Figure 4A). However, for the strongest cis-activators (Dll1- and Dll4-Notch2), signaling magnitude is similar when these cells are cultured sparsely or at confluence, which would otherwise allow efficient trans signaling (Figure 5A). Thus, for Dll1- and Dll4-Notch2 receivers, total signaling strength per cell depends little or not at all on the opportunity to signal intercellularly. Moreover, cis-activation signal for the Dll1- and Dll4-Notch2 combinations exceeded the maximum trans-signaling levels we could achieve for the same receivers when cis-ligand was suppressed (Figure 4B). These results argue that cis interactions dominate signaling in this context. However, we have not ruled out the possibility that trans-signaling between sister cells after division contributes to the comparatively weak cis-activation observed for Notch1 receivers.

      Reviewer #1 (Recommendations For The Authors):

      As outlined in the public review, there is a question of whether the nuclear H2B accurately reflects the surface levels of the transmembrane proteins (ligand and receptor). Clearly, it would not be feasible to check levels in all of the experimental conditions, but some baseline conditions should be analyzed.

      We addressed this above.

      Reviewer #2 (Recommendations For The Authors):

      (1)  As mentioned above, it was unusual that Jag1 did not activate Notch1 in co-culture assays, but did activate Notch1 in plate-coating assays. The authors should add some text to the Discussion to explain why they think this is happening in their engineered cells. One possibility is that the CHO cells express Manic fringe (Mfng) which is known to reduce Jag1-Notch1 activation. Data for Mfng levels in CHO cells were not included in Supplemental Table 2. Knocking down all three Fringes in CHO cells might increase Jag1-Notch1 activation.

      This is already addressed in a sentence in the results: “Strikingly, while Jag1 sender cells failed to activate Notch1 receivers above background (Figure 2D), plate-bound Jag1-ext-Fc activated Notch1 only ~3-fold less efficiently than it activated Notch2 (Figure 3B-D). This suggests that the natural endocytic activation mechanism, or potential differences in tertiary structure between the expressed and recombinant Jag1 extracellular domains, could play roles in preventing Jag1-Notch1 signaling in coculture.” Regarding the point about Mfng, we added a note to Supplementary Table about other CHO-K1 expression data.

      (2) Figure 1-supplemental figure 1: Both the Notch1-Jag1 and Notch1-Jag2 cells show high expression of Jag1 in low 4epi, but any higher concentration reduces to control levels. How much of a problem is this for interpreting your data?

      This was not the ideal behavior, but by binning cells by co-translational reporters for ligand expression, we were able to obtain enough cells in intermediate bins. (Note: Figure 1—figure supplement 1 is now Figure 1—figure supplement 2.)

      (3)  Figure 1C legend: Are these stably-expressing cells or Tet-off cells? Please state in legend.

      The figure legend has been updated.

      (4)  Figure 1E: How long is the knockdown of Rfng and Lfng effective? Does it affect the expression of Lfng later?

      siRNA effects generally last for at least 72-96 hours, so we do not anticipate this being an issue.

      (5) Page 9: "Lfng significantly decreased trans-activation of both receptors by Jag1 (>2.5-fold)". If there is no Jag1-Notch1 activation, how can Lfng decrease trans-activation?

      We added a note in the main text to clarify that while Jag1-Notch1 signaling is relatively low, it can still be detectably decreased.

      (6) Figure 4A legend: Please define what "2.5k ea senders and Rec" means. In the text, it says "To focus on cis-interactions alone, we then cultured receiver cells at low density, amid an excess of wildtype CHO-K1 cells" (page 14).

      This was clarified in the text.

      (7)  Page 14: "By contrast, Notch2 was cis-activated by both Dll1 and Dll4, to levels exceeding those produced by trans-activation by high-Dll1 senders (Figure 4B, lower left)." Where is the trans-activation data? 4B, lower right?

      We updated this reference in the main text.

      (8)  Page 16: "For Notch2-Dll1 and Notch2-Dll4, single cell reporter activities correlated with cis-ligand expression, regardless of whether cells were pre-induced at a high or low culture density (Figure 4D)." It appears that Notch2-Dll1 has lower Notch activation at sparse culture than confluent.

      We agree that the level signaling is lower in sparse compared to confluent on average. This is explained by the sensitivity of the Tet-OFF promoter to culture density (Figure 4—figure supplement 2). However, the key point of this experiment is the positive correlation, which is consistent with cis-activation, and inconsistent with the pre-generation of NEXT hypothesis diagrammed in Figure 4C, which would not be expected to produce such a correlation.

      (9a) For the creation of the C2C12-Nkd cells: Has genomic sequencing been done to confirm editing of Notch2 and Jag1 loci?

      We confirmed the knockdown but did not do genomic sequencing.

      (9b) The gel in Figure 7-Supplement 1C is not adequate for showing loss of Jag1. It should be repeated.

      In this case, we have only the single gel. We added a note in figure legend that no duplicate was performed.

      (10) Figure 7A: Which Fringes are expressed in C2C12 cells? You should provide a rationale for knocking down just Rfng.

      Figure 7—figure supplement 1A shows the levels of expression in C2C12. Note that Mfng is not highlighted because its levels were undetectable.

      (11) Figure 7-Supplement 1D: This is confusing. Notch2 levels are not reduced in the left panel, and Notch1 and Notch2 levels are not reduced in the right panel?

      C2C12-Nkd cells exhibit reduced levels of Notch1 and Notch3. This can be seen in Figure 7—figure supplement 1A. Panel D presents the results of additional siRNA knockdown, performed to prevent subsequent up-regulation of Notch1 and Notch3 during the assay. These knockdown results were variable, as shown. The Notch2 siRNA knockdown was not essential for these experiments, but performed despite very low levels of Notch2 to begin with. In the revision, we have added this note to the Methods.

      Reviewer #3 (Recommendations For The Authors):

      (1) The results section of the manuscript is very dense and difficult to follow, as are the figure legends.

      We appreciate the criticism, and regret that it is not easier to read in its current form.

      (2) The authors could emphasize areas of concordance with published results (where available) to place their artificial, engineered system into a better biological context. Are there any examples of studies in whole organisms where cis-activation plays a role?

      We are not aware of examples of cis-activation in whole organisms at this point.

      (3) How do the authors rationalize the different responses of Notch1 to cell-presented Jag1 as opposed to immobilized Jag1, where its signal strength is second in rank order on a molar basis?

      This comment was addressed above in response to the first recommendation from Reviewer #2.

      It is also difficult to understand Figure 2_—_figure Supplement 3B, in which it appears that Jag1 induces a Notch1 reporter response when LFng is knocked down (dLfng), and how those data relate to the inactive response to Jag1 shown in the main figures.

      The issue here is a difference of normalization. Figure 2A in the main text is normalized to the sender expression level, i.e. relative signaling strength. By contrast, Figure 2—figure supplement 4B (previously Figure 2—figure supplement 3B) shows absolute signaling activity, which can appear higher because it does not normalize for ligand expression. For Jag1-Notch1 signaling in particular, substantial signaling required very high levels of Jag1. We have added a new figure to demonstrate these two types of normalization (Figure 2—figure supplement 1A).

      See the Authr response image 1 below for a direct comparison of these two normalization modes using data from both Figure 2A and Figure 2—figure supplement 4B. Note how the Jag1-Notch1 signaling activities that are nonzero in the top plot go to zero in the bottom plot as a result of normalizing the values to ligand expression.

      Author response image 1. Comparison of normalization modes in Figure 2A and Figure 2—figure supplement 4B (formerly 3B). Normalized trans-activation signaling activities for different ligand-receptor combinations (with dLfng only), either with further normalization to ligand expression (bottom row) or without further normalization (top row). Normalized signaling activity is defined as reporter activity (mCitrine, A.U.) divided by cotranslational receptor expression (mTurq2, A.U.), normalized to the strongest biological replicate-averaged signaling activity across all ligand-receptor-Lfng combinations in this experiment. Saturated data points, defined here as those with normalized signaling activity over 0.75 in both dLfng and Lfng conditions, were excluded. Colors indicate the identity of the trans-ligand expressed by cocultured sender cells. Error bars denote bootstrapped 95% confidence intervals (Methods), in this case sampled from the number of biological replicates given in the legend—n1 (for Notch1) or n2 (for Notch2). See Methods and Figure 2A caption for more details. Note that the only difference between this figure and the new Figure 2—figure supplement 1A is that this figure additionally includes the Jag1-high data from Figure 2—figure supplement 4B.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This fundamental study evaluates the evolutionary significance of variations in the accuracy of the intron-splicing process across vertebrates and insects. Using a powerful combination of comparative and population genomics approaches, the authors present convincing evidence that species with lower effective population size tend to exhibit higher rates of alternative splicing, a key prediction of the drift-barrier hypothesis. The analysis is carefully conducted and all observations fit with this hypothesis, but focusing on a greater diversity of metazoan lineages would make these results even more broadly relevant. This study will strongly appeal to anyone interested in the evolution of genome architecture and the optimisation of genetic systems.

      Public Reviews):

      Reviewer #1 (Public Review:

      Summary:

      Functionally important alternative isoforms are gold nuggets found in a swamp of errors produced by the splicing machinery.

      The architecture of eukaryotic genomes, when compared with prokaryotes, is characterised by a preponderance of introns. These elements, which are still present within transcripts, are rapidly removed during the splicing of messenger RNA (mRNA), thus not contributing to the final protein. The extreme rarity of introns in prokaryotes, and the elimination of these introns from mRNAs before translation into protein, raises questions about the function of introns in genomes. One explanation comes from functional biology: introns are thought to be involved in post-transcriptional regulation and in the production of translational variants. The latter function is possible when the positions of the edges of the spliced intron vary. While some light has been shed on specific examples of the functional role of alternative splicing, to what extent are they representative of all introns in metazoans?

      In this study, the hypothesis of a functional role for alternative splicing, and therefore to a certain extent for introns, is evaluated against another explanation coming from evolutionary biology: isoforms are above all errors of imprecision by the molecular machinery at work during splicing. This hypothesis is based on a principle established by Motoo Kimura, which has become central to population genetics, explaining that the evolutionary trajectory of a mutation with a given effect is intimately linked to the effective population size (Ne) where this mutation emerges. Thus, the probability of fixation of a weakly deleterious mutation increases when Ne decreases, and the probability of fixation of a weakly advantageous mutation increases when Ne increases. The genomes of populations with low Ne are therefore expected to accumulate more weakly deleterious mutations and fewer weakly advantageous mutations than populations with high Ne. In this framework, if splicing errors have only small effects on the fitness of individuals, then natural selection cannot increase the precision of the splicing machinery, allowing tolerance for the production of alternative isoforms.

      In the past, the debate opposed one-off observations of effectively functional isoforms on the one hand, to global genomic quantities describing patterns without the possibility of interpreting them in detail. The authors here propose an elegant quantitative approach in line with the expected continuous variation in the effectiveness of selection, both between species and within genomes. The result describing the inter-specific pattern on a large scale confirms what was already known (there is a negative relationship between effective size and average alternative splicing rate). The essential novelty of this study lies in 1) the quantification, for each intron studied, of the relative abundance of each isoform, and 2) the analysis of a relationship between this abundance and the evolutionary constraints acting on these isoforms.

      What is striking is the light shed on the general very low abundance of alternative isoforms. Depending on the species, 60% to 96% of cases of alternatively spliced introns lead to an isoform whose abundance is less than 5% of the total variants for a given intron.

      In addition to the fact that 60 %-96% of the total isoforms are more than 20 times less abundant than their majority form, this large proportion of alternative isoforms exhibit coding-phase shift at rates similar to what would be expected by chance, i.e. for a third of them, which reinforces the idea that there is no particular constraint on these isoforms.

      The remaining 4%-40% of isoforms see their coding-phase shift rate decrease as their relative abundance increases. This result represents a major step forward in our understanding of alternative splicing and makes it possible to establish a quantitative model directly linking the relative abundance of an isoform with a putative functional role concerning only those isoforms produced in abundance. Only the (rare) isoforms which are abundantly produced are thought to be involved in a biological function.

      Within the same genome, the authors show that only highly expressed genes, i.e. those that tend to be more constrained on average, are also the genes with the lowest alternative splicing rates on average.

      The comparison between species in this study reveals that the smaller the effective size of a species, the more its genome produces isoforms that are low in abundance and low in constraint. Conversely, species with a large effective size relatively reduce rare isoforms, and increase stress on abundant isoforms. To sum up:

      • the higher the effective size of a species, the fewer introns are spliced.

      • highly expressed genes are spliced less.

      • when splicing occurs, it is mainly to produce low-abundance isoforms.

      • low-abundance isoforms are also less constrained.

      Taken together, these results reinforce a quantitative view of the evolution of alternative splicing as being mainly the product of imprecision in the splicing machinery, generating a great deal of molecular noise. Then, out of all this noise, a few functional gold nuggets can sometimes emerge. From the point of view of the reviewer, the evolutionary dynamics of genomes are depressing. The small effective population sizes are responsible for the accumulation of multiple slightly deleterious introns. Admittedly, metazoan genomes try to get rid of these introns during RNA maturation, but this mechanism is itself rendered imprecise by population sizes.

      Strengths:

      • The authors simultaneously study the effects of effective population size, isoform abundance, and gene expression levels on the evolutionary constraints acting on isoforms. Within this framework, they clearly show that an isoform becomes functionally important only under certain rare conditions.

      • The authors rule out an effect putatively linked to variations in expression between different organs which could have biased comparisons between different species.

      Weaknesses:

      • While the longevity of organisms as a measure of effective size seems to work overall, it may not be relevant for discriminating within a clade. For example, within Hymenoptera, we might expect them to have the same overall longevity, but that effective size would be influenced more by the degree of sociality: solitary bees/ants/wasps versus eusocial. I am therefore certain that the relationship shown in Figure 4D is currently not significant because the measure of effective size is not relevant for Hymenoptera. The article would have been even more convincing by contrasting the rates of alternative splicing between solitary versus social hymenopterans.

      As suggested by the reviewer, we investigated the degree of sociality for the 18 hymenopterans included in our study. We observed that the average dN/dS of the 12 eusocial species (4 bees, 6 ants, 2 wasps) is significantly higher than that of the 6 solitary species (p=2.1x10-3; Fig. R1A), consistent with a lower effective population size in eusocial species compared to solitary ones.

      However, the AS rate does not differ significantly between these two groups, neither for the full set of major-isoform introns (Author response image 1B), nor for the subsets of low-AS or high-AS major-isoform introns (Author response image 1C,D). Given the limited sample size (12 eusocial species, 6 solitary species), it is possible that some uncontrolled variables affecting the AS rate hide the impact of Ne.

      Author response image 1.

      Comparison of solitary (N=6) and eusocial hymenopterans (N=12). A: dN/dS ratio. B: AS rate (all major-isoform introns). C: AS rate (low-AS major-isoform introns). D: AS rate (high-AS major-isoform introns). The means of the two group were compared with a Wilcoxon test.

      • When functionalist biologists emphasise the role of the complexity of living things, I'm not sure they're thinking of the comparison between "drosophila" and "homo sapiens", but rather of a broader evolutionary scale. Which gives the impression of an exaggeration of the debate in the introduction.

      We disagree with the referee: in fact, all the debate regarding the paradox of the absence of relationship between the number of genes and organismal complexity arose from the comparative analysis of gene repertoires across metazoans. This debate started in the early 2000’s, when the sequencing of the human genome revealed that it contains only ~20,000 protein-coding genes (far less than the ~100,000 genes that were expected at that time). This came as a big surprise because it showed that the gene repertoire of mammals is not larger than that of invertebrates such as Caenorhabditis elegans (19,000 genes) or Drosophila melanogaster (14,000 genes) . We cite below several articles that illustrate how this paradox has been perceived by the scientific community:

      Graveley BR 2001 Alternative splicing: increasing diversity in the proteomic world. Trends in Genetics 17 : 100–107. https://doi.org/10.1016/S0168-9525(00)02176-4

      “ How can the genome of Drosophila melanogaster contain fewer genes than the undoubtedly simpler organism Caenorhabditis elegans? ”

      Ewing B and Green P 2000 Analysis of expressed sequence tags indicates 35,000 human genes. Nature Genetics 25: 232–234. https://doi.org/10.1038/76115

      “ the invertebrates Caenorhabditis elegans and Drosophila melanogaster having 19,000 and 13,600 genes, respectively. Here we estimate the number of human genes […] approximately 35,000 genes, substantially lower than most previous estimates. Evolution of the increased physiological complexity of vertebrates may therefore have depended more on the combinatorial diversification of regulatory networks or alternative splicing than on a substantial increase in gene number. ”

      Kim E, Magen A and Ast G 2007 Different levels of alternative splicing among eukaryotes. Nucleic Acids Research 35: 125–131. https://doi.org/10.1093/nar/gkl924

      “we reveal that the percentage of genes and exons undergoing alternative splicing is higher in vertebrates compared with invertebrates. […] The difference in the level of alternative splicing suggests that alternative splicing may contribute greatly to the mammal higher level of phenotypic complexity,”

      Nilsen TW and Graveley BR 2010 Expansion of the eukaryotic proteome by alternative splicing. Nature 463 : 457–463. https://doi.org/10.1038/nature08909

      “ It is noteworthy that Caenorhabditis elegans, D. melanogaster and mammals have about 20,000 (ref. 68), 14,000 (ref. 69) and 20,000 (ref. 70) genes, respectively, but mammals are clearly much more complex than nematodes or flies.”

      Reviewer #2 (Public Review):

      Summary:

      Two hypotheses could explain the observation that genes of more complex organisms tend to undergo more alternative splicing. On one hand, alternative splicing could be adaptive since it provides the functional diversity required for complexity. On the other hand, increased rates of alternative splicing could result through nonadaptive processes since more complex organisms tend to have smaller effective population sizes and are thus more prone to deleterious mutations resulting in more spurious splicing events (drift-barrier hypothesis). To evaluate the latter, Bénitière et al. analyzed transcriptome sequencing data across 53 metazoan species. They show that proxies for effective population size and alternative splicing rates are negatively correlated. Furthermore, the authors find that rare, nonfunctional (and likely erroneous) isoforms occur more frequently in more complex species. Additionally, they show evidence that the strength of selection on splice sites increases with increasing effective population size and that the abundance of rare splice variants decreases with increased gene expression. All of these findings are consistent with the drift-barrier hypothesis.

      This study conducts a comprehensive set of separate analyses that all converge on the same overall result and the manuscript is well organized. Furthermore, this study is useful in that it provides a modified null hypothesis that can be used for future tests of adaptive explanations for variation in alternative splicing.

      Strengths:

      The major strength of this study lies in its complementary approach combining comparative and population genomics. Comparing evolutionary trends across phylogenetic diversity is a powerful way to test hypotheses about the origins of genome complexity. This approach alone reveals several convincing lines of evidence in support of the drift-barrier hypothesis. However, the authors also provide evidence from a population genetics perspective (using resequencing data for humans and fruit flies), making results even more convincing.

      The authors are forward about the study's limitations and explain them in detail. They elaborate on possible confounding factors as well as the issues with data quality (e.g. proxies for Ne, inadequacies of short reads, heterogeneity in RNA-sequencing data).

      Weaknesses:

      The authors primarily consider insects and mammals in their study. This only represents a small fraction of metazoan diversity. Sampling from a greater diversity of metazoan lineages would make these results and their relevance to broader metazoans substantially more convincing. Although the authors are careful about their tone, it is challenging to reconcile these results with trends across greater metazoans when the underlying dataset exhibits ascertainment bias and represents samples from only a few phylogenetic groups. Relatedly, some trends (such as Figure 1B-C) seem to be driven primarily by non-insect species, raising the question of whether some results may be primarily explained by specific phylogenetic groups ( although the authors do correct for phylogeny in their statistics). How might results look if insects and mammals (or vertebrates) are considered independently?

      Following the referee’s suggestion, we investigated the relationship between AS rate and proxies of Ne, separately for insects and vertebrates (Supplementary Fig. 11) . We observed that the relationship was consistent in vertebrates and insects: linear regressions show a positive correlation, significant (p<0.05) in all cases, except for body length in vertebrates. We added a sentence (line 166) to mention this point.

      Note that for these analyses we have smaller sample sizes, so we have a weaker power to detect signal. We therefore prefer to present the combined analyses, using PGLS to account for phylogenetic inertia.

      Throughout the manuscript, the authors refer to infrequently spliced ( mode <5%) introns as "minor introns" and frequently spliced (mode >95%) as "major introns". This is extremely confusing since "minor introns" typically represent introns spliced by the U12 spliceosome, whereas "major introns" are those spliced by the U2 spliceosome.

      To avoid any confusion, we modified the terminology: we now refer to infrequently spliced introns as " minor-isoform introns" and frequently spliced as "major -isoform introns" (see line 135-137) . The entire manuscript (including the figures) has been modified accordingly.

      Furthermore, it remains unclear whether the study only considers major introns or both major and minor introns. Minor introns typically have AT-AC splice sites whereas major introns usually have GT/GC-AG splice sites, although in rare cases the U2 can recognize AT-AC (see Wu and Krainer 1997 for example).

      We modified the text (line 148-150) to clearly state that we studied all introns, both U2-type and U12-type.

      The authors also note that some introns show noncanonical AT-AC splice sites while these are actually canonical splice sites for minor introns.

      This is corrected (line 148).

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Figures 1, 3, and 4: I suggest that authors add regression lines.

      We added the regression lines with the “pgls” function from the R package “caper” (in Fig. 1, 3 and 4, and also in all other figures where we present correlations).

      Figure 2: As previously mentioned, the terms "minor introns" and "major introns" are extremely confusing. I strongly suggest the authors use different naming conventions.

      We changed the terminology:

      minor introns -> minor-isoform introns

      major introns -> major-isoform introns

      Figure 5: Intron-exon boundaries and splice site annotations are shown at the bottom of B, C, and D but not A. I suggest removing the annotation beneath B for consistency and since A+C and B+D are aligned on the x-axis.

      Corrected, it was a mistake.

      Figure 7: The yellow dotted line is very challenging to see in A.

      Corrected, the line has been widened.

    1. eLife Assessment

      This important study looks into the effect of exogenous CoA on the response of TLR4-activated macrophages. Specifically, CoA enhances the LPS response by examining metabolomics, 13C tracing, and assessments of transcription and acetylation. Together, these provide a compelling series of findings that show exogenous CoA is taken up by macrophages, and this facilitates histone acetylation and transcription associated with activation and antimicrobial activity.

    2. Reviewer #1 (Public review):

      Summary:

      This paper describes how CoA can overcome suppression of OXPHOS in TLR3 signaling, acting as what the authors term a 'metabolic adjuvant'. Supplementing with CoA enhances TLR signaling, reverses tolerance, and promotes OXPHOS. It promotes histone acetylation, leading to epigenetic modulation of target genes. CoA is further shown to have adjuvant effects in vivo, in anti-tumor immunity, and also in host defense.

      Strengths:

      Something of a tour-de-force - impressive methodologies and the conclusions are well supported by the data.

      Weaknesses:

      I was unable to follow the basis for some experiments and have a question around the data on itaconate, since this metabolite should limit IL-1beta production. Also, this is a very wordy manuscript - editing should help the reader.

    3. Reviewer #2 (Public review):

      In this manuscript, Timblin et al provide a model where exogenous CoA is taken up by macrophages and utilized to support transcriptional events associated with activation. They provide a series of important findings, and for the most part, the data are clear and convincing. However, additional clarity on a few points would be helpful.

      First of all, the contention that endogenous TLR ligands from the bone marrow cultures are driving the tonic signaling that makes exogenous CoA beneficial in unstimulated cells seems counter to the well-described anergic state of myeloid cells derived from TLR-null mice. This reviewer's understanding was that myeloid cells in MyD88 nulls or similar are developmentally anergic due to the lack of TLR stimulation in vivo. The data here (Figure 5G, etc) show these cells have much lower TLR responses, but the authors attribute it to loss of response to endogenous ligands during the cultures rather than in vivo. Testing some of the phenotypes ex vivo, etc, might make this argument more compelling and rule out that this is an effect in vivo.

      Second, the data suggesting that CoA enhances anti-microbial activity via itaconate production needs additional context and/or clarification. Interactions between itaconate and CoA have been demonstrated. Itaconate exposure can deplete the CoA pool as it is converted into Itaconyl-CoA. The Irg-/- cells should not have reduced CoA due to the lack of the need to activate itaconate for metabolism. Has this been addressed by the authors? I believe that low levels of itaconate production have been shown in "resting" bone marrow cultures. The data show a full log of more bugs in the macs that lack Irg, confirming that endogenous itaconate is at work. In addition, itaconate, which is made very quickly and is likely there in considerable amounts in 4 hrs, is known to affect transcription via action on TET2. Perhaps this explains some of the connections to CoA?

      Lastly, the idea that Acetyl-CoA phenocopies CoA suggests that CoA is the effector is interesting but could be supported more. Did the authors do the "unlabeling" experiment with Acetyl-CoA to confirm that it is readily converted to the CoA pool?

      Do the ACLY inhibitors have the expected effects on the ChIP seq data?

    1. eLife Assessment

      Karimian et al. present a valuable new model to explain how gamma-band synchrony (30-80 Hz) can support human visual feature binding by selectively grouping image elements, countering recent criticisms that the stimulus dependence of gamma oscillations limits their functional role. Grounded in the theory of weakly coupled oscillators and informed by primate electrophysiology, the model captures behavioural patterns observed in human psychophysics, offering support for the potential role of synchrony-based mechanisms, but incomplete evidence for a specific role of gamma oscillations. This work could be strengthened by more direct evidence for the proposed mechanism, and expanding beyond figure-only model inputs with limited ecological validity.

    2. Reviewer #1 (Public review):

      Summary:

      This paper by Karimian et al proposes an oscillator model tuned to implement binding by synchrony (BBS*) principles in a visual task. The authors set out to show how well these BBS principles explain human behavior in figure-ground segregation tasks. The model is inspired by electrophysiological findings in non-human primates, suggesting that gamma oscillations in early visual cortex implement feature-binding through a synchronization of feature-selective neurons. The psychophysics experiment involves the identification of a figure consisting of gabor annuli, presented on a background of gabor annuli. The participants' task is to identify the orientation of the figure. The task difficulty is varied based on the contrast and density of the gabor annuli that make up the figure. The same figures (without the background) are used as inputs to the oscillator model. The authors report that both the discrimination accuracy in the psychophysics experiment and the synchrony of the oscillators in the proposed model follow a similar "Arnold Tongue" relationship when depicted as a function of the texture-defining features of the figure. This finding is interpreted as evidence for BBS/gamma synchrony being the underlying mechanism of the figure-ground segregation.

      • Note that I chose to use "BBS" over gamma synchrony (used by the authors) in this review, as I am not convinced that the authors show evidence for synchronization in the gamma-band.

      Strengths:

      The design of the proposed model is well-informed by electrophysiological findings, and the idea of using computational modeling to bridge between intracranial recordings in non-human primates and behavioral results in human participants is interesting. Previous work has criticized the BBS synchrony theory based on the observation that synchronization in the gamma-band is highly localized and the frequency of the oscillation depends on the visual features of the stimulus. I appreciate how the authors demonstrate that frequency-dependence and local synchronization can be features of BBS, and not contradictory to the theory. As such, I feel that this work has the potential to contribute meaningfully to the debate on whether BBS is a biophysically realistic model of feature-binding in visual cortex.

      Weaknesses:

      I have several concerns regarding the presented claims, assessment of meaning and size of the presented effects, particularly with regard to the absence of a priori defined effect sizes.

      Firstly, the paper makes strong claims about the frequency-specificity (i.e., gamma synchrony) and anatomical correlates (early visual cortex) of the observed effects. These claims are informed by previous electrophysiological work in non-human primates but are not directly supported by the paper itself. For instance, the title contains the word "gamma synchrony", but the authors do not demonstrate any EEG/MEG or intracranial data in from their human subjects supporting such claims, nor do they demonstrate that the frequencies in the oscillator model are within the gamma band. I think that the paper should more clearly distinguish between statements that are directly supported by the paper (such as: "an oscillator model based on BBS principles accounts for variance in human behavior") and abstract inferences based on the literature (such as "these effects could be attributed to gamma oscillations in early visual cortex, as the model was designed based on those principles").

      Secondly, unlike the human participants, the model strictly does not perform figure-ground segregation, as it only receives the figure as an input. Finally, it is unclear what effect sizes the authors would have expected a priori, making it difficult to assess whether their oscillator model represents the data well or poorly. I consider this a major concern, as the relationship between the synchrony of the oscillatory model and the performance of the human participants is confounded by the visual features of the figure. Specifically, the authors use the BBS literature to motivate the hypothesis that perception of the texture-defined figure is related to the density and contrast heterogeneity of the texture elements (gabor annuli) of the figure. This hypothesis has to be true regardless of synchrony, as the figure will be easier to spot if it consists of a higher number of high-contrast gabors than the background. As the frequency and phase of the oscillators and coupling strength between oscillators in the grid change as a function of these visual features, I wonder how much of the correlation between model synchrony and human performance is mediated by the features of the figure. To interpret to what extent the similarity between model and human behavior relies on the oscillatory nature of the model, the authors should find a way to estimate an empirical threshold that accounts for these confounding effects. Alternatively, it would be interesting to understand whether a model based on competing theories (e.g., Binding by Enhanced Firing, Roelfsema, 2023) would perform better or worse at explaining the data.

    3. Reviewer #2 (Public review):

      The authors aimed to investigate whether gamma synchrony serves a functional role in figure-ground perception. They specifically sought to test whether the stimulus-dependence of gamma synchrony, often considered a limitation, actually facilitates perceptual grouping. Using the theory of weakly coupled oscillators (TWCO), they developed a framework wherein synchronization depends on both frequency detuning (related to contrast heterogeneity) and coupling strength (related to proximity between visual elements). Through psychophysical experiments with texture discrimination tasks and computational modeling, they tested whether human performance follows patterns predicted by TWCO and whether perceptual learning enhances synchrony-based grouping.

      Strengths:

      (1) The theoretical framework connecting TWCO to visual perception is innovative and well-articulated, providing a potential mechanistic explanation for how gamma synchrony might contribute to both feature binding and separation.

      (2) The methodology combines psychophysical measurements with computational modeling, with a solid quantitative agreement between model predictions and human performance.

      (3) In particular, the demonstration that coupling strengths can be modified through experience is remarkable and suggests gamma synchrony could be an adaptable mechanism that improves with visual learning.

      (4) The cross-validation approach, wherein model parameters derived from macaque neurophysiology successfully predict human performance, strengthens the biological plausibility of the framework.

      Weaknesses:

      (1) The highly controlled stimuli are far removed from natural scenes, raising questions about generalisability. But, of course, control (almost) excludes ecological validity. The study does not address the challenges of natural vision or leverage the rich statistical structure afforded by natural scenes.

      (2) The experimental design appears primarily confirmatory rather than attempting to challenge the TWCO framework or test boundary conditions where it might fail.

      (3) Alternative explanations for the observed behavioral effects are not thoroughly explored. While the model provides a good fit to the data, this does not conclusively prove that gamma synchrony is the actual mechanism underlying the observed effects.

      (4) Direct neurophysiological evidence linking the observed behavioral effects to gamma synchrony in humans is absent, creating a gap between the model and the neural mechanism.

      Achievement of Aims and Support for Conclusions:

      The authors largely achieved their primary aim of demonstrating that human figure-ground perception follows patterns predicted by TWCO principles. Their psychophysical results reveal a behavioral "Arnold tongue" that matches the synchronization patterns predicted by their model, and their learning experiment shows that perceptual improvements correlate with predicted increases in synchrony.

      The evidence supports their conclusion that gamma synchrony could serve as a viable neural grouping mechanism for figure-ground segregation. However, the conclusion that "stimulus-dependence of gamma synchrony is adaptable to the statistics of visual experiences" is only partially supported, as the study uses highly controlled artificial stimuli rather than naturalistic visual statistics, or shows a sensitivity to the structure of experience.

      Likely Impact and Utility:

      This work offers a fresh perspective on the functional role of gamma oscillations in visual perception. The integration of TWCO with perceptual learning provides a novel theoretical framework that could influence future research on neural synchrony.

      The computational model, with parameters derived from neurophysiological data, offers a useful tool for predicting perceptual performance based on synchronization principles. This approach might be extended to study other perceptual phenomena and could inspire designs for artificial vision systems.

      The learning component of the study may have a particular impact, as it suggests a mechanism by which perceptual expertise develops through modified coupling between neural assemblies. This could influence thinking about perceptual learning more broadly, but also raises questions about the underlying mechanism that the paper does not address.

      Additional Context:

      Historically, the functional significance of gamma oscillations has been debated, with early theories of temporal binding giving way to skepticism based on gamma's stimulus-dependence. This study reframes this debate by suggesting that stimulus-dependence is exactly what makes gamma useful for perceptual grouping.

      The successful combination of computational neuroscience and psychophysics is a significant strength of this study.

      The field would benefit from future work extending (if possible) these findings to more naturalistic stimuli and directly measuring neural activity during perceptual tasks. Additionally, studies comparing predictions from synchrony-based models against alternative mechanisms would help establish the specificity of the proposed framework.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:  

      Reviewer #1 (Public Review): 

      Summary: 

      In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon. 

      The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.  

      To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.  

      Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells than in DNMT1 KO alone.  

      Strengths: 

      The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.  

      Weaknesses: 

      Suggestions for refinement:  

      The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants a more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells? 

      This is an excellent suggestion. We have gene expression data on WT versus DNMT1 KO HAP1 cells and have included them now as Suppl. Figure S1. The  transcriptome analysis of DNMT1 KO cells showed hundreds of deregulated genes upon DNMT1 ablation. As expected, the majority were up-regulated and gene ontology analysis revealed that among the strongest up-regulated genes were gene clusters with functions in “regulation of transcription from RNA polymerase II promoter” and “cell differentiation” and genes encoding proteins with KRAB domains. In addition, the de novo methyltransferases DNMT3A and DNMT3B were up-regulated in DNMT1 KO cells suggesting the set-up of compensatory mechanisms in these cells. 

      Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1. 

      We have previously discovered that conditional deletion of the maintenance DNA methyltransferase DNMT1 in the murine epidermis results not only in the up-regulation of mobile elements, such as IAPs but also the induced expression of L1TD1 ([1], Suppl. Table 1 and Author response image 1). Similary, L1TD1 expression was induced by treatment of primary human keratinocytes or squamous cell carcinoma cells with the DNMT inhibitor azadeoxycytidine (Author response images 2 and 3). These findings are in accordance with the observation  that inhibition of DNA methyltransferase activity by aza-deoxycytidine in human non-small cell lung cancer cells (NSCLCs) results in up-regulation of L1TD1 [2]. Our interest in L1TD1 was further fueled by reports on a potential function of L1TD1 as prognostic tumor marker. We have included this information in the last paragraph of the Introduction in the revised manuscript.

      Author response image 1. RT-qPCR of L1TD1 expression in cultured murine control and Dnmt1 Δ/Δker keratinocytes. mRNA levels of L1td1 were analyzed in keratinocytes isolated at P5 from conditional Dnmt1 knockout mice [1]. Hprt expression was used for normalization of mRNA levels and wildtype control was set to 1. Data represent means ±s.d. with n=4. **P < 0.01 (paired t-test). 

      Author response image 2. RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2-deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. **P < 0.01 (paired t-test).

      Author response image 3. Induced L1TD1 expression upon DNMT inhibition in squamous cell carcinoma cell lines SCC9 and SCCO12. Cells were treated with 5-aza-2-deoxycidine for 24 hours, 48 hours or 6 days. (A) Western blot analysis of L1TD1 protein levels using beta-actin as loading control. (B) Indirect immunofluorescence microscopy analysis of L1TD1 expression in SCC9 cells. Nuclear DNA was stained with DAPI. Scale bar: 10 µm. (C)  RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. *P < 0.05, **P < 0.01 (paired t-test).

      The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transposition-positive colonies? Further exploration of this phenomenon would be intriguing. 

      This is an important point and we were aware of this potential problem. Therefore, we calibrated the retrotransposition assay by transfection with a blasticidin resistance gene vector to take into account potential differences in cell viability and blasticidin sensitivity. Thus, the observed reduction in L1 retrotransposition efficiency is not an indirect effect of reduced cell viability. We have added a corresponding clarification in the Results section on page 8, last paragraph. 

      Based on previous studies with hESCs and germ cell tumors [3], it is likely that, in addition to its role in retrotransposition, L1TD1 has further functions in the regulation of cell proliferation and differentiation. L1TD1 might therefore attenuate the effect of DNMT1 loss in KO cells generating an intermediate phenotype (as pointed out by Reviewer 2) and simultaneous loss of both L1TD1 and DNMT1 results in more pronounced effects on cell viability. This is in agreement with the observation that a subset of L1TD1 associated transcripts encode proteins involved in the control of cell division and cell cycle. It is possible that subtle changes in the expression of these protein that were not detected in our mass spectrometry approach contribute to the antiproliferative effect of L1TD1 depletion as discussed in the Discussion section of the revised manuscript. 

      Reviewer #2 (Public Review):           

      In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.   

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):        

      Major 

      (1) The study only used one knockout (KO) cell line generated by CRISPR/Cas9. Considering the possibility of an off-target effect, I suggest the authors attempt one or both of these suggestions. 

      A) Generate or acquire a similar DMNT1 deletion that uses distinct sgRNAs, so that the likelihood of off-targets is negligible. A few simple experiments such as qRT-PCR would be sufficient to suggest the same phenotype.  

      B) Confirm the DNMT1 depletion also by siRNA/ASO KD to phenocopy the KO effect.  (2) In addition to the strategies to demonstrate reproducibility, a rescue experiment restoring DNMT1 to the KO or KD cells would be more convincing. (Partial rescue would suffice in this case, as exact endogenous expression levels may be hard to replicate). 

      We have undertook several approaches to study the effect of DNMT1 loss or inactivation: As described above, we have generated a conditional KO mouse with ablation of DNMT1 in the epidermis. DNMT1-deficient keratinocytes isolated from these mice show a significant increase in L1TD1 expression.  In addition, treatment of primary human keratinocytes and two squamous cell carcinoma cell lines with the DNMT inhibitor aza-deoxycytidine led to upregulation of L1TD1 expression. Thus, the derepression of L1TD1 upon loss of DNMT1 expression or activity is not a clonal effect. Also, the spectrum of RNAs identified in RIP experiments as L1TD1-associated transcripts in HAP1 DNMT1 KO cells showed a strong overlap with the RNAs isolated by a related yet different method in human embryonic stem cells. When it comes to the effect of L1TD1 on L1-1 retrotranspostion, a recent study has reported a similar effect of L1TD1 upon overexpression in HeLa cells [4].  

      All of these points together help to convince us that our findings with HAP1 DNMT KO are in agreement with results obtained in various other cell systems and are therefore not due to off-target effects. With that in mind, we would pursue the suggestion of Reviewer 1 to analyze the effects of DNA hypomethylation upon DNMT1 ablation.

      (3) As stated in the introduction, L1TD1 and ORF1p share "sequence resemblance" (Martin 2006). Is the L1TD1 antibody specific or do we see L1 ORF1p if Fig 1C were uncropped?  (6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).  

      This is a relevant question. We are convinced that the L1TD1 antibody does not crossreact with L1 ORF1p for the following reasons: Firstly, the antibody does not recognize L1 ORF1p (40 kDa) in the  uncropped Western blot for Figure 1C (Author response image 4A). Secondly, the L1TD1 antibody gives only background signals in DKO cells in the  indirect immunofluorescence experiment shown in Figure 1E of the manuscript. 

      Thirdly, the immunogene sequence of L1TD1 that determines the specificity of the antibody was checked in the antibody data sheet from Sigma Aldrich. The corresponding epitope is not present in the L1 ORF1p sequence. Finally, we have shown that the ORF1p antibody does not cross-react with L1TD1 (Author response image 4B).

      Author response image 4. (A) Uncropped L1TD1 Western blot shown in Figure 1C. An unspecific band is indicated by an asterisk. (B) Westernblot analysis of WT, KO and DKO cells with L1 ORF1p antibody.

      (4) In abstract (P2), the authors mentioned that L1TD1 works as an RNA chaperone, but in the result section (P13), they showed that L1TD1 associates with L1 ORF1p in an RNAindependent manner. Those conclusions appear contradictory. Clarification or revision is required. 

      Our findings that both proteins bind L1 RNA, and that L1TD1 interacts with ORF1p are compatible with a scenario where L1TD1/ORF1p heteromultimers bind to L1 RNA. The additional presence of L1TD1 might thereby enhance the RNA chaperone function of ORF1p. This model is visualized now in Suppl. Figure S7C. 

      (5) Figure 2C fold enrichment for L1TD1 and ARMC1 is a bit difficult to fully appreciate. A 100 to 200-fold enrichment does not seem physiological. This appears to be a "divide by zero" type of result, as the CT for these genes was likely near 40 or undetectable. Another qRT-PCRbased approach (absolute quantification) would be a more revealing experiment. 

      This is the validation of the RIP experiments and the presentation mode is specifically developed for quantification of RIP assays (Sigma Aldrich RIP-qRT-PCR: Data Analysis Calculation Shell). The unspecific binding of the transcript in the absence of L1TD1 in DNMT1/L1TD1 DKO cells is set to 1 and the value in KO cells represents the specific binding relative the unspecific binding. The calculation also corrects for potential differences in the abundance of the respective transcript in the two cell lines. This is not a physiological value but the quantification of specific binding of transcripts to L1TD1. GAPDH as negative control shows no enrichment, whereas specifically associated transcripts show strong enrichement. We have explained the details of RIPqRT-PCR evaluation in Materials and Methods (page 14) and the legend of Figure 2C in the revised manuscript.       

      (6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).            

      See response to (3).  

      (7) Figure S4A and S4B: There appear to be a few unusual aspects of these figures that should be pointed out and addressed. First, there doesn't seem to be any ORF1p in the Input (if there is, the exposure is too low). Second, there might be some L1TD1 in the DKO (lane 2) and lane 3. This could be non-specific, but the size is concerning. Overexposure would help see this.

      The ORF1p IP gives rise to strong ORF1p signals in the immunoprecipitated complexes even after short exposure. Under these contions ORF1p is hardly detectable in the input. Regarding the faint band in DKO HAP1 cells, this might be due to a technical problem during Western blot loading. Therefore, the input samples were loaded again on a Western blot and analyzed for the presence of ORF1p, L1TD1 and beta-actin (as loading control) and shown as separate panel in Suppl. Figure S4A. 

      (8) Figure S4C: This is related to our previous concerns involving antibody cross-reactivity. Figure 3E partially addresses this, where it looks like the L1TD1 "speckles" outnumber the ORF1p puncta, but overlap with all of them. This might be consistent with the antibody crossreacting. The western blot (Figure 3C) suggests an upregulation of ORF1p by at least 2-3x in the DKO, but the IF image in 3E is hard to tell if this is the case (slightly more signal, but fewer foci). Can you return to the images and confirm the contrast are comparable? Can you massively overexpose the red channel in 3E to see if there is residual overlap? 

      In Figure 3E the L1TD1 antibody gives no signal in DNMT1/L1TD1 DKO cells confirming that it does not recognize ORF1p. In agreement with the Western blot in Figure 3C the L1 ORF1p signal in Figure 3E is stronger in DKO cells. In DNMT1 KO cells the L1 ORF1p antibody does not recognize all L1TD1 speckles. This result is in agreement with the Western blot shown above in Figure R4B and indicates that the L1 ORF1p antibody does not recognize the L1TD1 protein. The contrast is comparable and after overexposure there are still L1TD1 specific speckles. This might be due to differences in abundance of the two proteins.

      (9) The choice of ARMC1 and YY2 is unclear. What are the criteria for the selection?

      ARMC1 was one of the top hits in a pilot RIP-seq experiment (IP versus input and IP versus  IgG IP). In the actual RIP-seq experiment with DKO HAP1 cells instead of IgG IP as a negative control, we found ARMC1 as an enriched hit, although it was not among the top 5 hits. The results from the 2nd RIP-seq further confirmed the validity of ARMC1 as an L1TD1-interacting transcript. YY2 was of potential biological relevance as an L1TD1 target due to the fact that it is a processed pseudogene originating from YY1 mRNA as a result of retrotransposition. This is mentioned on page 6 of the revised manuscript.

      (10) (P16) L1 is the only protein-coding transposon that is active in humans. This is perhaps too generalized of a statement as written. Other examples are readily found in the literature. Please clarify.  

      We will tone down this statement in the revised manuscript. 

      (11) In both the abstract and last sentence in the discussion section (P17), embryogenesis is mentioned, but this is not addressed at all in the manuscript. Please refrain from implying normal biological functions based on the results of this study unless appropriate samples are used to support them.

      Much of the published data on L1TD1 function are related to embryonic stem cells [3-7]. Therefore, it is important to discuss our findings in the context of previous reports.

      (12) Figure 3E: The format of Figures 1A and 3E are internally inconsistent. Please present similar data/images in a cohesive way throughout the manuscript.  

      We show now consistent IF Figures in the revised manuscript.

      Minor: 

      (1) Intro:           

      - Is L1Td1 in mice and Humans? How "conserved" is it and does this suggest function?  

      Murine and human L1TD1 proteins share 44% identity on the amino acid level and it was suggested that the corresponding genes were under positive selection during evolution with functions in transposon control and maintenance of pluripotency [8].  

      - Why HAP1? (Haploid?) The importance of this cell line is not clear.          

      HAP1 is a nearly haploid human cancer cell line derived from the KBM-7 chronic myelogenous leukemia (CML) cell line [9, 10]. Due to its haploidy is perfectly suited and widely used for loss-of-function screens and gene editing. After gene editing  cells can be used in the nearly haploid or in the diploid state. We usually perform all experiments with diploid HAP1 cell lines.  Importantly, in contrast to other human tumor cell lines, this cell line tolerates ablation of DNMT1. We have included a corresponding explanation in the revised manuscript on page 5, first paragraph.

      - Global methylation status in DNMT1 KO? (Methylations near L1 insertions, for example?) 

      The HAP1 DNMT1 KO cell line with a 20 bp deletion in exon 4 used in our study was validated in the study by Smits et al. [11]. The authors report a significant reduction in overall DNA methylation. However, we are not aware of a DNA methylome study on this cell line. We show now data on the methylation of L1 elements in HAP1 cells and upon DNMT1 deletion in the revised manuscript in Suppl. Figure S1B.

      (2) Figure 1:  

      - Figure 1C. Why is LMNB used instead of Actin (Fig1D)?  

      We show now beta-actin as loading control in the revised manuscript.  

      - Figure 1G shows increased Caspase 3 in KO, while the matching sentence in the result section skips over this. It might be more accurate to mention this and suggest that the single KO has perhaps an intermediate phenotype (Figure 1F shows a slight but not significant trend). 

      We fully agree with the reviewer and have changed the sentence on page 6, 2nd paragraph accordingly.  

      - Would 96 hrs trend closer to significance? An interpretation is that L1TD1 loss could speed up this negative consequence. 

      We thank the reviewer for the suggestion. We have performed a time course experiment with 6 biological replicas for each time point up to 96 hours and found significant changes in the viability upon loss of DNMT1 and again significant reduction in viability upon additional loss of L1TD1 (shown in Figure 1F). These data suggest that as expexted loss of DNMT1 leads to significant reduction viability and that additional ablation of L1TD1 further enhances this effect.

      - What are the "stringent conditions" used to remove non-specific binders and artifacts (negative control subtraction?) 

      Yes, we considered only hits from both analyses, L1TD1 IP in KO versus input and L1TD1 IP in KO versus L1TD1 IP in DKO. This is now explained in more detail in the revised manuscript on page 6, 3rd paragraph.  

      (3) Figure 2:  

      - Figure 2A is a bit too small to read when printed. 

      We have changed this in the revised manuscript.

      - Since WT and DKO lack detectable L1TD1, would you expect any difference in RIP-Seq results between these two?

      Due to the lack of DNMT1 and the resulting DNA hypomethylation, DKO cells are more similar to KO cells than WT cells with respect to the expressed transcripts.

      - Legend says selected dots are in green (it appears blue to me). 

      We have changed this in the revised manuscript.           

      - Would you recover L1 ORF1p and its binding partners in the KO? (Is the antibody specific in the absence of L1TD1 or can it recognize L1?) I noticed an increase in ORF1p in the KO in Figure 3C.  

      Thank you for the suggestion. Yes, L1 ORF1p shows slightly increased expression in the proteome analysis and we have marked the corresponding dot in the Volcano plot (Figure 3A).

      - Should the figure panel reference near the (Rosspopoff & Trono) reference instead be Sup S1C as well? Otherwise, I don't think S1C is mentioned at all. 

      - What are the red vs. green dots in 2D? Can you highlight ERV and ALU with different colors? 

      We added the reference to Suppl. Figure S1C (now S3C) in the revised manuscript. In Figure 2D L1 elements are highlighted in green, ERV elements in yellow, and other associated transposon transcripts in red.     

      - Which L1 subfamily from Figure 2D is represented in the qRT-PCR in 2E "LINE-1"? Do the primers match a specific L1 subfamily? If so, which? 

      We used primers specific for the human L1.2 subfamily. 

      - Pulling down SINE element transcripts makes some sense, as many insertions "borrow" L1 sequences for non-autonomous retro transposition, but can you speculate as to why ERVs are recovered? There should be essentially no overlap in sequence. 

      In the L1TD1 evolution paper [8], a potential link between L1TD1 and ERV elements was discussed: 

      "Alternatively, L1TD1 in sigmodonts could play a role in genome defense against another element active in these genomes. Indeed, the sigmodontine rodents have a highly active family of ERVs, the mysTR elements [46]. Expansion of this family preceded the death of L1s, but these elements are very active, with 3500 to 7000 species-specific insertions in the L1-extinct species examined [47]. This recent ERV amplification in Sigmodontinae contrasts with the megabats (where L1TD1 has been lost in many species); there are apparently no highly active DNA or RNA elements in megabats [48]. If L1TD1 can suppress retroelements other than L1s, this could explain why the gene is retained in sigmodontine rodents but not in megabats." 

      Furthermore, Jin et al. report the binding of L1TD1 to repetitive sequences in transcripts [12]. It is possible that some of these sequences are also present in ERV RNAs.

      - Is S2B a screenshot? (the red underline). 

      No, it is a Powerpoint figure, and we have removed the red underline.

      (4) Figure 3: 

      - Text refers to Figure 3B as a western blot. Figure 3B shows a volcano plot. This is likely 3C but would still be out of order (3A>3C>3B referencing). I think this error is repeated in the last result section. 

      - Figure and legends fail to mention what gene was used for ddCT method (actin, gapdh, etc.). 

      - In general, the supplemental legends feel underwritten and could benefit from additional explanations. (Main figures are appropriate but please double-check that all statistical tests have been mentioned correctly).

      Thank you for pointing this out. We have corrected these errors in the revised manuscript.

      (5) Discussion: 

      -Aluy connection is interesting. Is there an "Alu retrotransposition reporter assay" to test whether L1TD1 enhances this as well? 

      Thank you for the suggestion. There is indeed an Alu retrotransposition reporter assay reported be Dewannieux et al. [13]. The assay is based on a Neo selection marker. We have previously tested a Neo selection-based L1 retrotransposition reporter assay, but this system failed to properly work in HAP1 cells, therefore we switched to a blasticidinbased L1 retrotransposition reporter assay. A corresponding blasticidin-based Alu retrotransposition reporter assay might be interesting for future studies (mentioned in the Discussion, page 11 paragraph 4 of the revised manuscript.

      (6) Material and Methods       : 

      - The number of typos in the materials and methods is too numerous to list. Instead, please refer to the next section that broadly describes the issues seen throughout the manuscript. 

      Writing style  

      (1) Keep a consistent style throughout the manuscript: for example, L1 or LINE-1 (also L1 ORF1p or LINE-1 ORF1p); per or "/"; knockout or knock-out; min or minute; 3 times or three times; media or medium. Additionally, as TE naming conventions are not uniform, it is important to maintain internal consistency so as to not accidentally establish an imprecise version. 

      (2) There's a period between "et al" and the comma, and "et al." should be italic. 

      (3) The authors should explain what the key jargon is when it is first used in the manuscript, such as "retrotransposon" and "retrotransposition".    

      (4) The authors should show the full spelling of some acronyms when they use it for the first time, such as RNA Immunoprecipitation (RIP).  

      (5) Use a space between numbers and alphabets, such as 5 µg.  

      (6) 2.0 × 105 cells, that's not an "x".  

      (7) Numbers in the reference section are lacking (hard to parse).  

      (8) In general, there are a significant number of typos in this draft which at times becomes distracting. For example, (P3) Introduction: Yet, co-option of TEs thorough (not thorough, it should be through) evolution has created so-called domesticated genes beneficial to the gene network in a wide range of organisms. Please carefully revise the entire manuscript for these minor issues that collectively erode the quality of this submission.  

      Thank you for pointing out these mistakes. We have corrected them in the revised manuscript. A native speaker from our research group has carefully checked the paper. In summary, we have added Supplementary Figure S7C and have changed Figures 1C, 1E, 1F, 2A, 2D, 3A, 4B, S3A-D, S4B and S6A based on these comments. 

      REFERENCES

      (1) Beck, M.A., et al., DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J, 2021. 40(22): p. e108234.

      (2) Altenberger, C., et al., SPAG6 and L1TD1 are transcriptionally regulated by DNA methylation in non-small cell lung cancers. Mol Cancer, 2017. 16(1): p. 1.

      (3) Narva, E., et al., RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells, 2012. 30(3): p. 452-60.

      (4) Jin, S.W., et al., Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res, 2024. 52(6): p. 3310-3326.

      (5) Emani, M.R., et al., The L1TD1 protein interactome reveals the importance of posttranscriptional regulation in human pluripotency. Stem Cell Reports, 2015. 4(3): p. 519-28.

      (6) Santos, M.C., et al., Embryonic Stem Cell-Related Protein L1TD1 Is Required for Cell Viability, Neurosphere Formation, and Chemoresistance in Medulloblastoma. Stem Cells Dev, 2015. 24(22): p. 2700-8.

      (7) Wong, R.C., et al., L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS One, 2011. 6(4): p. e19355.

      (8) McLaughlin, R.N., Jr., et al., Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency. PLoS Genet, 2014. 10(9): p. e1004531.

      (9) Andersson, B.S., et al., Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genet Cytogenet, 1987. 24(2): p. 335-43.

      (10) Carette, J.E., et al., Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature, 2011. 477(7364): p. 340-3.

      (11) Smits, A.H., et al., Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods, 2019. 16(11): p. 1087-1093.

      (12) Jin, S.W., et al., Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res, 2024.

      (13) Dewannieux, M., C. Esnault, and T. Heidmann, LINE-mediated retrotransposition of marked Alu sequences. Nat Genet, 2003. 35(1): p. 41-8.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors provide a new computational platform called Vermouth to automate topology generation, a crucial step that any biomolecular simulation starts with. Given a wide arrange of chemical structures that need to be simulated, varying qualities of structural models as inputs obtained from various sources, and diverse force fields and molecular dynamics engines employed for simulations, automation of this fundamental step is challenging, especially for complex systems and in case that there is a need to conduct high-throughput simulations in the application of computer-aided drug design (CADD). To overcome this challenge, the authors develop a programing library composed of components that carry out various types of fundamental functionalities that are commonly encountered in topological generation. These components are intended to be general for any type of molecules and not to depend on any specific force field and MD engines. To demonstrate the applicability of this library, the authors employ those components to re-assemble a pipeline called Martinize2 used in topology generation for simulations with a widely used coarse-grained model (CG) MARTINI. This pipeline can fully recapitulate the functionality of its original version Martinize but exhibit greatly enhanced generality, as confirmed by the ability of the pipeline to faithfully generate topologies for two high-complexity benchmarking sets of proteins.

      Strengths:

      The main strength of this work is the use of concepts and algorithms associated with induced subgraph in graph theory to automate several key but non-trivial steps of topology generation such as the identification of monomer residue units (MRU), the repair of input structures with missing atoms, the mapping of topologies between different resolutions, and the generation of parameters needed for describing interactions between MRUs. In addition, the documentation website provided by the authors is very informative, allowing users to get quickly started with Vermouth.

      Weaknesses:

      Although the Vermouth library is designed as a general tool for topology generation for molecular simulations, only its applications with MARTINI have been demonstrated in the current study. Thus, the claimed generality of Vermouth remains to be exmained. The authors may consider to point out this in their manuscript.

      In order to demonstrate generality of the here proposed concepts for generating topologies for molecular dynamics simulations, we have now implemented and tested a workflow that will produce topologies for the popular CHARMM36 all-atom force field. To facilitate generation of all-atom topologies with Martinize2 a .rtp reader was introduced, which allows users to provide .rtp files that are the native GROMACS topology files for proteins instead of .ff files. These .rtp files exist for all major atomic protein forcefields. In addition, for CHARMM36 we also included modification files, which describe non-standard pH amino acids, histidine tautomers, and end terminal modifications. Thus, the current implementation unlocks all features available at the CG Martini level also for CHARMM36. We note that users must add the modifications files for other all-atom force fields e.g. AMBER.

      We have added a new item in the main manuscript (p28) briefly describing this proof-of-concept implementation. However, we like to point out that there are many specialized tools for the various force fields adopted by the respective communities. Thus, an exhaustive discussion on the capabilities of Martinize2 for all-atom force fields seemed out of place.

      Reviewer #2 (Public Review):

      This work introduces a Vermouth library framework to enhance software development within the Martini community. Specifically, it presents a Vermouth-powered program, Martinize2, for generating coarse-grained structures and topologies from atomistic structures. In addition to introducing the Vermouth library and the Martinize2 program, this paper illustrates how Martinize2 identifies atoms, maps them to the Martini model, generates topology files, and identifies protonation states or post-translational modifications. Compared with the prior version, the authors provide a new figure to show that Martinize2 can be applied to various molecules, such as proteins, cofactors, and lipids. To demonstrate the general application, Martinize2 was used for converting 73% of 87,084 protein structures from the template library, with failed cases primarily blamed on missing coordinates.

      I was hoping to see some fundamental changes in the resubmitted version. To my disappointment, the manuscript remains largely unchanged (even the typo I pointed out previously was not fixed). I do not doubt that Martinize2 and Vermouth are useful to the Martini community, and this paper will have some impact. The manuscript is very technical and limited to the Martini community. The scientific insight for the general coarse-grained modeling community is unclear. The goal of the work is ambitious (such as high-throughput simulations and whole-cell modeling), but the results show just a validation of Martinize2. This version does not reverse my previous impression that it is incremental. As I pointed out in my previous review (and no response from the authors), all the issues associated with the Martini model are still there, e.g. the need for ENM. In this shape, I feel this manuscript is suitable for a specialized journal in computational biophysics or stays as part of the GitHub repository.

      We apologize for not fixing the typo; it was fixed but unfortunately got reintroduced in the final resubmitted version. We politely disagree that the goal of the work itself is high-throughput simulations and whole-cell modeling, but the Martinize2 tool is certainly an important element in our ambitions to achieve this. Given the broad interest in these goals by the modeling community in general, we believe this work has a much wider impact beyond the (already large) group of Martini users. Addressing limitations of the Martini model itself, which are certainly there, is clearly not the scope of the current work.

      Reviewer #3 (Public Review):

      The manuscript Kroon et al. described two algorithms, which when combined achieve high throughput automation of "martinizing" protein structures with selected protonation states and post-translational modifications. After the revisions provided by the authors, I recommend minor revision.

      The authors have addressed most of my concerns provided previously. Specifically, showcasing the capability of coarse-graining other types of molecules (Figure 7) is a useful addition, especially for the booming field of therapeutic macrocycles. My only additional concern is that to justify Martinize2 and Vermouth as a "high-throughput" method, the speed of these tools needs to be addressed in some form in the manuscript as a guideline to users.

      We have added some benchmark timings in the manuscript SI and pointed to the data in the discussion part, which addresses the timing. Martinize2 is certainly slower than martinize version 1 as we already pointed out in the previous versions. However, even for larger proteins (> 2000 residues) we are able to generate topologies in about 60s. As Martinize2 runs on a single core, it can be massively parallelized. Keeping this in mind the topology file generation is likely to take up only a fraction in a high-throughput pipeline compared to the more costly simulations themselves.

    2. Reviewer #3 (Public review):

      Summary:

      The manuscript Kroon et al. described two algorithms, which when combined achieve high throughput automation of "martinizing" protein structures with selected protonation states and post-translational modifications.

      The authors have addressed all of my concerns as provided previously. Specifically, Figure S2 will be a very useful guideline for future improvement (e.g., parallelization) of the code.

    3. Reviewer #2 (Public review):

      This work introduces a Vermouth library framework to enhance software development within the Martini community. Specifically, it presents a Vermouth-powered program, Martinize2, for generating coarse-grained structures and topologies from atomistic structures. In addition to introducing the Vermouth library and the Martinize2 program, this paper illustrates how Martinize2 identifies atoms, maps them to the Martini model, generates topology files, and identifies protonation states or post-translational modifications. Compared with the prior version, the authors provide a new figure to show that Martinize2 can be applied to various molecules, such as proteins, cofactors, and lipids. To demonstrate the general application, Martinize2 was used for converting 73% of 87,084 protein structures from the template library, with failed cases primarily blamed on missing coordinates.

      I appreciate the changes that the authors made to clarify the novelty. I have no doubt this paper will receive attention and citations.

    4. Reviewer #1 (Public review):

      Summary:

      In this study, the authors provide a new computational platform called Vermouth to automate topology generation, a crucial step that any biomolecular simulation starts with. Given a wide arrange of chemical structures that need to be simulated, varying qualities of structural models as inputs obtained from various sources, and diverse force fields and molecular dynamics engines employed for simulations, automation of this fundamental step is challenging, especially for complex systems and in case that there is a need to conduct high-throughput simulations in the application of computer-aided drug design (CADD). To overcome this challenge, the authors develop a programing library composed of components that carry out various types of fundamental functionalities that are commonly encountered in topological generation. These components are intended to be general for any type of molecules and not to depend on any specific force field and MD engines. To demonstrate the applicability of this library, the authors employ those components to reassemble a pipeline called Martinize2 used in topology generation for simulations with a widely used coarse-grained model (CG) MARTINI. This pipeline can fully recapitulate the functionality of its original version Martinize but exhibit greatly enhanced generality, as confirmed by the ability of the pipeline to faithfully generate topologies for two high-complexity benchmarking sets of proteins.

      Strengths:

      The main strength of this work is the use of concepts and algorithms associated with induced subgraph in graph theory to automate several key but non-trivial steps of topology generation such as the identification of monomer residue units (MRU), the repair of input structures with missing atoms, the mapping of topologies between different resolutions, and the generation of parameters needed for describing interactions between MRUs. In addition, the documentation website provided by the authors is very informative, allowing users to get quickly started with Vermouth.

      Weaknesses:

      Although the Vermouth library can work for different force fields, exhibiting certain generality, its application has been demonstrated only with GROMACS. The extension of the library to other major MD engines could be future directions for improvement but may not be needed for this study.

    5. eLife Assessment

      The authors present an important multi-scale computational platform, which aims to automate the workflow for coarse-grained simulations of biomolecules in the framework of the popular MARTINI model. The capability of the platform has been convincingly demonstrated by the application to a large number of proteins as well as macrocycles and polymers. This work will be of interest to both computational biophysicists and chemists.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reply to Public Reviews:

      Reply to Reviewer #1:

      This is a carefully performed and well-documented study to indicate that the FUS protein interacts with the GGGGCC repeat sequence in Drosophila fly models, and the mechanism appears to include modulating the repeat structure and mitigating RAN translation. They suggest FUS, as well as a number of other G-quadruplex binding RNA proteins, are RNA chaperones, meaning they can alter the structure of the expanded repeat sequence to modulate its biological activities.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are very happy to see the reviewer for highly appreciating our manuscript.

      1. Overall this is a nicely done study with nice quantitation. It remains somewhat unclear from the data and discussions in exactly what way the authors mean that FUS is an RNA chaperone: is FUS changing the structure of the repeat or does FUS binding prevent it from folding into alternative in vivo structure?

      Response: We appreciate the reviewer’s constructive comments. Indeed, we showed that FUS changes the higher-order structures of GGGGCC [G4C2] repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation in vivo. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #2:

      Fuijino et al. provide interesting data describing the RNA-binding protein, FUS, for its ability to bind the RNA produced from the hexanucleotide repeat expansion of GGGGCC (G4C2). This binding correlates with reductions in the production of toxic dipeptides and reductions in toxic phenotypes seen in (G4C2)30+ expressing Drosophila. Both FUS and G4C2 repeats of >25 are associated with ALS/FTD spectrum disorders. Thus, these data are important for increasing our understanding of potential interactions between multiple disease genes. However, further validation of some aspects of the provided data is needed, especially the expression data.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript and also for her/his important comments that helped to strengthen our manuscript.

      Some points to consider when reading the work:

      1. The broadly expressed GMR-GAL4 driver leads to variable tissue loss in different genotypes, potentially confounding downstream analyses dependent on viable tissue/mRNA levels.

      Response: We thank the reviewer for this constructive comment. In the RT-qPCR experiments (Figures 1E, 3C, 4G, 6D and Figure 1—figure supplement 1C), the amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue, to avoid potential confounding derived from the difference in tissue viability between genotypes, as the reviewer pointed out. To clarify this process, we have made the following change to the revised manuscript.

      (1) On page 30, line 548-550, the sentence “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts in the same sample” was changed to “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue to avoid potential confounding derived from the difference in tissue viability between genotypes”.

      2. The relationship between FUS and foci formation is unclear and should be interpreted carefully.

      Response: We appreciate the reviewer’s important comment. We apologize for the lack of clarity. We showed the relationship between FUS and RNA foci formation in our C9-ALS/FTD fly, that is, FUS suppresses RNA foci formation (Figures 3A and 3B), and knockdown of endogenous caz, a Drosophila homologue of FUS, enhanced it conversely (Figures 4E and 4F). We consider that FUS suppresses RNA foci formation through altering RNA structures and preventing aggregation of misfolded G4C2 repeat RNA as an RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #3:

      In this manuscript Fujino and colleagues used C9-ALS/FTD fly models to demonstrate that FUS modulates the structure of (G4C2) repeat RNA as an RNA chaperone, and regulates RAN translation, resulting in the suppression of neurodegeneration in C9-ALS/FTD. They also confirmed that FUS preferentially binds to and modulates the G-quadruplex structure of (G4C2) repeat RNA, followed by the suppression of RAN translation. The potential significance of these findings is high since C9ORF72 repeat expansion is the most common genetic cause of ALS/FTD, especially in Caucasian populations and the DPR proteins have been considered the major cause of the neurodegenerations.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are grateful to the reviewer for the insightful comments, which were very helpful for us to improve the manuscript.

      1. While the effect of RBP as an RNA chaperone on (G4C2) repeat expansion is supposed to be dose-dependent according to (G4C2)n RNA expression, the first experiment of the screening for RBPs in C9-ALS/FTD flies lacks this concept. It is uncertain if the RBPs of the groups "suppression (weak)" and "no effect" were less or no ability of RNA chaperone or if the expression of the RBP was not sufficient, and if the RBPs of the group "enhancement" exacerbated the toxicity derived from (G4C2)89 RNA or the expression of the RBP was excessive. The optimal dose of any RBPs that bind to (G4C2) repeats may be able to neutralize the toxicity without the reduction of (G4C2)n RNA.

      Response: We appreciate the reviewer’s constructive comments. We employed the site-directed transgenesis for the establishment of RBP fly lines, to ensure the equivalent expression levels of the inserted transgenes. We also evaluated the toxic effects of overexpressed RBPs themselves by crossbreeding with control EGFP flies, showing in Figure 1A. To clarify them, we have made the following changes to the revised manuscript.

      (1) On page 8, line 166-168, the sentence “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and their different roles in RNA metabolism.” was changed to “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and the different toxicity of overexpressed RBPs themselves.”.

      (2) On page 29, line 519-522, the sentence “By employing site-specific transgenesis using the pUASTattB vector, each transgene was inserted into the same locus of the genome, and was expected to be expressed at the equivalent levels.” was added.

      2. In relation to issue 1, the rescue effect of FUS on the fly expressing (G4C2)89 (FUS-4) in Figure 4-figure supplement 1 seems weaker than the other flies expressing both FUS and (G4C2)89 in Figure 1 and Figure 1-figure supplement 2. The expression level of both FUS protein and (G4C2)89 RNA in each line is important from the viewpoint of therapeutic strategy for C9-ALS/FTD.

      Response: We appreciate the reviewer’s important comment. The FUS-4 transgene is expected to be expressed at the equivalent level to the FUS-3 transgene, since they are inserted into the same locus of the genome by the site-directed transgenesis. Thus, we suppose that the weaker suppressive effect of FUS-4 coexpression on G4C2 repeat-induced eye degeneration can be attributed to the C-terminal FLAG tag that is fused to FUS protein expressed in FUS-4 fly line. Since the caz fly expresses caz protein also fused to FLAG tag at the C-terminus, we used this FUS-4 fly line to directly compare the effect of caz on G4C2 repeat-induced toxicity to that of FUS.

      3. While hallmarks of C9ORF72 are the presence of DPRs and the repeat-containing RNA foci, the loss of function of C9ORF72 is also considered to somehow contribute to neurodegeneration. It is unclear if FUS reduces not only the DPRs but also the protein expression of C9ORF72 itself.

      Response: We thank the reviewer for this comment. We agree that not only DPRs, but also toxic repeat RNA and the loss-of-function of C9ORF72 jointly contribute to the pathomechanisms of C9-ALS/FTD. Since Drosophila has no homolog corresponding to the human C9orf72 gene, the effect of FUS on C9orf72 expression cannot be assessed. Our fly models are useful for evaluating gain-of-toxic pathomechanisms such as RNA foci formation and RAN translation, and the association between FUS and loss-of function of C9ORF72 is beyond the scope of this study.

      4. In Figure 5E-F, it cannot be distinguished whether FUS binds to GGGGCC repeats or the 5' flanking region. The same experiment should be done by using FUS-RRMmut to elucidate whether FUS binding is the major mechanism for this translational control. Authors should show that FUS binding to long GGGGCC repeats is important for RAN translation.

      Response: We would like to thank the reviewer for these insightful comments. Following the reviewer’s suggestion, we perform in vitro translation assay again using FUS-RRMmut, which loses the binding ability to G4C2 repeat RNA as evident by the filter binding assay (Figure 5A), instead of BSA. The results are shown in the figures of Western blot analysis below. The addition of FUS to the translation system suppressed the expression levels of GA-Myc efficiently, whereas that of FUS-RRMmut did not. FUS decreased the expression level of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity. These results suggest that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA.

      Unfortunately, RAN translation from short G4C2 repeat RNA was not investigated in our translation system, although the previous study reported the low efficacy of RAN translation from short G4C2 repeat RNA (Green et al., 2017).

      Author response image 1.

      (A) Western blot analysis of the GA-Myc protein in the samples from in vitro translation. (B) Quantification of the GA-Myc protein levels.

      We have made the following changes to the revised manuscript.

      (1) Figure 5F was replaced to new Figures 5F and 5G.

      (2) On page 14-15, line 326-330, the sentence “Notably, the addition of FUS to this system decreased the expression level of GA-Myc in a dose-dependent manner, whereas the addition of the control bovine serum albumin (BSA) did not (Figure 5F).” was changed to “Notably, upon the addition to this translation system, FUS suppressed RAN translation efficiently, whereas FUS-RRMmut did not. FUS decreased the expression levels of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity (Figure 5F and 5G).”.

      (3) On page 15, line 330-332, the sentence “Taken together, these results indicate that FUS suppresses RAN translation from G4C2 repeat RNA in vitro as an RNA chaperone.” was changed to “Taken together, these results indicate that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA as an RNA chaperone.”.

      (4) On page 37, line 720-723, the sentence “For preparation of the FUS protein, the human FUS (WT) gene flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS.” was changed to “For preparation of the FUS proteins, the human FUS (WT) and FUS-RRMmut genes flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS and pUAST- FUS-RRMmut, respectively.”.

      (5) On page 41, line 816-819, the sentence “FUS or BSA at each concentration (10, 100, and 1,000 nM) was added for translation in the lysate.” was changed to “FUS or FUS-RRMmut at each concentration (10, 100, 200, 400, and 1,000 nM) was preincubated with mRNA for 10 min to facilitate the interaction between FUS protein and G4C2 repeat RNA, and added for translation in the lysate.”.

      5. It is not possible to conclude, as the authors have, that G-quadruplex-targeting RBPs are generally important for RAN translation (Figure 6), without showing whether RBPs that do not affect (G4C2)89 RNA levels lead to decreased DPR protein level or RNA foci.

      Response: We appreciate the reviewer’s critical comment. Following the suggestion by the reviewer, we evaluate the effect of these G-quadruplex-targeting RBPs on RAN translation. We additionally performed immunohistochemistry of the eye imaginal discs of fly larvae expressing (G4C2)89 and these G-quadruplex-targeting RBPs. As shown in the figures of immunohistochemistry below, we found that coexpression of EWSR1, DDX3X, DDX5, and DDX17 significantly decreased the number of poly(GA) aggregates. The results suggest that these G-quadruplex-targeting RBPs regulate RAN translation as well as FUS.

      Author response image 2.

      (A) Immunohistochemistry of poly(GA) in the eye imaginal discs of fly larvae expressing (G4C2)89 and the indicated G-quadruplex-targeting RBPs. (B) Quantification of the number of poly(GA) aggregates.

      We have made the following changes to the revised manuscript.

      (1) Figures 6E and 6F were added.

      (2) On page 6-7, line 135-137, the sentence “In addition, other G-quadruplex-targeting RBPs also suppressed G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.” was changed to “In addition, other G-quadruplex-targeting RBPs also suppressed RAN translation and G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.”.

      (3) On page 15, line 344-346, the sentence “As expected, these RBPs also decreased the number of poly(GA) aggregates in the eye imaginal discs (Figures 6E and 6F).” was added.

      (4) On page 15, line 346-347, the sentence “Their effects on G4C2 repeat-induced toxicity and repeat RNA expression were consistent with those of FUS.” was changed to “Their effects on G4C2 repeat-induced toxicity, repeat RNA expression, and RAN translation were consistent with those of FUS.”

      (5) On page 16, line 355-357, the sentence “Thus, some G-quadruplex-targeting RBPs regulate G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.” was changed to “Thus, some G-quadruplex-targeting RBPs regulate RAN translation and G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.”

      (6) On page 19, line 417-421, the sentence “We further found that G-quadruplex-targeting RNA helicases, including DDX3X, DDX5, and DDX17, which are known to bind to G4C2 repeat RNA (Cooper-Knock et al., 2014; Haeusler et al., 2014; Mori et al., 2013a; Xu et al., 2013), also alleviate G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.” was changed to “We further found that G-quadruplex-targeting RNA helicases, … ,also suppress RAN translation and G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.”.

      Reply to Recommendations For The Authors:

      1) It is not clear from the start that the flies they generated with the repeat have an artificial vs human intronic sequence ahead of the repeat. It would be nice if they presented somewhere the entire sequence of the insert. The reason being that it seems they also tested flies with the human intronic sequence, and the effect may not be as strong (line 234). In any case, in the future, with a new understanding of RAN translation, it would be nice to compare different transgenes, and so as much transparency as possible would be helpful regarding sequences. Can they include these data?

      Response: We thank the editors and reviewers for this comment. We apologize for the lack of clarity. We used artificially synthesized G4C2 repeat sequences when generating constructs for (G4C2)n transgenic flies, so these constructs do not contain human intronic sequence ahead of the G4C2 repeat in the C9orf72 gene, as explained in the Materials and Methods section. To clarify the difference between our C9-ALS/FTD fly models and LDS-(G4C2)44GR-GFP fly model (Goodman et al., 2019), we have made the following change to the revised manuscript.

      (1) Schema of the LDS-(G4C2)44GR-GFP construct was presented in Figure 3—figure supplement 1.

      Furthermore, to maintain transparency of the study, we have provided the entire sequence of the insert as the following source file.

      (2) The artificial sequences inserted in the pUAST vector for generation of the (G4C2)n flies were presented in Figure 1—figure supplement 1—source data 1.

      2) It is really nice how they quantitated everything and showed individual data points.

      Response: We thank the editors and reviewers for appreciating our data analysis method. All individual data points and statistical analyses are summarized in source data files.

      3) So when they call FUS an RNA chaperone, are they simply meaning it is changing the structure of the repeat, or could it just be interacting with the repeat to coat the repeat and prevent it from folding into whatever in vivo structures? Can they speculate on why some RNA chaperones lead to presumed decay of the repeat and others do not? Can they discuss these points in the discussion? Detailed mechanistic understanding of RNA chaperones that ultimately promote decay of the repeat might be of highly significant therapeutic benefit.

      Response: We appreciate these critical comments. Indeed, we showed that FUS changes the higher-order structures of G4C2 repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Besides these RNA chaperones, we observed the expression of IGF2BP1, hnRNPA2B1, DHX9, and DHX36 decreased G4C2 repeat RNA expression levels. In addition, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). We speculate these RBPs could be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA. To clarify these interpretations, we revised the manuscript as follows.

      (3) On page 18, line 392-398, the sentences “Similarly, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). Interestingly, these RBPs have been reported to be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA.” was added.

      4) What is the level of the G4C2 repeat when they knock down caz? Is it possible that knockdown impacts the expression level of the repeat? Can they show this (or did they and I miss it)?

      Response: We thank the editors and reviewers for this comment. The expression levels of G4C2 repeat RNA in (G4C2)89 flies were not altered by the knockdown of caz, as shown in Figure 4G.

      5) A puzzling point is that FUS is supposed to be nuclear, so where is FUS in the brain in their lines? They suggest it modulates RAN translation, and presumably, that is in the cytoplasm. Is FUS when overexpressed now in part in the cytoplasm? Is the repeat dragging it into the cytoplasm? Can they address this in the discussion? If FUS is never found in vivo in the cytoplasm, then it raises the point that the impact they find of FUS on RAN translation might not reflect an in vivo situation with normal levels of FUS.

      Response: We appreciate these important comments. We agree with the editors and reviewers that FUS is mainly localized in the nucleus. However, FUS is known as a nucleocytoplasmic shuttling RBP that can transport RNA into the cytoplasm. Indeed, FUS is reported to facilitate transport of actin-stabilizing protein mRNAs to function in the cytoplasm (Fujii et al., 2005). Thus, we consider that FUS binds to G4C2 repeat RNA in the cytoplasm and suppresses RAN translation in this study.

      6) When they are using 2 copies of the driver and repeat, are they also using 2 copies of FUS? These are quite high levels of transgenes.

      Response: We thank the editors and reviewers for this comment. We used only 1 copy of FUS when using 2 copies of GMR-Gal4 driver. Full genotypes of the fly lines used in all experiments are described in Supplementary file 1.

      7) In Figure5-S1, FUS colocalizing with (G4C2)RNA is not clear. High-magnification images are recommended.

      Response: We appreciate this constructive comment on the figure. Following the suggestion, high-magnification images are added in Figure 5—figure supplement 1.

      8) I also suggest that the last sentence of the Discussion be revised as follows: Thus, our findings contribute not only to the elucidation of C9-ALS/FTD, but also to the elucidation of the repeat-associated pathogenic mechanisms underlying a broader range of neurodegenerative and neuropsychiatric disorders than previously thought, and it will advance the development of potential therapies for these diseases.

      Response: We appreciate this recommendation. We have made the following change based on the suggested sentence.

      (1) On page 20-21, line 455-459, “Thus, our findings contribute not only towards the elucidation of repeat-associated pathogenic mechanisms underlying a wider range of neuropsychiatric diseases than previously thought, but also towards the development of potential therapies for these diseases.” was changed to “Thus, our findings contribute to the elucidation of the repeat-associated pathogenic mechanisms underlying not only C9-ALS/FTD, but also a broader range of neuromuscular and neuropsychiatric diseases than previously thought, and will advance the development of potential therapies for these diseases.”.

      Authors’ comment on previous eLife assessment:

      We thank the editors and reviewers for appreciating our study. We mainly evaluated the function of human FUS protein on RAN translation and G4C2 repeat-induced toxicity using Drosophila expressing human FUS in vivo, and the recombinant human FUS protein in vitro. To validate that FUS functions as an endogenous regulator of RAN translation, we additionally evaluated the function of Drosophila caz protein as well. We are afraid that the first sentence of the eLife assessment, that is, “This important study demonstrates that the Drosophila FUS protein, the human homolog of which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …” is somewhat misleading. We would be happy if you modify this sentence like “This important study demonstrates that the human FUS protein, which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …”.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reviewer #1 (Public Review):

      The authors investigated state-dependent changes in evoked brain activity, using electrical stimulation combined with multisite neural activity across wakefulness and anesthesia. The approach is novel, and the results are compelling. The study benefits from an in-depth sophisticated analysis of neural signals. The effects of behavioral state on brain responses to stimulation are generally convincing.

      It is possible that the authors' use of "an average reference montage that removed signals common to all EEG electrodes" could also remove useful components of the signal, which are common across EEG electrodes, especially during deep anesthesia. For example, it is possible (in fact from my experience I would be surprised if it is not the case) that under isoflurane anesthesia, electrical stimulation induces a generalized slow wave or a burst of activity across the brain. Subtracting the average signal will simply remove that from all channels. This does not only result in signals under anesthesia being affected more by the referencing procedure than during waking but also will have different effects on different channels, e.g. depending on how strong the response is in a specific channel.

      We thank the reviewer for the positive comments and for raising this point. We do not believe that the average reference montage is obscuring an evoked slow wave in the isoflurane-anesthetized mice. Electrical stimulation did elicit a brief activation in nearby neurons that was followed by roughly 200 ms of quiescence, but no significant changes in firing in the other regions we recorded from (Author response image 1).

      Author response image 1

      ERP and evoked population activity during isoflurane anesthesia do not show evidence of global responses. (Top). ERP (-0.2 to +0.8 s around stimulus onset) with all EEG electrode traces superimposed. Data represented is the same: red traces have been processed with the average reference montage, black traces have not. (Bottom) Population mean firing rates from the areas of interest from the same experiment as above.

      We are familiar with the work from Dasilva et al. (2021), a study similar to ours because they also performed cortical electrical stimulation in mice anesthetized with isoflurane. They show widespread evoked multi-unit activity (derived from LFP) in isoflurane-anesthetized mice in response to electrical stimulation, but critical experimental differences may underlie the conflicting results presented in our study. Both works use similar levels of isoflurane to maintain anesthesia (we use a level roughly equivalent to their “deep” level). However, our experiments use only isoflurane, whereas Dasilva et al. induced anesthesia with ketamine and medetomidine followed by isoflurane. It has been shown that isoflurane and ketamine have different effects on neural dynamics (Sorrenti et al., 2021). Typically, isoflurane causes reduced spontaneous firing rates and decreased evoked response amplitudes compared to wakefulness, whereas ketamine has been shown to increase firing rates and evoked response amplitudes (Aasebø et al., 2017; Michelson & Kozai, 2018). Perhaps a more relevant difference are the electrical stimulation parameters used to perturb the brain. Dasilva et al. used 1 ms pulses of 500 μA, which would have a much larger effect than the stimulation used in this work, 0.2 ms pulses of 10-100 μA.

      Additionally, we would like to clarify that the average reference montage is not impacting the main findings of this work. As the reviewer correctly pointed out, the average reference montage does change the appearance of the ERP in the butterfly plots (Top panel in Author response image 1). However, all the quantitative analyses of the EEG-ERPs are performed on the global field power, computed by taking the standard deviation across all EEG channels, which is not affected by the average reference montage.

      Reviewer #2 (Public Review):

      […] The conclusions regarding the thalamic contributions to the ERP components are strongly supported by the data.

      The spatiotemporal complexity is almost a side point compared to what seems to be the most important point of the paper: showing the contribution of thalamic activity to some components of the cortical ERP. Scalp ERPs have long been regarded as purely cortical phenomena, just like most EEGs, and this study shows convincing evidence to the contrary.

      The data presented seemingly contradicts the results presented by Histed et al. (2009), who assert that cortical microstimulation only affects passing fibers near the tip of the electrodes, and results in distant, sparse, and somewhat random neural activation. In this study, it is clear that the maximum effect happens near the electrodes, decays with distance, and is not sparse at all, suggesting that not only passing fibers are activated but that also neuronal elements might be activated by antidromic propagation from the axonal hillock. This appears to offer proof that microstimulation might be much more effective than it was thought after the publication of Histed 2009, as the uber-successful use of DBS to treat Parkinson's disease has also shown.

      We thank the reviewer for their positive comments and thoughtful suggestions. We appreciate and agree with the reviewer’s perspective that the thalamic contribution to the cortical ERP is one of the key points of this study. We also thank the reviewer for their comment on the apparently contradictory results reported by Histed et al. (2009). This gives us the opportunity to further highlight the important contribution of our study to the field.

      First, we would like to highlight some key experimental differences between the two studies. In our study we used single pulse stimulation with currents between 10 and 100 μA, whereas Histed et al. used trains of pulses (100 ms in duration at 250 Hz) with lower current intensities (between 2 and 50 μA). We varied the depth of stimulation, targeting superficial and deep cortical layers; Histed et al. exclusively stimulated superficial cortical layers. In addition, the two studies used recording methods that are orthogonal in nature. We used Neuropixels probes that record from neurons that span all cortical layers depth-wise while Histed et al. used two-photon calcium imaging to record from a horizontal plane of neurons (again, in the superficial cortical layers).

      Because of these important methodological differences, it is more appropriate to compare the Histed et al. results to our results from superficial stimulation at comparable current intensities. In this case, we believe the two studies show similar results: stimulation activated a small fraction of neurons even hundreds of microns away from the stimulating electrode (see Figure 4A from our manuscript). However, our study adds an important observation pointing to the critical role of the depth of the stimulating electrode. We observe significant excitation of local cortical neurons (Figure 4D) and trans-synaptic activation of the thalamus only when we delivered deep stimulation (Figure5A). This effect is likely mediated by activation of large, myelinated cortico-thalamic fibers, which are thought to be more excitable that non-myelinated horizontal fibers (Tehovnik & Slocum, 2013).

      To summarize, Histed et al. (2009) concluded that microstimulation causes a sparse activation of a distributed set of neurons with little evidence of synaptically driven activation. Instead, we showed that microstimulation can robustly activate local neurons and trans-synaptically activate distant neurons when stronger stimuli are directed to deep cortical layers. Based on this, we conclude that electrical stimulation is indeed highly effective, and is a valid tool that can be used to probe and characterize the cortico-thalamo-cortical network of any behavioral state.

      ----------

      Reviewer #1 (Recommendations for the authors):

      1. I am not clear how "putative pyramidal" or RS and "putative inhibitory" fast-spiking neurons were identified. Please provide some further details on that, including average spike wave shapes, and distribution of firing rates, and it would be interesting to know the proportion of "putative" RS and FS neurons in your recorded population. Obviously, caution is warranted here because, without further work, you cannot be sure that those are indeed pyramidal cells or interneurons! Is this subdivision necessary at all?

      We added details regarding the cell-type classification to the Results (lines 136-140) and the Methods section. This classification is common practice in cortical extracellular electrophysiology recordings given that cell-type specific analyses can reveal important differences between the two putative populations (Barthó et al., 2004; Bortone et al., 2014; Bruno & Simons, 2002; Jia et al., 2016; Niell & Stryker, 2008; Sirota et al., 2008). Based on our findings that the two populations respond to electrical stimulation in similar ways (excitation followed by a period of quiescence and rebound excitation), we agree the subdivision is not necessary to support our conclusions. However, we believe that some readers will appreciate seeing the two putative populations presented separately.

      2. I wonder how the authors know whether the animals were awake, specifically when they were not running. Did you observe animals falling asleep when head-fixed? Providing some analyses of spontaneous EEG/LFP signals in each state could add some reassurance that only wakefulness was included, as intended.

      While we cannot conclusively rule out that mice were asleep during the “quiet wakefulness” periods we analyzed, we believe they are likely to be awake for two main reasons: 1) all the experiments are performed during the dark phase of the light/dark cycle, when the mice are less likely to enter a sleep state (Franken et al., 1999); 2) the animals are not undergoing specific training to promote drowsiness or sleep. Indeed, many sleep-focused studies in head-fixed mice are performed during the light phase of the animal’s cycle to maximize the likelihood of capturing sleep states (Kobayashi et al., 2023; Turner et al., 2020; Yüzgeç et al., 2018; Zhang et al., 2022). We have added this note to the Discussion section (lines 402-406).

      Because we do not specifically record during sleep states and our recording does not include electromyography, which is commonly used in conjunction with EEG to classify sleep stages, we cannot accurately perform spectral comparison between “quiet wakefulness” and sleep states in our recordings.

      3. I was unsure about the meaning of some of the terminology, specifically "rebound", "rebound spiking", "rebound excitation" etc. Why do you call it "rebound"?

      “Rebound” is a term often used to describe a period of enhanced spiking following a period of prolonged silence or inhibition (Guido & Weyand, 1995; Roux et al., 2014). Grenier et al. list “postinhibitory rebound excitation” as an intrinsic property of cortical and thalamic neurons (1998). We added this description to the text (lines 79-80).

      Reviewer #2 (Recommendations For The Authors):

      Regarding analysis, I would make three main points:

      Regarding the CSD analysis, I think the authors have done a good job of circumventing several of the known issues of this technique, especially by using ERPs rather than ongoing activity. However, although I do not immediately have access to the literature to back up this claim, I've heard that many assumptions behind CSD require a laminar structure with electrodes positioned perpendicular to these layers. In Figure 1B it seems like the neuropixels probe is not really perpendicular to the cortical layers, and I wonder if this might be an issue. I am also wondering how to interpret the thalamic CSD, as this structure is not laminar, lacks the mass of neatly stacked neuronal dipoles present in the cortex, and does not have an orderly array of synaptic inputs and outputs. I understand that CSD analysis helps minimize the contributions of volume conduction, but in this case, I also wonder if the thalamic CSD is even necessary to back up the paper's claims.

      One-dimensional CSD is computed assuming that the electrode is inserted perpendicular to cortex. This is mainly important for the interpretation of sinks and sources, since CSD can be also computed on radial voltages (e.g., EEG [Tenke & Kayser, 2012]). In general, our Neuropixels probes do not significantly deviate from perpendicular (mean deviation from perpendicular 15.3 degrees, minimum 5.2 degrees, and maximum 36.6 degrees). The probe represented in Figure 1B deviates from perpendicular by 31.2 degrees, which is an outlier compared to the rest of the insertions. Any deviation from perpendicular would result in the “effective” cortical thickness being larger by a factor of 1/cos(angle deviation from perpendicular) and thus would not affect the relative location of sources and sinks. We have added a statement to clarify this in the text (lines 126 and 454-456).

      We agree with the statement regarding CSD analysis in the thalamus. We originally included the CSD for the thalamus in Figure 2F for completeness. As the reviewer pointed out, thalamic CSD was not used to perform any subsequent analysis and is, therefore, not necessary to back up any claims. As such, we have removed CSD plot from Figure 2F to avoid any confusion and made a comment to this effect in the legend (lines 1175-1177).

      On the merits of using the z-score normalization for spike rates vs. other strategies like standardizing to maximum firing, I am aware that both procedures have limitations, but the z-score changes the range of the firing rate from [0, +Inf] to [-Inf, +Inf]. This does not seem correct considering that negative spiking rates do not exist. The standardization to maximum rate keeps the range within [0, 1], not creating negative rates. Another point that it will be worth discussing is the reported values of the z-scored values. For example, what does it mean to be 54 standard deviations away from the mean? 6 standard deviations is already a big distance from the mean.

      For Figure 2, we chose to represent the neural firing rates as z-scores because we found it important to report the magnitude of both the increase and decrease of the evoked firing rates in the post-stimulus period relative to the pre-stimulus rate. The normalization we used helps to visualize the magnitude of the effects of electrical stimulation in neuronal activity for both directions, which is an important result of the study. Despite the differences between the two normalization methods, the normalization based on the maximum firing does not significantly change the qualitative interpretation of Figure 2 in the manuscript (Author response image 2).

      Author response image 2

      Evoked firing rates for neurons in the areas of interest in response to deep stimulation in MO during the awake state. (Left) Firing rates of all neurons normalized by the average, pre-stimulus firing rate. (Right) Firing rates of all neurons normalized by the maximum post-stimulus firing rate.

      Regarding Figure 3 and the associated text, we would like to clarify that the magnitude metric is not simply a z-score value (with units of s.d.) but rather it is the integrated area under the z-scored response over the response window (with units of s.d.∙seconds). This can help explain why we see values of ~50 s.d.∙s. We chose to z-score firing rates, LFP, and CSD to normalize across the different signals and magnitudes of the evoked responses. We often observed the largest responses in the LFP (see Figure 3A), which may be partly due to the signal naturally having a larger dynamic range than the measured neural firing rates. Then we integrated the z-score response time series to capture the dynamic of the signal over the response window, rather than a static value such as the mean or maximum z-score. After performing a thorough literature search, we found no other ways to capture and compare the magnitudes of the different signals. We have added language to clarify the magnitude metric (lines 155-156) and added the appropriate units.

      In reporting the p-values, I recommend increasing the number of significant digits to four because the p-value seems to be the same for different tests in several places (e.g.: lines 207 to 218), which seems odd. I also wonder whether this could be an artifact of the z-scoring procedure. In the figures, I would like to advise the use of 1 asterisk to denote "weak evidence to reject the null hypothesis (0.05 > p > 0.01)" and two asterisks to denote "strong evidence to reject the null hypothesis (0.01 > p)", and make a note of it accordingly in the manuscript and/or figure legends.

      According to the reviewer’s suggestion, we have changed the statistics language to “* weak evidence to reject null hypothesis (0.05 > p > 0.01), ** strong evidence to reject null hypothesis (0.01 > p > 0.001), *** very strong evidence to reject null hypothesis (0.001 > p)” throughout the manuscript.

      We have also increased the number of significant digits to four throughout the manuscript. It is true that some of the p-values reported for Figure 3 (lines 169-180) are the same for different tests. This is not an artifact of the z-scoring, but rather a consequence of performing the Wilcoxon signed-rank test (an ordinal statistical test) with small sample numbers. Because the p-value depends only on the relative ordering, not the continuous distribution of values, the small sample size (N=6-14) increases the likelihood of obtaining the exact same p-value if the relative ordering of samples is the same.

      Line 202: If the magnitude corresponds to z-score data, please add "s.d." after the number, as z-scored values are expressed in standard deviation units. Please update this throughout the paper.

      As stated above the magnitude metric is the integrated area under the z-scored response over the response window (with units of s.d.∙seconds). We have added the correct units in all places.

      Line 214: Please report how the multiple comparisons correction was performed

      We have added the test used for multiple comparisons in line 169 (formerly line 214) and in the Methods section (line 770).

      Line 462: please replace "Neuropixels activity" with "LFP and single-unit activity".

      We changed the wording to specify “LFP, and single neuron responses…” (now line 337).

      Line 475: a short explanation of the bi-stability phenomena will be helpful for the reader.

      We added the following description: “a state characterized by spontaneous alternation between bouts of activity and periods of silence” (lines 350-351).

      Line 601: It is asserted that "Electrical stimulation directly activates local cells and axons that run near the stimulation site via activation of the axon initial segment" and the paper by Histed et al. 2009 is cited. This does not seem like an appropriate citation, as Histed et al. explicitly state that electrical microstimulation does not activate local neuronal bodies near the electrode tip. See my comment above.

      Upon further reading, we believe we are seeing evidence of direct axonal activation and subsequent antidromic activation of local cell bodies, as you suggested in your above comment and has been proposed by many including Histed et al. (2009) and Nowak and Bullier (1998). We edited our sentence accordingly, kept the Histed et al. citation, and added other relevant citations (lines 487-490).

      References

      • Aasebø, I. E. J., Lepperød, M. E., Stavrinou, M., Nøkkevangen, S., Einevoll, G., Hafting, T., & Fyhn, M. (2017). Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat. ENeuro, 4(4), 59–76. https://doi.org/10.1523/ENEURO.0059-17.2017

      • Barthó, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K. D., & Buzsáki, G. (2004). Characterization of Neocortical Principal Cells and Interneurons by Network Interactions and Extracellular Features. Journal of Neurophysiology, 92(1), 600–608. https://doi.org/10.1152/jn.01170.2003

      • Bortone, D. S., Olsen, S. R., & Scanziani, M. (2014). Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex. Neuron, 82, 474–485. https://doi.org/10.1016/j.neuron.2014.02.021

      • Bruno, R. M., & Simons, D. J. (2002). Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields. The Journal of Neuroscience, 22(24), 10966–10975. https://doi.org/10.1523/JNEUROSCI.22-24-10966.2002

      • Dasilva, M., Camassa, A., Navarro-Guzman, A., Pazienti, A., Perez-Mendez, L., Zamora-López, G., Mattia, M., & Sanchez-Vives, M. V. (2021). Modulation of cortical slow oscillations and complexity across anesthesia levels. NeuroImage, 224, 117415. https://doi.org/10.1016/j.neuroimage.2020.117415

      • Franken, P., Malafosse, A., & Tafti, M. (1999). Genetics of sleep regulation in mice-Franken et al Genetic Determinants of Sleep Regulation in Inbred Mice. SLEEP, 22(2). https://academic.oup.com/sleep/article/22/2/155/2731698

      • Grenier, F., Timofeev, I., & Steriade, M. (1998). Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13929–13934. https://doi.org/10.1073/pnas.95.23.13929

      • Guido, W., & Weyand, T. (1995). Burst responses in thalamic relay cells of the awake behaving cat. Journal of Neurophysiology, 74(4), 1782–1786. https://doi.org/10.1152/JN.1995.74.4.1782

      • Histed, M. H., Bonin, V., & Reid, R. C. (2009). Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation. Neuron, 63(4), 508–522. https://doi.org/10.1016/j.neuron.2009.07.016

      • Jia, X., Siegle, J., Bennett, C., Gale, S., Denman, D. R., Koch, C., & Olsen, S. (2016). High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification 1 2. Journal of Neurophysiology, 121(5), 1831–1847. https://doi.org/10.1101/376863

      • Kobayashi, G., Tanaka, K. F., & Takata, N. (2023). Pupil Dynamics-derived Sleep Stage Classification of a Head-fixed Mouse Using a Recurrent Neural Network. The Keio Journal of Medicine, 2022-0020-OA. https://doi.org/10.2302/KJM.2022-0020-OA

      • Michelson, N. J., & Kozai, T. D. Y. (2018). Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1. Journal of Neurophysiology, 120(5), 2232. https://doi.org/10.1152/JN.00299.2018

      • Niell, C. M., & Stryker, M. P. (2008). Highly selective receptive fields in mouse visual cortex. Journal of Neuroscience, 28(30), 7520–7536. https://doi.org/10.1523/JNEUROSCI.0623-08.2008

      • Nowak, L. G., & Bullier, J. (1998). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Experimental Brain Research, 118(4), 489–500. https://doi.org/10.1007/S002210050305/METRICS

      • Roux, L., Stark, E., Sjulson, L., & Buzsáki, G. (2014). In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. Current Opinion in Neurobiology, 26, 88–95. https://doi.org/10.1016/j.conb.2013.12.013

      • Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm. Neuron, 60(4), 683–697. https://doi.org/10.1016/j.neuron.2008.09.014

      • Sorrenti, V., Cecchetto, C., Maschietto, M., Fortinguerra, S., Buriani, A., & Vassanelli, S. (2021). Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. International Journal of Molecular Sciences, 22(3), 1286. https://doi.org/10.3390/IJMS22031286

      • Tehovnik, E. J., & Slocum, W. M. (2013). Two-photon imaging and the activation of cortical neurons. Neuroscience, 245(March), 12–25. https://doi.org/10.1016/j.neuroscience.2013.04.022

      • Tenke, C. E., & Kayser, J. (2012). Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions. Clinical Neurophysiology, 123(12), 2328–2345. https://doi.org/10.1016/J.CLINPH.2012.06.005

      • Turner, K. L., Gheres, K. W., Proctor, E. A., & Drew, P. J. (2020). Neurovascular coupling and bilateral connectivity during nrem and rem sleep. ELife, 9, 1. https://doi.org/10.7554/ELIFE.62071

      • Yüzgeç, Ö., Prsa, M., Zimmermann, R., & Huber, D. (2018). Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Current Biology, 28(3), 392. https://doi.org/10.1016/J.CUB.2017.12.049

      • Zhang, X., Landsness, E. C., Chen, W., Miao, H., Tang, M., Brier, L. M., Culver, J. P., Lee, J. M., & Anastasio, M. A. (2022). Automated sleep state classification of wide-field calcium imaging data via multiplex visibility graphs and deep learning. Journal of Neuroscience Methods, 366, 109421. https://doi.org/10.1016/J.JNEUMETH.2021.109421

    1. Author response:

      Public Review

      Joint Public Review:

      This manuscript presents an algorithm for identifying network topologies that exhibit a desired qualitative behaviour, with a particular focus on oscillations. The approach is first demonstrated on 3-node networks, where results can be validated through exhaustive search, and then extended to 5-node networks, where the search space becomes intractable. Network topologies are represented as directed graphs, and their dynamical behaviour is classified using stochastic simulations based on the Gillespie algorithm. To efficiently explore the large design space, the authors employ reinforcement learning via Monte Carlo Tree Search (MCTS), framing circuit design as a sequential decision-making process.

      This work meaningfully extends the range of systems that can be explored in silico to uncover non-linear dynamics and represents a valuable methodological advance for the fields of systems and synthetic biology.

      Strengths

      The evidence presented is strong and compelling. The authors validate their results for 3-node networks through exhaustive search, and the findings for 5-node networks are consistent with previously reported motifs, lending credibility to the approach. The use of reinforcement learning to navigate the vast space of possible topologies is both original and effective, and represents a novel contribution to the field. The algorithm demonstrates convincing efficiency, and the ability to identify robust oscillatory topologies is particularly valuable. Expanding the scale of systems that can be systematically explored in silico marks a significant advance for the study of complex gene regulatory networks.

      Weaknesses

      The principal weakness of the manuscript lies in the interpretation of biological robustness. The authors identify network topologies that sustain oscillatory behaviour despite perturbations to the system or parameters. However, in many cases, this persistence is due to the presence of partially redundant oscillatory motifs within the network. While this observation is interesting and of clear value for circuit design, framing it as evidence of evolutionary robustness may be misleading. The "mutant" systems frequently exhibit altered oscillatory properties, such as changes in frequency or amplitude. From a functional cellular perspective, mere oscillation is insufficient - preservation of specific oscillation characteristics is often essential. This is particularly true in systems like circadian clocks, where misalignment with environmental cycles can have deleterious effects. Robustness, from an evolutionary standpoint, should therefore be framed as the capacity to maintain the functional phenotype, not merely the qualitative behaviour.

      A secondary limitation is that, despite the methodological advances, the scale of the systems explored remains modest. While moving from 3- to 5-node systems is non-trivial, five elements still represent a relatively small network. It is somewhat surprising that the algorithm does not scale further, particularly when considering the performance of MCTS in other domains - for instance, modern chess engines routinely explore far larger decision trees. A discussion on current performance bottlenecks and potential avenues for improving scalability would be valuable.

      Finally, it is worth noting that the emergence of oscillations in a model often depends not only on the topology but also critically on parameter choices and the nature of the nonlinearities. The use of Hill functions and high Hill coefficients is a common strategy to induce oscillatory dynamics. Thus, the reported results should be interpreted within the context of the modelling assumptions and parameter regimes employed in the simulations.

      We thank the reviewers for their careful consideration of our work and for the interesting feedback and scientific discussion. We are working on a revised text based on their recommendations, which will include some of the discussion below.

      This work meaningfully extends the range of systems that can be explored in silico to uncover non-linear dynamics and represents a valuable methodological advance for the fields of systems and synthetic biology.

      We thank the reviewers for their positive assessment of our work’s impact!

      The use of reinforcement learning to navigate the vast space of possible topologies is both original and effective, and represents a novel contribution to the field. The algorithm demonstrates convincing efficiency, and the ability to identify robust oscillatory topologies is particularly valuable. Expanding the scale of systems that can be systematically explored in silico marks a significant advance for the study of complex gene regulatory networks.

      We appreciate these kind comments about our work’s merits. We are excited to share our reinforcement learning (RL) based method with the fields of systems and synthetic biology, and we consider it a valuable tool for the systematic analysis and design of larger-scale regulatory networks!

      The principal weakness of the manuscript lies in the interpretation of biological robustness. The authors identify network topologies that sustain oscillatory behaviour despite perturbations to the system or parameters… [However, these] "mutant" systems frequently exhibit altered oscillatory properties, such as changes in frequency or amplitude. From a functional cellular perspective, mere oscillation is insufficient - preservation of specific oscillation characteristics is often essential. This is particularly true in systems like circadian clocks, where misalignment with environmental cycles can have deleterious effects. Robustness, from an evolutionary standpoint, should therefore be framed as the capacity to maintain the functional phenotype, not merely the qualitative behaviour.

      We thank the reviewers for their attention to this point. In the large-scale circuit search, summarized in Figures 4A and 4B, we ran a search for 5-component oscillators that can spontaneously oscillate even when subjected to the deletion of a random gene. Some of the best performing circuits under these conditions exhibited a design feature we call “motif multiplexing,” in which multiple smaller motifs are interleaved in a way that makes oscillation possible under many different mutational scenarios. Interestingly, despite not selecting for preservation of frequency, the 3Ai+3Rep circuit (a 5-gene circuit highlighted in Figure 5) anecdotally appears to have a natural frequency that is robust to partial gene knockdowns, although not to complete gene deletions. As shown in Figure 5C, this circuit has a natural frequency of 6 cycles/hr (with one particular parameterization), and it can sustain a knockdown of any of its 5 genes to 50% of the wild-type transcription rate without altering the natural frequency by more than 20%.

      However, we agree that there are salient differences between this training scenario and natural evolution. The revised text will clarify that these differences limit what conclusions can be drawn about biological evolution by analogy. As the reviewers point out, we use the presence of spontaneous oscillations (with or without the deletion) as a measure of fitness, regardless of frequency, so as to screen for designs with promising behavior. Also, the deletion mutations introduced during training likely represent larger perturbations to the system than a typical mutation encountered during genome replication (for example, a point mutation in a response element leading to a moderate change in binding affinity). Finally, we do not introduce any entrainment. Real circadian oscillators are aligned to a 24-hour period (“entrained”) by environmental inputs such as light and temperature. For this reason, natural circadian clocks may have natural frequencies that are slightly shorter or longer than 24 hours, although a close proximity to the 24-hour period does seem to be an important selective factor [1].

      ...despite the methodological advances, the scale of the systems explored remains modest. While moving from 3- to 5-node systems is non-trivial, five elements still represent a relatively small network. It is somewhat surprising that the algorithm does not scale further, particularly when considering the performance of MCTS in other domains - for instance, modern chess engines routinely explore far larger decision trees. A discussion on current performance bottlenecks and potential avenues for improving scalability would be valuable.

      We thank the reviewers for their attention to this point. The main limitation we encountered to exploring circuits with more than 5 nodes in this work was the poor computational scaling of the Gillespie stochastic simulation algorithm, rather than a limitation of MCTS itself. While the average runtime of a 3-node circuit simulation was roughly 7 seconds, this number increased to 18-20 seconds with 5-node circuits. For this reason, we limited the search to topologies with ≤15 interaction arrows (15 sec/simulation). In general, the simulation time was proportional to the square of the number of transcription factors (TFs). We will revise the text to include the reason for stopping at 5 nodes, which is significant for understanding CircuiTree’s scaling properties.

      With regards to scaling, an important advantage of CircuiTree is its ability to generate useful candidate designs after exploring only a portion of the search space. Like exhaustive search, given enough time, MCTS will comprehensively explore the search space and find all possible solutions. However, for large search spaces, RL-based agents are generally given a finite number of simulations (or time) to learn as much as possible.

      Across machine learning (ML) applications [2] and particularly with RL models [3], this training time tends to obey a power law with respect to the underlying complexity of the problem. Thus we can use the complexity of the 3-node and 5-node searches to infer the current scaling limits of CircuiTree. The first oscillator topology was discovered after 2,280 simulations for the 3-node search, and in the 5-node search, the first oscillator using 5 nodes appeared at ~8e5 simulations, resulting in a power law of Y ~ 84.4 X<sup>0.333</sup>. Thus, useful candidate designs may be found for 6-node and 7-node searches after 4.5e7 and 5.26e9 simulations, respectively, even though these spaces contain 1.5e17 and 2.5e23 topologies, respectively. Thus, running a 7-node search with the current implementation of CircuiTree would require resources close to the current boundaries of computation, requiring roughly 1.8 million CPU-hours, or 2 weeks on 5,000 CPUs, assuming a 1-second simulation. These points will be incorporated into both the results and discussion sections in our revised text.

      However, we are optimistic about CircuiTree’s potential to scale to much larger circuits with modifications to its algorithm. CircuiTree uses the original (so-called “vanilla”) implementation of MCTS, which has not been used in professional game-playing AIs in over a decade. Contemporary RL-based game-playing engines leverage deep neural networks to dramatically reduce the training time, using value networks to identify game-winning positions and policy networks to find game-winning moves. AlphaZero, developed by Google DeepMind to learn games by self-play and without domain knowledge, outperformed all other chess AIs after 44 million training games, much smaller than the 10^43 possible chess states [4]. Similarly, the game of go has 10<sup>170</sup> possible states, but AlphaZero outperformed other AIs after only 140 million games [4]. Large circuits live in similarly large search spaces; for example, 19-node and 20-node circuits represent spaces of 10<sup>172</sup> and 10<sup>190</sup> possible topologies. The revised text will include this discussion and identify value and policy networks, as well as more scalable simulation paradigms such as ODEs and neural ODEs, as our future directions for improving CircuiTree’s scalability.

      Finally, our revised discussion will note some important differences between game-playing and biological circuit design. Unlike deterministic games like chess, the final value of a circuit topology is determined stochastically, by running a simulation whose fitness depends on the parameter set and initial conditions. Thus, state-for-state, it is possible that training an agent for circuit design may inherently require more simulations to achieve the same level of certainty compared to classical games. Additionally, while we often possess a priori knowledge about a game such as its overall difficulty or certain known strategies, we lack this frame of reference when searching for circuit designs. Thus, it remains challenging to know if and when a large space of designs has been “satisfactorily” or “comprehensively” searched, since the answer depends on data that are unknown, namely the quantity, quality, and location of solutions residing in the search space.

      Not accounting for redundancy due to structural symmetries

      Finally, it is worth noting that the emergence of oscillations in a model often depends not only on the topology but also critically on parameter choices and the nature of the nonlinearities. The use of Hill functions and high Hill coefficients is a common strategy to induce oscillatory dynamics. Thus, the reported results should be interpreted within the context of the modelling assumptions and parameter regimes employed in the simulations.

      In our dynamical modeling of transcription factor (TF) networks, we do not rely on continuum assumptions about promoter occupancy such as Hill functions. Rather, we model each reaction - transcription, translation, TF binding/unbinding, and degradation - explicitly, and individual molecules appear and disappear via stochastic birth and death events. Many natural TFs are homodimers that bind cooperatively to regulate transcription; similarly, we assume that pairs of TFs bind more stably to their response element than individual TFs. Thus, our model has similar cooperativity to a Hill function, and it can be shown that in the continuum limit, the effective Hill coefficient is always ≤2. Our revision will clarify this aspect of the modeling and include a derivation of this property. Currently, the parameter values used in the figures are shown in Table 2. In the revised text, these will be displayed in the body of the text as well for clarity.

      Bibliography (1) Spoelstra, K., Wikelski, M., Daan, S., Loudon, A. S. I., & Hau, M. (2015). Natural selection against a circadian clock gene mutation in mice. PNAS, 113(3), 686–691. https://doi.org/https://doi.org/10.1073/pnas.1516442113<br /> (2) Neumann, O., & Gros, C. (2023). Scaling Laws for a Multi-Agent Reinforcement Learning Model. The Eleventh International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=ZrEbzL9eQ3W (3) Jones, A. L. (2021). Scaling Scaling Laws with Board Games. arXiv [Cs.LG]. Retrieved from http://arxiv.org/abs/2104.03113 (4) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning algorithm that Masters Chess, Shogi, and go through self-play. Science, 362(6419), 1140–1144. https://doi.org/10.1126/science.aar6404

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable study investigates how the neural representation of individual finger movements changes during the early period of sequence learning. By combining a new method for extracting features from human magnetoencephalography data and decoding analyses, the authors provide incomplete evidence of an early, swift change in the brain regions correlated with sequence learning, including a set of previously unreported frontal cortical regions. The addition of more control analyses to rule out that head movement artefacts influence the findings, and to further explain the proposal of offline contextualization during short rest periods as the basis for improvement performance would strengthen the manuscript.

      We appreciate the Editorial assessment on our paper’s strengths and novelty. We have implemented additional control analyses to show that neither task-related eye movements nor increasing overlap of finger movements during learning account for our findings, which are that contextualized neural representations in a network of bilateral frontoparietal brain regions actively contribute to skill learning. Importantly, we carried out additional analyses showing that contextualization develops predominantly during rest intervals.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study addresses the issue of rapid skill learning and whether individual sequence elements (here: finger presses) are differentially represented in human MEG data. The authors use a decoding approach to classify individual finger elements and accomplish an accuracy of around 94%. A relevant finding is that the neural representations of individual finger elements dynamically change over the course of learning. This would be highly relevant for any attempts to develop better brain machine interfaces - one now can decode individual elements within a sequence with high precision, but these representations are not static but develop over the course of learning.

      Strengths:

      The work follows a large body of work from the same group on the behavioural and neural foundations of sequence learning. The behavioural task is well established and neatly designed to allow for tracking learning and how individual sequence elements contribute. The inclusion of short offline rest periods between learning epochs has been influential because it has revealed that a lot, if not most of the gains in behaviour (ie speed of finger movements) occur in these socalled micro-offline rest periods. The authors use a range of new decoding techniques, and exhaustively interrogate their data in different ways, using different decoding approaches. Regardless of the approach, impressively high decoding accuracies are observed, but when using a hybrid approach that combines the MEG data in different ways, the authors observe decoding accuracies of individual sequence elements from the MEG data of up to 94%.

      We have previously showed that neural replay of MEG activity representing the practiced skill was prominent during rest intervals of early learning, and that the replay density correlated with micro-offline gains (Buch et al., 2021). These findings are consistent with recent reports (from two different research groups) that hippocampal ripple density increases during these inter-practice rest periods, and predict offline learning gains (Chen et al., 2024; Sjøgård et al., 2024). However, decoder performance in our earlier work (Buch et al., 2021) left room for improvement. Here, we reported a strategy to improve decoding accuracy that could benefit future studies of neural replay or BCI using MEG.

      Weaknesses:

      There are a few concerns which the authors may well be able to resolve. These are not weaknesses as such, but factors that would be helpful to address as these concern potential contributions to the results that one would like to rule out. Regarding the decoding results shown in Figure 2 etc, a concern is that within individual frequency bands, the highest accuracy seems to be within frequencies that match the rate of keypresses. This is a general concern when relating movement to brain activity, so is not specific to decoding as done here. As far as reported, there was no specific restraint to the arm or shoulder, and even then it is conceivable that small head movements would correlate highly with the vigor of individual finger movements. This concern is supported by the highest contribution in decoding accuracy being in middle frontal regions - midline structures that would be specifically sensitive to movement artefacts and don't seem to come to mind as key structures for very simple sequential keypress tasks such as this - and the overall pattern is remarkably symmetrical (despite being a unimanual finger task) and spatially broad. This issue may well be matching the time course of learning, as the vigor and speed of finger presses will also influence the degree to which the arm/shoulder and head move. This is not to say that useful information is contained within either of the frequencies or broadband data. But it raises the question of whether a lot is dominated by movement "artefacts" and one may get a more specific answer if removing any such contributions.

      Reviewer #1 expresses concern that the combination of the low-frequency narrow-band decoder results, and the bilateral middle frontal regions displaying the highest average intra-parcel decoding performance across subjects is suggestive that the decoding results could be driven by head movement or other artefacts.

      Head movement artefacts are highly unlikely to contribute meaningfully to our results for the following reasons. First, in addition to ICA denoising, all “recordings were visually inspected and marked to denoise segments containing other large amplitude artifacts due to movements” (see Methods). Second, the response pad was positioned in a manner that minimized wrist, arm or more proximal body movements during the task. Third, while online monitoring of head position was not performed for this study, it was assessed at the beginning and at the end of each recording. The head was restrained with an inflatable air bladder, and head movement between the beginning and end of each scan did not exceed 5mm for all participants included in the study.

      The Reviewer states a concern that “it is conceivable that small head movements would correlate highly with the vigor of individual finger movements”. We agree that despite the steps taken above, it is possible that minor head movements could still contribute to some remaining variance in the MEG data in our study. However, such correlations between small head movements and finger movements could only meaningfully contribute to decoding performance if: (A) they were consistent and pervasive throughout the recording (which might not be the case if the head movements were related to movement vigor and vigor changed over time); and (B) they systematically varied between different finger movements, and also between the same finger movement performed at different sequence locations (see 5-class decoding performance in Figure 4B). The possibility of any head movement artefacts meeting all these conditions is unlikely. Alternatively, for this task design a much more likely confound could be the contribution of eye movement artefacts to the decoder performance (an issue raised by Reviewer #3 in the comments below).

      Remember from Figure 1A in the manuscript that an asterisk marks the current position in the sequence and is updated at each keypress. Since participants make very few performance errors, the position of the asterisk on the display is highly correlated with the keypress being made in the sequence. Thus, it is possible that if participants are attending to the visual feedback provided on the display, they may generate eye movements that are systematically related to the task. Since we did record eye movements simultaneously with the MEG recordings (EyeLink 1000 Plus; Fs = 600 Hz), we were able to perform a control analysis to address this question. For each keypress event during trials in which no errors occurred (which is the same time-point that the asterisk position is updated), we extracted three features related to eye movements: 1) the gaze position at the time of asterisk position update (triggered by a KeyDown event), 2) the gaze position 150ms later, and 3) the peak velocity of the eye movement between the two positions. We then constructed a classifier from these features with the aim of predicting the location of the asterisk (ordinal positions 1-5) on the display. As shown in the confusion matrix below (Author response image 1), the classifier failed to perform above chance levels (overall cross-validated accuracy = 0.21817):

      Author response image 1.

      Confusion matrix showing that three eye movement features fail to predict asterisk position on the task display above chance levels (Fold 1 test accuracy = 0.21718; Fold 2 test accuracy = 0.22023; Fold 3 test accuracy = 0.21859; Fold 4 test accuracy = 0.22113; Fold 5 test accuracy = 0.21373; Overall cross-validated accuracy = 0.2181). Since the ordinal position of the asterisk on the display is highly correlated with the ordinal position of individual keypresses in the sequence, this analysis provides strong evidence that keypress decoding performance from MEG features is not explained by systematic relationships between finger movement behavior and eye movements (i.e. – behavioral artefacts) (end of figure legend).

      Remember that the task display does not provide explicit feedback related to performance, only information about the present position in the sequence. Thus, it is possible that participants did not actively attend to the feedback. In fact, inspection of the eye position data revealed that on majority of trials, participants displayed random-walk-like gaze patterns around a central fixation point located near the center of the screen. Thus, participants did not attend to the asterisk position on the display, but instead intrinsically generated the action sequence. A similar realworld example would be manually inputting a long password into a secure online application. In this case, one intrinsically generates the sequence from memory and receives similar feedback about the password sequence position (also provided as asterisks) as provided in the study task – feedback which is typically ignored by the user.

      The minimal participant engagement with the visual task display observed in this study highlights another important point – that the behavior in explicit sequence learning motor tasks is highly generative in nature rather than reactive to stimulus cues as in the serial reaction time task (SRTT). This is a crucial difference that must be carefully considered when designing investigations and comparing findings across studies.

      We observed that initial keypress decoding accuracy was predominantly driven by contralateral primary sensorimotor cortex in the initial practice trials before transitioning to bilateral frontoparietal regions by trials 11 or 12 as performance gains plateaued. The contribution of contralateral primary sensorimotor areas to early skill learning has been extensively reported in humans and non-human animals.(Buch et al., 2021; Classen et al., 1998; Karni et al., 1995; Kleim et al., 1998) Similarly, the increased involvement of bilateral frontal and parietal regions to decoding during early skill learning in the non-dominant hand is well known. Enhanced bilateral activation in both frontal and parietal cortex during skill learning has been extensively reported (Doyon et al., 2002; Grafton et al., 1992; Hardwick et al., 2013; Kennerley et al., 2004; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001), and appears to be even more prominent during early fine motor skill learning in the non-dominant hand (Lee et al., 2019; Sawamura et al., 2019). The frontal regions identified in these studies are known to play crucial roles in executive control (Battaglia-Mayer & Caminiti, 2019), motor planning (Toni, Thoenissen, et al., 2001), and working memory (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001; Wolpert et al., 1998) processes, while the same parietal regions are known to integrate multimodal sensory feedback and support visuomotor transformations (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001; Wolpert et al., 1998), in addition to working memory (Grover et al., 2022). Thus, it is not surprising that these regions increasingly contribute to decoding as subjects internalize the sequential task. We now include a statement reflecting these considerations in the revised Discussion.

      A somewhat related point is this: when combining voxel and parcel space, a concern is whether a degree of circularity may have contributed to the improved accuracy of the combined data, because it seems to use the same MEG signals twice - the voxels most contributing are also those contributing most to a parcel being identified as relevant, as parcels reflect the average of voxels within a boundary. In this context, I struggled to understand the explanation given, ie that the improved accuracy of the hybrid model may be due to "lower spatially resolved whole-brain and higher spatially resolved regional activity patterns".

      We disagree with the Reviewer’s assertion that the construction of the hybrid-space decoder is circular for the following reasons. First, the base feature set for the hybrid-space decoder constructed for all participants includes whole-brain spatial patterns of MEG source activity averaged within parcels. As stated in the manuscript, these 148 inter-parcel features reflect “lower spatially resolved whole-brain activity patterns” or global brain dynamics. We then independently test how well spatial patterns of MEG source activity for all voxels distributed within individual parcels can decode keypress actions. Again, the testing of these intra-parcel spatial patterns, intended to capture “higher spatially resolved regional brain activity patterns”, is completely independent from one another and independent from the weighting of individual inter-parcel features. These intra-parcel features could, for example, provide additional information about muscle activation patterns or the task environment. These approximately 1150 intra-parcel voxels (on average, within the total number varying between subjects) are then combined with the 148 inter-parcel features to construct the final hybrid-space decoder. In fact, this varied spatial filter approach shares some similarities to the construction of convolutional neural networks (CNNs) used to perform object recognition in image classification applications (Srinivas et al., 2016). One could also view this hybrid-space decoding approach as a spatial analogue to common timefrequency based analyses such as theta-gamma phase amplitude coupling (θ/γ PAC), which assess interactions between two or more narrow-band spectral features derived from the same time-series data (Lisman & Jensen, 2013).

      We directly tested this hypothesis – that spatially overlapping intra- and inter-parcel features portray different information – by constructing an alternative hybrid-space decoder (Hybrid<sub>Alt</sub>) that excluded average inter-parcel features which spatially overlapped with intra-parcel voxel features, and comparing the performance to the decoder used in the manuscript (Hybrid<sub>Orig</sub>). The prediction was that if the overlapping parcel contained similar information to the more spatially resolved voxel patterns, then removing the parcel features (n=8) from the decoding analysis should not impact performance. In fact, despite making up less than 1% of the overall input feature space, removing those parcels resulted in a significant drop in overall performance greater than 2% (78.15% ± 7.03% SD for Hybrid<sub>Orig</sub> vs. 75.49% ± 7.17% for Hybrid<sub>Alt</sub>; Wilcoxon signed rank test, z = 3.7410, p = 1.8326e-04; Author response image 2).

      Author response image 2.

      Comparison of decoding performances with two different hybrid approaches. Hybrid<sub>Alt</sub>: Intra-parcel voxel-space features of top ranked parcels and inter-parcel features of remaining parcels. Hybrid<sub>Orig</sub>: Voxel-space features of top ranked parcels and whole-brain parcel-space features (i.e. – the version used in the manuscript). Dots represent decoding accuracy for individual subjects. Dashed lines indicate the trend in performance change across participants. Note, that Hybrid<sub>Orig</sub> (the approach used in our manuscript) significantly outperforms the Hybrid<sub>Alt</sub> approach, indicating that the excluded parcel features provide unique information compared to the spatially overlapping intra-parcel voxel patterns (end of figure legend).

      Firstly, there will be a relatively high degree of spatial contiguity among voxels because of the nature of the signal measured, i.e. nearby individual voxels are unlikely to be independent. Secondly, the voxel data gives a somewhat misleading sense of precision; the inversion can be set up to give an estimate for each voxel, but there will not just be dependence among adjacent voxels, but also substantial variation in the sensitivity and confidence with which activity can be projected to different parts of the brain. Midline and deeper structures come to mind, where the inversion will be more problematic than for regions along the dorsal convexity of the brain, and a concern is that in those midline structures, the highest decoding accuracy is seen.

      We agree with the Reviewer that some inter-parcel features representing neighboring (or spatially contiguous) voxels are likely to be correlated, an important confound in connectivity analyses (Colclough et al., 2015; Colclough et al., 2016), not performed in our investigation.

      In our study, correlations between adjacent voxels effectively reduce the dimensionality of the input feature space. However, as long as there are multiple groups of correlated voxels within each parcel (i.e. – the rank is greater than 1), the intra-parcel spatial patterns could meaningfully contribute to the decoder performance, as shown by the following results:

      First, we obtained higher decoding accuracy with voxel-space features (74.51% ± 7.34% SD) compared to parcel space features (68.77% ± 7.6%; Figure 3B), indicating individual voxels carry more information in decoding the keypresses than the averaged voxel-space features or parcel space features. Second, individual voxels within a parcel showed varying feature importance scores in decoding keypresses (Author response image 3). This finding shows that correlated voxels form mini subclusters that are much smaller spatially than the parcel they reside within.

      Author response image 3.:

      Feature importance score of individual voxels in decoding keypresses: MRMR was used to rank the individual voxel space features in decoding keypresses and the min-max normalized MRMR score was mapped to a structural brain surface. Note that individual voxels within a parcel showed different contribution to decoding (end of figure legend).

      Some of these concerns could be addressed by recording head movement (with enough precision) to regress out these contributions. The authors state that head movement was monitored with 3 fiducials, and their time courses ought to provide a way to deal with this issue. The ICA procedure may not have sufficiently dealt with removing movement-related problems, but one could eg relate individual components that were identified to the keypresses as another means for checking. An alternative could be to focus on frequency ranges above the movement frequencies. The accuracy for those still seems impressive and may provide a slightly more biologically plausible assessment.

      We have already addressed the issue of movement related artefacts in the first response above. With respect to a focus on frequency ranges above movement frequencies, the Reviewer states the “accuracy for those still seems impressive and may provide a slightly more biologically plausible assessment”. First, it is important to note that cortical delta-band oscillations measured with local field potentials (LFPs) in macaques is known to contain important information related to end-effector kinematics (Bansal et al., 2011; Mollazadeh et al., 2011) muscle activation patterns (Flint et al., 2012) and temporal sequencing (Churchland et al., 2012) during skilled reaching and grasping actions. Thus, there is a substantial body of evidence that low-frequency neural oscillatory activity in this range contains important information about the skill learning behavior investigated in the present study. Second, our own data shows (which the Reviewer also points out) that significant information related to the skill learning behavior is also present in higher frequency bands (see Figure 2A and Figure 3—figure supplement 1). As we pointed out in our earlier response to questions about the hybrid space decoder architecture (see above), it is likely that different, yet complimentary, information is encoded across different temporal frequencies (just as it is encoded across different spatial frequencies) (Heusser et al., 2016). Again, this interpretation is supported by our data as the highest performing classifiers in all cases (when holding all parameters constant) were always constructed from broadband input MEG data (Figure 2A and Figure 3—figure supplement 1).

      One question concerns the interpretation of the results shown in Figure 4. They imply that during the course of learning, entirely different brain networks underpin the behaviour. Not only that, but they also include regions that would seem rather unexpected to be key nodes for learning and expressing relatively simple finger sequences, such as here. What then is the biological plausibility of these results? The authors seem to circumnavigate this issue by moving into a distance metric that captures the (neural network) changes over the course of learning, but the discussion seems detached from which regions are actually involved; or they offer a rather broad discussion of the anatomical regions identified here, eg in the context of LFOs, where they merely refer to "frontoparietal regions".

      The Reviewer notes the shift in brain networks driving keypress decoding performance between trials 1, 11 and 36 as shown in Figure 4A. The Reviewer questions whether these shifts in brain network states underpinning the skill are biologically plausible, as well as the likelihood that bilateral superior and middle frontal and parietal cortex are important nodes within these networks.

      First, previous fMRI work in humans assessed changes in functional connectivity patterns while participants performed a similar sequence learning task to our present study (Bassett et al., 2011). Using a dynamic network analysis approach, Bassett et al. showed that flexibility in the composition of individual network modules (i.e. – changes in functional brain region membership of orthogonal brain networks) is up-regulated in novel learning environments and explains differences in learning rates across individuals. Thus, consistent with our findings, it is likely that functional brain networks rapidly reconfigure during early learning of novel sequential motor skills.

      Second, frontoparietal network activity is known to support motor memory encoding during early learning (Albouy et al., 2013; Albouy et al., 2012). For example, reactivation events in the posterior parietal (Qin et al., 1997) and medial prefrontal (Euston et al., 2007; Molle & Born, 2009) cortex (MPFC) have been temporally linked to hippocampal replay, and are posited to support memory consolidation across several memory domains (Frankland & Bontempi, 2005), including motor sequence learning (Albouy et al., 2015; Buch et al., 2021; F. Jacobacci et al., 2020). Further, synchronized interactions between MPFC and hippocampus are more prominent during early as opposed to later learning stages (Albouy et al., 2013; Gais et al., 2007; Sterpenich et al., 2009), perhaps reflecting “redistribution of hippocampal memories to MPFC” (Albouy et al., 2013). MPFC contributes to very early memory formation by learning association between contexts, locations, events and adaptive responses during rapid learning (Euston et al., 2012). Consistently, coupling between hippocampus and MPFC has been shown during initial memory encoding and during subsequent rest (van Kesteren et al., 2010; van Kesteren et al., 2012). Importantly, MPFC activity during initial memory encoding predicts subsequent recall (Wagner et al., 1998). Thus, the spatial map required to encode a motor sequence memory may be “built under the supervision of the prefrontal cortex” (Albouy et al., 2012), also engaged in the development of an abstract representation of the sequence (Ashe et al., 2006). In more abstract terms, the prefrontal, premotor and parietal cortices support novice performance “by deploying attentional and control processes” (Doyon et al., 2009; Hikosaka et al., 2002; Penhune & Steele, 2012) required during early learning (Doyon et al., 2009; Hikosaka et al., 2002; Penhune & Steele, 2012). The dorsolateral prefrontal cortex DLPFC specifically is thought to engage in goal selection and sequence monitoring during early skill practice (Schendan et al., 2003), all consistent with the schema model of declarative memory in which prefrontal cortices play an important role in encoding (Morris, 2006; Tse et al., 2007). Thus, several prefrontal and frontoparietal regions contributing to long term learning (Berlot et al., 2020) are also engaged in early stages of encoding. Altogether, there is strong biological support for the involvement of bilateral prefrontal and frontoparietal regions to decoding during early skill learning. We now address this issue in the revised manuscript.

      If I understand correctly, the offline neural representation analysis is in essence the comparison of the last keypress vs the first keypress of the next sequence. In that sense, the activity during offline rest periods is actually not considered. This makes the nomenclature somewhat confusing. While it matches the behavioural analysis, having only key presses one can't do it in any other way, but here the authors actually do have recordings of brain activity during offline rest. So at the very least calling it offline neural representation is misleading to this reviewer because what is compared is activity during the last and during the next keypress, not activity during offline periods. But it also seems a missed opportunity - the authors argue that most of the relevant learning occurs during offline rest periods, yet there is no attempt to actually test whether activity during this period can be useful for the questions at hand here.

      We agree with the Reviewer that our previous “offline neural representation” nomenclature could be misinterpreted. In the revised manuscript we refer to this difference as the “offline neural representational change”. Please, note that our previous work did link offline neural activity (i.e. – 16-22 Hz beta power (Bonstrup et al., 2019) and neural replay density (Buch et al., 2021) during inter-practice rest periods) to observed micro-offline gains.

      Reviewer #2 (Public review):

      Summary

      Dash et al. asked whether and how the neural representation of individual finger movements is "contextualized" within a trained sequence during the very early period of sequential skill learning by using decoding of MEG signal. Specifically, they assessed whether/how the same finger presses (pressing index finger) embedded in the different ordinal positions of a practiced sequence (4-1-3-2-4; here, the numbers 1 through 4 correspond to the little through the index fingers of the non-dominant left hand) change their representation (MEG feature). They did this by computing either the decoding accuracy of the index finger at the ordinal positions 1 vs. 5 (index_OP1 vs index_OP5) or pattern distance between index_OP1 vs. index_OP5 at each training trial and found that both the decoding accuracy and the pattern distance progressively increase over the course of learning trials. More interestingly, they also computed the pattern distance for index_OP5 for the last execution of a practice trial vs. index_OP1 for the first execution in the next practice trial (i.e., across the rest period). This "off-line" distance was significantly larger than the "on-line" distance, which was computed within practice trials and predicted micro-offline skill gain. Based on these results, the authors conclude that the differentiation of representation for the identical movement embedded in different positions of a sequential skill ("contextualization") primarily occurs during early skill learning, especially during rest, consistent with the recent theory of the "micro-offline learning" proposed by the authors' group. I think this is an important and timely topic for the field of motor learning and beyond.

      Strengths

      The specific strengths of the current work are as follows. First, the use of temporally rich neural information (MEG signal) has a large advantage over previous studies testing sequential representations using fMRI. This allowed the authors to examine the earliest period (= the first few minutes of training) of skill learning with finer temporal resolution. Second, through the optimization of MEG feature extraction, the current study achieved extremely high decoding accuracy (approx. 94%) compared to previous works. As claimed by the authors, this is one of the strengths of the paper (but see my comments). Third, although some potential refinement might be needed, comparing "online" and "offline" pattern distance is a neat idea.

      Weaknesses

      Along with the strengths I raised above, the paper has some weaknesses. First, the pursuit of high decoding accuracy, especially the choice of time points and window length (i.e., 200 msec window starting from 0 msec from key press onset), casts a shadow on the interpretation of the main result. Currently, it is unclear whether the decoding results simply reflect behavioral change or true underlying neural change. As shown in the behavioral data, the key press speed reached 3~4 presses per second already at around the end of the early learning period (11th trial), which means inter-press intervals become as short as 250-330 msec. Thus, in almost more than 60% of training period data, the time window for MEG feature extraction (200 msec) spans around 60% of the inter-press intervals. Considering that the preparation/cueing of subsequent presses starts ahead of the actual press (e.g., Kornysheva et al., 2019) and/or potential online planning (e.g., Ariani and Diedrichsen, 2019), the decoder likely has captured these future press information as well as the signal related to the current key press, independent of the formation of genuine sequential representation (e.g., "contextualization" of individual press). This may also explain the gradual increase in decoding accuracy or pattern distance between index_OP1 vs. index_OP5 (Figure 4C and 5A), which co-occurred with performance improvement, as shorter inter-press intervals are more favorable for the dissociating the two index finger presses followed by different finger presses. The compromised decoding accuracies for the control sequences can be explained in similar logic. Therefore, more careful consideration and elaborated discussion seem necessary when trying to both achieve high-performance decoding and assess early skill learning, as it can impact all the subsequent analyses.

      The Reviewer raises the possibility that (given the windowing parameters used in the present study) an increase in “contextualization” with learning could simply reflect faster typing speeds as opposed to an actual change in the underlying neural representation.

      We now include a new control analysis that addresses this issue as well as additional re-examination of previously reported results with respect to this issue – all of which are inconsistent with this alternative explanation that “contextualization” reflects a change in mixing of keypress related MEG features as opposed to a change in the underlying representations themselves. As correct sequences are generated at higher and higher speeds over training, MEG activity patterns related to the planning, execution, evaluation and memory of individual keypresses overlap more in time. Thus, increased overlap between the “4” and “1” keypresses (at the start of the sequence) and “2” and “4” keypresses (at the end of the sequence) could artefactually increase contextualization distances even if the underlying neural representations for the individual keypresses remain unchanged. One must also keep in mind that since participants repeat the sequence multiple times within the same trial, a majority of the index finger keypresses are performed adjacent to one another (i.e. - the “4-4” transition marking the end of one sequence and the beginning of the next). Thus, increased overlap between consecutive index finger keypresses as typing speed increased should increase their similarity and mask contextualization related changes to the underlying neural representations.

      We addressed this question by conducting a new multivariate regression analysis to directly assess whether the neural representation distance score could be predicted by the 4-1, 2-4 and 4-4 keypress transition times observed for each complete correct sequence (both predictor and response variables were z-score normalized within-subject). The results of this analysis also affirmed that the possible alternative explanation that contextualization effects are simple reflections of increased mixing is not supported by the data (Adjusted R<sup>2</sup> = 0.00431; F = 5.62). We now include this new negative control analysis in the revised manuscript.

      We also re-examined our previously reported classification results with respect to this issue. We reasoned that if mixing effects reflecting the ordinal sequence structure is an important driver of the contextualization finding, these effects should be observable in the distribution of decoder misclassifications. For example, “4” keypresses would be more likely to be misclassified as “1” or “2” keypresses (or vice versa) than as “3” keypresses. The confusion matrices presented in Figures 3C and 4B and Figure 3—figure supplement 3A display a distribution of misclassifications that is inconsistent with an alternative mixing effect explanation of contextualization.

      Based upon the increased overlap between adjacent index finger keypresses (i.e. – “4-4” transition), we also reasoned that the decoder tasked with separating individual index finger keypresses into two distinct classes based upon sequence position, should show decreased performance as typing speed increases. However, Figure 4C in our manuscript shows that this is not the case. The 2-class hybrid classifier actually displays improved classification performance over early practice trials despite greater temporal overlap. Again, this is inconsistent with the idea that the contextualization effect simply reflects increased mixing of individual keypress features.

      In summary, both re-examination of previously reported data and new control analyses all converged on the idea that the proximity between keypresses does not explain contextualization.

      We do agree with the Reviewer that the naturalistic, generative, self-paced task employed in the present study results in overlapping brain processes related to planning, execution, evaluation and memory of the action sequence. We also agree that there are several tradeoffs to consider in the construction of the classifiers depending on the study aim. Given our aim of optimizing keypress decoder accuracy in the present study, the set of trade-offs resulted in representations reflecting more the latter three processes, and less so the planning component. Whether separate decoders can be constructed to tease apart the representations or networks supporting these overlapping processes is an important future direction of research in this area. For example, work presently underway in our lab constrains the selection of windowing parameters in a manner that allows individual classifiers to be temporally linked to specific planning, execution, evaluation or memory-related processes to discern which brain networks are involved and how they adaptively reorganize with learning. Results from the present study (Figure 4—figure supplement 2) showing hybrid-space decoder prediction accuracies exceeding 74% for temporal windows spanning as little as 25ms and located up to 100ms prior to the KeyDown event strongly support the feasibility of such an approach.

      Related to the above point, testing only one particular sequence (4-1-3-2-4), aside from the control ones, limits the generalizability of the finding. This also may have contributed to the extremely high decoding accuracy reported in the current study.

      The Reviewer raises a question about the generalizability of the decoder accuracy reported in our study. Fortunately, a comparison between decoder performances on Day 1 and Day 2 datasets does provide insight into this issue. As the Reviewer points out, the classifiers in this study were trained and tested on keypresses performed while practicing a specific sequence (4-1-3-2-4). The study was designed this way as to avoid the impact of interference effects on learning dynamics. The cross-validated performance of classifiers on MEG data collected within the same session was 90.47% overall accuracy (4-class; Figure 3C). We then tested classifier performance on data collected during a separate MEG session conducted approximately 24 hours later (Day 2; see Figure 3 — figure supplement 3). We observed a reduction in overall accuracy rate to 87.11% when tested on MEG data recorded while participants performed the same learned sequence, and 79.44% when they performed several previously unpracticed sequences. Both changes in accuracy are important with regards to the generalizability of our findings. First, 87.11% performance accuracy for the trained sequence data on Day 2 (a reduction of only 3.36%) indicates that the hybrid-space decoder performance is robust over multiple MEG sessions, and thus, robust to variations in SNR across the MEG sensor array caused by small differences in head position between scans. This indicates a substantial advantage over sensor-space decoding approaches. Furthermore, when tested on data from unpracticed sequences, overall performance dropped an additional 7.67%. This difference reflects the performance bias of the classifier for the trained sequence, possibly caused by high-order sequence structure being incorporated into the feature weights. In the future, it will be important to understand in more detail how random or repeated keypress sequence training data impacts overall decoder performance and generalization. We strongly agree with the Reviewer that the issue of generalizability is extremely important and have added a new paragraph to the Discussion in the revised manuscript highlighting the strengths and weaknesses of our study with respect to this issue.

      In terms of clinical BCI, one of the potential relevance of the study, as claimed by the authors, it is not clear that the specific time window chosen in the current study (up to 200 msec since key press onset) is really useful. In most cases, clinical BCI would target neural signals with no overt movement execution due to patients' inability to move (e.g., Hochberg et al., 2012). Given the time window, the surprisingly high performance of the current decoder may result from sensory feedback and/or planning of subsequent movement, which may not always be available in the clinical BCI context. Of course, the decoding accuracy is still much higher than chance even when using signal before the key press (as shown in Figure 4 Supplement 2), but it is not immediately clear to me that the authors relate their high decoding accuracy based on post-movement signal to clinical BCI settings.

      The Reviewer questions the relevance of the specific window parameters used in the present study for clinical BCI applications, particularly for paretic patients who are unable to produce finger movements or for whom afferent sensory feedback is no longer intact. We strongly agree with the Reviewer that any intended clinical application must carefully consider the specific input feature constraints dictated by the clinical cohort, and in turn impose appropriate and complimentary constraints on classifier parameters that may differ from the ones used in the present study. We now highlight this issue in the Discussion of the revised manuscript and relate our present findings to published clinical BCI work within this context.

      One of the important and fascinating claims of the current study is that the "contextualization" of individual finger movements in a trained sequence specifically occurs during short rest periods in very early skill learning, echoing the recent theory of micro-offline learning proposed by the authors' group. Here, I think two points need to be clarified. First, the concept of "contextualization" is kept somewhat blurry throughout the text. It is only at the later part of the Discussion (around line #330 on page 13) that some potential mechanism for the "contextualization" is provided as "what-and-where" binding. Still, it is unclear what "contextualization" actually is in the current data, as the MEG signal analyzed is extracted from 0-200 msec after the keypress. If one thinks something is contextualizing an action, that contextualization should come earlier than the action itself.

      The Reviewer requests that we: 1) more clearly define our use of the term “contextualization” and 2) provide the rationale for assessing it over a 200ms window aligned to the KeyDown event. This choice of window parameters means that the MEG activity used in our analysis was coincident with, rather than preceding, the actual keypresses. We define contextualization as the differentiation of representation for the identical movement embedded in different positions of a sequential skill. That is, representations of individual action elements progressively incorporate information about their relationship to the overall sequence structure as the skill is learned. We agree with the Reviewer that this can be appropriately interpreted as “what-and-where” binding. We now incorporate this definition in the Introduction of the revised manuscript as requested.

      The window parameters for optimizing accurate decoding individual finger movements were determined using a grid search of the parameter space (a sliding window of variable width between 25-350 ms with 25 ms increments variably aligned from 0 to +100ms with 10ms increments relative to the KeyDown event). This approach generated 140 different temporal windows for each keypress for each participant, with the final parameter selection determined through comparison of the resulting performance between each decoder. Importantly, the decision to optimize for decoding accuracy placed an emphasis on keypress representations characterized by the most consistent and robust features shared across subjects, which in turn maximize statistical power in detecting common learning-related changes. In this case, the optimal window encompassed a 200ms epoch aligned to the KeyDown event (t<sub>0</sub> = 0 ms). We then asked if the representations (i.e. – spatial patterns of combined parcel- and voxel-space activity) of the same digit at two different sequence positions changed with practice within this optimal decoding window. Of course, our findings do not rule out the possibility that contextualization can also be found before or even after this time window, as we did not directly address this issue in the present study. Future work in our lab, as pointed out above, are investigating contextualization within different time windows tailored specifically for assessing sequence skill action planning, execution, evaluation and memory processes.

      The second point is that the result provided by the authors is not yet convincing enough to support the claim that "contextualization" occurs during rest. In the original analysis, the authors presented the statistical significance regarding the correlation between the "offline" pattern differentiation and micro-offline skill gain (Figure 5. Supplement 1), as well as the larger "offline" distance than "online" distance (Figure 5B). However, this analysis looks like regressing two variables (monotonically) increasing as a function of the trial. Although some information in this analysis, such as what the independent/dependent variables were or how individual subjects were treated, was missing in the Methods, getting a statistically significant slope seems unsurprising in such a situation. Also, curiously, the same quantitative evidence was not provided for its "online" counterpart, and the authors only briefly mentioned in the text that there was no significant correlation between them. It may be true looking at the data in Figure 5A as the online representation distance looks less monotonically changing, but the classification accuracy presented in Figure 4C, which should reflect similar representational distance, shows a more monotonic increase up to the 11th trial. Further, the ways the "online" and "offline" representation distance was estimated seem to make them not directly comparable. While the "online" distance was computed using all the correct press data within each 10 sec of execution, the "offline" distance is basically computed by only two presses (i.e., the last index_OP5 vs. the first index_OP1 separated by 10 sec of rest). Theoretically, the distance between the neural activity patterns for temporally closer events tends to be closer than that between the patterns for temporally far-apart events. It would be fairer to use the distance between the first index_OP1 vs. the last index_OP5 within an execution period for "online" distance, as well.

      The Reviewer suggests that the current data is not enough to show that contextualization occurs during rest and raises two important concerns: 1) the relationship between online contextualization and micro-online gains is not shown, and 2) the online distance was calculated differently from its offline counterpart (i.e. - instead of calculating the distance between last Index<sub>OP5</sub> and first Index<sub>OP1</sub> from a single trial, the distance was calculated for each sequence within a trial and then averaged).

      We addressed the first concern by performing individual subject correlations between 1) contextualization changes during rest intervals and micro-offline gains; 2) contextualization changes during practice trials and micro-online gains, and 3) contextualization changes during practice trials and micro-offline gains (Figure 5 – figure supplement 4). We then statistically compared the resulting correlation coefficient distributions and found that within-subject correlations for contextualization changes during rest intervals and micro-offline gains were significantly higher than online contextualization and micro-online gains (t = 3.2827, p = 0.0015) and online contextualization and micro-offline gains (t = 3.7021, p = 5.3013e-04). These results are consistent with our interpretation that micro-offline gains are supported by contextualization changes during the inter-practice rest periods.

      With respect to the second concern, we agree with the Reviewer that one limitation of the analysis comparing online versus offline changes in contextualization as presented in the original manuscript, is that it does not eliminate the possibility that any differences could simply be explained by the passage of time (which is smaller for the online analysis compared to the offline analysis). The Reviewer suggests an approach that addresses this issue, which we have now carried out. When quantifying online changes in contextualization from the first Index<sub>OP1</sub> the last Index<sub>OP5</sub> keypress in the same trial we observed no learning-related trend (Figure 5 – figure supplement 5, right panel). Importantly, offline distances were significantly larger than online distances regardless of the measurement approach and neither predicted online learning (Figure 5 – figure supplement 6).

      A related concern regarding the control analysis, where individual values for max speed and the degree of online contextualization were compared (Figure 5 Supplement 3), is whether the individual difference is meaningful. If I understood correctly, the optimization of the decoding process (temporal window, feature inclusion/reduction, decoder, etc.) was performed for individual participants, and the same feature extraction was also employed for the analysis of representation distance (i.e., contextualization). If this is the case, the distances are individually differently calculated and they may need to be normalized relative to some stable reference (e.g., 1 vs. 4 or average distance within the control sequence presses) before comparison across the individuals.

      The Reviewer makes a good point here. We have now implemented the suggested normalization procedure in the analysis provided in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      One goal of this paper is to introduce a new approach for highly accurate decoding of finger movements from human magnetoencephalography data via dimension reduction of a "multiscale, hybrid" feature space. Following this decoding approach, the authors aim to show that early skill learning involves "contextualization" of the neural coding of individual movements, relative to their position in a sequence of consecutive movements. Furthermore, they aim to show that this "contextualization" develops primarily during short rest periods interspersed with skill training and correlates with a performance metric which the authors interpret as an indicator of offline learning.

      Strengths:

      A clear strength of the paper is the innovative decoding approach, which achieves impressive decoding accuracies via dimension reduction of a "multi-scale, hybrid space". This hybrid-space approach follows the neurobiologically plausible idea of the concurrent distribution of neural coding across local circuits as well as large-scale networks. A further strength of the study is the large number of tested dimension reduction techniques and classifiers (though the manuscript reveals little about the comparison of the latter).

      We appreciate the Reviewer’s comments regarding the paper’s strengths.

      A simple control analysis based on shuffled class labels could lend further support to this complex decoding approach. As a control analysis that completely rules out any source of overfitting, the authors could test the decoder after shuffling class labels. Following such shuffling, decoding accuracies should drop to chance level for all decoding approaches, including the optimized decoder. This would also provide an estimate of actual chance-level performance (which is informative over and beyond the theoretical chance level). Furthermore, currently, the manuscript does not explain the huge drop in decoding accuracies for the voxel-space decoding (Figure 3B). Finally, the authors' approach to cortical parcellation raises questions regarding the information carried by varying dipole orientations within a parcel (which currently seems to be ignored?) and the implementation of the mean-flipping method (given that there are two dimensions - space and time - what do the authors refer to when they talk about the sign of the "average source", line 477?).

      The Reviewer recommends that we: 1) conduct an additional control analysis on classifier performance using shuffled class labels, 2) provide a more detailed explanation regarding the drop in decoding accuracies for the voxel-space decoding following LDA dimensionality reduction (see Fig 3B), and 3) provide additional details on how problems related to dipole solution orientations were addressed in the present study.

      In relation to the first point, we have now implemented a random shuffling approach as a control for the classification analyses. The results of this analysis indicated that the chance level accuracy was 22.12% (± SD 9.1%) for individual keypress decoding (4-class classification), and 18.41% (± SD 7.4%) for individual sequence item decoding (5-class classification), irrespective of the input feature set or the type of decoder used. Thus, the decoding accuracy observed with the final model was substantially higher than these chance levels.

      Second, please note that the dimensionality of the voxel-space feature set is very high (i.e. – 15684). LDA attempts to map the input features onto a much smaller dimensional space (number of classes – 1; e.g. – 3 dimensions, for 4-class keypress decoding). Given the very high dimension of the voxel-space input features in this case, the resulting mapping exhibits reduced accuracy. Despite this general consideration, please refer to Figure 3—figure supplement 3, where we observe improvement in voxel-space decoder performance when utilizing alternative dimensionality reduction techniques.

      The decoders constructed in the present study assess the average spatial patterns across time (as defined by the windowing procedure) in the input feature space. We now provide additional details in the Methods of the revised manuscript pertaining to the parcellation procedure and how the sign ambiguity problem was addressed in our analysis.

      Weaknesses:

      A clear weakness of the paper lies in the authors' conclusions regarding "contextualization". Several potential confounds, described below, question the neurobiological implications proposed by the authors and provide a simpler explanation of the results. Furthermore, the paper follows the assumption that short breaks result in offline skill learning, while recent evidence, described below, casts doubt on this assumption.

      We thank the Reviewer for giving us the opportunity to address these issues in detail (see below).

      The authors interpret the ordinal position information captured by their decoding approach as a reflection of neural coding dedicated to the local context of a movement (Figure 4). One way to dissociate ordinal position information from information about the moving effectors is to train a classifier on one sequence and test the classifier on other sequences that require the same movements, but in different positions (Kornysheva et al., 2019). In the present study, however, participants trained to repeat a single sequence (4-1-3-2-4). As a result, ordinal position information is potentially confounded by the fixed finger transitions around each of the two critical positions (first and fifth press). Across consecutive correct sequences, the first keypress in a given sequence was always preceded by a movement of the index finger (=last movement of the preceding sequence), and followed by a little finger movement. The last keypress, on the other hand, was always preceded by a ring finger movement, and followed by an index finger movement (=first movement of the next sequence). Figure 4 - Supplement 2 shows that finger identity can be decoded with high accuracy (>70%) across a large time window around the time of the key press, up to at least +/-100 ms (and likely beyond, given that decoding accuracy is still high at the boundaries of the window depicted in that figure). This time window approaches the keypress transition times in this study. Given that distinct finger transitions characterized the first and fifth keypress, the classifier could thus rely on persistent (or "lingering") information from the preceding finger movement, and/or "preparatory" information about the subsequent finger movement, in order to dissociate the first and fifth keypress. Currently, the manuscript provides no evidence that the context information captured by the decoding approach is more than a by-product of temporally extended, and therefore overlapping, but independent neural representations of consecutive keypresses that are executed in close temporal proximity - rather than a neural representation dedicated to context.

      Such temporal overlap of consecutive, independent finger representations may also account for the dynamics of "ordinal coding"/"contextualization", i.e., the increase in 2-class decoding accuracy, across Day 1 (Figure 4C). As learning progresses, both tapping speed and the consistency of keypress transition times increase (Figure 1), i.e., consecutive keypresses are closer in time, and more consistently so. As a result, information related to a given keypress is increasingly overlapping in time with information related to the preceding and subsequent keypresses. The authors seem to argue that their regression analysis in Figure 5 - Figure Supplement 3 speaks against any influence of tapping speed on "ordinal coding" (even though that argument is not made explicitly in the manuscript). However, Figure 5 - Figure Supplement 3 shows inter-individual differences in a between-subject analysis (across trials, as in panel A, or separately for each trial, as in panel B), and, therefore, says little about the within-subject dynamics of "ordinal coding" across the experiment. A regression of trial-by-trial "ordinal coding" on trial-by-trial tapping speed (either within-subject or at a group-level, after averaging across subjects) could address this issue. Given the highly similar dynamics of "ordinal coding" on the one hand (Figure 4C), and tapping speed on the other hand (Figure 1B), I would expect a strong relationship between the two in the suggested within-subject (or group-level) regression. Furthermore, learning should increase the number of (consecutively) correct sequences, and, thus, the consistency of finger transitions. Therefore, the increase in 2-class decoding accuracy may simply reflect an increasing overlap in time of increasingly consistent information from consecutive keypresses, which allows the classifier to dissociate the first and fifth keypress more reliably as learning progresses, simply based on the characteristic finger transitions associated with each. In other words, given that the physical context of a given keypress changes as learning progresses - keypresses move closer together in time and are more consistently correct - it seems problematic to conclude that the mental representation of that context changes. To draw that conclusion, the physical context should remain stable (or any changes to the physical context should be controlled for).

      The issues raised by Reviewer #3 here are similar to two issues raised by Reviewer #2 above. We agree they must both be carefully considered in any evaluation of our findings.

      As both Reviewers pointed out, the classifiers in this study were trained and tested on keypresses performed while practicing a specific sequence (4-1-3-2-4). The study was designed this way as to avoid the impact of interference effects on learning dynamics. The cross-validated performance of classifiers on MEG data collected within the same session was 90.47% overall accuracy (4class; Figure 3C). We then tested classifier performance on data collected during a separate MEG session conducted approximately 24 hours later (Day 2; see Figure 3—supplement 3). We observed a reduction in overall accuracy rate to 87.11% when tested on MEG data recorded while participants performed the same learned sequence, and 79.44% when they performed several previously unpracticed sequences. This classification performance difference of 7.67% when tested on the Day 2 data could reflect the performance bias of the classifier for the trained sequence, possibly caused by mixed information from temporally close keypresses being incorporated into the feature weights.

      Along these same lines, both Reviewers also raise the possibility that an increase in “ordinal coding/contextualization” with learning could simply reflect an increase in this mixing effect caused by faster typing speeds as opposed to an actual change in the underlying neural representation. The basic idea is that as correct sequences are generated at higher and higher speeds over training, MEG activity patterns related to the planning, execution, evaluation and memory of individual keypresses overlap more in time. Thus, increased overlap between the “4” and “1” keypresses (at the start of the sequence) and “2” and “4” keypresses (at the end of the sequence) could artefactually increase contextualization distances even if the underlying neural representations for the individual keypresses remain unchanged (assuming this mixing of representations is used by the classifier to differentially tag each index finger press). If this were the case, it follows that such mixing effects reflecting the ordinal sequence structure would also be observable in the distribution of decoder misclassifications. For example, “4” keypresses would be more likely to be misclassified as “1” or “2” keypresses (or vice versa) than as “3” keypresses. The confusion matrices presented in Figures 3C and 4B and Figure 3—figure supplement 3A in the previously submitted manuscript do not show this trend in the distribution of misclassifications across the four fingers.

      Following this logic, it’s also possible that if the ordinal coding is largely driven by this mixing effect, the increased overlap between consecutive index finger keypresses during the 4-4 transition marking the end of one sequence and the beginning of the next one could actually mask contextualization-related changes to the underlying neural representations and make them harder to detect. In this case, a decoder tasked with separating individual index finger keypresses into two distinct classes based upon sequence position might show decreased performance with learning as adjacent keypresses overlapped in time with each other to an increasing extent. However, Figure 4C in our previously submitted manuscript does not support this possibility, as the 2-class hybrid classifier displays improved classification performance over early practice trials despite greater temporal overlap.

      As noted in the above reply to Reviewer #2, we also conducted a new multivariate regression analysis to directly assess whether the neural representation distance score could be predicted by the 4-1, 2-4 and 4-4 keypress transition times observed for each complete correct sequence (both predictor and response variables were z-score normalized within-subject). The results of this analysis affirmed that the possible alternative explanation put forward by the Reviewer is not supported by our data (Adjusted R<sup>2</sup> = 0.00431; F = 5.62). We now include this new negative control analysis result in the revised manuscript.

      Finally, the Reviewer hints that one way to address this issue would be to compare MEG responses before and after learning for sequences typed at a fixed speed. However, given that the speed-accuracy trade-off should improve with learning, a comparison between unlearned and learned skill states would dictate that the skill be evaluated at a very low fixed speed. Essentially, such a design presents the problem that the post-training test is evaluating the representation in the unlearned behavioral state that is not representative of the acquired skill. Thus, this approach would miss most learning effects on a task in which speed is the main learning metrics.

      A similar difference in physical context may explain why neural representation distances ("differentiation") differ between rest and practice (Figure 5). The authors define "offline differentiation" by comparing the hybrid space features of the last index finger movement of a trial (ordinal position 5) and the first index finger movement of the next trial (ordinal position 1). However, the latter is not only the first movement in the sequence but also the very first movement in that trial (at least in trials that started with a correct sequence), i.e., not preceded by any recent movement. In contrast, the last index finger of the last correct sequence in the preceding trial includes the characteristic finger transition from the fourth to the fifth movement. Thus, there is more overlapping information arising from the consistent, neighbouring keypresses for the last index finger movement, compared to the first index finger movement of the next trial. A strong difference (larger neural representation distance) between these two movements is, therefore, not surprising, given the task design, and this difference is also expected to increase with learning, given the increase in tapping speed, and the consequent stronger overlap in representations for consecutive keypresses. Furthermore, initiating a new sequence involves pre-planning, while ongoing practice relies on online planning (Ariani et al., eNeuro 2021), i.e., two mental operations that are dissociable at the level of neural representation (Ariani et al., bioRxiv 2023).

      The Reviewer argues that the comparison of last finger movement of a trial and the first in the next trial are performed in different circumstances and contexts. This is an important point and one we tend to agree with. For this task, the first sequence in a practice trial is pre-planned before the first keypress is performed. This occurs in a somewhat different context from the sequence iterations that follow, which involve temporally overlapping planning, execution and evaluation processes. The Reviewer is concerned about a difference in the temporal mixing effect issue raised above between the first and last keypresses performed in a trial. Please, note that since neural representations of individual actions are competitively queued during the pre-planning period in a manner that reflects the ordinal structure of the learned sequence (Kornysheva et al., 2019), mixing effects are most likely present also for the first keypress in a trial.

      Separately, the Reviewer suggests that contextualization during early learning may reflect preplanning or online planning. This is an interesting proposal. Given the decoding time-window used in this investigation, we cannot dissect separate contributions of planning, memory and sensory feedback to contextualization. Taking advantage of the superior temporal resolution of MEG relative to fMRI tools, work under way in our lab is investigating decoding time-windows more appropriate to address each of these questions.

      Given these differences in the physical context and associated mental processes, it is not surprising that "offline differentiation", as defined here, is more pronounced than "online differentiation". For the latter, the authors compared movements that were better matched regarding the presence of consistent preceding and subsequent keypresses (online differentiation was defined as the mean difference between all first vs. last index finger movements during practice). It is unclear why the authors did not follow a similar definition for "online differentiation" as for "micro-online gains" (and, indeed, a definition that is more consistent with their definition of "offline differentiation"), i.e., the difference between the first index finger movement of the first correct sequence during practice, and the last index finger of the last correct sequence. While these two movements are, again, not matched for the presence of neighbouring keypresses (see the argument above), this mismatch would at least be the same across "offline differentiation" and "online differentiation", so they would be more comparable.

      This is the same point made earlier by Reviewer #2, and we agree with this assessment. As stated in the response to Reviewer #2 above, we have now carried out quantification of online contextualization using this approach and included it in the revised manuscript. We thank the Reviewer for this suggestion.

      A further complication in interpreting the results regarding "contextualization" stems from the visual feedback that participants received during the task. Each keypress generated an asterisk shown above the string on the screen, irrespective of whether the keypress was correct or incorrect. As a result, incorrect (e.g., additional, or missing) keypresses could shift the phase of the visual feedback string (of asterisks) relative to the ordinal position of the current movement in the sequence (e.g., the fifth movement in the sequence could coincide with the presentation of any asterisk in the string, from the first to the fifth). Given that more incorrect keypresses are expected at the start of the experiment, compared to later stages, the consistency in visual feedback position, relative to the ordinal position of the movement in the sequence, increased across the experiment. A better differentiation between the first and the fifth movement with learning could, therefore, simply reflect better decoding of the more consistent visual feedback, based either on the feedback-induced brain response, or feedback-induced eye movements (the study did not include eye tracking). It is not clear why the authors introduced this complicated visual feedback in their task, besides consistency with their previous studies.

      We strongly agree with the Reviewer that eye movements related to task engagement are important to rule out as a potential driver of the decoding accuracy or contextualizaton effect. We address this issue above in response to a question raised by Reviewer #1 about the impact of movement related artefacts on our findings.

      First, the assumption the Reviewer makes here about the distribution of errors in this task is incorrect. On average across subjects, 2.32% ± 1.48% (mean ± SD) of all keypresses performed were errors, which were evenly distributed across the four possible keypress responses. While errors increased progressively over practice trials, they did so in proportion to the increase in correct keypresses, so that the overall ratio of correct-to-incorrect keypresses remained stable over the training session. Thus, the Reviewer’s assumptions that there is a higher relative frequency of errors in early trials, and a resulting systematic trend phase shift differences between the visual display updates (i.e. – a change in asterisk position above the displayed sequence) and the keypress performed is not substantiated by the data. To the contrary, the asterisk position on the display and the keypress being executed remained highly correlated over the entire training session. We now include a statement about the frequency and distribution of errors in the revised manuscript.

      Given this high correlation, we firmly agree with the Reviewer that the issue of eye movement related artefacts is still an important one to address. Fortunately, we did collect eye movement data during the MEG recordings so were able to investigate this. As detailed in the response to Reviewer #1 above, we found that gaze positions and eye-movement velocity time-locked to visual display updates (i.e. – a change in asterisk position above the displayed sequence) did not reflect the asterisk location above chance levels (Overall cross-validated accuracy = 0.21817; see Author response image 1). Furthermore, an inspection of the eye position data revealed that most participants on most trials displayed random walk gaze patterns around a center fixation point, indicating that participants did not attend to the asterisk position on the display. This is consistent with intrinsic generation of the action sequence, and congruent with the fact that the display does not provide explicit feedback related to performance. As pointed out above, a similar real-world example would be manually inputting a long password into a secure online application. In this case, one intrinsically generates the sequence from memory and receives similar feedback about the password sequence position (also provided as asterisks), which is typically ignored by the user.

      The minimal participant engagement with the visual display in this explicit sequence learning motor task (which is highly generative in nature) contrasts markedly with behavior observed when reactive responses to stimulus cues are needed in the serial reaction time task (SRTT). This is a crucial difference that must be carefully considered when comparing findings across studies using the two sequence learning tasks.

      The authors report a significant correlation between "offline differentiation" and cumulative microoffline gains. However, it would be more informative to correlate trial-by-trial changes in each of the two variables. This would address the question of whether there is a trial-by-trial relation between the degree of "contextualization" and the amount of micro-offline gains - are performance changes (micro-offline gains) less pronounced across rest periods for which the change in "contextualization" is relatively low? Furthermore, is the relationship between micro-offline gains and "offline differentiation" significantly stronger than the relationship between micro-offline gains and "online differentiation"?

      In response to a similar issue raised above by Reviewer #2, we now include new analyses comparing correlation magnitudes between (1) “online differentiation” vs micro-online gains, (2) “online differentiation” vs micro-offline gains and (3) “offline differentiation” and micro-offline gains (see Figure 5 – figure supplement  4, 5 and 6). These new analyses and results have been added to the revised manuscript. Once again, we thank both Reviewers for this suggestion.

      The authors follow the assumption that micro-offline gains reflect offline learning.

      We disagree with this statement. The original (Bonstrup et al., 2019) paper clearly states that micro-offline gains do not necessarily reflect offline learning in some cases and must be carefully interpreted based upon the behavioral context within which they are observed. Further, the paper lays out the conditions under which one can have confidence that micro-offline gains reflect offline learning. In fact, the excellent meta-analysis of (Pan & Rickard, 2015), which re-interprets the benefits of sleep in overnight skill consolidation from a “reactive inhibition” perspective, was a crucial resource in the experimental design of our initial study (Bonstrup et al., 2019), as well as in all our subsequent work. Pan & Rickard state:

      “Empirically, reactive inhibition refers to performance worsening that can accumulate during a period of continuous training (Hull, 1943 . It tends to dissipate, at least in part, when brief breaks are inserted between blocks of training. If there are multiple performance-break cycles over a training session, as in the motor sequence literature, performance can exhibit a scalloped effect, worsening during each uninterrupted performance block but improving across blocks(Brawn et al., 2010; Rickard et al., 2008 . Rickard, Cai, Rieth, Jones, and Ard (2008 and Brawn, Fenn, Nusbaum, and Margoliash (2010 (Brawn et al., 2010; Rickard et al., 2008 demonstrated highly robust scalloped reactive inhibition effects using the commonly employed 30 s–30 s performance break cycle, as shown for Rickard et al.’s (2008 massed practice sleep group in Figure 2. The scalloped effect is evident for that group after the first few 30 s blocks of each session. The absence of the scalloped effect during the first few blocks of training in the massed group suggests that rapid learning during that period masks any reactive inhibition effect.”

      Crucially, Pan & Rickard make several concrete recommendations for reducing the impact of the reactive inhibition confound on offline learning studies. One of these recommendations was to reduce practice times to 10s (most prior sequence learning studies up until that point had employed 30s long practice trials). They state:

      “The traditional design involving 30 s-30 s performance break cycles should be abandoned given the evidence that it results in a reactive inhibition confound, and alternative designs with reduced performance duration per block used instead (Pan & Rickard, 2015 . One promising possibility is to switch to 10 s performance durations for each performance-break cycle Instead (Pan & Rickard, 2015 . That design appears sufficient to eliminate at least the majority of the reactive inhibition effect (Brawn et al., 2010; Rickard et al., 2008 .”

      We mindfully incorporated recommendations from (Pan & Rickard, 2015) into our own study designs including 1) utilizing 10s practice trials and 2) constraining our analysis of micro-offline gains to early learning trials (where performance monotonically increases and 95% of overall performance gains occur), which are prior to the emergence of the “scalloped” performance dynamics that are strongly linked to reactive inhibition effects.

      However, there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level.

      We strongly disagree with the Reviewer’s assertion that “there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level.” The initial (Bonstrup et al., 2019) report was followed up by a large online crowd-sourcing study (Bonstrup et al., 2020). This second (and much larger) study provided several additional important findings supporting our interpretation of micro-offline gains in cases where the important behavioral conditions clarified above were met (see Author response image 4 below for further details on these conditions).

      Author response image 4.

      This Figure shows that micro-offline gains o ser ed in learning and nonlearning contexts are attri uted to different underl ing causes. Micro-offline and online changes relative to overall trial-by-trial learning. This figure is based on data from (Bonstrup et al., 2019). During early learning, micro-offline gains (red bars) closely track trial-by-trial performance gains (green line with open circle markers), with minimal contribution from micro-online gains (blue bars). The stated conclusion in Bönstrup et al. (2019) is that micro-offline gains only during this Early Learning stage reflect rapid memory consolidation (see also (Bonstrup et al., 2020)). After early learning, about practice trial 11, skill plateaus. This plateau skill period is characterized by a striking emergence of coupled (and relatively stable) micro-online drops and micro-offline increases. Bönstrup et al. (2019) as well as others in the literature (Brooks et al., 2024; Gupta & Rickard, 2022; Florencia Jacobacci et al., 2020), argue that micro-offline gains during the plateau period likely reflect recovery from inhibitory performance factors such as reactive inhibition or fatigue, and thus must be excluded from analyses relating micro-offline gains to skill learning. The Non-repeating groups in Experiments 3 and 4 from Das et al. (2024) suffer from a lack of consideration of these known confounds (end of Fig legend).

      Evidence documented in that paper (Bonstrup et al., 2020) showed that micro-offline gains during early skill learning were: 1) replicable and generalized to subjects learning the task in their daily living environment (n=389); 2) equivalent when significantly shortening practice period duration, thus confirming that they are not a result of recovery from performance fatigue (n=118); 3) reduced (along with learning rates) by retroactive interference applied immediately after each practice period relative to interference applied after passage of time (n=373), indicating stabilization of the motor memory at a microscale of several seconds consistent with rapid consolidation; and 4) not modified by random termination of the practice periods, ruling out a contribution of predictive motor slowing (N = 71) (Bonstrup et al., 2020). Altogether, our findings were strongly consistent with the interpretation that micro-offline gains reflect memory consolidation supporting early skill learning. This is precisely the portion of the learning curve (Pan & Rickard, 2015) refer to when they state “…rapid learning during that period masks any reactive inhibition effect”.

      This interpretation is further supported by brain imaging evidence linking known memory-related networks and consolidation mechanisms to micro-offline gains. First, we reported that the density of fast hippocampo-neocortical skill memory replay events increases approximately three-fold during early learning inter-practice rest periods with the density explaining differences in the magnitude of micro-offline gains across subjects (Buch et al., 2021). Second, Jacobacci et al. (2020) independently reproduced our original behavioral findings and reported BOLD fMRI changes in the hippocampus and precuneus (regions also identified in our MEG study (Buch et al., 2021)) linked to micro-offline gains during early skill learning. These functional changes were coupled with rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that operates during rest periods of early learning undergoes structural plasticity over several minutes following practice (Deleglise et al., 2023). Crucial to this point, Chen et al. (2024) and Sjøgård et al (2024) provided direct evidence from intracranial EEG in humans linking sharp-wave ripple density during rest periods (which are known markers for neural replay (Buzsaki, 2015)) in the human hippocampus (80-120 Hz) to micro-offline gains during early skill learning.

      Thus, there is now substantial converging evidence in humans across different indirect noninvasive and direct invasive recording techniques linking hippocampal activity, neural replay dynamics and offline performance gains in skill learning.

      On the contrary, recent evidence questions this interpretation (Gupta & Rickard, npj Sci Learn 2022; Gupta & Rickard, Sci Rep 2024; Das et al., bioRxiv 2024). Instead, there is evidence that micro-offline gains are transient performance benefits that emerge when participants train with breaks, compared to participants who train without breaks, however, these benefits vanish within seconds after training if both groups of participants perform under comparable conditions (Das et al., bioRxiv 2024).

      The recent work of (Gupta & Rickard, 2022, 2024) does not present any data that directly opposes our finding that early skill learning (Bonstrup et al., 2019) is expressed as micro-offline gains during rest breaks. These studies are an extension of the Rickard et al (2008) paper that employed a massed (30s practice followed by 30s breaks) vs spaced (10s practice followed by 10s breaks) experimental design to assess if recovery from reactive inhibition effects could account for performance gains measured after several minutes or hours. Gupta & Rickard (2022) added two additional groups (30s practice/10s break and 10s practice/10s break as used in the work from our group). The primary aim of the study was to assess whether it was more likely that changes in performance when retested 5 minutes after skill training (consisting of 12 practice trials for the massed groups and 36 practice trials for the spaced groups) had ended reflected memory consolidation effects or recovery from reactive inhibition effects. The Gupta & Rickard (2024) follow-up paper employed a similar design with the primary difference being that participants performed a fixed number of sequences on each trial as opposed to trials lasting a fixed duration. This was done to facilitate the fitting of a quantitative statistical model to the data.

      To reiterate, neither study included any analysis of micro-online or micro-offline gains and did not include any comparison focused on skill gains during early learning trials (only at retest 5 min later). Instead, Gupta & Rickard (2022), reported evidence for reactive inhibition effects for all groups over much longer training periods than early learning. In fact, we reported the same findings for trials following the early learning period in our original 2019 paper (Bonstrup et al., 2019) (Author response image 4). Please, note that we also reported that cumulative microoffline gains over early learning did not correlate with overnight offline consolidation measured 24 hours later (Bonstrup et al., 2019) (see the Results section and further elaboration in the Discussion). We interpreted these findings as indicative that the mechanisms underlying offline gains over the micro-scale of seconds during early skill learning versus over minutes or hours very likely differ.

      In the recent preprint from (Das et al., 2024), the authors make the strong claim that “micro-offline gains during early learning do not reflect offline learning” which is not supported by their own data. The authors hypothesize that if “micro-offline gains represent offline learning, participants should reach higher skill levels when training with breaks, compared to training without breaks”. The study utilizes a spaced vs. massed practice groups between-subjects design inspired by the reactive inhibition work from Rickard and others to test this hypothesis.

      Crucially, their design incorporates only a small fraction of the training used in other investigations to evaluate early skill learning (Bonstrup et al., 2020; Bonstrup et al., 2019; Brooks et al., 2024; Buch et al., 2021; Deleglise et al., 2023; F. Jacobacci et al., 2020; Mylonas et al., 2024). A direct comparison between the practice schedule designs for the spaced and massed groups in Das et al., and the training schedule all participants experienced in the original Bönstrup et al. (2019) paper highlights this issue as well as several others (Author response image 5):

      Author response image 5.

      This figure shows (A) Comparison of Das et al. Spaced & Massed group training session designs, and the training session design from the original (Bonstrup et al., 2019) paper. Similar to the approach taken by Das et al., all practice is visualized as 10-second practice trials with a variable number (either 0, 1 or 30) of 10-second-long inter-practice rest intervals to allow for direct comparisons between designs. The two key takeaways from this comparison are that (1) the intervention differences (i.e. – practice schedules) between the Massed and Spaced groups from the Das et al. report are extremely small (less than 12% of the overall session schedule) (gaps in the red shaded area) and (2) the overall amount of practice is much less than compared to the design from the original Bönstrup report (Bonstrup et al., 2019) (which has been utilized in several subsequent studies). (B) Group-level learning curve data from Bönstrup et al. (2019) (Bonstrup et al., 2019) is used to estimate the performance range accounted for by the equivalent periods covering Test 1, Training 1 and Test 2 from Das et al (2024). Note that the intervention in the Das et al. study is limited to a period covering less than 50% of the overall learning range (end of figure legend).

      Participants in the original (Bonstrup et al., 2019) experienced 157.14% more practice time and 46.97% less inter-practice rest time than the Spaced group in the Das et al. study (Author response image 5). Thus, the overall amount of practice and rest differ substantially between studies, with much more limited training occurring for participants in Das et al.

      In addition, the training interventions (i.e. – the practice schedule differences between the Spaced and Massed groups) were designed in a manner that minimized any chance of effectively testing their hypothesis. First, the interventions were applied over an extremely short period relative to the length of the total training session (5% and 12% of the total training session for Massed and Spaced groups, respectively; see gaps in the red shaded area in Author response image 5). Second, the intervention was applied during a period in which only half of the known total learning occurs. Specifically, we know from Bönstrup et al. (2019) that only 46.57% of the total performance gains occur in the practice interval covered by Das et al Training 1 intervention. Thus, early skill learning as evaluated by multiple groups (Bonstrup et al., 2020; Bonstrup et al., 2019; Brooks et al., 2024; Buch et al., 2021; Deleglise et al., 2023; F. Jacobacci et al., 2020; Mylonas et al., 2024), is in the Das et al experiment amputated to about half.

      Furthermore, a substantial amount of learning takes place during Das et al’s Test 1 and Test 2 periods (32.49% of total gains combined). The fact that substantial learning is known to occur over both the Test 1 (18.06%) and Test 2 (14.43%) intervals presents a fundamental problem described by Pan and Rickard (Pan & Rickard, 2015). They reported that averaging over intervals where substantial performance gains occur (i.e. – performance is not stable) inject crucial artefacts into analyses of skill learning:

      “A large amount of averaging has the advantage of yielding more precise estimates of each subject’s pretest and posttest scores and hence more statistical power to detect a performance gain. However, calculation of gain scores using that strategy runs the risk that learning that occurs during the pretest and (or posttest periods (i.e., online learning is incorporated into the gain score (Rickard et al., 2008; Robertson et al., 2004 .”

      The above statement indicates that the Test 1 and Test 2 performance scores from Das et al. (2024) are substantially contaminated by the learning rate within these intervals. This is particularly problematic if the intervention design results in different Test 2 learning rates between the two groups. This in fact, is apparent in their data (Figure 1C,E of the Das et al., 2024 preprint) as the Test 2 learning rate for the Spaced group is negative (indicating a unique interference effect observable only for this group). Specifically, the Massed group continues to show an increase in performance during Test 2 and 4 relative to the last 10 seconds of practice during Training 1 and 2, respectively, while the Spaced group displays a marked decrease. This post-training performance decrease for the Spaced group is in stark contrast to the monotonic performance increases observed for both groups at all other time-points. One possible cause could be related to the structure of the Test intervals, which include 20 seconds of uninterrupted practice. For the Spaced group, this effectively is a switch to a Massed practice environment (i.e., two 10-secondlong practice trials merged into one long trial), which interferes with greater Training 1 interval gains observed for the Space group. Interestingly, when statistical comparisons between the groups are made at the time-points when the intervention is present (Figure 1E) then the stated hypothesis, “If micro-offline gains represent offline learning, participants should reach higher skill levels when training with breaks, compared to training without breaks”, is confirmed.

      In summary, the experimental design and analyses used by Das et al does not contradict the view that early skill learning is expressed as micro-offline gains during rest breaks. The data presented by Gupta and Rickard (2022, 2024) and Das et al. (2024) is in many ways more confirmatory of the constraints employed by our group and others with respect to experimental design, analysis and interpretation of study findings, rather than contradictory. Still, it does highlight a limitation of the current micro-online/offline framework, which was originally only intended to be applied to early skill learning over spaced practice schedules when reactive inhibition effects are minimized (Bonstrup et al., 2019; Pan & Rickard, 2015). Extrapolation of this current framework to postplateau performance periods, longer timespans, or non-learning situations (e.g. – the Nonrepeating groups from Das et al. (2024)), when reactive inhibition plays a more substantive role, is not warranted. Ultimately, it will be important to develop new paradigms allowing one to independently estimate the different coincident or antagonistic features (e.g. - memory consolidation, planning, working memory and reactive inhibition) contributing to micro-online and micro-offline gains during and after early skill learning within a unifying framework.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) I found Figure 2B too small to be useful, as the actual elements of the cells are very hard to read.

      We have removed the grid colormap panel (top-right) from Figure 2B. All of this colormap data is actually a subset of data presented in Figure 2 – figure supplement 1, so can still be found there.

      Reviewer #2 (Recommendations for the authors):

      (1) Related to the first point in my concerns, I would suggest the authors compare decoding accuracy between correct presses followed by correct vs. incorrect presses. This would clarify if the decoder is actually taking the MEG signal for subsequent press into account. I would also suggest the authors use pre-movement MEG features and post-movement features with shorter windows and compare each result with the results for the original post-movement MEG feature with a longer window.

      The present study does not contain enough errors to perform the analysis proposed by the Reviewer. As noted above, we did re-examine our data and now report a new control regression analysis, all of which indicate that the proximity between keypresses does not explain contextualization effects.

      (2) I was several times confused by the author's use of "neural representation of an action" or "sequence action representations" in understanding whether these terms refer to representation on the level of whole-brain, region (as defined by the specific parcellation used), or voxels. In fact, what is submitted to the decoder is some complicated whole-brain MEG feature (i.e., the "neural representation"), which is a hybrid of voxel and parcel features that is further dimension-reduced and not immediately interpretable. Clarifying this point early in the text and possibly using some more sensible terms, such as adding "brain-wise" before the "sequence action representation", would be the most helpful for the readers.

      We now clarified this terminology in the revised manuscript.

      (3) Although comparing many different ways in feature selection/reduction, time window selection, and decoder types is undoubtedly a meticulous work, the current version of the manuscript seems still lacking some explanation about the details of these methodological choices, like which decoding method was actually used to report the accuracy, whether or not different decoding methods were chosen for individual participants' data, how training data was selected (is it all of the correct presses in Day 1 data?), whether the frequency power or signal amplitude was used, and so on. I would highly appreciate these additional details in the Methods section.

      The reported accuracies were based on linear discriminant analysis classifier. A comparison of different decoders (Figure 3 – figure supplement 4) shows LDA was the optimal choice.

      Whether or not different decoding methods were chosen for individual participants' data

      We selected the same decoder (LDA) performance to report the final accuracy.

      How training data was selected (is it all of the correct presses in Day 1 data?),

      Decoder training was conducted as a randomized split of the data (all correct keypresses of Day 1) into training (90%) and test (10%) samples for 8 iterations.

      Whether the frequency power or signal amplitude was used

      Signal amplitude was used for feature calculation.

      (4) In terms of the Methods, please consider adding some references about the 'F1 score', the 'feature importance score,' and the 'MRMR-based feature ranking,' as the main readers of the current paper would not be from the machine learning community. Also, why did the LDA dimensionality reduction reduce accuracy specifically for the voxel feature?

      We have now added the following statements to the Methods section that provide more detailed descriptions and references for these metrics:

      “The F1 score, defined as the harmonic mean of the precision (percentage of true predictions that are actually true positive) and recall (percentage of true positives that were correctly predicted as true) scores, was used as a comprehensive metric for all one-versus-all keypress state decoders to assess class-wise performance that accounts for both false-positive and false-negative prediction tendencies [REF]. A weighted mean F1 score was then computed across all classes to assess the overall prediction performance of the multi-class model.”

      and

      “Feature Importance Scores

      The relative contribution of source-space voxels and parcels to decoding performance (i.e. – feature importance score) was calculated using minimum redundant maximum relevance (MRMR) and highlighted in topography plots. MRMR, an approach that combines both relevance and redundancy metrics, ranked individual features based upon their significance to the target variable (i.e. – keypress state identity) prediction accuracy and their non-redundancy with other features.”

      As stated in the Reviewer responses above, the dimensionality of the voxel-space feature set is very high (i.e. – 15684). LDA attempts to map the input features onto a much smaller dimensional space (number of classes-1; e.g. – 3 dimensions for 4-class keypress decoding). It is likely that the reduction in accuracy observed only for the voxel-space feature was due to the loss of relevant information during the mapping process that resulted in reduced accuracy. This reduction in accuracy for voxel-space decoding was specific to LDA. Figure 3—figure supplement 3 shows that voxel-space decoder performance actually improved when utilizing alternative dimensionality reduction techniques.

      (5) Paragraph 9, lines #139-142: "Notably, decoding associated with index finger keypresses (executed at two different ordinal positions in the sequence) exhibited the highest number of misclassifications of all digits (N = 141 or 47.5% of all decoding errors; Figure 3C), raising the hypothesis that the same action could be differentially represented when executed at different learning state or sequence context locations."

      This does not seem to be a fair comparison, as the index finger appears twice as many as the other fingers do in the sequence. To claim this, proper statistical analysis needs to be done taking this difference into account.

      We thank the Reviewer for bringing this issue to our attention. We have now corrected this comparison to evaluate relative false negative and false positive rates between individual keypress state decoders, and have revised this statement in the manuscript as follows:

      “Notably, decoding of index finger keypresses (executed at two different ordinal positions in the sequence) exhibited the highest false negative (0.116 per keypress) and false positive (0.043 per keypress) misclassification rates compared with all other digits (false negative rate range = [0.067 0.114]; false positive rate range = [0.020 0.037]; Figure 3C), raising the hypothesis that the same action could be differentially represented when executed within different contexts (i.e. - different learning states or sequence locations).”

      (6) Finally, the authors could consider acknowledging in the Discussion that the contribution of micro-offline learning to genuine skill learning is still under debate (e.g., Gupta and Rickard, 2023; 2024; Das et al., bioRxiv, 2024).

      We have added a paragraph in the Discussion that addresses this point.

      Reviewer #3 (Recommendations for the authors):

      In addition to the additional analyses suggested in the public review, I have the following suggestions/questions:

      (1) Given that the authors introduce a new decoding approach, it would be very helpful for readers to see a distribution of window sizes and window onsets eventually used across individuals, at least for the optimized decoder.

      We have now included a new supplemental figure (Figure 4 – figure Supplement 2) that provides this information.

      (2) Please explain in detail how you arrived at the (interpolated?) group-level plot shown in Figure 1B, starting from the discrete single-trial keypress transition times. Also, please specify what the shading shows.

      Instantaneous correct sequence speed (skill measure) was quantified as the inverse of time (in seconds) required to complete a single iteration of a correctly generated full 5-item sequence. Individual keypress responses were labeled as members of correct sequences if they occurred within a 5-item response pattern matching any possible circular shifts of the 5-item sequence displayed on the monitor (41324). This approach allowed us to quantify a measure of skill within each practice trial at the resolution of individual keypresses. The dark line indicates the group mean performance dynamics for each trial. The shaded region indicates the 95% confidence limit of the mean (see Methods).

      (3) Similarly, please explain how you arrived at the group-level plot shown in Figure 1C. What are the different colored lines (rows) within each trial? How exactly did the authors reach the conclusion that KTT variability stabilizes by trial 6?

      Figure 1C provides additional information to the correct sequence speed measure above, as it also tracks individual transition speed composition over learning. Figure 1C, thus, represents both changes in overall correct sequence speed dynamics (indicated by the overall narrowing of the horizontal speed lines moving from top to bottom) and the underlying composition of the individual transition patterns within and across trials. The coloring of the lines is a shading convention used to discriminate between different keypress transitions. These curves were sampled with 1ms resolution, as in Figure 1B. Addressing the underlying keypress transition patterns requires within-subject normalization before averaging across subjects. The distribution of KTTs was normalized to the median correct sequence time for each participant and centered on the mid-point for each full sequence iteration during early learning.

      (4) Maybe I missed it, but it was not clear to me which of the tested classifiers was eventually used. Or was that individualized as well? More generally, a comparison of the different classifiers would be helpful, similar to the comparison of dimension reduction techniques.

      We have now included a new supplemental figure that provides this information.

      (5) Please add df and effect sizes to all statistics.

      Done.

      (6) Please explain in more detail your power calculation.

      The study was powered to determine the minimum sample size needed to detect a significant change in skill performance following training using a one-sample t-test (two-sided; alpha = 0.05; 95% statistical power; Cohen’s D effect size = 0.8115 calculated from previously acquired data in our lab). The calculated minimum sample size was 22. The included study sample size (n = 27) exceeded this minimum.

      This information is now included in the revised manuscript.

      (7) The cut-off for the high-pass filter is unusually high and seems risky in terms of potential signal distortions (de Cheveigne, Neuron 2019). Why did the authors choose such a high cut-off?

      The 1Hz high-pass cut-off frequency for the 1-150Hz band-pass filter applied to the continuous raw MEG data during preprocessing has been used in multiple previous MEG publications (Barratt et al., 2018; Brookes et al., 2012; Higgins et al., 2021; Seedat et al., 2020; Vidaurre et al., 2018).

      (8) "Furthermore, the magnitude of offline contextualization predicted skill gains while online contextualization did not", lines 336/337 - where is that analysis?

      Additional details pertaining to this analysis are now provided in the Results section (Figure 5 – figure supplement 4).

      (9) How were feature importance scores computed?

      We have now added a new subheading in the Methods section with a more detailed description of how feature importance scores were computed.

      (10)  Please add x and y ticks plus tick labels to Figure 5 - Figure Supplement 3, panel A

      Done

      (11) Line 369, what does "comparable" mean in this context?

      The sentence in the “Study Participants” part of the Methods section referred to here has now been revised for clarity.

      (12) In lines 496/497, please specify what t=0 means (KeyDown event, I guess?).

      Yes, the KeyDown event occurs at t = 0. This has now been clarified in the revised manuscript.

      (13) Please specify consistent boundaries between alpha- and beta-bands (they are currently not consistent in the Results vs. Methods (14/15 Hz or 15/16 Hz)).

      We thank the Reviewer for alerting us to this discrepancy caused by a typographic error in the Methods. We have now corrected this so that the alpha (8-14 Hz) and beta-band (15-24 Hz) frequency limits are described consistently throughout the revised manuscript.

      References

      Albouy, G., Fogel, S., King, B. R., Laventure, S., Benali, H., Karni, A., Carrier, J., Robertson, E. M., & Doyon, J. (2015). Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. Neuroimage, 108, 423-434. https://doi.org/10.1016/j.neuroimage.2014.12.049

      Albouy, G., King, B. R., Maquet, P., & Doyon, J. (2013). Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 23(11), 985-1004. https://doi.org/10.1002/hipo.22183 Albouy, G., Sterpenich, V., Vandewalle, G., Darsaud, A., Gais, S., Rauchs, G., Desseilles, M., Boly, M., Dang-Vu, T., Balteau, E., Degueldre, C., Phillips, C., Luxen, A., & Maquet, P. (2012). Neural correlates of performance variability during motor sequence acquisition. NeuroImage, 60(1), 324-331. https://doi.org/10.1016/j.neuroimage.2011.12.049

      Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annu Rev Neurosci, 25, 189-220. https://doi.org/10.1146/annurev.neuro.25.112701.142922 112701.142922 [pii]

      Ashe, J., Lungu, O. V., Basford, A. T., & Lu, X. (2006). Cortical control of motor sequences. Curr Opin Neurobiol, 16(2), 213-221. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=16563734

      Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W., & Donoghue, J. P. (2011). Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J Neurophysiol, 105(4), 1603-1619. https://doi.org/10.1152/jn.00532.2010

      Barratt, E. L., Francis, S. T., Morris, P. G., & Brookes, M. J. (2018). Mapping the topological organisation of beta oscillations in motor cortex using MEG. NeuroImage, 181, 831-844. https://doi.org/10.1016/j.neuroimage.2018.06.041

      Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S A, 108(18), 7641-7646. https://doi.org/10.1073/pnas.1018985108

      Battaglia-Mayer, A., & Caminiti, R. (2019). Corticocortical Systems Underlying High-Order Motor Control. J Neurosci, 39(23), 4404-4421. https://doi.org/10.1523/JNEUROSCI.2094-18.2019

      Berlot, E., Popp, N. J., & Diedrichsen, J. (2020). A critical re-evaluation of fMRI signatures of motor sequence learning. Elife, 9. https://doi.org/10.7554/eLife.55241

      Bonstrup, M., Iturrate, I., Hebart, M. N., Censor, N., & Cohen, L. G. (2020). Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data. NPJ Sci Learn, 5, 7. https://doi.org/10.1038/s41539-020-0066-9

      Bonstrup, M., Iturrate, I., Thompson, R., Cruciani, G., Censor, N., & Cohen, L. G. (2019). A Rapid Form of Offline Consolidation in Skill Learning. Curr Biol, 29(8), 1346-1351 e1344. https://doi.org/10.1016/j.cub.2019.02.049

      Brawn, T. P., Fenn, K. M., Nusbaum, H. C., & Margoliash, D. (2010). Consolidating the effects of waking and sleep on motor-sequence learning. J Neurosci, 30(42), 13977-13982. https://doi.org/10.1523/JNEUROSCI.3295-10.2010

      Brookes, M. J., Woolrich, M. W., & Barnes, G. R. (2012). Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage, 63(2), 910-920. https://doi.org/10.1016/j.neuroimage.2012.03.048

      Brooks, E., Wallis, S., Hendrikse, J., & Coxon, J. (2024). Micro-consolidation occurs when learning an implicit motor sequence, but is not influenced by HIIT exercise. NPJ Sci Learn, 9(1), 23. https://doi.org/10.1038/s41539-024-00238-6

      Buch, E. R., Claudino, L., Quentin, R., Bonstrup, M., & Cohen, L. G. (2021). Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Rep, 35(10), 109193. https://doi.org/10.1016/j.celrep.2021.109193

      Buneo, C. A., & Andersen, R. A. (2006). The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44(13), 2594-2606. https://doi.org/10.1016/j.neuropsychologia.2005.10.011

      Buzsaki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073-1188. https://doi.org/10.1002/hipo.22488

      Chen, P.-C., Stritzelberger, J., Walther, K., Hamer, H., & Staresina, B. P. (2024). Hippocampal ripples during offline periods predict human motor sequence learning. bioRxiv, 2024.2010.2006.614680. https://doi.org/10.1101/2024.10.06.614680

      Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51-56. https://doi.org/10.1038/nature11129

      Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol, 79(2), 1117-1123. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=9463469

      Colclough, G. L., Brookes, M. J., Smith, S. M., & Woolrich, M. W. (2015). A symmetric multivariate leakage correction for MEG connectomes. NeuroImage, 117, 439-448. https://doi.org/10.1016/j.neuroimage.2015.03.071

      Colclough, G. L., Woolrich, M. W., Tewarie, P. K., Brookes, M. J., Quinn, A. J., & Smith, S. M. (2016). How reliable are MEG resting-state connectivity metrics? NeuroImage, 138, 284-293. https://doi.org/10.1016/j.neuroimage.2016.05.070

      Das, A., Karagiorgis, A., Diedrichsen, J., Stenner, M.-P., & Azanon, E. (2024). “Micro-offline gains” convey no benefit for motor skill learning. bioRxiv, 2024.2007.2011.602795. https://doi.org/10.1101/2024.07.11.602795

      Deleglise, A., Donnelly-Kehoe, P. A., Yeffal, A., Jacobacci, F., Jovicich, J., Amaro, E., Jr., Armony, J. L., Doyon, J., & Della-Maggiore, V. (2023). Human motor sequence learning drives transient changes in network topology and hippocampal connectivity early during memory consolidation. Cereb Cortex, 33(10), 6120-6131. https://doi.org/10.1093/cercor/bhac489

      Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. [Review]. Behavioural brain research, 199(1), 61-75. https://doi.org/10.1016/j.bbr.2008.11.012

      Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A, 99(2), 1017-1022. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=11805340

      Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057-1070. https://doi.org/10.1016/j.neuron.2012.12.002

      Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science, 318(5853), 1147-1150. https://doi.org/10.1126/science.1148979

      Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E., & Slutzky, M. W. (2012). Local field potentials allow accurate decoding of muscle activity. J Neurophysiol, 108(1), 18-24. https://doi.org/10.1152/jn.00832.2011

      Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nat Rev Neurosci, 6(2), 119-130. https://doi.org/10.1038/nrn1607

      Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., & Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A, 104(47), 1877818783. https://doi.org/10.1073/pnas.0705454104

      Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S., & Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci, 12(7), 2542-2548.

      Grover, S., Wen, W., Viswanathan, V., Gill, C. T., & Reinhart, R. M. G. (2022). Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci, 25(9), 1237-1246. https://doi.org/10.1038/s41593-022-01132-3

      Gupta, M. W., & Rickard, T. C. (2022). Dissipation of reactive inhibition is sufficient to explain post-rest improvements in motor sequence learning. NPJ Sci Learn, 7(1), 25. https://doi.org/10.1038/s41539-022-00140-z

      Gupta, M. W., & Rickard, T. C. (2024). Comparison of online, offline, and hybrid hypotheses of motor sequence learning using a quantitative model that incorporate reactive inhibition. Sci Rep, 14(1), 4661. https://doi.org/10.1038/s41598-024-52726-9

      Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative metaanalysis and review of motor learning in the human brain. NeuroImage, 67, 283-297. https://doi.org/10.1016/j.neuroimage.2012.11.020

      Heusser, A. C., Poeppel, D., Ezzyat, Y., & Davachi, L. (2016). Episodic sequence memory is supported by a theta-gamma phase code. Nat Neurosci, 19(10), 1374-1380. https://doi.org/10.1038/nn.4374

      Higgins, C., Liu, Y., Vidaurre, D., Kurth-Nelson, Z., Dolan, R., Behrens, T., & Woolrich, M. (2021). Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron, 109(5), 882-893 e887. https://doi.org/10.1016/j.neuron.2020.12.007

      Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Curr Opin Neurobiol, 12(2), 217-222. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=12015240

      Jacobacci, F., Armony, J. L., Yeffal, A., Lerner, G., Amaro, E., Jr., Jovicich, J., Doyon, J., & Della-Maggiore, V. (2020). Rapid hippocampal plasticity supports motor sequence learning. Proc Natl Acad Sci U S A, 117(38), 23898-23903. https://doi.org/10.1073/pnas.2009576117

      Jacobacci, F., Armony, J. L., Yeffal, A., Lerner, G., Amaro Jr, E., Jovicich, J., Doyon, J., & DellaMaggiore, V. (2020). Rapid hippocampal plasticity supports motor sequence learning.

      Proceedings of the National Academy of Sciences, 117(38), 23898-23903. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155-158. https://doi.org/10.1038/377155a0

      Kennerley, S. W., Sakai, K., & Rushworth, M. F. (2004). Organization of action sequences and the role of the pre-SMA. J Neurophysiol, 91(2), 978-993. https://doi.org/10.1152/jn.00651.2003 00651.2003 [pii]

      Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol, 80, 3321-3325.

      Kornysheva, K., Bush, D., Meyer, S. S., Sadnicka, A., Barnes, G., & Burgess, N. (2019). Neural Competitive Queuing of Ordinal Structure Underlies Skilled Sequential Action. Neuron, 101(6), 1166-1180 e1163. https://doi.org/10.1016/j.neuron.2019.01.018

      Lee, S. H., Jin, S. H., & An, J. (2019). The difference in cortical activation pattern for complex motor skills: A functional near- infrared spectroscopy study. Sci Rep, 9(1), 14066. https://doi.org/10.1038/s41598-019-50644-9

      Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 1002-1016. https://doi.org/10.1016/j.neuron.2013.03.007

      Mollazadeh, M., Aggarwal, V., Davidson, A. G., Law, A. J., Thakor, N. V., & Schieber, M. H. (2011). Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements. J Neurosci, 31(43), 15531-15543. https://doi.org/10.1523/JNEUROSCI.2999-11.2011

      Molle, M., & Born, J. (2009). Hippocampus whispering in deep sleep to prefrontal cortex--for good memories? Neuron, 61(4), 496-498. https://doi.org/10.1016/j.neuron.2009.02.002

      Morris, R. G. M. (2006). Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. [Review]. The European journal of neuroscience, 23(11), 2829-2846. https://doi.org/10.1111/j.1460-9568.2006.04888.x

      Mylonas, D., Schapiro, A. C., Verfaellie, M., Baxter, B., Vangel, M., Stickgold, R., & Manoach, D. S. (2024). Maintenance of Procedural Motor Memory across Brief Rest Periods Requires the Hippocampus. J Neurosci, 44(14). https://doi.org/10.1523/JNEUROSCI.1839-23.2024

      Pan, S. C., & Rickard, T. C. (2015). Sleep and motor learning: Is there room for consolidation? Psychol Bull, 141(4), 812-834. https://doi.org/10.1037/bul0000009

      Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res., 226(2), 579-591. https://doi.org/10.1016/j.bbr.2011.09.044

      Qin, Y. L., McNaughton, B. L., Skaggs, W. E., & Barnes, C. A. (1997). Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci, 352(1360), 1525-1533. https://doi.org/10.1098/rstb.1997.0139

      Rickard, T. C., Cai, D. J., Rieth, C. A., Jones, J., & Ard, M. C. (2008). Sleep does not enhance motor sequence learning. J Exp Psychol Learn Mem Cogn, 34(4), 834-842. https://doi.org/10.1037/0278-7393.34.4.834

      Robertson, E. M., Pascual-Leone, A., & Miall, R. C. (2004). Current concepts in procedural consolidation. Nat Rev Neurosci, 5(7), 576-582. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=15208699

      Sawamura, D., Sakuraba, S., Suzuki, Y., Asano, M., Yoshida, S., Honke, T., Kimura, M., Iwase, Y., Horimoto, Y., Yoshida, K., & Sakai, S. (2019). Acquisition of chopstick-operation skills with the non-dominant hand and concomitant changes in brain activity. Sci Rep, 9(1), 20397. https://doi.org/10.1038/s41598-019-56956-0

      Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025. https://doi.org/10.1016/s0896-6273(03)00123-5

      Seedat, Z. A., Quinn, A. J., Vidaurre, D., Liuzzi, L., Gascoyne, L. E., Hunt, B. A. E., O'Neill, G. C., Pakenham, D. O., Mullinger, K. J., Morris, P. G., Woolrich, M. W., & Brookes, M. J. (2020). The role of transient spectral 'bursts' in functional connectivity: A magnetoencephalography study. NeuroImage, 209, 116537. https://doi.org/10.1016/j.neuroimage.2020.116537

      Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277, 821-824.

      Sjøgård, M., Baxter, B., Mylonas, D., Driscoll, B., Kwok, K., Tolosa, A., Thompson, M., Stickgold, R., Vangel, M., Chu, C., & Manoach, D. S. (2024). Hippocampal ripples mediate motor learning during brief rest breaks in humans. bioRxiv. https://doi.org/10.1101/2024.05.02.592200

      Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S. S., & Babu, R. V. (2016). A Taxonomy of Deep Convolutional Neural Nets for Computer Vision [Technology Report]. Frontiers in Robotics and AI, 2. https://doi.org/10.3389/frobt.2015.00036

      Sterpenich, V., Albouy, G., Darsaud, A., Schmidt, C., Vandewalle, G., Dang Vu, T. T., Desseilles, M., Phillips, C., Degueldre, C., Balteau, E., Collette, F., Luxen, A., & Maquet, P. (2009). Sleep promotes the neural reorganization of remote emotional memory. J Neurosci, 29(16), 5143-5152. https://doi.org/10.1523/JNEUROSCI.0561-09.2009

      Toni, I., Ramnani, N., Josephs, O., Ashburner, J., & Passingham, R. E. (2001). Learning arbitrary visuomotor associations: temporal dynamic of brain activity. Neuroimage, 14(5), 10481057. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=11697936

      Toni, I., Thoenissen, D., & Zilles, K. (2001). Movement preparation and motor intention. NeuroImage, 14(1 Pt 2), S110-117. https://doi.org/10.1006/nimg.2001.0841

      Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., Witter, M. P., & Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76-82. https://doi.org/10.1126/science.1135935

      van Kesteren, M. T., Fernandez, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schemadependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci U S A, 107(16), 7550-7555. https://doi.org/10.1073/pnas.0914892107

      van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends Neurosci, 35(4), 211-219. https://doi.org/10.1016/j.tins.2012.02.001

      Vidaurre, D., Hunt, L. T., Quinn, A. J., Hunt, B. A. E., Brookes, M. J., Nobre, A. C., & Woolrich, M. W. (2018). Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat Commun, 9(1), 2987. https://doi.org/10.1038/s41467-01805316-z

      Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., Rosen, B. R., & Buckner, R. L. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. [Comment]. Science (New York, N.Y.), 281(5380), 1188-1191. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9712582 &retmode=ref&cmd=prlinks

      Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci, 1(6), 529-533. https://doi.org/10.1038/2245

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Based on previous publications suggesting a potential role for miR-26b in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH), the researchers aim to clarify its function in hepatic health and explore the therapeutical potential of lipid nanoparticles (LNPs) to treat this condition. First, they employed both whole-body and myeloid cell-specific miR-26b KO mice and observed elevated hepatic steatosis features in these mice compared to WT controls when subjected to WTD. Moreover, livers from whole-body miR-26b KO mice also displayed increased levels of inflammation and fibrosis markers. Kinase activity profiling analyses revealed distinct alterations, particularly in kinases associated with inflammatory pathways, in these samples. Treatment with LNPs containing miR-26b mimics restored lipid metabolism and kinase activity in these animals. Finally, similar anti-inflammatory effects were observed in the livers of individuals with cirrhosis, whereas elevated miR-26b levels were found in the plasma of these patients in comparison with healthy control. Overall, the authors conclude that miR-26b plays a protective role in MASH and that its delivery via LNPs efficiently mitigates MASH development.

      The study has some strengths, most notably, its employ of a combination of animal models, analyses of potential underlying mechanisms, as well as innovative treatment delivery methods with significant promise. However, it also presents numerous weaknesses that leave the research work somewhat incomplete. The precise role of miR-26b in a human context remains elusive, hindering direct translation to clinical practice. Additionally, the evaluation of the kinase activity, although innovative, does not provide a clear molecular mechanisms-based explanation behind the protective role of this miRNA.

      Therefore, to fortify the solidity of their conclusions, these concerns require careful attention and resolution. Once these issues are comprehensively addressed, the study stands to make a significant impact on the field.

      We would like the reviewer for his/her careful evaluation of our manuscript and appreciate his/her appraisal for the strengths of our study. Regarding the weaknesses, we have addressed these as good as possible during the revision of our manuscript.

      We can already state that miR-26b has clear anti-inflammatory effects on human liver slices, which is in line with our results demonstrating that miR-26b plays a protective role in MASH development in mice. The notion that patients with liver cirrhosis have increasing plasma levels of miR-26b, seems contradictory at first glance. However, we believe that this increased miR-26b expression is a compensatory mechanism to counteract the MASH/cirrhotic effects. However, the exact source of this miR-26b remains to be elucidated in future studies.

      The performed kinase activity analysis revealed that miR-26b affects kinases that particularly play an important role in inflammation and angiogenesis. Strikingly and supporting these data, these effects could be inverted again by LNP treatment. Combined, these results already provide strong mechanistic insights on molecular and intracellular signalling level. Although the exact target of miR-26b remains elusive and its identification is probably beyond the scope of the current manuscript due to its complexity, we believe that the kinase activity results already provide a solid mechanistic basis.

      Reviewer #1 (Recommendations For The Authors):

      A list of recommendations for the authors is presented below:

      (1) The title should emphasize that the majority of experiments were conducted in mice to accurately reflect the scope of the study.

      As suggested we have updated our title to include the statement that we primarily used a murine model:

      “MicroRNA-26b protects against MASH development in mice and can be efficiently targeted with lipid nanoparticles.”

      (2) It would be useful to know more about miR-26b function, including its target genes, tissue-specific expression, and tissue vs. circulating levels. Is it expected that the two strains of the miRNA (i.e., -3p and -5p) act this similarly? Also, miR-26b expression in the liver of individuals with cirrhosis should be determined.

      The function of miR-26b is still rather elusive, making functional studies using this miR very interesting. In a previous study, describing our used mouse model (Van der Vorst et al. BMC Genom Data, 2021) we have eluded several functions of miR-26b that are already investigated. This was particularly already described in carcinogenesis and the neurological field.

      Target gene wise, there are already several targets described in miRbase. However, for our experiments we feel that determination of the specific target genes is beyond the scope of the current manuscript and rather a focus of follow-up projects.

      Regarding the expression of miR-26b, the liver and blood have rather high and similar expressions of both miR-26b-3p and miR-26b-5p as shown in Author response image 1.

      Author response image 1.

      Expression of miR-26b-3p and -5p. Expression of miR-26b-3p (left) and miR-26b-5p (right), generated by using the miRNATissueAtlas 2025 (Rishik et al. Nucleic Acids Research, 2024). Unfortunately, due to restrictions in tissue availability and the lack of stored RNA samples, we are unable to measure miR-26b expression in the human livers. However, based on the potency of the miR-26b mimic loaded LNPs in the mice (Revised Supplemental Figure 2A-B), we are confident that these LNPs also resulted in a overexpression of miR-26b in the human livers.

      (3) Please explain the rationale behind primarily using whole-body miR-26b KO mice rather than the myeloid cell-specific KO model for the studies.

      The main goal of our study is the elucidation of the general role of miR-26b in MASH formation. Therefore, we decided to primarily focus on the whole-body KO model. While we used the myeloid cell-specific KO model to highlight that myeloid cells play an important role in the observed phenotypes, we believe the whole-body KO model is more appropriate as main focus, particularly also in light of the used LNP targeting that also provides a whole-body approach. Furthermore, this focus on the whole-body model also reflects a more therapeutically relevant approach.

      (4) The authors claim that treatment with LNPs containing miR-26b "replenish the miR-26b level in the whole-body deficient mouse" but the results of this observation are not presented.

      This is indeed a valid point that we have now addressed. We have measured the mir26b-3p and mir26b-5p expression levels in livers from mice after 4-week WTD with simultaneous injection with either empty LNPs as vehicle control (eLNP) or LNPs containing miR-26b mimics (mLNP) every 3 days. As shown in Revised Supplemental Figure 2A-B, mLNP treatment clearly results in an overexpression of the mir26b in the livers of these mice. We have rephrased the text accordingly by stating that mLNP results in an “overexpression” rather than “replenishment”.

      (5) The number of 3 human donors for the precision-cut liver slices is clearly insufficient and clinical parameters need to be shown. Additionally, inconsistencies in individual values in Figures 8B-E need clarification.

      Unfortunately, due to restrictions in tissue availability, we are unable to increase our n-number for these experiments. Clinical parameters are not available, but the liver slices were from healthy tissue.

      We have performed these experiments in duplicates for each individual donor. We have now specified this also in the figure legend to explain the individual values in the graphs:

      “…(3 individual donors, cultured in duplicates).”

      (6) Figure 2D: Please include representative images.

      As suggested we have included representative images in our revised manuscript.

      (7) Address discrepancies in the findings across different experimental settings. For example, the expression levels of the lipid metabolism-related genes are not significantly modulated in whole-body miR-26b KO mice (except for Sra), but they are in the myeloid cell-specific model (but not Sra), and none of them are restored after LNPs injections.

      Although Cd36 is not significantly increased in the whole-body miR-26b KO mice, there is a clear tendency towards increased expression, which is now also validated on protein level (Revised Figure 1K-L). In the myeloid cell-specific model we see a similar tendency, although the gene expression difference of Sra is not significantly changed. This could be due to the difference in the model, since only myeloid cells are affected, suggesting that the effects on Sra are to a large extend driven by non-myeloid cells. This would also fit to the tendency to decreased Sra expression in the mimic-LNP treated mice. Due to the larger variation, this difference did not reach significance, which is rather a statistical issue due to relatively small n-numbers. At this moment, we cannot exclude that these receptors are differentially regulated by different cell-types. For this, future studies are needed focussing on cell-specific targeting of miR-26b in somatic cells, like hepatocytes.

      (8) Figure 4A the images are not representative of the quantification.

      We have selected another representative image that is exactly reflecting the average Sirius red positive area, to reflect the quantification appropriately.

      (9) Figures 5 and 7: Are there not significantly decreased/increased kinases? A deeper analysis of these kinase alterations is necessary to understand how miR-26b exerts its role. A comparison analysis of these two datasets might clarify this regard.

      We indeed very often see in these kinome analysis that the general tendency of kinase activity is unidirectional. We believe that this is caused by the highly interconnected nature of kinases. Activation of one signalling cascade will also results in the activation of many other cascades. However, it is interesting to see which pathways are affected in our study and we find it particularly interesting to see that the tendencies is exactly opposite between both comparisons as KO vs. WT shows increase kinase activities, while KO-LNP vs. KO shows a decrease again. Further showing that the method is reflecting a true biological effect that is mediated by miR26b.

      (10) Determinations of the effect of LNPs containing miR-26b in the KO mice are limited to only a few observations (that are not only significant). More extensive findings are needed to conclusively demonstrate the effectiveness of this treatment method. Similar to the experiments with human liver samples (Figures 8A-E).

      We have now elaborated our observations in the mouse model using LNPs by also analysing the effects on inflammation and fibrosis. However, it seems that the treatment time was not long enough to see pronounced changes on these later stages of disease development. Interestingly, the expression of Tgfb was significantly reduced, suggesting at least that the LNPs on genetic levels have an effect already on fibrotic processes. Thereby, it can be suggested that longer mLNP treatment may result in more effects on protein level as well, which remains to be determined in future studies.

      Unfortunately, due to restrictions in tissue availability, we are unable to increase our n-number or read-outs for these experiments at this moment.

      (11) In Figures 8F-H, the observed increase in circulating miR-26b levels in the plasma of cirrhotic individuals seems contradictory to its proposed protective role. This discrepancy requires clarification.

      In the revised discussion (second to last paragraph), we have now elaborated more on the findings in the plasma of cirrhotic individuals in comparison to our murine in-vivo results, to highlight and discuss this discrepancy.

      (12) Figures 8F-H legend mentions using 8-11 patients per group, but the methods section lacks corresponding information about these individuals.

      These patients, together with inclusion/exclusion criteria and definition of cirrhosis are described in the method section 2.14.

      (13) Figure 8G has 7 data points in the cirrhosis group, instead of 8. Any data exclusion should be justified in the methods section.

      As defined in method section 2.15, we have identified outliers using the ROUT = 1 method, which is the reason why Figure 8G only has 7 data points instead of 8.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript by Peters, Rakateli, et al. aims to characterize the contribution of miR-26b in a mouse model of metabolic dysfunction-associated steatohepatitis (MASH) generated by a Western-type diet on the background of Apoe knock-out. In addition, the authors provide a rescue of the miR-26b using lipid nanoparticles (LNPs), with potential therapeutic implications. In addition, the authors provide useful insights into the role of macrophages and some validation of the effect of miR-26b LNPs on human liver samples.

      Strengths:

      The authors provide a well-designed mouse model, that aims to characterize the role of miR-26b in a mouse model of metabolic dysfunction-associated steatohepatitis (MASH) generated by a Western-type diet on the background of Apoe knock-out. The rescue of the phenotypes associated with the model used using miR-26b using lipid nanoparticles (LNPs) provides an interesting avenue to novel potential therapeutic avenues.

      Weaknesses:

      Although the authors provide a new and interesting avenue to understand the role of miR-26b in MASH, the study needs some additional validations and mechanistic insights in order to strengthen the author's conclusions.

      (1) Analysis of the expression of miRNAs based on miRNA-seq of human samples (see https://ccb-compute.cs.uni-saarland.de/isomirdb/mirnas) suggests that miR-26b-5p is highly abundant both on liver and blood. It seems hard to reconcile that despite miRNA abundance being similar in both tissues, the physiological effects claimed by the authors in Figure 2 come exclusively from the myeloid (macrophages).

      We agree with the reviewer that the effects observed in the whole-body KO model are most likely a combination of cellular effects, particularly since miR-26b is also highly expressed in the liver. However, with the LysM-model we merely want to demonstrate that the myeloid cells at least play an important, though not exclusive, role in the phenotype. In the discussion, we also further elaborate on the fact that the observed changes in the liver can me mediated by hepatic changes.

      To stress this, we have adjusted the conclusion of Figure 2:

      “Interestingly, mice that have a myeloid-specific lack of miR-26b also show increased hepatic cholesterol levels and lipid accumulation demonstrated by Oil-red-O staining, coinciding with an increased hepatic Cd36 expression (Figure 2), demonstrating that myeloid miR-26b plays a major, but not exclusive, role in the observed steatosis.”

      (2) Similarly, the miRNA-seq expression from isomirdb suggests also that expression of miR-26a-5p is indeed 4-fold higher than miR-26b-5p both in the liver and blood. Since both miRNAs share the same seed sequence, and most of the supplemental regions (only 2 nt difference), their endogenous targets must be highly overlapped. It would be interesting to know whether deletion of miR-26b is somehow compensated by increased expression of miR-26a-5p loci. That would suggest that the model is rather a depletion of miR-26.

      UUCAAGUAAUUCAGGAUAGGU mmu-miR-26b-5p mature miRNA

      UUCAAGUAAUCCAGGAUAGGCU mmu-miR-26a-5p mature miRNA

      This is a very valid point raised by the reviewer, which we actually already explored in a previous study, describing our used mouse model (Van der Vorst et al. BMC Genom Data, 2021). In this manuscript, we could show that miR-26a is not affected by the deficiency of miR-26b (Figure 1G in: Van der Vorst et al. BMC Genom Data, 2021).

      (3) Similarly, the miRNA-seq expression from isomirdb suggests also that expression of miR-26b-5p is indeed 50-fold higher than miR-26b-3p in the liver and blood. This difference in abundance of the two strands is usually regarded as one of them being the guide strand (in this case the 5p) and the other being the passenger (in this case the 3p). In some cases, passenger strands can be a byproduct of miRNA biogenesis, thus the rescue experiments using LNPs with both strands in equimolar amounts would not reflect the physiological abundance miR-26b-3p. The non-physiological overabundance of miR-26b-3p would constitute a source of undesired off-targets.

      We agree with the reviewer on this aspect and this is something we had to consider while generating the mimic LNPs. However, we believe that we do not observe and undesired off-target effects, as the effects of the mimic LNPs at least on functional outcomes are relatively mild and only restricted to the expected effects on lipids. Furthermore, the effects on the kinase profile due to the mimic LNP treatment are in line with our expectations. Combined these results suggest at least that potential off-target effects are minor.

      (4) It would also be valuable to check the miRNA levels on the liver upon LNP treatment, or at least the signatures of miR-26b-3p and miR-26b-5p activity using RNA-seq on the RNA samples already collected.

      This is indeed a valid point that we have now addressed. We have measured the mir26b-3p and mir26b-5p expression levels in livers from mice after 4-week WTD with simultaneous injection with either empty LNPs as vehicle control (eLNP) or LNPs containing miR-26b mimics (mLNP) every 3 days. As shown in Supplemental Figure 2A-B, mLNP treatment clearly results in an overexpression of the mir26b in the livers of these mice. We have rephrased the text accordingly by stating that mLNP results in an “overexpression” rather than “replenishment”.

      (5) Some of the phenotypes described, such as the increase in cholesterol, overlap with the previous publication by van der Vorst et al. BMC Genom Data (2021), despite in this case the authors are doing their model in Apoe knock-out and Western-type diet. I would encourage the authors to investigate more or discuss why the initial phenotypes don't become more obvious despite the stressors added in the current manuscript.

      In our previous publication (BMC Genom Data; 2021), we actually did not see any changes in circulating lipid levels. However, in that study we did not evaluate the livers of the mice, so we do not have any information about the hepatic lipid levels.

      As mentioned by the reviewer, we believe that we see much more pronounced phenotypes in the current model because we use the combined stressor of Apoe-/- and Western-type diet, which cannot be compared to the wildtype and chow-fed mice used in the BMC Genom Data manuscript.

      (6) The authors have focused part of their analysis on a few gene makers that show relatively modest changes. Deeper characterization using RNA-seq might reveal other genes that are more profoundly impacted by miR-26 depletion. It would strengthen the conclusions proposed if the authors validated that changes in mRNA abundance (Sra, Cd36) do impact the protein abundance. These relatively small changes or trends in mRNA expression, might not translate into changes in protein abundance.

      As suggested by the reviewer we have now also confirmed that the protein expression of CD36 and SRA is significantly increased upon miR-26b depletion, visualized as Figure 1K-L in the revised manuscript. Unfortunately, we do not have enough material left to perform similar analysis for the LysM-model or the LNP-model, although based on the whole-body effects we are confident that at least for CD36/SRA in this case the gene expression matches effects observed on protein level.

      (7) In Figures 5 and 7, the authors run a phosphorylation array (STK) to analyze the changes in the activity of the kinome. It seems that a relatively large number of signaling pathways are being altered, I think that should be strengthened by further validations by Western blot on the collected tissue samples. For quite a few of the kinases, there might be antibodies that recognise phosphorylation. The two figures lack a mechanistic connection to the rest of the manuscript.<br /> On this point we respectfully have to disagree with the reviewer. We have used a kinase activity profiling approach (PamGene) to analyse the real-time activity of kinases in our lysates. This approach is different than the classical Western blot approach in which only the presence or absence of a specific phosphorylation is detected. Thereby, Western blot analysis does not analyse phosphorylation in real-time, but rather determines whether there has been phosphorylation in the past. Our approach actually determines the real-time, current activity of the kinases, which we believe is a different and perhaps even more reliable read-out measurement. Therefore, validation by Western blot would not strengthen these observations.

      We have particularly tried to connect these observations to the rest of the manuscript by highlighting the observed signalling cascades that are affected, highlighting a role in inflammation and angiogenesis, thereby providing some mechanistic insights.

      Reviewer #2 (Recommendations For The Authors):

      I would encourage the authors to follow-up on some of the more miRNA focused comments made above, which would strengthen the mechanistic part of the work presented.

      I suggest the authors tone down some of some of the claims made (eg. "clearly increased expression", "exacerbated hepatic fibrosis"), given that some of it might need further validation.

      Wherever needed we have tuned down the tone of some claims, although we believe that most claims are already written carefully enough and in line with the observed results.

      Some of the panels that are supposed to have the same amount of animals have variable N, despite they come from the same exact number of RNA samples or tissue lysates (eg. 1G and 1H, vs 1I and 1J).

      This is indeed correct and caused by the fact that some analysis resulted in statistical outliers as identified using the ROUT = 1 method, as also specified in section 2.15 of the method section.

      It would be nice to have representative images of oil-red-o in all the figures where it is quantified (or at least in the supplementary figures).

      As suggested by the reviewer, we have now included representative images for the LysM-model (Revised Figure 2D) and the LNP-model (Revised Figure 6D) as well.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):  

      Summary:

      In this manuscript, Shao et al. investigate the contribution of different cortical areas to working memory maintenance and control processes, an important topic involving different ideas about how the human brain represents and uses information when it is no longer available to sensory systems. In two fMRI experiments, they demonstrate that the human frontal cortex (area sPCS) represents stimulus (orientation) information both during typical maintenance, but even more so when a categorical response demand is present. That is, when participants have to apply an added level of decision control to the WM stimulus, sPCS areas encode stimulus information more than conditions without this added demand. These effects are then expanded upon using multi-area neural network models, recapitulating the empirical gradient of memory vs control effects from visual to parietal and frontal cortices. In general, the experiments and analyses provide solid support for the authors' conclusions, and control experiments and analyses are provided to help interpret and isolate the frontal cortex effect of interest. However, I suggest some alternative explanations and important additional analyses that would help ensure an even stronger level of support for these results and interpretations.

      Strengths:

      -  The authors use an interesting and clever task design across two fMRI experiments that is able to parse out contributions of WM maintenance alone along with categorical, rule-based decisions. Importantly, the second experiment only uses one fixed rule, providing both an internal replication of Experiment 1's effects and extending them to a different situation when rule-switching effects are not involved across mini-blocks.

      - The reported analyses using both inverted encoding models (IEM) and decoders (SVM) demonstrate the stimulus reconstruction effects across different methods, which may be sensitive to different aspects of the relationship between patterns of brain activity and the experimental stimuli.

      - Linking the multivariate activity patterns to memory behavior is critical in thinking about the potential differential roles of cortical areas in sub-serving successful working memory. Figure 3 nicely shows a similar interaction to that of Figure 2 in the role of sPCS in the categorization vs. maintenance tasks.

      - The cross-decoding analysis in Figure 4 is a clever and interesting way to parse out how stimulus and rule/category information may be intertwined, which would have been one of the foremost potential questions or analyses requested by careful readers. However, I think more additional text in the Methods and Results to lay out the exact logic of this abstract category metric will help readers bet0ter interpret the potential importance of this analysis and result.

      We thank the reviewer for the positive assessment of our manuscript. Please see lines 366-372, 885-894 in the revised manuscript for a detailed description of the abstract category index, and see below for a detailed point-by-point response.

      Weaknesses:

      - Selection and presentation of regions of interest: I appreciate the authors' care in separating the sPCS region as "frontal cortex", which is not necessarily part of the prefrontal cortex, on which many ideas of working memory maintenance activity are based. However, to help myself and readers interpret these findings, at a minimum the boundaries of each ROI should be provided as part of the main text or extended data figures. Relatedly, the authors use a probabilistic visual atlas to define ROIs in the visual, parietal, and frontal cortices. But other regions of both lateral frontal and parietal cortices show retinotopic responses (Mackey and Curtis, eLife, 2017: https://elifesciences.org/articles/22974) and are perhaps worth considering. Do the inferior PCS regions or inferior frontal sulcus show a similar pattern of effects across tasks? And what about the middle frontal gyrus areas of the prefrontal cortex, which are most analogous to the findings in NHP studies that the authors mention in their discussion, but do not show retinotopic responses? Reporting the effects (or lack thereof) in other areas of the frontal cortex will be critical for readers to interpret the role of the frontal cortex in guiding WM behavior and supporting the strongly worded conclusions of broad frontal cortex functioning in the paper. For example, to what extent can sPCS results be explained by visual retinotopic responses? (Mackey and Curtis, eLife, 2017: https://elifesciences.org/articles/22974).

      We thank the reviewer for the suggestions. We have added a Supplemental Figure 1 to better illustrate the anatomical locations of ROIs.  

      Following the reviewer’s suggestion, we defined three additional subregions in the frontal cortex based on the HCP atlas [1], including the inferior precentral sulcus (iPCS, generated by merging 6v, 6r, and PEF), inferior frontal sulcus (IFS, generated by merging IFJp, IFJa, IFSp, IFSa, and p47r), and middle frontal gyrus (MFG, generated by merging 9-46d, 46, a9-46v, and p9-46v). We then performed the same analyses as in the main text using both mixed-model and within-condition IEMs. Overall, we found that none of the ROIs demonstrated significant orientation representation in Experiment 1, for either IEM analysis (Author response image 1A and 1C). In Experiment 2, however, the IFS and MFG (but not iPCS) demonstrated a similar pattern to sPCS for orientation representation, though these results did not persist in the within-condition IEM with lower SNR (Author response image 1B and 1D). Moreover, when we performed the abstract category decoding analysis in the three ROIs, only the MFG in Experiment 2 showed significant abstract category decoding results, with no significant difference between experiments (Author response image 1E). To summarize, the orientation and category results observed in sPCS in the original manuscript were largely absent in other frontal regions. There was some indication that the MFG might share some results for orientation representation and category decoding, although this pattern was weaker and was only observed in some analyses in Experiment 2. Therefore, although we did not perform retinotopic mapping and cannot obtain a direct measure of retinotopic responses in the frontal cortex, these results suggest that our findings are unlikely to be explained by visual retinotopic responses: the iPCS, which is another retinotopic region, did not show the observed pattern in any of the analyses. Notably, the iPCS results are consistent with our previous work demonstrating that orientation information cannot be decoded from iPCS during working memory delay [2]. We have included these results on lines 395-403, 563-572 in the revised manuscript to provide a more comprehensive understanding of the current findings. 

      Author response image 1.

      Orientation reconstruction and abstract category decoding results in iPCS, IFS, and MFG.

      - When looking at the time course of effects in Figure 2, for example, the sPCS maintenance vs categorization effects occur very late into the WM delay period. More information is needed to help separate this potential effect from that of the response period and potential premotor/motor-related influences. For example, are the timecourses shifted to account for hemodynamic lag, and if so, by how much? Do the sPCS effects blend into the response period? This is critical, too, for a task that does not use a jittered delay period, and potential response timing and planning can be conducted by participants near the end of the WM delay. For example, the authors say that " significant stimulus representation in EVC even when memoranda had been transformed into a motor format (24)". But, I *think* this paper shows the exact opposite interpretation - EVC stimulus information is only detectable when a motor response *cannot* be planned (https://elifesciences.org/articles/75688). Regardless, parsing out the timing and relationship to response planning is important, and an ROI for M1 or premotor cortex could also help as a control comparison point, as in reference (24).

      We thank the reviewer for raising this point. We agree that examining the contribution of response-related activity in our study is crucial, as we detail below:

      First, the time course results in the manuscript are presented without time shifting. The difference in orientation representation in Figure 2 emerged at around 7 s after task cue onset and 1 s before probe onset. Considering a 4-6 s hemodynamic response lag, the difference should occur around 1-3 s after task cue onset and 5-7 s prior to probe onset. This suggests that a substantial portion of the effect likely occurred during the delay rather than response period.

      Second, our experimental design makes it unlikely that response planning would have influenced our results, as participants were unable to plan their motor responses in advance due to randomized response mapping at the probe stage on a trial-by-trial basis. Moreover, even if response planning had impacted the results in sPCS, it would have affected both conditions similarly, which again, would not explain the observed differences between conditions.

      Third, following the reviewer’s suggestion, we defined an additional ROI (the primary motor cortex, M1) using the HCP atlas and repeated the IEM analysis. No significant orientation representation was observed in either condition in M1, even during the response period (Figure S3), further suggesting that our results are unlikely to be explained by motor responses or motor planning.

      Based on the evidence above, we believe motor responses or planning are unlikely to account for our current findings. We have included these results on lines 264-267 to further clarify this issue.

      Lastly, upon re-reading the Henderson et al. paper [3], we confirmed that stimulus information was still decodable in EVC when a motor response could be planned (Figure 2 of Henderson et al.). In fact, the authors also discussed this result in paragraph 5 of their discussion. This finding, together with our results in EVC, indicates that EVC maintains stimulus information in working memory even when the information is no longer task-relevant, the functional relevance of which warrants further investigation in future research.

      - Interpreting effect sizes of IEM and decoding analysis in different ROIs. Here, the authors are interested in the interaction effects across maintenance and categorization tasks (bar plots in Figure 2), but the effect sizes in even the categorization task (y-axes) are always larger in EVC and IPS than in the sPCS region... To what extent do the authors think this representational fidelity result can or cannot be compared across regions? For example, a reader may wonder how much the sPCS representation matters for the task, perhaps, if memory access is always there in EVC and IPS? Or perhaps late sPCS representations are borrowing/accessing these earlier representations? Giving the reader some more intuition for the effect sizes of representational fidelity will be important. Even in Figure 3 for the behavior, all effects are also seen in IPS as well. More detail or context at minimum is needed about the representational fidelity metric, which is cited in ref (35) but not given in detail. These considerations are important given the claims of the frontal cortex serving such an important for flexible control, here.

      We thank the reviewer for raising this point. We agree that the effect sizes are always larger in EVC and IPS. This is because the specific decoding method we adopted, IEM, is based on the concept of population-level feature-selective responses, and decoding results would be most robust in regions with strong feature-tuning responses, such as EVC and parts of IPS. Therefore, to minimize the impact of effect size on our results, we avoided direct comparisons of representational strength across ROIs, focusing instead on differences in representational strength between conditions within the same ROI. With this approach, we found that EVC and IPS showed high representational fidelity throughout the trial, but only in sPCS did we observe significant higher fidelity in categorization condition, where orientation was actually not a behavioral goal but was manipulated in working memory to achieve the goal. Moreover, although representational fidelity in the EVC was the highest, its behavioral predictability decreased during the delay period, unlike sPCS. These results suggest that the magnitude of fidelity alone is not the determining factor for the observed categorization vs. maintenance effect or for behavioral performance. We have included further discussion on this issue on lines 208-211 of the revised manuscript.

      The reviewer also raised a good point that IPS showed similar behavioral correlation results as sPCS. In the original manuscript, we discussed the functional similarities and distinctions between IPS and sPCS in the discussion. We have expanded on this point on lines 610-627 in the revised manuscript:

      “While many previous WM studies have focused on the functional distinction between sensory and frontoparietal cortex, it has remained less clear how frontal and parietal cortex might differ in terms of WM functions. Some studies have reported stimulus representations with similar functionality in frontal and parietal cortex [4, 5], while others have observed differential patterns [6-8]. We interpret the differential patterns as reflecting a difference in the potential origin of the corresponding cognitive functions. For example, in our study, sPCS demonstrated the most prominent effect for enhanced stimulus representation during categorization as well as the tradeoff between stimulus difference and category representation, suggesting that sPCS might serve as the source region for such effects. On the other hand, IPS did show visually similar patterns to sPCS in some analyses. For instance, stimulus representation in IPS was visually but not statistically higher in the categorization task. Additionally, stimulus representation in IPS also predicted behavioral performance in the categorization task. These results together support the view that our findings in sPCS do not occur in isolation, but rather reflect a dynamic reconfiguration of functional gradients along the cortical hierarchy from early visual to parietal and then to frontal cortex.”

      Lastly, following the reviewer’s suggestion, we have included more details on the representational fidelity metric on lines 201-206, 856-863 in the revised manuscript for clarity.

      Recommendations:

      Figure 3 layout - this result is very interesting and compelling, but I think could be presented to have the effect demonstrated more simply for readers. The scatter plots in the second and third rows take up a lot of space, and perhaps having a barplot as in Figure 2 showing the effects of brain-behavior correlations collapsed across the WM delay period timing would make the effect stand out more.

      We thank the reviewer for the suggestion. We have added a subplot (C) to Figure 3 to demonstrate the brain-behavior correlation collapsed across the late task epoch.

      When discussing the link between sPCS representations and behavior, I think this paper should likely be cited ([https://www.jneurosci.org/content/24/16/3944](https://www.jneurosci.org/content/24/ 16/3944)), which shows univariate relationships between sPCS delay activity and memory-guided saccade performance.

      We thank the reviewer for the suggestion and have included this citation on lines 278-279 in the revised manuscript.

      Interpretation of "control" versus categorization - the authors interpret that "It would be of interest to further investigate whether this active control in the frontal cortex could be generalized to tasks that require other types of WM control such as mental rotation." I think more discussion on the relationship between categorization and "control" is needed, especially given the claim of "flexible control" throughout. Is stimulus categorization a form of cognitive control, and if so, how?  

      We thank the reviewer for raising this point. Cognitive control is generally defined as the process by which behavior is flexibly adapted based on task context and goals, and most theories agree that this process occurs within working memory [9, 10]. With this definition, we consider stimulus categorization to be a form of cognitive control, because participants needed to adapt the stimulus based on the categorization rule in working memory for subsequent category judgements. With two categorization rules, the flexibility in cognitive control increased, because participants need to switch between the two rules multiple times throughout the experiment, instead of being fixed on one rule. We now clarify these two types of controls on lines 112-116 in the introduction.

      However, we agree that the latter form of control could be more related to rule switching that might not be specific to categorization per se. For instance, if participants perform rule switching in another type of WM task that requires WM control such as mental rotation, it remains to be tested whether similar results would be observed and/or whether same brain regions would be recruited. We have included further information on this issue on lines 572-575 in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors provide evidence that helps resolve long-standing questions about the differential involvement of the frontal and posterior cortex in working memory. They show that whereas the early visual cortex shows stronger decoding of memory content in a memorization task vs a more complex categorization task, the frontal cortex shows stronger decoding during categorization tasks than memorization tasks. They find that task-optimized RNNs trained to reproduce the memorized orientations show some similarities in neural decoding to people. Together, this paper presents interesting evidence for differential responsibilities of brain areas in working memory.

      Strengths:

      This paper was strong overall. It had a well-designed task, best-practice decoding methods, and careful control analyses. The neural network modelling adds additional insight into the potential computational roles of different regions.

      We thank the reviewer for the positive assessment of our manuscript.

      Weaknesses:

      While the RNN model matches some of the properties of the task and decoding, its ability to reproduce the detailed findings of the paper was limited. Overall, the RRN model was not as well-motivated as the fMRI analyses.

      We are grateful for the reviewer’s suggestions on improving our RNN results. Please see below for a detailed point-by-point response.

      Recommendations:

      Overall, I thought that this paper was excellent. I have some conceptual concerns about the RNN model, and minor recommendations for visualization.

      (1) I think that the RNN modelling was certainly interesting and well-executed. However, it was not clear how much it contributed to the results. On the one hand, it wasn't clear why reproducing the stimulus was a critical objective of the task (ie could be more strongly motivated on biological grounds). On the other hand, the agreement between the model and the fMRI results is not that strong. The model does not reproduce stronger decoding in 'EVC' for maintenance vs categorization. Also, the pattern of abstract decoding is very different from the fMRI (eg the RNN has stronger categorical encoding in 'EVC' than 'PFC' and larger differences between fixed and flexible rules in earlier areas than is evident in the fMRI). Together, the RNN modelling comes across as a little ad hoc, without really nailing the performance.

      We thank the reviewer for prompting us to further elaborate on the rationale for our RNN analysis. In our fMRI results, we observed a tradeoff between maintaining stimulus information in more flexible tasks (Experiment 1) and maintaining abstract category information in less flexible tasks (Experiment 2). This led to the hypothesis that participants might have employed different coding strategies in the two experiments. Specifically, in flexible environments, stimulus information might be preserved in its original identity in the higher-order cortex, potentially reducing processing demands in each task and thereby facilitating efficiency and flexibility; whereas in less flexible tasks, participants might generate more abstract category representations based on task rules to facilitate learning. To directly test this idea, we examined whether explicitly placing a demand for the RNN to preserve stimulus representation would recapitulate our fMRI findings in frontal cortex by having stimulus information as an output, in comparison to a model that did not specify such a demand. Meanwhile, we totally agree with the reviewer that there are alternative ways to implement this objective in the model. For instance, changing the network encoding weights (lazy vs. rich regime) to make feedforward neural networks either produce high-dimensional stimulus or low-dimensional category representations [11]. However, we feel that exploring these alternatives may fall outside the scope of the current study.

      Regarding the alignment between the fMRI and RNN results: for the stimulus decoding results in EVC, we found that with an alternative decoding method (IEM), a similar maintenance > categorization pattern was observed in EVC-equivalent module, suggesting that our RNN was capable of reproducing EVC results, albeit in a weaker manner (please see our response to the reviewer’s next point). For the category decoding results, we would like to clarify that the category decoding results in EVC was not necessarily better than those in sPCS. Although category decoding accuracy was numerically higher in EVC, it was more variable compared to IPS and sPCS. To illustrate this point, we calculated the Bayes factor for the category decoding results of RNN2 in Figure 6C, and found that the amount of evidence for category decoding as well as for the decoding difference between RNNs in IPS and sPCS modules was high, whereas the evidence in the EVC was insufficient (Response Table 1).

      Author response table 1.

      Bayes factors for category decoding and decoding differences in Figure 6C lower panel.

      Nevertheless, we agree with the reviewer that all three modules demonstrated the category decoding difference between experiments, which differs from our fMRI results. This discrepancy may be partially due to differences in signal sensitivity. RNN signals typically have a higher SNR compared to fMRI signals, as fMRI aggregates signals from multiple neurons and single-neuron tuning effects can be reduced. We have acknowledged this point on lines 633-636 in the revised manuscript. Nonetheless, the current RNNs effectively captured our key fMRI findings, including increased stimulus representation in frontal cortex as well as the tradeoff in category representation with varying levels of flexible control. We believe the RNN results remain valuable in this regard.

      Honestly, I think the paper would have a very similar impact without the modelling results, but I appreciate that you put a lot of work into the modeling, and this is an interesting direction for future research. I have a few suggestions, but nothing that I feel too strongly about.

      - It might be informative to use IEM to better understand the RNN representations (and how similar they are to fMRI). For example, this could show whether any of the modules just encode categorical information. 

      - You could try providing the task and/or retro cue directly to the PFC units. This is a little unrealistic, but may encourage a stronger role for PFC.

      - You might adjust the ratio of feedforward/feedback connections, if you can find good anatomical guidance on what these should be.

      Obviously, I don't have much - it's a tricky problem!

      We thank the reviewer for the suggestions. To better align the fMRI and RNN results, we first performed the same IEM analyses used in the fMRI analyses on the RNN data. We found that with IEM, the orientation representation in the EVC module demonstrated a pattern similar to that in the fMRI data, showing a negative trend for the difference between categorization and maintenance, although the trend did not reach statistical significance (Author response image 2A). Meanwhile, the difference between categorization and maintenance remained a positive trend in the sPCS module.

      Second, following the reviewer’s suggestion, we adjusted the ratio of feedforward/feedback connections between modules to 1:2, such that between Modules 1 and 2 and between Modules 2 and 3, there were always more feedback than feedforward connections, consistent with recent theoretical proposals [12]. We found that, this change preserved the positive trend for orientation differences in the sPCS module, but in the meantime also made the orientation difference in the EVC and IPS modules more positive (Author response image 2B).

      To summarize, we found that the positive difference between categorization and maintenance in the sPCS module was robust across difference RNNs and analytical approaches, further supporting that RNNs with stimulus outputs can replicate our key fMRI findings in the frontal cortex. By contrast, the negative difference between categorization and maintenance in EVC was much weaker. It was weakly present using some analytical methods (i.e., the IEM) but not others (i.e., SVMs), and increasing the feedback ratio of the entire network further weakened this difference. We believe that this could be due to that the positive difference was mainly caused by top-down, feedback modulations from higher cortex during categorization, such that increasing the feedback connection strengthens this pattern across modules. We speculate that enhancing the negative difference in the EVC module might require additional modules or inputs to strengthen fine-grained stimulus representation in EVC, a mechanism that might be of interest to future research. We have added a paragraph to the discussion on the limitations of the RNN results on lines 629-644.

      Author response image 2.

      Stimulus difference across RNN modules.  (A). Results using IEM (p-values from Module 1 to 3: 0.10, 0.48, 0.01). (B). Results using modified RNN2 with changed connection ratio (p-values from Module 1 to 3: 0.12, 0.22, 0.08). All p-values remain uncorrected.

      (2) Can you rule out that during the categorization task, the orientation encoding in PFC isn't just category coding? You had good controls for category coding, but it would be nice to see something for orientation coding. e.g., fit your orientation encoding model after residualizing category encoding, or show that category encoding has worse CV prediction than orientation encoding.

      We thank the reviewer for raising this point. To decouple orientation and category representations, we performed representational similarity analysis (RSA) in combination with linear mixed-effects modeling (LMEM) on the fMRI data. Specifically, we constructed three hypothesized representational dissimilarity matrices (RDMs), one for graded stimulus (increasing distance between orientations as they move farther apart, corresponding to graded feature tuning responses), one for abstract category (0 for all orientations within the same category and 1 for different categories), and another for discrete stimulus (indicating equidistant orientation representations). We then fit the three model RDMs together using LMEM with subject as the random effect (Author response image 3A). This approach is intended to minimize the influence of collinearity between RDMs on the results [13].

      Overall, the LMEM results (Author response image 3B-D) replicated the decoding results in the main text, with significant stimulus but not category representation in sPCS in Experiment 1, and marginally significant category representation in the same brain region in Experiment 2. These results further support the validity of our main findings and emphasize the contribution of stimulus representation independent of category representation.

      Author response image 3.

      Delineating stimulus and category effects using LMEM.  (A) Schematic illustration of this method. (B) Results for late epoch in Experiment 1, showing the fit of each model RDM. (C) Results for early epoch in Experiment 2. (D) Results for late epoch in Experiment 2.

      (3) Is it possible that this region of PFC is involved in categorization in particular and not 'control-demanding working memory'? 

      We thank the reviewer for raising this possibility. Cognitive control is generally defined as the process by which behavior is flexibly adapted based on task context and goals, and most theories agree that this process occurs within working memory [9, 10]. With this definition, we consider stimulus categorization to be a form of cognitive control, because participants need to adapt the stimulus based on the categorization rule in working memory for subsequent category judgements.  However, in the current study we only used one type of control-demanding working memory task (categorization) to test our hypothesis, and therefore it remains unclear whether the current results in sPCS can generalize to other types of WM control tasks.

      We have included a discussion on this issue on lines 572-575 in the revised manuscript.

      (4) Some of the figures could be refined to make them more clear:

      a.  Figure 4 b/c should have informative titles and y-axis labels.

      b.  Figure 5, the flexible vs fixed rule isn't used a ton up to this point - it would help to (also include? Replace?) with something like exp1/exp2 in the legend. It would also help to show the true & orthogonal rule encoding in these different regions (in C, or in a separate panel), especially to the extent that this is a proxy for stimulus encoding.

      c.  Figure 6: B and C are very hard to parse right now. (i) The y-axis on B could use a better label. (ii) It would be useful to include an inset of the relevant data panel from fMRI that you are reproducing. (iii) Why aren't there fixed rules for RNN1?

      We thank the reviewer for the suggestions and have updated the figures accordingly as following:

      Overall I think this is excellent - my feedback is mostly on interpretation and presentation. I think the work itself is really well done, congrats!

      References

      (1) Glasser, M.F., et al., A multi-modal parcellation of human cerebral cortex. Nature, 2016. 536(7615): p. 171-178.

      (2) Yu, Q. and Shim, W.M., Occipital, parietal, and frontal cortices selectively maintain taskrelevant features of multi-feature objects in visual working memory. Neuroimage, 2017. 157: p. 97-107.

      (3) Henderson, M.M., Rademaker, R.L., and Serences, J.T., Flexible utilization of spatial- and motor-based codes for the storage of visuo-spatial information. Elife, 2022. 11.

      (4) Christophel, T.B., et al., Cortical specialization for attended versus unattended working memory. Nat Neurosci, 2018. 21(4): p. 494-496.

      (5) Yu, Q. and Shim, W.M., Temporal-Order-Based Attentional Priority Modulates Mnemonic Representations in Parietal and Frontal Cortices. Cereb Cortex, 2019. 29(7): p. 3182-3192.

      (6) Li, S., et al., Neural Representations in Visual and Parietal Cortex Differentiate between Imagined, Perceived, and Illusory Experiences. J Neurosci, 2023. 43(38): p. 6508-6524.

      (7) Hu, Y. and Yu, Q., Spatiotemporal dynamics of self-generated imagery reveal a reverse cortical hierarchy from cue-induced imagery. Cell Rep, 2023. 42(10): p. 113242.

      (8) Lee, S.H., Kravitz, D.J., and Baker, C.I., Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat Neurosci, 2013. 16(8): p. 997-9.

      (9) Miller, E.K. and Cohen, J.D., An integrative theory of prefrontal cortex function. Annu Rev Neurosci, 2001. 24: p. 167-202.

      (10) Badre, D., et al., The dimensionality of neural representations for control. Curr Opin Behav Sci, 2021. 38: p. 20-28.

      (11) Flesch, T., et al., Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron, 2022. 110(7): p. 1258-1270 e11.

      (12) Wang, X.J., Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed Cognition. Annu Rev Neurosci, 2022. 45: p. 533-560.

      (13) Bellmund, J.L.S., et al., Mnemonic construction and representation of temporal structure in the hippocampal formation. Nat Commun, 2022. 13(1): p. 3395.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript co-authored by Pál Barzó et al is very clear and very well written, demonstrating the electrophysiological and morphological properties of human cortical layer 2/3 pyramidal cells across a wide age range, from age 1 month to 85 years using whole-cell patch clamp. To my knowledge, this is the first study that looks at the cross-age differences in biophysical and morphological properties of human cortical pyramidal cells. The community will also appreciate the significant effort involved in recording data from 485 cells, given the challenges associated with collecting data from human tissue. Understanding the electrophysiological properties of individual cells, which are essential for brain function, is crucial for comprehending human cortical circuits. I think this research enhances our knowledge of how biophysical properties change over time in the human cortex. I also think that by building models of human single cells at different ages using these data, we can develop more accurate representations of brain function. This, in turn, provides valuable insights into human cortical circuits and function and helps in predicting changes in biophysical properties in both health and disease.

      Strengths:

      The strength of this work lies in demonstrating how the electrophysiological and morphological features of human cortical layer 2/3 pyramidal cells change with age, offering crucial insights into brain function throughout life.

      Weaknesses:

      One potential weakness of the paper is that the methodology could be clearer, especially in how different cells were used for various electrophysiological measurements and the conditions under which the recordings were made. Clarifying these points would improve the study's rigor and make the results easier to interpret.

      Reviewer #2 (Public review):

      Summary:

      In this study, Barzo and colleagues aim to establish an appraisal for the development of basal electrophysiology of human layer 2/3 pyramidal cells across life and compare their morphological features at the same ages.

      Strengths:

      The authors have generated recordings from an impressive array of patient samples, allowing them to directly compare the same electrophysiological features as a function of age and other biological features. These data are extremely robust and well organised.

      Weaknesses:

      The use of spine density and shape characteristics is performed from an extremely limited sample (2 individuals). How reflective these data are of the population is not possible to interpret. Furthermore, these data assume that spines fall into discrete types - which is an increasingly controversial assumption.

      Many data are shown according to somewhat arbitrary age ranges. It would have been more informative to plot by absolute age, and then perform more rigourous statistics to test age-dependent effects.

      Overall, the authors achieve their aims by assessing the physiological and morphological properties of human L2/3 pyramidal neurons across life. Their findings have extremely important ramifications for our understanding of human life and implications for how different neuronal properties may influence neurological conditions.

      Reviewer #3 (Public review):

      Summary:

      To understand the specificity of age-dependent changes in the human neocortex, this paper investigated the electrophysiological and morphological characteristics of pyramidal cells in a wide age range from infants to the elderly.

      The results show that some electrophysiological characteristics change with age, particularly in early childhood. In contrast, the larger morphological structures, such as the spatial extent and branching frequency of dendrites, remained largely stable from infancy to old age. On the other hand, the shape of dendritic spines is considered immature in infancy, i.e., the proportion of mushroom-shaped spines increases with age.

      Strengths:

      Whole-cell recordings and intracellular staining of pyramidal cells in defined areas of the human neocortex allowed the authors to compare quantitative parameters of electrophysiological and morphological properties between finely divided age groups.

      They succeeded in finding symmetrical changes specific to both infants and the elderly, and asymmetrical changes specific to either infants or the elderly. The similarity of pyramidal cell characteristics between areas is unexpected.

      Weaknesses:

      Human L2/3 pyramidal cells are thought to be heterogeneous, as L2/3 has expanded to a high degree during the evolution from rodents to humans. However, the diversity (subtyping) is not revealed in this paper.

      Recommendations for the authors: 

      Reviewer #1 (Recommendations for the authors):

      The manuscript co-authored by Pál Barzó et al is very clear and very well written, demonstrating the electrophysiological and morphological properties of the human cortical layer 2/3 pyramidal cells across a wide age range, from age 1 month to 85 years using whole-cell patch clamp. To my knowledge, this is the first study that looks at the cross-age differences in morphological and electrophysiological properties of human cortical pyramidal cells. The community will also appreciate the significant effort involved in recording data from 485 cells, given the challenges associated with collecting data from human tissue. understanding the electrophysiological properties of individual cells, which are essential for brain function, is crucial for comprehending human cortical circuits. I think this research enhances our knowledge of how biophysical properties change over time in the human cortex. I also think that by building models of human single cells at different ages using these data, we can develop more accurate representations of brain function. This, in turn, provides valuable insights into human cortical circuits and function and helps in predicting changes in biophysical properties in both health and disease.

      We are grateful for the positive evaluation of our work. We also thank the reviewers for their comments and believe that our manuscript has improved significantly with their help. In addition to the reviewer’s suggestions for improvement, further cell reconstructions were performed to make the anatomical data more robust (n = 1,2,3,3,4,3,2 additional reconstruction in age groups infant, early childhood, late childhood, adolescence, young adulthood, middle adulthood and late adulthood, respectively; Σn = 18). Four additional cells were added to the spine analysis and the statistics associated with each additional dataset were updated.

      I have some comments, particularly regarding the methodology and data presentation, to improve the clarity of the paper

      (1) I assume the tissue is from the resected area adjacent to the tumor. Could you please clarify this in the Methods section?

      Thank you for this comment, it has been clarified in the Methods section with the following sentence: “We used human cortical tissue adjacent to the pathological lesion  that had to be surgically removed from patients (n = 63 female  n = 45 male) as part of the treatment for tumors, hydrocephalus, apoplexy, cysts, and arteriovenous malformation.”

      (2) Regarding the presentation of data in the Methods section, could you please clarify whether the authors used different cells for measuring the various electrophysiological properties? The number of recorded cells for calculating subthreshold properties (e.g., late adulthood: n = 113) differs from the number the cells used for calculating suprathreshold properties (e.g., late adulthood: n = 83). If this is the case, it may make it difficult to compare the electrophysiological properties. Could you please clarify this?

      The different element numbers are indeed due to the fact that different quality criteria were defined for the analysis of fast and slow signals. For the analysis of fast signals (e.g. AP half-width, AP upstroke velocity, AP amplitude), higher quality requirements were established therefore cells with high series resistance (> 30 MΩ) were excluded. We have updated and clarified the recording conditions in the text, figures, and methodology section accordingly.

      (3) Additionally, they mentioned that their recordings were done at zero holding current and at more than -50 pA. Could you clarify whether the data from these two sets of experiments were combined? If so, please provide an explanation in the methods section.

      Basically, we wanted to determine the parameters of the potential changes of the membrane at rest. However, for technical reasons related to the biological amplifier, in some of the experiments a certain continuous holding current may be present during the measurement (3.5% of all experiments). The holding currents were in the range of -50 pA to +60 pA. Within this range, previously checked on mouse neurons we have not found linear correlation between the electrophysiological properties and the holding current. This is reported in the Methods section.

      (4) This section needs revision. It is unclear why different series resistances (Rs) or different cells were used to compute various electrophysiological properties." To calculate passive membrane properties (resting membrane potential, input resistance, time constant, and sag) either cells with series resistance (Rs): 22.85 {plus minus} 9.04 MΩ (ranging between -4.55 MΩ and 56.76 MΩ) and 0 pA holding current (n = 154), or cells with holding current > -50 pA (-7.46 {plus minus} 28.56 pA, min: -49.89 pA, max: 59.68pA) and Rs < 30 MΩ (18.96 {plus minus} 6.48 MΩ) (n = 23) were used. For the analysis of high frequency action potential features (AP half-width, AP up-stroke velocity, AP amplitude and rheobase) cells with Rs < 30 MΩ (n = 331 cells with Rs 19.2 {plus minus} 6.6 MΩ) and holding current > -50pA (n = 308 with 0 pA holding current and Rs: 19.22 {plus minus} 6.59 MΩ, n = 23 withholding current: -7.46 {plus minus} 28.56 pA and Rs: 18.96 {plus minus} 6.48 MΩ) were used."

      To make the chapter clearer, we simplified the cell groups used to analyse the different electrophysical properties and revised the Method section as follows: “For the analysis of the electrophysiological recordings n = 457 recordings with a series resistance (Rs) of 24.93 ± 11.18 MΩ (max: 63.77 MΩ) were used. For the analysis of fast parameters related to the action potential (AP half-width, AP upstroke velocity, AP amplitude and rheobase), higher quality requirements were set and cells with Rs > 30 MΩ were excluded. This reduced the data set to n = 331 cells with Rs 19.42 ± 6.2 MΩ.”

      (5) The authors recorded the sag ratio using a -100 pA injected current. Is there a technical reason why they did not inject more than -100 PA?

      There is no particular technical reason, we use similar to others this current amplitude for voltage response recordings over the years to record electrophysiological traces.

      (6) In the abstract, the authors mentioned that data were recorded from ages 1 month to 85 years. However, in the results, they stated that data were recorded from ages 0 to 85 years. Could you please clarify this discrepancy?

      We corrected this discrepancy.

      (7) Additionally, the results mention that data were collected from 485 human cortical layer 2/3 (L2/3) pyramidal cells, but subthreshold membrane features such as resting membrane potential, input resistance, time constant (tau), and sag ratio were calculated in 475 cortical pyramidal cells from 99 patients. Could you please clarify these discrepancies? In the discussion "We recorded from n = 457 human cortical excitatory pyramidal cells from the supragranular layer from birth to 85 years"

      Thank you for pointing this out, we have corrected the error. Although our full data set contained 485 pyramidal cells, 28 recordings were excluded from the electrophysiological analysis and were used for morphological evaluation only, therefore 457 recordings were used for passive parameter measurements.

      (8) Regarding the distance from the pia to the border layer L1/L2, did the authors notice any differences across ages?

      To investigate whether the thickness of cortical layer 1 changes throughout life, we measured the L1 thickness and found no significant differences between age groups (P = 0.09, Kruskal-Wallis test) (Author response image 1).

      Author response image 1.

      Thickness of cortical layer 1 at different life stages. (A) Boxplot shows the thickness of layer 1. (B) Scatter plot shows the distribution of L1 thickness measured on the reconstructed cells. Age is shown in years on a logarithmic scale, dots are color-coded according to the corresponding age groups.

      (9) I am not sure why they referred to the data as layer 2/3 when most of the data, based on Figure 1E, were recorded from a distance of 0-200 µm from the L1/L2 border. Could it be that there is no significant depth-dependent variation in electrophysiological properties, as reported by Berg (2021), Kalmbach (2018), and Chameh (2021)?

      Although the vast majority of our data comes from a distance of less than 200 μm from the L1/L2 border, we cannot neglect the fact that our dataset also contains a small number of cells deeper than this, which are layer 3 cells. Apart from some differences shown in Supplementary Figures 7-9, we found no general difference between cells located at a distance of less than 200 μm and more than 200 μm from the L1 border.

      (10) In Figure 1, there is variability in resting membrane potential (RMP), tau, and input resistance (IR) within the infant age group. However, this trend is not observed in the sag ratio. Could you please discuss this finding?

      The large variance in the data is due to dramatic changes in these three parameters during the first year of life. Supplementary Figure 3 shows the comparisons of parameter distributions of patients between 0-6 months and 6-12 months. The sag amplitude in these cells is generally low therefore no such large changes could have occurred in them.

      (11) Did the authors use a K-Nearest Neighbors (KNN) test to assess the accuracy of the infant cluster in Figure 3F?

      Based on eight electrophysiological features of the cells (resting Vm, input resistance, tau, sag ratio, rheobase, AP half-width, AP up-stroke, and AP amplitude), the infant pyramidal cells on a UMAP form a distinct group (Author response image 2A) represented by cluster 4 on Author response image 2B. When calculating the sum of the Euclidean distances of cells within the cluster from the centroid, the isolated infant group (cluster 4) shows the smallest distance value from the centroid (cluster 1: 40.2, cluster 2: 36.21, cluster 3: 39.96, cluster 4: 5.72, cluster 5: 39.2, cluster 6: 55.74, cluster 7: 54.27), demonstrating that infant cells create a discrete cluster distinct from other age groups (Author response image 2B).

      Author response image 2.

      (A) Uniform Manifold Approximation and Projection (UMAP) of 8 selected electrophysiological properties (resting Vm, input resistance, tau, sag ratio, rheobase, AP half-width, AP up-stroke, and AP amplitude) with data points for 331 cortical L2/3 pyramidal cells, colored with the corresponding age groups. (B) UMAP colored by k-means clustering with 7 clusters, red crosses represent the centroids of the clusters.

      (12) Missing citation: 'Previous research has shown that the biophysical properties of human pyramidal cells show depth-related correlations throughout L2/3 (Berg et al., 2021).' Please include citations for Kalmbach (2018) and Chameh (2021).

      We thank for the additional references, these studies are now cited.

      (13) Have they noticed any morphological properties differences among the different cortical lobes (Parietal, Temporal, Frontal, and Occipital). It would be beneficial to present this data, especially since they have a sufficient sample size from each cortical lobe.

      The majority of our data set on the morphological properties of pyramidal cells comes from the parietal (n = 17 cells) and temporal lobe (n = 15). We found no significant differences in the morphological properties of cells from these two brain regions and no differences between age groups in the same cortical lobes.

      (14) Have the authors found differences in spine characteristics among different cortical areas, as reported previously by 10.1023/a:1024134312173).

      We found morphological differences in dendritic spines in the different brain regions, yet, our data are limited to draw definitive conclusions.

      Reviewer #2 (Recommendations for the authors):

      Major

      (1) I believe that these data presented in all main text figures would be more intuitive to be plotted on a log(age) scale, such as shown in supplementary Figure 13. The bounds of the ages used for different groups, as summarised in Figure 1 feel somewhat arbitrary.

      Recent neuroscientific studies on postnatal ageing mainly use the age-group comparison format (Kang 2011, Bethlehem 2022), which has been defined based on milestones in the cognitive, motor, social-emotional, and language/communications domains of observable behaviour (Zubler et al. 2022, for detailed definitions see Kang 2011). Since many parameters do not vary linearly but take a U-shape (or inverted U-shape), statistical quantification of these is not straightforward, so we would retain the age-group format for the main graphs. However, at the reviewer's suggestion, electrophysiological and morphological parameters are presented on a log(age) scale as supplementary figures (Supplementary Figures 2,4 and 6), also further statistical analysis was also carried out without grouping the data (see response 5).

      (2) The authors present a lot of data values in the text, which is also shown in the figures. This makes reading of the manuscript somewhat difficult in places. For brevity, it may be best to present this data as supplementary tables.

      Thank you for this suggestion. We have inserted these data as tables.

      (3) I am unclear why the authors excluded cells that fired doublets or triplets in Figure 4? Were these included in the passive and AP-specific analysis - but excluded from F-I plots? Please clarify the rationale and the relative abundance of these physiological types based on age - one might predict that more initial-burst firing types are associated with older neurons?

      Thank you for drawing attention to this anomaly. We have updated the figures and text by adding the cells with initial burst firing. These cells are also included in the analysis of passive and action potential properties. In our overall dataset, 6.78% of cells show burst firing; infant: 0%, early childhood: 3.57% (1 cell), late childhood: 0%, adolescence: 11.11% (6 cells), young adulthood: 10.11% (9), middle adulthood: 10.71% (6 cells), late adulthood: 7.96 (9 cells) of all cells including the age groups.

      (4) The statistical analyses performed in Figure 6 are not justified. From the authors' description of these data, they derive spine density measurements from 1 infant and 1 aged adult, then perform pseudoreplicated analysis in these individuals. These data would require greater replication from infant and aged groups - with the possible inclusion of a younger adult group also. It would be ideal to have n=3/age group to allow robust statistical analysis.

      Thank you for this point. Accordingly, we have expanded our data set to include n = 3 infant pyramidal cells (83 days old, from one patient) and n = 3 pyramidal cells from three late adulthood patients (64.3 ± 2.08 years old).

      (5) Given the high number of individuals and replicates throughout this manuscript, a more circumspect approach to statistics would be appreciated, e.g. a generalised linear mixed effects model - with age as a fixed effect and sex, patient, etc as random effects. This may reveal the greatest statistical power of these important and rich data.

      Of the generative models we used the Generalized Additive Mixed Model (GAMM) to describe the relationship between age and the various passive and active electrophysiological features. We defined age with cubic spline smoothing term as the fixed effect and gender, brain area, surgical procedure, and hemisphere as random effects. With GAMM we found that the age-dependent correlation of the examined parameters (resting membrane potential, input resistance, tau, sag ratio, rheobase current, AP half-width, AP up-stroke velocity, AP amplitude, first AP latency, adaptation) was significant, except for F-I slope, described by the model incorporating the four random effects.  We also observed correlation with gender, brain area, hemisphere, and surgical procedure in various intrinsic properties. The Author response table 1 below shows the statistical values of GAMM and the statistical tests used in the manuscript to compare.

      Author response table 1.

      Statistical significance of patient attributes *In the pairwise comparison, the age of cells in the two groups was significantly different: female (subthreshold: 37.36 ± 26.25 years old, suprathreshold: 38.3 ± 25.6 y.o.) - male (subthreshold: 24.86 ± 23.7 y.o., suprathreshold: 25.7 ± 23.93 y.o.), subthreshold: P = 1.96*10-6, suprathreshold: P = 3.25*10-5 Mann-Whitney test. **In the pairwise comparison, the age of cells in the two groups was significantly different: surgical procedure: tumor removal (subthreshold: 33.72 ± 24.33 y.o., suprathreshold: 36.43 ± 27.07 y.o.) - VP shunt (subthreshold: 27.38 ± 29.69 y.o., suprathreshold: 27.07 ± 29.37 y.o.) subthreshold: P = 3.68*10-3, suprathreshold: P = 1.64-10-3, Mann-Whitney test)

      (6) Regarding the morphological diversity of dendritic spines. There is some debate in the field as to whether the distinction of specific dendritic spine types - as conveyed in this manuscript - are true subtypes or reflect a continuum of diverse morphology (see Tønneson et al., 2014 Nature Neuroscience). It is appreciated that the approach taken by the authors is the dogma within the field - however, dogma should continue to be challenged. Given that the authors have used DAB labelling combined with light microscopy, the possibility of accurately measuring spine morphology required for determining this continuum is extremely limited (e.g. Li et al., (2023) ACS Chemical Neuroscience). I would suggest that alongside the inclusion of further replicates for their spine analysis, the authors tone down their discussion of spine subtypes given the absence of any synaptic data presented in this current study to support the maturation (or otherwise) of dendritic spine synapses.

      Many thanks to the reviewer for this comment. We agree with the drawbacks of our method for testing spine categorization. To increase the reliability of our results, we increased the number of pyramidal cells in the infant and late adult groups. We also revised the figure and as suggested by Reviewer#3 added photos of spines to each category in addition to schematic drawings to give an impression of the phenotype. In the discussion, we only address the differences between two readily separable mushroom and filopodial forms and highlight results that only confirm findings already known in the literature. Although the concerns are valid, we apply the sentence from the above Li et al. (2023) reference “...the most sophisticated equipment may not always be necessary for answering some research questions”. We believe that it is worth sharing our data and the somewhat subjective grouping, which we hope to report in more detail in the future.

      Minor

      (1) The order of the supplemental materials is out of order with their introduction in the text. These should be revised to reflect the order mentioned in the text.

      Thank you for your comment, we have corrected the order of the supplementary figures.

      (2) In Supplementary Figure 13, it would be informative to include some form of linear regression to confirm whether an age-dependent effect on neuronal morphology exists.

      We have added linear regression to the figure.

      (3) Figure 3D = should this be AP - not Ap?

      Thank you for drawing attention to this, we have corrected the incorrect typing on the figure.

      (4) For UMAP analysis in Figure 3, please provide a table of the features that were used for the 32 & 8-parameter UMAPs respectively.

      We have added a table to the Materials and methods section of all the electrophysiological features included in the UMAP.

      (5) For morphology, please include pia and L1/2 border for reconstructions shown for clarity.

      We indicated both the pia mater and the L1/2 border on the figure showing all the reconstructions (Supplementary Figure 10).

      Reviewer #3 (Recommendations for the authors):

      Major:

      (1) Data were obtained from different cortical areas of human patients of different ages. The electrophysiological characteristics were largely independent of other attributes such as disease, gender, and cortical areas (Supplementary Figure 2). To support the conclusion that age is one of the key attributes responsible for change, a similar morphological analysis would be necessary for gender.

      We updated the text and the supplementary section with Supplementary Figures 18-21. to determine if age-related differences in biophysical characteristics are affected by the patient's gender.

      (2) 'mushroom-shaped, thin, filopodial, branched, and stubby spines'

      Show photographs of individual typical spine types to make the classification easier to understand.

      To make the classification more understandable, we have updated the corresponding figure (Figure 6) with representative photos of the dendritic spine types.

      (3) Some electrophysiological parameters of the infant group showed higher deviations compared to other age groups. A UMAP (Supplementary Figure 2) shows that some infant neurons form a small cluster, while other infant neurons are scattered with neurons of other ages. Are there any differences between infant neurons in the small cluster and other infant neurons with respect to attributes other than age?

      For most of the electrophysiological parameters, the infant age group showed age-dependent variability, as illustrated in Supplementary Figures 3, 2,4 and 6 . The small group of infant cells is not clustered by gender, brain region, or medical condition, as shown in Supplementary Figure 5.

      (4) A recent paper (Benavides-Piccione et al. 2024, doi:10.1093/cercor/bhae180) reported that some morphological parameters of human layer 3 neurons differ between occipital and temporal regions. Area-dependent morphological differences have been also reported in non-human primates. Discussion of potential contradictions may therefore be requested.

      Most of the cells we reconstructed originated from the parietal and temporal regions (parietal: n = 20, temporal: n = 23, frontal: n = 15, occipital: n = 5). We found no differences in morphological features between these two regions, and we also found no significant differences when we compared the cells from the same brain regions by age group.

      (5) L2/3 cells of rodents are morphologically differentiated according to cortical depth. If individual L2/3 cells of humans are less differentiated than those of rodents, this point should be discussed.

      Depth-related morphological heterogeneity has already been reported previously (Berg 2021), however, our dataset on the morphological characteristics of pyramidal cells is from the upper L2/3 region, with their soma located at a distance of 117.85 ± 65.3 μm (between: 11.05 and 243.3 μm) from the L1/L2 border. Therefore, we cannot conclude from our data whether humans are less differentiated than rodents.

      Minor:

      (1) Cell body morphology may affect electrophysiological properties. However, morphological quantification of cell bodies has not been reported. It may be added.

      In our DAB-labeled samples, we could not perfectly measure the total volume of the cell body in the reconstructions, therefore our measurements regarding the soma morphology are not shown in the manuscript. When comparing the cell body area of the middle sections of the soma of the reconstructed cells between the age groups, we found no significant differences (P = 0.082, Kruskal–Wallis test).

      (2) 'The adaptation of the AP frequency response'

      Describe how this parameter was obtained.

      The adaptation of the AP frequency response or adaptation was calculated as the average adaptation of the interspike interval between consecutive APs.

      (3) 'we excluded cells showing initial duplet or triplet action potential bursts'

      Why were the burst cells excluded from the analysis?

      We have modified the figures and text to include cells with initial burst firing.

      (4) Electrophysiological characteristics to be analyzed:

      Spike thresholds and afterhyperpolarizations

      We found age-related differences in the amplitude of the afterhyperpolarization (P = 2.56*10<sup>-30</sup>, Kruskal-Wallis test) and in the threshold of the action potential (P = 5.24*10<sup>-12</sup>, Kruskal-Wallis test) (Author response image 3).

      Author response image 3.

      Age-dependence of afterhyperpolarization and AP threshold. (A-B) Boxplots show the differences in afterhyperpolarization (AHP) amplitude (A) and AP threshold (B) between age groups. Asterisks indicate statistical significance (* P < 0.05, ** P < 0.01, *** P < 0.001, Kruskal-Wallis test with post-hoc Dunn test). (C-D) Scatter plots show AHP amplitude (C) and AP threshold (D) across the lifespan. Age is shown on a logarithmic scale, dots are colored according to the corresponding age group.

      (5) 'We identified and labeled each spine on n = 2 fully 3D-reconstructed cells'

      To which cortical area do these cells belong?

      At what depths are they distributed?

      Is it possible to report the number of spines, in addition to the density per unit length?

      We increased the number of cells in which we analyzed dendritic spine density. The data shown in Figure 6. are from pyramidal cells from an infant patient (n = 3 from a single patient) and late adulthood patients (n = 3 from 3 patients) (Supplementary Figure 13). The infant cells are from the same patient, the sample is from the right parietal lobe, and the patient is 83 days old. The older cells are from three different patients (#1: 65 years old, right temporal lobe; #2: 66 years old, right parietal lobe; #3: 62 years old, right frontal lobe). Infant cells are located 144.43 ± 45.26 µm (#1: 109.3, #2: 128.49, #3: 195.5 µm), late adult cells 161.22 ± 66.22 µm (#1: 183.5, #2: 213.42, #3: 86.73 µm) from the L1/2 border. We provide the number of spines in an additional supplementary table (Supplementary table 2.).

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers for their careful review of our manuscript and the constructive comments. We have addressed the majority of comments with either new experiments, analyses, and/or text revisions. A summary of the major changes is listed below, followed by our point-by-point responses to the reviewer comments.

      Major changes:

      (1) We sought to gain insight into the potential mechanistic cause of the increased intrinsic excitability of Cntnap2<sup>-/-</sup> dSPNs. Given that Kv1.1 and 1.2 potassium channels are known to interact with Caspr2 (the protein encoded by Cntnap2), we hypothesized that altered number, location, and/or function of these channels may underlie the excitability change in these cells. To investigate this, we performed new analyses of the initial dataset to assess action potential (AP) properties known to be impacted by potassium channel function. Indeed, we found that AP frequency was increased, and rheobase current, AP latency and AP threshold were decreased in Cntnap2<sup>-/-</sup> dSPNs, suggestive of altered Kv1.2 function. These data are in the new Supplemental Fig. 4. We also performed new electrophysiology experiments in which we pharmacologically blocked Kv1.1 and 1.2 to assess whether the effects of blocking these channels would be occluded in Cntnap2<sup>-/-</sup> dSPNs. We found that 1) WT dSPNs responded to blockade of Kv1.1/1.2 channels by increasing their excitability but Cntnap2<sup>-/-</sup> dSPNs did not and 2) Kv1.1/1.2 channels were more important contributors to the excitability of dSPNs compared to iSPNs. These new data are presented in the revised Fig. 4 and Supplemental. Figs. 5 and 6.

      (2) We performed additional experiments to assess excitatory synaptic properties, specifically AMPA/NMDA receptor ratio. This has been added to Fig. 1.

      (3) We performed more rigorous statistical analyses of the initial physiology datasets to align with the statistics performed for the revision experiments. This applies to Fig. 1, Fig. 2, Fig. 3, Fig. 5, and Supp. Fig. 2.

      (4) In the discussion section, we now highlight potential limitations of the study and further discuss the variable impact that Cntnap2 loss has on different cell types and brain regions.  

      Reviewer #1 (Public Review):

      Summary:

      Cording et al. investigated how deletion of CNTNAP2, a gene associated with autism spectrum disorder, alters corticostriatal engagement and behavior. Specifically, the authors present slice electrophysiology data showing that striatal projection neurons (SPNs) are more readily driven to fire action potentials in response to stimulation of corticostriatal afferents, and this is due to increases in SPN intrinsic excitability rather than changes in excitatory or inhibitory synaptic inputs. The authors show that CNTNAP2 mice display repetitive behaviors, enhanced motor learning, and cognitive inflexibility. Overall the authors' conclusions are supported by their data, but a few claims could use some more evidence to be convincing.

      Strengths:

      The use of multiple behavioral techniques, both traditional and cutting-edge machine learning-based analyses, provides a powerful means of assessing repetitive behaviors and behavioral transitions/rigidity.

      Characterization of both excitatory and inhibitory synaptic responses in slice electrophysiology experiments offers a broad survey of the synaptic alterations that may lead to increased corticostriatal engagement of SPNs.

      Weaknesses:

      (1) The authors conclude that increased cortical engagement of SPNs is due to changes in SPN intrinsic excitability rather than synaptic strength (either excitatory or inhibitory). One weakness is that only AMPA receptor-mediated responses were measured. Though the holding potential used for experiments in Figure 1FI wasn't clear, recordings were presumably performed at a hyperpolarized potential that limits NMDA receptormediated responses. Because the input-output experiments used to conclude that corticostriatal engagement of SPNs is elevated (Figure 1B-E) were conducted in the current clamp, it is possible that enhanced NMDA receptor engagement contributed to increased SPN responses to cortical stimulation. Confirming that NMDA receptor-mediated EPSC components are not altered would strengthen the main conclusion.

      The reviewer is correct, the initial optically-evoked EPSC assessments were performed at a hyperpolarized potential (-70mV), thus measuring primarily AMPAR-mediated currents. We agree that assessing potential changes in the NMDAR-mediated EPSC component is important and we have completed new experiments to assess this. We find no differences in NMDAR-mediated EPSCs assessed at +40mV or the AMPA:NMDA ratio.

      These results have been added to Fig. 1. An expanded analysis of these results is shown in Author response image 1. We note that the previous AMPAR-mediated EPSC results have been replicated in this additional experiment, again showing no change in Cntnap2<sup>-/-</sup> SPNs. 

      Author response image 1.

      AMPA and NMDA receptor-mediated EPSCs are unchanged in Cntnap2<sup>-/-</sup> SPNs. (A) Quantification (mean ± SEM) of AMPA:NMDA ratio per cell for Cntnap2<sup>+/+</sup> and Cntnap2<sup>-/-</sup> dSPNs, p=0.9537, MannWhitney test. (B) dSPN AMPA current per cell, p=0.6172, Mann-Whitney test. (C) dSPN NMDA current per cell, p=0.6009, Mann-Whitney test. (D) dSPN AMPA:NMDA ratio averaged by animal, p=0.8413, Mann-Whitney test. (E) dSPN AMPA current averaged by animal, p>0.9999, Mann-Whitney test. (F) dSPN NMDA current averaged by animal, p=0.6905, Mann-Whitney test. (G) Quantification (mean ± SEM) of AMPA:NMDA ratio per cell for Cntnap2<sup>+/+</sup> and Cntnap2<sup>-/-</sup> iSPNs, p=0.4104, Mann-Whitney test. (H) iSPN AMPA current per cell, p=0.9010, Mann-Whitney test. (I) iSPN NMDA current per cell, p=0.9512, two-tailed unpaired t test. (J) iSPN AMPA:NMDA averaged by animal, p=0.3095, Mann-Whitney test. (K) iSPN AMPA current averaged by animal, p=>0.9999, Mann-Whitney test. (L) iSPN NMDA current averaged by animal, p=0.8413, MannWhitney test. All values were recorded using 20% blue light intensity. For dSPNs: Cntnap2<sup>+/+</sup> n=22 cells from 5 mice, Cntnap2<sup>-/-</sup> n=22 cells from 5 mice. For iSPNs: Cntnap2<sup>+/+</sup> n=21 cells from 5 mice, Cntnap2<sup>-/-</sup>n=21 cells from 5 mice.

      (2) Data clearly show that SPN intrinsic excitability is increased in knockout mice. Given that CNTNAP2 has been linked to potassium channel regulation, it would be helpful to show and quantify additional related electrophysiology data such as negative IV curve responses and action potential hyperpolarization.

      We appreciate this suggestion. As indicated by the reviewer, Caspr2, has previously been shown to control the clustering of Kv1-family potassium channels in axons isolated from optic nerve and corpus callosum (PMIDs: 10624965, 12963709, 29300891). In particular, Caspr2 is known to associate directly with Kv1.2 (PMID: 29300891). To assess a potential contribution of Kv1.2 to the excitability phenotype, we performed additional analyses of our original dataset to quantify AP properties known to be impacted by changes in Kv1.2 function (i.e. latency to fire and AP threshold, new Supp. Fig. 4). We identified several changes in Cntnap2<sup>-/-</sup> dSPNs resembling those that occur in wild-type cells when Kv1.2 is blocked (i.e. reduced threshold and reduced latency to fire, Supp. Fig. 4). 

      We then performed a pharmacological experiment, blocking Kv1.2 using α-dendrotoxin (α-DTX) while recording intrinsic excitability to assess whether the effects of this drug on dSPN excitability were occluded in Cntnap2<sup>-/-</sup> cells. Indeed, we found that while blocking Kv1.2 in wild-type dSPNs significantly reduced threshold and increased intrinsic excitability, these effects were not seen in Cntnap2<sup>-/-</sup> dSPNs (new Fig. 4). We believe that this suggests an altered contribution of Kv1.2 to the intrinsic excitability of mutant dSPNs, owing to a change in the clustering, number, or function of these channels. Therefore, loss-of-function of Kv1.2 is a likely explanation for the enhanced intrinsic excitability of Cntnap2<sup>-/-</sup> dSPNs. Interestingly, we found that α-DTX had only subtle effects on iSPNs (Cntnap2 WT or mutant), suggesting a lesser contribution of this channel in controlling the excitability of indirect pathway cells. This finding can account for the relatively stronger effect of Cntnap2 loss on dSPN physiology. The results of these new experiments and analyses are presented in the new Fig. 4, Supp. Fig. 5 and Supp. Fig. 6. 

      (3) As it stands, the reported changes in dorsolateral striatum SPN excitability are only correlative with reported changes in repetitive behaviors, motor learning, and cognitive flexibility.

      We agree that we have not identified a causative relationship between the change in dorsolateral dSPN excitability and the behaviors that we measured in Cntnap2<sup>-/-</sup> mice. That said, in a previous study, we showed that selective deletion of the autism spectrum disorder (ASD) risk gene Tsc1 from dorsal striatal dSPNs resulted in increased corticostriatal drive and this was sufficient to increase rotarod motor learning (PMID: 34380034). Therefore, while we have not demonstrated causality in this study, we hypothesize that changes in dSPN excitability are likely to contribute to the behavioral phenotypes observed in Cntnap2<sup>-/-</sup> mice. 

      Reviewer #2 (Public Review):

      Summary:

      This is an important study characterizing striatal dysfunction and behavioral deficits in Cntnap2<sup>-/-</sup> mice. There is growing evidence suggesting that striatal dysfunction underlies core symptoms of ASD but the specific cellular and circuit level abnormalities disrupted by different risk genes remain unclear. This study addresses how the deletion of Cntnap2 affects the intrinsic properties and synaptic connectivity of striatal spiny projection neurons (SPN) of the direct (dSPN) and indirect (iSPN) pathways. Using Thy1-ChR2 mice and optogenetics the authors found increased firing of both types of SPNs in response to cortical afferent stimulation. However, there was no significant difference in the amplitude of optically-evoked excitatory postsynaptic currents (EPSCs) or spine density between Cntnap2<sup>-/-</sup> and WT SPNs, suggesting that the increased corticostriatal coupling might be due to changes in intrinsic excitability. Indeed, the authors found Cntnap2<sup>-/-</sup> SPNs, particularly dSPNs, exhibited higher intrinsic excitability, reduced rheobase current, and increased membrane resistance compared to WT SPNs. The enhanced spiking probability in Cntnap2<sup>-/-</sup> SPNs is not due to reduced inhibition. Despite previous reports of decreased parvalbumin-expressing (PV) interneurons in various brain regions of Cntnap2<sup>-/-</sup> mice, the number and function (IPSC amplitude and intrinsic excitability) of these interneurons in the striatum were comparable to WT controls.

      This study also includes a comprehensive behavioral analysis of striatal-related behaviors. Cntnap2<sup>-/-</sup> mice demonstrated increased repetitive behaviors (RRBs), including more grooming bouts, increased marble burying, and increased nose poking in the holeboard assay. MoSeq analysis of behavior further showed signs of altered grooming behaviors and sequencing of behavioral syllables. Cntnap2<sup>-/-</sup> mice also displayed cognitive inflexibility in a four-choice odor-based reversal learning assay. While they performed similarly to WT controls during acquisition and recall phases, they required significantly more trials to learn a new odor-reward association during reversal, consistent with potential deficits in corticostriatal function.

      Strengths:

      This study provides significant contributions to the field. The finding of altered SPN excitability, the detailed characterization of striatal inhibition, and the comprehensive behavioral analysis are novel and valuable to understanding the pathophysiology of Cntnap2<sup>-/-</sup> mice.

      Weaknesses:

      (1) The approach based on Thy-ChR2 mice has the advantage of overcoming issues caused by injection efficiency and targeting variability. However, the spread of oEPSC amplitudes across mice shown in panels of Figure 1 G/I is very high with almost one order of magnitude difference between some mice. Given this is one of the most important points of the study it will be important to further analyze and discuss what this variability might be due to. Typically, in acute slice recordings, the within-animal variability is larger than the variability across animals. From the sample sizes reported it seems the authors sampled a large number of animals, but with a relatively low number of neurons per animal (per condition). Could this be one of the reasons for this variability?

      We agree with the reviewer that the variability in these experiments is quite large. We have replicated these experiments in the process of performing AMPA:NMDA ratio recordings (see above response to Reviewer 1’s comment). We again find no differences in AMPAR-mediated EPSC amplitude between WT and mutant SPNs (Author response image 2). Notably, these experiments also demonstrate a large amount of variability. In the original dataset, a small number of cells were collected from each animal (~1-3 cells/mouse). However, the variability remains in the new dataset, in which more cells were collected from each animal (~4-6 cells/mouse). We find both withinanimal and between-animal variability, as can be seen in Author response image 2 (recordings made from the same animal are color-coordinated). Potential sources of variability in this experiment include: 1) variable expression of ChR2 per mouse, 2) variable innervation of ChR2-expressing terminals onto any given recorded cell, and/or 3) differences in prior plasticity state between cells (i.e. some neurons may have recently undergone corticostriatal LTP or LTD). 

      Author response image 2.

      Optically-evoked AMPAR EPSCs exhibit within- and between-animal variability. (A) Quantification of EPSC amplitude evoked in dSPNs at different light intensities from the original dataset, plotted by cell (line represents the mean, dots/squares represent average EPSC amplitude for each recorded cell). Cntnap2<sup>+/+</sup> n=17 cells from 8 mice, Cntnap2<sup>-/-</sup> n=13 cells from 5 mice. Repeated measures two-way ANOVA p values are shown; g x s F (2, 56) = 0.3879, geno F (1, 28) = 0.8098, stim F (1.047, 29.32) = 76.56. (B) Quantification of EPSC amplitude evoked in dSPNs, averaged by mouse (line represents the mean, dots/squares represent average EPSC amplitude for each mouse). Cntnap2<sup>+/+</sup> n=8 mice, Cntnap2<sup>-/-</sup> n=5 mice. Repeated measures two-way ANOVA p values are shown; g x s F (2, 22) = 0.2154, geno F (1, 11) = 0.2585, stim F (1.053, 11.58) = 49.68. (C) Quantification of EPSC amplitude in dSPNs from the revision dataset, plotted by cell (line represents the mean, dots/squares represent average EPSC amplitude for each recorded cell). Cntnap2<sup>+/+</sup> n=22 cells from 5 mice, Cntnap2<sup>-/-</sup> n=22 cells from 5 mice. Repeated measures two-way ANOVA p values are shown; g x s F (2, 84) = 0.01885, geno F (1, 42) = 0.002732, stim F (1.863, 78.26) = 20.93. (D) Quantification of EPSC amplitude in dSPNs from the revision dataset, averaged by mouse (line represents the mean, dots/squares represent average EPSC amplitude for each mouse). Cntnap2<sup>+/+</sup> n=5 mice, Cntnap2<sup>-/-</sup> n=5 mice. Repeated measures two-way ANOVA p values are shown; g x s F (2, 16) = 0.06288, geno F (1, 8) = 0.006548, stim F (1.585, 12.68) = 16.97. (E) Quantification of EPSC amplitude evoked in iSPNs from the original dataset, plotted by cell (line represents the mean, dots/squares represent average EPSC amplitude for each recorded cell). Cntnap2<sup>+/+</sup> n=13 cells from 6 mice, Cntnap2<sup>-/-</sup> n=11 cells from 5 mice. Repeated measures two-way ANOVA p values are shown; g x s F (2, 44) = 0.9414, geno F (1, 22) = 1.333, stim F (1.099, 24.18) = 52.26. (F) Quantification of EPSC amplitude evoked in iSPNs from original dataset, averaged by mouse (line represents the mean, dots/squares represent average EPSC amplitude for each mouse). Cntnap2<sup>+/+</sup> n=6 mice, Cntnap2<sup>-/-</sup> n=5 mice. Repeated measures two-way ANOVA p values are shown; g x s F (2, 18) = 0.4428, geno F (1, 9) = 0.5635, stim F (1.095, 9.851) = 23.82. (G) Quantification of EPSC amplitude evoked in iSPNs from the revision dataset, plotted by cell (line represents the mean, dots/squares represent average EPSC amplitude for each recorded cell). Cntnap2<sup>+/+</sup> n=21 cells from 5 mice, Cntnap2<sup>-/-</sup> n=21 cells from 5 mice. Repeated measures two-way ANOVA p values are shown; g x s F (2, 80) = 0.04134, geno F (1, 40) = 0.007025, stim F (1.208, 48.31) = 102.9. (H) Quantification of EPSC amplitude evoked in iSPNs from the revision dataset, averaged by mouse (line represents the mean, dots/squares represent average EPSC amplitude for each mouse). Cntnap2<sup>+/+</sup> n=5 mice, Cntnap2<sup>-/-</sup> n=5 mice. Repeated measures two-way ANOVA p values are shown; g x s F (2, 16) = 0.001865, geno F (1, 8) = 0.1004, stim F (1.179, 9.433) = 61.31.

      (2) This is particularly important because the analysis of corticostriatal evoked APs in panels C and E is performed on pooled data without considering the variability in evoked current amplitudes across animals shown in G and I. Were the neurons in panels C/E recorded from the same mice as shown in G/I? If so, it would be informative to regress AP firing data (say at 20% LED) to the average oEPSC amplitude recorded on those mice at the same light intensity. However, if the low number of neurons recorded per mouse is due to technical limitations, then increasing the sample size of these experiments would strengthen the study.

      We appreciate this point; however, the evoked AP experiment and the evoked EPSC experiment were performed on different mice, so it is not possible to correlate the data across experiments. While the evoked AP experiments were performed using potassium-based internal, we used a cesium-based internal to measure AMPAR-mediated EPSCs to more accurately detect synaptic currents. We note that the evoked AP experiments share a similar amount of variability as the evoked EPSC experiments, again possibly owing to variable expression of channelrhodopsin per mouse, variable innervation of ChR2-positive terminals onto individual cells, and/or differences in prior plasticity status between cells.  

      (3) On a similar note, there is no discussion of why iSPNs also show increased corticostriatal evoked firing in Figure 1E, despite the difference in intrinsic excitability shown in Figure 3. This suggests other potential mechanisms that might underlie altered corticostriatal responses. Given the role of Caspr2 in clustering K channels in axons, altered presynaptic function or excitability could also contribute to this phenotype, but potential changes in PPR have not been explored in this study.

      We have now performed more rigorous statistics on the data in Fig. 1 (repeated measures two-way ANOVA) such that the difference in corticostriatal evoked firing in Cntnap2<sup>-/-</sup> iSPNs no longer reaches statistical significance. This is consistent with the modest but statistically non-significant effect of Cntnap2 loss on iSPN intrinsic excitability. We agree with the reviewer that presynaptic alterations could potentially contribute to the changes in cortically-driven action potentials, especially as this experiment was performed without any synaptic blockers present, and Cntnap2 is deleted from all cells. That said, if changes in presynaptic release probability accounted for the increased corticostriatal drive, we would expect to see differences in cortically-evoked EPSCs onto SPNs. 

      While we can’t rule out the possibility of pre-synaptic changes, a straightforward explanation for our findings is that loss or alteration of Kv1.2 channel function is responsible for the increased excitability of Cntnap2<sup>-/-</sup> dSPNs, resulting in enhanced spiking in response to cortical input. Given the fact that Kv1.2 channels appear less important for regulating iSPN excitability (see new Fig. 4 and Supp. Fig. 6), this can explain the greater impact of Cntnap2 loss on dSPN physiology.

      (4) Male and female SPNs have different intrinsic properties but the number and/or balance of M/F mice used for each experiment is not reported.

      We agree that this is an important consideration. Author response table 1 provides the sex breakdown for the intrinsic excitability experiments. While we did not explicitly power the experiments to test for sex differences, Author response image 3 shows the data separated by sex and genotype for the intrinsic excitability experiments. Within genotype, we find no significant differences between males and females, except for Cntnap2<sup>-/-</sup> iSPNs which showed a significant interaction between sex and current step (Author response image 3F). Interestingly, while present in both sexes, the excitability shift of Cntnap2<sup>-/-</sup> dSPNs may be slightly more pronounced in females compared to males (Author response image 3C and D). However, this result would require further validation with a greater sample size.

      Author response table 1.

      Numbers of male and female mice used for the intrinsic excitability experiments.

      Author response image 3.

      Enhanced excitability of Cntnap2<sup>-/-</sup> dSPNs is present in both males and females. (A) Quantification (mean ± SEM) of the number of APs evoked in dSPNs in Cntnap2<sup>+/+</sup> males and females at different current step amplitudes. Cntnap2<sup>+/+</sup> males n=12 cells from 4 mice, Cntnap2<sup>+/+</sup> females n=8 cells from 4 mice. Repeated measures two-way ANOVA p values are shown; s x c F (28, 560) = 0.8992, sex F (1, 20) = 0.3754, current F (1.279, 25.57) = 56.85. (B) Quantification (mean ± SEM) of the number of APs evoked in dSPNs in Cntnap2<sup>-/-</sup> males and females at different current step amplitudes. Cntnap2<sup>-/-</sup> males n=12 cells from 4 mice, Cntnap2<sup>-/-</sup> females n=11 cells from 4 mice. Repeated measures two-way ANOVA p values are shown; s x c F (28, 588) = 0.6752, sex F (1, 21) = 0.04534, current F (2.198, 46.15) = 78.89. (C) Quantification (mean ± SEM) of the number of APs evoked in dSPNs in Cntnap2<sup>+/+</sup> males and Cntnap2<sup>-/-</sup> males at different current step amplitudes. Cntnap2<sup>+/+</sup> males n=12 cells from 4 mice, Cntnap2<sup>-/-</sup> males n=12 cells from 4 mice. Repeated measures two-way ANOVA p values are shown; g x c F (28, 672) = 2.233, geno F (1, 24) = 3.746, current F (1.708, 40.98) = 79.82. (D) Quantification (mean ± SEM) of the number of APs evoked in dSPNs in Cntnap2<sup>+/+</sup> females and Cntnap2<sup>-/-</sup> females at different current step amplitudes. Cntnap2<sup>+/+</sup> females n=8 cells from 4 mice, Cntnap2<sup>-/-</sup> females n=11 cells from 4 mice. Repeated measures two-way ANOVA p values are shown; g x c F (28, 476) = 1.547, geno F (1, 17) = 5.912, current F (1.892, 32.17) = 58.76. (E) Quantification (mean ± SEM) of the number of APs evoked in iSPNs in Cntnap2<sup>+/+</sup> males and females at different current step amplitudes. Cntnap2<sup>+/+</sup> males n=10 cells from 4 mice, Cntnap2<sup>+/+</sup> females n=12 cells from 4 mice. Repeated measures two-way ANOVA p values are shown; s x c F (28, 560) = 1.236, sex F (1, 20) = 1.074, current F (2.217, 44.34) = 179.6. (F) Quantification (mean ± SEM) of the number of APs evoked in iSPNs in Cntnap2<sup>-/-</sup> males and females at different current step amplitudes. Cntnap2<sup>-/-</sup> males n=12 cells from 4 mice, Cntnap2<sup>-/-</sup> females n=9 cells from 4 mice. Repeated measures two-way ANOVA p values are shown; s x c F (28, 532) = 2.513, sex F (1, 19) = 2.639, current F (1.858, 35.31) = 152.5. (G) Quantification (mean ± SEM) of the number of APs evoked in iSPNs in Cntnap2<sup>+/+</sup> males and Cntnap2<sup>-/-</sup> males at different current step amplitudes. Cntnap2<sup>+/+</sup> males n=10 cells from 4 mice, Cntnap2<sup>-/-</sup> males n=12 cells from 4 mice. Repeated measures twoway ANOVA p values are shown; g x c F (28, 560) = 0.4723, geno F (1, 20) = 0.5675, current F (2.423, 48.47) = 301.7. (H) Quantification (mean ± SEM) of the number of APs evoked in iSPNs in Cntnap2<sup>+/+</sup> females and Cntnap2<sup>-/-</sup> females at different current step amplitudes. Cntnap2<sup>+/+</sup> females n=12 cells from 4 mice, Cntnap2<sup>-/-</sup> females n=9 cells from 4 mice. Repeated measures two-way ANOVA p values are shown; g x c F (28, 532) = 1.655, geno F (1, 19) = 0.2322, current F (2.081, 39.55) = 99.45.

      (5) There is no mention of how membrane resistance was calculated, and no I/V plots are shown.

      Passive properties were calculated from the average of five -5 mV, 100 ms long test pulse steps applied at the beginning of every experiment. Membrane resistance was calculated from the double exponential curve fit. This has now been added to the methods section.

      (6) It would be interesting to see which behavior transitions most contribute to the decrease in entropy. Are these caused by repeated or perseverative grooming bouts? Or is this inflexibility also observed across other behaviors? The transition map in Figure S5 shows the overall number of syllables and transitions but not their sequence during behavior. Can this be analyzed by calculating the ratio of individual 𝑢𝑖 × 𝑝𝑖,𝑗 × log2 𝑝𝑖,𝑗 factors across genotypes?

      We thank the reviewer for raising an insightful question. Here we use a finite state Markov chain model to describe the syllable transitions in animal behavior. To quantify the randomness in the system, we calculated the entropy of the Markov chain (see methods section). The reviewer suggested calculating the partial entropy of the transition matrix, which would allow us to estimate the contribution of a subset of states to the entropy of the whole system, given by the equation:

      The partial equation can indeed quantify the stochasticity, or “flexibility” in our context, of the sub-system containing only a subset of the behavior syllables. However, there are two main limitations to this approach:

      (1) The partial entropy fails to account for the transitions connecting the subset with the rest of the states in the system

      (2) The stationary distribution may not reflect the actual probabilities in the isolated sub-system S.

      Consequently, the partial entropy cannot be directly interpreted as the fraction of contributions from specific syllable pairs or sub-system to the entropy of the whole system. To be more specific, while a significant difference between the same sub-system in WT and KO groups could indicate that the sub-system contributes significantly to the difference of overall entropy, a non-significant result does not mean that the sub-system does not contribute to overall entropy difference, as interactions between the sub-system and other notconsidered states are not accounted for.

      Author response image 4.

      Grooming syllables contribute to some but not all differences in syllable transitions in Cntnap2<sup>-/-</sup> mice. We calculated the entropy of each syllable pair using 𝑢𝑖 × 𝑝𝑖,𝑗 × log2 𝑝𝑖,𝑗 for every syllable pair and every animal. We then statistically tested the difference between genotypes for each syllable pair using Mann-Whitney tests. This plot displays those adjusted p-values for each syllable pair between WT and KO groups. The significant p-values suggest that the transitions to syllables 24 and 25 are different between genotypes (note that these correspond to grooming syllables, see Fig. 5N). However, since the overall entropy is a summation of every pair, it is difficult to conclude that syllables 24 and 25 are the sole contributors to the different entropy we observed.

      Reviewer #3 (Public Review):

      Summary:

      The authors analyzed Cntnap2 KO mice to determine whether loss of the ASD risk gene CNTNAP2 alters the dorsal striatum's function.

      Strengths:

      The results demonstrate that loss of Cntnap2 results in increased excitability of striatal projection neurons (SPNs) and altered striatal-dependent behaviors, such as repetitive, inflexible behaviors. Unlike other brain areas and cell types, synaptic inputs onto SPNs were normal in Cntnap2 KO mice. The experiments are welldesigned, and the results support the authors' conclusions.

      Weaknesses:

      The mechanism underlying SPN hyperexcitability was not explored, and it is unclear whether this cellular phenotype alone can account for the behavioral alterations in Cntnap2 KO mice. No clear explanation emerges for the variable phenotype in different brain areas and cell types.

      We agree that identifying the mechanism by which Cntnap2 loss affects intrinsic excitability is interesting and important. We have added experiments to address this and conclude that the improper clustering, number, or function of Kv1.2 channels in Cntnap2<sup>-/-</sup> dSPNs is likely responsible for their increased excitability. These channels are known to be clustered/organized in part by Caspr2 (PMIDs: 10624965, 12963709, 29300891), and Kv1.2 channels are known to play an important role in regulating excitability in SPNs (PMIDs: 13679409, 32075716). In the case of dSPNs, blocking these channels with α-DTX significantly increased the excitability of WT cells (as has been previously reported); however, this effect was occluded in mutant cells, perhaps owing to a decreased contribution of Kv1.2 channels to excitability in Cntnap2<sup>-/-</sup> dSPNs. In addition, we found that blockade of these channels with α-DTX only modestly affected the excitability of iSPNs. Therefore, this can explain why loss of Cntnap2 more strongly affects the excitability of dSPNs. Please see new Fig. 4, Supp. Fig. 5 and Supp. Fig. 6 for these new data. 

      We agree with the reviewer that we have not identified a causative relationship between the change in dSPN excitability and the behavioral alterations in Cntnap2<sup>-/-</sup> mice. This is a limitation of the study. 

      It is interesting to speculate on the root of the varying impacts to excitability that occur across different brain regions and cell types in Cntnap2<sup>-/-</sup> mice. Increased excitability, as we see in dSPNs, has been identified in cerebellar Purkinje cells and L2/3 pyramidal neurons in somatosensory cortex in the context of Cntnap2 loss (PMIDs: 34593517, 30679017, 36793543). However, other cell types in Cntnap2<sup>-/-</sup> mice have exhibited no change in excitability (mPFC, L2/3 pyramidal neurons, PMID: 31141683) or hypoexcitability (subset of L5/6 pyramidal neurons, PMID: 29112191). While all of these cell types express Kv1.2 channels, they fundamentally vary in their intrinsic properties, owing to the role that other ion channels play in membrane excitability. As a result, loss of Cntnap2 is expected to have a variable effect on excitability depending on the cell type and the complement of other ion channels that are present. In addition, an initial change in excitability may drive secondary, potentially compensatory, changes in other channels that lead to a different excitability state. These changes are also expected to be cell type-specific. We do note that both of the cell types that show increased excitability in the context of Cntnap2 loss have been shown to exhibit an α-DTX-sensitive Kv1 channel current, such that application of α-DTX results in increased firing of these cells (cerebellar Purkinje cells; PMIDs: 17087603, 16210348 and L2/3 pyramidal neurons in somatosensory cortex; PMID: 17215507). These findings are consistent with our results in Cntnap2<sup>-/-</sup> dSPNs. 

      Reviewer #1 (Recommendations For The Authors):

      More thorough analysis of some of the manually quantified behaviors would be helpful. For example, only the grooming bout number was presented- what about the duration of bouts and total time grooming? Similarly, for the open field the number of center entries was reported but what about the total time in the center?

      We have quantified the time spent grooming and total time spent in the center during the open field test from our original data (Author response image 5). These data were not originally included in the manuscript because they were recorded for only a subset of the total animals. For each of these measures we find trend level changes, which are consistent with the primary measures reported in the main manuscript. 

      Author response image 5.

      Time in center and time spent grooming trend towards an increase in Cntnap2<sup>-/-</sup> mice.  (A) Quantification (mean ± SEM) of total time spent in the center of the open field during a 60 minute test, p=0.0656, Mann-Whitney test. (B) Time spent grooming during the first 20 minutes of the open field test, p=0.0611, Mann-Whitney test. For both measurements, Cntnap2<sup>+/+</sup> n=18 mice, Cntnap2<sup>-/-</sup> n=19 mice.

      Reviewer #3 (Recommendations For The Authors):

      What accounts for the hyperexcitability observed in Cntnap2-deficient SPNs? The authors noted that excitability is reportedly increased, reduced, or unchanged in different brain areas. What accounts for this disparity? Is it about the subcellular localization of Kv1 channels? The authors may want to test this possibility experimentally. At least, they may want to test whether Kv1 channels are mislocalized in SPNs.

      We agree that this is an important point, and we have performed additional experiments to address this. We find that the Kv1.2 blocker a-DTX significantly increases the excitability of WT dSPNs but not Cntnap2<sup>-/-</sup> dSPNs. This suggests that the mechanism underlying dSPN hyperexcitability in Cntnap2 mutants is the improper clustering, number, or function of Kv1.2 channels. These channels are known to be clustered and organized in part by Caspr2 (PMIDs: 10624965, 12963709, 29300891) and have been shown to play an important role in regulating the excitability of SPNs (PMIDs: 13679409, 32075716). Interestingly, we find that a-DTX has less of an effect on the excitability of iSPNs, which may account for the greater impact of Cntnap2 loss on dSPNs. Please see new Fig. 4, Supp. Fig. 5 and Supp. Fig. 6 for these added data and analyses. 

      Please see above response to Reviewer #3 for our speculation on the variable impact of Cntnap2 loss on different cell types and brain regions. 

      We agree with the reviewer that assessing potential differences in subcellular localization of Kv1 channels in our model would bolster the conclusion that these channels are mislocalized in the Cntnap2<sup>-/-</sup> striatum. We piloted these experiments using immunohistochemistry to stain for Kv1.1 and 1.2 but found that without very high-resolution imaging, it would be challenging to accurately quantify Kv1 puncta in a cell type-specific manner. We instead chose to investigate the functional contribution of Kv1 channels to the dSPN hyperexcitability phenotype through the a-DTX experiments outlined above. α-DTX strongly inhibits Kv1.2 channels, but also Kv1.1 channels to some extent (PMIDs: 12042352, 13679409). We find that the effects of a-DTX on SPN excitability are occluded in Cntnap2<sup>-/-</sup> dSPNs; therefore, we conclude that Kv1.2 (and possibly Kv1.1) channels have reduced function in these cells. Further work will be needed to determine if this is a result of channel mislocalization or another type of alteration. 

      The authors did not detect synaptic changes in Cntnap-deficient SPNs. This important observation should be briefly discussed in the context of previous work in other brain regions and cell types. For example, some studies reported structural and functional changes at excitatory synapses. The variable impact on synapses suggests distinct compensatory mechanisms in different brain areas.

      Given the prior literature showing effects of Cntnap2 loss on synapses in other brain regions, we were surprised that striatal synapses were not impacted in our model. We agree with the reviewer that the variable changes in synaptic properties across brain regions in Cntnap2 mutant mice is likely a result of distinct compensatory changes in these regions. Differences may also arise depending on whether the synaptic changes originate from the post-synaptic cell or from pre-synaptic changes. An interesting direction for future studies would be to explore the developmental trajectory of excitability and synaptic changes to determine which may be initial perturbations versus those that are secondary and potentially compensatory.

      Line 138: "synaptic excitability". How is this term defined? Consider "synaptic changes" instead.

      “Synaptic excitability” was used to mean a change in the number and/or function of glutamate receptors. We have now changed this term to “excitatory synaptic changes.”

      Consider a short paragraph to highlight some limitations of this study. For example, it is unclear whether SPN hyperexcitability results from a compensatory change in Cntnap2 KO mice and whether the behavioral phenotype is solely due to this cellular phenotype. The study focuses on cortical projections onto SPNs, but these cells receive inputs from other brain areas that were not explored. Lastly, no clear explanation emerges for the variable phenotype in different brain areas and cell types.

      We thank the reviewer for this suggestion and have added several paragraphs to the discussion highlighting some limitations of this study.

      We hypothesize that the dSPN hyperexcitability in Cntnap2<sup>-/-</sup> mice is a primary change, due to the direct relationship between Caspr2 and Kv1.2 channels. The results of our -DTX experiments suggest that the function and/or contribution of these channels to excitability is altered in Cntnap2<sup>-/-</sup> dSPNs. However, it is possible that there are additional changes in dSPNs that occur as a result of Cntnap2 loss and contribute to the hyperexcitability of these cells. Rather surprisingly, we don’t find evidence for altered excitatory (specifically from cortical inputs) or inhibitory synaptic function, suggesting lack of engagement of homeostatic mechanisms at the synaptic level.

      We have not yet determined whether there is a causative relationship between the change in dSPN excitability and the behavioral alterations in Cntnap2<sup>-/-</sup> mice. This is a limitation of the current study. In our discussion section, we highlight that the dSPN changes we observe in dorsolateral striatum (DLS) are known to be sufficient to enhance rotarod learning in other mouse models and thus supports a connection between this cellular change and behavior. For the other behaviors we measured, we acknowledge that both DLS and other striatal or extra-striatal brain regions have been implicated in these behaviors, and therefore less of a direct connection can be made. 

      In terms of the inputs, we focused on cortical inputs given their known role in mediating motor and habit learning (PMID: 15242609, 16237445, 19198605). Notably, corticostriatal synapses have been shown to be altered across a variety of mouse models with mutations in ASD risk genes and therefore may be a point of convergence for disparate genetic insults (PMID: 31758607). We agree that the striatum receives inputs from a variety of brain regions, notably the thalamus, which we did not explore in this study. This would be an interesting area for future studies.

      Finally, it is difficult to speculate on the root of the varying impacts to excitability that occur across different brain regions and cell types in Cntnap2<sup>-/-</sup> mice. Please see above response to Reviewer #3 for some speculation on this point in regard to the potential involvement of Kv1.2 in the excitability changes in various Cntnap2<sup>-/-</sup> cell types. To expand upon this, it is known that ASD-associated mutations can have varying impacts on cell function even across similar cell types within a given brain region – we have seen this between dSPNs and iSPNs (this study, PMIDs: 34380034, 39358043), as have other groups studying ASD risk gene mutations in striatum (PMID: 24995986). This differential impact of the same mutation on intrinsic and/or synaptic physiology across cell types has been identified in other brain regions as well (PMID: 22884327, 26601124). Differences in transcriptional programs, protein expression, neuronal morphology, synaptic inputs and plasticity state make up a non-exhaustive set of variables that will impact the physiological function of a neuron, both in terms of the direct but also indirect consequences of an ASD risk gene mutation. To better address this important question, future studies would benefit from a systematic approach to assessing physiological changes in a given ASD mouse model, both across development and across brain regions.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study by Wang et al. identifies a new type of deacetylase, CobQ, in Aeromonas hydrophila. Notably, the identification of this deacetylase reveals a lack of homology with eukaryotic counterparts, thus underscoring its unique evolutionary trajectory within the bacterial domain.

      Strengths:

      The manuscript convincingly illustrates CobQ's deacetylase activity through robust in vitro experiments, establishing its distinctiveness from known prokaryotic deacetylases. Additionally, the authors elucidate CobQ's potential cooperation with other deacetylases in vivo to regulate bacterial cellular processes. Furthermore, the study highlights CobQ's significance in the regulation of acetylation within prokaryotic cells.

      Weaknesses:

      The problem I raised has been well resolved. I have no further questions.

      Thanks for your valuable comments very much.

      Reviewer #2 (Public review):

      In recent years, lots of researchers tried to explore the existence of new acetyltransferase and deacetylase by using specific antibody enrichment technologies and high resolution mass spectrometry. Here is an example for this effort. Yuqian Wang et al. studied a novel Zn2+- and NAD+-independent KDAC protein, AhCobQ, in Aeromonas hydrophila. They studied the biological function of AhCobQ by using biochemistry method and MS identification technology to confirm it. These results extended our understanding of the regulatory mechanism of bacterial lysine acetylation modifications. However, I find this conclusion is a little speculative, and unfortunately it also doesn't totally support the conclusion as the authors provided.

      Major concerns:

      - It is a little arbitrary to come to the title "Aeromonas hydrophila CobQ is a new type of NAD+- and Zn2+-independent protein lysine deacetylase in prokaryotes." It should be modified to delete the "in the prokaryotes" except that the authors get new more evidence in the other prokaryotes for the existence of the AhCobQ.

      Thank you for your suggestion. However, I believe there has been some confusion regarding the title. In the revised manuscript we have already updated the title to: "Aeromonas hydrophila CobQ is a new type of NAD+- and Zn2+-independent protein lysine deacetylase."

      This title does not include the phrase "in prokaryotes," as you mentioned. We kindly suggest verifying the version of the manuscript that was reviewed to ensure you are reviewing the most recent changes.

      - I was confused about the arrangement of the supplementary results. Because there are no citations for Figures S9-S19.

      Thank you for your feedback. It appears there may have been a misunderstanding, possibly due to reviewing an outdated version of the manuscript. In the revised manuscript we revised the supplementary figures and now have only 12 figures, all of which are correctly cited in the manuscript on pages 12 to 15. Below is a detailed list of the updated figure citations:

      Figures S1: page 8, line 148;

      Figures S2: page 9, line 168;

      Figures S3 and S4: page 10, line 178;

      Figures S5: page 10, line 186;

      Figures S6: page 10, line 189;

      Figures S7: page 12, line 221;

      Figures S8-S10: page 13, line 245;

      Figures S11: page 11, line 282;

      Figures S12: page 15, line 286

      - Same to the above, there are no data about Tables S1-S6.

      Thank you for your attention to the supplementary materials. As with the figures, we have already uploaded the data for Tables S1-S6 in the revised manuscript on November 19, 2024, and properly cited Tables S1 – S6 in the manuscript. Below is the citation information:

      Tables S1: page 10, line 194;

      Tables S2: page 13, line 245;

      Tables S3: page 21, line 438;

      Tables S4: page 22, line 439;

      Tables S5: page 22, line 445;

      Tables S6: page 27, line 564.

      Please note that Tables S3 – S4 include the chemical reagents, primers, and other experimental materials, which are not intended to be cited in the results section.)

      - All the load control is not integrated. Please provide all of the load controls with whole PAGE gel or whole membrane western blot results. Without these whole results, it is not convincing to come the conclusion as the authors mentioned in the context.

      Thank you for your comment. Please note that the full membrane western blot results were included in the revised manuscript. We hope this satisfies your request. If you need further clarification or additional data, please do not hesitate to let us know.

      - Thoroughly review the materials & methods section. It is unclear to me what exactly the authors describe in the method. All the experimental designs and protocols should be described in detail, including growth conditions, assay conditions, and purification conditions, etc.

      Thank you for your valuable suggestion. In response to your comment and previous feedback, we have alredy revised the Materials & Methods section thoroughly in the revised manuscript. The experimental details, including growth conditions, assay protocols, and purification procedures, are described in full on pages 22 to 30 of the revised manuscript.

      - Include relevant information about the experiments performed in the figure legends, such as experimental conditions, replicates, etc. Often it is not clear what was done based on the figure legend description.

      Thank you very much for your detailed feedback and suggestions. We have made sure to describe what each data point represents in the figure legends, as per the previous feedback. However, we would like to clarify that while we have provided detailed descriptions in the legends, the inclusion of every specific experimental condition in the figure legends could result in redundancy, as these details are already thoroughly outlined in the Materials & Methods section.

      We hope this explanation addresses your concern.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have no further revision comments.

      Thank you very much.

      Reviewer #2 (Recommendations for the authors):

      I carefully read the point-to-point response from the author. Although they listed lots of the reasons for the ugly results, it still can not persuade me to accept their conclusions. While, as I know, it is impossible to reject their work in eLife as it was sent out for peer-review. I also can't accuse them of being wrong, but I have my opinion on this point. That is not the results, but the attitude.

      Thank you for your feedback. However, I must express some concerns regarding the nature of your comments. Based on the issues you've raised, it seems that you may have reviewed an outdated version of the manuscript. In the updated revision we addressed all the points you've raised, including the figure and table citations, experimental methods, and data integration.

      We understand that differing opinions are part of the peer-review process, but we respectfully believe that your conclusion regarding our attitude is based on a misunderstanding, possibly caused by reviewing an incorrect version of the manuscript. We have always strived to approach this manuscript with utmost professionalism and have diligently responded to each of your concerns.

      We sincerely suggest reviewing the latest version of our manuscript, and we welcome any further constructive feedback. We hope this clarifies any misunderstandings and look forward to your continued support.

      Thank you for your time and thoughtful consideration.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study by Wang et al. identifies a new type of deacetylase, CobQ, in Aeromonas hydrophila. Notably, the identification of this deacetylase reveals a lack of homology with eukaryotic counterparts, thus underscoring its unique evolutionary trajectory within the bacterial domain.

      Strengths:

      The manuscript convincingly illustrates CobQ's deacetylase activity through robust in vitro experiments, establishing its distinctiveness from known prokaryotic deacetylases. Additionally, the authors elucidate CobQ's potential cooperation with other deacetylases in vivo to regulate bacterial cellular processes. Furthermore, the study highlights CobQ's significance in the regulation of acetylation within prokaryotic cells.

      Weaknesses:

      The problem I raised has been well resolved. I have no further questions.

      Reviewer #2 (Public review):

      In recent years, lots of researchers tried to explore the existence of new acetyltransferase and deacetylase by using specific antibody enrichment technologies and high resolution mass spectrometry. Here is an example for this effort. Yuqian Wang et al. studied a novel Zn2+- and NAD+-independent KDAC protein, AhCobQ, in Aeromonas hydrophila. They studied the biological function of AhCobQ by using biochemistry method and MS identification technology to confirm it. These results extended our understanding of the regulatory mechanism of bacterial lysine acetylation modifications. However, I find this conclusion is a little speculative, and unfortunately, it also doesn't totally support the conclusion as the authors provided.

      Reviewer #3 (Public review):

      Summary:

      This study reports on a novel NAD+ and Zn2+-independent protein lysine deacetylase (KDAC) in Aeromonas hydrophila, termed as AhCobQ (AHA_1389). This protein is annotated as a CobQ/CobB/MinD/ParA family protein and does not show similarity with known NAD+-dependent or Zn2+-dependent KDACs. The authors showed that AhCobQ has NAD+ and Zn2+-independent deacetylase activity with acetylated BSA by western blot and MS analyses. They also provided evidence that the 195-245 aa region of AhCobQ is responsible for the deacetylase activity, which is conserved in some marine prokaryotes and has no similarity with eukaryotic proteins. They identified target proteins of AhCobQ deacetylase by proteomic analysis and verified the deacetylase activity using site-specific Kac proteins. Finally, they showed that AhCobQ activates isocitrate dehydrogenase by deacetylation at K388.

      Strengths:

      The finding of a new type of KDAC has a valuable impact on the field of protein acetylation. The characters (NAD+ and Zn2+-independent deacetylase activity in an unknown domain) shown in this study are very unexpected.

      Weaknesses:

      (1) The characters (NAD+ and Zn2+-independent deacetylase activity in an unknown domain) shown in this study are very unexpected. To convince readers, MSMS data must be necessary to accurately detect (de)acetylation at the target site in the deacetylase activity assay. The authors showed the MSMS data in assays with acetylated BSA, but other assays only rely on western blot.

      (2) They prepared site-specific Kac proteins and used them in deacetylase activity assays. Incorporation of acetyllysine at the target site should be confirmed by MSMS and shown as supplementary data.

      (3) The authors imply that the 195-245 aa region of AhCobQ may represent a new domain responsible for deacetylase activity. The feature of the region would be of interest but is not sufficiently described in Figure 5. The amino acid sequence alignments with representative proteins with conserved residues would be informative. It would be also informative if the modeled structure predicted by AlphaFold is shown and the structural similarity with known deacetylases is discussed.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The problem I raised has been well resolved. I have no further questions.

      Reviewer #2 (Recommendations for the authors):

      Questions to response of"-The load control is not all integrated. All of the load controls with whole PAGE gel or whole membrane western blot results should be provided. Without these whole results, it is not convincing to come to the conclusion that the authors have."

      Just as the Authors answered. The Coomassie Blue R-350 staining outcomes from the PVDF membranes. That is a good control for the experiment. However, I still have several questions about it:

      (1) The first is the quality of these Western blot. Why all the bands of these Western blot is so ugly? To tell the truth, it is very difficult to come to a conclusion from these poor western blots.

      We appreciate your feedback regarding the quality of the Western blots presented in Figure 7. We believe the “ugly bands” you referred to reflect our results validating the functions of CobQ through the use of recombinant site-specific Kac protein substrates.

      In our study, we meticulously engineered these recombinant site-specific Kac proteins using a two-plasmid system, based on foundational research published in Nature Chemical Biology (2017, 13(12): 1253-1260), which introduced the genetic encoding of Nε-acetyllysine into recombinant proteins. However, we faced a common challenge: protein truncation due to premature translation termination at the reassigned codon. This issue not only hampers protein yields, as discussed in ChemBioChem (2017, 18(20): 1973-1983), but also contributes to the suboptimal appearance of the Western blot results.

      Despite conducting at least two independent repetitions for the Western blot analysis of the site-specific Kac proteins, which yielded consistent results, we recognize that the overall quality remains less than ideal. This variability is inherently related to the characteristics of the target proteins. Nevertheless, the primary aim of our manuscript is to validate the novel deacetylase activity of CobQ. We have provided multiple lines of evidence, including mass spectrometry (MS/MS) and Western blot analyses, to substantiate this claim. In response to your comments, we have decided to remove the ambiguous Western blot results from Figure 7, retaining only four figures that demonstrate significant differences across at least two independent replicates (Author response images 1-5). Additionally, we have included four biological replicates of the Western blot results for ICD Kac388 + CobQ in the supplementary materials (Author response image 5) to further validate the deacetylase function of CobQ.

      Author response image 1.

      Western blot validation of the Kac26 AcrA-2 protein substrates regulated by the three KDACs in two biological replicates.

      Author response image 2.

      Western blot validation of the Kac48 Sun protein substrates regulated by the three KDACs in two biological replicates.

      Author response image 3.

      Western blot validation of the Kac103 Sun protein substrates regulated by the three KDACs in two biological replicates.

      Author response image 4.

      Western blot validation of the Kac195 Eno protein substrates regulated by the three KDACs in three biological replicates.

      Author response image 5.

      Western blot validation of the Kac388 ICD protein substrates regulated by AhCobQ in this study. Each sample was independently repeated at least three time.

      (2) The second is why some of the results are not from the same PVDF by comparing the Coommassie staining with the WB results just as authors responded. For example, the HrpA-K816 (ac), Eno-K195 (ac), ArcA-2-K26 (ac), ArcA-2-K26 (ac), IscS-K93(ac), A0KJ75-K81(ac), GyrB-K331(ac), GyrB-K449(ac), FtsA-K320(ac), FtsA-K409(ac), RecA-K279(ac), and the RecA-K306(ac). All of them are clearly not from the same staining results of PVDF membrane but from a new PVDF membrane.

      We assure you that the R-350 stained PVDF membranes originate from the same Western blot membranes. However, we acknowledge that visual discrepancies may arise due to differences in imaging techniques. The Western blot results were scanned using a ChemiDoc MP (Bio-Rad, Hercules, CA, USA), while the Coomassie R-350 stained PVDF membranes were captured using a standard camera. These differences can create a misleading appearance, making it seem as though they come from different membranes.

      It is also important to note that the intensity of the protein marker cannot be directly compared between the two imaging methods. As illustrated in Author response image 6, the protein marker at 70 kDa is clearly detectable in the Coomassie R-350 image, whereas it may not be as apparent in the Western blot result due to inherent differences in detection sensitivity.

      Author response image 6.

      The comparison of Western blotting and R-350 strained results of same protein marker in the same PVDF membrane. The protein marker located at 70 kDa can be detected easily in Coomassie R-350, while is difficult to display in WB result.

      Additionally, we have removed some of the so-called "ugly" Western blot results in the updated manuscript and provided the original full film of the relevant images as an attachment. This documentation demonstrates that all the data you referenced originate from the same film, as shown in Figures 1-5.

      (3) The third is why there is no replication for all these WB results. We should draw a conclusion with serious attitude, but not from the only one repeat, even say nothing about the poor results.

      Thank you for your valuable suggestion. In the second version of the manuscript, we have included the original full film of the relevant images. While we previously explained the reasons behind the "ugly" Western blot results, we have decided to remove some, or even all, of these results from Figure 7 in the updated version. The related images will be updated in the supplementary materials (Figures 1-5 in responding letter and Figure 7 in the revised manuscript).

      Furthermore, we have provided a more detailed discussion regarding the poor results in the updated manuscript to ensure clarity and transparency. We appreciate your understanding and hope these changes meet your expectations.

      Questions to response of " L174-187, L795 (Please show the whole membrane (or PAGE gel) of the loading control of CobB, and CobQ, except for the Kac-BSA)".

      (1) As we all educated that there is no control, and no biology. Where is the band of CobQ? Why do not stain the same PVDF membrane with R-350 staining but with a new membrane?

      Thank you for your insightful feedback. As noted in our previous response, the absence of visible bands for AhCobQ and AhCobB on the Coomassie R-350 stained PVDF membrane is primarily due to the low loading amounts and protein loss during the Western blotting process.

      To reinforce our findings, we repeated the analysis of the protein samples via SDS-PAGE, using the same loading quantity as in the previous Western blot shown in Figure 2 of the manuscript. As illustrated in Author response image 7, the bands for CobB and CobQ are discernible, albeit with significantly lower intensities compared to the Kac-BSA bands. Upon examining the full Coomassie R-350 stained PVDF membranes provided in Supplementary Material 1, we observe that the CobB and CobQ bands are not easily visible. This aligns with your observations and can be attributed to potential protein loss during the transfer from SDS-PAGE to the PVDF membrane.

      Author response image 7.

      The SDS-PAGE gel displayed the loading amounts of Kac-BSA and CobB/CobQ.

      To enhance the visibility of the CobQ/CobB bands, we increased the loading of CobQ/CobB in a new Western blot experiment, using 2 µg of Kac-BSA in combination with 0.8 µg of CobQ/CobB. As shown in Figure 8, while the increasing amounts of Kac-BSA resulted in a more blurred signal, the bands for the recombinant CobQ and CobB proteins were clearly detectable. This indicates that both proteins were indeed involved in the in vitro protein deacetylation assay.

      Author response image 8.

      Western blot verified the deacetylase activity assay of AhCobQ and AhCobB on Kac-BSA.

      Furthermore, we conducted a mass spectrometry analysis comparing Kac-BSA and Kac-BSA incubated with CobQ, as well as BSA without acetylation, against the A. hydrophila database with a cut-off of unique matched peptides >1. It is challenging to completely avoid contaminant detection during protein purification, especially when using high-resolution mass spectrometry. Our findings revealed that CobQ has the highest number of unique matched peptides (Author response table 1), while contaminants such as AHA_3036, AHA_0497, AHA_1279, and valS could be excluded, as they were present in Kac-BSA or BSA samples. Additionally, Tuf1, RplQ, GroEL, RpsF, RpsU, RpsB, RpsO, and RpsJ are known ribosomal subunits or chaperonins that are abundantly expressed in cells and may interact with various proteins, leading to contaminant detection.

      Author response table 1.

      LC MS/MS results of selected peptide quantification among Kac-BSA and Kac-BSA incubated with CobQ and BSA without acetylation against A. hydrophila database (unique matched peptides>1).

      Although AceE, a pyruvate dehydrogenase E1 component, theoretically possesses deacetylase activity, this possibility is low. First, in the SDS-PAGE gel of the purified recombinant protein, CobQ is the major band, with other proteins present at very low levels (less than 1/10 of CobQ). This suggests that significant deacetylation by contaminants is unlikely. Second, we purified His-tagged AhCobQ and GST-fused AhCobQ separately and tested their deacetylase activities. As shown in Figure S4 of the updated manuscript, both purified AhCobQ proteins exhibited deacetylase activity, while the negative control (purified GST protein only) did not, further supporting our conclusion that enzyme activity is not attributable to contaminating proteins (Figure S5).

      (2) Without the CobB and CobQ bands, it is impossible to say the function of CobQ is a new deacetylase. To avoid this confusion, it is easy to run a new gel and stain it with anti-His antibody to show these deacetylases.

      Thank you very much for your suggestion. We have performed the experiment in the comment (1) as your suggestion.

      (3) The explanation about the CobB/CobQ bands are not visible is not acceptable. Because the molecular weight of the CobB and CobQ is smaller than that of BSA, it is impossible that these bands will be loss during membrane transfer.

      Thank you for your valuable feedback. I completely agree that the loss of CobB and CobQ proteins during membrane transfer is unlikely due to their smaller molecular weight compared to BSA. As shown in Figure 7, the bands for CobB and CobQ are detectable in the SDS-PAGE gel but not visible on the Coomassie R-350 stained PVDF membrane.

      Several factors could contribute to this issue. One possibility is that the detection sensitivity of Coomassie R-350 may be lower than that of Coomassie R-250 used in the gel. Additionally, the Western blot results using an anti-His antibody further indicate low loading amounts of CobB and CobQ proteins on the PVDF membrane (Figure 8). This suggests that the observed low levels may indeed be due to protein loss during the membrane transfer process, despite their relatively small size.

      Reviewer #3 (Recommendations for the authors):

      (1) I found Tables S1 and S2 in the revised manuscript. It is strange to me that the intensity of Kac-BSA+CobQ is zero, completely nothing. Typically, a portion of the acetylated peptide remains after the deacetylation reaction.

      Thank you for your observation. When we report an intensity of zero, it does not imply a complete absence of signal; rather, it indicates that the signal for the target peptide is below the detectable threshold. This is likely due to the minimum cut-off setting in the MaxQuant (MQ) software, which is determined by parameters like "peptide_mass_tolerance" (as discussed in MQ user groups online, though it may not be explicitly listed in the parameters file).

      In our study, we performed a deacetylase assay that demonstrated CobQ's rapid activity; for instance, it can deacetylate ICD-K388ac within just four minutes. This leads me to hypothesize that the CobQ + Kac-BSA sample may have undergone near-complete enzymatic hydrolysis during the reaction.

      Furthermore, Table S1 in manuscript presents only a selection of the mass spectrometry results to illustrate CobQ's activity. In addition to the 15 acetylated peptides shown, there are many more (27 peptides) that exhibit significantly reduced acetylation levels without reaching zero intensity. The overall acetylation level of BSA peptides incubated with CobQ is calculated to be only 0.13 times that of Kac-BSA (Diagnostic peak: yes, peptide score: >100, Localization probability: >0.95) (Author response image 9).

      Based on these findings, we believe our mass spectrometry results are reliable and effectively support our conclusions. Thank you for your understanding.

      Author response image 9.

      The intensities of all Kac peptides of Kac-BSA with or without AhCobQ incubation in LC MS/MS.

      (2) It would be better to provide the information about ArcA and ArcA-2 as mentioned in the authors' response. It would be helpful for readers to understand that they are different proteins.

      Thank you for your suggestion. In the A. hydrophila ATCC 7966 dataset, there are indeed two distinct proteins referred to as ArcA: ArcA-1, which functions as an aerobic respiration control protein, and ArcA-2, which acts as an arginine deiminase. Importantly, these two proteins do not share any sequence homology; they are only similarly named due to their acronyms. While we believe this distinction does not require extensive explanation in the current study, we appreciate your input. Additionally, in response to Reviewer 2’s feedback, we have decided to remove the Western blot result for ArcA-2 due to its poor quality in the updated manuscript.

      (3) Line 409-416. Despite my comment, the citation of related papers on ICD acetylation in E. coli is still missing.

      Thank you for your suggestion. It has been added and highlighted in red. (Venkat S, et al, 2018, 430(13): 1901-1911)

      (4) The image resolution of Figure 3C and 3D is still bad. I could not evaluate that Kac was exactly incorporated at the target site.

      Thank you for your feedback regarding the image resolution of Figures 3C and 3D. We have now displayed these figures with improved clarity, as you suggested.

      To further validate the reliability of our MS2 data, we employed Proteome Discoverer 2.4 (Thermo) to analyze the raw data and provide theoretical mass information. As shown in Author response images 10-13, the MS2 spectra and fragment match lists for both unmodified and acetylated peptides offer additional confirmation of the reliability of our mass spectrometry results.

      Author response image 10.

      MS2 spectrum of unmodified peptide using PD v2.4 software.

      Author response image 11.

      The theoretical mass of unmodified peptide by PD 2.4

      Author response image 12.

      MS2 spectrum of acetylated peptide using PD v2.4 software.

      Author response image 13.

      The theoretical mass of acetylated peptide by PD 2.4.

      (5) Again, in Figure 8D, it should be shown the significance between ICD-Kac388 and ICD-Kac388+AhCobB to support the authors' conclusion that AhCobQ activates ICD by deacetylation at K388.

      Thanks for your suggestion, we have updated the figure in Figure 8D in updated manuscript.

      (6) It was nice that the authors presented the mass spectrum data of ICD-K388 acetylation (Figure 2 in responding letter). However, the data did not convince me that K388 is acetylated. In the figure, two b-ion peaks are detected, 285.1557 and 386.2034, which may correspond to NK (theoretical mass, 260.15) and NKT (theoretical mass, 361.20) peptides, respectively. If K388 is acetylated, an increase in the mass of 42 should be observed, but the difference between the detected and theoretical mass is 25. I also could not understand what the peak of 126.0913 mass is, indicated with acK* in red.

      Thank you for your detailed observation. The data presented in the MS2 spectrum for ICD-K388 acetylation in Figure 2 of the previous response letter were generated using Proteome Discoverer 2.4 (PD, Thermo) to ensure accurate mass calculations. Similar to the results from MaxQuant, ICD-K388 was identified again (Author response image 14).

      Regarding the b-ion peaks you mentioned, the values 285.1557 and 386.2034 correspond to NK<sup>ac</sup> and NK<sup>ac</sup>T peptides, respectively. The theoretical masses for these peptides are as follows: NK<sup>ac</sup> (285.15 = 115.05020 + 128.095 + 42.01) and NK<sup>ac</sup>T (386.20 = NK<sup>ac</sup> + 101.04768). The differences between the theoretical and detected masses for the relevant b-ions (b2*-NK, b52+-NH3, and b3) are minimal, at 0.00 Da and 2.1 ppm, respectively, which is consistent with the incorporation of an NH3 group (Author response image 15).

      Author response image 14.

      The MS2 of ICD-K388 peptide by PD 2.4.

      Author response image 15.

      The theoretical mass of ICD-K388 peptide by PD 2.4.

      The peak at 126.0913 m/z, indicated as acK*, represents immonium ions of ε-N-acetyllysine, which are generated during the fragmentation of acetyllysine. This diagnostic ion is widely recognized as a marker for identifying acetylated peptides (Nakayasu, et al,. A method to determine lysine acetylation stoichiometries. International journal of proteomics. 2014;2014(1):730725; Trelle et al., Utility of immonium ions for assignment of ε-N-acetyllysine-containing peptides by tandem mass spectrometry. Analytical chemistry. 2008;80(9):3422-30). Additionally, it is a default parameter in MaxQuant for identifying Kac peptides (Author response image 16).

      Based on these findings, we believe the evidence supporting ICD-K388 acetylation is robust.

      Author response image 16.

      The default parameter in Kac peptide identification in Maxquant v1.6 software

      (7) As mentioned by other reviewers, some of the figures and tables are incomplete. Some panels (ex. Figure 7C and 7D) and explanations (ex. What are lanes 1, 2, and 3 in Figure S3) are still missing.

      Thank you for your suggestion. It has been added.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      The authors of the study investigated the generalization capabilities of a deep learning brain age model across different age groups within the Singaporean population, encompassing both elderly individuals aged 55 to 88 years and children aged 4 to 11 years. The model, originally trained on a dataset primarily consisting of Caucasian adults, demonstrated a varying degree of adaptability across these age groups. For the elderly, the authors observed that the model could be applied with minimal modifications, whereas for children, significant fine-tuning was necessary to achieve accurate predictions. Through their analysis, the authors established a correlation between changes in the brain age gap and future executive function performance across both demographics. Additionally, they identified distinct neuroanatomical predictors for brain age in each group: lateral ventricles and frontal areas were key in elderly participants, while white matter and posterior brain regions played a crucial role in children. These findings underscore the authors' conclusion that brain age models hold the potential for generalization across diverse populations, further emphasizing the significance of brain age progression as an indicator of cognitive development and aging processes.

      Strengths: 

      (1) The study tackles a crucial research gap by exploring the adaptability of a brain age model across Asian demographics (Chinese, Malay, and Indian Singaporeans), enriching our knowledge of brain aging beyond Western populations.

      (2) It uncovers distinct anatomical predictors of brain aging between elderly and younger individuals, highlighting a significant finding in the understanding of age-related changes and ethnic differences.

      Weaknesses: 

      (1) Clarity in describing the fine-tuning process is essential for improved comprehension.

      (2) The analysis often limits its findings to p-values, omitting the effect sizes crucial for understanding the relationship with cognition.

      (3) Employing a predictive framework for cognition using brain age could offer more insight than mere statistical correlations.

      (4) Expanding the study's scope to evaluate the model's generalisability to unseen Caucasian samples is vital for establishing a comparative baseline.

      In summary, this paper underscores the critical need to include diverse ethnicities in model testing and estimation.

      Reviewer #1 (Recommendations for the authors): 

      Comment #1 - Fine-Tuning Process Clarity: Enhanced clarity in the fine-tuning process documentation is crucial for understanding how models are adapted to new datasets. This involves explaining parameter adjustments and choices, which facilitates replication and application in further research.

      We thank Reviewer #1 for this pertinent point. As advised, we have added a Supplementary Methods section with more details on the finetuning process. This includes the addition of Supplementary Figure S6, which shows examples of learning curves that helped inform our parameter adjustments and choices. We have added a reference to this section in Section 5.2 of the Methods.

      Comment #2 - Effect Sizes Reporting: The emphasis on reporting effect sizes alongside p-values addresses the need to quantify the strength of observed effects, particularly the relationship between brain age and cognition. Effect sizes provide insights into the practical significance of findings, crucial for clinical and practical applications.

      We thank Reviewer #1 for raising this important comment. As suggested, we have added standardized regression coefficients (as measures of effect size) alongside p-values in Figures 3 – 4, Supplementary Figures S2 – S4, Supplementary Tables S4 – S15, and the text of Sections 2.2 – 2.3 of the Results. We have additionally added 95% confidence intervals to Supplementary Tables S4 – S15.

      Comment #3 - Predictive Framework for Cognition: Adopting a predictive framework for cognition using brain age moves the research from mere correlation to actionable prediction, offering potentials based on predictive analytics.

      We thank Reviewer #1 for this insightful suggestion. Adopting a predictive framework would certainly be a useful and exciting avenue for the application of brain age. However, we note that the current study was primarily interested in the generalizability and interpretability of brain age in Asian children and older adults, as well as the added value of longitudinal measures of brain age. Thus, we believe our correlation-based analysis effectively demonstrated that deviations of brain age from chronological age were not merely random errors, but were informative of cognition. Furthermore, ongoing changes to these deviations were informative of future cognition. This helps to establish the brain age gap as a biomarker for aging, independent of chronological age. Additionally, we expect that the accurate prediction of future cognition would require a multitude of factors, in addition to T1-based brain age, as well as a large sample size to train and test. We believe such a dataset would be a promising avenue for future work, but it is outside the scope of the current study.

      Nonetheless, we were able to conduct a preliminary analysis using the current longitudinal data from SLABS and GUSTO. We extracted the same variables used in the original analyses of future cognition, corresponding to Figures 3D and 4B in the main text. To implement a predictive framework, we split the data into 10 stratified cross-validation folds. We also used kernel ridge regression (KRR) as the predictive model, as it has previously shown promising performance in behavioral and cognitive prediction [1]. We used a cosine kernel and nested 5-fold cross-validation to pick the optimal regularization strength (alpha).

      To investigate the added value of BAG and longitudinal changes in BAG, we compared 3 predictive models for each cognitive domain. The baseline model consisted of the demographic covariates used in the original analyses (i.e. chronological age, sex, and years of education for older adults). A second model combined demographics with baseline BAG, and the third model incorporated demographics, baseline BAG, and the (early) annual rate of change in BAG. Predictions were extracted from each test fold, and performance was measured by the correlation between test predictions and actual values of future cognition (or change in cognition). Models were statistically compared using the corrected resampled t-test for machine learning models [1], [2], [3]. The Benjamini-Hochberg procedure was used to correct for multiple comparisons.

      Author response image 1 shows the prediction results for SLABS and GUSTO. Notably, adding the early change in BAG significantly improves the prediction of future change in executive function in SLABS. There is also an improvement in predicting the future inhibition score in GUSTO, but this is not significant after multiple comparison correction. Encouragingly, these are the same domains that showed significant associations with the change in BAG in the original analyses. This suggests that longitudinal brain age continues to contribute information, independent of baseline factors, in a predictive framework. We hope that future work can expand on this analysis with, for instance, larger sample sizes, more varied and informative predictors, and state-of-the-art prediction methods, in order to establish actionable predictions of future cognition.

      Author response image 1.

      Predictive framework for cognition similarly suggests value of longitudinal change in BAG. Prediction performance (Pearson's correlation) of KRR across future cognitive outcomes. Each boxplot shows the distribution of performance over cross-validation folds. Model performances are statistically compared for each outcome. Significant outcomes from the original analyses are bolded. (A) Results for SLABS using the early change in BAG and future change in cognitive scores (non-overlapping). Early change in BAG again shows benefit for predicting future change in executive function. (B) Results for GUSTO using the early change in BAG (from 4.5-7.5 years old) and future cognitive score (at 8.5 years old). Early change in BAG again shows benefit for predicting future inhibition, but it is not significant after multiple comparison correction. Key - **: p < 0.01; * (ns): p < 0.05 but p<sub>corr</sub> > 0.05 after multiple comparison correction; ns: p > 0.05

      Comment #4 - Generalizability to Unseen Caucasian Samples: Evaluating the model's performance on unseen (longitudinal) Caucasian samples is important for benchmarking.

      We thank Reviewer #1 for this important comment. We agree that generalizability should be benchmarked against performance on unseen Caucasian samples. In the SFCN model paper [4], they conducted an out-of-sample test on unseen Caucasian samples from ages 13 to 95. In this age range, they reported a high correlation (r = 0.975) and low MAE (MAE = 3.90). This favorable generalization performance was verified in adults by independent evaluations [5], [6]. This is also in line with what we observed in Asian older adults, taking into account the different age ranges and sample sizes involved [7].

      However, this also highlights the difficulty in evaluating on younger ages in the range of GUSTO (4.5 – 10.5 years old). Most accessible developmental datasets (e.g. HBN, PING) were already included in model training, preventing an unbiased evaluation on these samples. Datasets such as PNC and ABCD were not included in training, but they primarily consist of an older age range than GUSTO. Holm et al. [8] previously tested the SFCN model in ABCD and reported satisfactory performance (low MAE) from 9 – 13 years old. However, to the best of our knowledge, there are no reported generalization results (for any ethnicity) from 4.5 – 7.5 years old, which is where we found the most performance degradation in GUSTO. We are also not aware of any datasets in this age range we could access to test this, unfortunately, but it would be an important area for future work.

      While benchmarking in Caucasian children is difficult, we were able to conduct a preliminary analysis with older adults using the ADNI dataset (which was not included in the model training [4]). We selected a longitudinal subset with cognitive data available and no dementia at baseline (N = 137). We used composite cognitive scores covering memory, executive function, language, and visuospatial function [9], [10], [11]. We followed the same methodology (e.g. preprocessing, finetuning, statistical analysis) as the main analyses on EDIS, SLABS, and GUSTO. To maximize the data available, we tested associations with future cognition (taken at the last available time point), similar to GUSTO. We again included chronological age, sex, and years of education as demographic covariates.

      Author response image 2 shows the brain age predictions for the pretrained and finetuned models on ADNI. Similar to Singaporean older adults, the pretrained model performs well, producing a high correlation (r = 0.8053; compared to r = 0.7389 for EDIS and r = 0.8136 for SLABS) and somewhat low MAE (MAE = 4.9735; compared to MAE = 3.9895 for EDIS and MAE = 3.4668 for SLABS). After finetuning, the MAE improves (MAE = 3.6837; compared to MAE = 3.3232 for EDIS and MAE = 3.2653 for SLABS) with a similar correlation (r = 0.7854; compared to r = 0.7445 for EDIS and r = 0.8138 for SLABS). This suggests that generalization to unseen Singaporean older adults is in line with the generalization to unseen Caucasian older adults.

      Author response image 2. 

      Brain age predictions on unseen Caucasian sample of older adults. Predictions from the A) pretrained and B) finetuned brain age models on ADNI participants. Compare to Figure 2 of the main text.

      For the associations with future cognition, we again find that baseline BAG does not associate with future cognition (Author response tables 1 and 2). However, encouragingly, we find that the early annual rate of change in BAG does associate with future memory, which is significant after multiple comparison correction for the finetuned model (Author response tables 2 and 3). This suggests  a degree of replicability to the original results, but interestingly, in a different domain (memory vs. executive function). In contrast to SLABS, which consists of healthy older adults recruited from the community, ADNI consists of participants at risk of AD recruited from memory clinics. Thus, this difference in domain could be due to factors such as a stronger signal for memory in the testing battery or greater variations in memory function and decline. However, it could also reflect other population differences between ADNI and SLABS. This is an intriguing area for future study, ideally with larger sample sizes and more diverse populations included.

      Author response table 1.

      Linear relationship between pretrained baseline BAG and future cognitive score in ADNI. Compare to Supplementary Tables S4 – S15 of the original text.

      Author response table 2. 

      Linear relationship between finetuned baseline BAG and future cognitive score in ADNI. Compare to Supplementary Tables S4 – S15 of the original text.

      Author response table 3.

      Linear relationship between pretrained change in BAG and future cognitive score in ADNI. Compare to Supplementary Tables S4 – S15 of the original text.

      Author response table 4. 

      Linear relationship between finetuned change in BAG and future cognitive score in ADNI. Compare to Supplementary Tables S4 – S15 of the original text.

      References

      (1) L. Q. R. Ooi et al., “Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI,” NeuroImage, vol. 263, p. 119636, Nov. 2022, doi: 10.1016/j.neuroimage.2022.119636.

      (2) C. Nadeau and Y. Bengio, “Inference for the Generalization Error,” Mach. Learn., vol. 52, no. 3, pp. 239–281, Sep. 2003, doi: 10.1023/A:1024068626366.

      (3) R. R. Bouckaert and E. Frank, “Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms,” in Advances in Knowledge Discovery and Data Mining, H. Dai, R. Srikant, and C. Zhang, Eds., Berlin, Heidelberg: Springer, 2004, pp. 3–12. doi: 10.1007/978-3-540-24775-3_3.

      (4) E. H. Leonardsen et al., “Deep neural networks learn general and clinically relevant representations of the ageing brain,” NeuroImage, vol. 256, p. 119210, Aug. 2022, doi: 10.1016/j.neuroimage.2022.119210.

      (5) R. P. Dörfel et al., “Prediction of brain age using structural magnetic resonance imaging: A comparison of accuracy and test-retest reliability of publicly available software packages,” Neuroscience, preprint, Jan. 2023. doi: 10.1101/2023.01.26.525514.

      (6) J. L. Hanson, D. J. Adkins, E. Bacas, and P. Zhou, “Examining the reliability of brain age algorithms under varying degrees of participant motion,” Brain Inform., vol. 11, no. 1, p. 9, Apr. 2024, doi: 10.1186/s40708-024-00223-0.

      (7) A.-M. G. de Lange et al., “Mind the gap: Performance metric evaluation in brain-age prediction,” Hum. Brain Mapp., vol. 43, no. 10, pp. 3113–3129, Jul. 2022, doi: 10.1002/hbm.25837.

      (8) M. C. Holm et al., “Linking brain maturation and puberty during early adolescence using longitudinal brain age prediction in the ABCD cohort,” Dev. Cogn. Neurosci., vol. 60, p. 101220, Feb. 2023, doi: 10.1016/j.dcn.2023.101220.

      (9) P. K. Crane et al., “Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI),” Brain Imaging Behav., vol. 6, no. 4, pp. 502–516, Dec. 2012, doi: 10.1007/s11682-012-9186-z.

      (10) L. E. Gibbons et al., “A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment,” Brain Imaging Behav., vol. 6, no. 4, pp. 517–527, Dec. 2012, doi: 10.1007/s11682-012-9176-1.

      (11) S.-E. Choi et al., “Development and validation of language and visuospatial composite scores in ADNI,” Alzheimers Dement. Transl. Res. Clin. Interv., vol. 6, no. 1, p. e12072, 2020, doi: 10.1002/trc2.12072.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Dong et al here have studied the impact of the small Ras-like GTPase Rab10 on the exocytosis of dense core vesicles (DVC), which are important mediators of neuropeptide signaling in the brain. They use optical imaging to show that lentiviral depletion of Rab10 in mouse hippocampal neurons in culture independent of the established defects in neurite outgrowth hamper DCV exocytosis. They further demonstrate that such defects are paralleled by changes in ER morphology and defective ER-based calcium buffering as well as reduced ribosomal protein expression in Rab10-depleted neurons. Re-expression of Rab10 or supplementation of exogenous L-leucine to restore defective neuronal protein synthesis rescues impaired DCV secretion. Based on these results they propose that Rab10 regulates DCV release by maintaining ER calcium homeostasis and neuronal protein synthesis.

      Strengths:

      This work provides interesting and potentially important new insights into the connection between ER function and the regulated secretion of neuropeptides via DCVs. The authors combine advanced optical imaging with light and electron microscopy, biochemistry, and proteomics approaches to thoroughly assess the effects of Rab10 knockdown at the cellular level in primary neurons. The proteomic dataset provided may be valuable in facilitating future studies regarding Rab10 function. This work will thus be of interest to neuroscientists and cell biologists.

      We appreciate the positive evaluation of our manuscript.

      Weaknesses:

      While the main conclusions of this study are comparably well supported by the data, I see three major weaknesses:

      (1) For some of the data the statistical basis for analysis remains unclear. I.e. is the statistical assessment based on N= number of experiments or n = number of synapses, images, fields of view etc.? As the latter cannot be considered independent biological replicates, they should not form the basis of statistical testing.

      This is an important point and we agree that multiple samples from the same biological replicate are not independent observations. We reanalyzed all nested data using a linear mixed model and indicated this in the Methods section and the relevant figure legends (Brunner et al., 2022). In brief, biological replicates (individual neuronal cultures) were used as a linear predictor. Outliers were identified and excluded using the ROUT method in GraphPad. A fixed linear regression model was then fitted to the data using the lm() function in R. A one-way anova (analysis of variance) was used to assess whether including the experimental group as a second linear predictor (formula = y ~ Group + Culture) statistically improved the fit of a model without group information (formula = y ~ 1 + Culture). Post-hoc analysis was performed using the emmeans() function with Tukey’s adjustment when more than two experimental groups were present. Importantly, our conclusions remain unchanged.

      (2) As it stands the paper reports on three partially independent phenotypic observations, the causal interrelationship of which remains unclear. Based on prior studies (e.g. Mercan et al 2013 Mol Cell Biol; Graves et al JBC 1997) it is conceivable that defective ER-based calcium signaling and the observed reduction in protein synthesis are causally related. For example, ER calcium release is known to promote pS6K1 phosphorylation, a major upstream regulator of protein synthesis and ribosome biogenesis. Conversely, L-leucine supplementation is known to trigger calcium release from ER stores via IP3Rs. Given the reported impact of Rab10 on axonal transport of autophagosomes and, possibly, lysosomes via JIP3/4 or other mediators (see e.g. Cason and Holzbaur JCB 2023) and the fact that mTORC1, the alleged target of leucine supplementation, is located on lysosomes, which in turn form membrane contacts with the ER, it seems worth analyzing whether the various phenotypes observed are linked at the level of mTORC1 signaling.

      This is great suggestion that could indeed further clarify the potential interplay between ER-based Ca2+ signaling and protein synthesis. To address this, we assessed the phosphorylation level of pS6K1 in control and Rab10 knockdown (KD) neurons with or without leucine treatment. These data are included in the new Figure 8—figure supplement 1 in the revised manuscript. Our results indicate that pS6K1 phosphorylation was not upregulated in Rab10 KD neurons, suggesting that the level of mTORC1 signaling is not different between wild-type or KD neurons. Furthermore, leucine treatment increased the pS6K1 phosphorylation level, as expected, but this effect was similar in both groups. Hence, we conclude that differences in mTORC1 signaling induced by Rab10 loss is not a major factor in the observed impairment in protein synthesis.

      Author response image 1.

      Rab10 depletion does not upregulate mTORC1 pathway. (A)Typical immunoblot showing pS6K1 levels in each condition. (B) Quantification of relative pS6K1 levels in each condition. All Data are plotted as mean±s.e.m. (C) Control, Control + Leu: N = 2, n = 2, Rab10 KD, Rab10 KD + Leu: N = 2, n = 4.

      (3) The claimed lack of effect of Rab10 depletion on SV exocytosis is solely based on very strong train stimulation with 200 Aps, a condition not very well suited to analyze defects in SV fusion. The conclusion that Rab10 loss does not impact SV fusion thus seems premature.

      We agree that 200 APs stimulation might be too strong to detect specific effects on evoked synaptic vesicle release, although this stimulation pattern is an established pattern in hundreds of studies (Emperador-Melero et al., 2018; Granseth et al., 2006; Ivanova et al., 2021; Kwon and Chapman, 2011; Reshetniak et al., 2020). We have toned down our conclusions and clarified in the revised manuscript that Rab10 is dispensable for SV exocytosis evoked by intense stimulations. The corresponding statements in the text have been modified accordingly (p. 5, l. 98, 124) and in figure legend (p. 17, 490).

      Reviewer #2 (Public Review):

      Summary:<br /> In this paper, the authors assess the function of Rab10 in dense core vesicle (DCV) exocytosis using RNAi and cultured neurons. The author provides evidence that their knockdown (KD) is effective and provides evidence that DCV is compromised. They also perform proteomic analysis to identify potential pathways that are affected upon KD of Rab10 that may be involved in DCV release. Upon focusing on ER morphology and protein synthesis, the authors conclude that defects in protein synthesis and ER Ca2+ homeostasis contributes to the DVC release defect upon Rab10 KD. The authors claim that Rab10 is not involved in synaptic vesicle (SV) release and membrane homeostasis in mature neurons.

      Strengths:

      The data related to Rab10's role in DCV release seems to be strong and carried out with rigor. While the paper lacks in vivo evidence that this gene is indeed involved in DCV in a living mammalian organism, I feel the cellular studies have value. The identification of ER defect in Rab10 manipulation is not truly novel but it is a good conformation of studies performed in other systems. The finding that DCV release defect and protein synthesis defect seen upon Rab10 KD can be significantly suppressed by Leucine supplementation is also a strength of this work.

      We appreciate the positive evaluation of our manuscript.

      Weaknesses:

      The data showing Rab10 is NOT involved in SV exocytosis seems a bit weak to me. Since the proteomic analysis revealed so many proteins that are involved in SV exo/encodytosis to be affected upon Rab10, it is a bit strange that they didn't see an obvious defect. Perhaps this could have been because of the protocol that the authors used to trigger SV release (I am not an E-phys expert but perhaps this could have been a 'sledge-hammer' manipulation that may mask any subtle defects)? Perhaps the authors can claim that DCV is more sensitive to Rab10 KD than SV, but I am not sure whether the authors should make a strong claim about Rab10 not being important for SV exocytosis.

      We agree that 200 APs stimulation might be too strong to see specific effects on evoked synaptic vesicle release, although this stimulation pattern is an established pattern in hundreds of studies. We have toned down our conclusions and clarified in the revised manuscript that Rab10 is dispensable for SV exocytosis evoked by intense stimulations. The corresponding statements in the text have been modified accordingly (p. 5, l. 98, 124) and in figure legend (p. 17, 490).

      Also, the authors mention "Rab10 does not regulate membrane homeostasis in mature neurons" but I feel this is an overstatement. Since the authors only performed KD experiments, not knock-out (KO) experiments, I believe they should not make any conclusion about it not being required, especially since there is some level of Rab10 present in their cells. If they want to make these claims, I believe the authors will need to perform conditional KO experiments, which are not performed in this study.

      This is a valid point. We have changed the statement to “membrane homeostasis in mature neurons was unaffected by Rab10 knockdown” (p. 13, l.376-377).

      Finally, the authors show that protein synthesis and ER Ca2+ defects seem to contribute to the defect but they do not discuss the relationship between the two defects. If the authors treat the Rab10 KD cells with both ionomycin and Leucine, do they get a full rescue? Or is one defect upstream of the other (e.g. can they see rescue of ER morphology upon Leucine treatment)? While this is not critical for the conclusions of the paper, several additional experiments could be performed to clarify their model, especially considering there is no clear model that explains how Rab10, protein synthesis, ER homeostasis, and Ca2+ are related to DCV (but not SV) exocytosis.

      This is an important point and a great suggestion. We have now tested the rescue effects of leucine treatment on ER morphology, as suggested. These data are included in the new Figure 8—figure supplement 2 in the revised manuscript. Our results indicate that the same dose of leucine that rescues DCV fusion and protein translation failed to rescue ER morphology. Hence, the defects in ER morphology appear to be independent of the impaired protein translation.

      Author response image 2.

      Leucine supplementation does not rescue ER morphological deficiency in Rab10 KD neurons. (A) Typical examples showing the KDEL signals in each condition. (B) Quantification of RTN4 intensity in MAP2-positive dendrites. (C) The ratio of neuritic to somatic RTN4 intensity (N/S). All Data are plotted as mean±s.e.m. (B, C) Control: N = 3, n = 10; Rab10 KD: N = 3, n = 11; Rab10 KD + Leu: N = 3; n = 11. A one-way ANOVA tested the significance of adding experimental group as a predictor. **** = p<0.0001, ns = not significant.

      Reviewer #3 (Public Review):

      In the submitted manuscript, Dong and colleagues set out to dissect the role of the Rab10 small GTPase on the intracellular trafficking and exocytosis of dense core vesicles (DCVs). While the authors have already shown that Rab3 plays a central role in the exocytosis of DVC in mammalian neurons, the roles of several other Rab-members have been identified genetically, but their precise mechanism of action in mammalian neurons remains unclear. In this study, the authors use a carefully designed and thoroughly executed series of experiments, including live-cell imaging, functional calcium-imaging, proteomics, and electron microscopy, to identify that DCV secretion upon Rab10 depletion in adult neurons is primarily a result of dysregulated protein synthesis and, to a lesser extent, disrupted intracellular calcium buffering. Given that the full deletion of Rab10 has a deleterious effect on neurons and that Rab10 has a major role in axonal development, the authors cautiously employed the knock-down strategy from 7 DIV, to focus on the functional impact of Rab10 in mature neurons. The experiments in this study were meticulously conducted, incorporating essential controls and thoughtful considerations, ensuring rigorous and comprehensive results.

      We are grateful for the positive evaluation of our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The work by Dong et al provides interesting and potentially important new insights into the connection between ER function and the regulated secretion of neuropeptides via DCVs. I suggest that the authors address the following points experimentally to increase the impact of this potentially important study.

      Major points:

      (1) As alluded to above, for some of the data the statistical basis for analysis remains unclear (examples are Figures 1C-F, J,K; Figure 2 1B-D,I-K; Figure 2 - Supplement 1D-F; Figure 2 - Supplement 2J,K, etc). I.e. is the statistical assessment based on N = number of experiments or n = number of synapses, images, fields of view etc.? As the latter cannot be considered independent biological replicates, they should not form the basis of statistical testing. The Ms misses also misses a dedicated paragraph on statistics in the methods section.

      See reply to reviewer 1 above. We fully agree and solved this point.

      (2) A main weakness of the paper is the missing connection between neuronal protein synthesis, and the observed structural and signaling defects at the level of the ER. I suggest that the authors analyze mTORC1 signaling in Rab10 depleted neurons and under rescue conditions (+Leu or re-expression of Rab10) as ribosome biogenesis is a major downstream target of mTORC1 and mTORC1 activity is related to lysosome position, which may be affected upon rab10 loss -either directly or via effects on the ER that forms tight contacts with lysosomes.

      See reply to reviewer 1 above. We agreed and followed up experimentally.

      (3) Related to the above: Does overexpression of SERCA2 restore normal DCV exocytosis in Rab10-depleted neurons? This would help to distinguish whether calcium storage and release at the level of the ER indeed contribute to the exocytosis defect.

      This is an important point and a great suggestion. We have now tested the rescue effects of overexpression of SERCA2 on DCV fusion. These data are included in the new Figure 8—figure supplement 3 in the revised manuscript. SERCA2 OE failed to rescue the DCV fusion defects in Rab10 KD neurons.

      Author response image 3.

      Overexpression of SERCA2 does not rescue DCV fusion deficits in Rab10 KD neurons. (A) Typical examples showing the SERCA2 signals in each condition. (B) Cumulative plot of DCV fusion events per cell. (C) Summary graph of DCV fusion events per cell. (A) Total number of DCVs (total pool) per neuron, measured as the number of NPY-pHluorin puncta upon NH4Cl perfusion. (B) Fraction of NPY-pHluorin-labeled DCVs fusing during stimulation. All Data are plotted as mean±s.e.m. (C-E) Control: N = 2, n = 10; Rab10 KD: N = 2, n = 13; SERCA2 OE: N = 2; n = 15. A one-way ANOVA tested the significance of adding experimental group as a predictor. *** = p<0.001, ** = p<0.01, ns = not significant.

      (4) The claimed lack of effect of Rab10 depletion on SV exocytosis is solely based on very strong train stimulation with 200 Aps, a condition not very well suited to analyze defects in SV fusion. The conclusion that Rab10 loss does not impact SV fusion thus seems premature. The authors should conduct additional experiments under conditions of single or few Aps (e.g. 4 or 10 Aps) to really assess whether or not Rab10 depletion alters SV exocytosis at the level of pHluorin analysis in cultured neurons.

      See reply to reviewer 2 above. Agreed to and made textual adjustments to solve this

      (5) Related to the above: I am puzzled by the data shown in Figure 1H-J: From the pHluorin traces shown I would estimate a tau value of about 20-30 s (e.g. decay to 1/e = 37% of the peak value). The bar graph in Figure 1K claims 3-4 s, clearly clashing with the data shown. Were these experiments conducted at RT (where expected tau values are in the range of 30s) or at 37{degree sign}C (one would expect taus of around 10 s in this case for Syp-pH)? I ask the authors to carefully check and possibly re-analyze their datasets.

      This is indeed a mistake. We thank the reviewer for flagging this miscalculation. Our original Matlab script used for calculating the tau value contained an error and the datasets were normalized twice by mistake. We now reanalyzed the data and the corresponding figures and texts have been updated. Our conclusion that Rab10 KD does not affect SV endocytosis remains unchanged since the difference in tau between the control (28.5 s) and Rab10 KD (32.8 s) suffered from the same systematic error and were/are not significantly different.

      (6) How many times was the proteomics experiment shown in Figure 3 conducted? I noticed that the data in panel H missed statistical analysis and error bars. Given the typical variation in these experiments, I suggest to only include data for proteins identified in at least 3 out of 4 experimental replicates.

      We agree that this information has not been clear. We have now explained replication in the Methods section (p. 42, l. 879-885). In brief, the proteomics experiment presented in Fig 3 was conducted with two independent cultures (‘biological replicates’), hence, formally only two independent observations. For each biological replicate, we performed four technical replicates. For our analysis, we only included peptides that were consistently detected across all samples (not only three as this reviewer suggests). Proteins in Panel H are ER-related proteins that are significantly different from control neurons with an adjusted FDR ≤ 0.01 and Log2 fold change ≥ 0.56. The primary purpose of our proteomics experiments was to generate hypotheses and guide subsequent experiments and the main findings were corroborated by other experiments presented in the manuscript.

      Minor:

      (7) Figure 2 - supplement 3 and Figure 4 - supplement 3 are only mentioned in the discussion. The authors should consider referring to these data in the results section.

      This is a valid point. We have now added a new statement “Moreover, only 10% of DCVs co-transport with Rab10” in the Results (p. 6-7, l. 162-164).

      (8) Where is the pHluorin data shown in Figure 1 bleach-corrected? If so, this should be stated somewhere in the Ms. Moreover, the timing of the NH4Cl pulse should be indicated in the scheme in panel I.

      We thank the reviewer for pointing these omissions out. We have now included information about the timing of NH4Cl pulse in panel I. We did not do bleach-correction for the pHluorin data shown in Figure 1. It has been shown that pHluorin is very stable with a bleaching rate in the alkaline state of 0.06% per second and 0.0024% per second in the quenched state (Balaji and Ryan, 2007). Indeed, we did not observe obvious photobleaching in the first 30s during our imaging as indicated by the average trace of pHluorin intensity in panel I.

      (9) Page 3/ lines 59-60: "...strongest inhibition of neuropeptide accumulation...". What is probably meant is "...strongest inhibition of neuropeptide release".

      We agree this statement is unclear. Sasidharan et al used a coelomocyte uptake assay as an indirect readout for DCV release. The ‘strongest inhibition of neuropeptide accumulation’ in coelomocytes in Rab10 mutant indicates DCV fusion deficits. We have now replaced the text with “Rab10 deficiency produces the strongest inhibition of neuropeptide release in C. elegans” to make it more clear.

      Reviewer #3 (Recommendations For The Authors):

      I strongly recommend the publishing of this study as a VOR with minor comments directed to the authors.

      (1) In Figure 4, the authors should include examples of tubular ER at the synapse, especially as this is an interesting point discussed in ln 226-229. Are there noticeable changes in the ER-mitochondria contacts at the synaptic boutons?

      We agree that examples of tubular ER at the synapse would improve the manuscript. We have now replaced the Figure 4A with such examples. We found it challenging to quantify ER-mitochondria contacts based on the electron microscopy (EM) images we currently have. The ER-mitochondria contact sites are quite rare in the cross-sections of our samples, making it difficult to perform a reliable quantitative analysis.

      (2) The limited impairment of calcium-ion homeostasis in Rab10 KD neurons is very interesting. Would the overexpression of Rab10T23N mimic the effect of a KD scenario? Is there a separation of function for Rab10 in calcium homeostasis vs. the regulation of protein synthesis?

      This is an interesting possibility. We tested this and expressed Rab10T23N in a new series of experiments. These data are presented as a new Figure 5 in the revised manuscript (p. 29). We observed that Ca2+ refilling after caffeine treatment was delayed to a similar extent in Rab10T23N-expressing and Rab10 KD neurons. While impaired Ca2+ homeostasis may affect protein synthesis through ER stress or mTORC1 activation, our findings indicate otherwise in Rab10 KD neurons. First, ATF4 levels, a marker of ER stress, were unaffected in Rab10 KD neurons. This indicates that any ER stress present is minimal or insufficient to significantly impact protein synthesis through this pathway. Second, we did not observe significant changes in mTORC1 activation in Rab10 KD neurons as indicated by a normal pS6K1 phosphorylation (see above). Based on these observations, we conclude that Rab10's roles in calcium homeostasis and protein synthesis are most likely separate.

      (3) The authors indicate that the internal release of calcium ions from the ER has no effect on DCV trafficking and fusion without showing the data. It is important to include this data as the major impact of the study is the dissecting of the calcium effects in mammalian neurons from the previous studies in invertebrates.

      We agree this is an important aspect in our reasoning. We are submitting the related manuscript on internal calcium stores to BioRVix. The link will be added to the consolidated version of our manuscript

      (4) The distinction between Rab3 and Rab10 co-trafficking on DCVs should be reported in the Results (currently, Figure 2 - supplement 3 is only mentioned in the Discussion) as it helps to understand the effects on DCV fusion.

      We agree. We now added a new statement “Moreover, only 10% of DCVs co-transport with Rab10” in the Results (p. 6, l. 162-163).

      Reference:

      Balaji, J., Ryan, T.A., 2007. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proceedings of the National Academy of Sciences 104, 20576–20581. https://doi.org/10.1073/pnas.0707574105

      Brunner, J.W., Lammertse, H.C.A., Berkel, A.A. van, Koopmans, F., Li, K.W., Smit, A.B., Toonen, R.F., Verhage, M., Sluis, S. van der, 2022. Power and optimal study design in iPSC-based brain disease modelling. Molecular Psychiatry 28, 1545. https://doi.org/10.1038/s41380-022-01866-3

      Emperador-Melero, J., Huson, V., van Weering, J., Bollmann, C., Fischer von Mollard, G., Toonen, R.F., Verhage, M., 2018. Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein sorting at the Golgi. Nat Commun 9, 3421. https://doi.org/10.1038/s41467-018-05699-z

      Granseth, B., Odermatt, B., Royle, S.J., Lagnado, L., 2006. Clathrin-Mediated Endocytosis Is the Dominant Mechanism of Vesicle Retrieval at Hippocampal Synapses. Neuron 51, 773–786. https://doi.org/10.1016/j.neuron.2006.08.029

      Ivanova, D., Dobson, K.L., Gajbhiye, A., Davenport, E.C., Hacker, D., Ultanir, S.K., Trost, M., Cousin, M.A., 2021. Control of synaptic vesicle release probability via VAMP4 targeting to endolysosomes. Science Advances 7, eabf3873. https://doi.org/10.1126/sciadv.abf3873

      Kwon, S.E., Chapman, E.R., 2011. Synaptophysin Regulates the Kinetics of Synaptic Vesicle Endocytosis in Central Neurons. Neuron 70, 847–854. https://doi.org/10.1016/j.neuron.2011.04.001

      Reshetniak, S., Fernández-Busnadiego, R., Müller, M., Rizzoli, S.O., Tetzlaff, C., 2020. Quantitative Synaptic Biology: A Perspective on Techniques, Numbers and Expectations. International Journal of Molecular Sciences 21, 7298. https://doi.org/10.3390/ijms21197298

    1. Author response:

      To Reviewer #1:

      Thank you for your thorough review and comments on our work, which you described as “the role of neuritin in T cell biology studied here is new and interesting.”.  We have summarized your comments into two categories: biology and investigation approach, experimental rigor, and data presentation.

      Biology and Investigation approach comments:

      (1) Questions regarding the T cell anergy model:

      Major point “(4) Figure 1E-H. The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this. It would be useful to show that T cells are indeed anergic in this model, especially those that are OVA-specific. The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVA-specific cells, rather than by an anergic status.”

      T cell anergy is a well-established concept first described by Schwartz’s group. It refers to the hyporesponsive T cell functional state in antigen-experienced CD4 T cells (Chappert and Schwartz, 2010; Fathman and Lineberry, 2007; Jenkins and Schwartz, 1987; Quill and Schwartz, 1987).  Anergic T cells are characterized by their inability to expand and to produce IL2 upon subsequent antigen re-challenge. In this paper, we have borrowed the existing in vivo T cell anergy induction model used by Mueller’s group for T cell anergy induction (Vanasek et al., 2006).  Specifically, Thy1.1+ Ctrl or Nrn1-/- TCR transgenic OTII cells were co-transferred with the congenically marked Thy1.2+ WT polyclonal Treg cells into TCR-/- mice.  After anergy induction, the congenically marked TCR transgenic T cells were recovered by sorting based on Thy1.1+ congenic marker, and subsequently re-stimulation ex vivo with OVA323-339 peptide. We evaluated the T cell anergic state based on OTII cell expansion in vivo and IL2 production upon OVA323-339 restimulation ex vivo.  

      “The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this.”

      Because the anergy model by Mueller's group is well established (Vanasek et al., 2006), we did not feel that additional effort was required to validate this model as the reviewer suggested. Moreover, the limited IL2 production among the control cells upon restimulation confirms the validity of this model.

      “The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVAspecific cells, rather than by an anergic status”.

      Cells from Ctrl and Nrn1-/- mice on a homogeneous TCR transgenic (OTII) background were used in these experiments. The possibility that substantial variability of TCR expression or different expression levels of the transgenic TCR could have impacted IL2 production rather than anergy induction is unlikely.

      Overall, we used this in vivo anergy model to evaluate the Nrn1-/- T cell functional state in comparison to Ctrl cells under the anergy induction condition following the evaluation of Nrn1 expression, particularly in anergic T cells.  Through studies using this anergy model, we observed a significant change in Treg induction among OTII cells. We decided to pursue the role of Nrn1 in Treg cell development and function rather than the biology of T cell anergy as evidenced by subsequent experiments.

      Minor points “(6) On which markers are anergic cells sorted for RNAseq analysis?”

      Cells were sorted out based on their congenic marker marking Ctrl or Nrn1-/- OTII cells transferred into the host mice.  We did not specifically isolate anergic cells for sequencing.

      (2) Question regarding the validity of iTreg differentiation model.

      Major point: “(5) Figure 2A-C and Figure 3. The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance. In any case, they are different from pTreg cells generated in vivo. Working with pTreg may be challenging, that is why I would suggest generating data with purified nTreg. Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript. Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”.

      We thank Reviewer #1 for their feedback. While it is true that iTregs made in vitro and in vivo generated pTregs display several distinctions (e. g., differences in Foxp3 expression stability, for example), we strongly disagree with this statement by Revieweer#1 “The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance.” The induced Treg cell (iTreg) model was established over 20 years ago (Chen et al., 2003; Zheng et al., 2002), and the model is widely adopted with over 2000 citations. Further, it has been instrumental in understanding different aspects of regulatory T cell biology (Hurrell et al., 2022; John et al., 2022; Schmitt and Williams, 2013; Sugiura et al., 2022).   

      Because we have observed reduced pTreg generation in vivo, we choose to use the in vitro iTreg model system to understand the mechanistic changes involved in Treg cell differentiation and function, specifically, neuritin’s role in this process. We have made no claim that iTreg cell biology is identical to pTreg generated in vivo or nTreg cells. However, the iTreg culture system has proved to be a good in vitro system for deciphering molecular events involved in complex processes. As such, it remains a commonly used approach by many research groups in the Treg cell field (Hurrell et al., 2022; John et al., 2022; Sugiura et al., 2022). Moreover, applying the iTreg in vitro culture system has been instrumental in helping us identify the cell electrical state change in Nrn1-/- CD4 cells and revealed the biological link between Nrn1 and the ionotropic AMPA receptor (AMPAR), which we will discuss in the subsequent discussion. It is technically challenging to use nTreg cells for T cell electrical state studies due to their heterogeneous nature from development in an in vivo environment and the effect of manipulation during the nTreg cell isolation process, which can both affect the T cell electrical state.   

      “Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript.” 

      We have also carried out nTreg studies in vitro in addition to iTreg cells. Similar to Gonzalez-Figueroa et al.'s findings, we did not observe differences in suppression function between Nrn1-/- and WT nTreg using the in vitro suppression assay. However, Nrn1-/- nTreg cells revealed reduced suppression function in vivo (Fig. 2D-L). In fact, Gonzalez-Figueroa et al. observed reduced plasma cell formation after OVA immunization in Treg-specific Nrn1-/- mice, implicating reduced suppression from Nrn1-/- follicular regulatory T (Tfr) cells. Thus, our observation of the reduced suppression function of Nrn1-/- nTreg toward effector T cell expansion, as presented in Fig. 2D-L, does not contradict the results from Gonzalez-Figueroa et al. Rather, the conclusions of these two studies agree that Nrn1 can play important roles in immune suppression observable in vivo that are not captured readily by the in vitro suppression assay.

      “Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”

      We have stated in the manuscript on page 7 line 208 that “Similar proportions of Foxp3+ cells were observed in Nrn1-/- and Ctrl cells under the iTreg culture condition, suggesting that Nrn1 deficiency does not significantly impact Foxp3+ cell differentiation”. In the revised manuscript, we will include the data on the proportion of Foxp3+ cells before iTreg restimulation.

      (3) Confirmation of transcriptomic data regarding amino acids or electrolytes transport change

      Minor point“(3) Would not it be possible to perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane? This would be a more interesting demonstration than transcriptomic data.”

      We appreciate Review# 1’s suggestion regarding “perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane”.  We have indeed already performed such experiments corroborating the transcriptomics data on differential amino acid and nutrient transporter expression. Specifically, we loaded either iTreg or Th0 cells with membrane potential (MP) dye and measured MP level change after adding the complete set of amino acids (complete AA).  Upon entry, the charge carried by AAs may transiently affect cell membrane potential. Different AA transporter expression patterns may show different MP change patterns upon AA entry, as we showed in Author response image 1. We observed reduced MP change in Nrn1-/- iTreg compared to the Ctrl, whereas in the context of Th0 cells, Nrn1-/- showed enhanced MP change than the Ctrl. We can certainly include these data in the revised manuscript.

      Author response image 1.

      Membrane potential change induced by amino acids entry. a. Nrn1-/- or WT iTreg cells loaded with MP dye and MP change was measured upon the addition of a complete set of AAs. b. Nrn1-/- or WT Th0 cells loaded with MP dye and MP change was measured upon the addition of a complete set of AAs.

      (4) EAE experiment data assessment

      Minor point ”(5) Figure 5F. How are cells re-stimulated? If polyclonal stimulation is used, the experiment is not interesting because the analysis is done with lymph node cells. This analysis should either be performed with cells from the CNS or with MOG restimulation with lymph node cells.”

      In the EAE study, the Nrn1-/- mice exhibit similar disease onset but a protracted non-resolving disease phenotype compared to the WT control mice.  Several reasons may contribute to this phenotype: 1. Enhanced T effector cell infiltration/persistence in the central nervous system (CNS); 2. Reduced Treg cell-mediated suppression to the T effector cells in the CNS; 3. Protracted non-resolving inflammation at the immunization site has the potential to continue sending T effector cells into CNS, contributing to persistent inflammation. Based on this reasoning, we examined the infiltrating T effector cell number and Treg cell proportion in the CNS.  We also restimulated cells from draining lymph nodes close to the inflammation site, looking for evidence of persistent inflammation.  When mice were harvested around day 16 after immunization, the inflammation at the local draining lymph node should be at the contraction stage.  We stimulated cells with PMA and ionomycin intended to observe all potential T effector cells involved in the draining lymph node rather than only MOG antigen-specific cells.  We disagree with Reviewer #1’s assumption that “This analysis should either be performed with cells from the CNS or with MOG restimulation with lymph node cells.”. We think the experimental approach we have taken has been appropriately tailored to the biological questions we intended to answer.

      Experimental rigor and data presentation.

      (1) Data labeling and additional supporting data

      Major points (2) The authors use Nrn1+/+ and Nrn1+/- cells indiscriminately as control cells on the basis of similar biology between Nrn1+/+ and Nrn1+/- cells at homeostasis. However, it is quite possible that the Nrn1+/- cells have a phenotype in situations of in vitro activation or in vivo inflammation (cancer, EAE). It would be important to discriminate Nrn1+/- and Nrn1+/+ cells in the data or to show that both cell types have the same phenotype in these conditions too.

      (3) Figure 1A-D. Since the authors are using the Nrp1 KO mice, it would be important to confirm the specificity of the anti-Nrn1 mAb by FACS. Once verified, it would be important to add FACS results with this mAb in Figures 1A-C to have single-cell and quantitative data as well.

      Minor points  

      (1) Line 119, 120 of the text. It is said that one of the most up-regulated genes in anergic cells is Nrn1 but the data is not shown.

      (2) For all figures showing %, the titles of the Y axes are written in an odd way. For example, it is written "Foxp3% CD4". It would be more conventional and clearer to write "% Foxp3+ / CD4+" or "% Foxp3+ among CD4+".

      (4) For certain staining (Figure 3E, H) it would be important to show the raw data, in addition to MFI or % values.

      We can adapt the labeling and provide additional data, including Nrn1 staining on Treg cells and flow graphs for pmTOR and pS6 staining (Fig. 3H), as requested by Reviewer #1.

      (2) Experimental rigor:

      General comments:

      “However, it is disappointing that reading this manuscript leaves an impression of incomplete work done too quickly.”

      We were discouraged to receive the comment, “this manuscript leaves an impression of incomplete work done too quickly.” Our study of this novel molecule began without any existing biological tools such as antibodies, knockout mice, etc.  Over the past several years, we have established our own antibodies for Nrn1 detection, obtained and characterized Nrn1 knockout mice, and utilized multiple approaches to identify the molecular mechanism of Nrn1 function. Through the use of the in vitro iTreg system described in this manuscript, we identified the association of Nrn1 deficiency with cell electrical state change, potentially connected to AMPAR function. We have further corroborated our findings by generating Nrn1 and AMPAR T cell specific double knockout mice and confirmed that T cell specific AMPAR deletion could abrogate the phenotype caused by the Nrn1 deficiency (see Author response image 2).  We did not include the double knockout data in the current manuscript because AMPAR function has not yet been studied thoroughly in T cell biology, and we feel this topic warrants examination in its own right.  However, the unpublished data support the finding that Nrn1 modulates the T cell electrical state and, consequently, metabolism, ultimately influencing tolerance and immunity.  In its current form, the manuscript represents the first characterization of the novel molecule Nrn1 in anergic cells, Tregs, and effector T cells. While this work has led to several exciting additional questions, we disagree that the novel characterization we have presented Is incomplete. We feel that our present data set, which squarely highlights Nrn1’s role as an important immune regulator while shedding unprecedented light on the molecular events involved, will be of considerable interest to a broad field of researchers.

      “Multiple models have been used, but none has been studied thoroughly enough to provide really conclusive and unambiguous data. For example, 5 different models were used to study T cells in vivo. It would have been preferable to use fewer, but to go further in the study of mechanisms.”

      We have indeed used multiple in vivo models to reveal Nrn1's function in Treg differentiation, Treg suppression function, T effector cell differentiation and function, and the overall impact on autoimmune disease. Because the impact of ion channel function is often context-dependent, we examined the biological outcome of Nrn1 deficiency in several in vivo contexts.  We would appreciate it if Reviewer#1 would provide a specific example, given the Nrn1 phenotype, of how to proceed deeper to investigate the electrical change in the in vivo models.

      “Major points (1) A real weakness of this work is the fact that in most of the results shown, there are few biological replicates with differences that are often small between Ctrl and Nrn1 -/-. The systematic use of student's t-test may lead to thinking that the differences are significant, which is often misleading given the small number of samples, which makes it impossible to know whether the distributions are Gaussian and whether a parametric test can be used. RNAseq bulk data are based on biological duplicates, which is open to criticism.”

      We respectfully disagree with Reviewer #1 on the question of statistical power and significance to our work. We have used 5-8 mice/group for each in vivo model and 3-4 technical replicates for the in vitro studies, with a minimum of 2-3 replicate experiments. These group sizes and replication numbers are in line with those seen in high-impact publications. While some differences between Ctrl and Nrn1-/- appear small, they have significant biological consequences, as evidenced by the various Nrn1-/- in vivo phenotypes. Furthermore, we believe we have subjected our data to the appropriate statistical tests to ensure rigorous analysis and representation of our findings.

      To Reviewer #2.

      We thank Reviewer #2 for the careful review of the manuscript. We especially appreciate the comments that “The characterizations of T cell Nrn1 expression both in vitro and in vivo are comprehensive and convincing. The in vivo functional studies of anergy development, Treg suppression, and EAE development are also well done to strengthen the notion that Nrn1 is an important regulator of CD4 responsiveness.”

      “The major weakness of this study stems from a lack of a clear molecular mechanism involving Nrn1. “  

      We fully understand this comment from Reviewer #2. The main mechanism we identified contributing to the functional defect of Nrn1-/- T cells involves novel effects on the electric and metabolic state of the cells. Although we referenced neuronal studies that indicate Nrn1 is the auxiliary protein for the ionotropic AMPA-type glutamate receptor (AMPAR) and may affect AMPAR function, we did not provide any evidence in this manuscript as the topic requires further in-depth study.   

      For the benefit of this discussion, we include our preliminary Nrn1 and AMPAR double knockout data (Author response image 2), which indicates that abrogating AMPAR expression can compensate for the defect caused by Nrn1 deficiency in vitro and in vivo. This preliminary data supports the notion that Nrn1 modulates AMPAR function, which causes changes in T cell electric and metabolic state, influencing T cell differentiation and function.  

      Author response image 2.

      Deletion of AMPAR expression in T cells compensates for the defect caused by Nrn1 deficiency. Nrn1-/- mice were crossed with T cell-specific AMPAR knockout mice (AMPARfl/flCD4Cre+) mice. The following mice were generated and used in the experiment: T cell specific AMPAR-knockout and Nrn1 knockout mice (AKONKO), Nrn1 knockout mice (AWTNKO), Ctrl mice (AWTNWT). a. Deletion of AMPAR compensates for the iTreg cell defect observed in Nrn1-/- CD4 cells. iTreg live cell proportion, cell number, and Ki67 expression among Foxp3+ cells 3 days after aCD3 restimulation. b. Deletion of AMPAR in T cells abrogates the enhanced autoimmune response in Nrn1-/- Mouse in the EAE disease model. Mouse relative weight change and disease score progression after EAE disease induction.  

      Ion channels can influence cell metabolism through multiple means (Vaeth and Feske, 2018; Wang et al., 2020). First, ion channels are involved in maintaining cell resting membrane potential. This electrical potential difference across the cell membrane is essential for various cellular processes, including metabolism (Abdul Kadir et al., 2018; Blackiston et al., 2009; Nagy et al., 2018; Yu et al., 2022). Second, ion channels facilitate the movement of ions across cell membranes. These ions are essential for various metabolic processes. For example, ions like calcium (Ca2+), potassium (K+), and sodium (Na+) play crucial roles in signaling pathways that regulate metabolism (Kahlfuss et al., 2020). Third, ion channel activity can influence cellular energy balance due to ATP consumption associated with ion transport to maintain ion balances (Erecińska and Dagani, 1990; Gerkau et al., 2019). This, in turn, can impact processes like ATP production, which is central to cellular metabolism. Thus, ion channel expression and function determine the cell’s bioelectric state and contribute to cell metabolism (Levin, 2021).

      Because the AMPAR function has not been thoroughly studied using a genetic approach in T cells, we do not intend to include the double knockout data in this manuscript before fully characterizing the T cell-specific AMPAR knockout mice.  

      “Although the biochemical and informatics studies are well-performed, it is my opinion that these results are inconclusive in part due to the absence of key "naive" control groups. This limits my ability to understand the significance of these data.

      Specifically, studies of the electrical and metabolic state of Nrn1-/- inducible Treg cells (iTregs) would benefit from similar data collected from wild-type and Nrn1-/- naive CD4 T cells.”

      We appreciate the reviewer’s comments. This comment reflects two concerns in data interpretation:

      (1) Are Nrn1-/- naïve T cells fundamentally different from WT cells? Does this fundamental difference contribute to the observed electrical and metabolic phenotype in iTreg or Th0 cells? This is a very good question we will perform the experiments as the reviewer suggested. While Nrn1 is expressed at a basal (low) level in naïve T cells, deletion of Nrn1 may cause changes in naïve T cell phenotype.   

      (2) Is the Nrn1-/- phenotype caused by Nrn1 functional deficiency or due to the secondary effect of Nrn1 deletion, such as non-physiological cell membrane structure changes?

      We have done the following experiment to address this concern.  We have cultured WT T cells in the presence of Nrn1 antibody and compared the outcome with Nrn1-/- iTreg cells (Author response image 3). WT iTreg cells under antibody blockade exhibited similar changes as Nrn1-/- iTreg cells, confirming the physiological relevance of the Nrn1-/- phenotype.

      Author response image 3.

      Nrn1 antibody blockade in WT iTreg cell culture caused similar phenotypic change as in Nrn1-/- iTreg cells. Nrn1-/- and WT CD4 cells were differentiated under iTreg condition in the presence of anti-Nrn1 (aNrn1) antibody or isotype control for 3 days. Cells were restimulated with anti-CD3 and in the presence of aNrn1 or isotype. a. MP measured 18hr after anti-CD3 restimulation. b. live CD4 cell number and proportion of Ki67 expression among live cells three days after restimulation. c. The proportion of Foxp3+ cells among live cells three days after restimulation.  

      Reference:

      Abdul Kadir, L., M. Stacey, and R. Barrett-Jolley. 2018. Emerging Roles of the Membrane Potential: Action Beyond the Action Potential. Front Physiol 9:1661.

      Blackiston, D.J., K.A. McLaughlin, and M. Levin. 2009. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527-3536.

      Chappert, P., and R.H. Schwartz. 2010. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Current opinion in immunology 22:552-559.

      Chen, W., W. Jin, N. Hardegen, K.J. Lei, L. Li, N. Marinos, G. McGrady, and S.M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. The Journal of experimental medicine 198:1875-1886.

      Erecińska, M., and F. Dagani. 1990. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes. J Gen Physiol 95:591-616.

      Fathman, C.G., and N.B. Lineberry. 2007. Molecular mechanisms of CD4+ T-cell anergy. Nat Rev Immunol 7:599-609.

      Gerkau, N.J., R. Lerchundi, J.S.E. Nelson, M. Lantermann, J. Meyer, J. Hirrlinger, and C.R. Rose. 2019. Relation between activity-induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. The Journal of physiology 597:5687-5705.

      Hurrell, B.P., D.G. Helou, E. Howard, J.D. Painter, P. Shafiei-Jahani, A.H. Sharpe, and O. Akbari. 2022. PD-L2 controls peripherally induced regulatory T cells by maintaining metabolic activity and Foxp3 stability. Nature communications 13:5118.

      Jenkins, M.K., and R.H. Schwartz. 1987. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. The Journal of experimental medicine 165:302-319.

      John, P., M.C. Pulanco, P.M. Galbo, Jr., Y. Wei, K.C. Ohaegbulam, D. Zheng, and X. Zang. 2022. The immune checkpoint B7x expands tumor-infiltrating Tregs and promotes resistance to anti-CTLA-4 therapy. Nature communications 13:2506.

      Kahlfuss, S., U. Kaufmann, A.R. Concepcion, L. Noyer, D. Raphael, M. Vaeth, J. Yang, P. Pancholi, M. Maus, J. Muller, L. Kozhaya, A. Khodadadi-Jamayran, Z. Sun, P. Shaw, D. Unutmaz, P.B. Stathopulos, C. Feist, S.B. Cameron, S.E. Turvey, and S. Feske. 2020. STIM1-mediated calcium influx controls antifungal immunity and the metabolic function of nonpathogenic Th17 cells. EMBO molecular medicine 12:e11592.

      Levin, M. 2021. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184:1971-1989.

      Nagy, E., G. Mocsar, V. Sebestyen, J. Volko, F. Papp, K. Toth, S. Damjanovich, G. Panyi, T.A. Waldmann, A. Bodnar, and G. Vamosi. 2018. Membrane Potential Distinctly Modulates Mobility and Signaling of IL-2 and IL-15 Receptors in T Cells. Biophys J 114:2473-2482.

      Quill, H., and R.H. Schwartz. 1987. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. Journal of immunology (Baltimore, Md. : 1950) 138:3704-3712.

      Schmitt, E.G., and C.B. Williams. 2013. Generation and function of induced regulatory T cells. Frontiers in immunology 4:152.

      Sugiura, A., G. Andrejeva, K. Voss, D.R. Heintzman, X. Xu, M.Z. Madden, X. Ye, K.L. Beier, N.U. Chowdhury, M.M. Wolf, A.C. Young, D.L. Greenwood, A.E. Sewell, S.K. Shahi, S.N. Freedman, A.M. Cameron, P. Foerch, T. Bourne, J.C. Garcia-Canaveras, J. Karijolich, D.C. Newcomb, A.K. Mangalam, J.D. Rabinowitz, and J.C. Rathmell. 2022. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 55:65-81.e69.

      Vaeth, M., and S. Feske. 2018. Ion channelopathies of the immune system. Current opinion in immunology 52:39-50.

      Vanasek, T.L., S.L. Nandiwada, M.K. Jenkins, and D.L. Mueller. 2006. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. Journal of immunology (Baltimore, Md. :1950) 176:5880-5889.

      Wang, Y., A. Tao, M. Vaeth, and S. Feske. 2020. Calcium regulation of T cell metabolism. Current opinion in physiology 17:207-223.

      Yu, W., Z. Wang, X. Yu, Y. Zhao, Z. Xie, K. Zhang, Z. Chi, S. Chen, T. Xu, D. Jiang, X. Guo, M. Li, J. Zhang, H. Fang, D. Yang, Y. Guo, X. Yang, X. Zhang, Y. Wu, W. Yang, and D. Wang. 2022. Kir2.1-mediated membrane potential promotes nutrient acquisition and inflammation through regulation of nutrient transporters. Nature communications 13:3544.

      Zheng, S.G., J.D. Gray, K. Ohtsuka, S. Yamagiwa, and D.A. Horwitz. 2002. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. Journal of immunology (Baltimore, Md. : 1950) 169:4183-4189.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      Li et al investigated how adjuvants such as MPLA and CpG influence antigen presentation at the level of the Antigen-presenting cell and MHCII : peptide interaction. They found that the use of MPLA or CpG influences the exogenous peptide repertoire presented by MHC II molecules. Additionally, their observations included the finding that peptides with low-stability peptide:MHC interactions yielded more robust CD4+ T cell responses in mice. These phenomena were illustrated specifically for 2 pattern recognition receptor activating adjuvants. This work represents a step forward for how adjuvants program CD4+ Th responses and provides further evidence regarding the expected mechanisms of PRR adjuvants in enhancing CD4+ T cell responses in the setting of vaccination.

      Strengths:

      The authors use a variety of systems to analyze this question. Initial observations were collected in an H pylori model of vaccination with a demonstration of immunodominance differences simply by adjuvant type, followed by analysis of MHC:peptide as well as proteomic analysis with comparison by adjuvant group. Their analysis returns to peptide immunization and analysis of strength of relative CD4+ T cell responses, through calculation of IC:50 values and strength of binding. This is a comprehensive work. The logical sequence of experiments makes sense and follows an unexpected observation through to trying to understand that process further with peptide immunization and its impact on Th responses. This work will premise further studies into the mechanisms of adjuvants on T cells.

      Weaknesses:

      Comment 1. While MDP has a different manner of interaction as an adjuvant compared to CpG and MPLA, it is unclear why MDP has a different impact on peptide presentation and it should be further investigated, or at minimum highlighted in the discussion as an area that requires further investigation.

      Thank you for the suggestion. We investigated the reasons for the different effects of MDP on peptide presentation compared with those of CpG and MPLA. We found that the expression of some proteins involved in antigen processing and presentation, such as CTSS, H2-DM, Ifi30, and CD74, was substantially lower in the MDP-treated group than in the CpG- and MPLA-treated groups. To further confirm whether these proteins play a key role during adjuvant modification of peptide presentation, we knocked down them using shRNA and then performed immunopeptidomics. The original mass spectra and peptide spectrum matches have been deposited in the public proteomics repository iProX (https://www.iprox.cn/page/home.html) under accession number IPX0007611000. Unfortunately, the expected results for peptide presentation repertoires were not observed. Thus, we hypothesized that the different effects of MDP on peptide presentation might not result from differences in protein expression. We cannot exclude the possibility that some other proteins that may be important in this process were overlooked. We are still working on the mechanisms and do not have an exact conclusion. Thus, we did not present related data in this manuscript.

      The related statements were added in the Discussion section on page 13, lines 292–299: “In this study, we found that the peptide repertoires presented by APCs were significantly affected by the adjuvants CpG and MPLA, but not MDP. All three adjuvants belong to the PRR ligand adjuvant family. CpG and MPLA bind to TLRs and MDP is recognized by NOD2. Although the receptors are different, many common molecules are involved both in TLR and NLD pathway activation. Unfortunately, we did not demonstrate why the MDP had different impacts on peptide presentation compared with other adjuvants. Further investigation is required to clarify the mechanism by which MPLA, CpG, and MDP adjuvants modulate the presentation of peptides with different stabilities.”

      Comment 2. It is alluded by the authors that TLR activating adjuvants mediate selective, low affinity, exogenous peptide binding onto MHC class II molecules. However, this was not demonstrated to be related specifically to TLR binding. I wonder if some work with TLR deficient mice (TLR 4KO for example) could evaluate this phenomenon more specifically.

      Thank you for the suggestion. This is an important point that was overlooked in this study. Based on published research on the mechanisms of PRR adjuvants, CpG and MPLA, we believe that the effect of CpG and MPLA on APCs-selective epitope presentation needs to be bound to the corresponding receptor, although we did not give a definitive conclusion in the manuscript.

      To confirm the TLR-activating adjuvants affecting peptides presented on MHC molecules specifically through TLR binding, we have used CRISPR-cas9 to knock out TLR4 and TLR9 of A20 cells and repeated the experiments, as suggested. We chose TLR4- and TLR9- knockout A20 cell lines instead of TLR-deficient mice because a large number of APCs are required for immunopeptidomics. Moreover, the data observed in this study were based on the A20 cell line. However, these experiments are time-consuming. Unfortunately, we were unable to provide timely data. In addition, we believe that elucidating the downstream molecular mechanisms of TLR activation is necessary, as mentioned in comment 1. All these data will be combined and reported in our upcoming publications.

      Comment 3. It is unclear to me if this observation is H pylori model/antigen-specific. It may have been nice to characterize the phenomenon with a different set of antigens as supplemental. Lastly, it is unclear if the peptide immunization experiment reveals a clear pattern related to high and low-stability peptides among the peptides analyzed.

      Q1: It is unclear to me if this observation is H. pylori model/antigen-specific. It may have been nice to characterize the phenomenon with a different set of antigens as supplemental.

      Thank you for the comment. To confirm the effect of the adjuvant on the exogenous peptide repertoire presented by MHC II molecules, a set of antigens from another bacterium, Pseudomonas aeruginosa, was used, and the experiments were repeated. The A20 cells were treated with CpG and pulsed with Pseudomonas aeruginosa antigens. Twelve hours later, MHC-II–peptide complexes were immunoprecipitated, and immunopeptidomics were performed. The data are shown below (Author response image 1). Information on the MHC-peptides from Pseudomonas aeruginosa is given in the Supplementary Table named “Table S3 Response to comment3”. A total of 713 and 205 bacterial peptides were identified in the PBS and CpG groups (Author response image 1A). The number of exogenous peptides in the CpG-treated group was significantly lower than that in the PBS-treated control group (Author response image 1B). A total of 568 bacterial peptides were presented only in the PBS group; 60 bacterial peptides were presented in the CpG-treated group, and 145 bacterial peptides were presented in both groups (Author response image 1C). We then analyzed the MHC-binding stability of the peptides present in the adjuvant-treated group and that of the peptide-deficient after adjuvant stimulation using the IEDB website. We found that the IC50 of the peptides in the adjuvant-treated group were much higher than those of the deficient peptides, which indicated that the peptides presented in the CpG-treated groups have lower binding stability for MHC-II (Author response image 1D). These results indicate that CpG adjuvant affects the presentation of exogenous peptides with high binding stability, which is consistent with the data reported in our manuscript. Using another set of antigens, we confirmed that our observations were not H. pylori model- or antigen-specific.

      Author response image 1.

      MHC-II peptidome measurements in adjuvant-treated APCs pulsed with Pseudomonas aeruginosa antigens. (A) Total number of bacterial peptides identified in the PBS- and CpG-treated groups. (B) The number and length distribution of bacterial peptides in different groups were compared. (C) Venn diagrams showing the distribution of bacterial peptides in different groups. (D) IC50 of the presented, deficient, and co-presented peptides post-adjuvant stimulation from immunopeptidome binding to H2-IA and H2-IE were predicted using the IEDB website. High IC50 means low binding stability. *p<0.05, **p<0.01.

      Q2: Lastly, it is unclear if the peptide immunization experiment reveals a clear pattern related to high and low-stability peptides among the peptides analyzed.

      In this study, we used a peptide immunization experiment to evaluate the responses induced by the screened peptides with different stabilities. In addition to this method, tetramer staining and ELISA have been used to assess epitope-specific T-cell proliferation and cytokine secretion. Among these, tetramer staining is often used in studies involving model antigens. However, as many peptides were screened in our study, synthesizing a sufficient number of tetramers was difficult. However, we believe that the experimental data obtained in this study support the conclusion. Nevertheless, we agree that more methods applied will make the pattern more clearly.

      Reviewer #2 (Public Review):

      Adjuvants boost antigen-specific immune responses to vaccines. However, whether adjuvants modulate the epitope immunodominance and the mechanisms involved in adjuvant's effect on antigen processing and presentation are not fully characterized. In this manuscript, Li et al report that immunodominant epitopes recognized by antigen-specific T cells are altered by adjuvants.

      Using MPLA, CpG, and MDP adjuvants and H. pylori antigens, the authors screened the dominant epitopes of Th1 responses in mice post-vaccination with different adjuvants and found that adjuvants altered antigen-specific CD4+ T cell immunodominant epitope hierarchy. They show that adjuvants, MPLA and CpG especially, modulate the peptide repertoires presented on the surface of APCs. Surprisingly, adjuvant favored the presentation of low-stability peptides rather than high-stability peptides by APCs. As a result, the low stability peptide presented in adjuvant groups elicits T cell response effectively.

      Thanks a lot for your comments.

      Reviewer #1 (Recommendations For The Authors):

      Recommendation 1. Figure 6: The peptides considered low affinity- it would be helpful to specify from which adjuvant they were collected from. When they are pooled it is unclear if we are analyzing peptides collected from adjuvanting with any of the three adjuvants studied.

      Thank you for the suggestion. The related description in Figure 6 has been modified in the revised manuscript. Data for the peptides identified from the adjuvants MPLA- and CpG-treated groups are shown separately.

      Recommendation 2. It is unclear to me why the A20 cell line is less preferred to the J774 line for the immunopeptidome analysis - can the authors expand on this?

      We apologize for not clearly explaining this in the original manuscript. In fact, the A20 cell line is better than J774A.1 cell line for immunopeptidomics experiments. Compared to J774A.1 cells, more MHC-II peptides were obtained from a smaller number of A20 cells using immunopeptidomics. At the beginning of this study, we chose the J774A.1 cell line as it is a macrophage cell line. J774A.1 cells (up to 5×108) were pulsed with the antigens, and MHC-II–peptide complexes were eluted from the cell surface for immunopeptidomics. Unfortunately, only a few hundred peptides from the host were detected and no exogenous peptides were detected. Next, we tested the A20 cell line. In total, 108 A20 cells were used in this study. More than 3500 host peptides and approximately 50 exogenous peptides have been identified. These data indicate that the A20 cell line was better.

      To investigate the reasons for this, we detected MHC-II expression on cell surfaces using FACS. Our purpose was to elute peptides from MHC–peptide complexes present on the cell surface. Low MHC expression resulted in the elution of a few peptides. We found the MFI of MHC-II molecules on J774A.1 cell is about 500; however, the MFI of MHC-II molecules on A20 cells is more than 300,000. These data indicate that MHC-II expression on A20 cells was much higher than that on J774A.1 cells. J774A.1 cell is a macrophage cell line. Macrophages have excellent antigen phagocytic capabilities; however, their ability to present antigens is relatively weak. MHC molecules on the macrophage cell surface can be upregulated in the stimulation of some cytokines, for example, IFN-γ. In this study, we used adjuvants as stimulators and did not want to use additional cytokine stimulators. Thus, J774A.1 cells were not used in the present study.

      The related statements are reflected on page 6 lines 120–128 “We also selected another H-2d cell J774A.1, a macrophage cell line, for immunopeptidome analysis in this study. Briefly, 5×108 J774A.1 cells were used for immunopeptidomics. Moreover, fewer than 350 peptides were observed at a peptide spectrum match (PSM) level of < 1.0% false discovery rate (FDR). However, more than 5500 peptides were detected in 108 A20 cells at FDR < 1.0% (Figure S2A). CD86 and MHC-II molecule expression on J774A.1 cells was substantially lower than that on A20 cells (Figure S2B). Low MHC-II expression on J774A.1 cells could be the reason for the lack of peptides identified by LC–MS/MS. Thus, A20 cells instead of J774A.1 cells were used for the subsequent experiments.”

      Recommendation 3. Lines 172-177, can more details be provided about the whole proteome analysis? The plots are shown for relative representation of protein expression to PBS, but it is unclear to me what examples of these proteins are (IFN pathway, Ubiquitination pathway). Could these be confirmed by protein expression analyses in supplemental?

      Thank you for the suggestion. In this study, we conducted whole proteome analysis to investigate changes in protein expression across different pathways in the adjuvant groups. Through KEGG enrichment analysis, we compared the differential expression of MHC presentation pathway proteins (such as H2-M, Ifi30, CD74, CTSS, proteasome, and peptidase subunits) between the PBS- and adjuvant-treated groups using our proteome data. In addition, we focused on IFN and ubiquitination pathways that play crucial roles in antigen presentation modification and immune response. The proteins and their relative expression in these pathways are shown in Figure S4B. Details regarding the protein names and expressions are provided in Supplemental Table S2 of the revised manuscript.

      The original statements in the results “Then, we analyzed the whole proteome data to determine whether the proteins involved in antigen presentation and processing were altered. We found that proteins involved in antigen processing, peptidase function, ubiquitination pathway, and interferon (IFN) signaling were altered post adjuvants treatment, especially in MPLA and CpG groups (Figure 5C; Figure S4B and S4C). These data suggest that adjuvants MPLA and CpG may affect the antigen processing of APCs, resulting in fewer peptides presentation.” This has been revised on page 8 lines 172–182 as “We then investigated whole-proteome data to determine the evidence of adjuvant modification of antigen presentation. We focused on the proteins involved in antigen processing, peptidase function, ubiquitination pathway, and IFN signaling. The ubiquitination pathway and IFN signaling play crucial roles in the modification of antigen presentation and immune responses. Through KEGG enrichment analysis, we found that many proteins involved in antigen processing, peptidase function, ubiquitination pathways, and IFN signaling were altered after adjuvant treatment, particularly in the MPLA- and CpG-treated groups (Figure 5C; Figure S4B). The expression of each protein is shown in Figure S4C and Supplementary Table 2. These data suggest that MPLA and CpG adjuvants may affect the antigen processing of APCs, resulting in fewer peptide presentations.”

      Recommendation 4. Lines 212-218: I think there needs to be more discussion of interpretation here. Only one of the low-stability peptides required low concentrations for CD4+ T cell responses in vitro. What about the other peptides in the analysis? Perhaps if the data is taken together there is not a clear pattern?

      Thank you for the comment. In this study, epitope-specific CD4+ T-cells were expanded in vitro from the spleens of peptide-pool-immunized mice. T-cell responses to individual peptides were detected using ICS and FACS. Only one peptide, recA #23, with low binding stability, and one high-stability peptide, ureA #2, induced effective T-cell responses. Peptide ureA #3 with high stability induces low Th1 responses. The other peptides cannot induce CD4+ T-cell secreting IFN-γ (Data are shown in Author response image 2). Thus, we compared the strength of IFN-γ responses induced by these three peptides at a set of low concentrations. Data for other peptides without any response could not be taken together.

      Author response image 2.

      The expanded CD4+T cells from peptides immunized mice were screened for their response to the peptides in an ICS assay.

      In this study, we used a peptide pool containing four low-stability peptides to vaccinate mice; however, only one peptide induced an effective CD4+ T-cell response. We speculate that the possible reasons are as follows. First, the number of peptides used for vaccination is too small. Only four low-stability peptides were synthesized and used to immunize mice. Three of these could not induce an effective T-cell response, possibly because of their low immunogenicity. If more peptides are synthesized and used, more peptides that induce T-cell responses may be observed. Second, epitope-specific T-cell responses are variable. Responses to the subdominant peptides can be inhibited by the dominant peptide. The subdominant peptide can become dominant by changing the peptide dose or in the absence of the dominant peptide. Thus, we believe that responses to the other three peptides may be detected if mice are immunized with a peptide pool that does not contain a response epitope.

      The corresponding statements have been added to the Discussion section on page 13 lines 287–291 as “Unfortunately, only one peptide, recA #23, with low binding stability and induced significant Th1 responses, was identified in this study. To further confirm that low-stability peptides can induce stronger and higher TCR-affinity antigen-specific T-cell clonotype responses than high-stability peptides, further studies should monitor more peptides with different stabilities.”

      Recommendation 5. There are some areas where additional editing to text would be beneficial due to grammar (eg lines 122-126; line 116, etc).

      The manuscript has been edited by a professional language editing company.

      Reviewer #2 (Recommendations For The Authors):

      Recommendation 1. It is interesting that there was no difference in IFNg responses induced by different adjuvants.

      Thank you for the comment. Possible reasons for the lack of difference in IFN-γ responses could be as follows. First, all adjuvants used in this study have been confirmed to effectively induce Th1 responses. Second, in this study, IFN-γ responses were examined using expanded antigen-specific T cells in vitro. The in vitro cell expansion efficiency may have affected these results.

      Recommendation 2. The data to support the claim that changes in exogenous peptide presentation among adjuvant groups were not due to differences in antigen phagocytosis is insufficient.

      Thank you for the comment. In this study, proteomics of A20 cells pulsed with antigens in different adjuvant-treated groups were used to determine exogenous antigens phagocytosed by cells. In addition, we used fluorescein isothiocyanate (FITC)-labeled OVA to pulse APCs and detected antigen phagocytosis by APCs after treatment with different adjuvants. The MFI of FITC was detected by FACS at different time points. The data are shown below (Author response image 3). No obvious differences in FITC MFI were detected after adjuvant stimulation, indicating that antigen phagocytosis among the adjuvant groups was almost the same.

      A20 cells, used as APCs, are the B-cell line. Antigen recognition and phagocytosis by B-cells depends on the B-cell receptor (BCR) on the cell surface. The ability of BCRs to bind to different antigens varies, leading to significant differences in the phagocytosis of different antigens by B-cells. Therefore, detecting the phagocytosis of a single antigen may not reflect the overall phagocytic state of the B-cells. Thus, in this study, we used proteomics to detect exogenous proteins in B-cells pulsed with H. pylori antigens, which contain thousands of components, to evaluate their overall phagocytic capacity. Only the proteomic data are presented in our manuscript.

      Author response image 3.

      Antigen phagocytosis of A20 cells were measured using FITC-labeled OVA. (A) A20 cells were pulsed with FITC-labeled OVA. MFI of FITC was measured after 1 h. (B) MFI of FITC was examined post the stimulation of adjuvants at different time points.

      Recommendation 3. It is not clear how MPLA, CpG, and MDP adjuvants modulate the presentation of low vs high stability peptides.

      Thank you for pointing this out. We acknowledge that we did not clarify the mechanisms by which adjuvants affect the stability of the peptide presentations of APCs.

      We performed experiments to detect the expression of proteins involved in antigen processing and presentation in the different adjuvant-treated groups. Furthermore, shRNAs were used to knock down the expression of key molecules. Immunopeptidomics was used to detect peptide presentation. Unfortunately, the expected results for peptide presentation repertoires were not observed. We are still working on the mechanisms.

      Please also see our response to comment 1 of reviewer 1

      The related statements were added in the Discussion section on page 13, lines 292–299: “In this study, we found that the peptide repertoires presented by APCs were significantly affected by the adjuvants CpG and MPLA, but not MDP. All three adjuvants belong to the PRR ligand adjuvant family. CpG and MPLA bind to TLRs and MDP is recognized by NOD2. Although the receptors are different, many common molecules are involved both in TLR and NLD pathway activation.  Unfortunately, we did not demonstrate why the MDP had different impacts on peptide presentation compared with other adjuvants. Further investigation is required to clarify the mechanism by which MPLA, CpG, and MDP adjuvants modulate the presentation of peptides with different stabilities.”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review): 

      The reviewer retained most of their comments from the previous reviewing round. In order to meet these comments and to further examine the dynamic nature of threat omission-related fMRI responses, we now re-analyzed our fMRI results using the single trial estimates. The results of these additional analyses are added below in our response to the recommendations for the authors of reviewer 1. However, we do want to reiterate that there was a factually incorrect statement concerning our design in the reviewer’s initial comments. Specifically, the reviewer wrote that “25% of shocks are omitted, regardless of whether subjects are told that the probability is 100%, 75%, 50%, 25%, or 0%.” We want to repeat that this is not what we did. 100% trials were always reinforced (100% reinforcement rate); 0% trials were never reinforced (0% reinforcement rate). For all other instructed probability levels (25%, 50%, 75%), the stimulation was delivered in 25% of the trials (25% reinforcement rate). We have elaborated on this misconception in our previous letter and have added this information more explicitly in the previous revision of the manuscript (e.g., lines 125-129; 223-224; 486-492).   

      Reviewer #1 (Recommendations For The Authors): 

      I do not have any further recommendations, although I believe an analysis of learning-related changes is still possible with the trial-wise estimates from unreinforced trials. The authors' response does not clarify whether they tested for interactions with run, and thus the fact that there are main effects does not preclude learning. I kept my original comments regarding limitations, with the exception of the suggestion to modify the title. 

      We thank the reviewer for this recommendation. In line with their suggestion, we have now reanalyzed our main ROI results using the trial-by-trial estimates we obtained from the firstlevel omission>baseline contrasts. Specifically, we extracted beta-estimates from each ROI and entered them into the same Probability x Intensity x Run LMM we used for the relief and SCR analyses. Results from these analyses (in the full sample) were similar to our main results. For the VTA/SN model, we found main effects of Probability (F = 3.12, p = .04), and Intensity (F = 7.15, p < .001) (in the model where influential outliers were rescored to 2SD from mean). There was no main effect of Run (F = 0.92, p = .43) and no Probability x Run interaction (F = 1.24, p = .28). If the experienced contingency would have interfered with the instructions, there should have been a Probability x Run interaction (with the effect of Probability only being present in the first runs). Since we did not observe such an interaction, our results indicate that even though some learning might still have taken place, the main effect of Probability remained present throughout the task.  

      There is an important side note regarding these analyses: For the first level GLM estimation, we concatenated the functional runs and accounted for baseline differences between runs by adding run-specific intercepts as regressors of no-interest. Hence, any potential main effect of run was likely modeled out at first level. This might explain why, in contrast to the rating and SCR results (see Supplemental Figure 5), we found no main effect of Run. Nevertheless, interaction effects should not be affected by including these run-specific intercepts.

      Note that when we ran the single-trial analysis for the ventral putamen ROI, the effect of intensity became significant (F = 3.89, p = .02). Results neither changed for the NAc, nor the vmPFC ROIs.  

      Reviewer #2 (Public Review): 

      Comments on revised version: 

      I want to thank the authors for their thorough and comprehensive work in revising this manuscript. I agree with the authors that learning paradigms might not be a necessity when it comes to study the PE signals, but I don't particularly agree with some of the responses in the rebuttal letter ("Furthermore, conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted."). This is of course correct description for the conditioning paradigm, but the same can be said for an instructed design: the aversive outcome was either delivered or not. That being said, adopting the instructed design itself is legitimate in my opinion. 

      We thank the reviewer for this comment. We have now modified the phrasing of this argument to clarify our reasoning (see lines 102-104: “First, these only included one level of aversive outcome: the electrical stimulation was either delivered at a fixed intensity, or omitted; but the intensity of the stimulation was never experimentally manipulated within the same task.”).  

      The reason why we mentioned that “the aversive outcome is either delivered or omitted” is because in most contemporary conditioning paradigms only one level of aversive US is used. In these cases, it is therefore not possible to investigate the effect of US Intensity. In our paradigm, we included multiple levels of aversive US, allowing us to assess how the level of aversiveness influences threat omission responding. It is indeed true that each level was delivered or not. However, our data clearly (and robustly across experiments, see Willems & Vervliet, 2021) demonstrate that the effects of the instructed and perceived unpleasantness of the US (as operationalized by the mean reported US unpleasantness during the task) on the reported relief and the omission fMRI responses are stronger than the effect of instructed probability.  

      My main concern, which the authors spent quite some length in the rebuttal letter to address, still remains about the validity for different instructed probabilities. Although subjects were told that the trials were independent, the big difference between 75% and 25% would more than likely confuse the subjects, especially given that most of us would fall prey to the Gambler's fallacy (or the law of small numbers) to some degree. When the instruction and subjective experience collides, some form of inference or learning must have occurred, making the otherwise straightforward analysis more complex. Therefore, I believe that a more rigorous/quantitative learning modeling work can dramatically improve the validity of the results. Of course, I also realize how much extra work is needed to append the computational part but without it there is always a theoretical loophole in the current experimental design. 

      We agree with the reviewer that some learning may have occurred in our task. However, we believe the most important question in relation to our study is: to what extent did this learning influence our manipulations of interest?  

      In our reply to reviewer 1, we already showed that a re-analysis of the fMRI results using the trial-by-trial estimates of the omission contrasts revealed no Probability x Run interaction, suggesting that – overall – the probability effect remained stable over the course of the experiment. However, inspired by the alternative explanation that was proposed by this reviewer, we now also assessed the role of the Gambler’s fallacy in a separate set of analyses. Indeed, it is possible that participants start to expect a stimulation more after more time has passed since the last stimulation was experienced. To test this alternative hypothesis, we specified two new regressors that calculated for each trial of each participant how many trials had passed since the last stimulation (or since the beginning of the experiment) either overall (across all trials of all probability types; hence called the overall-lag regressor) or per probability level (across trials of each probability type separately; hence called the lag-per-probability regressor). For both regressors a value of 0 indicates that the previous trial was either a stimulation trial or the start of experiment, a value of 1 means that the last stimulation trial was 2 trials ago, etc.  

      The results of these additional analyses are added in a supplemental note (see supplemental note 6), and referred to in the main text (see lines 231-236: “Likewise, a post-hoc trial-by-trial analysis of the omission-related fMRI activations confirmed that the Probability effect for the VTA/SN activations was stable over the course of the experiment (no Probability x Run interaction) and remained present when accounting for the Gambler’s fallacy (i.e., the possibility that participants start to expect a stimulation more when more time has passed since the last stimulation was experienced) (see supplemental note 6). Overall, these post-hoc analyses further confirm the PE-profile of omission-related VTA/SN responses”.  

      Addition to supplemental material (pages 16-18)

      Supplemental Note 6: The effect of Run and the Gambler’s Fallacy 

      A question that was raised by the reviewers was whether omission-related responses could be influenced by dynamical learning or the Gambler’s Fallacy, which might have affected the effectiveness of the Probability manipulation.  

      Inspired by this question, we exploratorily assessed the role of the Gambler’s Fallacy and the effects of Run in a separate set of analyses. Indeed, it is possible that participants start to expect a stimulation more when more time has passed since the last stimulation was experienced. To test this alternative hypothesis, we specified two new regressors that calculated for each trial of each participant how many trials had passed since the last stimulation (or since the beginning of the experiment) either overall (across all trials of all probability types; hence called the overall-lag regressor) or per probability level (across trials of each probability type separately; hence called the lag-per-probability regressor). For both regressors a value of 0 indicates that the previous trial was either a stimulation trial or the start of experiment, a value of 1 means that the last stimulation trial was 2 trials ago, etc.  

      The new models including these regressors for each omission response type (i.e., omission-related activations for each ROI, relief, and omission-SCR) were specified as follows:   

      (1) For the overall lag:

      Omission response ~ Probability * Intensity * Run + US-unpleasantness + Overall-lag + (1|Subject).  

      (2) For the lag per probability level:

      Omission response ~ Probability * Intensity * Run + US-unpleasantness + Lag-perprobability : Probability + (1|Subject).  

      Where US-unpleasantness scores were mean-centered across participants; “*” represents main effects and interactions, and “:” represents an interaction (without main effect). Note that we only included an interaction for the lag-per-probability model to estimate separate lag-parameters for each probability level.  

      The results of these analyses are presented in the tables below. Overall, we found that adding these lag-regressors to the model did not alter our main results. That is: for the VTA/SN, relief and omission-SCR, the main effects of Probability and Intensity remained. Interestingly, the overall-lag-effect itself was significant for VTA/SN activations and omission SCR, indicating that VTA/SN activations were larger when more time had passed since the last stimulation (beta = 0.19), whereas SCR were smaller when more time had passed (beta = -0.03). This pattern is reminiscent of the Perruchet effect, namely that the explicit expectancy of a US increases over a run of non-reinforced trials (in line with the gambler’s fallacy effect) whereas the conditioned physiological response to the conditional stimulus declines (in line with an extinction effect, Perruchet, 1985; McAndrew, Jones, McLaren, & McLaren, 2012). Thus, the observed dissociation between the VTA/SN activations and omission SCR might similarly point to two distinctive processes where VTA/SN activations are more dependent on a consciously controlled process that is subjected to the gambler’s fallacy, whereas the strength of the omission SCR responses is more dependent on an automatic associative process that is subjected to extinction. Importantly, however, even though the temporal distance to the last stimulation had these opposing effects on VTA/SN activations and omission SCRs, the main effects of the probability manipulation remained significant for both outcome variables. This means that the core results of our study still hold.   

      Next to the overall-lag effect, the lag-per-probability regressor was only significant for the vmPFC. A follow-up of the beta estimates of the lag-per-probability regressors for each probability level revealed that vmPFC activations increased with increasing temporal distance from the stimulation, but only for the 50% trials (beta = 0.47, t = 2.75, p < .01), and not the 25% (beta = 0.25, t = 1.49, p = .14) or the 75% trials (beta = 0.28, t = 1.62, p = .10).

      Author response table 1.

      F-statistics and corresponding p-values from the overall lag model. (*) F-test and p-values were based on the model where outliers were rescored to 2SD from the mean. Note that when retaining the influential outliers for this model, the p-value of the probability effect was p = .06. For all other outcome variables, rescoring the outliers did not change the results. Significant effects are indicated in bold.

      Author response table 2.

      F-statistics and corresponding p-values from the lag per probability level model. (*) F-test and p-values were based on the model where outliers were rescored to 2SD from the mean. Note that when retaining the influential outliers for this model, the p-value of the Intensity x Run interaction was p = .05. For all other outcome variables, rescoring the outliers did not change the results. Significant effects are indicated in bold.

      As the authors mentioned in the rebuttal letter, "selecting participants only if their anticipatory SCR monotonically increased with each increase in instructed probability 0% < 25% < 50% < 75% < 100%, N = 11 participants", only ~1/3 of the subjects actually showed strong evidence for the validity of the instructions. This further raises the question of whether the instructed design, due to the interference of false instruction and the dynamic learning among trials, is solid enough to test the hypothesis .  

      We agree with the reviewer that a monotonic increase in anticipatory SCR with increasing probability instructions would provide the strongest evidence that the manipulation worked. However, it is well known that SCR is a noisy measure, and so the chances to see this monotonic increase are rather small, even if the underlying threat anticipation increases monotonically. Furthermore, between-subject variation is substantial in physiological measures, and it is not uncommon to observe, e.g., differential fear conditioning in one measure, but not in another (Lonsdorf & Merz, 2017). It is therefore not so surprising that ‘only’ 1/3 of our participants showed the perfect pattern of monotonically increasing SCR with increasing probability instructions. That being said, it is also important to note that not all participants were considered for these follow-up analyses because valid SCR data was not always available.

      Specifically, N = 4 participants were identified as anticipation non-responders (i.e. participant with smaller average SCR to the clock on 100% than on 0% trials; pre-registered criterium) and were excluded from the SCR-related analyses, and N = 1 participant had missing data due to technical difficulties. This means that only 26 (and not 31) participants were considered for the post hoc analyses. Taking this information into account, this means that 21 out of 26 participants (approximately 80%) showed stronger anticipatory SCR following 75% instructions compared to 25% instructions and that  11 out of 26 participants (approximately 40%) even showed the monotonical increase in their anticipatory SCR (see supplemental figure 4). Furthermore, although anticipatory SCR gradually decreased over the course of the experiment, there was no Run x Probability interaction, indicating that the instructions remained stable throughout the task (see supplemental figure 3).  

      Reviewer #2 (Recommendations For The Authors):

      A more operational approach might be to break the trials into different sections along the timeline and examine how much the results might have been affected across time. I expect the manipulation checks would hold for the first one or two runs and the authors then would have good reasons to focus on the behavioral and imaging results for those runs. 

      This recommendation resembles the recommendation by reviewer 1. In our reply to reviewer 1, we showed the results of a re-analysis of the fMRI data using the trial-by-trial estimates of the omission contrasts, which revealed no Probability x Run interaction, suggesting that – overall - the probability effect remained (more or less) stable over the course of the experiment.  For a more in depth discussion of the results of this additional analysis, we refer to our answer to reviewer 1.  

      Reviewer #3 (Public Review): 

      Comments on revised version: 

      The authors were extremely responsive to the comments and provided a comprehensive rebuttal letter with a lot of detail to address the comments. The authors clarified their methodology, and rationale for their task design, which required some more explanation (at least for me) to understand. Some of the design elements were not clear to me in the original paper. 

      The initial framing for their study is still in the domain of learning. The paper starts off with a description of extinction as the prime example of when threat is omitted. This could lead a reader to think the paper would speak to the role of prediction errors in extinction learning processes. But this is not their goal, as they emphasize repeatedly in their rebuttal letter. The revision also now details how using a conditioning/extinction framework doesn't suit their experimental needs. 

      We thank the reviewer for pointing out this potential cause of confusion. We have now rewritten the starting paragraph of the introduction to more closely focus on prediction errors, and only discuss fear extinction as a potential paradigm that has been used to study the role of threat omission PE for fear extinction learning (see lines 40-55). We hope that these adaptations are sufficient to prevent any false expectations. However, as we have mentioned in our previous response letter, not talking about fear extinction at all would also not make sense in our opinion, since most of the knowledge we have gained about threat omission prediction errors to date is based on studies that employed these paradigms.  

      Adaptation in the revised manuscript (lines 40-55):  

      “We experience pleasurable relief when an expected threat stays away1. This relief indicates that the outcome we experienced (“nothing”) was better than we expected it to be (“threat”). Such a mismatch between expectation and outcome is generally regarded as the trigger for new learning, and is typically formalized as the prediction error (PE) that determines how much there can be learned in any given situation2. Over the last two decades, the PE elicited by the absence of expected threat (threat omission PE) has received increasing scientific interest, because it is thought to play a central role in learning of safety. Impaired safety learning is one of the core features of clinical anxiety4. A better understanding of how the threat omission PE is processed in the brain may therefore be key to optimizing therapeutic efforts to boost safety learning. Yet, despite its theoretical and clinical importance, research on how the threat omission PE is computed in the brain is only emerging.  

      To date, the threat omission PE has mainly been studied using fear extinction paradigms that mimic safety learning by repeatedly confronting a human or animal with a threat predicting cue (conditional stimulus, CS; e.g. a tone) in the absence of a previously associated aversive event (unconditional stimulus, US; e.g., an electrical stimulation). These (primarily non-human) studies have revealed that there are striking similarities between the PE elicited by unexpected threat omission and the PE elicited by unexpected reward.”

      It is reasonable to develop a new task to answer their experimental questions. By no means is there a requirement to use a conditioning/extinction paradigm to address their questions. As they say, "it is not necessary to adopt a learning paradigm to study omission responses", which I agree with.  But the authors seem to want to have it both ways: they frame their paper around how important prediction errors are to extinction processes, but then go out of their way to say how they can't test their hypotheses with a learning paradigm.

      Part of their argument that they needed to develop their own task "outside of a learning context" goes as follows: 

      (1) "...conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted. As a result, the magnitude-related axiom cannot be tested." 

      (2) "....in conditioning tasks people generally learn fast, rendering relatively few trials on which the prediction is violated. As a result, there is generally little intra-individual variability in the PE responses" 

      (3) "...because of the relatively low signal to noise ratio in fMRI measures, fear extinction studies often pool across trials to compare omission-related activity between early and late extinction, which further reduces the necessary variability to properly evaluate the probability axiom" 

      These points seem to hinge on how tasks are "generally" constructed. However, there are many adaptations to learning tasks:

      (1) There is no rule that conditioning can't include different levels of aversive outcomes following different cues. In fact, their own design uses multiple cues that signal different intensities and probabilities. Saying that conditioning "generally only include one level of aversive outcome" is not an explanation for why "these paradigms are not tailored" for their research purposes. There are also several conditioning studies that have used different cues to signal different outcome probabilities. This is not uncommon, and in fact is what they use in their study, only with an instruction rather than through learning through experience, per se.

      (2) Conditioning/extinction doesn't have to occur fast. Just because people "generally learn fast" doesn't mean this has to be the case. Experiments can be designed to make learning more challenging or take longer (e.g., partial reinforcement). And there can be intra-individual differences in conditioning and extinction, especially if some cues have a lower probability of predicting the US than others. Again, because most conditioning tasks are usually constructed in a fairly simplistic manner doesn't negate the utility of learning paradigms to address PEaxioms.

      (3) Many studies have tracked trial-by-trial BOLD signal in learning studies (e.g., using parametric modulation). Again, just because other studies "often pool across trials" is not an explanation for these paradigms being ill-suited to study prediction errors. Indeed, most computational models used in fMRI are predicated on analyzing data at the trial level. 

      We thank the reviewer for these remarks. The “fear conditioning and extinction paradigms” that we were referring to in this paragraph were the ones that have been used to study threat omission PE responses in previous research (e.g., Raczka et al., 2011; Thiele et al. 2021; Lange et al. 2020; Esser et al., 2021; Papalini et al., 2021; Vervliet et al. 2017). These studies have mainly used differential/multiple-cue protocols where either one (or two) CS+  and one CS- are trained in an acquisition phase and extinguished in the next phase. Thus, in these paradigms: (1) only one level of aversive US is used; and (2) as safety learning develops over the course of extinction, there are relatively few omission trials during which “large” threat omission PEs can be observed (e.g. from the 24 CS+ trials that were used during extinction in Esser et al., the steepest decreases in expectancy – and thus the largest PE – were found in first 6 trials); and (3) there was never absolute certainty that the stimulation will no longer follow. Some of these studies have indeed estimated the threat omission PE during the extinction phase based on learning models, and have entered these estimates as parametric modulators to CS-offset regressors. This is very informative. However, the exact model that was used differed per study (e.g. Rescorla-Wagner in Raczka et al. and Thiele et al.; or a Rescorla- Wagner–Pearce- Hall hybrid model in Esser et al.). We wanted to analyze threat omission-responses without commitment to a particular learning model. Thus, in order to examine how threat omissionresponses vary as a function of probability-related expectations, a paradigm that has multiple probability levels is recommended (e.g. Rutledge et al., 2010; Ojala et al., 2022)

      The reviewer rightfully pointed out that conditioning paradigms (more generally) can be tailored to fit our purposes as well. Still, when doing so, the same adaptations as we outlined above need to be considered: i.e. include different levels of US intensity; different levels of probability; and conditions with full certainty about the US (non)occurrence. In our attempt to keep the experimental design as simple and straightforward as possible, we decided to rely on instructions for this purpose, rather than to train 3 (US levels) x 5 (reinforcement levels) = 15 different CSs. It is certainly possible to train multiple CSs of varying reinforcement rates (e.g. Grings et al. 1971, Ojala et al., 2022). However, given that US-expectation on each trial would primarily depend on the individual learning processes of the participants, using a conditioning task would make it more difficult to maintain experimental control over the level of USexpectation elicited by each CS. As a result, this would likely require more extensive training, and thus prolong the study procedure considerably. Furthermore, even though previous studies have trained different CSs for different reinforcement rates, most of these studies have only used one level of US. Thus, in order to not complexify our task to much, we decided to rely on instructions rather than to train CSs for multiple US levels (in addition to multiple reinforcement rates).

      We have tried to clarify our reasoning in the revised version of the manuscript (see introduction, lines 100-113):  

      “The previously discussed fear conditioning and extinction studies have been invaluable for clarifying the role of the threat omission PE within a learning context. However, these studies were not tailored to create the varying intensity and probability-related conditions that are required to systematically evaluate the threat omission PE in the light of the PE axioms. First, these only included one level of aversive outcome: the electrical stimulation was either delivered or omitted; but the intensity of the stimulation was never experimentally manipulated within the same task. As a result, the magnitude-related axiom could not be tested. Second, as safety learning progressively developed over the course of extinction learning, the most informative trials to evaluate the probability axiom (i.e. the trials with the largest PE) were restricted to the first few CS+ offsets of the extinction phase, and the exact number of these informative trials likely differed across participants as a result of individually varying learning rates. This limited the experimental control and necessary variability to systematically evaluate the probability axiom. Third, because CS-US contingencies changed over the course of the task (e.g. from acquisition to extinction), there was never complete certainty about whether the US would (not) follow. This precluded a direct comparison of fully predicted outcomes. Finally, within a learning context, it remains unclear whether brain responses to the threat omission are in fact responses to the violation of expectancy itself, or whether they are the result of subsequent expectancy updating.”

      Again, the authors are free to develop their own task design that they think is best suited to address their experimental questions. For instance, if they truly believe that omission-related responses should be studied independent of updating. The question I'm still left puzzling is why the paper is so strongly framed around extinction (the word appears several times in the main body of the paper), which is a learning process, and yet the authors go out of their way to say that they can only test their hypotheses outside of a learning paradigm. 

      As we have mentioned before, the reason why we refer to extinction studies is because most evidence on threat omission PE to date comes from fear extinction paradigms.  

      The authors did address other areas of concern, to varying extents. Some of these issues were somewhat glossed over in the rebuttal letter by noting them as limitations. For example, the issue with comparing 100% stimulation to 0% stimulation, when the shock contaminates the fMRI signal. This was noted as a limitation that should be addressed in future studies, bypassing the critical point. 

      It is unclear to us what the reviewer means with “bypassing the critical point”. We argued in the manuscript that the contrast we initially specified and preregistered to study axiom 3 (fully predicted outcomes elicit equivalent activation) could not be used for this purpose, as it was confounded by the delivery of the stimulation. Because 100% trials aways included the stimulation and 0% trials never included stimulation, there was no way to disentangle activations related to full predictability from activations related to the stimulation as such.   

      Reviewer #3 (Recommendations For The Authors): 

      I'm not sure the new paragraph explaining why they can't use a learning task to test their hypotheses is very convincing, as I noted in my review. Again, it is not a problem to develop a new task to address their questions. They can justify why they want to use their task without describing (incorrectly in my opinion) that other tasks "generally" are constructed in a way that doesn't suit their needs. 

      For an overview of the changes we made in response to this recommendation, we refer to our reply to the public review.   

      We look forward to your reply and are happy to provide answers to any further questions or comments you may have.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study describes a new computational method for unsupervised (i.e., non-artificial intelligence) segmentation of objects in grayscale images that contain substantial noise, to differentiate object, no object, and noise. Such a problem is essential in biology because they are commonly confronted in the analysis of microscope images of biological samples and recently have been resolved by artificial intelligence, especially by deep neural networks. However, training artificial intelligence for specific sample images is a difficult task and not every biological laboratory can handle it. Therefore, the proposed method is particularly appealing to laboratories with little computational background. The method was shown to achieve better performance than a threshold-based method for artificial and natural test images. To demonstrate the usability, the authors applied the method to high-power confocal images of the thalamus for the identification and quantification of immunostained potassium ion channel clusters formed in the proximity of large axons in the thalamic neuropil and verified the results in comparison to electron micrographs.

      Strengths:

      The authors claim that the proposed method has higher pixel-wise accuracy than the threshold-based method when applied to gray-scale images with substantial noises.

      Since the method does not use artificial intelligence, training and testing are not necessary, which would be appealing to biologists who are not familiar with machine learning technology.

      The method does not require extensive tuning of adjustable parameters (trying different values of "Moran's order") given that the size of the object in question can be estimated in advance.

      We appreciate the positive assessment of our approach.

      Weaknesses:

      It is understood that the strength of the method is that it does not depend on artificial intelligence and therefore the authors wanted to compare the performance with another non-AI method (i.e. the threshold-based method; TBM). However, the TBM used in this work seems too naive to be fairly compared to the expensive computation of "Moran's I" used for the proposed method. To provide convincing evidence that the proposed method advances object segmentation technology and can be used practically in various fields, it should be compared to other advanced methods, including AI-based ones, as well.

      Protein localization studies revealed that protein distributions are frequently inhomogeneous in a cell. This is very common in neurons which are highly polarized cell types with distinct axo-somato-dendritic functions. Moreover, due to the nature of the cell-to-cell interactions among neurons (e.g. electrical and chemical synapses) the cell membrane includes highly variable microdomains with unique protein assemblies (i.e. clusters). Protein clusters are defined as membrane segments with higher protein densities compared to neighboring membrane regions. However, protein density can continuously change between “clusters” and “non-clusters”. As a consequence, differentiating proteins involved vs not involved in clusters is a challenging task.  Indeed, our analysis showed that the boundaries of protein clusters varied remarkably when 23 human experts delineated them.

      Despite the fact the protein clusters can only be vaguely defined numerous studies have demonstrated the functional relevance of inhomogeneous protein distribution. Thus, there is a high relevance and need for an observer independent, “operative” segmentation method that can be accomplished and compared among different conditions and specimens. The strength of the Moran’s I analysis we propose here, as pointed out by our reviewers and editors, is that it can extract the relevant signals from an image generated in different, often noisy condition using a simple algorithm that allows quantitative characterization and identification of changes in many biological and non-biological samples.

      In AI based analysis the ground truth is known by an observer and using a large training set AI learns to extract the relevant information for image segmentation. As outlined above the “ground truth”, however, cannot be unequivocally defined for protein clusters. There is no doubt, that with sufficient resource investment there would be an AI based analysis of the same problem. In our view, however, in an average laboratory setting generating a training set using hundreds of images examined by many experts may not be plausible. Moreover, generalization of one training set to another set of cluster, resistance to noise or different levels of background could also not be guaranteed.

      This method was claimed to be better than the TBM when the noise level was high. Related to the above, TBMs can be used in association with various denoising methods as a preprocess. It is questionable whether the claim is still valid when compared to the methods with adequate complexity used together with denoising. Consider for example, Weigert et al. (2018) https://doi.org/10.1038/s41592-018-0216-7; or Lehtinen et al (2018) https://doi.org/10.48550/arXiv.1803.04189.

      In Weigert et al. AI was trained with high-quality images of the same object obtained with extreme photon exposure in confocal microscope. As delineated above without training AI systems cannot be used for such purposes. The Lehtinen paper is unfortunately no longer available at this doi.

      We must emphasize that in our work we did not intend to compare the image segmentation method based on local Moran’s I with all other available segmentation techniques. Rather we wanted to demonstrate a straightforward method of grouping pixels with similar intensities and in spatial proximity which does not require a priori knowledge of the objects. We used TBM to benchmark the method. We agree that with more advanced TBM methods the difference between Moran’s and TBM might have been smaller. The critical component here is, however, that even with most advanced TBM an artificial threshold is needed to be defined. The optimal threshold may change from sample to sample depending on the experimental conditions which makes quantification questionable. Moran’s method overcomes this problem and allows more objective segmentation of images even if the exact conditions (background labeling, noise, intensity etc) are not identical among the samples.

      The computational complexity of the method, determined by the convolution matrix size (Moran's order), linearly increases as the object size increases (Fig. S2b). Given that the convolution must be run separately for each pixel, the computation seems quite demanding for scale-up, e.g. when the method is applied for 3D image volumes. It will be helpful if the requirement for computer resources and time is provided.

      Here we provide the required data concerning the hardware and the computational time:

      Hardware used for performing the analysis:

      Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz, 2594 Mhz, 4 kernel CPU, 64GB RAM, NVIDIA GeForce GTX 1080 graphic card.

      MATLAB R2021b software was used for implementation.

      Author response table 1.

      Computation times:

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by David et al. describes a novel image segmentation method, implementing Local Moran's method, which determines whether the value of a datapoint or a pixel is randomly distributed among all values, in differentiating pixel clusters from the background noise. The study includes several proof-of-concept analyses to validate the power of the new approach, revealing that implementation of Local Moran's method in image segmentation is superior to threshold-based segmentation methods commonly used in analyzing confocal images in neuroanatomical studies.

      Strengths:

      Several proof-of-concept experiments are performed to confirm the sensitivity and validity of the proposed method. Using composed images with varying levels of background noise and analyzing them in parallel with the Local Moran's or a Threshold-Based Method (TBM), the study is able to compare these approaches directly and reveal their relative power in isolating clustered pixels.     

      Similarly, dual immuno-electron microscopy was used to test the biological relevance of a colocalization that was revealed by Local Moran's segmentation approach on dual-fluorescent labeled tissue using immuno-markers of the axon terminal and a membrane-protein (Figure 5). The EM revealed that the two markers were present in terminals and their post-synaptic partners, respectively. This is a strong approach to verify the validity of the new approach for determining object-based colocalization in fluorescent microscopy. 

      The methods section is clear in explaining the rationale and the steps of the new method (however, see the weaknesses section). Figures are appropriate and effective in illustrating the methods and the results of the study. The writing is clear; the references are appropriate and useful.

      We are grateful for the constructive assessment of our results.

      Weaknesses:

      While the steps of the mathematical calculations to implement Local Moran's principles for analyzing high-resolution images are clearly written, the manuscript currently does not provide a computation tool that could facilitate easy implementation of the method by other researchers. Without a user-friendly tool, such as an ImageJ plugin or a code, the use of the method developed by David et al by other investigators may remain limited.

      The code for the analysis is now available online as a user-friendly MATLAB script at: https://github.com/dcsabaCD225/Moran_Matlab/blob/main/moran_local.m

      Recommendations for the authors:

      Summary of reviews:

      Both reviewers acknowledge the potential significance and practicality of the newly proposed image segmentation method. This method uses Local Moran's principles, offering an advantage over traditional intensity thresholding approaches by providing more sensitivity, particularly in reducing background noise and preserving biologically relevant pixels.

      Strengths Highlighted:

      • The proposed method can provide more accurate results, especially for grayscale images with significant noise.

      • The method is not dependent on artificial intelligence, making it appealing for researchers with minimal computational background.    

      • The approach can operate without the need for extensive tuning, given that the size of the object is known.

      • Several proof-of-concept experiments were carried out, revealing the effectiveness of the method in comparison with the threshold-based segmentation methods.

      • The manuscript is clear in terms of methodology, and the results are supported by effective illustrations and references.

      Weaknesses Noted:

      • The study lacked a comparative analysis with advanced segmentation methods, especially those that employ artificial intelligence.

      See our response above to the same question of Reviewer 1.

      • There are concerns about computational complexity, especially when dealing with larger data sets or 3D image volumes.

      See our response about the calculations of computation times above to the similar question of Reviewer 1.

      • Both reviewers noted the absence of a data/code availability statement in the manuscript, which might restrict the method's adoption by other researchers.

      The code availability is provided now.

      • Reviewer 2 suggested that some results, particularly related to Kv4.2 in the thalamus, might be better presented in a separate study due to their significance.

      We thank our reviewers for this suggestion. We carefully evaluated the pros and cons of publishing the Kv4.2 data separately. We finally decided to keep the segmentation and experimental data together due to the following reason. We believe that the ultrastructural localization provides strong experimental proof for the relevance of our novel segmentation method. In order to make the potassium channel data more visible we added a subsentence to the title. In this manner we think scientist interested in the imaging method as well as the neurobiology will be both find and cite the paper. The novel title reads now:

      “An image segmentation method based on the spatial correlation coefficient of Local Moran’s I - identification of A-type potassium channel clusters in the thalamus.”

      Reviewer Recommendations:

      (1) Provide details about the data and program code availability.

      See our response above

      (2) Offer practical recommendations and provide clarity on software packages and coding for the proposed method to enhance its adoption.

      Done.

      (3) Consider presenting the findings about Kv4.2 in the thalamus separately as they hold significant importance on their own.

      See our response above

      Given the reviews, the proposed image segmentation method presents a promising advancement in the domain of image analysis. The technique offers tangible benefits, especially for researchers dealing with biological microscopy data. However, for this method to see a broader application, it's imperative to provide clearer practical guidance and make data or code easily accessible. Additionally, while the findings regarding Kv4.2 in the thalamus are intriguing, they might achieve more impact if detailed in a dedicated paper.

      Reviewer #1 (Recommendations For The Authors):

      The availability of data or program code was not stated in the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      (1) While the principles of the method are explained clearly in a step-by-step fashion in the Methods section, the practical aspects of running sequential computations over a large matrix of pixel values are not well described. It would be very useful if the authors could provide recommendations on how to set the data structure and clarify which software and programming package for Local Moran's analysis they used. In addition, providing the code for the sequential implementation described in the Methods section would facilitate the adoption of the method by other researchers, and thus, the impact of the study. Currently, there is no data or code availability statement included in the manuscript.

      See our response above.

      (2) Figure 4 illustrates an experiment in which transmission electron microscopy and freeze-fracture replica labeling approaches were used to demonstrate that a potassium channel marker, Kv4.2 was selective to synapses forming on larger caliber dendrites in the thalamus. As impressive as the EM approaches utilized in this figure are, the results of this experiment have a somewhat tangential bearing on the segmentation method that is the focus of this study. In fact, the experiments illustrated in Figure 5, dual immuno-EM, are more than sufficient to confirm what the dual-confocal imaging coupled with Local Moran's segmentation analysis reveals. Furthermore, the author's findings about the localization and selectivity of Kv4.2 in the thalamus are too important and exciting to bury in a paper focusing on the methodology. Those results may have a wider impact if they are presented and discussed in a separate experimental paper.

      See our response above

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #3 (Public Review):

      The iron manipulation experiments are in the whole animal and it is likely that this affects general feeding behaviour, which is known to affect NB exit from quiescence and proliferative capacity. The loss of ferritin in the gut and iron chelators enhancing the NB phenotype are used as evidence that glia provide iron to NB to support their number and proliferation. Since the loss of NB is a phenotype that could result from many possible underlying causes (including low nutrition), this specific conclusion is one of many possibilities.

      We have investigated the feeding behavior of fly by Brilliant Blue (sigma, 861146)[1]. Our result showed that the amount of dye in the fly body were similar between control group and BPS group, suggesting that BPS almost did not affect the feeding behavior (Figure 3—figure supplement 1A).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      There was a gap between the Pros nuclear localization and downstream targets of ferritin, particularly NADH dehydrogenase and biosynthesis. Could overexpression of Ndi1 restore Pros localization in NBs?

      Ferritin defect downregulates iron level, which leads to cell cycle arrest of NBs via ATP shortage. And cell cycle arrest of NBs probably results in NB differentiation[2, 3]. We have added the experiment in Figure 5—figure supplement 2. This result showed that overexpression of Ndi1 could significantly restore Pros localization in NBs.

      The abstract requires revision to cover the major findings of the manuscript, particularly the second half.

      We revised the abstract to add more major findings of the manuscript in the second half as follows:

      “Abstract

      Stem cell niche is critical for regulating the behavior of stem cells. Drosophila neural stem cells (Neuroblasts, NBs) are encased by glial niche cells closely, but it still remains unclear whether glial niche cells can regulate the self-renewal and differentiation of NBs. Here we show that ferritin produced by glia, cooperates with Zip13 to transport iron into NBs for the energy production, which is essential to the self-renewal and proliferation of NBs. The knockdown of glial ferritin encoding genes causes energy shortage in NBs via downregulating aconitase activity and NAD+ level, which leads to the low proliferation and premature differentiation of NBs mediated by Prospero entering nuclei. More importantly, ferritin is a potential target for tumor suppression. In addition, the level of glial ferritin production is affected by the status of NBs, establishing a bicellular iron homeostasis. In this study, we demonstrate that glial cells are indispensable to maintain the self-renewal of NBs, unveiling a novel role of the NB glial niche during brain development.”

      In Figure 2B Mira appeared to be nuclear in NBs, which is inconsistent with its normal localization. Was it Dpn by mistake?

      In Figure 2B, we confirmed that it is Mira. Moreover, we also provide a magnified picture in Figure 2B’, showing that the Mira mainly localizes to the cortex or in the cytoplasm as previously reported.

      Figure 2C, Fer1HCH-GFP/mCherry localization was non-uniform in the NBs revealing 1-2 regions devoid of protein localization potentially corresponding to the nucleus and Mira crescent enrichment. It is important to co-label the nucleus in these cells and discuss the intracellular localization pattern of Ferritin.

      We have revised the picture with nuclear marker DAPI in Figure 2C. The result showed that Fer1HCH-GFP/Fer2LCH-mCherry was not co-localized with DAPI, which indicated that Drosophila ferritin predominantly distributes in the cytosol[4, 5]. As for the concern mentioned by this reviewer, GFP/mCherry signal in NBs was from glial overexpressed ferritin, which probably resulted in non-uniform signal.

      In Figure 3-figure supplement 3F, glial cells in Fer1HCH RNAi appeared to be smaller in size. This should be quantified. Given the significance of ferritin in cortex glial cells, examining the morphology of cortex glial cells is essential.

      In Figure 3—figure supplement 3F, we did not label single glial cells so it was difficult to determine whether the size was changed. However, it seems that the chamber formed by the cellular processes of glial cells becomes smaller in Fer1HCH RNAi. The glial chamber will undergo remodeling during neurogenesis, which responses to NB signal to enclose the NB and its progeny[6]. Thus, the size of glial chamber is regulated by NB lineage size. In our study, ferritin defect leads to the low proliferation, inducing the smaller lineage of each NB, which likely makes the chamber smaller.

      Since the authors showed that the reduced NB number was not due to apoptosis, a time-course experiment for glial ferritin KD is recommended to identify the earliest stage when the phenotype in NB number /proliferation manifests during larval brain development.

      We observed brains at different larval stages upon glial ferritin KD. The result showed that NB proliferation decreased significantly, but NB number declined slightly at the second-instar larval stage (Figure 5—figure supplement 1E and F), suggesting that brain defect of glial ferritin KD manifests at the second-instar larval stage.

      Transcriptome analysis on ferritin glial KD identified genes in mitochondrial functions, while the in vivo EM data suggested no defects in mitochondria morphology. A short discussion on the inconsistency is required.

      For the observation of mitochondria morphology via the in vivo EM data, we focused on visible cristae in mitochondria, which was used to determine whether the ferroptosis happens[7]. It is possible that other details of mitochondria morphology were changed, but we did not focus on that. To describe this result more accurately, we replaced “However, our observation revealed no discernible defects in the mitochondria of NBs after glial ferritin knockdown” with the “However, our result showed that the mitochondrial double membrane and cristae were clearly visible whether in the control group or glial ferritin knockdown group, which suggested that ferroptosis was not the main cause of NB loss upon glial ferritin knockdown” in line 207-209.

      The statement “we found no obvious defects of brain at the first-instar larval stage (0-4 hours after larval hatching) when knocking down glial ferritin (Figure 5-figure supplement 1C).” lacks quantification of NB number and proliferation, making it challenging to conclude.

      We have provided the quantification of NB number and proliferation rate of the first-instar larval stage in Figure 5—figure supplement 1C and D. The data showed that there is no significant change in NB number and proliferation rate when knocking down ferritin, suggesting that no brain defect manifests at the first-instar larval stage.

      A wild-type control is necessary for Figure 6A-C as a reference for normal brain sizes.

      We have added Insc>mCherry RNAi as a reference in Figure 6A-D, which showed that the brain size of tumor model is larger than normal brain. Moreover, we removed brat RNAi data from Figure 6A-D to Figure 6—figure supplement 1A-D for the better layout.

      In Figures 6B, D, “Tumor size” should be corrected to “Larval brain volume”.

      Here, we measured the brain area to assess the severity of the tumor via ImageJ instead of 3D data of the brain volume. So we think it would be more appropriate to use the “Larval brain size” than “Larval brain volume” here. Thus, we have corrected “Tumor size” to “Larval brain size” in Figure 6B and D to Figure 6—figure supplement 1B and D.

      Considering that asymmetric division defects in NBs may lead to premature differentiation, it is advisable to explore the potential involvement of ferritin in asymmetric division.

      aPKC is a classic marker to determine the asymmetric division defect of NB. We performed the aPKC staining and found it displayed a crescent at the apical cortex based on the daughter cell position whether in control or glial ferritin knockdown (Figure 5—figure supplement 3A). This result indicated that there was no obvious asymmetric defect after glial ferritin knockdown.

      In the statement "Secondly, we examined the apoptosis in glial cells via Caspase-3 or TUNEL staining, and found the apoptotic signal remained unchanged after glial ferritin knockdown (Figure 3-figure supplement 3A-D).", replace "the apoptosis in glial cells" with "the apoptosis in larval brain cells".

      We have replaced "the apoptosis in glial cells" with "the apoptosis in larval brain cells" in line 216.

      Include a discussion on the involvement of ferritin in mammalian brain development and address the limitations associated with considering ferritin as a potential target for tumor suppression.

      We have added the discussion about ferritin in mammalian brain development in line 428-430 and limitation of ferritin for suppressing tumor in line 441-444.

      Indicate Insc-GAL4 as BDSC#8751, even if obtained from another source. Additionally, provide information on the extensively used DeRed fly stock used in this study within the methods section.

      We provided the stock information of Insc-GAL4 and DsRed in line 673-674.

      Reviewer #2 (Recommendations For The Authors):

      Major points:

      The number of NBs differs a lot between experiments. For example, in Fig 1B and 1K controls present less than 100 NBs whereas in Figure 1 Supplementary 2B it can be seen that controls have more than 150. Then, depending on which control you compare the number of NBs in flies silencing Fer1HCH or Fer2LCH, the results might change. The authors should explain this.

      Figure 1 Supplementary 2B (Figure 1 Supplementary 3B in the revised version) shows NB number in VNC region while Fig 1B and 1K show NB number in CB region. At first, we described the general phenotype showing the NB number in CB and VNC respectively (Fig 1 and Fig 1-Supplementary 1 and 3 in the revised version). And the NB number is consistent in each region. After then, we focused on NB number in CB for the convenience.

      This reviewer encourages the authors to use better Gal4 lines to describe the expression patterns of ferritins and Zip13 in the developing brain. On the one hand, the authors do not state which lines they are using (including supplementary table). On the other hand, new Trojan GAL4 (or at least InSite GAL4) lines are a much better tool than classic enhancer trap lines. The authors should perform this experiment.

      All stock source and number were documented in Table 2. Ferritin GAL4 and Zip13 GAL4 in this study are InSite GAL4. In addition, we also used another Fer2LCH enhancer trapped GAL4 to verify our result (DGRC104255) and provided the result in Figure 2—figure supplement 1. Our data showed that DsRed driven by Fer2LCH-GAL4 was co-localized with the glia nuclear protein Repo, instead of the NB nuclear protein Dpn, which was consistent with the result of Fer1HCH/Fer2LCH GAL4. In addition, we will try to obtain the Trojan GAL4 (Fer1HCH/Fer2LCH GAL4 and Zip13 GAL4) and validate this result in the future.

      The authors exclude very rapidly the possibility of ferroptosis based only on some mitochondrial morphological features without analysing the other hallmarks of this iron-driven cell death. The authors should at least measure Lipid Peroxidation levels in their experimental scenario either by a kit to quantify by-products of lipid peroxidation such as Malonaldehide (MDA) or using an anti 4-HNE antibody.

      We combined multiple experiments to exclude the possibility of ferroptosis. Firstly, ferroptosis can be terminated by iron chelator. And we fed fly with iron chelator upon glial ferritin knockdown, but NB number and proliferation were not restored, which suggested that ferroptosis probably was not the cause of NB loss induced by glial ferritin knockdown (Figure 3B and C). Secondly, Zip13 transports iron into the secretary pathway and further out of the cells in Drosophila gut[8]. Our data showed that knocking down iron transporter Zip13 in glia resulted in the decline of NB number and proliferation, which was consistent with the phenotype upon glial ferritin knockdown (Figure 3E-G). More importantly, the knockdown of Zip13 and ferritin simultaneously aggravated the phenotype in NB number and proliferation (Figure 3E-G). These results suggested that the phenotype was induced by iron deficiency in NB, which excluded the possibility of iron overload or ferroptosis to be the main cause of NB loss upon glial ferritin knockdown. Finally, we observed mitochondrial morphology on double membrane and the cristae that are critical hallmarks of ferroptosis, but found no significant damage (Figure 3-figure supplement 2E and F).

      In addition, we have added the 4-HNE determination in Figure 3—figure supplement 2G and H. This result showed that 4-HNE level did not change significantly, suggesting that lipid peroxidation was stable, which supported to exclude the possibility that the ferroptosis led to the NB loss upon glial ferritin knockdown.

      All of the above results together indicate that ferroptosis is not the cause of NB loss after ferritin knockdown.

      A major flaw of the manuscript is related to the chapter Glial ferritin defects result in impaired Fe-S cluster activity and ATP production and the results displayed in Figure 4. The authors talk about the importance of FeS clusters for energy production in the mitochondria. Surprisingly, the authors do not analyse the genes involved in this process such as but they present the interaction with the cytosolic FeS machinery that has a role in some extramitochondrial proteins but no role in the synthesis of FeS clusters incorporated in the enzymes of the TCA cycle and the respiratory chain. The authors should repeat the experiments incorporating the genes NSF1 (CG12264), ISCU(CG9836), ISD11 (CG3717), and fh (CG8971) or remove (or at least rewrite) this entire section.

      Thanks for this constructive advice and we have revised this in Figure 4B and C. We repeated the experiment with blocking mitochondrial Fe-S cluster biosynthesis by knocking down Nfs1 (CG12264), ISCU(CG9836), ISD11 (CG3717), and fh (CG8971), respectively. Nfs1 knockdown in NB led to a low proliferation, which was consistent with CIA knockdown. However, we did not observe the obvious brain defect in ISCU(CG9836), ISD11 (CG3717), and fh (CG8971) knockdown in NB. Our interpretation of these results is that Nfs1 probably is a necessary core component in Fe-S cluster assembly while others are dispensable[9].

      The presence and aim of the mouse model Is unclear to this reviewer. On the one hand, It Is not used to corroborate the fly findings regarding iron needs from neuroblasts. On the other hand, and without further explanation, authors migrate from a fly tumor model based on modifying all neuroblasts to a mammalian model based exclusively on a glioma. The authors should clarify those issues.

      Although iron transporter probably is different in Drosophila and mammal, iron function is conserved as an essential nutrient for cell growth and proliferation from Drosophila to mammal. The data of fly suggested that iron is critical for brain tumor growth and thus we verified this in mammalian model. Glioma is the most common form of central nervous system neoplasm that originates from neuroglial stem or progenitor cells[10]. Therefore, we validated the effect of iron chelator DFP on glioma in mice and found that DFP could suppress the glioma growth and further prolong the survival of tumor-bearing mice.

      Minor points

      Although referred to adult flies, the authors did not include either in the introduction or in the discussion existing literature about expression of ferritins in glia or alterations of iron metabolism in fly glia cells (PMID: 21440626 and 25841783, respectively) or usage of the iron chelator DFP in drosophila (PMID: 23542074). The author should check these manuscripts and consider the possibility of incorporating them into their manuscript.

      Thanks for your remind. We have incorporated all recommended papers into our manuscript line 65-67 and 168.

      The number of experiments in each figure is missing.

      All experiments were repeated at least three times. And we revised this in Quantifications and Statistical Analysis of Materials and methods.

      If graphs are expressed as mean +/- sem, it is difficult to understand the significance stated by the authors in Figure 2E.

      We apologize for this mistake and have revised this in Quantifications and Statistical Analysis. All statistical results were presented as means ± SD.

      When authors measure aconitase activity, are they measuring all (cytosolic and mitochondrial) or only one of them? This is important to better understand the experiments done by the authors to describe any mitochondrial contribution (see above in major points).

      In this experiment, we were measuring the total aconitase activity. We also tried to determine mitochondrial aconitase but it failed, which was possibly ascribed to low biomass of tissue sample.

      In this line, why do controls in aconitase and atp lack an error bar? Are the statistical tests applied the correct ones? It is not the same to have paired or unpaired observations.

      It is the normalization. We repeated these experiments at least three times in different weeks respectively, because the whole process was time-consuming and energy-consuming including the collection of brains, protein determination and ATP or aconitase determination. And the efficiency of aconitase or ATP kit changed with time. We cannot control the experiment condition identically in different batches. Therefore, we performed normalization every time to present the more accurate result. The control group was normalized as 1 via dividing into itself and other groups were divided by the control. This normalized process was repeated three times. Therefore, there is no error bar in the control group. We think it is appropriate to apply ANOVA with a Bonferroni test in the three groups.

      In some cases, further rescue experiments would be appreciated. For example, expression of Ndi restores control NAD+ levels or number of NBs, it would be interesting to know if this is accompanied by restoring mitochondrial integrity and its ability to produce ATP.

      We have determined ATP production after overexpressing Ndi1 and provided this result in Figure 4—figure supplement 1B. The data showed that expression of Ndi1 could restore ATP production upon glial Fer2LCH knockdown, which was consistent with our conclusion.

      Lines 293-299 on page 7 are difficult to understand.

      According to our above results, the decrease of NB number and proliferation upon glial ferritin knockdown (KD) was caused by energy deficiency. As shown in the schematic diagram (Author response image 1), “T” represented the total energy which was used for NB maintenance and proliferation. “N” indicated the energy for maintaining NB number. “P” indicated the energy for NB proliferation. “T” is equal to “N” plus “P”. When ferritin was knocked down in glia, “T”, “N” and “P” declined in “Ferritin KD” compared to “wildtype (WT)”. Knockdown of pros can prevent the differentiation of NB, but it cannot supply the energy for NB, which probably results in the rescue of NB number but not proliferation. Specifically, NB number increased significantly in “Ferritin KD Pros KD” compared to “Ferritin KD”, which resulted in consuming more energy for NB maintenance in “Ferritin KD Pros KD”. As shown in the schematic diagram, “T” was not changed between “Ferritin KD Pros KD” and “Ferritin KD”, whereas ”N” was increased in “Ferritin KD Pros KD” compared to “Ferritin KD”. Thus, “P” was decreased, which suggested that less energy was remained for proliferation, leading to the failure of rescue in NB proliferation. It seemed that the level of proliferation in “Ferritin KD Pros KD” was even lower than “Ferritin KD”.

      Author response image 1.

      The schematic diagram of relationship between energy and NB function in different groups. “T” represents total energy for NB maintenance and proliferation. “N” represents the energy for NB maintenance. “P” represents the energy for NB proliferation. T=N+P 

      Line 601 should indicate that Tables 2 and 3 are part of the supplementary material.

      We have revised this in line 678.

      Figure 4-supplement 1. Only validation of 2 genes from a RNAseq seems too little.

      We dissected hundreds of brains for sorting NBs because of low biomass of fly brain. This is a difficult and energy-consuming work. Most NBs were used for RNA-seq, so we can only use a small amount of sample left for validation which is not enough for more genes.

      Figure 6E, the authors indicate that 10 mg/ml DFP injection could significantly prolong the survival time. Which increase in % is produced by DFP?

      We have provided the bar graph in Author response image 2. The increase is about 16.67% by DFP injection.

      Author response image 2.

      The bar graph of survival time of mice treated with DFP. (The unpaired two-sided Student’s t test was employed to assess statistical significance. Statistical results were presented as means ± SD. n=7,6; *: p<0.05)

      Reviewer #3 (Recommendations For The Authors):

      As I read the initial results that built the story (glia make ferritin>release it> NBs take them up>use it for TCA and ETC) I kept thinking about what it meant for NBs to be 'lost'. This led me to consider alternate possibilities that the results might point to, other than the ones the authors were suggesting. It was only in Figure 5 that the authors ruled out some of those possibilities. I would suggest that they first illustrate how NBs are lost upon glial ferritin loss of function before they delve into the mechanism. This would also be a place to similarly address that glial numbers and general morphology are unchanged upon ferritin loss.

      This recommendation provides a valuable guideline to build this story especially for researchers who are interested in neural stem cell studies. Actually, we tried this logic to present our study but found that there are several gaps in the middle of the manuscript, such as the relationship between glial ferritin and Pros localization in NB, so that the whole story cannot be fluently presented. Therefore, we decided to present this study in the current way.

      More details of the screen would be useful to know. How many lines did they screen, what was the assay? This is not mentioned anywhere in the text.

      We have added this in Screen of Materials and methods. We screened about 200 lines which are components of classical signaling pathways, highly expressed genes in glial cells or secretory protein encoding genes. UAS-RNAi lines were crossed with repo-Gal4, and then third-instar larvae of F1 were dissected. We got the brains from F1 larvae and performed immunostaining with Dpn and PH3. Finally, we observed the brain in Confocal Microscope.

      Many graphs seem to be repeated in the main figures and the supplementary data. This is unnecessary, or at least should be mentioned.

      We appreciate your kind reminder. However, we carefully went through all the figures and did not find the repeated graphs, though some of them look similar.

      The authors mention that they tested which glial subtypes ferritin is needed in, but don't show the data. Could they please show the data? Same with the other iron transport/storage/regulation. Also, in both this and later sections, the authors could mention which Gal4 was used to label what cell types. The assumption is that the reader will know this information.

      We have added the result of ferritin knockdown in glial subpopulations in Figure 1—figure supplement 2. However, considering that the quantity of iron-related genes, we did not take the picture, but we recorded this in Table 3.

      For all their images showing colocalisation, magnified, single-colour images shown in grayscale will be useful. For example, without the magnification, it is not possible to see the NB expression of the protein trap line in Figure 2B. A magnified crop of a few NBs (not a single one like in 2C) would be more useful.

      We have provided Figure 2A’, B’, D’ and Figure 3D’ as suggested.

      There are a lot of very specific assays used to detect ROS, NAD, aconitase activity, among others. It would be nice to have a brief but clear description of how they work in the main text. I found myself having to refer to other sources to understand them. (I believe SoNAR should be attributed to Zhao et al 206 and not Bonnay et al 2020.)

      We have added a brief description about ROS, aconitase activity, NAD in line 198-199, 229-231, and 269 as suggested.

      I did not understand the normalisation done with respect to SoNAR. Is this standard practice? Is the assumption that 'overall protein levels will be higher in slowly proliferating NBs' reasonable? This is why they state the need to normalise.

      The SoNAR normalization is not a standard practice. However, we think that our normalization of SoNar is reasonable. According to our results, the expression level of Dpn and Mira seemed higher in glial ferritin knockdown, so we speculated that some proteins accumulated in slowly proliferating NBs. Thus, we used Insc-GAL4 to drive DsRed for indicating the expression level of Insc and found that DsRed rose after glial ferritin knockdown, suggesting that Insc expression was increased indeed. Therefore, we have to normalize SoNar driven by Insc-GAL4 based on DsRed driven by Insc-Gal4, which eliminates the effect of increased Insc upon glial ferritin knockdown.

      FAC is mentioned as a chelator? But the authors seem to use it oppositely. Is there an error?

      FAC is a type of iron salt, which is used to supply iron. We have also indicated that in line 156 according to your advice. 

      The lack of any cell death in the L3 brain surprised me. There should be plenty of hemilineages that die, as do many NBs, particularly in the abdominal segments. Is the stain working? Related to this, P35 is not the best method for rescuing cell death. H99 might be a better way to go.

      We were also surprised to see this result and repeated this experiment for several times with both negative and positive controls. Moreover, we also used TUNEL to validate this result, which led to the same result. We will try to use H99 to rescue NB loss in the future, because it needs to be integrated and recombined with our current genetic tools.

      It would be nice to see the aconitase activity signal as opposed to just the quantification.

      This method can only determine the absorbance for indicating aconitase activity, so our result is just the quantification.

      Glia are born after NBs are specified. In fact, they arise from NBs (and glioblasts). So, it's unlikely that the knockdown of ferritin in glia can at all affect initial NB specification.

      We completely agree with this statement.

      The section on tumor suppression seems out of place. The fly data on which the authors base this as an angle to chase is weak. Dividing cells will be impaired if they have inadequate energy production. As a therapeutic, this will affect every cell in the body. I'm not sure that cancer therapeutics is pursuing such broadly acting lines of therapies anymore.

      Our data suggested that iron/ferritin is more critical for high proliferative cells. Tumor cells have a high expression of TfR (Transferrin Receptor)[11], which can bind to Transferrin and ferritin[12]. And ferritin specifically targets on the tumor cells[11]. Thus, we think iron/ferritin is extremely essential for tumor cells. If we can find the appropriate dose of iron/ferritin inhibitor, suppressing tumor growth but maintaining normal cell growth, iron/ferritin might be an effective target of tumor treatment.

      The feedback from NB to glial ferritin is also weak data. The increased cell numbers (of unknown identity) could well be contributing to the increase in ferritin. I would omit the last two sections from the MS.

      In brat RNAi and numb RNAi, increased cells are NB-like cells, which cannot undergo further differentiation and are not expected to produce ferritin. More importantly, we used Repo (glia marker) as the reference and quantified the ratio of ferritin level to Repo level, which can exclude the possibility that increased glial cells lead to the increase in ferritin.

      References

      (1) Tanimura T, Isono K, Takamura T, et al. Genetic Dimorphism in the Taste Sensitivity to Trehalose in Drosophila-Melanogaster. J Comp Physiol, 1982,147(4):433-7

      (2) Myster DL, Duronio RJ. Cell cycle: To differentiate or not to differentiate? Current Biology, 2000,10(8):R302-R4

      (3) Dalton S. Linking the Cell Cycle to Cell Fate Decisions. Trends in Cell Biology, 2015,25(10):592-600

      (4) Nichol H, Law JH, Winzerling JJ. Iron metabolism in insects. Annu Rev Entomol, 2002,47:535-59

      (5) Pham DQ, Winzerling JJ. Insect ferritins: Typical or atypical? Biochim Biophys Acta, 2010,1800(8):824-33

      (6) Speder P, Brand AH. Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. Elife, 2018,7

      (7) Mumbauer S, Pascual J, Kolotuev I, et al. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet, 2019,15(9):e1008396

      (8) Xiao G, Wan Z, Fan Q, et al. The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster. Elife, 2014,3:e03191

      (9) Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the  Life Cycle by Controlling Cell Metabolism. Front Physiol, 2018,9

      (10) Morgan LL. The epidemiology of glioma in adults: a "state of the science" review. Neuro-Oncology, 2015,17(4):623-4

      (11) Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol, 2012,7(7):459-64

      (12) Li L, Fang CJ, Ryan JC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci U S A, 2010,107(8):3505-10

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study sought to reveal the potential roles of m6A RNA methylation in gene dosage regulatory mechanisms, particularly in the context of aneuploid genomes in Drosophila. Specifically, this work looked at the relationships between the expression of m6A regulatory factors, RNA methylation status, classical and inverse dosage effects, and dosage compensation. Using RNA sequencing and m6A mapping experiments, an in-depth analysis was performed to reveal changes in m6A status and expression changes across multiple aneuploid Drosophila models. The authors propose that m6A methylation regulates MOF and, in turn, deposition of H4K16Ac, critical regulators of gene dosage in the context of genomic imbalance.

      Strengths:

      This study seeks to address an interesting question with respect to gene dosage regulation and the possible roles of m6A in that process. Previous work has linked m6A to X-inactivation in humans through the Xist lncRNA, and to the regulation of the Sxl in flies. This study seeks to broaden that understanding beyond these specific contexts to more broadly understand how m6A impacts imbalanced genomes in other contexts.

      Weaknesses:

      The methods being used particularly for analysis of m6A at both the bulk and transcript-specific level are not sufficiently specific or quantitative to be able to confidently draw the conclusions the authors seek to make. MeRIP m6A mapping experiments can be very valuable, but differential methylation is difficult to assess when changes are small (as they often are, in this study but also m6A studies more broadly). For instance, based on the data presented and the methods described, it is not clear that the statement that "expression levels at m6A sites in aneuploidies are significantly higher than that in wildtype" is supported. MeRIP experiments are not quantitative, and since there are far fewer peaks in aneuploidies, it stands to reason that more antibody binding sites may be available to enrich those fewer peaks to a larger extent. But based on the data as presented (figure 2D) this conclusion was drawn from RPKM in IP samples, which may not fully account for changing transcript abundances in absolute (expression level changes) and relative (proportion of transcripts in input RNA sample) terms.

      Methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq) is a commonly used strategy of genome-wide mapping of m6A modification. This method uses anti-m6A antibody to immunoprecipitate RNA fragments, which results in selective enrichment of methylated RNA. Then the RNA fragments were subjected to deep sequencing, and the regions enriched in the immunoprecipitate relative to input samples are identified as m6A peaks using the peak calling algorithm. We identified m6A peaks in different samples by the exomePeak2 program and determined common m6A peaks for each genotype based on the intersection of biological replicates. Figure 2D shows the RPM values of m6A peaks in MeRIP samples for each genotype, indicating that the levels of reads in the m6A peak regions were significantly higher in the aneuploid IP samples than in wildtypes. When the enrichment of IP samples relative to Input samples (RPM.IP/RPM.Input) was taken into account, the statistics for all three aneuploidies were still significantly higher than those of the wildtypes (Mann Whitney U test p-values < 0.001). This analysis is not about changes in the abundance of transcripts, but from the MeRIP perspective, showing that there are relatively more m6A-modified reads mapped to the m6A peaks in aneuploidies than that in wildtypes. In addition, we have added the results of IP/Input in the main text, and revised the description in the manuscript to make it more precise to reduce possible misunderstandings.

      The bulk-level m6A measurements as performed here also cannot effectively support these conclusions, as they are measured in total RNA. The focus of the work is mRNA m6A regulators, but m6A levels measured from total RNA samples will not reflect mRNA m6A levels as there are other abundance RNAs that contain m6A (including rRNA). As a result, conclusions about mRNA m6A levels from these measurements are not supported.

      According to some published articles, m6A levels of purified mRNA or total RNA can be detected by different methods (such as mass spectrometry, 2D thin-layer chromatography, etc.) in Drosophila cells or tissues [1-3].

      Here, we used the EpiQuik m6A RNA Methylation Quantification Kit (Colorimetric) (Epigentek, NY, USA, Cat # P-9005), which is suitable for detecting m6A methylation status directly using total RNA isolated from any species such as mammals, plants, fungi, bacteria, and viruses. This kit has previously been used by researchers to detect the m6A/A ratio in total RNA [4, 5] or purified mRNA [6] from different species.

      In order to compare the m6A levels between the total RNA and mRNA, it was shown that the enrichment of mRNA from total RNA using Dynabeads™mRNA Purification Kit (Invitrogen Cat # 61006) did not show any significantly differences comparing with the results of total RNA (Figure 1). That’s the reason why most of the results of m6A levels in the manuscript were detected in total RNA.

      Author response image 1.

      The m6A levels of total RNA and mRNA

      As suggested, we will try to extract and purify mRNA from different genotypes to verify our conclusion based on the m6A levels of total RNA if necessary. In addition, m6A modification in other types of RNA other than mRNA (e.g., lncRNA, rRNA) is not necessarily meaningless. We will also add discussions of this issue in the manuscript.

      (1) Lence T, et al. (2016) m6A modulates neuronal functions and sex determination in Drosophila. Nature 540(7632):242-247.

      (2) Haussmann IU, et al. (2016) m(6)A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540(7632):301-304.

      (3) Kan L, et al. (2017) The m(6)A pathway facilitates sex determination in Drosophila. Nat Commun 8:15737.

      (4) Zhu C, et al. (2023) RNA Methylome Reveals the m(6)A-mediated Regulation of Flavor Metabolites in Tea Leaves under Solar-withering. Genomics Proteomics Bioinformatics 21(4):769-787.

      (5) Song H, et al. (2021) METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun 12(1):5522.

      (6) Yin H, et al. (2021) RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun 12(1):1394.

      Reviewer #2 (Public Review):

      Summary:

      The authors have tested the effects of partial- or whole-chromosome aneuploidy on the m6A RNA modification in Drosophila. The data reveal that overall m6A levels trend up but that the number of sites found by meRIP-seq trend down, which seems to suggest that aneuploidy causes a subset of sites to become hyper-methylated. Subsequent bioinformatic analysis of other published datasets establish correlations between the activity of the H4K16 acetyltransferase dosage compensation complex (DCC) and the expression of m6A components and m6A abundance, suggesting that DCC and m6A can act in a feedback loop on each other. Overall, this paper uses bioinformatic trends to generate a candidate model of feedback between DCC and m6A. It would be improved by functional studies that validate the effect in vivo.

      Strengths:

      • Thorough bioinformatic analysis of their data.

      • Incorporation of other published datasets that enhance scope and rigor.

      • Finds trends that suggest that a chromosome counting mechanism can control m6A, as fits with pub data that the Sxl mRNA is m6A modified in XX females and not XY males.

      • Suggests this counting mechanism may be due to the effect of chromatin-dependent effects on the expression of m6A components.

      Weaknesses:

      • The linkage between H4K16 machinery and m6A is indirect and based on bioinformatic trends with little follow-up to test the mechanistic bases of these trends.

      We found a set of ChIP-seq data (GSE109901) of H4K16ac in female and male Drosophila larvae from the public database, and analyzed whether H4K16ac is directly associated with m6A regulator genes. ChIP-seq is a standard method to study transcription factor binding and histone modification by using efficient and specific antibodies for immunoprecipitation. The results showed that there were H4K16ac peaks at the 5' region in gene of m6A reader Ythdc1 in both males and females. In addition, most of the genome sites where the other m6A regulator genes located are acetylated at H4K16 in both sexes, except that Ime4 shows sexual dimorphism and only contains H4K16ac peak in females. These results indicate that the m6A regulator gene itself is acetylated at H4K16, so there is a direct relationship between H4K16ac and m6A regulators. We have added these contents to the text.

      Besides the above conclusion from the seq data, we are also going to do some experiments to test the linkage between H4K16 and m6A in the next, such as how about the m6A levels when MOF is over expressed with the increased levels of H4K16Ac, the H4K16 levels when YT521B is knocked down or over expressed and the relative expression levels of important regulatory genes in there.

      • The paper lacks sufficient in vivo validation of the effects of DCC alleles on m6A and vice versa. For example, Is the Ythdc1 genomic locus a direct target of the DCC component Msl-2 ? (see Figure 7).

      In order to study whether Ythdc1 genomic locus is a direct target of DCC component, we first analyzed a published MSL2 ChIP-seq data of Drosophila (GSE58768). Since MSL2 is only expressed in males under normal conditions, this set of data is from male Drosophila. According to the results, the majority (99.1%) of MSL2 peaks are located on the X chromosome, while the MSL2 peaks on other chromosomes are few. This is consistent with the fact that MSL2 is enriched on the X chromosome in male Drosophila [1, 2]. Ythdc1 gene is located on chromosome 3L, and there is no MSL2 peak near it. Similarly, other m6A regulator genes are not X-linked, and there is no MSL2 peak. Then we analyzed the MOF ChIP-seq data (GSE58768) of male Drosophila. It was found that 61.6% of MOF peaks were located on the X chromosome, which was also expected [3, 4]. Although there are more MOF peaks on autosomes than MSL2 peaks, MOF peaks are absent on m6A regulator genes on autosomes. Therefore, at present, there is no evidence that the gene locus of m6A regulators are the direct targets of DCC component MSL2 and MOF, which may be due to the fact that most MSL2 and MOF are tethered to the X chromosome by MSL complex under physiological conditions. Whether there are other direct or indirect interactions between Ythdc1 and MSL2 is an issue worthy of further study in the future.

      (1) Bashaw GJ & Baker BS (1995) The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development 121(10):3245-3258.

      (2) Kelley RL, et al. (1995) Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81(6):867-877.

      (3) Kind J, et al. (2008) Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133(5):813-828.

      (4) Conrad T, et al. (2012) The MOF chromobarrel domain controls genome-wide H4K16 acetylation and spreading of the MSL complex. Dev Cell 22(3):610-624.

      Quite a bit of technical detail is omitted from the main text, making it difficult for the reader to interpret outcomes.

      (1) Please add the tissues to the labels in Figure 1D.

      Figure 1D shows the subcellular localization of FISH probe signals in Drosophila embryos. Arrowheads indicate the foci of probe signals. The corresponding tissue types are (1) blastoderm nuclei; (2) yolk plasm and pole cells; (3) brain and midgut; (4) salivary gland and midgut; (5) blastoderm nuclei and yolk cortex; (6) blastoderm nuclei and pole cells; (7) blastoderm nuclei and yolk cortex; (8) germ band. We have added these to the manuscript.

      (2) In the main text, please provide detail on the source tissues used for meRIP; was it whole larvae? adult heads? Most published datasets are from S2 cells or adult heads and comparing m6A across tissues and developmental stages could introduce quite a bit of variability, even in wt samples. This issue seems to be what the authors discuss in lines 197-199.

      In this article, the material used to perform MeRIP-seq was the whole third instar larvae. Because trisomy 2L and metafemale Drosophila died before developing into adults, it was not possible to use the heads of adults for MeRIP-seq detection of aneuploidy. For other experiments described here, the m6A abundance was measured using whole larvae or adult heads; material used for RT-qPCR analysis was whole larvae, larval brains, or adult heads; Drosophila embryos at different developmental stages were used for fluorescence in situ hybridization (FISH) experiments. We provide a detailed description of the experimental material for each assay in the manuscript.

      (3) In the main text, please identify the technique used to measure "total m6A/A" in Fig 2A. I assume it is mass spec.

      We used the EpiQuik m6A RNA Methylation Quantification Kit (Colorimetric) (Epigentek, NY, USA, Cat # P-9005) to measure the m6A/A ratio in RNA samples. This kit is commercially available for quantification of m6A RNA methylation, which used colorimetric assay with easy-to-follow steps for convenience and speed, and is suitable for detecting m6A methylation status directly using total RNA isolated from any species such as mammals, plants, fungi, bacteria, and viruses.

      (4) Line 190-191: the text describes annotating m6A sites by "nearest gene" which is confusing. The sites are mapped in RNAs, so the authors must unambiguously know the identity of the gene/transcript, right?

      When the m6A peaks were annotated using the R package ChIPseeker, it will include two items: "genomic annotation" and "nearest gene annotation". "Genomic annotation" tells us which genomic features the peak is annotated to, such as 5’UTR, 3’UTR, exon, etc. "Nearest gene annotation" indicates which specific gene/transcript the peak is matched to. We modified the description in the main text to make it easier to understand.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #3:

      Comments on current version:

      As mentioned in my first review, this work is significantly underpowered for the following reasons: 1) n=4 for each treatment group.; 2) no randomization of the surgical sites receiving treatments; 3) implants surgically inserted without precision/guided surgery. The authors have not addressed these concerns.

      On a minor note: not sure why the authors present a methodology to evaluate the dynamic bone formation (line 272) but do not present results (i.e. by means of histomorphometrical analyses) utilizing this methodology.

      We sincerely appreciate your thorough review and valuable feedback. We have carefully considered your comments and would like to address them as follows:

      As mentioned in my first review, this work is significantly underpowered for the following reasons:

      (1) n=4 for each treatment group.;

      We acknowledge your concern regarding the limited sample size (n=4 per group). While we understand this may affect statistical power, our choice was influenced by ethical considerations in animal experimentation and resource constraints. Increasing the sample size would undoubtedly strengthen the statistical power of our study. However, the logistical and ethical constraints associated with using a larger number of animals in such invasive procedures were significant limiting factors. Specifically, increasing the number of medium to large experimental animals could raise ethical issues, so we used the minimum number possible. Additionally, our study design was reviewed and approved by the animal IRB, which dictated the minimum number of animals we could use. Nevertheless, we conducted power analysis to ensure that our sample size, although limited, was sufficient to detect significant differences given the high variability typically observed in biological responses. The results obtained from our n=4 samples showed consistent trends and significant differences between groups, indicating the robustness of our findings. I will include this point in the limitations section of the discussion. Thank you.

      (2) no randomization of the surgical sites receiving treatments;

      Thank you for pointing out this issue. We agree that randomization is essential when considering individual differences and the anatomical variations of the jawbone, such as those found in humans. However, this study is an animal experiment where other conditions were controlled, and the interventions were applied after complete bone healing following tooth extraction. Therefore, the impact of randomization of surgical sites was likely minimal, and it is challenging to determine whether it significantly influenced the experimental results. Of course, twelve female OVX beagles were randomly designated into three groups. (Methods section, line 298) However regarding your concern, we would like to present the robustness of histological results from different surgical sites as shown below. Also we will include this point in the limitations section of the discussion.

      Histologic analysis of the different surgical sites showed significant differences in bone formation and osseointegration among the three treatment groups: vehicle control, rhPTH(1-34), and dimeric Cys25PTH(1-34). Goldner trichrome staining (Figure A-C) showed enhanced bone formation in both the rhPTH(1-34) and dimeric Cys25PTH(1-34) groups compared to the vehicle control group. The rhPTH(1-34) group showed the most pronounced bone mass gain around the implant. Both treatment groups showed improved bone-to-implant contact compared to the control group, as indicated by the red arrows.

      Masson trichrome staining (Figure D-F) further confirmed these results, showing an increase in bone matrix (blue staining) in the rhPTH(1-34) and dimeric Cys25PTH(1-34) groups, with the dimeric rhPTH(1-34) group showing the most extensive and dense bone formation.

      TRAP staining (Figure G-I and G'-I') was used to assess osteoclast activity. Interestingly, both the rhPTH(1-34) and dimeric Cys25PTH(1-34) groups showed an increase in TRAP-positive cells compared to the vehicle control, suggesting enhanced bone remodeling activity. The highest number of TRAP-positive cells was observed in the rhPTH(1-34) group and the highest trabecular number, indicating the most active bone remodeling.

      To summarize the results, histological analyses revealed that both rhPTH(1-34) and dimeric Cys25PTH(1-34) treatments significantly enhanced osseointegration and bone formation around titanium implants in a postmenopausal osteoporosis model compared to the control. The rhPTH(1-34) group demonstrated superior outcomes, exhibiting the most substantial increase in bone volume, bone-to-implant contact, and osteoclastic activity, indicating its greater efficacy in promoting bone regeneration and implant integration in this experimental context.

      Author response image 1.

      Histological analysis using Goldner trichrome, Masson trichrome, and TRAP staining

      (3) implants surgically inserted without precision/guided surgery. The authors have not addressed these concerns.

      The primary purpose of precision guides is to prevent damage to various anatomical structures and to ensure perfect placement at the desired location. Even disregarding the potential inaccuracies of precision guides in actual clinical settings, the primary goal of this animal experiment was not to achieve perfect placement or prevent damage to anatomical structures. Instead, the objective was to histologically measure the integrity of the bone surrounding titanium fixture's platform after pharmacological intervention, ensuring it was fully seated in the alveolar bone. To this end, we secured sufficient visibility through periosteal dissection to confirm the perfect placement of the implant and adhered to the principle of maintaining sufficient mesiodistal distance between each fixture. Using such precision guides in this animal experiment, which is not an evaluation of 'implant precision guides,' could potentially introduce inaccuracies and contradict the experimental objectives. Furthermore, since this experiment was conducted on an edentulous ridge where all teeth had been extracted, achieving the same placement as in the presurgical simulation would be impossible, even with the use of precision guides. Thank you once again for your constructive feedback. We will include this point in the limitations section of the discussion.

      On a minor note: not sure why the authors present a methodology to evaluate the dynamic bone formation (line 272) but do not present results (i.e. by means of histomorphometrical analyses) utilizing this methodology.

      As the reviewer mentioned, we confirmed that the sentence was included in the Methods section despite the analysis not actually being performed. We sincerely apologize for this oversight and will make the necessary corrections immediately. Thank you very much for your keen observation.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper presents a compelling and comprehensive study of decision-making under uncertainty. It addresses a fundamental distinction between belief-based (cognitive neuroscience) formulations of choice behaviour with reward-based (behavioural psychology) accounts. Specifically, it asks whether active inference provides a better account of planning and decision-making, relative to reinforcement learning. To do this, the authors use a simple but elegant paradigm that includes choices about whether to seek both information and rewards. They then assess the evidence for active inference and reinforcement learning models of choice behaviour, respectively. After demonstrating that active inference provides a better explanation of behavioural responses, the neuronal correlates of epistemic and instrumental value (under an optimised active inference model) are characterised using EEG. Significant neuronal correlates of both kinds of value were found in sensor and source space. The source space correlates are then discussed sensibly, in relation to the existing literature on the functional anatomy of perceptual and instrumental decision-making under uncertainty.

      Strengths:

      The strengths of this work rest upon the theoretical underpinnings and careful deconstruction of the various determinants of choice behaviour using active inference. A particular strength here is that the experimental paradigm is designed carefully to elicit both information-seeking and reward-seeking behaviour; where the information-seeking is itself separated into resolving uncertainty about the context (i.e., latent states) and the contingencies (i.e., latent parameters), under which choices are made. In other words, the paradigm - and its subsequent modelling - addresses both inference and learning as necessary belief and knowledge-updating processes that underwrite decisions.

      The authors were then able to model belief updating using active inference and then look for the neuronal correlates of the implicit planning or policy selection. This speaks to a further strength of this study; it provides some construct validity for the modelling of belief updating and decision-making; in terms of the functional anatomy as revealed by EEG. Empirically, the source space analysis of the neuronal correlates licences some discussion of functional specialisation and integration at various stages in the choices and decision-making.

      In short, the strengths of this work rest upon a (first) principles account of decision-making under uncertainty in terms of belief updating that allows them to model or fit choice behaviour in terms of Bayesian belief updating - and then use relatively state-of-the-art source reconstruction to examine the neuronal correlates of the implicit cognitive processing.

      Response: We are deeply grateful for your careful review of our work and for the thoughtful feedback you have provided. Your dedication to ensuring the quality and clarity of the work is truly admirable. Your comments have been invaluable in guiding us towards improving the paper, and We appreciate your time and effort in not just offering suggestions but also providing specific revisions that I can implement. Your insights have helped us identify areas where I can strengthen the arguments and clarify the methodology.

      Comment 1:

      The main weaknesses of this report lies in the communication of the ideas and procedures. Although the language is generally excellent, there are some grammatical lapses that make the text difficult to read. More importantly, the authors are not consistent in their use of some terms; for example, uncertainty and information gain are sometimes conflated in a way that might confuse readers. Furthermore, the descriptions of the modelling and data analysis are incomplete. These shortcomings could be addressed in the following way.

      First, it would be useful to unpack the various interpretations of information and goal-seeking offered in the (active inference) framework examined in this study. For example, it will be good to include the following paragraph:

      "In contrast to behaviourist approaches to planning and decision-making, active inference formulates the requisite cognitive processing in terms of belief updating in which choices are made based upon their expected free energy. Expected free energy can be regarded as a universal objective function, specifying the relative likelihood of alternative choices. In brief, expected free energy can be regarded as the surprise expected following some action, where the expected surprise comes in two flavours. First, the expected surprise is uncertainty, which means that policies with a low expected free energy resolve uncertainty and promote information seeking. However, one can also minimise expected surprise by avoiding surprising, aversive outcomes. This leads to goal-seeking behaviour, where the goals can be regarded as prior preferences or rewarding outcomes.

      Technically, expected free energy can be expressed in terms of risk plus ambiguity - or rearranged to be expressed in terms of expected information gain plus expected value, where value corresponds to (log) prior preferences. We will refer to both decompositions in what follows; noting that both decompositions accommodate information and goal-seeking imperatives. That is, resolving ambiguity and maximising information gain have epistemic value, while minimising risk or maximising expected value have pragmatic or instrumental value. These two kinds of values are sometimes referred to in terms of intrinsic and extrinsic value, respectively [1-4]."

      Response 1: We deeply thank you for your comments and corresponding suggestions about our interpretations of active inference. In response to your identified weaknesses and suggestions, we have added corresponding paragraphs in the Methods section (The free energy principle and active inference, line 95-106):

      “Active inference formulates the necessary cognitive processing as a process of belief updating, where choices depend on agents' expected free energy. Expected free energy serves as a universal objective function, guiding both perception and action. In brief, expected free energy can be seen as the expected surprise following some policies. The expected surprise can be reduced by resolving uncertainty, and one can select policies with lower expected free energy which can encourage information-seeking and resolve uncertainty. Additionally, one can minimize expected surprise by avoiding surprising or aversive outcomes (oudeyer et al., 2007; Schmidhuber et al., 2010). This leads to goal-seeking behavior, where goals can be viewed as prior preferences or rewarding outcomes.

      Technically, expected free energy can also be expressed as expected information gain plus expected value, where the value corresponds to (log) prior preferences. We will refer to both formulations in what follows. Resolving ambiguity, minimizing risk, and maximizing information gain has epistemic value while maximizing expected value have pragmatic or instrumental value. These two types of values can be referred to in terms of intrinsic and extrinsic value, respectively (Barto et al., 2013; Schwartenbeck et al., 2019).”

      Oudeyer, P. Y., & Kaplan, F. (2007). What is intrinsic motivation? A typology of computational approaches. Frontiers in neurorobotics, 1, 108.

      Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE transactions on autonomous mental development, 2(3), 230-247.

      Barto, A., Mirolli, M., & Baldassarre, G. (2013). Novelty or surprise?. Frontiers in psychology, 4, 61898.

      Schwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H., Kronbichler, M., & Friston, K. J. (2019). Computational mechanisms of curiosity and goal-directed exploration. elife, 8, e41703.

      Comment 2:

      The description of the modelling of choice behaviour needs to be unpacked and motivated more carefully. Perhaps along the following lines:

      "To assess the evidence for active inference over reinforcement learning, we fit active inference and reinforcement learning models to the choice behaviour of each subject. Effectively, this involved optimising the free parameters of active inference and reinforcement learning models to maximise the likelihood of empirical choices. The resulting (marginal) likelihood was then used as the evidence for each model. The free parameters for the active inference model scaled the contribution of the three terms that constitute the expected free energy (in Equation 6). These coefficients can be regarded as precisions that characterise each subjects' prior beliefs about contingencies and rewards. For example, increasing the precision or the epistemic value associated with model parameters means the subject would update her beliefs about reward contingencies more quickly than a subject who has precise prior beliefs about reward distributions. Similarly, subjects with a high precision over prior preferences or extrinsic value can be read as having more precise beliefs that she will be rewarded. The free parameters for the reinforcement learning model included..."

      Response 2: We deeply thank you for your comments and corresponding suggestions about our description of the behavioral modelling. In response to your identified weaknesses and suggestions, we have added corresponding content in the Results section (Behavioral results, line 279-293):

      “To assess the evidence for active inference over reinforcement learning, we fit active inference (Eq.9), model-free reinforcement learning, and model-based reinforcement learning models to the behavioral data of each participant. This involved optimizing the free parameters of active inference and reinforcement learning models. The resulting likelihood was used to calculate the Bayesian Information Criterion (BIC) (Vrieze 2012) as the evidence for each model. The free parameters for the active inference model (AL, AI, EX, prior, and α) scaled the contribution of the three terms that constitute the expected free energy in Eq.9. These coefficients can be regarded as precisions that characterize each participant's prior beliefs about contingencies and rewards. For example, increasing α means participants would update their beliefs about reward contingencies more quickly, increasing AL means participants would like to reduce ambiguity more, and increasing AI means participants would like to learn the hidden state of the environment and avoid risk more. The free parameters for the model-free reinforcement learning model are the learning rate α and the temperature parameter γ and the free parameters for the model-based are the learning rate α, the temperature parameter γ and prior (the details for the model-free reinforcement learning model can be seen in Eq.S1-11 and the details for the model-based reinforcement learning model can be seen Eq.S12-23 in the Supplementary Method). The parameter fitting for these three models was conducted using the `BayesianOptimization' package in Python (Frazire 2018), first randomly sampling 1000 times and then iterating for an additional 1000 times.”

      Vrieze, S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological methods, 17(2), 228.

      Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811.

      Comment 3:

      In terms of the time-dependent correlations with expected free energy - and its constituent terms - I think the report would benefit from overviewing these analyses with something like the following:

      "In the final analysis of the neuronal correlates of belief updating - as quantified by the epistemic and intrinsic values of expected free energy - we present a series of analyses in source space. These analyses tested for correlations between constituent terms in expected free energy and neuronal responses in source space. These correlations were over trials (and subjects). Because we were dealing with two-second timeseries, we were able to identify the periods of time during decision-making when the correlates were expressed.

      In these analyses, we focused on the induced power of neuronal activity at each point in time, at each brain source. To illustrate the functional specialisation of these neuronal correlates, we present whole-brain maps of correlation coefficients and pick out the most significant correlation for reporting fluctuations in selected correlations over two-second periods. These analyses are presented in a descriptive fashion to highlight the nature and variety of the neuronal correlates, which we unpack in relation to the existing EEG literature in the discussion. Note that we did not attempt to correct for multiple comparisons; largely, because the correlations observed were sustained over considerable time periods, which would be almost impossible under the null hypothesis of no correlations."

      Response 3: We deeply thank you for your comments and corresponding suggestions about our description of the regression analysis in the source space. In response to your suggestions, we have added corresponding content in the Results section (EEG results at source level, line 331-347):

      “In the final analysis of the neural correlates of the decision-making process, as quantified by the epistemic and intrinsic values of expected free energy, we presented a series of linear regressions in source space. These analyses tested for correlations over trials between constituent terms in expected free energy (the value of avoiding risk, the value of reducing ambiguity, extrinsic value, and expected free energy itself) and neural responses in source space. Additionally, we also investigated the neural correlate of (the degree of) risk, (the degree of) ambiguity, and prediction error. Because we were dealing with a two-second time series, we were able to identify the periods of time during decision-making when the correlates were expressed. The linear regression was run by the "mne.stats.linear regression" function in the MNE package (Activity ~ Regressor + Intercept). Activity is the activity amplitude of the EEG signal in the source space and regressor is one of the regressors that we mentioned (e.g., expected free energy, the value of reducing ambiguity, etc.).

      In these analyses, we focused on the induced power of neural activity at each time point, in the brain source space. To illustrate the functional specialization of these neural correlates, we presented whole-brain maps of correlation coefficients and picked out the brain region with the most significant correlation for reporting fluctuations in selected correlations over two-second periods. These analyses were presented in a descriptive fashion to highlight the nature and variety of the neural correlates, which we unpacked in relation to the existing EEG literature in the discussion. Note that we did not attempt to correct for multiple comparisons; largely, because the correlations observed were sustained over considerable time periods, which would be almost impossible under the null hypothesis of no correlations.”

      Comment 4:

      There was a slight misdirection in the discussion of priors in the active inference framework. The notion that active inference requires a pre-specification of priors is a common misconception. Furthermore, it misses the point that the utility of Bayesian modelling is to identify the priors that each subject brings to the table. This could be easily addressed with something like the following in the discussion:

      "It is a common misconception that Bayesian approaches to choice behaviour (including active inference) are limited by a particular choice of priors. As illustrated in our fitting of choice behaviour above, priors are a strength of Bayesian approaches in the following sense: under the complete class theorem [5, 6], any pair of choice behaviours and reward functions can be described in terms of ideal Bayesian decision-making with particular priors. In other words, there always exists a description of choice behaviour in terms of some priors. This means that one can, in principle, characterise any given behaviour in terms of the priors that explain that behaviour. In our example, these were effectively priors over the precision of various preferences or beliefs about contingencies that underwrite expected free energy."

      Response 4: We deeply thank you for your comments and corresponding suggestions about the prior of Bayesian methods. In response to your suggestions, we have added corresponding content in the Discussion section (The strength of the active inference framework in decision-making, line 447-453):

      “However, it may be the opposite. As illustrated in our fitting results, priors can be a strength of Bayesian approaches. Under the complete class theorem (Wald 1947; Brown 1981), any pair of behavioral data and reward functions can be described in terms of ideal Bayesian decision-making with particular priors. In other words, there always exists a description of behavioral data in terms of some priors. This means that one can, in principle, characterize any given behavioral data in terms of the priors that explain that behavior. In our example, these were effectively priors over the precision of various preferences or beliefs about contingencies that underwrite expected free energy.”

      Wald, A. (1947). An essentially complete class of admissible decision functions. The Annals of Mathematical Statistics, 549-555.

      Brown, L. D. (1981). A complete class theorem for statistical problems with finite sample spaces. The Annals of Statistics, 1289-1300.

      Reviewer #2 (Public Review):

      Summary:

      Zhang and colleagues use a combination of behavioral, neural, and computational analyses to test an active inference model of exploration in a novel reinforcement learning task.

      Strengths:

      The paper addresses an important question (validation of active inference models of exploration). The combination of behavior, neuroimaging, and modeling is potentially powerful for answering this question.

      Response: We want to express our sincere gratitude for your thorough review of our work and for the valuable comments you have provided. Your attention to detail and dedication to improving the quality of the work are truly commendable. Your feedback has been invaluable in guiding us towards revisions that will strengthen the work. We have made targeted modifications based on most of the comments. However, due to factors such as time and energy constraints, we have not added corresponding analyses for several comments.

      Comment 1:

      The paper does not discuss relevant work on contextual bandits by Schulz, Collins, and others. It also does not mention the neuroimaging study of Tomov et al. (2020) using a risky/safe bandit task.

      Response 1:

      We deeply thank you for your suggestions about the relevant work. We now discussion and cite these representative papers in the Introduction section (line 42-55):

      “The decision-making process frequently involves grappling with varying forms of uncertainty, such as ambiguity - the kind of uncertainty that can be reduced through sampling, and risk - the inherent uncertainty (variance) presented by a stable environment. Studies have investigated these different forms of uncertainty in decision-making, focusing on their neural correlates (Daw et al., 2006; Badre et al., 2012; Cavanagh et al., 2012).

      These studies utilized different forms of multi-armed bandit tasks, e.g the restless multi-armed bandit tasks (Daw et al., 2006; Guha et al., 2010), risky/safe bandit tasks (Tomov et al., 2020; Fan et al., 2022; Payzan et al., 2013), contextual multi-armed bandit tasks (Schulz et al., 2015; Schulz et al., 2015; Molinaro et al., 2023). However, these tasks either separate risk from ambiguity in uncertainty, or separate action from state (perception). In our work, we develop a contextual multi-armed bandit task to enable participants to actively reduce ambiguity, avoid risk, and maximize rewards using various policies (see Section 2.2) and Figure 4(a)). Our task makes it possible to study whether the brain represents these different types of uncertainty distinctly (Levy et al., 2010) and whether the brain represents both the value of reducing uncertainty and the degree of uncertainty. The active inference framework presents a theoretical approach to investigate these questions. Within this framework, uncertainties can be reduced to ambiguity and risk. Ambiguity is represented by the uncertainty about model parameters associated with choosing a particular action, while risk is signified by the variance of the environment's hidden states. The value of reducing ambiguity, the value of avoiding risk, and extrinsic value together constitute expected free energy (see Section 2.1).”

      Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.

      Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012). Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron, 73(3), 595-607.

      Cavanagh, J. F., Figueroa, C. M., Cohen, M. X., & Frank, M. J. (2012). Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation. Cerebral cortex, 22(11), 2575-2586.

      Guha, S., Munagala, K., & Shi, P. (2010). Approximation algorithms for restless bandit problems. Journal of the ACM (JACM), 58(1), 1-50.

      Tomov, M. S., Truong, V. Q., Hundia, R. A., & Gershman, S. J. (2020). Dissociable neural correlates of uncertainty underlie different exploration strategies. Nature communications, 11(1), 2371.

      Fan, H., Gershman, S. J., & Phelps, E. A. (2023). Trait somatic anxiety is associated with reduced directed exploration and underestimation of uncertainty. Nature Human Behaviour, 7(1), 102-113.

      Payzan-LeNestour, E., Dunne, S., Bossaerts, P., & O’Doherty, J. P. (2013). The neural representation of unexpected uncertainty during value-based decision making. Neuron, 79(1), 191-201.

      Schulz, E., Konstantinidis, E., & Speekenbrink, M. (2015, April). Exploration-exploitation in a contextual multi-armed bandit task. In International conference on cognitive modeling (pp. 118-123).

      Schulz, E., Konstantinidis, E., & Speekenbrink, M. (2015, November). Learning and decisions in contextual multi-armed bandit tasks. In CogSci.

      Molinaro, G., & Collins, A. G. (2023). Intrinsic rewards explain context-sensitive valuation in reinforcement learning. PLoS Biology, 21(7), e3002201.

      Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural representation of subjective value under risk and ambiguity. Journal of neurophysiology, 103(2), 1036-1047.

      Comment 2:

      The statistical reporting is inadequate. In most cases, only p-values are reported, not the relevant statistics, degrees of freedom, etc. It was also not clear if any corrections for multiple comparisons were applied. Many of the EEG results are described as "strong" or "robust" with significance levels of p<0.05; I am skeptical in the absence of more details, particularly given the fact that the corresponding plots do not seem particularly strong to me.

      Response 2: We deeply thank you for your comments about our statistical reporting. We have optimized the fitting model and rerun all the statistical analyses. As can be seen (Figure 6, 7, 8, S3, S4, S5), the new regression results are significantly improved compared to the previous ones. Due to the limitation of space, we place the other relevant statistical results, including t-values, std err, etc., on our GitHub (https://github.com/andlab-um/FreeEnergyEEG). Currently, we have not conducted multiple comparison corrections based on Reviewer 1’s comments (Comments 3) “Note that we did not attempt to correct for multiple comparisons; largely, because the correlations observed were sustained over considerable time periods, which would be almost impossible under the null hypothesis of no correlations”.

      Author response image 1.

      Comment 3:

      The authors compare their active inference model to a "model-free RL" model. This model is not described anywhere, as far as I can tell. Thus, I have no idea how it was fit, how many parameters it has, etc. The active inference model fitting is also not described anywhere. Moreover, you cannot compare models based on log-likelihood, unless you are talking about held-out data. You need to penalize for model complexity. Finally, even if active inference outperforms a model-free RL model (doubtful given the error bars in Fig. 4c), I don't see how this is strong evidence for active inference per se. I would want to see a much more extensive model comparison, including model-based RL algorithms which are not based on active inference, as well as model recovery analyses confirming that the models can actually be distinguished on the basis of the experimental data.

      Response 3: We deeply thank you for your comments about the model comparison details. We previously omitted some information about the comparison model, as classical reinforcement learning is not the focus of our work, so we put the specific details in the supplementary materials. Now we have placed relevant information in the main text (see the part we have highlighted in yellow). We have now added the relevant information regarding the model comparison in the Results section (Behavioral results, line 279-293):

      “To assess the evidence for active inference over reinforcement learning, we fit active inference (Eq.9), model-free reinforcement learning, and model-based reinforcement learning models to the behavioral data of each participant. This involved optimizing the free parameters of active inference and reinforcement learning models. The resulting likelihood was used to calculate the Bayesian Information Criterion (BIC) as the evidence for each model. The free parameters for the active inference model (AL, AI, EX, prior, and α) scaled the contribution of the three terms that constitute the expected free energy in Eq.9. These coefficients can be regarded as precisions that characterize each participant's prior beliefs about contingencies and rewards. For example, increasing α means participants would update their beliefs about reward contingencies more quickly, increasing AL means participants would like to reduce ambiguity more, and increasing AI means participants would like to learn the hidden state of the environment and avoid risk more. The free parameters for the model-free reinforcement learning model are the learning rate α and the temperature parameter γ and the free parameters for the model-based are the learning rate α, the temperature parameter γ and prior (the details for the model-free reinforcement learning model can be found in Eq.S1-11 and the details for the model-based reinforcement learning model can be found in Eq.S12-23 in the Supplementary Method). The parameter fitting for these three models was conducted using the `BayesianOptimization' package in Python, first randomly sampling 1000 times and then iterating for an additional 1000 times.”

      We have now incorporated model-based reinforcement learning into our comparison models and placed the descriptions of both model-free and model-based reinforcement learning algorithms in the supplementary materials. We have also changed the criterion for model comparison to Bayesian Information Criterion. As indicated by the results, the performance of the active inference model significantly outperforms both comparison models.

      Sorry, we didn't do model recovery before, but now we have placed the relevant results in the supplementary materials. From the result figures, we can see that each model fits its own generated simulated data well:

      “To demonstrate how reliable our models are (the active inference model, model-free reinforcement learning model, and model-based reinforcement learning model), we run some simulation experiments for model recovery. We use these three models, with their own fitting parameters, to generate some simulated data. Then we will fit all three sets of data using these three models.

      The model recovery results are shown in Fig.S6. This is the confusion matrix of models: the percentage of all subjects simulated based on a certain model that is fitted best by a certain model. The goodness-of-fit was compared using the Bayesian Information Criterion. We can see that the result of model recovery is very good, and the simulated data generated by a model can be best explained by this model.”

      Author response image 2.

      Comment 4:

      Another aspect of the behavioral modeling that's missing is a direct descriptive comparison between model and human behavior, beyond just plotting log-likelihoods (which are a very impoverished measure of what's going on).

      Response 4: We deeply thank you for your comments about the comparison between the model and human behavior. Due to the slight differences between our simulation experiments and real behavioral experiments (the "you can ask" stage), we cannot directly compare the model and participants' behaviors. However, we can observe that in the main text's simulation experiment (Figure 3), the active inference agent's behavior is highly consistent with humans (Figure 4), exhibiting an effective exploration strategy and a desire to reduce uncertainty. Moreover, we have included two additional simulation experiments in the supplementary materials, which demonstrate that active inference may potentially fit a wide range of participants' behavioral strategies.

      Author response image 3.

      (An active inference agent with AL=AI=EX=0. It can accomplish tasks efficiently like a human being, reducing the uncertainty of the environment and maximizing the reward.)

      Author response image 4.

      (An active inference agent with AL=AI=0, EX=10. It will only pursue immediate rewards (not choosing the "Cue" option due to additional costs), but it can also gradually optimize its strategy due to random effects.)

      Author response image 5.

      (An active inference agent with EX=0, AI=AL=10. It will only pursue environmental information to reduce the uncertainty of the environment. Even in "Context 2" where immediate rewards are scarce, it will continue to explore.) (a) shows the decision-making of active inference agents in the Stay-Cue choice. Blue corresponds to agents choosing the "Cue" option and acquiring "Context 1"; orange corresponds to agents choosing the "Cue" option and acquiring "Context 2"; purple corresponds to agents choosing the "Stay" option and not knowing the information about the hidden state of the environment. The shaded areas below correspond to the probability of the agents making the respective choices. (b) shows the decision-making of active inference agents in the Stay-Cue choice. The shaded areas below correspond to the probability of the agents making the respective choices. (c) shows the rewards obtained by active inference agents. (d) shows the reward prediction errors of active inference agents. (e) shows the reward predictions of active inference agents for the "Risky" path in "Context 1" and "Context 2".

      Comment 5:

      The EEG results are intriguing, but it wasn't clear that these provide strong evidence specifically for the active inference model. No alternative models of the EEG data are evaluated.

      Overall, the central claim in the Discussion ("we demonstrated that the active inference model framework effectively describes real-world decision-making") remains unvalidated in my opinion.

      Response 5: We deeply thank you for your comments. We applied the active inference model to analyze EEG results because it best fit the participants' behavioral data among our models, including the new added results. Further, our EEG results serve only to verify that the active inference model can be used to analyze the neural mechanisms of decision-making in uncertain environments (if possible, we could certainly design a more excellent reinforcement learning model with a similar exploration strategy). We aim to emphasize the consistency between active inference and human decision-making in uncertain environments, as we have discussed in the article. Active inference emphasizes both perception and action, which is also what we wish to highlight: during the decision-making process, participants not only passively receive information, but also actively adopt different strategies to reduce uncertainty and maximize rewards.

      Reviewer #3 (Public Review):

      Summary:

      This paper aims to investigate how the human brain represents different forms of value and uncertainty that participate in active inference within a free-energy framework, in a two-stage decision task involving contextual information sampling, and choices between safe and risky rewards, which promotes a shift from exploration to exploitation. They examine neural correlates by recording EEG and comparing activity in the first vs second half of trials and between trials in which subjects did and did not sample contextual information, and perform a regression with free-energy-related regressors against data "mapped to source space." Their results show effects in various regions, which they take to indicate that the brain does perform this task through the theorised active inference scheme.

      Strengths:

      This is an interesting two-stage paradigm that incorporates several interesting processes of learning, exploration/exploitation, and information sampling. Although scalp/brain regions showing sensitivity to the active-inference-related quantities do not necessarily suggest what role they play, it can be illuminating and useful to search for such effects as candidates for further investigation. The aims are ambitious, and methodologically it is impressive to include extensive free-energy theory, behavioural modelling, and EEG source-level analysis in one paper.

      Response: We would like to express our heartfelt thanks to you for carefully reviewing our work and offering insightful feedback. Your attention to detail and commitment to enhancing the overall quality of our work are deeply admirable. Your input has been extremely helpful in guiding us through the necessary revisions to enhance the work. We have implemented focused changes based on a majority of your comments. Nevertheless, owing to limitations such as time and resources, we have not included corresponding analyses for a few comments.

      Comment 1:

      Though I could surmise the above general aims, I could not follow the important details of what quantities were being distinguished and sought in the EEG and why. Some of this is down to theoretical complexity - the dizzying array of constructs and terms with complex interrelationships, which may simply be part and parcel of free-energy-based theories of active inference - but much of it is down to missing or ambiguous details.

      Response 1: We deeply thank you for your comments about our work’s readability. We have significantly revised the descriptions of active inference, models, research questions, etc. Focusing on active inference and the free energy principle, we have added relevant basic descriptions and unified the terminology. We have added information related to model comparison in the main text and supplementary materials. We presented our regression results in clearer language. Our research focused on the brain's representation of decision-making in uncertain environments, including expected free energy, the value of reducing ambiguity, the value of avoiding risk, extrinsic value, ambiguity, and risk.

      Comment 2:

      In general, an insufficient effort has been made to make the paper accessible to readers not steeped in the free energy principle and active inference. There are critical inconsistencies in key terminology; for example, the introduction states that aim 1 is to distinguish the EEG correlates of three different types of uncertainty: ambiguity, risk, and unexpected uncertainty. But the abstract instead highlights distinctions in EEG correlates between "uncertainty... and... risk" and between "expected free energy .. and ... uncertainty." There are also inconsistencies in mathematical labelling (e.g. in one place 'p(s|o)' and 'q(s)' swap their meanings from one sentence to the very next).

      Response 2: We deeply thank you for your comments about the problem of inconsistent terminology. First, we have unified the symbols and letters (P, Q, s, o, etc.) that appeared in the article and described their respective meanings more clearly. We have also revised the relevant expressions of "uncertainty" throughout the text. In our work, uncertainty refers to ambiguity and risk. Ambiguity can be reduced through continuous sampling and is referred to as uncertainty about model parameters in our work. Risk, on the other hand, is the inherent variance of the environment and cannot be reduced through sampling, which is referred to as uncertainty about hidden states in our work. In the analysis of the results, we focused on how the brain encodes the value of reducing ambiguity (Figure 8), the value of avoiding risk (Figure 6), and (the degree of) ambiguity (Figure S5) during action selection. We also analyzed how the brain encodes reducing ambiguity and avoiding risk during belief update (Figure 7).

      Comment 3:

      Some basic but important task information is missing, and makes a huge difference to how decision quantities can be decoded from EEG. For example:

      - How do the subjects press the left/right buttons - with different hands or different fingers on the same hand?

      Response 3: We deeply thank you for your comments about the missing task information. We have added the relevant content in the Methods section (Contextual two-armed bandit task and Data collection, line 251-253):

      “Each stage was separated by a jitter ranging from 0.6 to 1.0 seconds. The entire experiment consists of a single block with a total of 120 trials. The participants are required to use any two fingers of one hand to press the buttons (left arrow and right arrow on the keyboard).”

      Comment 4:

      - Was the presentation of the Stay/cue and safe/risky options on the left/right sides counterbalanced? If not, decisions can be formed well in advance especially once a policy is in place.

      Response 4: The presentation of the Stay/cue and safe/risky options on the left/right sides was not counterbalanced. It is true that participants may have made decisions ahead of time. However, to better study the state of participants during decision-making, our choice stages consist of two parts. In the first two seconds, we ask participants to consider which option they would choose, and after these two seconds, participants are allowed to make their choice (by pressing the button).

      We also updated the figure of the experiment procedure as below (We circled the time that the participants spent on making decisions).

      Author response image 6.

      Comment 5:

      - What were the actual reward distributions ("magnitude X with probability p, magnitude y with probability 1-p") in the risky option?

      Response 5: We deeply thank you for your comments about the missing task information. We have placed the relevant content in the Methods section (Contextual two-armed bandit task and Data collection, line 188-191):

      “The actual reward distribution of the risky path in "Context 1" was [+12 (55%), +9 (25%), +6 (10%), +3 (5%), +0 (5%)] and the actual reward distribution of the risky path in "Context 2" was [+12 (5%), +9 (5%), +6 (10%), +3 (25%), +0 (55%)].”

      Comment 6:

      The EEG analysis is not sufficiently detailed and motivated.

      For example,

      - why the high lower-filter cutoff of 1 Hz, and shouldn't it be acknowledged that this removes from the EEG any sustained, iteratively updated representation that evolves with learning across trials?

      Response 6: We deeply thank you for your comments about our EEG analysis. The 1Hz high-pass filter may indeed filter out some useful information. We chose a 1Hz high-pass filter to filter out most of the noise and prevent the noise from affecting our results analysis. Additionally, there are also many decision-related works that have applied 1Hz high-pass filtering in EEG data preprocessing (Yau et al., 2021; Cortes et al., 2021; Wischnewski et al., 2022; Schutte et al., 2017; Mennella et al., 2020; Giustiniani et al., 2020).

      Yau, Y., Hinault, T., Taylor, M., Cisek, P., Fellows, L. K., & Dagher, A. (2021). Evidence and urgency related EEG signals during dynamic decision-making in humans. Journal of Neuroscience, 41(26), 5711-5722.

      Cortes, P. M., García-Hernández, J. P., Iribe-Burgos, F. A., Hernández-González, M., Sotelo-Tapia, C., & Guevara, M. A. (2021). Temporal division of the decision-making process: An EEG study. Brain Research, 1769, 147592.

      Wischnewski, M., & Compen, B. (2022). Effects of theta transcranial alternating current stimulation (tACS) on exploration and exploitation during uncertain decision-making. Behavioural Brain Research, 426, 113840.

      Schutte, I., Kenemans, J. L., & Schutter, D. J. (2017). Resting-state theta/beta EEG ratio is associated with reward-and punishment-related reversal learning. Cognitive, Affective, & Behavioral Neuroscience, 17, 754-763.

      Mennella, R., Vilarem, E., & Grèzes, J. (2020). Rapid approach-avoidance responses to emotional displays reflect value-based decisions: Neural evidence from an EEG study. NeuroImage, 222, 117253.

      Giustiniani, J., Nicolier, M., Teti Mayer, J., Chabin, T., Masse, C., Galmès, N., ... & Gabriel, D. (2020). Behavioral and neural arguments of motivational influence on decision making during uncertainty. Frontiers in Neuroscience, 14, 583.

      Comment 7:

      - Since the EEG analysis was done using an array of free-energy-related variables in a regression, was multicollinearity checked between these variables?

      Response 7: We deeply thank you for your comments about our regression. Indeed, we didn't specify our regression formula in the main text. We conducted regression on one variable each time, so there was no need for a multicollinearity check. We have now added the relevant content in the Results section (“EEG results at source level” section, line 337-340):

      “The linear regression was run by the "mne.stats.linear regression" function in the MNE package (Activity ~ Regressor + Intercept). Activity is the activity amplitude of the EEG signal in the source space and regressor is one of the regressors that we mentioned (e.g., expected free energy, the value of reducing ambiguity, etc.).”

      Comment 8:

      - In the initial comparison of the first/second half, why just 5 clusters of electrodes, and why these particular clusters?

      Response 8: We deeply thank you for your comments about our sensor-level analysis. These five clusters are relatively common scalp EEG regions to analyze (left frontal, right frontal, central, left parietal, and right parietal), and we referred previous work analyzed these five clusters of electrodes (Laufs et al., 2006; Ray et al., 1985; Cole et al., 1985). In addition, our work pays more attention to the analysis in source space, exploring the corresponding functions of specific brain regions based on active inference models.

      Laufs, H., Holt, J. L., Elfont, R., Krams, M., Paul, J. S., Krakow, K., & Kleinschmidt, A. (2006). Where the BOLD signal goes when alpha EEG leaves. Neuroimage, 31(4), 1408-1418.

      Ray, W. J., & Cole, H. W. (1985). EEG activity during cognitive processing: influence of attentional factors. International Journal of Psychophysiology, 3(1), 43-48.

      Cole, H. W., & Ray, W. J. (1985). EEG correlates of emotional tasks related to attentional demands. International Journal of Psychophysiology, 3(1), 33-41.

      Comment 9:

      How many different variables are systematically different in the first vs second half, and how do you rule out less interesting time-on-task effects such as engagement or alertness? In what time windows are these amplitudes being measured?

      Response 9 (and the Response for Weaknesses 11): There were no systematic differences between the first half and the second half of the trials, with the only difference being the participants' experience. In the second half, participants had a better understanding of the reward distribution of the task (less ambiguity). The simulation results can well describe these.

      Author response image 7.

      As shown in Figure (a), agents can only learn about the hidden state of the environment ("Context 1" (green) or "Context 2" (orange)) by choosing the "Cue" option. If agents choose the "Stay" option, they will not be able to know the hidden state of the environment (purple). The risk of agents is only related to wh

      ether they choose the "Cue" option, not the number of rounds. Figure (b) shows the Safe-Risky choices of agents, and Figure (e) is the reward prediction of agents for the "Risky" path in "Context 1" and "Context 2". We can see that agents update the expected reward and reduce ambiguity by sampling the "Risky" path. The ambiguity of agents is not related to the "Cue" option, but to the number of times they sample the "Risky" path (rounds).

      In our choosing stages, participants were required to think about their choices for the first two seconds (during which they could not press buttons). Then, they were asked to make their choices (press buttons) within the next two seconds. This setup effectively kept participants' attention focused on the task. And the two second during the “Second choice” stage when participants decide which option to choose (they cannot press buttons) are measured for the analysis of the sensor-level results.

      Comment 10:

      In the comparison of asked and not-asked trials, what trial stage and time window is being measured?

      Response 10: We have added relevant descriptions in the main text. The two second during the “Second choice” stage when participants decide which option to choose (they cannot press buttons) are measured for the analysis of the sensor-level results.

      Author response image 8.

      Comment 11:

      Again, how many different variables, of the many estimated per trial in the active inference model, are different in the asked and not-asked trials, and how can you know which of these differences is the one reflected in the EEG effects?

      Response 11: The difference between asked trials and not-asked trials lies only in whether participants know the specific context of the risky path (the level of risk for the participants). A simple comparison indeed cannot tell us which of these differences is reflected in the EEG effects. Therefore, we subsequently conducted model-based regression analysis in the source space.

      Comment 12:

      The authors choose to interpret that on not-asked trials the subjects are more uncertain because the cue doesn't give them the context, but you could equally argue that they don't ask because they are more certain of the possible hidden states.

      Response 12: Our task design involves randomly varying the context of the risky path. Only by choosing to inquire can participants learn about the context. Participants can only become increasingly certain about the reward distribution of different contexts of the risky path, but cannot determine which specific context it is. Here are the instructions for the task that we will tell the participants (line 226-231).

      "You are on a quest for apples in a forest, beginning with 5 apples. You encounter two paths: 1) The left path offers a fixed yield of 6 apples per excursion. 2) The right path offers a probabilistic reward of 0/3/6/9/12 apples, and it has two distinct contexts, labeled "Context 1" and "Context 2," each with a different reward distribution. Note that the context associated with the right path will randomly change in each trial. Before selecting a path, a ranger will provide information about the context of the right path ("Context 1" or "Context 2") in exchange for an apple. The more apples you collect, the greater your monetary reward will be."

      Comment 13:

      - The EEG regressors are not fully explained. For example, an "active learning" regressor is listed as one of the 4 at the beginning of section 3.3, but it is the first mention of this term in the paper and the term does not arise once in the methods.

      Response 13: We have accordingly revised the relevant content in the main text (as in Eq.8). Our regressors now include expected free energy, the value of reducing ambiguity, the value of avoiding risk, extrinsic value, prediction error, (the degree of) ambiguity, reducing ambiguity, and avoiding risk.

      Comment 14:

      - In general, it is not clear how one can know that the EEG results reflect that the brain is purposefully encoding these very parameters while implementing this very mechanism, and not other, possibly simpler, factors that correlate with them since there is no engagement with such potential confounds or alternative models. For example, a model-free reinforcement learning model is fit to behaviour for comparison. Why not the EEG?

      Response 14: We deeply thank you for your comments. Due to factors such as time and effort, and because the active inference model best fits the behavioral data of the participants, we did not use other models to analyze the EEG data. At both the sensor and source level, we observed the EEG signal and brain regions that can encode different levels of uncertainties (risk and ambiguity). The brain's uncertainty driven exploration mechanism cannot be explained solely by a simple model-free reinforcement learning approach.

      Recommendations for the authors:

      Response: We have made point-to-point revisions according to the reviewer's recommendations, and as these revisions are relatively minor, we have only responded to the longer recommendations here.

      Reviewer #1 (Recommendations For The Authors)

      I enjoyed reading this sophisticated study of decision-making. I thought your implementation of active inference and the subsequent fitting to choice behaviour - and study of the neuronal (EEG) correlates - was impressive. As noted in my comments on strengths and weaknesses, some parts of your manuscript with difficult to read because of slight collapses in grammar and an inconsistent use of terms when referring to the mathematical quantities. In addition to the paragraphs I have suggested, I would recommend the following minor revisions to your text. In addition, you will have to fill in some of the details that were missing from the current version of the manuscript. For example:

      Recommendation 1:

      Which RL model did you use to fit the behavioural data? What were its free parameters?

      Response 1: We have now added information related to the comparison models in the behavioral results and supplementary materials. We applied both simple model-free reinforcement learning and model-based reinforcement learning. The free parameters for the model-free reinforcement learning model are the learning rate α and the temperature parameter γ, while the free parameters for the model-based approach are the learning rate α, the temperature parameter γ, and the prior.

      Recommendation 2:

      When you talk about neuronal activity in the final analyses (of time-dependent correlations) what was used to measure the neuronal activity? Was this global power over frequencies? Was it at a particular frequency band? Was it the maximum amplitude within some small window et cetera? In other words, you need to provide the details of your analysis that would enable somebody to reproduce your study at a certain level of detail.

      Response 2: In the final analyses, we used the activity amplitude at each point in the source space for our analysis. Previously, we had planned to make our data and models available on GitHub to facilitate easier replication of our work.

      Reviewer #3 (Recommendations For The Authors)

      Recommendation 1:

      It might help to explain the complex concepts up front, to use the concrete example of the task itself - presumably, it was designed so that the crucial elements of the active inference framework come to the fore. One could use hypothetical choice patterns in this task to exemplify different factors such as expected free energy and unexpected uncertainty at work. It would also be illuminating to explain why behaviour on this task is fit better by the active inference model than a model-free reinforcement learning model.

      Response 1: Thank you for your suggestions. We have given clearer explanations to the three terms in the active inference formula: the value of reducing ambiguity, the value of avoiding risk, and the extrinsic value (Eq.8), which makes it easier for readers to understand active inference.

      In addition, we can simply view active inference as a computational model similar to model-based reinforcement learning, where the expected free energy represents a subjective value, without needing to understand its underlying computational principles or neurobiological background. In our discussion, we have argued why the active inference model fits the participants' behavior better than our reinforcement learning model, as the active inference model has an inherent exploration mechanism that is consistent with humans, who instinctively want to reduce environmental uncertainty (line 435-442).

      “Active inference offers a superior exploration mechanism compared with basic model-free reinforcement learning  (Figure 4 (c)). Since traditional reinforcement learning models determine their policies solely on the state, this setting leads to difficulty in extracting temporal information (Laskin et al., 2020) and increases the likelihood of entrapment within local minima. In contrast, the policies in active inference are determined by both time and state. This dependence on time (Wang et al., 2016) enables policies to adapt efficiently, such as emphasizing exploration in the initial stages and exploitation later on. Moreover, this mechanism prompts more exploratory behavior in instances of state ambiguity. A further advantage of active inference lies in its adaptability to different task environments (Friston et al., 2017). It can configure different generative models to address distinct tasks, and compute varied forms of free energy and expected free energy.”

      Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., & Srinivas, A. (2020). Reinforcement learning with augmented data. Advances in neural information processing systems, 33, 19884-19895.

      Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ... & Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:1611.05763.

      Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: a process theory. Neural computation, 29(1), 1-49.

      Recommendation 2:

      Figure 1A provides a key example of the lack of effort to help the reader understand. It suggests the possibility of a concrete example but falls short of providing one. From the caption and text, applied to the figure, I gather that by choosing either to run or to raise one's arms, one can control whether it is daytime or nighttime. This is clearly wrong but it is what I am led to think by the paper.

      Response 2: Thank you for your suggestion, which we had not considered before. In this figure, we aim to illustrate that "the agent receives observations and optimizes his cognitive model by minimizing variational free energy → the agent makes the optimal action by minimizing expected free energy → the action changes the environment → the environment generates new observations for the agent." We have now modified the image to be simpler to prevent any possible confusion for readers. Correspondingly, we removed the figure of a person raising their hand and the shadowed house in Figure a.

      Author response image 9.

      Recommendation 3:

      I recommend an overhaul in the labelling and methodological explanations for consistency and full reporting. For example, line 73 says sensory input is 's' and the cognitive model is 'q(s),' and the cause of the sensory input is 'p(s|o)' but on the very next line, the cognitive model is 'p(s|o)' and the causes of sensory input are 'q(s).' How this sensory input s relates to 'observations' or 'o' is unclear, and meanwhile, capital S is the set of environmental states. P seems to refer to the generative distribution, but it also means probability.

      Response 3: Thank you for your advice. Now we have revised the corresponding labeling and methodological explanations in our work to make them consistent. However, we are not sure how to make a good modification to P here. In many works, P can refer to a certain probability distribution or some specific probabilities.

      Recommendation 4:

      Even the conception of a "policy" is unclear (Figure 2B). They list 4 possible policies, which are simply the 4 possible sequences of steps, stay-safe, cue-risky, etc, but with no contingencies in them. Surely a complete policy that lists 'cue' as the first step would entail a specification of how they would choose the safe or risky option BASED on the information in that cue

      Response 4: Thank you for your suggestion. In active inference, a policy actually corresponds to a sequence of actions. The policy of "first choosing 'Cue' and then making the next decision based on specific information" differs from the meaning of policy in active inference.

      Recommendation 5:

      I assume that the heavy high pass filtering of the EEG (1 Hz) is to avoid having to baseline-correct the epochs (of which there is no mention), but the authors should directly acknowledge that this eradicates any component of decision formation that may evolve in any way gradually within or across the stages of the trial. To take an extreme example, as Figure 3E shows, the expected rewards for the risky path evolve slowly over the course of 60 trials. The filter would eliminate this.

      Response 5: Thank you for your suggestion. The heavy high pass filtering of the EEG (1 Hz) is to minimize the noise in the EEG data as much as possible.

      Recommendation 6:

      There is no mention of the regression itself in the Methods section - the section is incomplete.

      Response 6: Thank you for your suggestion. We have now added the relevant content in the Results section (EEG results at source level, line 337-340):

      “The linear regression was run by the "mne.stats.linear regression" function in the MNE package (Activity ∼ Regressor + Intercept, Activity is the activity amplitude of the EEG signal in the source space and regressor is one of the regressors that we mentioned).”

      Recommendation 7:

      On Lines 260-270 the same results are given twice.

      Response 7: Thank you for your suggestion. We have now deleted redundant content.

      Recommendation 8:

      Frequency bands are displayed in Figure 5 but there is no mention of those in the Methods. In Figure 5b Theta in the 2nd half is compared to Delta in the 1st half- is this an error?

      Response 8: Thank you for your suggestion. It indeed was an error (they should all be Theta) and now we have corrected it.

      Author response image 10.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Summary:

      In this study, Nishi et al. claim that the ratio of long-term hematopoietic stem cell (LT-HSC) versus short-term HSC (ST-HSC) determines the lineage output of HSCs and reduced ratio of ST-HSC in aged mice causes myeloid-biased hematopoiesis. The authors used Hoxb5 reporter mice to isolate LT-HSC and ST-HSC and performed molecular analyses and transplantation assays to support their arguments. How the hematopoietic system becomes myeloid-biased upon aging is an important question with many implications in the disease context as well. However, their study is descriptive with remaining questions.

      Weaknesses:

      Comment #1-1: The authors may need conceptual re-framing of their main argument because whether the ST-HSCs used in this study are functionally indeed short-term "HSCs" is questionable. The data presented in this study and their immunophenotypic definition of ST-HSCs (Lineage negative/Sca-1+/c-Kit+/Flk2-/CD34-/CD150+/Hoxb5-) suggest that authors may find hematopoietic stem cell-like lymphoid progenitors as previously shown for megakaryocyte lineage (Haas et al., Cell stem cell. 2015) or, as the authors briefly mentioned in the discussion, Hoxb5- HSCs could be lymphoid-biased HSCs.

      The authors disputed the idea that Hoxb5- HSCs as lymphoid-biased HSCs based on their previous 4 weeks post-transplantation data (Chen et al., 2016). However, they overlooked the possibility of myeloid reprogramming of lymphoid-biased population during regenerative conditions (Pietras et al., Cell stem cell., 2015). In other words, early post-transplant STHSCs (Hoxb5- HSCs) can be seen as lacking the phenotypic lymphoid-biased HSCs.

      Thinking of their ST-HSCs as hematopoietic stem cell-like lymphoid progenitors or lymphoidbiased HSCs makes more sense conceptually as well.

      Response #1-1: We appreciate this important suggestion and recognize the significance of the debate on whether Hoxb5- HSCs are ST-HSCs or lymphoid-biased HSCs.

      HSCs are defined by their ability to retain hematopoietic potential after a secondary transplantation1-2. If Hoxb5- HSCs were indeed lymphoid-biased HSCs, they would exhibit predominantly lymphoid hematopoiesis even after secondary transplantation. However, functional experiments demonstrate that these cells lose their hematopoietic output after secondary transplantation3 (see Fig. 2 in this paper). Based on the established definition of HSCs in this filed, it is appropriate to classify Hoxb5- HSCs as ST-HSCs rather than lymphoid-biased HSCs.

      Additionally, it has been reported that myeloid reprogramming may occur in the early posttransplant period, around 2-4 weeks after transplantation, even in lymphoid-biased populations within the MPP fraction, due to high inflammatory conditions4. However, when considering the post-transplant hematopoiesis of Hoxb5- HSC fractions as ST-HSCs, they exhibit almost the same myeloid hematopoietic potential as LT-HSCs not only during the early 4 weeks after transplantation but also at 8 weeks post-transplantation3, when the acute inflammatory response has largely subsided. Therefore, it is difficult to attribute the myeloid production by ST-HSCs post-transplant solely to myeloid reprogramming.

      References

      (1) Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

      (2) Challen, G. A., Boles, N., Lin, K. K. Y. & Goodell, M. A. Mouse hematopoietic stem cell identification and analysis. Cytom. Part A 75, 14–24 (2009).

      (3) Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223–227 (2016).

      (4) Pietras, E. M. et al. Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. Cell Stem Cell 17, 35–46 (2015).

      Comment #1-2: ST-HSCs come from LT-HSCs and further differentiate into lineage-biased multipotent progenitor (MPP) populations including myeloid-biased MPP2 and MPP3. Based on the authors' claim, LT-HSCs (Hoxb5- HSCs) have no lineage bias even in aged mice. Then these LT-HSCs make ST-HSCs, which produce mostly memory T cells. These memory T cell-producing ST-HSCs then produce MPPs including myeloid-biased MPP2 and MPP3.

      This differentiation trajectory is hard to accept. If we think Hoxb5- HSCs (ST-HSCs by authors) as a sub-population of immunophenotypic HSCs with lymphoid lineage bias or hematopoietic stem cell-like lymphoid progenitors, the differentiation trajectory has no flaw.

      Response #1-2: Thank you for this comment, and we apologize for the misunderstanding regarding the predominance of memory T cells in ST-HSCs after transplantation. 

      Our data show that ST-HSCs are not biased HSCs that predominantly produce memory T cells, but rather, ST-HSCs are multipotent hematopoietic cells. ST-HSCs lose their ability to self-renew within a short period, resulting in the cessation of ST-HSC-derived hematopoiesis. As a result, myeloid lineage with a short half-life disappears from the peripheral blood, and memory lymphocytes with a long half-life remain (see Figure 5 in this paper). 

      Comment #1-3: Authors' experimental designs have some caveats to support their claims. Authors claimed that aged LT-HSCs have no myeloid-biased clone expansion using transplantation assays. In these experiments, authors used 10 HSCs and young mice as recipients. Given the huge expansion of old HSC by number and known heterogeneity in immunophenotypically defined HSC populations, it is questionable how 10 out of so many old HSCs can faithfully represent the old HSC population. The Hoxb5+ old HSC primary and secondary recipient mice data (Figure 2C and D) support this concern. In addition, they only used young recipients. Considering the importance of the inflammatory aged niche in the myeloid-biased lineage output, transplanting young vs old LT-HSCs into aged mice will complete the whole picture.

      Response #1-3: We appreciate the reviewer for the comments. We acknowledge that using ten HSCs may not capture the heterogeneity of aging HSCs.

      However, although most of our experiments have used a small number of transplanted cells (e.g., 10 cells), we have conducted functional experiments across Figures 2, 3, 5, 6, S3, and S6, totaling n = 126, equivalent to over 1260 cells. Previous studies have reported that myeloid-biased HSCs constitute more than 50% of the aged HSC population1-2. If myeloidbiased HSCs increase with age, they should be detectable in our experiments. Our functional experiments have consistently shown that Hoxb5+ HSCs exhibit unchanged lineage output throughout life. In contrast, the data presented in this paper indicate that changes in the ratio of LT-HSCs and ST-HSCs may contribute to myeloid-biased hematopoiesis.

      We believe that transplanting aged HSCs into aged recipient mice is crucial to analyzing not only the differentiation potential of aged HSCs but also the changes in their engraftment and self-renewal abilities. We aim to clarify further findings through these experiments in the future.

      References

      (1) Dykstra B, Olthof S, Schreuder J, Ritsema M, Haan G De. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011 Dec 19;208(13):2691–703. 

      (2) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      Comment #1-4: The authors' molecular data analyses need more rigor with unbiased approaches. They claimed that neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid or lymphoid gene set enrichment but aged bulk HSCs, which are just a sum of LT-HSCs and ST-HSCs by their gating scheme (Figure 4A), showed the "tendency" of enrichment of myeloid-related genes based on the selected gene set (Figure 4D). Although the proportion of ST-HSCs is reduced in bulk HSCs upon aging, since ST-HSCs do not exhibit lymphoid gene set enrichment based on their data, it is hard to understand how aged bulk HSCs have more myeloid gene set enrichment compared to young bulk HSCs. This bulk HSC data rather suggests that there could be a trend toward certain lineage bias (although not significant) in aged LT-HSCs or ST-HSCs. The authors need to verify the molecular lineage priming of LT-HSCs and ST-HSCs using another comprehensive dataset.

      Response #1-4: Thank you for pointing out that neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid

      or lymphoid gene set enrichment, although aged bulk HSCs showed a tendency towards enrichment of myeloid-related genes.

      The actual GSEA result had an FDR > 0.05. Therefore, we cannot claim that bulk HSCs showed significant enrichment of myeloid-related genes with age. Consequently, we have revised the following sentences:

      [P11, L251] Neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid/lymphoid gene set enrichment, while shared myeloid-related genes tended to be enriched in aged bulk-HSCs, although this enrichment was not statistically significant (Fig. 4, F and G).

      In addition to the above, we also found that the GSEA results differ among myeloid gene sets (Fig. 4, D-F; Fig. 4S, C-D). These findings suggest that discussing lineage bias in HSCs using GSEA is challenging. We believe that functional experimental data is crucial. From our functional experiments, when the ratio of LT-HSC to ST-HSC was reconstituted to match the ratio in young Bulk-HSCs (LT= 2:8) or aged bulk-HSCs (LT= 5:5), myeloid-biased hematopoiesis was observed with the aged bulk-HSC ratio. Based on this data, the authors concluded that age-related changes in the ratio between LT-HSCs and ST-HSCs in bulkHSCs cause myeloid-biased hematopoiesis rather than an increase in myeloid gene expression in the aged bulk-HSCs.

      Comment #1-5: Some data are too weak to fully support their claims. The authors claimed that age-associated extramedullary changes are the main driver of myeloid-biased hematopoiesis based on no major differences in progenitor populations upon transplantation of 10 young HSCs into young or old recipient mice (Figure 7F) and relatively low donor-derived cells in thymus and spleen in aged recipient mice (Figure 7G-J). However, they used selected mice to calculate the progenitor populations in recipient mice (8 out of 17 from young recipients denoted by * and 8 out of 10 from aged recipients denoted by * in Figure 7C). In addition, they calculated the progenitor populations as frequency in c-kit positive cells. Given that they transplanted 10 LT-HSCs into "sub-lethally" irradiated mice and 8.7 Gy irradiation can have different effects on bone marrow clearance in young vs old mice, it is not clear whether this data is reliable enough to support their claims. The same concern applies to the data Figure 7G-J. Authors need to provide alternative data to support their claims.

      Response #1-5: Thank you for useful comments. Our claim regarding Fig. 7 is that age-associated extramedullary changes are merely additional drivers for myeloid-biased hematopoiesis are not the main drivers. But we will address the issues pointed out.

      Regarding the reason for analyzing the asterisk mice

      We performed two independent experiments for Fig. 7. In the first experiment, we planned to analyze the BM of recipients 16 weeks after transplantation. However, as shown in Fig. 7B, many of the aged mice died before 16 weeks. Therefore, we decided to examine the BM of the recipient mice at 12 weeks in the second experiment. Below are the peripheral blood results 11-12 weeks after transplantation for the mice used in the second experiment.

      Author response image 1.

      For the second experiment, we analyzed the BM of all eight all eight aged recipients. Then, we selected the same number of young recipients for analysis to ensure that the donor myeloid output would be comparable to that of the entire young group. Indeed, the donor myeloid lineage output of the selected mice was 28.1 ± 22.9%, closely matching the 23.5 ± 23.3% (p = 0.68) observed in the entire young recipient population. 

      That being said, as the reviewer pointed out, it is considerable that the BM, thymus, and spleen of all mice were not analyzed. Hence, we have added the following sentences:

      [P14, L327] We performed BM analysis for the mice denoted by † in Figure 7C because many of the aged mice had died before the analysis.

      [P15, L338] The thymus and spleen analyses were also performed on the mice denoted by † in Figure 7C.

      Regarding the reason for 8.7 Gy.

      Thank you for your question about whether 8.7 Gy is myeloablative. In our previous report1, we demonstrated that none of the mice subjected to pre-treatment with 8.7 Gy could survive when non-LKS cells were transplanted, suggesting that 8.7 Gy is enough to be myeloablative with the radiation equipment at our facility.

      Author response image 2.

      Reference

      (1)  Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      Regarding the normalization of c-Kit in Figure 7F.  

      Firstly, as shown in Supplemental Figures S1B and S1C, we analyze the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in different panels. Therefore, normalization is required to assess the differentiation of HSCs from upstream to downstream. Additionally, the reason for normalizing by c-Kit+ is that the bone marrow analysis was performed after enrichment using the Anti-c-Kit antibody for both upstream and downstream fractions. Based on this, we calculated the progenitor populations as a frequency within the c-Kit positive cells.

      Next, the results of normalizing the whole bone marrow cells (live cells) are shown below. 

      Author response image 3.

      Similar to the results of normalizing c-Kit+ cells, myeloid progenitors remained unchanged, including a statistically significant decrease in CMP in aged mice. Additionally, there were no significant differences in CLP. In conclusion, we obtained similar results between the normalization with c-Kit and the normalization with whole bone marrow cells (live cells).

      However, as the reviewer pointed out, it is necessary to explain the reason for normalization with c-Kit. Therefore, we will add the following description.

      [P21, L502] For the combined analysis of the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in Figures 1B and 7F, we normalized by c-Kit+ cells because we performed a c-Kit enrichment for the bone marrow analysis.

      Reviewer #2:

      Summary:  

      Nishi et al, investigate the well-known and previously described phenomenon of ageassociated myeloid-biased hematopoiesis. Using a previously established HoxB5mCherry mouse model, they used HoxB5+ and HoxB5- HSCs to discriminate cells with long-term (LTHSCs) and short-term (ST-HSCs) reconstitution potential and compared these populations to immunophenotypically defined 'bulk HSCs' that consists of a mixture of LT-HSC and STHSCs. They then isolated these HSC populations from young and aged mice to test their function and myeloid bias in non-competitive and competitive transplants into young and aged recipients. Based on quantification of hematopoietic cell frequencies in the bone marrow, peripheral blood, and in some experiments the spleen and thymus, the authors argue against the currently held belief that myeloid-biased HSCs expand with age. 

      Comment #2-1: While aspects of their work are fascinating and might have merit, several issues weaken the overall strength of the arguments and interpretation. Multiple experiments were done with a very low number of recipient mice, showed very large standard deviations, and had no statistically detectable difference between experimental groups. While the authors conclude that these experimental groups are not different, the displayed results seem too variable to conclude anything with certainty. The sensitivity of the performed experiments (e.g. Figure 3; Figure 6C, D) is too low to detect even reasonably strong differences between experimental groups and is thus inadequate to support the author's claims. This weakness of the study is not acknowledged in the text and is also not discussed. To support their conclusions the authors need to provide higher n-numbers and provide a detailed power analysis of the transplants in the methods section.

      Response #2-1: Thank you for your important remarks. The power analysis for this experiment shows that power = 0.319, suggesting that more number may be needed. On the other hand, our method for determining the sample size in Figure 3 is as follows:

      (1) First, we checked whether myeloid biased change is detected in the bulk-HSC fraction (Figure S3). The results showed that the difference in myeloid output at 16 weeks after transplantation was statistically significant (young vs. aged = 7.2 ± 8.9 vs. 42.1 ± 35.5%, p = 0.01), even though n = 10.

      (2) Next, myeloid biased HSCs have been reported to be a fraction with high self-renewal ability (2004, Blood). If myeloid biased HSCs increase with aging, the increase in myeloid biased HSCs in LT-HSC fraction would be detected with higher sensitivity than in the bulk-HSC fraction used in Figure S3.

      (3) However, there was no difference not only in p-values but also in the mean itself, young vs aged = 51.4±31.5% vs 47.4±39.0%, p = 0.82, even though n = 8 in Figure 3. Since there was no difference in the mean itself, it is highly likely that no difference will be detected even if n is further increased.

      Regarding Figure 6, we obtained a statistically significant difference and consider the sample size to be sufficient. 

      In addition, we have performed various functional experiments (Figures 2, 5, 6 and S6), and have obtained consistent results that expansion of myeloid biased HSCs does not occur with aging in Hoxb5+HSCs fraction. Based on the above, we conclude that the LT-HSC fraction does not differ in myeloid differentiation potential with aging.

      Comment #2-2: As the authors attempt to challenge the current model of the age-associated expansion of myeloid-biased HSCs (which has been observed and reproduced by many different groups), ideally additional strong evidence in the form of single-cell transplants is provided.

      Response #2-2: Thank you for the comments. As the reviewer pointed out, we hope we could reconfirm our results using single-cell level technology in the future.

      On the other hand, we have reported that the ratio of myeloid to lymphoid cells in the peripheral blood changes when the number of HSCs transplanted, or the number of supporting cells transplanted with HSCs, is varied1-2. Therefore, single-cell transplant data need to be interpreted very carefully to determine differentiation potential.

      From this viewpoint, future experiments will combine the Hoxb5 reporter system with a lineage tracing system that can track HSCs at the single-cell level over time. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. We have reflected this comment by adding the following sentences in the manuscript.

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty cell transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system3-4. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. 

      References

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      (2) Sakamaki T, Kao KS, Nishi K, Chen JY, Sadaoka K, Fujii M, et al. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem Biophys Res Commun [Internet]. 2021;539:34–41. Available from: https://doi.org/10.1016/j.bbrc.2020.12.077

      (3) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      (4) Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature [Internet]. 2020;583(7817):585–9. Available from: http://dx.doi.org/10.1038/s41586-020-2503-6

      Comment #2-3: It is also unclear why the authors believe that the observed reduction of ST-HSCs relative to LT-HSCs explains the myeloid-biased phenotype observed in the peripheral blood. This point seems counterintuitive and requires further explanation.

      Response #2-3: Thank you for your comment. We apologize for the insufficient explanation. Our data, as shown in Figures 3 and 4, demonstrate that the differentiation potential of LT-HSCs remains unchanged with age. Therefore, rather than suggesting that an increase in LT-HSCs with a consistent differentiation capacity leads to myeloid-biased hematopoiesis, it seems more accurate to highlight that the relative decrease in the proportion of ST-HSCs, which remain in peripheral blood as lymphocytes, leads to a relative increase in myeloid cells in peripheral blood and thus causes myeloid-biased hematopoiesis.

      However, if we focus on the increase in the ratio of LT-HSCs, it is also plausible to explain that “with aging, the proportion of LT-HSCs capable of long-term myeloid hematopoiesis increases. As a result, from 16 weeks after transplantation, the influence of LT-HSCs maintaining the long-term ability to produce myeloid cells becomes relatively more significant, leading to an increase in the ratio of myeloid cells in the peripheral blood and causing myeloid-biased hematopoiesis.”

      Comment #2-4: Based on my understanding of the presented data, the authors argue that myeloid-biased HSCs do not exist, as<br /> a) they detect no difference between young/aged HSCs after transplant (mind low n-numbers and large std!); b) myeloid progenitors downstream of HSCs only show minor or no changes in frequency and c) aged LT-HSCs do not outperform young LT-HSC in myeloid output LT-HScs in competitive transplants (mind low n-numbers and large std!).

      Response #2-4: We appreciate the comments. As mentioned above, we will correct the manuscript regarding the sample size.

      Regarding the interpreting of the lack of increase in the percentage of myeloid progenitor cells in the bone marrow with age, it is instead possible that various confounding factors, such as differentiation shortcuts or changes in the microenviroment, are involved.

      However, even when aged LT-HSCs and young LT-HSCs are transplanted into the same recipient mice, the timing of the appearance of different cell fractions in peripheral blood is similar (Figure 3 of this paper). Therefore, we have not obtained data suggesting that clear shortcuts exist in the differentiation process of aged HSCs into neutrophils or monocytes. Additionally, it is currently consensually accepted that myeloid cells, including neutrophils and monocytes, differentiate from GMPs1. Since there is no changes in the proportion of GMPs in the bone marrow with age, we concluded that the differentiation potential into myeloid cells remains consistent with aging.

      Reference

      (1) Akashi K and others, ‘A Clonogenic Common Myeloid Progenitor That Gives Rise to All Myeloid Lineages’, Nature, 404.6774 (2000), 193–97.

      Strengths: 

      The authors present an interesting observation and offer an alternative explanation of the origins of aged-associated myeloid-biased hematopoiesis. Their data regarding the role of the microenvironment in the spleen and thymus appears to be convincing. 

      Weaknesses: 

      Comment #2-5: "Then, we found that the myeloid lineage proportions from young and aged LT-HSCs were nearly comparable during the observation period after transplantation (Figure 3, B and C)."<br /> Given the large standard deviation and low n-numbers, the power of the analysis to detect differences between experimental groups is very low. Experimental groups with too large standard deviations (as displayed here) are difficult to interpret and might be inconclusive. The absence of clearly detectable differences between young and aged transplanted HSCs could thus simply be a false-negative result. The shown experimental results hence do not provide strong evidence for the author's interpretation of the data. The authors should add additional transplants and include a detailed power analysis to be able to detect differences between experimental groups with reasonable sensitivity.

      Response #2-5: Thank you for providing these insights. Regarding the sample size, we have addressed this in Response #2-1.

      Comment #2-6: Line 293: "Based on these findings, we concluded that myeloid-biased hematopoiesis observed following transplantation of aged HSCs was caused by a relative decrease in ST-HSC in the bulk-HSC compartment in aged mice rather than the selective expansion of myeloid-biased HSC clones."<br /> Couldn't that also be explained by an increase in myeloid-biased HSCs, as repeatedly reported and seen in the expansion of CD150+ HSCs? It is not intuitively clear why a reduction of ST-HSCs clones would lead to a myeloid bias. The author should try to explain more clearly where they believe the increased number of myeloid cells comes from. What is the source of myeloid cells if the authors believe they are not derived from the expanded population of myeloid-biased HSCs?

      Response #2-6: Thank you for pointing this out. We apologize for the insufficient explanation. We will explain using Figure 8 from the paper.

      First, our data show that LT-HSCs maintain their differentiation capacity with age, while ST-HSCs lose their self-renewal capacity earlier, so that only long-lived memory lymphocytes remain in the peripheral blood after the loss of self-renewal capacity in ST-HSCs (Figure 8, upper panel). In mouse bone marrow, the proportion of LT-HSCs increases with age, while the proportion of STHSCs relatively decreases (Figure 8, lower panel and Figure S5). 

      Our data show that merely reproducing the ratio of LT-HSCs to ST-HSCs observed in aged mice using young LT-HSCs and ST-HSCs can replicate myeloid-biased hematopoiesis. This suggests that the increase in LT-HSC and the relative decrease in ST-HSC within the HSC compartment with aging are likely to contribute to myeloid-biased hematopoiesis.

      As mentioned earlier, since the differentiation capacity of LT-HSCs remain unchaged with age, it seems more accurate to describe that the relative decrease in the proportion of STHSCs, which retain long-lived memory lymphocytes in peripheral blood, leads to a relative increase in myeloid cells in peripheral blood and thus causes myeloid-biased hematopoiesis.

      However, focusing on the increase in the proportion of LT-HSCs, it is also possible to explain that “with aging, the proportion of LT-HSCs capable of long-term myeloid hematopoiesis increases. As a result, from 16 weeks after transplantation, the influence of LT-HSCs maintaining the long-term ability to produce myeloid cells becomes relatively more significant, leading to an increase in the ratio of myeloid cells in the peripheral blood and causing myeloid-biased hematopoiesis.”

      Reviewer #3:

      Summary:

      In this manuscript, Nishi et al. propose a new model to explain the previously reported myeloid-biased hematopoiesis associated with aging. Traditionally, this phenotype has been explained by the expansion of myeloid-biased hematopoietic stem cell (HSC) clones during aging. Here, the authors question this idea and show how their Hoxb5 reporter model can discriminate long-term (LT) and short-term (ST) HSC and characterized their lineage output after transplant. From these analyses, the authors conclude that changes during aging in the LT/ST HSC proportion explain the myeloid bias observed. 

      Although the topic is appropriate and the new model provides a new way to think about lineage-biased output observed in multiple hematopoietic contexts, some of the experimental design choices, as well as some of the conclusions drawn from the results could be substantially improved. Also, they do not propose any potential mechanism to explain this process, which reduces the potential impact and novelty of the study. Specific concerns are outlined below. 

      Major 

      Comment #3-1: As a general comment, there are experimental details that are either missing or not clear. The main one is related to transplantation assays. What is the irradiation dose? The Methods sections indicates "recipient mice were lethally irradiated with single doses of 8.7 or 9.1 Gy". The only experimental schematic indicating the irradiation dose is Figure 7A, which uses 8.7 Gy. Also, although there is not a "standard", 11 Gy split in two doses is typically considered lethal irradiation, while 9.5 Gy is considered sublethal.

      Response #3-1: We agree with reviewer’s assessment about whether 8.7 Gy is myeloablative. To confirm this, it would typically be necessary to irradiate mice with different dose and observe if they do not survive. However, such an experiment is not ethically permissible at our facility. Instead, in our previous report1, we demonstrated that none of the mice subjected to pretreatment with 8.7 Gy could survive when non-LKS cells were transplanted, suggesting that

      8.7 Gy is enough to be myeloablative with the radiation equipment at our facility.

      Reference

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      Comment #3-2:  Is there any reason for these lower doses? Same question for giving a single dose and for performing irradiation a day before transplant. 

      Response #3-2: We appreciate the reviewer for these important comments. Although the 8.7 Gy dose used at our facility is lower than in other reports, we selected this dose to maintain consistency with our previous experiments. For the same reason, we used a single irradiation, not split.  Regarding the timing of irradiation, the method section specifies that irradiation timing is 12-24 hours prior to transplantation. In most experiments, irradiation is performed at 12 hours. However, due to experimental progress, there were occasional instances where nearly 24 hours elapsed between irradiation and transplantation. We provide this information to ensure accuracy.

      Comment #3-3: The manuscript would benefit from the inclusion of references to recent studies discussing hematopoietic biases and differentiation dynamics at a single-cell level (e.g., Yamamoto et. al 2018; Rodriguez-Fraticelli et al., 2020). Also, when discussing the discrepancy between studies claiming different biases within the HSC pool, the authors mentioned that Montecino-Rodriguez et al. 2019 showed preserved lymphoid potential with age. It would be good to acknowledge that this study used busulfan as the conditioning method instead of irradiation.

      Response #3-3: We agree with this comment and have incorporated this suggestion into the manuscript

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty cell transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system1-2. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. Additionally, in this report we purified LT-HSCs by Hoxb5 reporter system. In contrast, various LT-HSC markers have been previously reported2-3.  Therefore, it is ideal to validate our findings using other LT-HSC makers.

      [P16, L368] Other studies suggest that blockage of lymphoid hematopoiesis in aged mice results in myeloid-skewed hematopoiesis through alternative mechanisms. However, this result should be interpreted carefully, since Busulfan was used for myeloablative treatment in this study4.   

      References

      (1) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      (2) Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature [Internet]. 2020;583(7817):585–9. Available from: http://dx.doi.org/10.1038/s41586-020-2503-6

      (3) Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, et al. Plateletbiased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. 2013;502(7470):232–6. 

      (4) Montecino-Rodriguez E, Kong Y, Casero D, Rouault A, Dorshkind K, Pioli PD. Lymphoid-Biased Hematopoietic Stem Cells Are Maintained with Age and Efficiently Generate Lymphoid Progeny. Stem Cell Reports. 2019 Mar 5;12(3):584–96. 

      Comment #3-4: When representing the contribution to PB from transplanted cells, the authors show the % of each lineage within the donor-derived cells (Figures 3B-C, 5B, 6B-D, 7C-E, and S3 B-C). To have a better picture of total donor contribution, total PB and BM chimerism should be included for each transplantation assay. Also, for Figures 2C-D and Figures S2A-B, do the graphs represent 100% of the PB cells? Are there any radioresistant cells?

      Response #3-4: Thank you for highlighting this point. Indeed, donor contribution to total peripheral blood (PB) is important information. We have included the donor contribution data for each figure above mentioned.

      Author response image 4.

      In Figure 2C-D and Figure S2A-B, the percentage of donor chimerism in PB was defined as the percentage of CD45.1-CD45.2+ cells among total CD45.1-CD45.2+ and CD45.1+CD45.2+ cells as described in method section.

      Comment #3-5: For BM progenitor frequencies, the authors present the data as the frequency of cKit+ cells. This normalization might be misleading as changes in the proportion of cKit+ between the different experimental conditions could mask differences in these BM subpopulations. Representing this data as the frequency of BM single cells or as absolute numbers (e.g., per femur) would be valuable.

      Response #3-5: We appreciate the reviewer's comment on this point. 

      Firstly, as shown in Supplemental Figures S1B and S1C, we analyze the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in different panels. Therefore, normalization is required to assess the differentiation of HSCs from upstream to downstream. Additionally, the reason for normalizing by c-Kit+ is that the bone marrow analysis was performed after enrichment using the Anti-c-Kit antibody for both upstream and downstream fractions. Based on this, we calculated the progenitor populations as a frequency within the c-Kit positive cells. Next, the results of normalizing the whole bone marrow cells (live cells) are shown in Author response image 2. 

      Similar to the results of normalizing c-Kit+ cells, myeloid progenitors remained unchanged, including a statistically significant decrease in CMP in aged mice. Additionally, there were no significant differences in CLP. In conclusion, similar results were obtained between the normalization with c-Kit and the normalization with whole bone marrow cells (live cells).

      However, as the reviewer pointed out, it is necessary to explain the reason for normalization with c-Kit. Therefore, we will add the following description.

      [P21, L502] For the combined analysis of the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in Figures 1B and 7F, we normalized by c-Kit+ cells because we performed a c-Kit enrichment for the bone marrow analysis.

      Comment #3-6: Regarding Figure 1B, the authors argue that if myeloid-biased HSC clones increase with age, they should see increased frequency of all components of the myeloid differentiation pathway (CMP, GMP, MEP). This would imply that their results (no changes or reduction in these myeloid subpopulations) suggest the absence of myeloid-biased HSC clones expansion with age. This reviewer believes that differentiation dynamics within the hematopoietic hierarchy can be more complex than a cascade of sequential and compartmentalized events (e.g., accelerated differentiation at the CMP level could cause exhaustion of this compartment and explain its reduction with age and why GMP and MEP are unchanged) and these conclusions should be considered more carefully.

      Response #3-6: We wish to thank the reviewer for this comment. We agree with that the differentiation pathway may not be a cascade of sequential events but could be influenced by various factors such as extrinsic factors.

      In Figure 1B, we hypothesized that there may be other mechanisms causing myeloidbiased hematopoiesis besides the age-related increase in myeloid-biased HSCs, given that the percentage of myeloid progenitor cells in the bone marrow did not change with age. However, we do not discuss the presence or absence of myeloid-biased HSCs based on the data in Figure 1B. 

      Our newly proposed theories—that the differentiation capacity of LT-HSCs remains unchanged with age and that age-related myeloid-biased hematopoiesis is due to changes in the ratio of LT-HSCs to ST-HSCs—are based on functional experiment results. As the reviewer pointed out, to discuss the presence or absence of myeloid-biased HSCs based on the data in Figure 1B, it is necessary to apply a system that can track HSC differentiation at single-cell level. The technology would clarify changes in the self-renewal capacity of individual HSCs and their differentiation into progenitor cells and peripheral blood cells. The authors believe that those single-cell technologies will be beneficial in understanding the differentiation of HSCs. Based on the above, the following statement has been added to the text.

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty cell transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system1-2. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. 

      References

      (1) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      (2) Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature [Internet]. 2020;583(7817):585–9. Available from: http://dx.doi.org/10.1038/s41586-020-2503-6

      Comment #3-7: Within the few recipients showing good donor engraftment in Figure 2C, there is a big proportion of T cells that are "amplified" upon secondary transplantation (Figure 2D). Is this expected?

      Response #3-7: We wish to express our deep appreciation to the reviewer for insightful comment on this point. As the reviewers pointed out, in Figure 2D, a few recipients show a very high percentage of T cells. The authors had the same question and considered this phenomenon as follows:

      (1) One reason for the very high percentage of T cells is that we used 1 x 107 whole bone marrow cells in the secondary transplantation. Consequently, the donor cells in the secondary transplantation contained more T-cell progenitor cells, leading to a greater increase in T cells compared to the primary transplantation.

      (2) We also consider that this phenomenon may be influenced by the reduced selfrenewal capacity of aged LT-HSCs, resulting in decreased sustained production of myeloid cells in the secondary recipient mice. As a result, long-lived memory-type lymphocytes may preferentially remain in the peripheral blood, increasing the percentage of T cells in the secondary recipient mice.

      We have discussed our hypothesis regarding this interesting phenomenon. To further clarify the characteristics of the increased T-cell count in the secondary recipient mice, we will analyze TCR clonality and diversity in the future.

      Comment #3-8: Do the authors have any explanation for the high level of variability within the recipients of Hoxb5+ cells in Figure 2C?

      Response #3-8: We appreciate the reviewer's comment on this point. As noted in our previous report, transplantation of a sufficient number of HSCs results in stable donor chimerism, whereas a small number of HSCs leads to increased variability in donor chimerism1. Additionally, other studies have observed high variability when fewer than 10 HSCs are transplanted2-3. Based on this evidence, we consider that the transplantation of a small number of cells (10 cells) is the primary cause of the high level of variability observed.

      References

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      (2) Dykstra B, Olthof S, Schreuder J, Ritsema M, Haan G De. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011 Dec 19;208(13):2691–703. 

      (3) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      Comment #3-9: Can the results from Figure 2E be interpreted as Hoxb5+ cells having a myeloid bias? (differences are more obvious/significant in neutrophils and monocytes).

      Response #3-9: Thank you for your insightful comments. Firstly, we have not obtained any data indicating that young LT-HSCs are myeloid biased HSCs so far. Therefore, we classify young LT-HSCs as balanced HSCs1. Secondly, our current data demonstrate no significant difference in differentiation capacity between young and aged LT-HSCs (see Figure 3 in this paper). Based on these findings, we interpret that aged LT-HSCs are balanced HSCs, similar to young LT-HSCs.

      Reference

      (1)  Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016 Feb 10;530(7589):223–7. 

      Comment #3-10: Is Figure 2G considering all primary recipients or only the ones that were used for secondary transplants? The second option would be a fairer comparison.

      Response #3-10: We appreciate the reviewer's comment on this point. We considered all primary recipients in Figure 2G to ensure a fair comparison, given the influence of various factors such as the radiosensitivity of individual recipient mice1. Comparing only the primary recipients used in the secondary transplantation would result in n = 3 (primary recipient) vs. n = 12 (secondary recipient). Including all primary recipients yields n = 11 vs. n = 12, providing a more balanced comparison. Therefore, we analyzed all primary recipient mice to ensure the reliability of our results.

      Reference

      (1) Duran-Struuck R, Dysko RC. Principles of bone marrow transplantation (BMT): providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci. 2009; 48:11–22

      Comment #3-11: When discussing the transcriptional profile of young and aged HSCs, the authors claim that genes linked to myeloid differentiation remain unchanged in the LT-HSC fraction while there are significant changes in the ST-HSCs. However, 2 out of the 4 genes shown in Figure S4B show ratios higher than 1 in LT-HSCs.

      Response #3-11: Thank you for highlighting this important point. As the reviewer pointed out, when we analyze the expression of myeloid-related genes, some genes are elevated in aged LT-HSCs compared to young LT-HSCs. However, the GSEA analysis using myeloid-related gene sets, which include several hundred genes, shows no significant difference between young and aged LT-HSCs (see Figure S4C in this paper). Furthermore, functional experiments using the co-transplantation system show no difference in differentiation capacity between young and aged LT-HSCs (see Figure 3 in this paper). Based on these results, we conclude that LT-HSCs do not exhibit any change in differentiation capacity with aging.

      Comment #3-12: When determining the lymphoid bias in ST-HSCs, the authors focus on the T-cell subtype, not considering any other any other lymphoid population. Could the authors explain this?

      Response #3-12: We thank the reviewer for this comment. We conducted the experiments in Figure 5 to demonstrate that the hematopoiesis observed 16 weeks post-transplantation—when STHSCs are believed to lose their self-renewal capacity—is not due to de novo production of T cells from ST-HSCs. Instead, it is attributed to long-lived memory cells which can persistently remain in the peripheral blood.

      As noted by the reviewer, various memory cell types are present in peripheral blood. Our analysis focused on memory T cells due to the broad consensus on memory T cell markers1. 

      Our findings show that transplanted Hoxb5- HSCs do not continuously produce lymphoid cells, unlike lymphoid-biased HSCs. Rather, the loss of self-renewal capacity in Hoxb5- HSCs makes the presence of long-lived memory cells in the peripheral blood more apparent.

      Reference

      (1)  Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. Sci Adv. 2022;8(33). 

      Comment #3-13: Based on the reduced frequency of donor cells in the spleen and thymus, the authors conclude "the process of lymphoid lineage differentiation was impaired in the spleens and thymi of aged mice compared to young mice". An alternative explanation could be that differentiated cells do not successfully migrate from the bone marrow to these secondary lymphoid organs. Please consider this possibility when discussing the data.

      Response #3-13: We strongly appreciate the reviewer's comment on this point. In accordance with the reviewer's comment, we have incorporated this suggestion into our manuscript.

      [P15, L343] These results indicate that the process of lymphoid lineage differentiation is impaired in the spleens and thymi of aged mice compared to young mice, or that differentiating cells in the bone marrow do not successfully migrate into these secondary lymphoid organs. These factors contribute to the enhanced myeloid-biased hematopoiesis in peripheral blood due to a decrease in de novo lymphocyte production.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Recommendation #2-1: To support their conclusions the authors need to provide higher n-numbers and provide a detailed power analysis of the transplants in the methods section.

      Response to Recommendation #2-1: Thank you for your important remarks. The power analysis for this experiment shows that power = 0.319, suggesting that more number may be needed. On the other hand, our method for determining the sample size in Figure 3 is as follows:

      (1) First, we checked whether myeloid biased change is detected in the bulk-HSC fraction (Figure S3). The results showed that the difference in myeloid output at 16 weeks after transplantation was statistically significant (young vs. aged = 7.2 ± 8.9 vs. 42.1 ± 35.5%, p = 0.01), even though n = 10.

      (2) Next, myeloid biased HSCs have been reported to be a fraction with high self-renewal ability (2004, Blood). If myeloid biased HSCs increase with aging, the increase in myeloid biased HSCs in LT-HSC fraction would be detected with higher sensitivity than in the bulk-HSC fraction used in Figure S3.

      (3) However, there was no difference not only in p-values but also in the mean itself, young vs aged = 51.4±31.5% vs 47.4±39.0%, p = 0.82, even though n = 8 in Figure 3. Since there was no difference in the mean itself, it is highly likely that no difference will be detected even if n is further increased.

      Regarding Figure S3, 5, 6, S6 and 7, we obtained a statistically significant difference and consider the sample size to be sufficient. 

      Recommendation #2-2: As the authors attempt to challenge the current model of the age-associated expansion of myeloid-biased HSCs (which has been observed and reproduced by many different groups), ideally additional strong evidence in the form of single-cell transplants is provided.

      Response to Recommendation #2-2: Thank you for the comments. As the reviewer pointed out, we hope we could reconfirm our results using single-cell level technology in the future.

      On the other hand, we have reported that the ratio of myeloid to lymphoid cells in the peripheral blood changes when the number of HSCs transplanted, or the number of supporting cells transplanted with HSCs, is varied1-2. Therefore, single-cell transplant data need to be interpreted very carefully to determine differentiation potential.

      From this viewpoint, future experiments will combine the Hoxb5 reporter system with a lineage tracing system that can track HSCs at the single-cell level over time. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. We have reflected this comment by adding the following sentences in the manuscript.

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty transplantation assays. Therefore, the current theory should be revalidated using single-cell technology. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells.

      References

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      (2) Sakamaki T, Kao KS, Nishi K, Chen JY, Sadaoka K, Fujii M, et al. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem Biophys Res Commun [Internet]. 2021;539:34–41. Available from: https://doi.org/10.1016/j.bbrc.2020.12.077

      Minor points:

      Recommendation #2-3: Figure 1: "Comprehensive analysis of hematopoietic alternations with age shows a discrepancy of age-associated changes between peripheral blood and bone marrow"

      [Comment to the authors]: For clarity, the nature of the discrepancy should be stated clearly.

      Response to Recommendation #2-3: Thank you for this important comment. Following the reviewer’s recommendation, we have revised the manuscript as follows

      [P7, L139] Our analysis of hematopoietic alternations with age revealed that age-associated transition patterns of immunophenotypically defined HSC and CMP in BM were not paralleled with myeloid cell in PB (Fig. 1 C).

      Recommendation #2-4: Figure 1B "(B) Average frequency of immunophenotypically defined HSC and progenitor cells in BM of 2-3-month mice (n = 6), 6-month mice (n = 6), 12-13-month mice (n = 6), {greater than or equal to} 23-month mice (n = 7).

      [Comment to the authors]: It should be stated in the figure and legend that the values are normalized to the 2-3-month-old mice.

      Response to Recommendation #2-4: Thank you for this comment. Figure 1B presents the actual measured values of each fraction in c-Kit positive cells in the bone marrow, without any normalization.

      Recommendation #2-5: "We 127 found that the frequency of immunophenotypically defined HSC in BM rapidly increased 128 up to the age of 12 months. After the age, they remained plateaued throughout the 129 observation period (Fig. 1 B)."

      [Comment to the authors]: The evidence for a 'plateau', where HSC numbers don't change after 12 months is weak. It appears that the numbers increase continuously (although less steep) after 12 months. I thus recommend adjusting the wording to better reflect the data.

      Response to Recommendation #2-5: We thank the reviewer for the comments above and have incorporated these suggestions in our revision as follows. 

      [P6, L126] We found that the frequency of immunophenotypically defined HSC in BM rapidly increased up to the age of 12 months. After the age, the rate of increase in their frequency appeared to slow down.

      Recommendation #2-6: Figure 2G: [Comment to the authors]: Please add the required statistics, please check carefully all figures for missing statistical tests.

      Response to Recommendation #2-6: Thank you for these important comments. In response, we have added the results of the significance tests for Figures 1A, 1C, 4C, and S5.

      Recommendation #2-7: "If bulk-HSCs isolated from aged mice are already enriched by myeloid-biased HSC clones, we should see more myeloid-biased phenotypes 16 weeks after primary and the secondary transplantation. However, we found that kinetics of the proportion of myeloid cells in PB were similar across primary and the secondary transplantation and that the proportion of myeloid cells gradually decreased over time (Fig. 2 G). These results suggest the following two possibilities: either myeloid-biased HSCs do not expand in the LT-HSC fraction, or the expansion of myeloid-biased clones in 2-year-old mice has already peaked."

      [Comment to the authors]: Other possible explanations include that the observed reduction in myeloid reconstitution over 16 weeks reflects the time required to return to homeostasis. In other words, it takes time until the blood system approaches a balanced output.

      Response to Recommendation #2-7: We agree with the reviewer's comment. As the reviewer pointed out, the gradual decrease in the proportion of myeloid cells over time is not related to our two hypotheses in this part of the manuscript but rather to the hematopoietic system's process of returning to a homeostatic state after transplantation. Therefore, the original sentence could be misleading, as it is part of the section discussing whether age-associated expansion of myeloid-biased HSCs is observed. Based on the above, we have revised the sentence as follows.

      [P8, L179] However, we found that kinetics of the proportion of myeloid cells in PB were similar across the primary and the secondary transplantation (Fig. 2 G). These results suggest the following two possibilities: either myeloid-biased HSCs do not expand in the LTHSC fraction, or the expansion of myeloid-biased clones in 2-year-old mice has already peaked.

      Recommendation #2-8: It is also important to consider that the transplant results are highly variable (see large standard deviation), therefore the sensitivity to detect smaller but relevant changes is low in the shown experiments. As the statistical analysis of these experiments is missing and the power seems low these results should be interpreted with caution. For instance, it appears that the secondary transplants on average produce more myeloid cells as expected and predicted by the classical clonal expansion model.

      Regarding "expansion of myeloid-biased clones in 2-year-old mice has already peaked". This is what the author suggested above. It might thus not be surprising that HSCs from 2-year-old mice show little to no increased myeloid expansion.

      Response to Recommendation #2-8: Thank you for providing these insights. The primary findings of our study are based on functional experiments presented in Figures 2, 3, 5, 6, and 7. In Figure 3, there was no significant difference between young and aged LT-HSCs, with mean values of 51.4±31.5% and 47.4±39.0%, respectively (p = 0.82). Given the lack of difference in the mean values, it is unlikely that increasing the sample size would reveal a significant change. For ethical reasons, to minimize the use of additional animals, we conclude that LT-HSCs exhibit no change in lineage output throughout life based on the data in Figure 3. Statistically significant differences observed in Figures 2, 5, 6, and 7 further support our conclusions.

      Additionally, because whole bone marrow cells were transplanted in the secondary transplantation, there may be various confounding factors beyond the differentiation potential of HSCs. Therefore, we consider that caution is necessary when evaluating the differentiation capacity of HSCs in the context of the second transplantation.

      Recommendation #2-9: Figure 7C: [Comment to the authors]: The star * indicates with analyzed BM. As stars are typically used as indicators of significance, this can be confusing for the reader. I thus suggest using another symbol.

      Response to Recommendation #2-9: We appreciate the reviewer for this comment and have incorporated the suggestion in the revised manuscript. We have decided to use † instead of the star*.

      Reviewer #3 (Recommendations For The Authors):

      Recommendation #3.1: In Figure 1A, the authors show the frequency of PB lineages (lymphoid vs myeloid) in mice of different ages. It would be great if they could show the same data for each subpopulation including these two main categories individually (granulocytes, monocytes, B cells, T cells...).

      Response to Recommendation #3-1: We thank for this suggestion. We provide the frequency of PB lineages (granulocytes, monocytes, B cells, T cells, and NK cells) in mice of different ages.

      Author response image 5.

      Average frequency of neutrophils, monocytes, B cells, T cells, and NK cells in PB analyzed in Figure 1A. Dots show all individual mice. *P < 0.05. **P < 0.01. Data and error bars represent means ± standard deviation. 

      Recommendation #3.2: It would be great if data from young mice could be shown in parallel to the graphs in Figure 2A.

      Response to Recommendation #3-2: We thank the reviewer for the comments above and have incorporated these suggestions in Figure 2A. 

      [P34, L916] (A) Hoxb5 reporter expression in bulk-HSC, MPP, Flk2+, and Lin-Sca1-c-Kit+ populations in the 2-year-old Hoxb5-tri-mCherry mice (Upper panel) and 3-month-old Hoxb5_tri-mCherry mice (Lower panel). Values indicate the percentage of mCherry+ cells ± standard deviation in each fraction (_n = 3). 

      Recommendation #3.3: Do the authors have any explanation for the high level of variability within the recipients of Hoxb5+ cells in Figure 2C?

      Response to Recommendation #3-3: Thank you for providing these insights. As noted in our previous report, transplantation of a sufficient number of HSCs results in stable donor chimerism, whereas a small number of HSCs leads to increased variability in donor chimerism1. Additionally, other studies have observed high variability when fewer than 10 HSCs are transplanted2-3. Based on this evidence, we consider that the transplantation of a small number of cells (10 cells) is the primary cause of the high level of variability observed.

      References

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      (2) Dykstra B, Olthof S, Schreuder J, Ritsema M, Haan G De. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011 Dec 19;208(13):2691–703. 

      (3) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      Recommendation #3.4: Are the differences in Figure 3D statistically significant? If yes, please add statistics. Same for Figure 4C.

      Response to Recommendation #3-4: Thank you for providing these insights. For Figure 3D, we performed an ANOVA analysis for each fraction; however, the results were not statistically significant. In contrast, for Figure 4C, we have added the results of significance tests for comparisons between Young LT-HSC vs. Young Bulk-HSC.

      Recommendation #3.5: As a general comment, although the results in this study are interesting, the use of a Hoxb5 lineage tracing mouse model would be more valuable for this purpose than the Hoxb5 reporter used here. The lineage tracing model would allow for the assessment of lineage bias without the caveats introduced by the transplantation assays.

      Response to Recommendation #3-5: We appreciate the reviewer for the important comments. Following the reviewer’s recommendation, we have revised the manuscript as follows

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system1-2. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. 

      References

      (1) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      (2) Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature [Internet]. 2020;583(7817):585–9. Available from: http://dx.doi.org/10.1038/s41586-020-2503-6

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer#1:

      Comment #1: It is unclear how the fraction of NK cell populations is quantified in the spatial-seq datasets. Figures display spatial data with expression scores, but the method for calculating the score and determining NK cell presence in tumor tissue is ambiguous. Clarification is needed on whether the identification relied solely on visual inspection or if quantitative analyses using other criteria were conducted.

      Thank you for your questions. We removed the background and made the accordingly modifications according to your demand. We used the AddModuleScore function in Seurat to quantify the main immune subpopulations in spatial-seq using the gene sets identified in single-cell-seq. Additionally, the tumor and non-tumor region was identified by immunohistochemistry as well as cell clusters in spatial-seq, it is rough that we can't quantify the NK cell presence in each region precisely. The consolation is that the differences of NK cell presence in tumor and non-tumor region is observable by visual inspection. The methodology has been supplemented in the revised manuscript (line 190-193).

      Comment #2: The authors do not provide a clear definition of "resting" NK cells. It remains unclear whether they refer to a senescent state or a non-matured NK cell population. Furthermore, the criteria used to define resting and activated cells based on the expression of KIR2DL4, GPR183, GRP171, CD69, IFNG, GZMK, TTC38, CD160, and PLEKNF1 in Figure 4 are not well-defined. The expression patterns of these genes in Figure 4D are not distinct, and it is unclear which combination of genes was used to classify the populations. Clarification is needed on whether the presence of GZMK alone defines resting NK cells, or if the presence of any of the described genes (GZMK, TTC38, or CD160) is sufficient. Additionally, the method used for this classification, whether visual or algorithm-based, should be described.

      Thank you for your question. The resting and activated NK cells was defined by the preferential expression of the described resting genes (AZU, BPI, CAMP, CD160,CD2, CDHR1, CEACAM8, DEFA4, ELANE, GFI1, GZMK, KLRC4, MGAM, MS4A3, NME8, PLEKHF1, TEP1, TRBC1, TTC38, ZNF135) and activated NK genes (APOBEC3G, APOL6, CCL4, CCND2, CD69, CDK6, CSF2, DPP4, FASLG, GPR171, GPR18, GRAP2, IFNG, KIR2DL4, KIR2DS4, LTA, LTB, NCR3, OSM, PTGER2, SOCS1, TNFSF14) in CIBERSORT. Actually, these marker genes were not specifically expressed in a single NK cells subset. On the other hand, combined with further flow cytometric analysis verification, the resting NK cell tend to be a decidual-like NK cells and tumor- infiltrated NK cells with higher expression of CD9, CD49a and PD-1.

      Comment #3: Criteria used to define high or low NK cell presence/infiltration in Figure 5 are not described in the main text or figure legend. Since, the claim that the presence of the resting or activated NK cells predicts cancer prognosis is based on this figure, this needs to be clearly described.

      Thank you for your questions. The activated and resting NK cell percentage in TCGA and GSE29623 was determined by CIBERSORT. Additionally, the infiltration of activated and resting NK cell was also determined by the AddModuleScore function using the gene sets of activated and resting NK cell identified in single-cell-seq, the differences of activated and resting NK cell presence in tumor and non-tumor region is also determined by visual inspection. We have amended in the main text and figure legend in the revised manuscript.

      Comment #4: The absence of FMO controls for KIR2DL4 or GZMK and the lack of increase in GZMK expression during co-culture with tumour lines raises concerns since GZMK was used as a defining feature of resting NK cells.

      Thank you for your questions. We did a new batch of flow experiments and FMO controls of all the markers used in the experiments were set up to define the precise positive gate locations.

      Author response image 1.

      The positive gate locations of CD56, GZMK, KIR2DL4, CD9, CD49a, PD-1 defined according to the FMO control.

      Comment #5: All the co-cultures were performed with tumour cell line only and no healthy cells, such as human foreskin fibroblasts, were used as control. In the absence of a non-tumour cell line, it is very difficult to draw any conclusions. Furthermore, to claim that resting or activated NK cells are responsible for tumour migration or proliferation, it is important to at least isolate resting and activated NK cells ex vivo and culture with tumour lines, instead of NK cell lines.

      Thank you for your questions. According to your suggestion, NK cells were co-cultured with human foreskin fibroblasts, the phenotype was identified by Flow cytometry. When co-cultured with HFF in direct contact (CN group), NK cells were also tending towards tissue infiltration state (high expression of CD9). However, the domestication effect is significantly reduced compared to co-culturing with tumor cells. Additionally, unlike supernatant of CNS group (NK and HCT were in contact) from NK and HCT co-culture system could significantly increase the migration of fresh HCT, fresh HCT underwent a limited increase (no statistical significance was found) in migration when cultured in the supernatant from the co-culture system in which NK and HFF were in contact (CNS group), but not when co-cultures were performed in the cell supernatant (SNS group) and fresh medium (MNS group). Finally, we tried to isolate resting and activated NK cells from fresh colon cancer surgical specimen. Unfortunately, the NK cells were too few to perform further functional experiments such as migration and proliferation.

      Author response image 2.

      Phenotype switch of NK cells in different co-cultured system and the corresponding NK cell-mediated effect on cell migration of fresh colon cancer cell (HCT-116). A-B: NK cells underwent phenotype switch (high expression of CD9) when cocultured with HCT and HFF, the phenotype switch was more obvious when co-cultured with HCT. CN: NK cells cocultured with HCT/HFF; SN: NK cells cocultured with supernatant of HCT/HFF; MN: NK cells cocultured in fresh medium. C-E: Transwell assay showed the only tumor co-cultured NK mediated the inductive effect on cell migration of colon cancer cell (HCT-116). CNS: Colon cancer cells were cultured in the supernatant from co-culture system that NK and HCT/HFF were cultured in direct contact; SNS: Colon cancer cells were cultured in the supernatant from co-culture system that NK cocultured with supernatant of HCT/HFF; MNS: Colon cancer cells were cultured in the fresh medium.

      Comment #6: It seems that flow cytometric analyses and GZMK and KIR2DL4 staining were performed without cell permeabilization. Could authors confirm if this is accurate, or if they performed intracellular staining instead?

      Thank you for your questions. For GZMK, which known as the secretory protein, flow cytometric analyses were performed both with (Fig.3) and without cell fixation and permeabilization, no significant differences were found among each group. The difference is that GZMK was nearly all negative without fixation and permeabilization while it is all positive with fixation and permeabilization. Conditions of flow cytometry analyses for GZMK may need further optimization or GZMK may not be a suitable flow cytometric marker for resting NK cells. On the other hand, for membrane protein such as CD56, CD9, CD49a, KIR2DL4, PD-1, staining was performed without cell permeabilization.

      Author response image 3.

      Phenotype switch (CD56+, GZMK+) of NK cells was analyzed by FACS after fixation and permeabilization in different co-cultured groups. CN: NK cells cocultured with colon cancer cells; SN: NK cells cocultured with supernatant of cancer cells; MN: NK cells cocultured in fresh medium.

      Comment #7: The identity of the published datasets used for analysis is not provided, and references are not cited in the results section.

      Thank you for your questions. We are sorry for the neglect of our previous work. We have added the information in the revised manuscript (section of Materials and Methods) (Line 123-128).

      Comment #8: References are difficult to locate, as the main text follows APA style while the reference section is organized numerically with no clear order.

      Thank you for your questions. We have modified the format of the references in the revised manuscript.

      Comment #9: Figure 3 shows volcano plots showing DEG genes between tumor and healthy tissue NK cells are not described clearly, and authors did not discuss the significance of these genes, highlighted in the plot.

      Thank you for your questions. Volcano plots of Figure 3 showed the DEGs between colon cancer with metastasis and without metastasis in TCGA database. We focused on the genes which were enriched in the pathway of “Natural killer cell mediated cytotoxicity” and found nearly all the genes enriched in the pathway were down-regulated in the colon cancer with metastasis. We have modified the description in the result section and added the description of importance of these genes in the discussion section in the revise manuscript (Line 322-326).

      Comment #10: The meaning of "M0" and "M1" in Figures 5A and 5B is unclear and should be defined in the text.

      Thank you for your questions. "M0" and "M1" in Figure 5A and 5B means “colon cancer without metastasis” and “colon cancer with metastasis”, respectively. We have modified in the revise manuscript (Line 350-354).

      Comment #11: Terms such as "dynamic remodelling of NK cells" and "landscape of NK cells" are used without explanation, necessitating clarification of their meaning.

      Thank you for your questions. We have modified in the revise manuscript (Line 331-334).

      Comment #12: In vitro assays are described vaguely, making it difficult for readers to understand. More clarity is needed in describing these assays.

      Thank you for your questions. We have added clarification in the revise manuscript (Line 205-211).

      Reviewer #2:

      Comment #1: This manuscript investigates the role of the abundant NK cells that are observed in colon cancer liver metastasis using sequencing and spatial approaches in an effort to clarify the pro and anti-tumorigenic properties of NK cells. This descriptive study characterises different categories of NK cells in tumor and tumor-adjacent tissues and some correlations. An attempt has been made using pseudotime trajectory analysis but no models around how these NK cells might be regulated are provided.

      Thank you for your questions. The single-cell sequencing data enrolled in this study are CD45 positive immune cells and do not involve tumor cells, cellular communication analysis between NK cells and tumor cells cannot be conducted. The change process of NK can only be predicted through pseudotime trajectory analysis. Our hypothesis is that tumor cells domesticate NK cells into a tumor- infiltrated NK cells through direct contact, and flow cytometry experiments have also confirmed that tumor cells can only have such domestication through direct contact with NK cells (with prominent high expression of CD9). However, the detailed mechanism remained unclear.

      Comment #2: A small number of patients are analyzed in this study. The descriptive gene markers, while interesting, need to be further validated to understand how strong this analysis might be and its potential application.

      Thank you for your questions. The sample size included in this study is indeed a bit small, which is also a limitation of our study. However, this is the only large sample single-cell sequencing dataset could be found that includes primary colon cancer tissues, paired paratumor normal colon tissues, paired liver metastatic cancer tissue, and paired paratumor normal liver tissues. We will expand the sample size to further verify the current conclusion in subsequent experiments. In addition, the marker genes of different NK groups used in this study refer to the CIBERSORT's classification of activated NK cells and resting NK cells, which is a widely recognized indicator. We will verify the expression and clinical application value of the screened genes in tissues in subsequent studies.

      Comment #3: Figure 1C and other figures throughout the paper. It is not clear how marker genes were selected.

      Thank you for your questions. The marker genes displayed in the Figure.3C were the highly variable genes of each cell group as well as the marker genes of each immune cells, such as T cells (CD3D, CD3E), NK cells (NKG7, KLRD1), monocytes (LYZ, S100A8, S100A9), B cells (CD79A), plasma cells (JCHAIN, IGHA1, IGHA2), Neutrophils (CXCL8, FCGR3B).

      Comment #4: Figure 1E. P and T have not been defined. Lines should not connect the datasets as they are independent assessments.

      Thank you for your questions. P and T means paratumor normal tissues and tumor tissues, respectively. Which have been added in the caption of Figure 1E. Additionally, the single cell sequencing samples included in the study were paired, with primary colon cancer tissues, paired normal tissues adjacent to colon cancer, paired liver metastatic cancer tissue, and paired normal liver tissues from 20 colon cancer patients with liver metastasis, paired test analysis was thus performed.

      Comment #5: Figure 2C. It is unclear what ST-P1 means. This is not a particularly informative figure.

      Thank you for your questions. We are sorry that it was our annotation error. Actually, it is the spatial transcriptome of the primary colon cancer tissue and liver metastasis tissue of four patients. We have made the modifications in the revised manuscript.

      Comment #6: Multiple figures - abbreviations are used but not provided in the legend. They occur in the text but are not directly related to the figures where they are used to label axes or groups.

      Thank you for your questions. We have rechecked and made corresponding modifications in the revised manuscript.

      Comment #6: Patients: it is not clear what other drugs patients have been exposed to or basic data (sex, age, underlying conditions etc)

      Thank you for your questions. The baseline data of the patient of SC dataset and ST dataset were showed in the Table.1 and Table.2 followed, respectively. They were not presented before as no patients characteristics related analysis was performed in the current study.

      Author response table 1.

      The baseline data of patient from single cell sequencing database.

      Author response table 2.

      The baseline data of patient from spatial transcriptome database.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1

      (1) In the "Introduction" section, an important aspect that requires attention pertains to the discussion surrounding the heterodimerization of CXCR4 and CCR5. Notably, the manuscript overlooks a recent study (https://doi.org/10.1038/s41467-023-42082-z) elucidating the mechanism underlying the formation of functional dimers within these G protein-coupled receptors (GPCRs)…The inclusion of this study within the manuscript would significantly enrich the contextual framework of the work, offering readers a comprehensive understanding of the current knowledge surrounding the structural dynamics and functional implications of CXCR4 and CCR5 heterodimerization.

      We thank the reviewer for his/her recommendation to enrich the contextual framework of our study. The Nature Communications paper by Di Marino et al. was published after we sent the first version of our manuscript to eLife, and therefore was not included in the discussion. As the reviewer rightly indicates, this paper elucidates the mechanism underlying the formation of functional dimers within CCR5 and CXCR4. Using metadynamics approaches, the authors emphasize the importance of distinct transmembrane regions for dimerization of the two receptors. In particular, CXCR4 shows two low energy dimer structures and the TMVI-TMVII helices are the preferred interfaces involved in the protomer interactions in both cases. Although the study uses in silico techniques, it also includes the molecular binding mechanism of CCR5 and CXCR4 in the membrane environment, as the authors generate a model in which the receptors are immersed in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayer with 10% cholesterol. This is an important point in this study, as membrane lipids also interact with membrane proteins, and the lipid composition affects CXCR4 oligomerization (Gardeta S.R. et al. Front. Immunol. 2023). In particular, Di Marino et al. find a cholesterol molecule placed in-between the two CXCR4 protomers where it engages a series of hydrophobic interactions with residues including Leu132, Val214, Leu216 and Phe249. Then, the polar head of cholesterol forms an H-bond with Tyr135 that further stabilizes protomer binding. In our hands, the F249L mutation in CXCR4 reverted the antagonism of AGR1.137, suggesting that the compound binds, among others, this residue. We should, nonetheless, indicate that we analyzed receptor oligomerization and not CXCR4 dimerization, which was the main object of the Di Marino et al. study. It is therefore also plausible that other residues than those described as essential for CXCR4 dimerization might participate in receptor oligomerization. We can speculate that AGR1.137 might affect cholesterol binding to CXCR4 and, therefore, alter dimerization/oligomerization. Additionally, the CXCR4 x-ray structure with PDB code 3ODU (Wu B. et al. Science, 2010) experimentally shows the presence of two fatty acid molecules in contact with both TMV and TMVI. These molecules closely interact with hydrophobic residues in the protein, thereby stabilizing it in a hydrophobic environment. Although more experiments will be needed to clarify the mechanism involved, our results suggest that cholesterol and/or other lipids also play an important role in CXCR4 oligomerization and function, as seen for other GPCRs (Jakubik J. & ElFakahani E.E. Int J Mol Sci. 2021). However, we should also consider that other factors not included in the analysis by Di Marino et al. can also affect CXCR4 oligomerization; for instance, the co-expression of other chemokine receptors and/or other GPCRs that heterodimerize with CXCR4 might affect CXCR4 dynamics at the cell membrane, similar to other membrane proteins such as CD4, which also forms complexes with CXCR4 (Martinez-Muñoz L. et al. Mol. Cell 2018).

      The revised discussion contains references to the study by Di Marino et al. to enrich the contextual framework of our data.

      (2) In "various sections" of the manuscript, there appears to be confusion surrounding the terminology used to refer to antagonists. It is recommended to provide a clearer distinction between allosteric and orthosteric antagonists to enhance reader comprehension. An orthosteric antagonist typically binds to the same site as the endogenous ligand, directly blocking its interaction with the receptor. On the other hand, an allosteric antagonist binds to a site distinct from the orthosteric site, inducing a conformational change in the receptor that inhibits the binding of the endogenous ligand. By explicitly defining the terms "allosteric antagonist" and "orthosteric antagonist" within the manuscript, readers will be better equipped to discern the specific mechanisms discussed in the context of the study.

      The behavior of the compounds described in our manuscript (AGR1.35 and AGR1.137) fits with the definition of allosteric antagonists, as they bind on a site distinct from the orthosteric site, although they only block some ligand-mediated functions and not others. This would mean that they are not formally antagonists and should be not considered as allosteric compounds, as their binding on CXCR4 does not alter CXCL12 binding, although they might affect its affinity. In this sense, our compounds respond much better to the concept of negative allosteric modulators (Gao Z.-G. & Jacobson K.A. Drug Discov. Today Technol. 2013). They act by binding on a site distinct from the orthosteric site and selectively block some downstream signaling pathways but not others induced by the same endogenous agonist.

      To avoid confusion and to clarify the role of the compounds described in this study, we now refer to them as negative allosteric modulators along the manuscript.

      (3) In the Results section, the computational approach employed for "screening small compounds targeting CXCR4, particularly focusing on the inhibition of CXCL12-induced CXCR4 nanoclustering", requires clarification due to several points of incomprehension. The following recommendations aim to address these concerns and enhance the overall clarity of the section:

      (1) Computational Approach and Binding Mode Description: 

      -Explicitly describe the methodology for identifying the pocket/clef area in angstroms (Å) on the CXCR4 protein structure. Include details on how the volume of the cleft enclosed by TMV and TMVI was determined, as this information is not readily apparent in the provided reference (https://doi.org/10.1073/pnas.1601278113).

      The identification of the cleft was based on the observations by Wu et al. (Wu B. et al. Science 2010) who described the presence of bound lipids in the area formed by TMV and VI, and those of Wescott et al. (Wescott M.P. et al. Proc. Natl. Acad. Sci. 2016) on the importance of TMVI in the transmission of conformational changes promoted by CXCL12 on CXCR4 towards the cytoplasmic surface of the receptor to link the binding site with signaling activation. Collectively, these results, and our previous data on the critical role of the N-terminus region of TMVI for CXCR4 oligomerization (Martinez-Muñoz L. et al. Mol. Cell 2018), focused our in silico screening to this region. Once we detected that several compounds bound CXCR4 in this region, the cleavage properties were calculated by subtracting the compound structure. The resulting PDB was analyzed using the PDBsum server (Laskowski R.A. et. al. Protein Sci. 2018). Volume calculations were obtained using the server analyzing surface clefts by SURFNET (Laskowski R. A. J. Mol. Graph. 1995). The theoretical interaction surface between the selected compounds and CXCR4 and the atomic distances between the protein residues and the compounds was calculated using the PISA server (Krissinel E. & Henrick K. J. Mol. Biol. 2007) (Fig. I, only for review purposes). The analysis of the cleft occupied by AGR1.135 showed two independent cavities of 434 Å3 and 1,381 Å3 that were not connected to the orthosteric site. In the case of AGR1.137, the data revealed two distinct clefts of 790 Å3 and 580 Å3 (Fig. I, only for review purposes). These details have been included in the revised manuscript (New Fig. 1A, Supplementary Fig 8A, B).

      (4) Clarify the statement regarding the cleft being "surface exposed for interactions with the plasma membrane," particularly in the context of its embedding within the membrane.

      For GPCRs, transmembrane domains represent binding sites for bioactive lipids that play important functional and physiological roles (Huwiler A. & Zangemeister-Wittke U. Pharmacol. Ther. 2018). The channel between TMV and TMVI connects the orthosteric chemokine binding pocket to the lipid bilayer and is occupied by an oleic acid molecule, according to the CXCR4 structure published in 2010 (Wu B. et al. Science 2010). In addition, the target region contains residues involved in cholesterol (and perhaps other lipids) engagement (Di Marino et al. Nat. Commun. 2023). Taken together, these data support our statement that the cleft supports interactions between CXCR4 molecules and the plasma membrane. 

      Moreover, the data of Di Marino et al. also support that CCR5 and CXCR4 have a symmetric and an asymmetric binding mode. Therefore, either dimeric structure has the possibility to form trimers, tetramers, and even oligomers by using the free binding interface to complex with another protomer. This hypothesis suggests that the interaction of dimers to form oligomers should involve residues distinct from those included in the dimeric conformation.

      The sentence has been modified in the revised manuscript to clarify comprehension.

      (5) Discuss the rationale behind targeting the allosteric binding pocket instead of the orthosteric pocket, outlining potential advantages and disadvantages.

      The advantages and disadvantages of using negative allosteric modulators vs orthosteric antagonists have been now included in the revised discussion. 

      The majority of GPCR-targeted drugs function by binding to the orthosteric site of the receptor, and are agonists, partial agonists, antagonists or inverse agonists. These orthosteric compounds can have off-target effects and poor selectivity due to highly homologous receptor orthosteric sites and to abrogation of spatial and/or temporal endogenous signaling patterns. 

      The alternative is to use allosteric modulators, which can tune the functions associated with the receptors without affecting the orthosteric site. They can be positive, negative or neutral modulators, depending on their effect on the functionality of the receptor (Foster D.J. & Conn P.J. Neuron 2017). For example, the use of a negative allosteric modulator of a chemokine receptor to dampen pathological signaling events, while retaining full signaling for non-pathological activities might limit adverse effects (Kohout T.A.et al. J. Biol. Chem. 2004). In this case, the negative allosteric modulator 873140 blocks CCL3 binding on CCR5 but does not alter CCL5 binding (Watson C. et al. Mol. Pharmacol. 2005). In other cases, allosteric modulators can stabilize a particular receptor conformation and block others. The mechanism of action of the anti-HIV-1, FDAapproved, CCR5 allosteric modulator, maraviroc (Jin J. et al. Sci. Signal. 2018) is attributed to its ability to modulate CCR5 dimer populations and their subsequent subcellular trafficking and localization to the cell membrane (Jin J .et al. Sci. Signal. 2018). Two CCR5 dimeric conformations that are imperative for membrane localization were present in the absence of maraviroc; however, an additional CCR5 dimer conformation was discovered after the addition of maraviroc, and all homodimeric conformations were further stabilized. This finding is consistent with the observation that CCR5 dimers and oligomers inhibit HIV host-cell entry, likely by preventing the HIV-1 co-receptor formation.

      It is well known that GPCRs activate G proteins, but they also recruit additional proteins (e.g., β-arrestins) that induce signaling cascades which, in turn, can direct specific subsets of cellular responses independent of G protein activation (Eichel K. et al. Nature 2018) and are responsible for either therapeutic or adverse effects. Allosteric modulators can thus be used to block these adverse effects without influencing the therapeutic benefits. This was the case in the design of G protein-biased agonists for the kappa opioid receptor, which maintain the desirable antinociceptive and antipruritic effects and eliminate the sedative and dissociative effects in rodent models (Brust T.F. et al. Sci. Signal 2016).

      (6) Provide the PDB ID of the CXCR4 structure used as a template for modeling with SwissModel. Explain the decision to model the structure from the amino acid sequence and suggest an alternative approach, such as utilizing AlphaFold structures and performing classical molecular dynamics with subsequent clustering for the best representative structure.

      The PDB used as a template for modeling CXCR4 was 3ODU. This information was already included in the material and methods section. At the time we performed these analyses, there were several crystallographic structures of CXCR4 in complex with different molecules and peptides deposited at the PDB. None of them included a full construct containing the complete receptor sequence to provide a suitable sample for Xray structure resolution, as the N- and C-terminal ends of CXCR4 are very flexible loops. In addition, the CXCR4 constructs contained T4 lysozyme inserted between helices TMV and TMVI to increase the stability of the protein––a common strategy used to facilitate crystallogenesis of GPCRs (Zou Y. et al. PLoS One 2012). Therefore, we generated a CXCR4 homology model using the SWISS-MODEL server (Waterhouse A. et al. Nucleic Acids Res. 2018). This program reconstructed the loop between TMV and TMVI, a domain particularly important in this study that was not present in any of the crystal structure available in PDB. The model structure was, nonetheless, still incomplete, as it began at P27 and ended at S319 because the terminal ends were not resolved in the crystal structure used as a template. Nevertheless, we considered that these terminal ends were not involved in CXCR4 oligomerization. 

      As Alphafold was not available at the time we initiated this project, we didn’t use it. However, we have now updated our workflow to current methods and predicted the structure of the target using AlphaFold (Jumper J. et al. Nature 2021) and the sequence available under UniProt entry P61073. We prepared the ligands using OpenBabel (O’Boyle N.M. et al., J. Cheminformatics 2011), with a gasteiger charge assignment, and generated 10 conformers for each input ligand using the OpenBabel genetic algorithm. We then prepared the target structure with Openmm, removing all waters and possible heteroatoms, and adding all missing atoms. We next predicted the target binding pockets with fPocket (Le Guilloux V. et al. BMC Bioinformatics 2009), p2rank (Krivak R. & Hoksza, J. Cheminformatics 2018), and AutoDock autosite (Ravindranath P.A. & Sanner M.F. Bioinformatics 2016). We chose only those pockets between TMV and TMVI (see answer to point 3). We merged the results of the three programs into so-called consensus pockets, as two pockets are said to be sufficiently similar if at least 75% of their surfaces are shared (del Hoyo D. et al. J. Chem. Inform. Model. 2023). From the consensus pockets, there was one pocket that was significantly larger than the others and was therefore selected. We then docked the ligand conformers in this pocket using AutoDock GPU (Santos-Martins D. et al. J. Chem. Theory Comput. 2021), LeDock (Liu N & Xu Z., IOP Conf. Ser. Earth Environ. Sci. 2019), and Vina (Eberhardt J. et al. J. Chem. Inf. Model. 2021). The number of dockings varied from 210 to 287 poses. We scored each pose with the Vina score using ODDT (Wójcikowski M. et al. J. Cheminform. 2015). Then, we clustered the different solutions into groups whose maximum RMSD was 1Å. This resulted in 40 clusters, the representative of each cluster was the one with maximum Vina score and confirmed that the selected compounds bound this pocket (Author response image 1). When required, we calculated the binding affinity using Schrodinger’s MM-GBSA procedure (Greenidge P.A. et al. J. Chem. Inf. Model. 2013), in two ways: first, assuming that the ligand and target are fixed; second, with an energy minimization of all the atoms within a distance of 3Å from the ligand. This information has now been included in the revised version of the manuscript.

      Author response image 1.

      AGR1.135 docking in CXCR4 using the updated protocol for ligand docking. Cartoon representation colored in gray with TMV and TMVI shown in blue and pink, respectively. AGR1.135 is shown in stick representation with carbons in yellow, oxygens in red and nitrogens in blue.

      (7) Specify the meaning of "minimal interaction energy" and where (if present) the interaction scores are reported in the text.

      We refer to minimal interaction energy, the best docking score, that is, the best score obtained in our docking studies. These data were not included in the previous manuscript due to space restrictions but are now included in the reviewed manuscript.

      (8) You performed docking studies using GLIDE to identify potential binding sites for the small compounds on the CXCR4 protein. The top-scoring binders were then subjected to further refinement using PELE simulations. However, I realize that a detailed description of the specific binding modes of these compounds was not provided in the text. Please make the description of binding poses more detailed

      Firstly, to assess the reliability of this method, a PELE study was carried out for the control molecule IT1t, which is a small drug-like isothiourea derivative that has been crystallized in complex with CXCR4 (PDB code: 3ODU). IT1t is a CXCR4 antagonist that binds to the CXCL12 binding cavity and inhibits HIV-1 infection (Das D. Antimicrob. Agents Chemother. 2015; Dekkers S. et al. J. Med. Chem. 2023). From the best five trajectories, two of them had clearly better binding energies, and corresponded to almost the same predicted pose of the molecule. Although the predicted binding mode was not exactly the same as the one in the crystal structure, the approximation was very good, giving validation to the approach. Although PELE is a suitable technique to find potential binding sites, the predicted poses must be subsequently refined using docking programs.

      Analyzing the best trajectories for the remaining ligands, at least one of the best-scored poses was always located at the orthosteric binding site of CXCR4. Even though these poses showed good binding energies, they were discarded as the in vitro biological experiments indicated that the compounds were unable to block CXCL12 binding or CXCL12-mediated inhibition of cAMP release or CXCR4 internalization. Collectively, these data indicated that the selected compounds did not behave as orthosteric inhibitors of CXCR4. The CXCL12 binding pocket is the biggest cavity in CXCR4, and so PELE may tend to place the molecules near it. However, all the compounds presented other feasible binding sites with a comparable binding energy.

      AGR1.135 and AGR1.137 showed interesting poses between TMV and TMVI with very good binding energy (-51.4 and -37.2 kcal/mol, respectively). This was precisely the region we had previously selected for the in silico screening, as previously described (see response to point 3).

      AGR1.131 showed two poses with low binding energy that were placed between helices TMI and TMVII (-43.6 kcal/mol) and between helices TMV and TMVI (-39.8 kcal/mol). This compound was unable to affect CXCL12-mediated chemotaxis and was therefore used as an internal negative control as it was selected in the in silico screening with the same criteria as the other compounds but failed to alter any CXCL12-mediated functions. PELE studies nonetheless provided different binding sites for each molecule, which had to be further studied using docking to obtain a more accurate binding mode. In agreement with the previous commentary, we repeated the analysis using AlphaFold and the rest of the procedure described (see our response to point 6) and calculated the binding energies for all the compounds using Schrodinger’s MM-GBSA procedure (Greenidge P.A. et al. J. Chem. Inf. Model. 2013). Calculations were performed in two ways: first, assuming that the ligand and target are fixed; second, with an energy minimization of all the atoms within a distance of 3Å from the ligand. The results using the first method indicated that AGR1.135 and AGR1.137 showed poses between TMV and TMVI with - 56.4 and -62.4 kcal/mol, respectively and AGR1.131 had a pose between TMI and TMVII with -61.6kcal/mol.  In the second method AGR1.135 and AGR1.137 showed poses between TMV and TMVI with -57.9, and -67.6 kcal/mol, respectively, and AGR1.131 of -62.2 kcal/mol between TMI and TMVII.

      This information is now included in the text.

      (9) (2) Experimental Design:-Justify the choice of treating Jurkat cells with a concentration of 50 μM of the selected compound. Consider exploring different concentrations and provide a rationale for the selected dosage. Additionally, clearly identify the type of small compound used in the initial experiment.

      The revised version contains a new panel in Fig. 1B to show a more detailed kinetic analysis with different concentrations (1-100 µM) of the compounds in the Jurkat migration experiments. In all cases, 100 µM nearly completely abrogated cell migration, but in order to reduce the amount of DMSO added to the cells we selected 50 µM for further experiments, as it was the concentration that inhibits 50-75% of ligand-induced cell migration. Regarding the type of small compounds used in the initial experiments, they were compounds included in the library described in reference #24 (Sebastian-Pérez V. et al Med. Biol. Chem. 2017), which contains heterocyclic compounds. We would note that we do not consider AGR1.137 a final compound. We think that there is scope to develop AGR1.137-based second-generation compounds with greater solubility in water, greater specificity or affinity for CXCR4, and to evaluate delivery methods to hopefully increase activity.  

      (10) Avoid reporting details in rounded parentheses within the text; consider relocating such information to the Materials and Methods section or figure captions for improved readability.

      Most of the rounded parentheses within the text have been eliminated in the revised version of the manuscript to improve readability.

      (11) Elaborate on the virtual screening approach using GLIDE software, specifying the targeted site and methodology employed.

      For the virtual screening, we used the Glide module (SP and XP function scoring) included in the Schrödinger software package, utilizing the corresponding 3D target structure and our MBC library (Sebastián-Pérez V et al. J. Chem. Inf. Model. 2017).  The center of the catalytic pocket was selected as the centroid of the grid. In the grid generation, a scaling factor of 1.0 in van der Waals radius scaling and a partial charge cutoff of 0.25 were used. A rescoring of the SP poses of each compound was then performed with the XP scoring function of the Glide. The XP mode in Glide was used in the virtual screening, the ligand sampling was flexible, epik state penalties were added and an energy window of 2.5 kcal/mol was used for ring sampling. In the energy minimization step, the distance-dependent dielectric constant was 4.0 with a maximum number of minimization steps of 100,000. In the clustering, poses were considered as duplicates and discarded if both RMS deviation is less than 0.5 Å and maximum atomic displacement is less than 1.3 Å.

      (12) Provide clarity on the statement that AGR1.131 "theoretically" binds the same motif, explaining the docking procedure used for this determination.

      In the in silico screening, AGR1.131 was one of the 40 selected compounds that showed, according to the PELE analysis (see answer to point 8), a pose with low binding energy (-39.8 kcal/mol) between TMV and TMVI helices, which is the selected area for the screening. It, nonetheless, also showed a best pose placed between helices TM1 and TM7 (-43.7 kcal/mol) using the initial workflow. In conclusion, although AGR1.131 also faced to the TMV-TMVI, the most favorable pose was in the area between TMI and TMVII. In addition, the compound was included in the biological screening, where it did not affect CXCL12-mediated chemotaxis. We thus decided to use it as an internal negative control, as it has a skeleton very similar to AGR1.135 and AGR1.137 and can interact with the TM domains of CXCR4 without promoting biological effects. This statement has been clarified in the revised text.

      (13) Toxicity Testing:

      -Enhance the explanation of the approach to testing the toxicity of the compound in Jurkat cells. Consider incorporating positive controls to strengthen the assessment and clarify the experimental design.

      All the selected compounds in the in silico screening were initially tested for propidium iodide incorporation in treated cells in a toxicity assay, and some of them were discarded for further experiments (e.g., AGR1.103 and VSP3.1).

      Further evaluation of Jurkat cell viability was determined by cell cycle analysis using propidium iodide.  Supplementary Fig. 1B included the percentage of each cell cycle phase, and data indicated no significant differences between the treatments tested. Nevertheless, at the suggestion of the reviewer, and to clarify this issue, positive controls inducing Jurkat cell death (staurosporine and hydrogen peroxide) have also been included in the new Supplementary Fig. 2. The new figure also includes a table showing the percentage of cells in each cell-cycle phase.  

      (14) In the Results section concerning "AGR1.135 and AGR1.137 blocking CXCL12-mediated CXCR4 nanoclustering and dynamics", several points can be improved to enhance clarity and coherence: 1. Specificity of Low Molecular Weight Compounds:  

      -Clearly articulate how AGR1.135 and AGR1.137 specifically target homodimeric CXCR4 and provide an explanation for their lack of impact on heterodimeric CXCR4-CCR5 in that region.

      First of all, we should clarify that when we talk about receptor nanoclustering, oligomers refer to complexes including 3 or more receptors and, therefore, the residues involved in these interactions can differ from those involved in receptor dimerization. Moreover, our FRET experiments did not indicate that the compounds alter receptor dimerization (see new Supplementary Fig. 7). Of note, mutant receptors unable to oligomerize can still form dimers (Martínez-Muñoz L. et al. Mol. Cell 2018; García-Cuesta E.M .et al. Proc. Natl. Acad. Sci. USA 2022). Additionally, we believe that these oligomers can also include other chemokine receptors/proteins expressed at the cell membrane, which we are currently studying using different models and techniques.

      We have results supporting the existence of CCR5/CXCR4 heterodimers (Martínez-Muñoz L et al. Proc. Natl. Acad. Sci. USA 2014), in line with the data published by Di Marino et al. However, in the current study we have not evaluated the impact of the selected compounds on other CXCR4 complexes distinct from CXCR4 oligomers. Our Jurkat cells do not express CCR5 and, therefore, we cannot discuss whether AGR1.137 affects CCR5/CXCR4 heterodimers. The chemokine field is very complex and most receptors can form dimers (homo- and heterodimers) as well as oligomers (Martinez-Muñoz L., et al Pharmacol & Therap. 2011) when co-expressed. To evaluate different receptor combinations in the same experiment is a complex task, as the number of potential combinations between distinct expressed receptors makes the analysis very difficult. We started with CXCR4 as a model, to continue later with other possible CXCR4 complexes. In addition, for the analysis of CCR5/CXCR4 dynamics, it is much better to use dual-TIRF techniques, which allow the simultaneous detection of two distinct molecules coupled to different fluorochromes.

      Regarding the data of Di Marino et al., it is possible that the compounds might also affect heterodimeric conformations of CXCR4. This aspect has also been broached in the revised discussion. We would again note that we evaluated CXCR4 oligomers and not monomers or dimers; this is especially relevant when we compare the residues involved in these processes as they might differ depending on the receptor conformation considered. This issue was also hypothesized by Di Marino et al. (see our response to point 4).

      (15) When referring to "unstimulated" cells, provide a more detailed explanation to elucidate the experimental conditions and cellular state under consideration.

      Unstimulated cells refer to the cells in basal conditions, that is, cells in the absence of CXCL12. For TIRF-M experiments, transiently-transfected Jurkat cells were plated on glass-bottomed microwell dishes coated with fibronectin; these are the unstimulated cells. To observe the effect of the ligand, dishes were coated as above plus CXCL12 (stimulated cells). We have clarified this point in the material and methods section of the revised version.

      (16) 2. Paragraph Organization

      -Reorganize the second paragraph to eliminate redundancy and improve overall flow. A more concise and fluid presentation will facilitate reader comprehension and engagement.

      The second paragraph has been reorganized to improve overall flow.

      (17) Ensure that each paragraph contributes distinct information, avoiding repetition and redundancy.

      We have carefully revised each paragraph of the manuscript to avoid redundancy.

      (18) 3. Claim of Allosteric Antagonism:

      -Exercise caution when asserting that "AGR1.135 and AGR1.137 behave as allosteric antagonists of CXCR4" based on the presented results. Consider rephrasing to reflect that the observed effects suggest the potential allosteric nature of these compounds, acknowledging the need for further investigations and evidence.

      To avoid misinterpretations on the effect of the compounds on CXCR4, as we have commented in our response to point 2, we have substituted the term allosteric inhibitors with negative allosteric modulators, which refer to molecules that act by binding a site distinct from the orthosteric site, and selectively block some downstream signaling pathways, whereas others induced by the same endogenous or orthosteric agonist are unaffected (Gao Z.-G. & Jacobson K.A. Drug Discov. Today Technol. 2013). Our data indicate that the selected small compounds do not block ligand binding or G protein activation or receptor internalization, but inhibit receptor oligomerization and ligand-mediated directed cell migration.

      (19) In the Results section discussing the "incomplete abolition of CXCR4-mediated responses in Jurkat cells by AGR1.135 and AGR1.137", several points can be refined for better clarity and completeness:  1. Inclusion of Positive Controls: 

      -Consider incorporating positive controls in relevant experiments to provide a comparative benchmark for assessing the impact of AGR1.135 and AGR1.137. This addition will strengthen the interpretation of results and enhance the experimental rigor. 

      The in vivo experiments (Fig. 7E,F) used AMD3100, an orthosteric antagonist of CXCR4, as a positive control. We also included AMD3100, as a positive control of inhibition when evaluating the effect of the compounds on CXCL12 binding (Fig. 3, new Supplementary Fig. 3). The revised version of the manuscript also includes the effect of this inhibitor on other relevant CXCL12-mediated responses such as cell migration (Fig. 1B), receptor internalization (Fig. 3A), cAMP production (Fig. 3C), ERK1/2 and AKT phosphorylation (Supplementary Fig. 4), actin polymerization (Fig. 4A), cell polarization (Fig. 4B, C) and cell adhesion (Fig. 4D), to facilitate the interpretation of the results and improve the experimental rigor.

      (20) 2. Clarification of Terminology: 

      -Clarify the term "CXCR4 internalizes" by providing context, perhaps explaining the process of receptor internalization and its relevance to the study.

      We refer to CXCR4 internalization as a CXCL12-mediated endocytosis process that results in reduction of CXCR4 levels on the cell surface. We use CXCR4 internalization in this study with two purposes: First, for CXCR4 and other chemokine receptors, internalization processes are mediated by ligand-induced clathrin vesicles (Venkatesan et al 2003) a process that triggers CXCR4 aggregation in these vesicles. We have previously determined that the oligomers of receptors detected by TIRF-M remain unaltered in cells treated with inhibitors of clathrin vesicle formation and of internalization processes (Martinez-Muñoz L. et al. Mol. Cell 2018). Moreover, we have described a mutant CXCR4 that cannot form oligomers but internalizes normally in response to CXCL12 (Martinez-Muñoz L. et al. Mol. Cell 2018). The observation in this manuscript of normal CXCL12-mediated endocytosis in the presence of the negative allosteric inhibitors of CXCR4 that abrogate receptor oligomerization reinforces the idea that the oligomers detected by TIRF are not related to receptor aggregates involved in endocytosis; Second, receptor internalization is not affected by the allosteric compounds, indicating that they downregulate some CXCL12-mediated signaling events but not others (new Fig. 3).

      All these data have been included in the revised discussion of the manuscript.

      (21) Elaborate on the meaning of "CXCL12 triggers normal CXCR4mut internalization" to enhance reader understanding.

      We have previously described a triple-mutant CXCR4 (K239L/V242A/L246A; CXCR4mut). The mutant residues are located in the N-terminal region of TMVI, close to the cytoplasmic region, thus limiting the CXCR4 pocket described in this study (see our response to point 3). This mutant receptor dimerizes but neither oligomerizes in response to CXCL12 nor supports CXCL12-induced directed cell migration, although it can still trigger some Ca2+ flux and is internalized after ligand activation (Martinez-Muñoz L. et al. Mol. Cell 2018).  We use the behavior of this mutant (CXCR4mut) to show that the CXCR4 oligomers and the complexes involved in internalization processes are not the same and to explain why we evaluated CXCR4 endocytosis in the presence of the negative allosteric modulators.

      As we indicated in a previous answer to the reviewer, these issues have been re-elaborated in the revised version.

      (22) 3. Discrepancy in CXCL12 Concentration:

      -Address the apparent discrepancy between the text stating, "...were stimulated with CXCL12 (50 nM, 37{degree sign}C)," and the figure caption (Fig. 3A) reporting a concentration of 12.5 nM. Rectify this inconsistency and provide an accurate and clear explanation.

      We apologize for this error, which is now corrected in the revised manuscript. With the exception of the cell migration assays in Transwells, where the optimal concentration was established at 12.5 nM, in the remaining experiments the optimal concentration of CXCL12 employed was 50 nM. These concentrations were optimized in previous works of our laboratory using the same type of experiment. We should also remark that in the experiments using lipid bilayers or TIRF-M experiments, CXCL12 is used to coat the plates and therefore it is difficult to determine the real concentration of the ligand that is retained in the surface of the plates after the washing steps performed prior to adding the cells. In addition, we use 100 nM CXCL12 to create the gradient in the chambers used to perform the directed-cell migration experiments.

      (23) 4. Speculation on CXCL12 Binding:

      -Refrain from making speculative statements, such as "These data suggest that none of the antagonists alters CXCL12 binding to CXCR4," unless there is concrete evidence presented up to that point. Clearly outline the results that support this conclusion.

      Figure 3B and Supplementary Figure 3 show CXCL12-ATTO700 binding by flow cytometry in cells pretreated with the negative allosteric modulators. We have also included AMD3100, the orthosteric antagonist, as a control for inhibition. While these experiments showed no major effect of the compounds on CXCL12 binding, we cannot discard small changes in the affinity of the interaction between CXCL12 and CXCR4. In consequence we have re-written these statements.

      (24) 5. Corroboration of Data:

      -Specify where the corroborating data from immunostaining and confocal analysis are reported, ensuring readers can access the relevant information to support the conclusions drawn in this section.

      In agreement with the suggestion of the reviewer, the revised manuscript includes data from immunostaining and confocal analysis to complement Fig. 4B (new Fig. 4C). The revised version also includes some representative videos for the TIRF experiments showed in Figure 2 to clarify readability.

      (25) In the Results section concerning "AGR1.135 and AGR1.137 antagonists and their direct binding to CXCR4", several aspects need clarification and refinement for a more comprehensive and understandable presentation: 1. Workflow Clarification:

      -Clearly articulate the workflow used for assessing the binding of AGR1.135 and AGR1.137 to CXCR4. Address the apparent contradiction between the inability to detect a direct interaction and the utilization of Glide for docking in the TMV-TMVI cleft.

      To address the direct interaction of the compounds with CXCR4, we intentionally avoided the modification of the small compounds with different labels, which could affect their properties. We therefore attempted a fluorescence a spectroscopy strategy to formally prove the ability of the small compounds to bind CXCR4, but this failed because the AGR1.135 is yellow in color, which interfered with the determinations. We also tried a FRET strategy (see new Supplementary Fig. 7) and detected a significant increase in FRET efficiency of CXCR4 homodimers when AGR1.135 was evaluated, but again the yellow color interfered with FRET determinations. Moreover, AGR1.137 did not modify FRET efficiency of CXCR4 dimers. Therefore, we were unable to detect the interaction of the compounds with CXCR4.

      We elected to develop an indirect strategy; in silico, we evaluated the binding-site using docking and molecular dynamics to predict the most promising CXCR4 binding residues involved in the interaction with the selected compounds. Next, we generated point mutant receptors of the predicted residues and re-evaluated the behavior of the allosteric antagonists in a CXCL12-induced cell migration experiment. Obviously, we first discarded those CXCR4 mutants that were not expressed on the cell membrane as well as those that were not functional when activated with CXCL12. Using this strategy, we eliminated the interference due to the physical properties of the compounds and demonstrated that if the antagonism of a compound is reversed in a particular CXCR4 mutant it is because the mutated residue participates or interferes with the interaction between CXCR4 and the compound, thus assuming (albeit indirectly) that the compound binds CXCR4. 

      To select the specific mutations included in the analysis, our strategy was to generate point mutations in residues present in the TMV-TMVI pocket of CXCR4 that were not directly proposed as critical residues involved in chemokine engagement, signal initiation, signal propagation, or G protein-binding, based on the extensive mutational study published by Wescott MP et. al. (Wescott M.P. et. al. Proc. Natl. Acad. Sci. U S A. 2016).

      (26) Provide a cohesive explanation of the transition from docking evaluation to MD analysis, ensuring a transparent representation of the methodology.

      Based on the aim of this work, the workflow shown in Author response image 2, was proposed to predict the binding mode of the selected molecules. Firstly, a CXCR4 model was generated to reconstruct some unresolved parts of the protein structure; then a binding site search using PELE software was performed to identify the most promising binding sites; subsequently, docking studies were performed to refine the binding mode of the molecules; and finally, molecular dynamics simulations were run to determine the most stable poses and predict the residues that we should mutate to test that the compounds interact with CXCR4. 

      Author response image 2.

      Workflow followed to determine the binding mode of the  studied compounds.

      (27) 2. Choice of Software and Techniques:

      -Justify the use of "AMBER14" and the PELE approach, considering  their potential obsolescence.

      These experiments were performed five years ago when the project was initiated. As the reviewer indicates, AMBER14 and PELE approaches might perhaps be considered obsolescent. Thus, we have predicted the structure of the target using AlphaFold (Jumper J. et al, Nature 2021) and the sequence available under UniProt entry P61073. The complete analysis performed (see our response to point 4) confirmed that the compounds bound the selected pocket, as we had originally determined using PELE. These new analyses have been incorporated into the revised manuscript.

      (28)-Discuss the role of the membrane in the receptor-ligand interac7on. Elaborate on how the lipidic double layer may influence the binding of small compounds to GPCRs embedded in the membrane.

      Biological membranes are vital components of living organisms, providing a diffusion barrier that separates cells from the extracellular environment, and compartmentalizing specialized organelles within the cell. In order to maintain the diffusion barrier and to keep it electrochemically sealed, a close interaction of membrane proteins with the lipid bilayer is necessary. It is well known that this is important, as many membrane proteins undergo conformational changes that affect their transmembrane regions and that may regulate their activity, as seen with GPCRs (Daemen F.J. & Bonting S.L., Biophys. Struct. Mech. 1977; Gether U. et al. EMBO J. 1997). The lateral and rotational mobility of membrane lipids supports the sealing function while allowing for the structural rearrangement of membrane proteins, as they can adhere to the surface of integral membrane proteins and flexibly adjust to a changing microenvironment. In the case of the first atomistic structure of CXCR4 (Wu B. et al. Science 2010), it was indicated that for dimers, monomers interact only at the extracellular side of helices V and VI, leaving at least a 4-Å gap between the intracellular regions, which is presumably filled by lipids. In particular, they indicated that the channel between TMV and TMVI that connects the orthosteric chemokine binding pocket to the lipid bilayer is occupied by an oleic acid molecule. Recently, Di Marino et al., analyzing the dimeric structure of CXCR4, found a cholesterol molecule placed in between the two protomers, where it engages a series of hydrophobic interactions with residues located in the area between TMI and TMVI (Leu132, Val214, Leu216, Leu246, and Phe249). The polar head of cholesterol forms an H-bond with Tyr135 that further stabilizes its binding mode. This finding confirms that cholesterol might play an important role in mediating and stabilizing receptor dimerization, as seen in other GPCRs (Pluhackova, K., et al. PLoS Comput. Biol. 2016). In addition, we have previously observed that, independently of the structural changes on CXCR4 triggered by lipids, the local lipid environment also regulates CXCR4 organization, dynamics and function at the cell membrane and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions, CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration (Gardeta S.R. et al. Front. Immunol. 2022). Collectively, these data demonstrate the key role that lipids play in the stabilization of CXCR4 conformations and in regulating its lateral mobility, influencing their associated functions. These considerations have been included in the revised version of the manuscript. 

      (29) 3. Stable Trajectories and Binding Mode Superimposi7on -Specify the criteria for defining "stable trajectories" to enhance reader understanding

      There could be several ways to describe the stability of a MD simulation, based on the convergence of energies, distances or ligand-target interactions, among others. In this work, we use the expression “stable trajectories” to refer to simulations in which the ligand trajectory converges and the ligand RMSD does not fluctuate more than 0.25Å. This definition is now included in the revised text.

      (30)  Clarify the meaning behind superimposing the two small compounds and ensure that the statement in the figure caption aligns with the information presented in the main text.

      We apologize for the error in the previous Fig. 5A and in its legend. The figure was created by superimposing the protein component of the poses for the two compounds, AGR1.135 and AGR1.137, rather than the compounds themselves. As panel 5A was confusing, we have modified all Fig. 5 in the revised manuscript to improve clarity.

      (31) 4. Volume Analysis and Distances:

      -Provide details on how the volume analysis was computed and how distances were accounted for. Consider adding a figure to illustrate these analyses, aiding reader comprehension.

      The cleft search and analysis were performed using the default settings of SURFNET (Laskowski R.A. J. Mol. Graph. 1995) included in the PDBsum server (Laskowski R.A. et. al. Trends Biochem. Sci. 1997). The first run of the input model for CXCR4 3ODU identified a promising cleft of 870 Å3 in the lower half of the region flanked by TMV and TMVI, highlighting this area as a possible small molecule binding site (Fig. I, only for review purposes). Analysis of the cleft occupied by AGR1.135 showed two independent cavities of 434 Å3 and 1381 Å3 that were not connected to the orthosteric site. The same procedure for AGR1.137 revealed two distinct clefts of 790 Å3 and 580 Å3, respectively (Fig. I, only for review purposes). Analysis of the atomic distances between the protein residues and the compounds was performed using the PISA server. Krissinel E. & Henrick K. J. Mol. Biol. 2007). (Please see our response to point 3 and the corresponding figure).

      (32) 5. Mutant Selection and Relevance:

      -Clarify the rationale behind selecting the CXCR4 mutants used in the study. Consider justifying the choice and exploring the possibility of performing an alanine (ALA) scan for a more comprehensive mutational analysis.  

      The selection of the residues to be mutated along the cleft was first based on their presence in the proposed cleft and the direct interaction of the compounds with them, either by hydrogen bonding or by hydrophobic interactions. Secondly, all mutated residues did not belong to any of the critical residues involved in transmitting the signal generated by the interaction of CXCL12 with the receptor. In any case, mutants producing a non-functional CXCR4 at the cell membrane were discarded after FACS analysis and chemotaxis experiments. Finally, the length and nature of the resulting mutations were designed mainly to occlude the cleft in case of the introduction of long residues such as lysines (I204K, L208K) or to alter hydrophobic interactions by changing the carbon side chain composition of the residues in the cleft. Indeed, we agree that the alanine scan mutation analysis would have been an alternative strategy to evaluate the residues involved in the interactions of the compounds. 

      (33) Reevaluate the statement regarding the relevance of the Y256F muta7on for the binding of AGR1.137. If there is a significant impact on migra7on in the mutant (Fig. 6B), elaborate on the significance in the context of AGR1.137 binding.

      In the revised discussion we provide more detail on the relevance of Y256F mutation for the binding of AGR1.137 as well as for the partial effect of G207I and R235L mutations. The predicted interactions for each compound are depicted in new Fig. 6 C, D after LigPlot+ analysis (Laskowski R.A. & Swindells M.B. J. Chem. Inf. Model. 2011), showing that AGR1.135 interacted directly with the receptor through a hydrogen bond with Y256. When this residue was mutated to F, one of the anchor points for the compound was lost, weakening the potential interaction in the region of the upper anchor point.

      It is not clear how the Y256F mutation will affect the binding of AGR1.137, but other potential contacts cannot be ruled out since that portion of the compound is identical in both AGR1.135 and AGR1.137. This is especially true for its neighboring residues in the alpha helix, F249, L208, as shown in 3ODU structure (Fig. 6D), which are shown to be directly implicated in the interaction of both compounds. Alternatively, we cannot discard that Y256 interacts with other TMs or lipids stabilizing the overall structure, which could reverse the effect of the mutant at a later stage (Author response image 3).

      Author response image 3.

      Cartoon representation of Y256 and its intramolecular interactions in the CXCR4 Xray solved structure 3ODU. TMV helix is colored in blue and TMVI in pink.

      (34) Address the apparent discrepancy in residue involvement between AGR1.135 and AGR1.137, particularly if they share the same binding mode in the same clef.

      AGR1.135 and AGR1.137 exhibit comparable yet distinct binding modes, engaging with CXCR4 within a molecular cavity formed by TMV and TMVI. AGR1.135 binds to CXCR4 through three hydrogen bonds, two on the apical side of the compound that interact with residues TMV-G207 and TMVI-Y256 and one on the basal side that interacts with TMVI-R235 (Fig. 5A). This results in a more extended and rigid conformation when sharing hydrogen bonds, with both TMs occupying a surface area of 400 Å2 and a length of 20 Å in the cleft between TMV and TMVI (Supplementary Fig. 8A). AGR1.137 exhibits a distinct binding profile, interacting with a more internal region of the receptor. This interaction involves the formation of a hydrogen bond with TMIIIV124, which induces a conformational shift in the TMVI helix towards an active conformation (Fig. 5B; Supplementary Fig. 13). Moreover, AGR1.137 may utilize the carboxyl group of V124 in TMIII and overlap with AGR1.135 binding in the cavity, interacting with the other 19 residues dispersed between TMV and VI to create an interaction surface of 370 Å2 along 20 Å (Supplementary Fig. 8B). This is illustrated in the new Fig. 5B. AGR1.137 lacks the phenyl ring present in AGR1.135, resulting in a shorter compound with greater difficulty in reaching the lower part of TMVI where R235 sits. 

      Author response image 4.

      AGR1.135 and AGR1.137 interaction with TMV and TMVI.  The model shows the location of the compounds within the TMV-VI cleft, illustrated by a ribbon and stick representation. The CXCR4 segments of TMV and TMVI are represented in blue and pink ribbons respectively, and side chains for some of the residues defining the cavity are shown in sticks. AGR1.135 and AGR1.137 are shown in stick representation with carbon in yellow, nitrogen in blue, oxygen in red, and fluorine in green. Hydrogen bonds are indicated by dashed black lines, while hydrophobic interactions are shown in green. The figure reproduces the panels A, B of Fig. 5 in the revised manuscript.

      (35) In the Results sec7on regarding "AGR1.137 treatment in a zebrafish xenograf model", the following points can be refined for clarity and completeness: 1. Cell Line Choice for Zebrafish Xenograft Model:

      -Explain the rationale behind the choice of HeLa cells for the zebrafish xenograft model when the previous experiments primarily focused on Jurkat cells. Address any specific biological or experimental considerations that influenced this decision.

      As far as we know, there are no available models of tumors in zebrafish using Jurkat cells. We looked for a tumoral cell system that expresses CXCR4 and could be transplanted into zebrafish. HeLa cells are derived from a human cervical tumor, express a functional CXCR4, and have been previously used for tumorigenesis analyses in zebrafish (Brown H.K. et al. Expert Opin. Drug Discover. 2017; You Y. et al Front. Pharmacol. 2020). These cells grow in the fish and disseminate through the ventral area and can be used to determine primary tumor growth and metastasis. Nonetheless, we first analyzed in vitro the expression of a functional CXCR4 in these cells (Supplementary Fig. 10A), whether AGR1.137 treatment specifically abrogated CXCL12-mediated direct cell migration (Fig. 7A, B), as whether it affected cell proliferation (Supplementary Fig. 10B). As HeLa cells reproduce the in vitro effects detected for the compounds in Jurkat cells, we used this model in zebrafish. These issues were already discussed in the first version of our manuscript. 

      (36) 2. Toxicity Assessment in Zebrafish Embryos: 

      -Clarify the basis for stating that AGR1.137 is not toxic to zebrafish embryos. Consider referencing the Zebrafish Embryo Acute Toxicity Test (ZFET) and provide relevant data on lethal concentration (LC50) and non-lethal toxic phenotypes such as pericardial edema, head and tail necrosis, malformation, brain hemorrhage, or yolk sac edema.

      Tumor growth and metastasis kinetics within the zebrafish model have been extensively evaluated in many publications (White R. et al. Nat. Rev. Cancer. 2013; Astell K.R. and Sieger D. Cold Spring Harb. Perspect. Med. 2020; Chen X. et al. Front. Cell Dev. Biol. 2021; Weiss JM. Et al. eLife 2022; Lindhal G. et al NPJ Precis. Oncol. 2024). Our previous experience using this model shows that tumors start having a more pronounced proliferation and lower degree of apoptosis from day 4 onwards, but we cannot keep the tumor-baring larvae for that long due to ethical reasons and also because we don’t see much scientific benefit of unnecessarily extending the experiments. Anti-proliferative or pro-apoptotic effects of drugs can still be observed within the three days, even if this is then commonly seen as larger reduction (instead of a smaller growth as it is commonly seen in for example mouse tumor models) compared to controls. Initially we characterized the evolution of implanted tumors in our system and how much they metastasize over time in the absence of treatment before to test the compounds (Author response image 5).

      The in vivo experiments were planned to validate efficacious concentrations of the investigated drugs rather than to derive in vivo IC50 or other values, which require testing of multiple doses. We have, however, included an additional concentration to show concentration-dependence and therefore on-target specificity of the drugs in the revised version of the manuscript (data also being elaborated in ongoing experiments). At this stage, we believe that adding the LC50 does not provide interesting new knowledge, and it is standard to only show results from the experimental endpoint (in our case 3 days post implantation). We agree that showing these new data points strengthens the manuscript and facilitates independent evaluation and conclusions to be drawn from the presented data. We have created new graphs where datapoints for each compound dose are shown.  

      Author response image 5.

      Evolution of the tumors and metastasis along the time in the absence of any treatment. HeLa cells were labeled with 8 µg/mL Fast-DiI™ oil and then implanted in the dorsal perivitelline space of 2-days old zebrafish embryos. Tumors were imaged within 2 hours of implantation and re-imaged each 24 h for three days. Changes in tumor size was evaluated as tumor area at day 1, 2 and 3 divided by tumor area at day 0, and metastasis was evaluated as the number of cells disseminated to the caudal hematopoietic plexus at day 1, 2 and 3 divided by the number of cells at day  3.

      Regarding the statement that AGR1.137 was not toxic, this was based on visual inspection of the zebrafish larvae at the end of the experiment, which also revealed a lack of drug-related mortality in these experiments. There are a number of differences in how our experiment was run compared with the standardized ZFET. ZFET evaluates toxicity from 0 hours post-fertilization to 1 or 2 days post-fertilization, whereas here we exposed zebrafish from 2 days post-fertilization to 5 days post-fertilization. The ZFET furthermore requires that the embryos are raised at 26ºC whereas kept the temperature as close as possible to a physiologically relevant temperature for the tumor cells (36ºC). In the ZFET, embryos are incubated in 96-well plates whereas for our studies we required larger wells to be able to manipulate the larvae and avoid well edge-related imaging artefacts, and we therefore used 24-well plates. As such, the ZFET was for various reasons not applicable to our experimental settings. As we were not interested in rigorously determining the LD50 or other toxicity-related measurements, as our focus was instead on efficacy and we found that the targeted dose was tolerated, we did not evaluate multiple doses, including lethal doses of the drug, and are therefore not able to determine an LD50/LC50. We also did not find drug-induced non-lethal toxic phenotypes in this study, and so we cannot elaborate further on such phenotypes other than to simply state that the drug is well tolerated at the given doses. Therefore, the reference to ZFET in the manuscript was eliminated.

      (37) If supplementary information is available, consider providing it for a comprehensive understanding of toxicity assessments. 

      The effective concentration used in the zebrafish study was derived from the in vitro experiments. That being said, and as elaborated in our response to comment 36, we have added data for one additional dose to show the dose-dependent regulation of tumor growth and metastasis. 

      (38) 3. Optimization and Development of AGR1.137: 

      -Justify the need for further optimization and development of AGR1.137 if it has a comparable effect to AMD3100. Explain the specific advantages or improvements that AGR1.137 may offer over AMD3100. 

      AGR1.137 is highly hydrophobic and is very difficult to handle, particularly in in vivo assays; thus, for the negative allosteric modulators to be used clinically, it would be very important to increase their solubility in water. Contrastingly, AMD3100 is a water-soluble compound. Before using the zebrafish model, we performed several experiments in mice using AGR1.137, but the inhibitory results were highly variable, probably due to its hydrophobicity. We also believe that it would be important to increase the affinity of AGR1.137 for CXCR4, as the use of lower concentrations of the negative allosteric modulator would limit potential in vivo side effects of the drug. On the other hand, we are also evaluating distinct administration alternatives, including encapsulation of the compounds in different vehicles. These alternatives may also require modifications of the compounds. 

      AMD3100 is an orthosteric inhibitor and therefore blocks all the signaling cascades triggered by CXCL12. For instance, we observed that AMD3100 treatment blocked CXCL12 binding, cAMP inhibition, calcium flux, cell adhesion and cell migration (Fig. 3, Fig. 4), whereas the effects of AGR1.137 were restricted to CXCL12-mediated directed cell migration. Although AMD3100 was well tolerated by healthy volunteers in a singledose study, it also promoted some mild and reversible events, including white blood cells count elevations and variations of urine calcium just beyond the reported normal range (Hendrix C.W. et al. Antimicrob. Agents Chemother. 2000). To treat viral infections, continuous daily dosing requirements of AMD3100 were impractical due to severe side effects including cardiac arrhythmias (De Clercq E. Front Immunol. 2015). For AMD3100 to be used clinically, it would be critical to control the timing of administration. In addition, side effects after long-term administration have potential problems. Shorter-term usage and lower doses would be fundamental keys to its success in clinical use (Liu T.Y. et al. Exp. Hematol. Oncol. 2016). The use of a negative allosteric modulator that block cell migration but do not affect other signaling pathways triggered by CXCL12 would be, at least in theory, more specific and produce less side effects. These ideas have been incorporated into the revised discussion to reflect potential advantages or improvements that AGR1.137 may offer over AMD3100.

      (39) 4. Discrepancy in AGR1.137 and AMD3100 Effects:

      -Discuss the observed discrepancy where AGR1.137 exhibits similar effects to AMD3100 but only after 48 hours. Provide insights into the temporal dynamics of their actions and potential implications for the experimental design.

      Images and data shown in Fig. 7E, F correspond to days 0 and 3 after HeLa cell implantation (tumorigenesis) and only to day 3 in the case of metastasis data. The revised version contains the effect of two distinct doses of the compounds (10 and 50 µM, for AGR1.135 and AGR1.137 and 1 and 10 µM for AMD3100). 

      (40) In the "Discussion" section, there are several points that require clarifica7on and refinement to enhance the overall coherence and depth of the analysis:  1. Reduction of Side-Effects: 

      -Provide a more detailed explanation of how the identified compounds, specifically AGR1.135 and AGR1.137, contribute to the reduction of side effects. Consider discussing specific mechanisms or characteristics that differentiate these compounds from existing antagonists.

      The sentence indicating that AGR1.135 and AGR1.137 contribute to reduce side effects is entirely speculative, as we have no experimental evidence to support it. We have therefore corrected this in the revised version. The origin of the sentence was that orthosteric antagonists typically bind to the same site as the endogenous ligand, thus blocking its interaction with the receptor. Therefore, orthosteric inhibitors (i.e. AMD3100) block all signaling cascades triggered by the ligand and therefore their functional consequences. However, the compounds described in this project are essentially negative allosteric modulators, that is, they bind to a site distinct from the orthosteric site, inducing a conformational change in the receptor that does not alter the binding of the endogenous ligand, and therefore block some specific receptor-associated functions without altering others. We observed that AGR1.137 blocked receptor oligomerization and directed cell migration whereas CXCL12 still bound CXCR4, triggered calcium mobilization, did not inhibit cAMP release or promoted receptor internalization. This is why we speculated on the limitation of side effects. The statements have been nonetheless revised in the new version of the manuscript.

      (41) 2. Binding Site Clarification:

      -Address the apparent discrepancy between docking the small compounds in a narrow cleft formed by TMV and TMVI helices and the statement that AGR1.131 binds elsewhere. Clarify the rationale behind this assertion

      After the in silico screening, a total of 40 compounds were selected.  These compounds showed distinct degrees of interaction with the cleft formed by TMV and TMVI and even with other potential interaction sites on CXCR4, with the exception of the ligand binding site according to the data described by Wescott et al. (PNAS 2016 113:9928-9933), as this possibility was discarded in the initial approach of the in silico screening. According to PELE analysis, AGR1.131 was one of the 40 selected compounds that showed a pose with low binding energy, -39.8 kcal/mol, between TMV and TMVI helices, that is, it might interact with CXCR4 through the selected area for the screening. It nonetheless also showed a best pose placed between helices TMI and TMVII, -43.7 kcal/mol. In any case, the compound was included in the biological screening, where it was unable to impact CXCL12-mediated chemotaxis (Fig. 1B). We then focused on AGR1.135 and AGR1.137, as showed a higher inhibitory effect on CXCL12-mediated migration, and on AGR1.131 as an internal negative control. AGR1.131 has a skeleton very similar to the other compounds (Fig. 1C) and can interact with the TM domains of CXCR4 without promoting effects. None of the three compounds affected CXCL12 binding, or CXCL12mediated inhibition of cAMP release, or receptor internalization. However, whereas AGR1.135 and AGR1.137, blocked CXCL12-mediated CXCR4 oligomerization and directed cell migration towards CXCL12 gradients, AGR1.131 had no effect in these experiments (Fig. 3, Fig.  4). 

      Next, we performed additional theoretical calculations (PELE, docking, MD) to inspect in detail the potential binding modes of active and inactive molecules. Based on these additional calculations, we identified that whereas AGR1.135 and AGR1.137 showed preferent binding on the molecular pocket between TMV and TMVI, the best pose for AGR1.131 was located between TMI and TMVII, as the initial experiments indicated.  These observations and data have been clarified in the revised discussion. 

      (42) 3. Impact of Chemical Modifications:

      -Discuss the consequences of the distinct chemical groups in AGR1.135, AGR1.137, and AGR1.131, specifically addressing how variations in amine length and chemical nature may influence binding affinity and biological activity. Provide insights into the potential effects of these modifications on cellular responses and the observed outcomes in zebrafish. 

      The main difference between AGR1.131 and the other two compounds is the higher flexibility of AGR1.131 due to the additional CH2 linker, together with the lack of a piperazine ring. The additional CH2 linking the phenyl ring increases the flexibility of AGR1.131 when compared with AGR1.135 and AGR1.137, and the absence of the piperazine ring might be responsible for its lack of activity, as it makes this compound able to bind to CXCR4 (Fig. 1C).

      AGR1.137 was chosen in a second round. The additional presence of the tertiary amine (in the piperazine ring) allows the formation of quaternary ammonium salts in the aqueous medium and its substituents to increase its solubility (Fig 1C). This characteristic might be related to the absence of toxic effects of the compound in the zebrafish model.

      (43) 4. Existence of Distinct CXCR4 Conformational States: 

      -Provide more detailed support for the statement suggesting the "existence of distinct CXCR4 conformational states" responsible for activating different signaling pathways. Consider referencing relevant studies or experiments that support this claim.

      Classical models of GPCR allostery and activation, which describe an equilibrium between a single inactive and a single signaling-competent active conformation, cannot account for the complex pharmacology of these receptors. The emerging view is that GPCRs are highly dynamic proteins, and ligands with varying pharmacological properties differentially modulate the balance between multiple conformations.

      Just as a single photograph from one angle cannot capture all aspects of an object in movement, no one biophysical method can visualize all aspects of GPCR activation. In general, there is a tradeoff between high-resolution information on the entire protein versus dynamic information on limited regions. In the former category, crystal and cryo-electron microscopy (cryoEM) structures have provided comprehensive, atomic-resolution snapshots of scores of GPCRs both in inactive and active conformations, revealing conserved conformational changes associated with activation. However, different GPCRs vary considerably in the magnitude and nature of the conformational changes in the orthosteric ligand-binding site following agonist binding (Venkatakrishnan A.J.V. et al. Nature 2016). Spectroscopic and computational approaches provide complementary information, highlighting the role of conformational dynamics in GPCR activation (Latorraca N.R.V. et al. Chem. Rev 2017). In the absence of agonists, the receptor population is typically dominated by conformations closely related to those observed in inactive-state crystal structures (Manglik A. et al. Cell 2015). While agonist binding drives the receptor population towards conformations similar to those in activestate structures, a mixture of inactive and active conformations remains, reflecting “loose” or incomplete allosteric coupling between the orthosteric and transducer pockets (Dror R.O. et al. Proc. Natl. Acad. Sci. USA 2011). Surprisingly, for some GPCRs, and under some experimental conditions, a substantial fraction of unliganded receptors already reside in an active-like conformation, which may be related to their level of basal or constitutive signaling (Staus D.P. et al. J. Biol. Chem. 2019);  Ye L. et al. Nature 2016).  In our case, the negative allosteric modulators, (Staus DP, et al. J. Biol. Chem 2019); Ye L. et al. Nature 2016) did not alter ligand binding and had only minor effects on specific CXCL12-mediated functions such as inhibition of cAMP release or receptor internalization, among others, but failed to regulate CXCL12-mediated actin dynamics and receptor oligomerization. Collectively, these data suggest that the described compounds alter the active conformation of CXCR4 and therefore support the presence of distinct receptor conformations that explain a partial activation of the signaling cascade.

      All these observations are now included in the revised discussion of the manuscript.

      (44) 5. Equilibrium Shift and Allosteric Ligands: 

      -Clarify the statement about "allosteric ligands shifting the equilibrium to favor a particular receptor conformation". Support this suggestion with references or experimental evidence

      In a previous answer (see our response to point 2), we explain why we define the compounds as negative allosteric modulators. These compounds do not bind the orthosteric binding site or a site distinct from the orthosteric site that alters the ligand-binding site. Their effect should be due to changes in the active conformation of CXCR4, which allow some signaling events whereas others are blocked. Our functional data thus support that through the same receptor the compounds separate distinct receptor-mediated signaling cascades, that is, our data suggest that CXCR4 has a conformational heterogeneity. It is known that GPCRs exhibit more than one “inactive” and “active” conformation, and the endogenous agonists stabilize a mixture of multiple conformations. Biased ligands or allosteric modulators can achieve their distinctive signaling profiles by modulating this distribution of receptor conformations. (Wingler L.M. & Lefkowitz R.J. Trends Cell Biol. 2020). For instance, some analogs of angiotensin II do not appreciably activate Gq signaling (e.g., increases in IP3 and Ca2+) but still induce receptor phosphorylation, internalization, and mitogen-activated protein kinase (MAPK) signaling (Wei H, et al. Proc. Natl. Acad. Sci. USA 2003). Some of these ligands activate Gi and G12 in bioluminescence resonance energy transfer (BRET) experiments (Namkung Y. et al. Sci. Signal. 2018). A similar observation was described in the case of CCR5, where some chemokine analogs promoted G protein subtype-specific signaling bias (Lorenzen E. et al. Sci. Signal 2018). Structural analysis of distinct GPCRs in the presence of different ligands vary considerably in the magnitude and nature of the conformational changes in the orthosteric ligand-binding site following agonist binding (Venkatakrishnan A.J.V. et al. Nature 2016). Yet, these changes modify conserved motifs in the interior of the receptor core and induce common conformational changes in the intracellular site involved in signal transduction. That is, these modifications might be considered distinct receptor conformations. 

      The revised discussion contains some of these interpretations to support our statement about the stabilization of a particular receptor conformation triggered by the negative allosteric modulators. 

      (45) 6. Refinement of Binding Mode: 

      -Clarify the workflow for obtaining the binding mode, particularly the role of GLIDE and PELE. Clearly explain how these software tools were used in tandem to refine the binding mode. 

      The computational sequential workflow applied in this project included, i) Protein model construction, ii) Virtual screening (Glide), iii) PELE, iv) Docking (AutoDock and Glide) and v) Molecular Dynamics (AMBER).

      Glide was applied for the structure-based virtual screening to explore which compounds could fit and interact with the previously selected binding site.

      After the identification of theoretically active compounds (modulators of CXCR4), additional calculations were done to identify a potential binding site. PELE was used in this sense, to study how the compounds could bind in the whole surface of the target (TMV-TMVI). By applying PELE, we avoided biasing the calculation, and we found that the trajectories with better interaction energies identified the cleft between TMV and TMVI as the binding site for AGR1.135 and AGR1.137, and not for AGR1.131. AGR1.131 showed a pose with low binding energy, -39.8 kcal/mol, between TMV and TMVI helices, that is, it might interact with CXCR4 in the selected area for the screening. But it also showed a better pose placed between helices TMI and TMVII, - 43.7 kcal/mol (see our response to point 41). These data have been now confirmed using Schrodinger’s MM-GBSA procedure (see our response to points 6 and 8). In any case, the compound was included in the biological screening, where it was unable to affect CXCL12-mediated chemotaxis (Fig. 1B). Docking and MD simulations were then performed to study and refine the specific binding mode in this cavity. These data were important to choose the mutations on CXCR4 required, to test whether the compounds reversed its behavior. In these experiments we also confirmed that AGR1.131 had a better pose on the TMI-TMVII region. 

      (46) 7. Impact of Compound Differences on CXCR4-F249L mutant: 

      -Provide visual aids, such as figures, and additional experiments to support the statement about differences in the behavior of AGR1.135 and AGR1.137 on cells expressing CXCR4-F249L mutant. Elaborate on the closer interaction suggested between the triazole group of AGR1.137 and the F249 residue

      At the reviewer’s suggestion, Fig. 5 has been modified to incorporate a closer view of the interactions identified and new panels in new Fig. 6 have been added to show in detail the effect of the mutations selected on the structure of the cleft between TMV and TMVI. The main difference between AGR1.135 and AGR1.137 is how the triazole group interacts with F249 and L216 (Author response image 6). In AGR1.137, the three groups are aligned in a parallel organization, which appears to be more effective: This might be due to a better adaptation of this compound to the cleft since there is only one hydrogen bond with V124. In AGR1.135, the compound interacts with the phenyl ring of F249 and has a stronger interaction at the apical edge to stabilize its position in the cleft. However, there is still an additional interaction present. When changing F249

      Author response image 6.

      Cartoon representation of the interaction of CXCR4 F249L mutant with AGR1.135 (A) and AGR1.137 (B). The two most probable conformations of Leucine rotamers are represented in cyan A and B conformations. Van der Waals interactions are depicted in blue cyan dashed lines, hydrogen bonds in black dashed lines. CXCR4 segments of TMV and TMVI are colored in blue and pink, respectively

      to L (Fig. VIIA, B, only for review purposes) and showing the two most likely rotamers resulting from the mutation, it is observed that rotamer B is in close proximity to the compound, which may cause the binding to either displace or adopt an alternative conformation that is easier to bind into the cleft. As previously mentioned, it is likely that AGR1.135 can displace the mutant rotamer and bind into the cleft more easily due to its higher affinity.

      (47) In the "Materials and Methods" section, the computational approach for the "discovery of CXCR4 modulators" requires significant revision and clarification. The following suggestions aim to address the identified issues: 1. Structural Modeling: 

      -Reconsider the use of SWISS-MODEL if there is an available PDB code for the entire CXCR4 structure. Clearly articulate the rationale for choosing one method over the other and explain any limitations associated with the selected approach. 

      The SWISS-model server allows for automated comparative modeling of 3D protein structures that was pioneered in the fields of automated modeling. At the time we started this project. it was the most accurate method to generate reliable 3D protein structure models.

      As explained above, we have now predicted the structure of the target using AlphaFold (Jumper J. et al, Nature 2021) and performed several additional experiments that confirm that the small compounds bind the selected pocket as the original strategy indicated (see our response to point 6). (Fig. II, only for review purposes).

      (48) 2. Parametriza7on of Small Compounds: 

      -Provide a detailed description of the parametrization process for the small compounds used in the study. Specify the force field and parameters employed, considering the obsolescence of AMBER14 and ff14SB. Consider adopting more contemporary force fields and parameterization strategies. 

      When we performed these experiments, some years ago, the force fields applied (ff14SB, AMBER14 used in MD or OPLS2004 in docking with Glide) were well accepted and were gold standards. It is, however, true that the force fields have evolved in the past few years, Moreover, in the case of the MD simulations, to consider the parameters of the ligands that are not contained within the force field, we performed an additional parameterization as a standard methodology. We then generated an Ab initio optimization of the ligand geometry, defining as basis sets B3LYP 6-311+g(d), using Gaussian 09, Revision A.02, and then a single point energy calculation of ESP charges, with HF 6311+g(d) on the optimized structure. As the last step of the parametrization, the antechamber module was used to adapt these charges and additional parameters for MD simulations.

      (49) 3. Treatment of Lipids and Membrane: 

      -Elaborate on how lipids were treated in the system. Clearly describe whether a membrane was included in the simulations and provide details on its composition and structure. Address the role of the membrane in the study and its relevance to the interactions between CXCR4 and small compounds 

      To stabilize CXCR4 and more accurately reproduce the real environment in the MD simulation, the system was embedded in a lipid bilayer using the Membrane Builder tool (Sunhwan J. et al. Biophys. J. 2009) from the CHARMM-GUI server. The membrane was composed of 175 molecules of the fatty acid 1-palmitoyl-2-oleoyl-sn-glycero-3phosphocholine (POPC) in each leaflet. The protein-membrane complex was solvated with TIP3 water molecules. Chloride ions were added up to a concentration of 0.15 M in water, and sodium ions were added to neutralize the system. This information was previously described in detail.

      (50) 4. Molecular Dynamics Protocol: 

      -Provide a more detailed and coherent explanation of the molecular dynamics protocol. Clarify the specific steps, parameters, and conditions used in the simulations. Ensure that the protocol aligns with established best practices in the field.

      Simulations were calculated on an Asus 1151 h170 LVX-GTX-980Ti workstation, with an Intel Core i7-6500 K Processor (12 M Cache, 3.40 GHz) and 16 GB DDR4 2133 MHz RAM, equipped with a Nvidia GeForce GTX 980Ti available for GPU (Graphics Processing Unit) computations. MD simulations were performed using AMBER14 (Case D.A. et al. AMBERT 14, Univ. of California, San Francisco, USA, 2014) with ff14SB (Maier J.A. et al. J. Chem. Theory Comput. 2015) and lipid14 (Dickson C. J. et al. J. Chem. Theory Comput. 2014) force fields in the NPT thermodynamic ensemble (constant pressure and temperature). Minimization was performed using 3500 Steepest Descent steps and 4500 Conjugate Gradient steps three times, firstly considering only hydrogens, next considering only water molecules and ions, and finally minimizing all atoms. Equilibration raises system temperature from 0 to 300 K at a constant volume fixing everything but ions and water molecules. After thermalization, several density equilibration phases were performed. In the production phase, 50 ns MD simulations without position restraints were calculated using a time step of 2 fs. Trajectories of the most interesting poses were extended to 150 ns. All bonds involving hydrogen atoms were constrained with the SHAKE algorithm (Lippert R.A. et al. J. Chem. Phys. 2007). A cutoff of 8 Å was used for the Lennard-Jones interaction and the short-range electrostatic interactions. Berendsen barostat (Berendsen H.J. et al. J. Chem. Phys.  1984) and Langevin thermostat were used to regulate the system pression and temperature, respectively. All trajectories were processed using CPPTRAJ (Roe D.R. & Cheatham III T.E. J. Chem. Theory Comput. 2013) and visualized with VMD (Visual Molecular Dynamics) (Humphrey W. et al. J. Mol. Graphics. 1996). To reduce the complexity of the data, Principal Component Analysis (PCA) was performed on the trajectories using CPPTRAJ.

      (51) Consider updating the molecular dynamics protocol to incorporate more contemporary methodologies, considering advancements in simulation techniques and software.

      In our answer to points 6 and 47, we describe why we use the technology based on Swiss-model and PELE analysis and how we have now used Alphafold and other more contemporary methodologies to confirm that the small compounds bind the selected pocket.

      (52) Figure 1A: 

      •  Consider switching to a cavity representation for CXCL12 to enhance clarity and emphasize the cleft.

      Fig. 1A has been modified to emphasize the cleft.

      (53) Explicitly show the TMV-TMVI cleft in the figure for a more comprehensive visualization. 

      In Fig. 1A we have added an insert to facilitate TMV-TMVI visualization.

      (54) Figure 1B: 

      •  Clearly explain the meaning of the second DMSO barplot to avoid confusion. 

      To clarify this panel, we have modified the figure and the figure legend. Panel B now includes a complete titration of the three compounds analyzed in the manuscript.  The first bar shows cell migration in the absence of both treatment with AMD3100 and stimulation with CXCL12.  The second bar shows migration in response to CXCL12 in the absence of AMD3100. The third bar shows the effect of AMD3100 on CXCL12-induced migration, as a known control of inhibition of migration.  We hope that this new representation of the data results is clearer.

      (55) Figure 1C: 

      •  Provide a clear legend explaining the significance of the green shading on the small compounds. 

      The legend for Fig. 1C has been modified accordingly to the reviewer’s suggestion.

      (56) Figure 2: 

      •  Elaborate on the role of fibronectin in the experiment and explain the specific contribution of CD86-AcGFP.

      The ideal situation for TIRF-M determinations is to employ cells on a physiological substrate complemented with or without chemokines. Fibronectin is a substrate widely used in different studies that allows cell adhesion, mimicking a physiological situation. Jurkat cells express alpha4beta1 and alpha5beta1 integrins that mediate adhesion to fibronectin (Seminario M.C. et al. J. Leuk. Biol. 1999).

      Regarding the use of CD86-AcGFP in TIRF-M experiments. We currently determine the number of receptors in individual trajectories of CXCR4 using, as a reference, the MSI value of CD86-AcGFP that strictly showed a single photobleaching step (Dorsch S. et al. Nat Methods 2009).

      We preferred to use CD86-AcGFP in cells instead of AcGFP on glass, to exclude any potential effect on the different photodynamics exhibited by AcGFP when bound directly to glass. In any case, this issue has been clarified in the revised version.

      (57) Figure 3D: 

      •  Include a plot for the respective band intensity to enhance data presentation 

      The plot showing the band intensity analysis of the experiments shown in Fig. 3D was already included in the original version (see old Supplementary Fig. 3). However, in the revised version, we include these plots in the same figure as panels 3E and 3F.  As a control of inhibition of CXCL12 stimulation, we have also included a new figure (Supplementary Fig. 4) showing the effect of AMD3100 on CXCL12-induced activation of Akt and ERK as analyzed by western blot.

      (58) Consider adding AMD3100 as a control for comparison. 

      In agreement with the reviewer’s suggestion, we have added the effect of AMD3100 in most of the functional experiments performed.

      (59) Figure 4: 

      •  Address the lack of positive controls in Figure 4 and consider their inclusion for a more comprehensive analysis. 

      DMSO bars correspond to the control of the experiment, as they represent the effect of CXCL12 in the absence of any allosteric modulator. As previously described in this point-by-point reply, DMSO bars correspond to the control performed with the solvent with which the small compounds, at maximum concentration, are diluted.  Therefore, they show the effect of the solvent on CXCL12 responses. In any case, and in order to facilitate the comprehension of the figure we have also added the controls in the absence of DMSO to demonstrate that the solvent does not affect CXCL12-mediated functions, together with the effect of the orthosteric inhibitor AMD3100. In addition, we have also included representative images of the effect of the different compounds on CXCL12-induced polarization (Fig. 4C).

      (60) In Figure 4A, carefully assess overlapping error bars and ensure accurate interpreta7on. If necessary, consider alternative representation. 

      We have tried alternative representations of data in Fig. 4A, but in all cases the figure was unclear. We believe that the way we represent the data in the original manuscript is the most clear and appropriate.  Nevertheless, we have now included significance values as a table annexed to the figure, as well as the effect of AMD3100, as a control of inhibition

      (61) Supplementary Figure 1A: 

      •  Improve the clarity of bar plots for better understanding. Consider reordering them from the most significant to the least. 

      This was a good idea, and therefore Supplementary Fig. 1A has been reorganized to improve clarity.

      (62) Supplementary Figure 1C: 

      •  Clarify the rationale behind choosing the 12.5 nM concentration and explain if different concentrations of CXCL12 were tested. 

      In old Supplementary Fig. 1C, we used untreated cells, that is, CXCL12 was not present in the assay.  These experiments were performed to test the potential toxicity of DMSO (solvent) or the negative allosteric modulators on Jurkat cells. The 12.5 nM concentration of CXCL12 mentioned in the figure legend applied only to panels A and B, as indicated in the figure legend. We previously optimized this concentration for Jurkat cells using different concentrations of CXCL12 between 5 and 100 nM.  Nevertheless, we have reorganized old supplementary fig. 1 and clarified the figure legend to avoid misinterpretations (see Supplementary Fig 1A, B and Supplementary Fig. 2A, B).

      (63) Explain the observed reduction in fluorescence intensity for AGR1.135. 

      The cell cycle analysis has been moved from Supplementary Fig. 1C to a new Supplementary Fig. 2.  It now includes the flow cytometry panels to show fluorescence intensity as a function of the number of cells analyzed (Panel 1A) as well as a table (panel B) with the percentage of cells in each phase of the cell cycle. We believe that the apparent reduction in fluorescence that the reviewer observes is mainly due to the number of events analyzed. However, we have changed the flow cytometry panels for others that are more representative and included a table with the mean of the different results. When we determined the percentage of cells in each cell cycle phase, we observed that it looks very similar in all the experimental conditions. That is, none of the compounds affected any of the cell cycle phases. We have also included the effect of H2O2 and staurosporine as control compounds inducing cell death and cell cycle alteration of Jurkat cells.

      (64) Supplementary Table 1: 

      •  Include a column specifying the scoring for each compound to provide a clear reference for readers. 

      To facilitate references to readers, we have now included the inhibitory effect of each compound on Jurkat cell migration in the revised version of this table. 

      (65) Minor Points 

      Page 2 - Abstract: Rephrase the first sentence of the abstract to enhance fluidity. 

      Although the entire manuscript was revised by a professional English editor, we appreciate the valuable comments of this reviewer and we have corrected these issues accordingly.

      (66) Page 2 - Abstract: Explicitly define "CXCR4" as "C-X-C chemokine receptor type 4" the first time it appears.

      We have not used C-X-C chemokine receptor type 4 the first time it appears in the abstract. CXCR4 is an acronym normally accepted to identify this chemokine receptor, and it is used as CXCR4 in many articles published in eLife. However, we introduce the complete name the first time it appears in the introduction.

      (67) Page 2 - Abstract: Explicitly define "CXCL12" as "C-X-C motif chemokine 12" the first time it is mentioned. 

      As we have discussed in the previous response, we have not used C-X-C motif chemokine 12 the first time CXCL12 appears in the abstract, as it is a general acronym normally accepted to identify this specific chemokine, even in eLife papers. However, we introduce the complete name the first time it appears in the introduction section.

      (68) Page 2 - Abstract: Explicitly define "TMV and TMVI" upon its first mention.

      The acronym TM has been defined as “Transmembrane” in the revised version

      (69) Page 2 - Abstract: Review the use of "in silico" in the sentence for accuracy and consider revising if necessary.

      With the term “in silico” we want to refer to those experiments performed on a computer or via computer simulation software. We have carefully reviewed its use in the new version of the manuscript.

      (70) Page 2 - Abstract: Add a comma after "compound" in the sentence, "We identified AGR1.137, a small compound that abolishes...".

      A comma after “compound” has been added in the revised sentence.

      (71) Page 2 - Significance Statement: Rephrase the first sentence of the "Significance Statement" to avoid duplication with the abstract.

      The first sentence of the Significance Statement has been revised to avoid duplication with the abstract. 

      (72) Page 2 - Significance Statement: Break down the lengthy sentence, "Here, we performed in silico analyses..." for better readability. 

      The sentence starting by “Here, we performed in silico analyses…” has been broken down in the revised manuscript.

      (73) Page 2 - Introduction: Replace "Murine studies" with a more specific term for clarity.

      The term “murine studies” is normally used to refer to experimental studies developed in mice. We have nonetheless rephrased the sentence.

      (74) Page 3 - Introduction: Rephrase the sentence for clarity: "Finally, using a zebrafish model, ..."

      The sentence has been now rephrased for clarity.

      (75) Results-AGR1.135 and AGR1.137 block CXCL12-mediated CXCR4 nanoclustering and dynamics: 

      Rephrase the sentence for clarity: "Retreatment with AGR1.135 and AGR1.137, but not with AGR1.131, substantially impaired CXCL12-mediated receptor nanoclustering.”

      The sentence has been rephrased for clarity.

      (76) Results - AGR1.135 and AGR1.137 incompletely abolish CXCR4-mediated responses in Jurkat cells: Clarify the sentence: "In contrast to the effect promoted by AMD3100, a binding-site antagonist of CXCR4..."

      The sentence has been modified for clarity.

      (77) Consider using "orthosteric" instead of "binding-site" antagonist.

      The term orthosteric is now used throughout to refer to a binding site antagonist.

      (78) Discussion: Use the term "in silico" only when necessary.

      We have carefully reviewed the use of “in silico” in the manuscript.

      (79) Discussion: Clarify the sentence: "...not affect neither CXCR2-mediated cell migration...". Confirm if "CXCL12" is intended.

      The sentence refers to the chemokine receptor CXCR2, which binds the chemokine CXCL2. To test the specificity of the compounds for the CXCL12/CXCR4 axis, we evaluated CXCL2-mediated cell migration.  The results indicated that CXCL2/CXCR2 axis was not affected by the negative allosteric modulators, whereas CXCL12-mediated cell migration was blocked.  The sentence has been clarified in the new version of the manuscript.

      (80) Figure 4B: Bold the "B" in the figure label for consistency.

      The “B” in Fig. 4B has been bolded.

      Reviewer #2

      (1) Fig 2. The SPT data is sub-optimal in its presentation as well as analysis. Example images should be shown. The analysis and visualization of the data should be reconsidered for improvements. Graphs with several hundreds, in some conditions over 1000 tracks, per condition are very hard to compare. The same (randomly selected representative set) number of data points should be shown for better visualization. Also, more thorough analyses like MSD or autocorrelation functions are lacking - they would allow enhanced overall representation of the data.

      In agreement with the reviewer’s commentary, we have modified the representation of Fig. 2. We have carefully read the paper published by Lord S.J. and col. (Lord S. J. et al., J. Cell Biol. 2020) and we apply their recommendations for these type of data. We have also included as supplementary material representative videos for the TIRF-M experiments performed to allow readers to visualize the original images. Regarding the MSD analyses, they were developed to determine all D1-4 values. According to the data published by Manzo & García-Parajo (Manzo C. & García-Parajo M.F. Rep.Prog. Phys. 2015) due to the finite trajectory length the MSD curve at large tlag has poor statistics and deviates from linearity. However, the estimation of the Diffusion Coefficient (D1-4) can be obtained by fitting of the short tlag region of the MSD plot giving a more accurate idea of the behavior of particles. In agreement we show D1-4 values and not MSD data. 

      Due to the space restrictions, it is very difficult to include all the figures generated, but, only for review purposes, we included in this point-by-point reply some representative plots of the MSD values as a function of the time from individual trajectories showing different types of motion obtained in our experiments (Author response image 7).

      Author response image 7.

      Representative MSD plots from individual trajectories of CXCR4-AcGFP showing different types of motion: A) confined, B) Brownian/Free, C) direct transport of CXCR4-AcGFP particles diffusing at the cell membrane detected by SPT-TIRF in resting JKCD4 cells.

      Further analysis, such as the classification based on particle motion, has not been included in this article. This classification uses the moment scaling spectrum (MSS), described by Ewers H. et al. 2005 PNAS, and requires particles with longer trajectories (>50 frames). Only for review purposes, we include a figure showing the percentage of the MSS-based particle motion classification for each condition. As expected, most of long particles are confined, with a slight increase in the percentage upon CXCL12 stimulation in all conditions, except in cell treated with AGR1.137 (Author response image 8).

      Author response image 8.

      Effects of the negative allosteric modulators on the Types of Motion of CXCR4. Percentage of single trajectories with different types of motion, classified by MSS (DMSO: 58 particles in 59 cells on FN; 314 in 63 cells on FN+CXCL12; AGR1.131: 102 particles in 71 cells on FN; 258in 69 cells on FN+CXCL12; AGR1.135: 86 particles in 70 cells on FN; 120 in 77 cells on FN+CXCL12; AGR1.137: 47 particles in 66 cells on FN; 74 in 64 cells on FN+CXCL12) n = 3.

      (2) Fig 3. The figure legends have inadequate information on concentrations and incubation times used, both for the compounds and other treatments like CXCL12 and forskolin. For the Western blot data, also the quantification should be added to the main figure. The compounds, particularly AGR1.137 seem to lead to augmented stimulation of pAKT and pERK. This should be discussed

      The Fig. 3 legend has been corrected in the revised manuscript. Fig. 3D now contains representative western blots and the densitometry evaluation of these experiments. As the reviewer indicates, we also detected in the western blot included, augmented stimulation of pAKT and pERK in cells treated with AGR1.137. However, as shown in the densitometry analysis, no significant differences were noted between the data obtained with each compound. As a control of inhibition of CXCL12 stimulation we have included a new Supplementary Fig. 4 showing the effect of AMD3100 on CXCL12-induced activation of Akt and ERK as analyzed by western blot.

      (3) Fig. 4 immunofluorescence data on polarization as well as the flow chamber data lack the representative images of the data. The information on the source of the T cells is missing. Not clear if this experiment was done on bilayers or on static surfaces.

      Representative images for the data shown in Figure 4B have been added in the revised figure (Fig. 4C). The experiments in Fig. 4B were performed on static surfaces. As indicated in the material and methods section, primary T cell blasts were added to fibronectin-coated glass slides and then were stimulated or not with CXCL12 (5 min at 37ºC) prior to fix permeabilize and stain them with Phalloidin. Primary T cell blasts were generated from PBMCs isolated from buffy coats that were activated in vitro with IL-2 and PHA as indicated in the material and methods section.

      (4) The data largely lacks titration of different concentrations of the compounds. How were the effective concentration and treatment times determined? What happens at higher concentrations? It is important to show, for instance, if the CXCR12 binding gets inhibited at higher concentrations. most experiments were performed with 50 uM, but HeLa cell data with 100 uM. Why and how was this determined? 

      The revised version contains a new panel in Fig. 1B to show a more detailed kinetic analysis with different concentrations (1-100 µM) of the compounds in the migration experiments using Jurkat cells. We choose 50 µM for further studies as it was the concentration that inhibits 50-75% of the ligand induced cell migration. 

      We have also included the effect of two doses of the compounds (10 and 50 µM) in the zebrafish model as well as AMD3100 (1 and 10 µM) as control (new Fig. 7D, E).  Tumors were imaged within 2 hours of implantation and tumor-baring embryos were treated with either vehicle (DMSO) alone, AGR1.131 or AGR1.137 at 10 and 50 µM or AMD3100 at 1 and 10 µM for three days, followed by re-imaging.

      Regarding the amount of CXCL12 used in these experiments, with the exception of cell migration assays in Transwells, where the optimal concentration was established at 12.5 nM, in all the other experiments the optimal concentration of CXCL12 employed was 50 nM. In the case of the directional cell migration assays, we use 100 nM to create the chemokine gradient in the device. These concentrations have been optimized in previous works of our laboratory using these types of experiments. It should also be noted that in the experiments using lipid bilayers or TIRF-M experiments, CXCL12 is used to coat the plates and therefore it is difficult to determine the real concentration that is retained in the surface after the washing steps performed prior adding the cells.

      (5) The authors state that they could not detect direct binding of the compounds and the CXCR14. It should be reported what approaches were tried and discussed why this was not possible. 

      We attempted a fluorescence spectroscopy strategy to formally prove the ability of AGR1.135 to bind CXCR4, but this strategy failed because the compound has a yellow color that interfered with the determinations. We also tried a FRET strategy (see supplementary Fig. 7) and detected a significant increase in FRET efficiency of CXCR4 homodimers in cells treated with AGR1.135; this effect was due to the yellow color of this compound that interferes with FRET determinations. In the same assays, AGR1.137 did not modify FRET efficiency for CXCR4 homodimers and therefore we cannot assume that AGR1.137 binds on CXCR4. All these data have been considered in the revised discussion.

      (6) The proliferation data in Supplementary Figure 1 lacks controls that affect proliferation and indication of different cell cycle stages. What is the conclusion of this data? More information on the effects of the drug to cell viability would be important.

      Toxicity in Jurkat cells was first determined by propidium iodide incorporation. Some compounds (i.e., AGR1.103 and VSP3.1) were discarded from further analysis as they were toxic for cells. In a deeper analysis of cell toxicity, even if these compounds did not kill the cells, we checked whether they could alter the cell cycle of the cells. New Supplementary Fig. 2 includes a table (panel B) with the percentage of cells in each cell cycle phase, and no differences between any of the treatments tested were detected. 

      Nevertheless, to clarify this issue the revised version of the figure also includes H2O2 and staurosporine stimuli to induce cell death and cell cycle alterations as controls of these assays.

      (7) The flow data in Supplementary Figure 2 should be statistically analysed. 

      Bar graphs corresponding to the old Supplementary Fig. 2 (new Supplementary Fig. 3) are shown in Fig. 3B. We have also incorporated the corresponding statistical analysis to this figure. 

      (8) In general, the authors should revise the figure legends to ensure that critical details are added. 

      We have carefully revised all the figure legends in the new version of the manuscript.

      (9) Bar plots are very poor in showing the heterogeneity of the data. Individual data points should be shown whenever feasible. Superplot-type of representation is strongly advised (https://doi.org/10.1083/jcb.202001064).

      We have carefully read the paper published by Lord S.J. and col. (Lord S. J. et al., J. Cell Biol. 2020) and we apply their recommendations for our TIRF-M data (see revised Fig.  2).

    1. Author response:

      Reviewer #1 (Public Review):

      Summary: 

      BMP signaling is, arguably, best known for its role in the dorsoventral patterning, but not in nematodes, where it regulates body size. In their paper, Vora et al. analyze ChIP-Seq and RNA-Seq data to identify direct transcriptional targets of SMA-3 (Smad) and SMA-9 (Schnurri) and understand the respective roles of SMA-3 and SMA-9 in the nematode model Caenorhabditis elegans. The authors use publicly available SMA-3 and SMA-9 ChIP-Seq data, own RNA-Seq data from SMA-3 and SMA-9 mutants, and bioinformatic analyses to identify the genes directly controlled by these two transcription factors (TFs) and find approximately 350 such targets for each. They show that all SMA-3-controlled targets are positively controlled by SMA-3 binding, while SMA-9-controlled targets can be either up or downregulated by SMA-9. 129 direct targets were shared by SMA-3 and SMA-9, and, curiously, the expression of 15 of them was activated by SMA-3 but repressed by SMA-9. Since genes responsible for cuticle collagen production were eminent among the SMA-3 targets, the authors focused on trying to understand the body size defect known to be elicited by the modulation of BMP signaling. Vora et al. provide compelling evidence that this defect is likely to be due to problems with the BMP signaling-dependent collagen secretion necessary for cuticle formation. 

      We thank the reviewer for this supportive summary. We would like to clarify the status of the publicly available ChIP-seq data. We generated the GFP tagged SMA-3 and SMA‑9 strains and submitted them to be entered into the queue for ChIP-seq processing by the modENCODE (later modERN) consortium. Due to the nature of the consortium’s funding, the data were required to be released publicly upon completion. Nevertheless, we have provided the first comprehensive analysis of these datasets.

      Strengths: 

      Vora et al. provide a valuable analysis of ChIP-Seq and RNA-Seq datasets, which will be very useful for the community. They also shed light on the mechanism of the BMP-dependent body size control by identifying SMA-3 target genes regulating cuticle collagen synthesis and by showing that downregulation of these genes affects body size in C. elegans. 

      Weaknesses: 

      (1) Although the analysis of the SMA-3 and SMA-9 ChIP-Seq and RNA-Seq data is extremely useful, the goal "to untangle the roles of Smad and Schnurri transcription factors in the developing C. elegans larva", has not been reached. While the role of SMA-3 as a transcriptional activator appears to be quite straightforward, the function of SMA-9 in the BMP signaling remains obscure. The authors write that in SMA-9 mutants, body size is affected, but they do not show any data on the mechanism of this effect. 

      We thank the reviewer for directing our attention to the lack of clarity about SMA-9’s function. We will revise the text to highlight what this study and others demonstrate about SMA-9’s role in body size. We also plan to analyze additional target genes to deepen our model for how SMA-3 and SMA-9 interact functionally to produce a given transcriptional response.

      (2) The authors clearly show that both TFs can bind independently of each other, however, by using distances between SMA-3 and SMA-9 ChIP peaks, they claim that when the peaks are close these two TFs act as complexes. In the absence of proof that SMA-3 and SMA-9 physically interact (e.g. that they co-immunoprecipitate - as they do in Drosophila), this is an unfounded claim, which should either be experimentally substantiated or toned down. 

      A physical interaction between Smads and Schnurri has been amply demonstrated in other systems. The limitation in the previous work is that only a small number of target genes was analyzed. Our goal in this study was to determine how widespread this interaction is on a genomic scale.  Our analyses demonstrate for the first time that a Schnurri transcription factor has significant numbers of both Smad-dependent and Smad-independent target genes. We will revise the text to clarify this point.

      (3) The second part of the paper (the collagen story) is very loosely connected to the first part. dpy-11 encodes an enzyme important for cuticle development, and it is a differentially expressed direct target of SMA-3. dpy-11 can be bound by SMA-9, but it is not affected by this binding according to RNA-Seq. Thus, technically, this part of the paper does not require any information about SMA-9. However, this can likely be improved by addressing the function of the 15 genes, with the opposing mode of regulation by SMA-3 and SMA-9. 

      We appreciate this suggestion and will clarify how SMA-9 and its target genes contribute to collagen organization and body size regulation.

      (4) The Discussion does not add much to the paper - it simply repeats the results in a more streamlined fashion. 

      We thank the reviewer for this suggestion. We will add more context to the Discussion.

      Reviewer #2 (Public Review): 

      In the present study, Vora et al. elucidated the transcription factors downstream of the BMP pathway components Smad and Schnurri in C. elegans and their effects on body size. Using a combination of a broad range of techniques, they compiled a comprehensive list of genome-wide downstream targets of the Smads SMA-3 and SMA-9. They found that both proteins have an overlapping spectrum of transcriptional target sites they control, but also unique ones. Thereby, they also identified genes involved in one-carbon metabolism or the endoplasmic reticulum (ER) secretory pathway. In an elaborate effort, the authors set out to characterize the effects of numerous of these targets on the regulation of body size in vivo as the BMP pathway is involved in this process. Using the reporter ROL-6::wrmScarlet, they further revealed that not only collagen production, as previously shown, but also collagen secretion into the cuticle is controlled by SMA-3 and SMA-9. The data presented by Vora et al. provide in-depth insight into the means by which the BMP pathway regulates body size, thus offering a whole new set of downstream mechanisms that are potentially interesting to a broad field of researchers. 

      The paper is mostly well-researched, and the conclusions are comprehensive and supported by the data presented. However, certain aspects need clarification and potentially extended data. 

      (1) The BMP pathway is active during development and growth. Thus, it is logical that the data shown in the study by Vora et al. is based on L2 worms. However, it raises the question of if and how the pattern of transcriptional targets of SMA-3 and SMA-9 changes with age or in the male tail, where the BMP pathway also has been shown to play a role. Is there any data to shed light on this matter or are there any speculations or hypotheses? 

      We agree that these are intriguing questions and we are interested in the roles of transcriptional targets at other developmental stages and in other physiological functions, but these analyses are beyond the scope of the current study.

      (2) As it was shown that SMA-3 and SMA-9 potentially act in a complex to regulate the transcription of several genes, it would be interesting to know whether the two interact with each other or if the cooperation is more indirect. 

      A physical interaction between Smads and Schnurri has been amply demonstrated in other systems. Our goal in this study was not to validate this physical interaction, but to analyze functional interactions on a genome-wide scale.

      (3) It would help the understanding of the data even more if the authors could specifically state if there were collagens among the genes regulated by SMA-3 and SMA-9 and which. 

      We thank the reviewer for this suggestion and will add the requested information in the text.

      (4) The data on the role of SMA-3 and SMA-9 in the regulation of the secretion of collagens from the hypodermis is highly intriguing. The authors use ROL-6 as a reporter for the secretion of collagens. Is ROL-6 a target of SMA-9 or SMA-3? Even if this is not the case, the data would gain even more strength if a comparable quantification of the cuticular levels of ROL-6 were shown in Figure 6, and potentially a ratio of cuticular versus hypodermal levels. By that, the levels of secretion versus production can be better appreciated. 

      rol-6 has been identified as a transcriptional target of this pathway. The level of ROL-6 protein, however, is not changed in sma-3 and sma-9 mutants, indicating that there is post-transcriptional compensation. We will include these data in the revised manuscript.

      (5) It is known that the BMP pathway controls several processes besides body size. The discussion would benefit from a broader overview of how the identified genes could contribute to body size. The focus of the study is on collagen production and secretion, but it would be interesting to have some insights into whether and how other identified proteins could play a role or whether they are likely to not be involved here (such as the ones normally associated with lipid metabolism, etc.). 

      We will add this information to the Discussion.

    1. eLife Assessment

      This study provides a fundamental analysis of the EmrE efflux pump, highlighting the role of the C-terminal domain in influencing uncoupled proton leak. The integration of biophysical techniques with molecular dynamics simulations offers solid support for the key findings and adds substantial evidence toward a definitive understanding of EmrE transport mechanism.

    2. Reviewer #1 (Public review):

      Summary:

      Work by Brosseau et. al. combines NMR, biochemical assays, and MD simulations to characterize the influence of the C-terminal tail of EmrE, a model multi-drug efflux pump, on proton leak. The authors compare the WT pump to a C-terminal tail deletion, delta_107, finding that the mutant has increased proton leak in proteoliposome assays, shifted pH dependence with a new titratable residue, faster alternating access at high pH values, and reduced growth, consistent with proton leak of the PMF.

      Strengths:

      The work combines thorough experimental analysis of structural, dynamic, and electrochemical properties of the mutant relative to WT proteins. The computational work is well aligned in vision and analysis. Although all questions are not answered, the authors lay out a logical exploration of the possible explanations.

      Weaknesses:

      A few analyses that were missing in the first submission were included/corrected in the revision.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript explores the role of the C-terminal tail of EmrE in controlling uncoupled proton flux. Leakage occurs in the wild-type transporter under certain conditions but is amplified in the C-terminal truncation mutant D107. The authors use an impressive combination of growth assays, transport assays, NMR on WT and mutants with and without key substrates, classical MD, and reactive MD to address this problem. Overall, I think that the claims are well supported by the data, but I am most concerned about the reproducibility of the MD data, initial structures used for simulations, and the stochasticity of the water wire formation. These can all be addressed in a revision with more simulations as I point out below. I want to point out that the discussion was very nicely written, and I enjoyed reading the summary of the data and the connection to other studies very much.

      Strengths:

      The Henzler-Wildman lab is at the forefront of using quantitative experiments to probe the peculiarities in transporter biophysics, and the MD work from the Voth lab complements the experiments quite well. The sheer number of different types of experimental and computational approaches performed here is impressive.

      Weaknesses:

      The primary weaknesses are related to the reproducibility of the MD results with regard to the formation of water wires in the WT and truncation mutant. This could be resolved with simulations starting from structures built using very different loops and C-terminal tails.

      The water wire gates identified in the MD should be tested experimentally with site-directed mutagenesis to determine if those residues do impact leak.

      Comments on revisions:

      Having reviewed the latest version of the manuscript, I continue to believe that this is a solid paper with important results. I find the new data regarding the computational pKa estimate of E14 compelling.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Work by Brosseau et. al. combines NMR, biochemical assays, and MD simulations to characterize the influence of the C-terminal tail of EmrE, a model multi-drug efflux pump, on proton leak. The authors compare the WT pump to a C-terminal tail deletion, delta_107, finding that the mutant has increased proton leak in proteoliposome assays, shifted pH dependence with a new titratable residue, faster-alternating access at high pH values, and reduced growth, consistent with proton leak of the PMF.

      Strengths:

      The work combines thorough experimental analysis of structural, dynamic, and electrochemical properties of the mutant relative to WT proteins. The computational work is well aligned in vision and analysis. Although all questions are not answered, the authors lay out a logical exploration of the possible explanations.

      Weaknesses:

      There are a few analyses that are missing and important data left out. For example, the relative rate of drug efflux of the mutant should be reported to justify the focus on proton leak. Additionally, the correlation between structural interactions should be directly analyzed and the mutant PMF also analyzed to justify the claims based on hydration alone. Some aspects of the increased dynamics at high pH due to a potential salt bridge are not clear.

      Reviewer #2 (Public review):

      Summary:

      This manuscript explores the role of the C-terminal tail of EmrE in controlling uncoupled proton flux. Leakage occurs in the wild-type transporter under certain conditions but is amplified in the C-terminal truncation mutant D107. The authors use an impressive combination of growth assays, transport assays, NMR on WT and mutants with and without key substrates, classical MD, and reactive MD to address this problem. Overall, I think that the claims are well supported by the data, but I am most concerned about the reproducibility of the MD data, initial structures used for simulations, and the stochasticity of the water wire formation. These can all be addressed in a revision with more simulations as I point out below. I want to point out that the discussion was very nicely written, and I enjoyed reading the summary of the data and the connection to other studies very much.

      Strengths:

      The Henzler-Wildman lab is at the forefront of using quantitative experiments to probe the peculiarities in transporter biophysics, and the MD work from the Voth lab complements the experiments quite well. The sheer number of different types of experimental and computational approaches performed here is impressive.

      Weaknesses:

      The primary weaknesses are related to the reproducibility of the MD results with regard to the formation of water wires in the WT and truncation mutant. This could be resolved with simulations starting from structures built using very different loops and C-terminal tails.

      The water wire gates identified in the MD should be tested experimentally with site-directed mutagenesis to determine if those residues do impact leak.

      We appreciate the reviewers thoughtful consideration of our manuscript, and their recognition of the variety of experimental and computational approaches we have brought to bear in probing the very challenging question of uncoupled proton leak through EmrE.

      We did record SSME measurements with MeTPP+, a small molecule substrate at two different protein:lipid ratios. These experiments report the rate of net flux when both proton-coupled substrate antiport and substrate-gated proton leak are possible. We will add this data to the revision, including data acquired with different lipid:protein ratio that confirms we are detecting transport rather than binding. In brief, this data shows that the net flux is highly dependent on both proton concentration (pH) and drug-substrate concentration, as predicted by our mechanistic model. This demonstrates that both types of transport contribute to net flux when small molecule substrates are present.

      In the absence of drug-substrate, proton leak is the only possible transport pathway. The pyranine assay directly assesses proton leak under these conditions and unambiguously shows faster proton entry into proteoliposomes through the ∆107-EmrE mutant than through WT EmrE, with the rate of proton entry into ∆107-EmrE proteoliposomes matching the rate of proton entry achieved by the protonophore CCCP. We have revised the text to more clearly emphasize how this directly measures proton leak independently of any other type of transport activity. The SSME experiments with a proton gradient only (no small molecule substrate present) provide additional data on shorter timescales that is consistent with the pyranine data. The consistency of the data across multiple LPRs and comparison of transport to proton leak in the SSME assays further strengthens the importance of the C-terminal tail in determining the rate of flux.

      None of the current structural models have good resolution (crystallography, EM) or sufficient restraints (NMR) to define the loop and tail conformations sufficiently for comparison with this work. We are in the process of refining an experimental structure of EmrE with better resolution of the loop and tail regions implicated in proton-entry and leak. Direct assessment of structural interactions via mutagenesis is complicated because of the antiparallel homodimer structure of EmrE. Any point mutation necessarily affects both subunits of the dimer, and mutations designed to probe the hydrophobic gate on the more open face of the transporter also have the potential to disrupt closure on the opposite face, particularly in the absence of sufficient resolution in the available structures. Thus, mutagenesis to test specific predicted structural features is deferred until our structure is complete so that we can appropriately interpret the results.

      In our simulation setup, the MD results can be considered representative and meaningful for two reasons. First, the C-terminal tail, not present in the prior structure and thus modeled by us, is only 4 residues long. We will show in the revision and detailed response that the system will lose memory of its previous conformation very quickly, such that velocity initialization alone is enough for a diverse starting point. Second, our simulation is more like simulated annealing, starting from a high free energy state to show that, given such random initialization, the tail conformation we get in the end is consistent with what we reported. It is also difficult to sample back-and-forth tail motion within a realistic MD timescale. Therefore, it can be unconclusive to causally infer the allosteric motions with unbiased MD of the wildtype alone. The best viable way is to look at the equilibrium statistics of the most stable states between WT- and ∆107-EmrE and compare the differences.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The work is well done and well presented. In my opinion, the authors must address the following questions.

      (1) It is unclear to a non-SSME-expert, why the net charge translocated in delta_107 is larger than in WT. For such small pH gradients (0.5-1pH unit), it seems that only a few protons would leave the liposome before the internal pH is adjusted to be the same as the external. This number can be estimated given the size of the liposomes. What is it? Once the pH gradient is dissipated, no more net proton transport should be observed. So, why would more protons flow out of the mutant relative to WT?

      We appreciate the complexity of both the system and assay and have made revisions to both the main text and SI to address these points more clearly. While we can estimate liposomes size, we cannot easily quantify the number of liposomes on the sensor surface so cannot calculate the amount of charge movement as suggested by the reviewer. We have revised Fig. 3.2 and added additional data at low and high pH with different lipid to protein ratios to distinguish pre-steady state (proton release from the protein) and steady state processes (transport). An extended Fig. 3.2 caption and revised discussion in the main text clarify these points.

      We have also revised SI figure 3.2 to include an example of transport driven by an infinite drug gradient. Drug-proton antiport results in net charge build-up in the liposome since two protons will be driven out for every +1 drug transported in. This also creates a pH gradient is created (higher proton concentration outside). The negative inside potential inhibits further antiport of drug. However, both the negative-inside potential and proton gradient will drives protons back into the liposome if there is a leak pathway available. This is clearly visible with a reversal of current negative (antiport) to positive (proton backflow), and the magnitude of this back flow is larger for ∆107-EmrE which lacks the regulatory elements provided by the C-terminal tail. We have amended the main text and SI to include this discussion.

      (2) Given the estimated rate of transport, size of liposomes, and pH gradient, how quickly would the SSME liposomes reach pH balance?

      Since SSME measurements are due to capacitive coupling and will represent the net charge movement, including pre-steady state contributions, the current values will be incredibly sensitive to individual rates of alternating access, proton and drug on- and off-rates. Time to pH balance would, therefore, differ based on the construct, LPR, absolute pH or drug concentrations as well as the magnitude of the given gradients. For this reason, we necessarily use integrated currents (transported charge over time) when comparing mutants as it reflects kinetic differences inherent to the mutant without over-processing the data, for example, by normalizing to peak currents which would over emphasize certain properties that will differ across mutants. This process allows for qualitative comparisons by subjecting mutants to the same pH and substrate gradients when the same density of transporter construct is present, and care is given to not overstate the importance of the actual quantities of charges that are moving as they will be highly context dependent. This is clearly seen in Fig 3.2 where the current is not zero and the net transported charge is still changing at the end of 1 second. We have amended SI figure 3.2 and the main text to include this discussion.

      (3) Given that H110 and E14 would deprotonate when the external pH is elevated above 7 and that these protons would be released to external bulk, the external bulk pH would decrease twice as much for WT compared to delta107. This would decrease the pH gradient for WT relative to the mutant. Can these effects be quantified and accounted for? Would this ostensibly decrease the amount of charge that transfers into the liposomes for WT? How would this impact the current interpretation that the two systems are driven by the same gradient?

      The reviewer is correct that there will be differences in deprotonation of WT and ∆107 and the amount of proton release will also change with pH. We have amended Figure 3.2 to clarify this difference and its significance. For the proton gradient only conditions in Figure 3, each set of liposomes were equilibrated to the starting pH by repeated washings and incubation before measurement occurred. For example, for the pH 6.5 inside, pH 7 outside condition, both the inside and outside pH were equilibrated at 6.5, and both E14 residues will be predominantly protonated in WT and ∆107, and H110 will be predominantly protonated in WT-EmrE. Upon application of the external pH 7 solution, protons will be released from the E14 of either construct, with additional proton being released from H110 for WT-EmrE causing a large pre-steady state negative contribution to the signal (Fig. 3.2A). Under this pH condition, we the peak current correlates with the LPR, as this release of protons will depend on density of the transporter. However, we also see that the longer-time decay of the signal correlates with the construct (WT or ∆107) and is relatively independent of LPR, consistent with a transport process rather than a rapid pre-steady state release of protons. Therefore, when we look at the actual transported charge over time, despite the higher contribution of proton release to the WT-EmrE signal, the significant increase in uncoupled proton transport for the C-terminal deletion mutant dominates the signal.

      As a contrast, we apply this same analysis to the pH 8 inside, pH 8.5 outside condition where both sets of transports will be deprotonated from the start (Fig. 3.2B). Now the peak currents, decay rates, and transported charge over time are all consistent for a given construct (WT or ∆107). The two LPRs for an individual construct match within error, as the differences in overall charge movement and transported charge over time are independent of pre-steady-state proton release from the transporter at high pH.

      (4) A related question, how does the protonation of H110 influence the potential rate of proton transport between the two systems? Does the proton on H110 transfer to E14?

      The protonation of H110 will only influence the rate of transport of WT-EmrE as its protonation is required for formation of the hydrogen bonding network that coordinates gating. However, protonation of both E14s will influence the rate of proton transport of both systems as protonation state affects the rate of alternating access which is necessary for proton turnover. This is another reason we use the transported charge over time metric to compare mutants as it allows for a common metric for mutants with altered rates which are present in the same density and under the same gradient conditions. We do not have any evidence to support transfer of proton from H110 to E14, but there is also no evidence to exclude this possibility. We do not discuss this in the manuscript because it would be entirely speculative.

      (5) Is the pKa in the simulations (Figure 6B) consistent with the experiment?

      We calculated the pKa from this WT PMF and got a pKa of 7.1, which is in close proximity of the experimental value of 6.8

      (6) Why isn't the PMF for delta_107 compared to WT to corroborate the prediction that hydration sufficiently alters both the rate and pKa of E14?

      We appreciate the reviewer’s suggestion and agree that a direct comparison would be valuable. However, several factors limit the interpretability of such an analysis in this context:

      (a) Our data indicate that the primary difference in free energy barriers between WT and Δ107 lies in the hydration step rather than proton transport itself. To fully resolve this, a 2D PMF calculation via 2D umbrella sampling would be required which can be very expensive. Solely looking at the proton transport side of this PMF will not give much difference.

      (b) Given this, the aim for us to calculate this PMF is to support our conjecture that the bottleneck for such transport is the hydrophobic gate.

      (7) The authors suggest that A61 rotation 'controls the water wire formation' by measuring the distribution of water connectivity (water-water distances via logS) and average distances between A61 and I68/I67. Delta_107 has a larger inter-residue distance (Figure 6A) more probable small log S closer waters connecting E14 and two residues near the top of the protein (Figure 5A). However, it strikes me that looking at average distances and the distribution of log S is not the best way to do this. Why not quantify the correlation between log S and A61 orientation and/or A61-I68/I71 distances as well as their correlation to the proposed tail interactions (D84-R106 interactions) to directly verify the correlation (and suggest causation) of these interactions on the hydration in this region. Additionally, plotting the RMSD or probability of waters below I68 and I171 as a function of A61-I68 distances and/or numbers over time would support the log S analysis.

      The reviewer requested that we provide direct correlation analyses between A61 orientation, residue distances (A61-I68/I71), and water connectivity (logS) to better support the claim about water wire formation, rather than relying solely on average distances and distributions.

      We appreciate the reviewer’s suggestion to strengthen our analysis with direct correlations. However, due to the slow kinetics of hydration/dehydration events, unbiased simulation timescales do not permit sufficient sampling of multiple transitions to perform statistically robust dynamic correlation analyses. Instead, our approach focuses on equilibrium statistics, which reveal the dominant conformational states of WT- and Δ107-EmrE and provide meaningful insights into shifts in hydration patterns.

      (8) It looks like the D84-R106 salt bridge controls this A61-I68 opening. Could this also be quantifiably correlated?

      As discussed in response to the previous question, the unbiased simulation timescales do not permit sufficient sampling of multiple transitions to perform statistically robust dynamic correlation analyses.

      (9) The NMR results show that alternating access increases in frequency from ~4/s for WT at low and high pH to ~17/s for delta_107 only at high pH. They then go on to analyze potential titration changes in the delta_107 mutant, finding two residues with approximate pKa values of 5.6 and 7.1. The former is assigned to E14, consistent with WT. But the latter is suggested to be either D84, which salt bridges to R106, or the C-terminal carboxylate. If it is D84, why would deprotonation, which would be essential to form the salt bridge, increase the rate of alternating access relative to WT?

      We note that the faster alternating access rate was observed for TPP+-bound ∆107-EmrE, not the transporter in the absence of substrate. In the absence of substrate the relatively broad lines preclude quantitative determination of the alternating access rate by NMR making it difficult to judge the validity of the reviewers reasoning. Identification of which residue (D84 or H110) corresponds to the shifted pKa is ultimately of little consequence as this mutant does not reflect the native conditions of the transporter. It is far more important to acknowledge that both R106 and D84 are sensitive to this deprotonation as it indicates these residues are close in space and provides experimental support for the existence of the salt bridge identified in the MD simulations, as discussed in the manuscript.

      (10) In a more general sense, can the authors speculate why an efflux pump would evolve this type of secondary gate that can be thrown off by tight binding in the allosteric site such as that demonstrated by Harmane? What potential advantage is there to having a tail-regulated gate?

      This was likely a necessity to allow for better coupling as these transporters evolved to be more promiscuous. The C-terminal tail is absent in tightly coupled family members such as Gdx who are specific for a single substrate and have a better-defined transport stoichiometry. We have included this discussion in the main text and are currently investigating this phenomenon further. Those experiments are beyond the scope of the current manuscript.

      (11) It is hard to visualize the PT reaction coordinate. Is the e_PT unit vector defined for each window separately based on the initial steered MD pathway? If so, how reliant is the PT pathway on this initial approximate path? Also, how does this position for each window change if/when E14 rotates? This could be checked by plotting the x,y,z distributions for each window and quantifying the overlap between windows in cartesian space. These clouds of distributions could also be plotted in the protein following alignment so the reader can visualize the reaction coordinate. Does the CEC localization ever stray to different, disconnected regions of cartesian phase space that are hidden by the reaction coordinate definition?

      The unit vector e_PT is the same across all windows based on unbiased MD. Therefore, the reaction coordinate (a scalar) is the vector from the starting point to the CEC, projected on this unit vector. E14 rotation does not significantly change the window definition a lot unless the CEC is very close to E14, where we found this to be a better CV. For detailed discussions about this CV, especially a comparison between a curvilinear CV, please see J. Am. Chem. Soc. 2018, 140, 48, 16535–16543 “Simulations of the Proton Transport” and its SI Figure S1.In the Supplementary Information, we added figure 6.1 to show the average X, Y, Z coordinates of each umbrella window.

      (12) Lastly, perhaps I missed it, but it's unclear if the rate of substrate efflux is also increased in the delta_107 mutant. If this is also increased, then the overall rate of exchange is faster, including proton leak. This would be important to distinguish since the focus now is entirely on proton leaks. I.e., is it only leak or is it overall efflux and leak?

      We have amended SI figure 3.2 to include a gradient condition where an infinite drug gradient is created across the liposome. The infinite gradient allows for rapid transport of drug into the liposomes until charge build-up opposes further transport. This peak is at the same time for both LPRs of WT- and ∆107-EmrE suggesting the rate of substrate transport is similar. Differences in the peak heights across LPRs can be attributed to competition between drug and proton for the primary binding site such that more proton will be released for the higher density constructs as described above. This process does also create a proton gradient as drug moving in is coupled to two protons moving out so as charge build-up inhibits further drug movement, the building proton gradient will also begin to drive proton back in which is another example of uncoupled leak. Here, again we see that this back-flow of protons or leak is of greater magnitude for ∆107-EmrE proteoliposomes that for those with WT-EmrE. We have included this discussion in the SI and main text.

      Minor

      (1) Introduction - the authors describe EmrE as a model system for studying the molecular mechanism of proton-coupled transport. This is a rather broad categorization that could include a wide range of phenomena distal from drug transport across membranes or through efflux pumps. I suggest further specifying to not overgeneralize.

      We revised to note the context of multidrug efflux.

      Reviewer #2 (Recommendations for the authors):

      Simulations. The initial water wire analysis is based on 4 different 1 ms simulations presented in Figure 5. The 3 WT replicates show similar results for the tail-blocking water wire formation, but the details of the system build and loop/C-terminal tail placement are not clear. It does appear that a single C-terminal tail model was created for all WT replicates. Was there also modeling for any parts of the truncation mutant? Regardless, since these initial placements and uncertainties in the structures may impact the results and subsequent water wire formation, I would like a discussion of how these starting structures impacted the formation or not of wires. I think that another WT replicate should be run starting from a completely new build that places the tail in a different (but hopefully reasonable location). This could be built with any number of tools to generate reasonable starting structures. It's critical to ensure that multiple independent simulations across different initial builds show the same water wire behavior so that we know the results are robust and insensitive to the starting structure and stochastic variation.

      We thank Reviewer 2 for their suggestion regarding the discussion of the initial structure. In our simulations, the C-terminal tail was initially modeled in an extended conformation (solvent-exposed) to mimic its disordered state prior to folding. This approach resembles an annealing process, where the system evolves from a higher free-energy state toward equilibrium. Notably, across all three replicas, we observed consistent folding of the tail onto the protein surface, supporting the robustness of this conformational preference.

      For the Δ107 truncation mutant, minimal modeling was required, as most experimental structures resolve residues up to S105 or R106. To rigorously assess the influence of the starting configuration, we analyzed the tail’s dynamics using backbone dihedral angle auto- and cross-correlation functions (new Supplementary Figures 10.1 and 10.2). These analyses reveal rapid decay of correlations—consistent with the tail’s short length (5 residues) and high flexibility—indicating that the system "forgets" its initial configuration well within the simulation timescale. Thus, we conclude that our sampling is sufficient to capture equilibrium behavior, independent of the starting structure.

      What does the size of the barrier in the PMF (Figure 6B) imply about the rate of proton transfer/leak and can the pKa shift of the acidic residue be estimated with this energy value compared to bulk?

      We noticed this point aligns with a related concern raised by Reviewer 1. For a detailed discussion please refer to Point 5 in our response to Reviewer 1.

      Experimental validation. The hypotheses generated by this work would be better buttressed if there were some mutation work at the hydrophobic gate (61, 68, 71) to support it. I realize that this may be hard, but it would significantly improve the quality.

      Due to the small size of the transporter, any mutagenesis of EmrE should necessarily be accompanied by functional characterization to fully assess the effects of the mutation on rate-limiting steps. We have revised the manuscript to add a discussion of the challenges with analyzing simple point mutants and citing what is known from prior scanning mutagenesis studies of EmrE.

    1. eLife Assessment

      This fundamental study investigates the role of polyunsaturated fatty acids (PUFAs) in physiology and membrane biology, using a unique model to perform a thorough genetic screen that demonstrates that PUFA synthesis defects cannot be compensated for by mutations in other pathways. These findings are supported by compelling evidence from a high quality genetic screen, functional validation of their hits, and lipid analyses. This study will appeal to researchers in membrane biology, lipid metabolism, and C. elegans genetics.

    2. Reviewer #1 (Public review):

      Summary:

      This study addresses the roles of polyunsaturated fatty acids (PUFAs) in animal physiology and membrane function. A C. elegans strain carrying the fat-2(wa17) mutation possesses a very limited ability to synthesize PUFAs and there is no dietary input because the E. coli diet consumed by lab grown C. elegans does not contain any PUFAs. The fat-2 mutant strain was characterized to confirm that the worms grow slowly, have rigid membranes, and have a constitutive mitochondrial stress response. The authors showed that chemical treatments or mutations known to increase membrane fluidity did not rescue growth defects. A thorough genetic screen was performed to identify genetic changes to compensate for the lack of PUFAs. The newly isolated suppressor mutations that compensated for FAT-2 growth defects included intergenic suppressors in the fat-2 gene, as well as constitutive mutations in the hypoxia sensing pathway components EGL-9 and HIF-1, and loss of function mutations in ftn-2, a gene encoding the iron storage protein ferritin. Taken together, these mutations lead to the model that increased intracellular iron, an essential cofactor for fatty acid desaturases, allows the minimally functional FAT-2(wa17) enzyme to be more active, resulting in increased desaturation and increased PUFA synthesis.

      Strengths:

      (1) This study provides new information further characterizing fat-2 mutants. The authors measured increased rigidity of membranes compared to wild type worms, however this rigidity is not able to be rescued with other fluidity treatments such as detergent or mutants. Rescue was only achieved with polyunsaturated fatty acid supplementation.

      (2) A very thorough genetic suppressor screen was performed. In addition to some internal fat-2 compensatory mutations, the only changes in pathways identified that are capable of compensating for deficient PUFA synthesis was the hypoxia pathway and the iron storage protein ferritin. Suppressor mutations included an egl-9 mutation that constitutively activates HIF-1, and Gain of function mutations in hif-1 that are dominant. This increased activity of HIF conferred by specific egl-9 and hif-1 mutations lead to decreased expression of ftn-2. Indeed, loss of ftn-2 leads to higher intracellular iron. The increased iron apparently makes the FAT-2 fatty acid desaturase enzyme more active, allowing for the production of more PUFAs.

      (3) The mutations isolated in the suppressor screen show that the only mutations able to compensate for lack of PUFAs were ones that increased PUFA synthesis by the defective FAT-2 desaturase, thus demonstrating the essential need for PUFAs that cannot be overcome by changes in other pathways. This is a very novel study, taking advantage of genetic analysis of C. elegans, and it confirms the observations in humans that certain essential PUFAs are required for growth and development.

      (4) Overall, the paper is well written, and the experiments were carried out carefully and thoroughly. The conclusions are well supported by the results.

      Weaknesses:

      Overall, there are not many weaknesses. The main one I noticed is that the lipidomic analysis shown in Figs 3C, 7C, S1 and S3. While these data are an essential part of the analysis and provide strong evidence for the conclusions of the study, it is unfortunate that the methods used did not enable the distinction between two 18:1 isomers. These two isomers of 18:1 are important in C. elegans biology, because one is a substrate for FAT-2 (18:1n-9, oleic acid) and the other is not (18:1n-7, cis vaccenic acid). Although rarer in mammals, cis-vaccenic acid is the most abundant fatty acid in C. elegans and is likely the most important structural MUFA. The measurement of these two isomers is not essential for the conclusions of the study.

    3. Reviewer #2 (Public review):

      Summary:

      The authors use a genetic screen in C. elegans to investigate the physiological roles of polyunsaturated fatty acids (PUFAs). They screen for mutations that rescue fat-2 mutants, which have strong reductions in PUFAs. As a result, either mutations in fat-2 itself or mutations in genes involved in the HIF-1 pathway were found to rescue fat-2 mutants. Mutants in the HIF-1 pathway rescue fat-2 mutants by boosting their catalytic activity (via upregulated Fe2+). Thus, the authors show that in the context of fat-2 mutation, the sole genetic means to rescue PUFA insufficiency is to restore PUFA levels.

      Strengths:

      As C. elegans can produce PUFAs de novo as essential lipids, the genetic model is well-suited to study the fundamental roles of PUFAs. The genetic screen finds mutations in convergent pathways, suggesting that it has reached near-saturation. The authors extensively validate the results of the screening and provide sufficient mechanistic insights to show how PUFA levels are restored in HIF-1 pathway mutants. As many of the mutations found to rescue fat-2 mutants are of gain-of-function, it is unlikely that similar discoveries could have been made with other approaches like genome-wide CRISPR screenings, making the current study distinctive. Consequently, the study provides important messages. First, it shows that PUFAs are essential for life. The inability to genetically rescue PUFA deficiency, except for mutations that restore PUFA levels, suggests that they have pleiotropic essential functions. In addition, the results suggest that the most essential functions of PUFAs are not in fluidity regulation, which is consistent with recent reviews proposing that the importance of unsaturation goes beyond fluidity (doi: 10.1016/j.tibs.2023.08.004 and doi: 10.1101/cshperspect.a041409). Thus, the study provides fundamental insights about how membrane lipid composition can be linked to biological functions.

      Weaknesses:

      The authors put in a lot of effort to answer the questions that arose through peer review, and now all the claims seem to be supported by experimental data. Thus, I do not see obvious weaknesses. Of course, it remains unclear what PUFAs do beyond fluidity regulation, but this is something that cannot be answered from a single study.

    4. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1:

      The addition of the discussion about the two isomers of 18:1 didn't quite work in the place that the authors added. What the authors wrote on line 126 is true about 18:1 isomers in wild type worms. However, they are reporting their lipidomics results of the fat-2(wa17) mutant worms. In this case, a substantial amount of the 18:1 is the oleic acid (18:1n-9) isomer. The authors can check Table 2 in their reference [10] and see that wild type and other fat mutants indeed contain approximately 10 fold more cis vaccenic than oleic acid, the fat-2(wa17) mutants do accumulate oleic acid, because the wild type activity of FAT-2 is to convert oleic acid to linoleic acid, where it can be converted to downstream PUFAs. I suggest editing their sentence on line 126 to say that the high 18:1 they observed agrees with [10], and then comment about reference 10 showing the majority of 18:1 being the cis-vaccenic isomer in most strains, but the oleic acid isomer is more abundantly in the fat-2(wa17) mutant strain.

      We thank the reviewer for spotting that and sparing us a bit of embarrassment. We have now modified the text and hope we got it right this time:

      "Even though the lipid analysis methods used here are not able to distinguish between different 18:1 species, a previous study showed that the majority of the 18:1 fatty acids in the fat-2(wa17) mutant is actually 18:1n9 (OA) [10] and not 18:1n7 (vaccenic acid) as in most other strains [10,23]; this is because OA is the substrate of FAT-2 and thus accumulates in the mutant."

      Reviewer #2:

      I still do not agree with the answer to my previous comment 6 regarding Figure S2E. The authors claim that hif-1(et69) suppresses fat-2(wa17) in a ftn-2 null background (in Figure S2 legend for example). To claim so, they would need to compare the triple mutant with fat2(wa17);ftn-2(ok404) and show some rescue. However, we see in Figure 5H that ftn2(ok404) alone rescues fat-2(wa17). Thus, by comparing both figures, I see no additional effect of hif-1(et69) in an ftn-2(ok404) background. I actually think that this makes more sense, since the authors claim that hif-1(et69) is a gain-of-function mutation that acts through suppression of ftn-2 expression. Thus, I would expect that without ftn-2 from the beginning, hif-1(et69) does not have an additional effect, and this seems to be what we see from the data. Thus, I would suggest that the authors reformulate their claims regarding the effect of hif1(et69) in the ftn-2(ok404) background, which seems to be absent (consistently with what one would expect).

      We completely agree with the reviewer and indeed this is the meaning that we tried to convey all along. The text has now been modified as follows:

      "Lastly, ftn-2(et68) is still a potent fat-2(wa17) suppressor when hif-1 is knocked out (S2D Fig), suggesting that no other HIF-1-dependent functions are required as long as ftn-2 is downregulated; this conclusion is supported by the observation that the potency of the ftn2(ok404) null allele to act as a fat-2(wa17) suppressor is not increased by including the hif-1(et69) allele (compare Fig 5H and S2E Fig)."

    1. eLife Assessment

      The authors design and implement an elegant strategy to delete genomic sequences encoding the dopamine receptor dop1R2 from specific subsets of mushroom body neurons (ab, a'b' and gamma) and show that while none of these manipulations affect short term appetitive or aversive memory, loss of dop1R2 from ab or a'b' block the ability of flies to display measurable forms of longer forms of memory. These findings are important in confirming and extending prior observations, and well supported by convincing evidence that build on precise techniques for genetic perturbation.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript the authors present a novel CRISPR/Cas9-based genetic tool for the dopamine receptor dop1R2. Based on the known function of the receptor in learning and memory, they tested the efficacy of the genetic tool by knocking out the receptor specifically in mushroom body neurons. The data suggest that dop1R2 is necessary for longer lasting memories through its action on ⍺/ß and ⍺'/ß' neurons but is dispensable for short-term memory and thus in ɣ neurons. The experiments impressively demonstrate the value of such a genetic tool and illustrate the specific function of the receptor in subpopulations of KCs for longer-term memories.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript examines the role of the dopamine receptor, Dop1R2, in memory formation. This receptor has complex roles in supporting different stages of memory, and the neural mechanisms for these functions is poorly understood. The authors are able to localize Dop1R2 function to the vertical lobes of the mushroom body, revealing a role in later (presumably middle-term) aversive and appetitive memory. In general the experimental design is rigorous, and statistics are appropriately applied. The manuscript provides a thorough assessment of how Dop1R2 functions within the mushroom bodies to regulate protein-synthesis dependent and independent memory, and provides a valuable new tool for the community.

      Strengths:

      (1) The FRT lines generated provide a novel tool for temporal and spatially precise manipulation of Dop1R2 function. This tool will be valuable to study the role of Dop1R2 in memory and other behaviors potentially regulated by this gene.

      (2) Given the highly conserved role of Dop1R2 in memory and other processes, these findings have high potential to translate to vertebrate species.

    4. Reviewer #3 (Public review):

      Summary:

      Kaldun et al. investigated the role of Dopamine Receptor Dop1R2 in different types and stages of olfactory associative memory in Drosophila melanogaster. Dop1R2 is a type 1 Dopamine receptor that can act both through Gs-cAMP and Gq-ERCa2+ pathways. The authors first developed a sophisticated tool where tissue-specific knock-out mutants can be generated using Crispr/Cas9 technology in combination with the Gal4/UAS gene-expression toolkit. They direct the K.O. mutation to intrinsic neurons of the main associative memory centre fly brain: the mushroom body (MB). There are three main types of MB-neurons, or Kenyon cells, according to their axonal projections: a/b; a'/b' and g neurons.

      Kaldun et al. found that, while not required for short-term memory, dop1R2 is necessary in a/b and a'/b' but not in gamma neurons to display normal appetitive and aversive middle-term (2h) and long-term (24h) memory. These results showcase a compartmentalized role of Dop1R2 in specific neuronal subtypes of the main memory centre of the fly brain for the expression of middle and long-term memories.

      The conclusions of this paper are very well supported by the data, and the authors systematically addressed the requirement of a very interesting type of dopamine receptor in both appetitive and aversive memories. These findings are important for the fields of learning and memory and dopaminergic neuromodulation, among others.

      Importantly, the authors of this paper produced a tool to generate tissue-specific knock out mutants of dop1R2. Although reports on the requirement of this gene in different memory phases exist, the genetic tools used here represent the most sophisticated approach to induce a loss of function phenotypes in neurons of interest.

      Overall, the authors generated a very useful tool to study dopamine neuromodulation in any given circuit when used in combination with the powerful genetic toolkit available in Drosophila. The reports on this paper confirmed a previously described role of Dop1R2 in the expression of aversive and appetitive LTM providing spatio-temporal resolution and additionally, they mapped these effects to two types of memory neurons in the fly brain, shedding light into the intricate modulation of dopamine in memory circuits.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors present a novel CRISPR/Cas9-based genetic tool for the dopamine receptor dop1R2. Based on the known function of the receptor in learning and memory, they tested the efficacy of the genetic tool by knocking out the receptor specifically in mushroom body neurons. The data suggest that dop1R2 is necessary for longer-lasting memories through its action on ⍺/ß and ⍺'/ß' neurons but is dispensable for short-term memory and thus in ɣ neurons. The experiments impressively demonstrate the value of such a genetic tool and illustrate the specific function of the receptor in subpopulations of KCs for longer-term memories. The data presented in this manuscript are significant.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript examines the role of the dopamine receptor, Dop1R2, in memory formation. This receptor has complex roles in supporting different stages of memory, and the neural mechanisms for these functions are poorly understood. The authors are able to localize Dop1R2 function to the vertical lobes of the mushroom body, revealing a role in later (presumably middle-term) aversive and appetitive memory. In general, the experimental design is rigorous, and statistics are appropriately applied. While the manuscript provides a useful tool, it would be strengthened further by additional mechanistic studies that build on the rich literature examining the roles of dopamine signaling in memory formation. The claim that Dop1R2 is involved in memory formation is strongly supported by the data presented, and this manuscript adds to a growing literature revealing that dopamine is a critical regulator of olfactory memory. However, the manuscript does not necessarily extend much beyond our understanding of Dop1R2 in memory formation, and future work will be needed to fully characterize this reagent and define the role of Dop1R2 in memory.

      Strengths:

      (1) The FRT lines generated provide a novel tool for temporal and spatially precise manipulation of Dop1R2 function. This tool will be valuable to study the role of Dop1R2 in memory and other behaviors potentially regulated by this gene.

      (2) Given the highly conserved role of Dop1R2 in memory and other processes, these findings have a high potential to translate to vertebrate species.

      Weaknesses:

      (1) The authors state Dop1R2 associates with two different G-proteins. It would be useful to know which one is mediating the loss of aversive and appetitive memory in Dop1R2 knockout flies.

      We thank you for the insightful comment. We agree that it would be very useful to know which G-proteins are transmitting Dop1R2 signaling. To that extent, we examined single-cell transcriptomics data to check the level of co-expression of Dop1R2 with G-proteins that are of interest to us. (Figure 1 S1)

      Lines 312-325

      “Some RNA binding proteins and Immediate early genes help maintain identities of Mushroom body cells and are regulators of local transcription and translation (de Queiroz et al., 2025; Raun et al., 2025). So, the availability of different G-proteins may change in different lobes and during different phases of memory. The G-protein via which GPCRs signal, may depend on the pool of available G-proteins in the cell/sub-cellular region (Hermans, 2003)., Therefore, Dop1R2 may signal via different G-proteins in different compartments of the Mushroom body and also different compartments of the neuron. We looked at Gαo and Gαq as they are known to have roles in learning and forgetting (Ferris et al., 2006; Himmelreich et al., 2017). We found that Dop1R2 co-expresses more frequently with Gαo than with Gαq (Figure 1 S1). While there is evidence for Dop1R2 to act via Gαq (Himmelreich et al., 2017). It is difficult to determine whether this interaction is exclusive, or if Dop1R2 can also be coupled to other G-proteins. It will be interesting to determine the breadth of G-proteins that are involved in Dop1R2 signaling.”

      (2) It would be interesting to examine 24hr aversive memory, in addition to 24hr appetitive memory.

      This is indeed an important point and we agree that it will complete the assessment of temporally distinct memory traces. We therefore performed the Aversive LTM experiments and include them in the results.

      Lines 208-228

      “24h memory is impaired by loss of Dop1R2

      Next, we wanted to see if later memory forms are also affected. One cycle of reward training is sufficient to create LTM (Krashes & Waddell, 2008), while for aversive memory, 5-6 cycles of electroshock-trainings are required to obtain robust long-term memory scores (Tully et al., 1994). So, we looked at both, 24h aversive and appetitive memory. For aversive LTM, the flies were tested on the Y-Maze apparatus as described in (Mohandasan et al., (2022).

      Flipping out Dop1R2 in the whole MB causes a reduced 24h memory performance (Figure 4A, E). No phenotype was observed when Ddop1R2 was flipped out in the γ-lobe (Figure 4B, F). However, similar to 2h memory, loss of Ddop1R2 in the α/β-lobes (Figure 4C, G) or the α’/β’-lobes (Figure 4D, H) causes a reduction in memory performance. Thus, Dop1R2 seems to be involved in aversive and appetitive LTM in the α/β-lobes and the α’/β’-lobes.

      Previous studies have shown mutation in the Dop1R2 receptor leads to improvement in LTM when a single shock training paradigm is used (Berry et al., 2012). As we found that it disrupts LTM, we wanted to verify if the absence of Dop1R2 outside the MB is what leads to an improvement in memory. To that extent, we tested panneuronal flip-out of Dop1R2 flies for 6hr and 24hr memory upon single shock using the elav-Gal4 driver. We found that it did not improve memory at both time points (Figure 4 S1). Confirming that flipping out Dop1R2 panneuronally does not improve LTM (Figure 4 S1C) and highlighting its irrelevance in memory outside the MB.”

      (3) The manuscript would be strengthened by added functional analysis. What are the DANs that signal through Dop1R. How do these knockouts impact MBONs?

      We thank you for this question. We indeed agree that it is a highly relevand and open question, how distinct DANs signal via distinct Dopamine receptors. Our work here uniquely focusses on Dop1R2 within the MB. We aim to investigate other DopRs and the connection between DANs in the future using similar approaches.

      (4) Also in Figure 2, the lobe-specific knockouts might be moved to supplemental since there is no effect. Instead, consider moving the control sensory tests into the main figure.

      We thank you for this suggestion and understand that in Figure 2 no significant difference is seen. However, we have emphasized in the text that the results from the supplementary figures are just to confirm that the modifications made at the Dop1R2 locus did not alter its normal function.

      Lines 156-162

      “We wanted to see if flipping out Dop1R2 in the MB affects memory acquisition and STM by using classical olfactory conditioning. In short, a group of flies is presented with an odor coupled to an electric shock (aversive) or sugar (appetitive) followed by a second odor without stimulus. For assessing their memory, flies can freely choose between the odors either directly after training (STM) or at a later timepoint.

      To ensure that the introduced genetic changes to the Dop1R2 locus do not interfere with behavior we first checked the sensory responses of that line”

      (5) Can the single-cell atlas data be used to narrow down the cell types in the vertical lobes that express Dop1R2? Is it all or just a subset?

      This is indeed an interesting question, and we thank you for mentioning it. To address this as best as we could, we analyzed the single cell transcriptomic data from (Davie et al., 2018) and presented it in Figure 1 S1.

      Reviewer #3 (Public Review):

      Summary:

      Kaldun et al. investigated the role of Dopamine Receptor Dop1R2 in different types and stages of olfactory associative memory in Drosophila melanogaster. Dop1R2 is a type 1 Dopamine receptor that can act both through Gs-cAMP and Gq-ERCa2+ pathways. The authors first developed a very useful tool, where tissue-specific knock-out mutants can be generated, using Crispr/Cas9 technology in combination with the powerful Gal4/UAS gene-expression toolkit, very common in fruit flies.

      They direct the K.O. mutation to intrinsic neurons of the main associative memory centre fly brain-the mushroom body (MB). There are three main types of MB-neurons, or Kenyon cells, according to their axonal projections: a/b; a'/b', and g neurons.

      Kaldun et al. found that flies lacking dop1R2 all over the MB displayed impaired appetitive middle-term (2h) and long-term (24h) memory, whereas appetitive short-term memory remained intact. Knocking-out dop1R2 in the three MB neuron subtypes also impaired middle-term, but not short-term, aversive memory.

      These memory defects were recapitulated when the loss of the dop1R2 gene was restricted to either a/b or a'/b', but not when the loss of the gene was restricted to g neurons, showcasing a compartmentalized role of Dop1R2 in specific neuronal subtypes of the main memory centre of the fly brain for the expression of middle and long-term memories.

      Strengths:

      (1) The conclusions of this paper are very well supported by the data, and the authors systematically addressed the requirement of a very interesting type of dopamine receptor in both appetitive and aversive memories. These findings are important for the fields of learning and memory and dopaminergic neuromodulation among others. The evidence in the literature so far was generated in different labs, each using different tools (mutants, RNAi knockdowns driven in different developmental stages...), different time points (short, middle, and long-term memory), different types of memories (Anesthesia resistant, which is a type of protein synthesis independent consolidated memory; anesthesia sensitive, which is a type of protein synthesis-dependent consolidated memory; aversive memory; appetitive memory...) and different behavioral paradigms. A study like this one allows for direct comparison of the results, and generalized observations.

      (2) Additionally, Kaldun and collaborators addressed the requirement of different types of Kenyon cells, that have been classically involved in different memory stages: g KCs for memory acquisition and a/b or a'/b' for later memory phases. This systematical approach has not been performed before.

      (3) Importantly, the authors of this paper produced a tool to generate tissue-specific knock-out mutants of dop1R2. Although this is not the first time that the requirement of this gene in different memory phases has been studied, the tools used here represent the most sophisticated genetic approach to induce a loss of function phenotypes exclusively in MB neurons.

      Weaknesses:

      (1) Although the paper does have important strengths, the main weakness of this work is that the advancement in the field could be considered incremental: the main findings of the manuscript had been reported before by several groups, using tissue-specific conditional knockdowns through interference RNAi. The requirement of Dop1R2 in MB for middle-term and long-term memories has been shown both for appetitive (Musso et al 2015, Sun et al 2020) and aversive associations (Plaçais et al 2017).

      Thank you for this comment. We believe that the main takeaway from the paper is the elegant tool we developed, to study the role of Dop1R2 in fruit flies by effectively flipping it out spatio-temporally. Additionally, we studied its role in all types of olfactory associative memory to establish it as a robust tool that can be used for further research in place of RNAi knockouts which are shown to be less efficient in insects as mentioned in the texts in line 394-398.

      “The genetic tool we generated here to study the role of the Dop1R2 dopamine receptor in cells of interest, is not only a good substitute for RNAi knockouts, which are known to be less efficient in insects (Joga et al., 2016), but also provides versatile possibilities as it can be used in combination with the powerful genetic tools of Drosophila.”

      (2) The approach used here to genetically modify memory neurons is not temporally restricted. Considering the role of dopamine in the correct development of the nervous system, one must consider the possible effects that this manipulation can have in the establishment of memory circuits. However, previous studies addressing this question restricted the manipulation of Dop1R2 expression to adulthood, leading to the same findings than the ones reported in this paper for both aversive and appetitive memories, which solidifies the findings of this paper.

      We thank you for this comment and we agree that it would be important to show a temporally restricted effect of Dop1R2 knockout. To assess this and rule out potential developmental defects we decided to restrict the knockout to the post-eclosion stage and to include these results.

      Lines 230-250

      “Developmental defects are ruled out in a temporally restricted Dop1R2 conditional knockout.

      To exclude developmental defects in the MB caused by flip-out of Dop1R2, we stained fly brains with a FasII antibody. Compared to genetic controls, flies lacking Dop1R2 in the mushroom body had unaltered lobes (Figure 4 S2C).

      Regardless, we wanted to control for developmental defects leading to memory loss in flip-out flies. So, we generated a Gal80ts-containing line, enabling the temporal control of Dop1R2 knockout in the entire mushroom body (MB). Given that the half-life of the receptor remains unknown, we assessed both aversive short-term memory (STM) and long-term memory (LTM) to determine whether post-eclosion ablation of Dop1R2 in the MB produced differences compared to our previously tested line, in which Dop1R2 was constitutively knocked out from fertilization. To achieve this, flies were maintained at 18°C until eclosion and subsequently shifted to 30°C for five to seven days. On the fifth day, training was conducted, followed by memory testing. Our results indicate that aversive STM was not significantly impaired in Dop1R2-deficient MBs compared to control flies (Figure 4 S3), consistent with our previous findings (Figure 2). However, aversive LTM was significantly impaired relative to control lines (Figure 4 S3), which also aligned with prior observations. These findings strongly indicate that memory loss caused by Dop1R2 flip-out is not due to developmental defects.”

      (3) The authors state that they aim to resolve disparities of findings in the field regarding the specific role of Dop1R2 in memory, offering a potent tool to generate mutants and addressing systematically their effects on different types of memory. Their results support the role of this receptor in the expression of long-term memories, however in the experiments performed here do not address temporal resolution of the genetic manipulations that could bring light into the mechanisms of action of Dop1R2 in memory. Several hypotheses have been proposed, from stabilization of memory, effects on forgetting, or integration of sequences of events (sensory experiences and dopamine release).

      We thank you for this comment. We agree that it would be interesting to dissect the memory stages by knocking out the receptor selectively in some of them (encoding, consolidation, retrieval). However, our tool irreversibly flips out Dop1R2 preventing us from investigating the receptor’s role in retrieval. Our results show that the receptor is dispensable for STM formation (Figure 2, Figure 4 Supplement 3), suggesting that it is not involved in encoding new information. On the other hand, it is instead involved in consolidation and/or retrieval of long-term and middle-term memories (Figure 3, Figure 4, Figure 5B).

      Overall, the authors generated a very useful tool to study dopamine neuromodulation in any given circuit when used in combination with the powerful genetic toolkit available in Drosophila. The reports in this paper confirmed a previously described role of Dop1R2 in the expression of aversive and appetitive LTM and mapped these effects to two specific types of memory neurons in the fly brain, previously implicated in the expression and consolidation of long-term associative memories.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) On the first view, the results shown here are different from studies published earlier, while in the same line with others (e.g. Sun et al, for appetitive 24h memories). For example, Berry et al showed that the loss of dop1R2 impairs immediate memory, while memory scores are enhanced 3h, 6h, and 24h after training. Further, they showed data that shock avoidance, at least for higher shock intensities, is reduced in mutant (damb) flies. All in all, this favors how important it is to improve the genetic tools for tissue-specific manipulation. Despite the authors nicely discussing their data with respect to the previous studies, I wondered whether it would be suitable to use the new tool and knock out dop1R2 panneuronally to see whether the obtained data match the results published by Berry et al.. Further, as stated in line 105ff: "As these studies used different learning assays - aversive and appetitive respectively as well as different methods, it is unclear if Dop1R2 has different functions for the different reinforcement stimulus" I wondered why the authors tested aversive and appetitive learning for STM and 2h memory, but only appetitive memory for 24h.

      Thank you for this comment. To that extent, as mentioned above in response to reviewer #2, we included in the results the aversive LTM experiment (Figure 4). Moreover, we performed experiments along the line of Berry et al. using our tool as shown in Figure 4 S1. Our results support that Dop1R2 is required for LTM, rather than to promote forgetting.

      (2) Line 165ff: I can´t find any of the supplementary data mentioned here. Please add the corresponding figures.

      Thank you for pointing this out. In that line we don’t refer to any supplementary data, but to the Figure 1F, showing the absence of the HA-tag in our MB knock-out line. We have clarified this in the text (lines 151-153)

      (3) I can't imagine that the scale bar in Figure 1D-F is correct. I would also like to suggest to show a more detailed analysis of the expression pattern. For example, both anterior and posterior views would be appropriate, perhaps including the VNC. This would allow the expression pattern obtained with this novel tool to be better compared with previously published results. Also, in relation to my comment above (1), it may help to understand the functional differences with previous studies, especially as the authors themselves state that the receptor is "mainly" expressed in the mushroom body (line 99). It would be interesting to see where else it is expressed (if so). This would also be interesting for the panneuronal knockdown experiment suggested under (1). If the receptor is indeed expressed outside the mushroom body, this may explain the differences to Berry et al.

      Thank you for noting this, there was indeed a mistake in the scale bar which we now fixed. Since with our HA-tag immunostaining we could not detect any noticeable signal outside of the MB, we decided to analyze previously existing single cell transcriptomics data that showed expression of the receptor in 7.99% of cells in the VNC and in 13.8% of cells outside the MB (lines 98-100) confirming its sparse expression in the nervous system. The lack of detection of these cells is likely due to the sparse and low expression of the protein. The HA-tag allows to detect the endogenous level of the locus (it is possible that a Gal4/UAS amplification of the signal might allow to detect these cells).

      Regarding the panneuronal knockout, we decided to try to replicate the experiment shown in Berry et al. in Figure 4 S1 and found that Dop1R2 is required for LTM.

      (4) Related to learning data shown in Figures 2-4, the authors should show statistical differences between all groups obtained in the ANOVA + PostHoc tests. Currently, only an asterisk is placed above the experimental group, which does not adequately reflect the statistical differences between the groups. In addition, I would like to suggest adding statistical tests to the chance level as it may be interesting to know whether, for example, scores of knockout flies in 3C and 3D are different from the chance level.

      Many thanks for this correction, we agree with the fact that the way significance scores were shown was not informative enough. We fixed the point by now showing significance between all the control groups and the experimental ones. We also inserted the chance level results in the figure legends.

      (5) Unfortunately, the manuscript has some typing errors, so I would like to ask the authors to check the manuscript again carefully.

      Some Examples:

      Line 31: the the

      Line 56: G-Protein

      Line 64: c-AMP

      Line 68: Dopamine

      Line 70: G-Protein (It alternates between G-protein and G-Protein)

      Line 76: References are formatted incorrectly

      Line 126: Ha-Tag (It alternates between Ha and HA)

      Line 248: missing space before the bracket...is often found

      Thank you for noticing these errors, we have now corrected the spelling throughout the manuscript.

      (6) In the figures the axes are labelled Preference Index (Pref"I"). In the methods, however, the calculation formula is defined as "PREF".

      We thank you for drawing attention to this. To avoid confusion, we changed the definition in the methods section so that it could be clear and coherent (“Memory tests” paragraph in the methods section).

      “PREF = ((N<sub>arm1</sub> - N<sub>arm2</sub>) 100) / N<sub>total</sub> the two preference indices were calculated from the two reciprocal experiments. The average of these two PREFs gives a learning index (LI). LI = (PREF<sub>1</sub> + PREF<sub>2</sub>) / 2.

      In case of all Long-term Aversive memory experiments, Y-Maze protocol was adapted to test flies 24 hours post training. Testing using the Y-Maze was done following the protocol as described in (Mohandasan et al., 2022) where flies were loaded at the bottom of 20-minutes odorized 3D-printed Y-Mazes from where they would climb up to a choice point and choose between the two odors. The learning index was then calculated after counting the flies in each odorized vial as follows: LI = ((N<sub>CS-</sub> - N<sub>CS+</sub>) 100) / N<sub>total</sub>. Where NCS- and NCS+ are the number of flies that were found trapped in the untrained and trained odor tube respectively.

      Reviewer #2 (Recommendations For The Authors):

      (1) In Figures 2 and 3, the legends running two different subfigures is confusing. Would be helpful to find a different way to present.

      Thank you for your suggestion. We modified how we present legends, placing them vertically so that it is clearer.

      (2) Use additional drivers to verify middle and long-term memory phenotypes.

      We agree that it would be interesting to see the role of Dop1R2 in other neurons. To that extent, we looked at long term aversive memory in flies where the receptor was panneuronaly flipped out, and did not find evidence that suggested involvement of Dop1R2 in memory processes outside the MB. (Figure 4 S1)

      (3) Additional discussion of genetic background for fly lines would be helpful.

      Thank you for your advice. We have mentioned the genetic background of flies in the key resources table of the methods sections. Additionally, we also included further explanation on how the lines were created and their genetic background (see “Fly Husbandry” paragraph in the methods section).

      “UAS-flp;;Dop1R2 cko flies and Gal4;Dop1R2<sup>cko</sup> flies were crossed back with ;;Dop<sup>cko</sup> flies to obtain appropriate genetic controls which were heterozygous for UAS and Gal4 but not Dop1R2<sup>cko</sup>.”

      Reviewer #3 (Recommendations For The Authors):

      Line 109 states that to resolve the problem a tool is developed to knock down Dop1R2 in s spatial and temporal specific manner- while I agree that this is within the potential of the tool, there is no temporal control of the flipase action in this study; at least I cannot find references to the use of target/gene switch to control stages of development or different memory phases. However the version available for download is missing supplementary information, so I did not have access to supplementary figures and tables.

      Thank you for the comment, as mentioned before it would be great to be able to dissect the memory phases. We show in lines 232 – 250 and Figure 4 S3 that the temporally restricted flip-out to the post-eclosion life stage gave us coherent results with the previous findings, ruling out potential developmental defects.

      In relation to my comment on the possible developmental effects of the loss of the gene, Figure 1F could showcase an underdeveloped g lobe when looking at the lobe profiles. I understand this is not within the scope of the figure, but maybe a different z projection can be provided to confirm there are no obvious anatomical alterations due to the loss of the receptor.

      We understand the doubt about the correct development of the MB and we thank you for your insightful comment. To that extent we decided to perform a FasII immunostaining that could show us the MB in the different lines (Figure 4 S2) and it appears that there are no notable differences in the lobes development in our knockout line.

      It seems that the obvious missing piece of the puzzle would be to address the effects of knocking out Dop1R2 in aversive LTM. The idea of systematically addressing different types of memory at different time points and in different KCs is the most attractive aspect of this study beyond the technical sophistication, and it feels that the aim of the study is not delivered without that component.

      We agree and we thank you for the clarification. As mentioned above in response to Reviewer #2, we decided to test aversive LTM as described in lines –208-228, Figure 4, Figure 4 S1.

      Some statements of the discussion seem too vague, and I think could benefit from editing:

      Line 284 "however other receptors could use Gq and mediate forgetting"- does this refer to other dopamine receptors? Other neuromodulators? Examples?

      Thank you for pointing this out. We Agree and therefore decided to omit this line.

      Line 289 "using a space training protocol and a Dop1R2 line" - this refers to RNAi lines, but it should be stated clearly.

      That is correct, we thank you for bringing attention to this and clarified it in the manuscript.

      –Lines 329-330

      “Interestingly, using a spaced training protocol and a Dop1R2 RNAi knockout line another study showed impaired LTM (Placais et al., 2017).”

      The paragraph starting in line 305 could be re-written to improve clarity and flow. Some statements seem disconnected and require specific citations. For example "In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways and the internal state of the animal...". This is not accurate. Berry et al 2012 report enhanced LTM performance in dop1R2 mutants whereas Plaçais et al 2017 report LTM defects in Dop1R2 knock-downs, but these different findings do not seem to rely on different internal states or signaling pathways. Maybe further elaboration can help the reader understand this speculation.

      We agree and we thank you for this advice. We decided to add additional details and citations to validate our speculation

      Lines 350-353

      “In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways. The signaling pathway that is activated further depends on the available pool of secondary messengers in the cell (Hermans, 2003) which may be regulated by the internal state of the animal.”

      "...for reward memory formation, loss of Dop1R2 seems to impair memory", this seems redundant at this point, as it has been discussed in detail, however, citations should be provided in any case (Musso 2015, Sun 2020)

      Thank you for noting this. We recognize the redundancy and decided to exclude the line.

      Finally, it would be useful to additionally refer to the anatomical terminology when introducing neuron names; for example MBON MVP2 (MBON-g1pedc>a/b), etc.

      Thank you for this suggestion. We understand the importance of anatomical terminologies for the neurons. Therefore, we included them when we introduce neurons in the paper.

      We thank you for your observations. We recognize their value, so we have made appropriate changes in the discussion to sound less vague and more comprehensive.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Deng et al reports single cell expression analysis of developing mouse hearts and examines the requirements for cardiac fibroblasts in heart maturation. The work includes extensive gene expression profiling and bioinformatic analysis. The prenatal fibroblast ablation studies show new information on the requirement of these cells on heart maturation before birth.

      The strengths of the manuscript are the new single cell datasets and comprehensive approach to ablating cardiac fibroblasts in pre and postnatal development in mice. Extensive data are presented on mouse embryo fibroblast diversity and morphology in response to fibroblast ablation. Histological data support localization of major cardiac cell types and effects of fibroblast ablation on cardiac gene expression at different times of development.

      A weakness of the study is that the major conclusions regarding collagen signaling and heart maturation are based on gene expression patterns and are not functionally validated.

      Comments on Revised Version (from BRE):

      Most of my comments have been adequately addressed. Additional comments on new data in the revised manuscript are below.

      (1) In the new figure S11, it is not really possible to draw major conclusions on mitral valve morphology and maturation since the planes of sections to not seem comparable. Observations regarding attachment to the papillary muscle might be dependent on the particular section being evaluated. However, it is useful to see that the valves are not severely affected in the ablated animals.

      (2) In the last supplemental figure S19, it is not possible to determine if results are or are not statistically significant for n=2 as shown for FS and EF for the ablated animals and controls. The text says that there is a trend of improved heart function, but evaluation of additional animals is needed to support this conclusion.

    2. eLife Assessment

      This study provides a comprehensive analysis of gene expression and bioinformatics data, offering important insights into the roles of fibroblasts in cardiac development. The large and well-analyzed single-cell RNA sequencing (scRNA-seq) dataset is compelling and a significant contribution to the field, and will be of broad interest to the scientific community.

    3. Reviewer #2 (Public review):

      This study aims to elucidate the role of fibroblasts in regulating myocardium and vascular development through signaling to cardiomyocytes and endothelial cells. This focus is significant, given that fibroblasts, cardiomyocytes, and vascular endothelial cells are the three primary cell types in the heart. The authors employed a Pdgfra-CreER-controlled diphtheria toxin A (DTA) system to ablate fibroblasts at various embryonic and postnatal stages, characterizing the resulting cardiac defects, particularly in myocardium and vasculature development. Single-cell RNA sequencing (scRNA-seq) analysis of the ablated hearts identified collagen as a crucial signaling molecule from fibroblasts that influences the development of cardiomyocytes and vascular endothelial cells.

      This is an interesting manuscript; however, there are several major issues, including an over-reliance on the scRNA-seq data, which shows inconsistencies between replicates.

      Some of the major issues are described below.

      (1) The CD31 immunostaining data (Figure 3B-G) indicate a reduction in endothelial cell numbers following fibroblast deletion using PdgfraCreER+/-; RosaDTA+/- mice. However, the scRNA-seq data show no percentage change in the endothelial cell population (Figure 4D). Furthermore, while the percentage of Vas_ECs decreased in ablated samples at E16.5, the results at E18.5 were inconsistent, showing an increase in one replicate and a decrease in another, raising concerns about the reliability of the RNA-seq findings.

      (2) Similarly, while the percentage of Ven_CMs increased at E18.5, it exhibited differing trends at E16.5 (Fig. 4E), further highlighting the inconsistency of the scRNA-seq analysis with the other data.

      (3) Furthermore, the authors noted that the ablated samples had slightly higher percentages of cardiomyocytes in the G1 phase compared to controls (Fig. 4H, S11D), which aligns with the enrichment of pathways related to heart development, sarcomere organization, heart tube morphogenesis, and cell proliferation. However, it is unclear how this correlates with heart development, given that the hearts of ablated mice are significantly smaller than those of controls (Figure 3E). Additionally, the heart sections from ablated samples used for CD31/DAPI staining in Figure 3F appear much larger than those of the controls, raising further inconsistencies in the manuscript.

      (4) The manuscript relies heavily on the scRNA-seq dataset, which shows inconsistencies between the two replicates. Furthermore, the morphological and histological analyses do not align with the scRNA-seq findings.

      (5) There is a lack of mechanistic insight into how collagen, as a key signaling molecule from fibroblasts, affects the development of cardiomyocytes and vascular endothelial cells.

      (6) In Figure 1B, Col1a1 expression is observed in the epicardial cells (Figure 1A, E11.5), but this is not represented in the accompanying cartoon.

      (7) Do the PdgfraCreER+/-; RosaDTA+/- mice survive after birth when induced at E15.5, and do they exhibit any cardiac defects?

      Comments on Revised Version (from BRE):

      The manuscript has greatly improved following the revision, and I have no additional comments to offer.

    4. Reviewer #3 (Public review):

      Summary:

      The authors investigated fibroblasts' communication with key cell types in developing and neonatal hearts, with focus on critical roles of fibroblast-cardiomyocyte and fibroblast-endothelial cells network in cardiac morphogenesis. They tried to map the spatial distribution of these cell types and reported the major pathways and signaling molecules driving the communication. They also used Cre-DTA system to ablate Pdgfra labeled cells and observed myocardial and endothelial cell defects at development. They screened the pathways and genes using sequencing data of ablated heart. Lastly they reported a compensatory collagen expression in long term ablated neonate heart. Overall, this study provides us with important insight on fibroblasts' roles in cardiac development and will be a powerful resource for collagens and ECM focused research.

      Strengths:

      The authors utilized good analyzing tools to investigate on multiple database of single cell sequencing and Multi-seq. They identified significant pathways, cellular and molecular interactions of fibroblasts. Additionally, they compared some of their analytic findings with human database, and identified several groups of ECM genes with varying roles in mice.

      Weaknesses:

      This study is majorly based on sequencing data analysis. At the bench, they used very strident technique to study fibroblast functions by ablating one of the major cell population of heart. Also, experimental validation of their analyzed downstream pathways will be required eventually.

      Comments on Revised Version (from BRE):

      The authors did a good job addressing the questions asked at first review. However, I have some minor concerns.

      (1) The paper notes that collagen signaling is observed in FB-VasEC in humans, but not in FB-VenCM, unlike mice. Did the authors analyze predictive ligand receptor interaction as they did with control and ablated mice heart? This could add valuable new insights that how FB regulate ventricular CM in human heart.

      (2) The authors provided data on Defect in CD31 expression in several models. Did they observe any other phenotypes associated with defective endothelial or vascular system? Such as, blood accumulation in pericardium, larger/smaller capillaries? Did they also examine percentage of Cdh5+ cells?

      (3) Please mention the sample age of Figure 2A-C.

      (4) Please follow the same style to describe X axis in graphs in Figure 3D (and all similar graphs in the manuscript) as followed in 3G.

      (5) It is important to provide echocardiographic M mode images with a comparable number of cardiac cycles in control and ablated (Fig. 6H).

      (6) In the long-term neonatal ablation experiments, collagen expressions return to normal. The manuscript attributes this to possible "compensatory expression," Do they have any thoughts how this is regulated? Are other cell types stepping in, or are surviving FBs proliferating?

      (7) While collagen is shown to be a dominant signaling molecule, its centrality is inferred primarily from scRNA-seq and ligand-receptor predictions. Did authors try any functional rescue experiment (e.g., exogenous collagen supplementation or receptor blockade) to directly validate this pathway's role in vivo?

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study by Deng et al reports single cell expression analysis of developing mouse hearts and examines the requirements for cardiac fibroblasts in heart maturation. The work includes extensive gene expression profiling and bioinformatic analysis. The prenatal fibroblast ablation studies show new information on the requirement of these cells on heart maturation before birth.

      The strengths of the manuscript are the new single cell datasets and comprehensive approach to ablating cardiac fibroblasts in pre and postnatal development in mice. Extensive data are presented on mouse embryo fibroblast diversity and morphology in response to fibroblast ablation. Histological data support localization of major cardiac cell types and effects of fibroblast ablation on cardiac gene expression at different times of development.

      A weakness of the study is that the major conclusions regarding collagen signaling and heart maturation are based on gene expression patterns and are not functionally validated.

      Reviewer #2 (Public review):

      This study aims to elucidate the role of fibroblasts in regulating myocardium and vascular development through signaling to cardiomyocytes and endothelial cells. This focus is significant, given that fibroblasts, cardiomyocytes, and vascular endothelial cells are the three primary cell types in the heart. The authors employed a Pdgfra-CreER-controlled diphtheria toxin A (DTA) system to ablate fibroblasts at various embryonic and postnatal stages, characterizing the resulting cardiac defects, particularly in myocardium and vasculature development. Single-cell RNA sequencing (scRNA-seq) analysis of the ablated hearts identified collagen as a crucial signaling molecule from fibroblasts that influences the development of cardiomyocytes and vascular endothelial cells.

      This is an interesting manuscript; however, there are several major issues, including an over-reliance on the scRNA-seq data, which shows inconsistencies between replicates.

      We thank the reviewer for carefully reading our revised manuscript. All of the questions listed below were raised in the previous round and have been addressed in the current revision. As noted in the “Recommendations for the Authors” section, the reviewer has no additional comments at this time.

      Some of the major issues are described below.

      (1) The CD31 immunostaining data (Figure 3B-G) indicate a reduction in endothelial cell numbers following fibroblast deletion using PdgfraCreER+/-; RosaDTA+/- mice. However, the scRNA-seq data show no percentage change in the endothelial cell population (Figure 4D). Furthermore, while the percentage of Vas_ECs decreased in ablated samples at E16.5, the results at E18.5 were inconsistent, showing an increase in one replicate and a decrease in another, raising concerns about the reliability of the RNA-seq findings.

      (2) Similarly, while the percentage of Ven_CMs increased at E18.5, it exhibited differing trends at E16.5 (Fig. 4E), further highlighting the inconsistency of the scRNA-seq analysis with the other data.

      (3) Furthermore, the authors noted that the ablated samples had slightly higher percentages of cardiomyocytes in the G1 phase compared to controls (Fig. 4H, S11D), which aligns with the enrichment of pathways related to heart development, sarcomere organization, heart tube morphogenesis, and cell proliferation. However, it is unclear how this correlates with heart development, given that the hearts of ablated mice are significantly smaller than those of controls (Figure 3E). Additionally, the heart sections from ablated samples used for CD31/DAPI staining in Figure 3F appear much larger than those of the controls, raising further inconsistencies in the manuscript.

      (4) The manuscript relies heavily on the scRNA-seq dataset, which shows inconsistencies between the two replicates. Furthermore, the morphological and histological analyses do not align with the scRNA-seq findings.

      (5) There is a lack of mechanistic insight into how collagen, as a key signaling molecule from fibroblasts, affects the development of cardiomyocytes and vascular endothelial cells.

      (6) In Figure 1B, Col1a1 expression is observed in the epicardial cells (Figure 1A, E11.5), but this is not represented in the accompanying cartoon.

      (7) Do the PdgfraCreER+/-; RosaDTA+/- mice survive after birth when induced at E15.5, and do they exhibit any cardiac defects?

      Reviewer #3 (Public review):

      Summary:

      The authors investigated fibroblasts' communication with key cell types in developing and neonatal hearts, with focus on critical roles of fibroblast-cardiomyocyte and fibroblast-endothelial cells network in cardiac morphogenesis. They tried to map the spatial distribution of these cell types and reported the major pathways and signaling molecules driving the communication. They also used Cre-DTA system to ablate Pdgfra labeled cells and observed myocardial and endothelial cell defects at development. They screened the pathways and genes using sequencing data of ablated heart. Lastly they reported a compensatory collagen expression in long term ablated neonate heart. Overall, this study provides us with important insight on fibroblasts' roles in cardiac development and will be a powerful resource for collagens and ECM focused research.

      Strengths:

      The authors utilized good analyzing tools to investigate on multiple database of single cell sequencing and Multi-seq. They identified significant pathways, cellular and molecular interactions of fibroblasts. Additionally, they compared some of their analytic findings with human database, and identified several groups of ECM genes with varying roles in mice.

      Weaknesses:

      This study is majorly based on sequencing data analysis. At the bench, they used very strident technique to study fibroblast functions by ablating one of the major cell population of heart. Also, experimental validation of their analyzed downstream pathways will be required eventually.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Most of my comments have been adequately addressed. Additional comments on new data in the revised manuscript are below.

      (1) In the new figure S11, it is not really possible to draw major conclusions on mitral valve morphology and maturation since the planes of sections to not seem comparable. Observations regarding attachment to the papillary muscle might be dependent on the particular section being evaluated. However, it is useful to see that the valves are not severely affected in the ablated animals.

      We appreciate the reviewer’s comment and agree with the reviewer’s observation. Accordingly, we have updated the manuscript by removing the original conclusion-related statement and instead highlighting that the valves were not severely affected in the ablated animals (page 6).

      (2) In the last supplemental figure S19, it is not possible to determine if results are or are not statistically significant for n=2 as shown for FS and EF for the ablated animals and controls. The text says that there is a trend of improved heart function, but evaluation of additional animals is needed to support this conclusion.

      We thank the reviewer for the comment and agree that a sample size of n = 2 is too small to draw meaningful conclusions. As previously suggested by the reviewer, we have removed this result from the manuscript (page 10).

      Reviewer #2 (Recommendations for the authors):

      The manuscript has greatly improved following the revision, and I have no additional comments to offer.

      Thanks!

      Reviewer #3 (Recommendations for the authors):

      Authors did a good job addressing questions asked at first review. However, I have some minor concerns.

      (1) The paper notes that collagen signaling is observed in FB-VasEC in humans, but not in FB-VenCM, unlike mice. Did authors analyze predictive ligand receptor interaction as they did with control and ablated mice heart? This could add valuable new insights that how FB regulate ventricular CM in human heart.

      Thank you. We have analyzed the predicted ligand-receptor interactions between Fb and Ven_CM, as well as between Fb and Vas_EC, using human scRNA-seq data. The results are provided as a supplemental figure (Fig. S8C).

      (2) The authors provided data on Defect in CD31 expression in several models. Did they observed any other phenotypes associated with defective endothelial or vascular system? Such as, blood accumulation in pericardium, larger/smaller capillaries? Did they also examined percentage of Cdh5+ cells?

      We thank the reviewer for the questions. We did not observe clear evidence of blood accumulation in the pericardium of the ablated hearts, as shown in figure 3B, 3E, 6B, and 6F. Additionally, we did not perform Cdh5 staining in either the control or ablated hearts.

      (3) Please mention the sample age of Figure 2A-C.

      These are single-cell mRNA sequencing data from CD1 mice across 18 developmental stages, ranging from E9.5 to P9. We have added this information to the manuscript (page 4).

      (4) Please follow the same style to describe X axis in graphs in Figure 3D (and all similar graphs in manuscript) as followed in 3G.

      Thank you. We assume the reviewer was referring to the descriptions in the relevant figure legends. We have updated the legend for Figure 3D to ensure consistency with the description provided for Figure 3G (page 15).

      (5) It is important to provide echocardiographic M mode images with a comparable number of cardiac cycles in control and ablated (Fig. 6H).

      We thank the reviewer for the comment. As explained in our previous response, the echocardiographic data for both control and mutant mice were collected in conscious animals. The differences in their cardiac cycles reflect variations in heart rate, which represent a disease phenotype and cannot be altered. Therefore, we are unable to provide M-mode images with a similar number of cardiac cycles for control and ablated mice.

      (6) In the long-term neonatal ablation experiments, collagen expressions return to normal. The manuscript attributes this to possible "compensatory expression," Do they have any thoughts how this is regulated? Are other cell types stepping in, or are surviving FBs proliferating?

      We thank the reviewer for the question. As suggested, the compensatory collagen expression could be driven by surviving fibroblasts or other cell types. Since we currently lack evidence to exclude either possibility, we believe both could be contributing factors.

      (7) While collagen is shown to be a dominant signaling molecule, its centrality is inferred primarily from scRNAseq and ligand-receptor predictions. Did authors try any functional rescue experiment (e.g., exogenous collagen supplementation or receptor blockade) to directly validate this pathway's role in vivo?

      We thank the reviewer for the comment. As noted in our previous revision in response to similar questions from the other two reviewers, we agree that these rescue experiments are of interest but are beyond the scope of the current study. We plan to pursue these investigations in future work and share our findings when available.

    1. eLife Assessment

      This important study presents an alternative platform for nanobody discovery using phage-displayed synthetic libraries. The evidence supporting the platform, which is used to isolate and validate nanobodies targeting Drosophila secreted proteins, is compelling. By making the library openly accessible, this provides an excellent resource to the wider scientific community. The paper presents a detailed protocol for nanobody screening; as this protocol is refined and optimized over time, this will increase the success rate for discovering nanobodies with improved properties using this alternative platform.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, authors propose an alternative platform for nanobody discovery using a phage-displayed synthetic library. Authors relied on DNA templates originally created by McMahon et al. (2018) to build the yeast-displayed synthetic library. To validate their platform, authors screened for nanobodies against 8 Drosophila secreted proteins. Nanobody screening has been performed with phage-displayed nanobody libraries followed by an enzyme-linked immunosorbent assay (ELISA) to validate positive hits. Nanobodies with higher affinity have been then tested for immunostaining and immunoblotting applications using Drosophila adult guts and hemolymph, respectively.

      Strengths:

      The authors presented a detailed protocol with various and complementary approaches to select nanobodies and test their application for immunostaining and immunoblotting experiments. Data are convincing and the manuscript is well-written, clear and easy to read.

      Weaknesses:

      When using membrane-tethered forms of the antigens to test the affinity of nanobodies identified by ELISA, many nanobodies fail to recognize the antigens. While authors suggested a low affinity of these nanobodies for their antigens, this hypothesis has not been tested in the manuscript.

      Improving the protocol at each step for nanobody selection would greatly increase a successful rate for nanobodies discovery with high affinity.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Using highly specific antibody reagents for biological research is of prime importance. In the past few years, novel approaches have been proposed to gain easier access to such reagents. This manuscript describes an important step forward toward the rapid and widespread isolation of antibody reagents. Via the refinement and improvement of previous approaches, the Perrimon lab describes a novel phage-displayed synthetic library for nanobody isolation. They used the library to isolate nanobodies targeting Drosophila secreted proteins. They used these nanobodies in immunostainings and immunoblottings, as well as in tissue immunostainings and live cell assays (by tethering the antigens on the cell surface).

      Since the library is made freely available, it will contribute to gaining access to better research reagents for non-profit use, an important step towards the democratisation of science.

      Strengths:

      (1) New design for a phage-displayed library of high content.

      (2) Isolation of valuble novel tools.

      (3) Detailed description of the methods such that they can be used by many other labs.

      We are grateful for these supportive comments.

      Weaknesses:

      My comments largely concentrate on the representation of the data in the different Figures.

      We have made adjustments according to the reviewer’s recommendations.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors propose an alternative platform for nanobody discovery using a phage-displayed synthetic library. The authors relied on DNA templates originally created by McMahon et al. (2018) to build the yeast-displayed synthetic library. To validate their platform, the authors screened for nanobodies against 8 Drosophila secreted proteins. Nanobody screening has been performed with phage-displayed nanobody libraries followed by an enzyme-linked immunosorbent assay (ELISA) to validate positive hits. Nanobodies with higher affinity have been tested for immunostaining and immunoblotting applications using Drosophila adult guts and hemolymph, respectively.

      Strengths:

      The authors presented a detailed protocol with various and complementary approaches to select nanobodies and test their application for immunostaining and immunoblotting experiments. Data are convincing and the manuscript is well-written, clear, and easy to read.

      We thank the reviewer for these supportive comments.

      Weaknesses:

      On the eight Drosophila secreted proteins selected to screen for nanobodies, the authors failed to identify nanobodies for three of them. While the authors mentioned potential improvements of the protocol in the discussion, none of them have been tested in this manuscript.

      We prepared all eight antigens by single-step IgG purification (see Materials and Methods) without additional biophysical quality control (e.g., size-exclusion chromatography). Consequently, we cannot definitively determine whether the three “no-binder” cases resulted from the aggregation or misfolding of the antigens, versus gaps in our naive library’s sequence space. While approaches such as additional purification steps or affinity maturation of weak binders would likely rescue these difficult targets, comprehensive pipeline optimization is beyond the scope of establishing and validating the phage-displayed nanobody platform. We have clarified this limitation and suggested these strategies in third paragraph of the Discussion.

      The same comment applies to the experiments using membrane-tethered forms of the antigens to test the affinity of nanobodies identified by ELISA. Many nanobodies fail to recognize the antigens. While authors suggested a low affinity of these nanobodies for their antigens, this hypothesis has not been tested in the manuscript.

      We observed that several nanobodies with strong ELISA signals showed reduced binding to membrane-displayed antigens. This discrepancy may result from low affinity of the nanobodies or differences in post-translational modifications (e.g., glycosylation) and antigen context between secreted IgG-fusion proteins (used for panning/ELISA) and GPI- or mCD8-anchored proteins. In an ongoing work, we have performed affinity maturation of the nanobodies and successfully increased the affinity toward the target antigen. These results will be reported separately.

      Improving the protocol at each step for nanobody selection would greatly increase the success rate for the discovery of nanobodies with high affinity.

      We fully agree that systematic optimization—from antigen preparation (e.g., additional purification steps) through screening conditions (e.g., buffer composition, additional affinity-maturation steps)—could substantially increase the success rate and nanobody affinity. These represent important directions for future work.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Figure 3. The merge of two GFP channels does not make much sense. Can the authors not use artificial colours? And show the panels at higher resolution, such that a viewer can really see and judge what they are seeing? The same comments apply to all Supplementary Figures.

      We appreciate the reviewer’s comment. In the revised Figure 3, we have replaced the cyan/green overlay with red/green overlay and used enlarged pictures so that GFP-positive cells and corresponding nanobody staining are clearly visible. We applied the same layout to all relevant Supplementary Figures.

      (2) Figure 4. Also, in this Figure, it is not really possible to see what the authors say one should see. The resolution should be higher, and arrows or arrowheads should point to important structures.

      We appreciate the reviewer’s comment. In the revised Figure 4A, we have added arrows to point to the immunostaining signal in cells with smaller nuclei and added inset panels to show a closer view of representative NbMip-4G staining.

      Reviewer #2 (Recommendations for the authors):

      (1) Images are sometimes quite small and difficult to interpret. For example, Figures S2C-D.

      We thank the reviewer for this suggestion. In the revised figures, we have replaced the cyan/green overlay with red/green overlay and used enlarged pictures that clearly show GFP-positive cells alongside their corresponding nanobody staining.

      (2) Supplemental figures are not always cited in the text.

      Thank you for the comment. To eliminate this misunderstanding, we have updated the Nesfatin1 nanobody screen data as Supplementary Figure 1 and Mip nanobody screen data as Supplementary Figure 2. We have made the corresponding changes in the Results section.

    1. eLife Assessment

      This study reveals a neural signature of a common behavioural phenomenon: serial dependence, whereby estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The study provides solid evidence that this phenomenon arises primarily during working memory maintenance. The pervasiveness of serial dependencies across modalities and species makes these findings important for researchers interested in perceptual decision-making across subfields.

    2. Reviewer #1 (Public review):

      This study uses MEG to test for a neural signature of the trial history effect known as 'serial dependence.' This is a behavioral phenomenon whereby stimuli are judged to be more similar than they really are, in feature space, to stimuli that were relevant in the recent past (i.e., the preceding trials). This attractive bias is prevalent across stimulus classes and modalities, but a neural source has been elusive. This topic has generated great interest in recent years, and I believe this study makes a unique contribution to the field.

      Specifically, while previous neuroimaging studies have found apparent reactivations of previous information, or repulsive biases that may indirectly relate to serial dependence, here Fischer at al. find an attractive bias in neural activity patterns that aligns with the direction of the behavioral effect. Moreover, the data show that the bias emerges later in a trial, after perceptual encoding, which speaks to an ongoing debate about whether such biases are perceptual or decisional.

      The revised preprint thoroughly addresses many of the initial concerns, but the results are still open to interpretation. For instance, the model training/testing regime allows that some training data timepoints may be inherently noisier than others (e.g., delay period more so than encoding), and potentially more (or differently) susceptible to bias. The S1 and S2 epochs show no attractive bias, but they may also be based on more high fidelity training sets (i.e., encoding), and therefore less susceptible to the bias that is evident in the retrocue epoch. So, the results could reflect that serial dependence is indeed a post-perceptual process, or it may instead be that the WM representations, as detected with these MEG analyses, become noisier and more subject to reveal the attractive bias over time.

      The results are intriguing, but the study was not powered to examine whether there is any feature-specificity to the neural bias (e.g., whether it matches the behavioral pattern that biases are amplified within a particular range of feature distances between stimuli). Nor do analyses get at temporally precise information about when attractive and repulsive biases appear, which would help to better reconcile the work with previous findings. As in, the reconstructions average across coarse trial epochs. The S1 and S2 reconstructions show no attractive bias, and appear to show subtle repulsion, but if the timing were examined more precisely, we might see repulsion magnified at earlier timepoints that shift toward attraction at later time points, thereby counteracting the effect. That is to say that the averaging approach, across feature values and timepoints, still leaves these important theoretical questions unresolved.

      Nonetheless, the work marks an important step in identifying the neurophysiological bases of serial dependence. Ideally, all of the data, including the eye-tracking, would be made available so that others might try to address some of these follow-up questions.

    3. Reviewer #2 (Public review):

      Summary:

      The study aims to probe the neural correlates of visual serial dependence - the phenomenon that estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The authors utilize an established retro-cue working memory task together with magnetoencephalography, which allows to probe neural representations of motion direction during encoding and retrieval (retro-cue) periods of each trial. The main finding is that neural representations of motion direction are not systematically biased during the encoding of motion stimuli, but are attracted towards the motion direction of the previous trial's target during the retrieval (retro-cue period), just prior to the behavioral response. By demonstrating a neural signature of attractive biases in working memory representations, which align with attractive behavioral biases, this study highlights the importance of post-encoding memory processes in visual serial dependence.

      Strengths:

      The main strength of the study is its elegant use of a retro-cue working memory task together with high temporal resolution MEG, enabling to probe neural representations related to stimulus encoding and working memory. The behavioral task elicits robust behavioral serial dependence and replicates previous behavioral findings by the same research group. The careful neural decoding analysis benefits from a large number of trials per participant, considering the slow-paced nature of the working memory paradigm. This is crucial in a paradigm with considerable trial-by-trial behavioral variability (serial dependence biases are typically small, relative to the overall variability in response errors). While the current study is broadly consistent with previous studies showing that attractive biases in neural responses are absent during stimulus encoding (prev. studies reported repulsive biases), to my knowledge, it is the first study showing attractive biases in current stimulus representations during working memory. The study also connects to previous literature showing reactivations of previous stimulus representations, although the link between reactivations and biases remains somewhat vague in the current manuscript. Together, the study reveals an interesting avenue for future studies investigating the neural basis of visual serial dependence.

      Weaknesses:

      The main weakness of the current manuscript is that the authors could have done more analyses to address the concern that their neural decoding results are driven by signals related to eye movements. The authors show that participants' gaze position systematically depended on the current stimuli's motion directions, which, together with previous studies on eye movement-related confounds in neural decoding, justifies such a concern. The authors seek to rule out this confound by showing that the consistency of stimulus-dependent gaze position does not correlate with (a) the neural reconstruction fidelity and (b) the attractive shift in reconstructed motion direction. However, the authors' approach of quantifying stimulus-dependent eye movements only considers gaze angle and not gaze amplitude, and thus potentially misses important features of eye movements that could manifest in the MEG data. Moreover, it is unclear whether the gaze consistency metric should correlate with attractive history biases in neural decoding, if there were a confound. These two concerns could be potentially addressed by (1) directly decoding stimulus motion direction from x-y gaze coordinates and relating this decoding performance to neural reconstruction fidelity, and (2) investigating whether gaze coordinates themselves are history-dependent and are attracted to the average gaze position associated with the previous trials' target stimulus. If the authors could show that (2) is not the case, I would be much more convinced that their main finding is not driven by eye movement confounds.

      The sample size (n = 10) is definitely at the lower end of sample sizes in this field. The authors collected two sessions per participant, which partly alleviates the concern. However, given that serial dependencies can be very variable across participants, I believe that future studies should aim for larger sample sizes.

      It would have been great to see an analysis in source space. As the authors mention in their introduction, different brain areas, such as PPC, mPFC and dlPFC have been implicated in serial biases. This begs the question which brain areas contribute to the serial dependencies observed in the current study? For instance, it would be interesting to see whether attractive shifts in current representations and pre-stimulus reactivations of previous stimuli are evident in the same or different brain areas.

    4. Reviewer #2 (Public review):

      Summary:

      The study aims to probe the neural correlates of visual serial dependence - the phenomenon that estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The authors utilize an established retro-cue working memory task together with magnetoencephalography, which allows to probe neural representations of motion direction during encoding and retrieval (retro-cue) periods of each trial. The main finding is that neural representations of motion direction are not systematically biased during the encoding of motion stimuli, but are attracted towards the motion direction of the previous trial's target during the retrieval (retro-cue period), just prior to the behavioral response. By demonstrating a neural signature of attractive biases in working memory representations, which align with attractive behavioral biases, this study highlights the importance of post-encoding memory processes in visual serial dependence.

      Strengths:

      The main strength of the study is its elegant use of a retro-cue working memory task together with high temporal resolution MEG, enabling to probe neural representations related to stimulus encoding and working memory. The behavioral task elicits robust behavioral serial dependence and replicates previous behavioral findings by the same research group. The careful neural decoding analysis benefits from a large number of trials per participant, considering the slow-paced nature of the working memory paradigm. This is crucial in a paradigm with considerable trial-by-trial behavioral variability (serial dependence biases are typically small, relative to the overall variability in response errors). While the current study is broadly consistent with previous studies showing that attractive biases in neural responses are absent during stimulus encoding (prev. studies reported repulsive biases), to my knowledge, it is the first study showing attractive biases in current stimulus representations during working memory. The study also connects to previous literature showing reactivations of previous stimulus representations, although the link between reactivations and biases remains somewhat vague in the current manuscript. Together, the study reveals an interesting avenue for future studies investigating the neural basis of visual serial dependence.

      Weaknesses:

      The main weakness of the current manuscript is that the authors could have done more analyses to address the concern that their neural decoding results are driven by signals related to eye movements. The authors show that participants' gaze position systematically depended on the current stimuli's motion directions, which, together with previous studies on eye movement-related confounds in neural decoding, justifies such a concern. The authors seek to rule out this confound by showing that the consistency of stimulus-dependent gaze position does not correlate with (a) the neural reconstruction fidelity and (b) the attractive shift in reconstructed motion direction. However, the authors' approach of quantifying stimulus-dependent eye movements only considers gaze angle and not gaze amplitude, and thus potentially misses important features of eye movements that could manifest in the MEG data. Moreover, it is unclear whether the gaze consistency metric should correlate with attractive history biases in neural decoding, if there were a confound. These two concerns could be potentially addressed by (1) directly decoding stimulus motion direction from x-y gaze coordinates and relating this decoding performance to neural reconstruction fidelity, and (2) investigating whether gaze coordinates themselves are history-dependent and are attracted to the average gaze position associated with the previous trials' target stimulus. If the authors could show that (2) is not the case, I would be much more convinced that their main finding is not driven by eye movement confounds.

      The sample size (n = 10) is definitely at the lower end of sample sizes in this field. The authors collected two sessions per participant, which partly alleviates the concern. However, given that serial dependencies can be very variable across participants, I believe that future studies should aim for larger sample sizes.

      It would have been great to see an analysis in source space. As the authors mention in their introduction, different brain areas, such as PPC, mPFC and dlPFC have been implicated in serial biases. This begs the question which brain areas contribute to the serial dependencies observed in the current study? For instance, it would be interesting to see whether attractive shifts in current representations and pre-stimulus reactivations of previous stimuli are evident in the same or different brain areas.

    5. Author response:

      We were delighted by the reviewers' general comments. We thank the reviewers for their thoughtful reviews, constructive criticism, and analysis suggestions. We have carefully addressed each of their points during the revision of the manuscript.

      Unfortunately, after the paper was submitted to eLife, the first author, who ran all the analyses, left academia. We now realized that we currently do not have sufficient resources to perform all additional analyses as requested by the reviewers.

      The following is the authors’ response to the original reviews:

      Public Reviews:

      Reviewer #1 (Public Review):

      This study uses MEG to test for a neural signature of the trial history effect known as 'serial dependence.' This is a behavioral phenomenon whereby stimuli are judged to be more similar than they really are, in feature space, to stimuli that were relevant in the recent past (i.e., the preceding trials). This attractive bias is prevalent across stimulus classes and modalities, but a neural source has been elusive. This topic has generated great interest in recent years, and I believe this study makes a unique contribution to the field. The paper is overall clear and compelling, and makes effective use of data visualizations to illustrate the findings. Below, I list several points where I believe further detail would be important to interpreting the results. I also make suggestions for additional analyses that I believe would enrich understanding but are inessential to the main conclusions.

      (1) In the introduction, I think the study motivation could be strengthened, to clarify the importance of identifying a neural signature here. It is clear that previous studies have focused mainly on behavior, and that the handful of neuroscience investigations have found only indirect signatures. But what would the type of signature being sought here tell us? How would it advance understanding of the underlying processes, the function of serial dependence, or the theoretical debates around the phenomenon?

      Thank you for pointing this out. Our MEG study was designed to address two questions: 1) we asked whether we could observe a direct neural signature of serial dependence, and 2) if so, whether this signature occurs at the encoding or post-encoding stage of stimulus processing in working memory. This second question directly concerns the current theoretical debate on serial dependence.

      Previous studies have found only indirect signatures of serial dependence such as reactivations of information from the previous trial or signatures of a repulsive bias, which were in contrast to the attractive bias in behavior. Thus, it remained unclear whether an attractive neural bias can be observed as a direct reflection of the behavioral bias. Moreover, previous studies observed the neuronal repulsion during early visual processes, leading to the proposal that neural signals become attracted only during later, post-encoding processes. However, these later processing stages were not directly accessible in previous studies. To address these two questions, we combined MEG recordings with an experimental paradigm with two items and a retro-cue. This design allowed to record neural signals during separable encoding and post-encoding task phases and so to pinpoint the task phase at which a direct neural signature of serial dependence occurred that mirrored the behavioral effect.

      We have slightly modified the Introduction to strengthen the study motivation.

      (1a) As one specific point of clarification, on p. 5, lines 91-92, a previous study (St. JohnSaaltink et al.) is described as part of the current study motivation, stating that "as the current and previous orientations were either identical or orthogonal to each other, it remained unclear whether this neural bias reflected an attraction or repulsion in relation to the past." I think this statement could be more explicit as to why/how these previous findings are ambiguous. The St. John-Saaltink study stands as one of very few that may be considered to show evidence of an early attractive effect in neural activity, so it would help to clarify what sort of advance the current study represents beyond that.

      Thank you for this comment. In the study by St. John-Saaltink et al. (2016), two gratings oriented at 45° and 135° were always presented to either the left or right side of a central fixation point in a trial (90° orientation difference). As only the left/right position of the 45° and 135° gratings varied across trials, the target stimulus in the current trial was either the same or differed by exactly 90° from the previous trial. In consequence, this study could not distinguish whether the observed bias was attractive or repulsive, which concerned both the behavioral effect and the V1 signal. Furthermore, the bias in the V1 signal was partially explained by the orientation that was presented at the same position in the previous trial, which could reflect a reactivation of the previous orientation rather than an actual altered orientation.

      We have changed the Introduction accordingly.

      References:

      St. John-Saaltink E, Kok P, Lau HC, de Lange FP (2016) Serial Dependence in Perceptual Decisions Is Reflected in Ac6vity Pa9erns in Primary Visual Cortex. Journal of Neuroscience 36: 6186–6192.

      (1b) The study motivation might also consider the findings of Ranieri et al (2022, J. Neurosci) Fornaciai, Togoli, & Bueti (2023, J. Neurosci), and Lou& Collins (2023, J. Neurosci) who all test various neural signatures of serial dependence.

      Thank you. As all listed findings showed neural signatures revealing a reactivation of the previous stimulus or a response during the current trial, we have added them to the paragraph in the Introduction referring to this class of evidence for the neural basis for serial dependence.

      (2) Regarding the methods and results, it would help if the initial description of the reconstruction approach, in the main text, gave more context about what data is going into reconstruction (e.g., which sensors), a more conceptual overview of what the 'reconstruction' entails, and what the fidelity metric indexes. To me, all of that is important to interpreting the figures and results. For instance, when I first read, it was unclear to me what it meant to "reconstruct the direction of S1 during the S2 epoch" (p. 10, line 199)? As in, I couldn't tell how the data/model knows which item it is reconstructing, as opposed to just reporting whatever directional information is present in the signal.

      (2a) Relatedly, what does "reconstruction strength" reflect in Figure 2a? Is this different than the fidelity metric? Does fidelity reflect the strength of the particular relevant direction, or does it just mean that there is a high level of any direction information in the signal? In the main text explain what reconstruction strength and what fidelity is?

      Thank you for pointing this out. We applied the inverted encoding model method to MEG data from all active sensors (271) within defined time-windows of 100 ms length. MEG data was recorded in two sessions on different days. Specifically, we constructed an encoding model with 18 motion direction-selective channels. Each channel was designed to show peak sensitivity to a specific motion direction, with gradually decreasing sensitivity to less similar directions. In a training step, the encoding model was fiCed to the MEG data of one session to obtain a weight matrix that indicates how well the sensor activity can be explained by the modeled direction. In the testing step, the weight matrix was inverted and applied to the MEG data of the other session, resulting in a response profile of ‘reconstruction strengths’, i.e., how strongly each motion direction was present in a trial. When a specific motion direction was present in the MEG signal, the reconstruction strengths peaked at that specific direction and decreased with increasing direction difference. If no information was present, reconstruction strengths were comparable across all modeled directions, i.e., the response profile was flat. To integrate response profiles across trials, single trial profiles were aligned to a common center direction (i.e., 180°) and then averaged.

      To quantify the accuracy of each IEM reconstruction, i.e., how well the response profile represents a specific motion direction relative to all other directions we computed the ‘reconstruction fidelity’. Fidelity was obtained by projecting the polar vector of the reconstruction at every direction angle (in steps of 1°) onto the common center (180°) and averaging across all direction angles (Rademaker et al 2019, Sprague, Ester & Serences, 2016). As such, ‘reconstruction fidelity’ is a summary metric with fidelity greater than zero indicating an accurate reconstruction.

      How does the model know which direction to reconstruct? Our modelling procedure was informed about the stimulus in question during both the training and the testing step. Specifically, we informed our model during the training step about e.g., the current S2. Then, we fit the model to training data from the S2 epoch and applied it to testing data from the S2 epoch. Crucially, during the testing step the motion direction in question, i.e., current S2, becomes relevant again. For example, when S2 was 120°, the reconstructions were shifted by 60° in order to align with the common center, i.e., 180°. In addition, we also tested whether we could reconstruct the motion direction of S1 during the S2 epoch. Here, we used again the MEG data from the S2 epoch but now for S1 training. i.e., the model was informed about S1 direction. Accordingly, the recentering step during testing was done with regard to the S1 direction. Similarly, we also reconstructed the motion direction of the previous target (i.e., the previous S1 or S2), e.g., during the S2 epoch.

      Together, the multi-variate pattern of MEG activity across all sensors during the S2 epoch could contain information about the currently presented direction of S2, the direction of the preceding S1 and the direction of the target stimulus from the previous trial (i.e., either previous S1 or previous S2) at the same time. An important exception from this regime was the cross-reconstruction analysis (Appendix 1—figure 2). Here we trained the encoding model on the currently relevant item (S1 during the S1 epoch, S2 during the S2 epoch and the cued item during the retro-cue epoch) of one MEG session and reconstructed the previous target on the other MEG session.

      Finally, to examine shifts of the neural representation, single-trial reconstructions were assigned to two groups, those with a previous target that was oriented clockwise (CW) in relation to the currently relevant item and those with a previous target that was oriented counter-clockwise (CCW). The CCW reconstructions were flipped along the direction space, hence, a negative deviation of the maximum of the reconstruction from 180° indicated an attraction toward the previous target, whereas a positive deviation indicated a repulsion. Those reconstructions were then first averaged within each possible motion direction and then across them to account for different presentation numbers of the directions, resulting in one reconstruction per participant, epoch and time point. To examine systematic shifts, we then tested if the maximum of the reconstruction was systematically different from the common center (180°). For display purposes, we subtracted the reconstructed maximum from 180° to compute the direction shifts. A positive shift thus reflected attraction and a negative shift reflected repulsion.

      We have updated the Results accordingly.

      References:

      Rademaker RL, Chunharas C, Serences JT (2019) Coexisting representations of sensory and mnemonic information in human visual cortex. Nature Neuroscience. 22: 1336-1344.

      Sprague TC, Ester EF, Serences JT (2016) Restoring Latent Visual Working Memory Representations in Human Cortex. Neuron. 91: 694-707

      (3) Then in the Methods, it would help to provide further detail still about the IEM training/testing procedure. For instance, it's not entirely clear to me whether all the analyses use the same model (i.e., all trained on stimulus encoding) or whether each epoch and timepoint is trained on the corresponding epoch and timepoint from the other session. This speaks to whether the reconstructions reflect a shared stimulus code across different conditions vs. that stimulus information about various previous and current trial items can be extracted if the model is tailored accordingly.

      As reported above, our modeling procedure was informed about same stimulus during both the training and the testing step, except for the cross-reconstruction analysis.

      Regarding the training and testing data, the model was always trained on data from one session and tested on data from the other session, so that each MEG session once served as the training data set and once as the test data set, hence, training and test data were independent. Importantly, training and testing was always performed in an epoch- and time point-specific way: For example, the model that was trained on the first 100-ms time bin from the S1 epoch of the first MEG session was tested on the first 100-ms time bin from the S1 epoch of the second MEG session.

      Specifically, when you say "aim of the reconstruction" (p. 31, line 699), does that simply mean the reconstruction was centered in that direction (that the same data would go into reconstructing S1 or S2 in a given epoch, and what would differentiate between them is whether the reconstruction was centered to the S1 or S2 direction value)?

      As reported above, during testing the reconstruction was centered at the currently relevant direction. The encoding model was trained with the direction labels of S1, S2 or the target item, corresponding to the currently relevant direction, i.e., S1 in S1 epochs, S2 in S2 epochs and target item (S1 or S2) in the retro-cue epoch. The only exception was the reconstruction of S1 during the S2 epoch. Here the encoding model was trained on the S1 direction, but with data from the S2 epoch and then applied to the S2 epoch data and recentered to the S1 direction. So here, S1 and S2 were indeed trained and tested separately for the same epoch.

      (4) I think training and testing were done separately for each epoch and timepoint, but this could have important implications for interpreting the results. Namely if the models are trained and tested on different time points, and reference directions, then some will be inherently noisier than others (e.g., delay period more so than encoding), and potentially more (or differently) susceptible to bias. For instance, the S1 and S2 epochs show no attractive bias, but they may also be based on more high-fidelity training sets (i.e., encoding), and therefore less susceptible to the bias that is evident in the retrocue epoch.

      Thanks for pointing this out. Training and testing were performed in an epoch- and time point-specific way. Thus, potential differences in the signal-to-noise ratio between different task phases could cause quality differences between the corresponding reconstructed MEG signals. However, we did not observe such differences. Instead, we found comparable time courses of the reconstruction fidelities and the averaged reconstruction strengths between epochs (Figure 2b and 2c, respectively). Fig. 2b, e.g., shows that reconstruction fidelity for motion direction stimuli built up slowly during the stimulus presentation, reaching its maximum only after stimulus offset. This observation may contrast to different stimulus materials with faster build-ups, like the orientation of a Gabor.

      We agree with the reviewer that, regardless of the comparable but not perfectly equal reconstruction fidelities, there are good arguments to assume that the neural representation of the stimulus during its encoding is typically less noisy than during its post-encoding processing and that this difference could be one of the reasons why serial dependence emerged in our study only during the retro-cue epoch. However, the argument could also be reversed: a biased representation, which represents a small and hard-to-detect neural effect, might be easier to observe for less noisy data. So, the fact that we found a significant bias only during the potentially “noisier” retro-cue epoch makes the effect even more noteworthy.

      We mentioned the limitation related to our stimulus material already at the end of the Discussion. We have now added a new paragraph to the Discussion to address the two opposing lines of reasoning.  

      (4) I believe the work would benefit from a further effort to reconcile these results with previous findings (i.e., those that showed repulsion, like Sheehan & Serences), potentially through additional analyses. The discussion attributes the difference in findings to the "combination of a retro-cue paradigm with the high temporal resolution of MEG," but it's unclear how that explains why various others observed repulsion (thought to happen quite early) that is not seen at any stage here. In my view, the temporal (as well as spatial) resolution of MEG could be further exploited here to better capture the early vs. late stages of processing. For instance, by separately examining earlier vs. later time points (instead of averaging across all of them), or by identifying and analyzing data in the sensors that might capture early vs. late stages of processing. Indeed, the S1 and S2 reconstructions show subtle repulsion, which might be magnified at earlier time points but then shift (toward attraction) at later time points, thereby counteracting any effect. Likewise, the S1 reconstruction becomes biased during the S2 epoch, consistent with previous observations that the SD effects grow across a WM delay. Maybe both S1 and S2 would show an attractive bias emerging during the later (delay) portion of their corresponding epoch? As is, the data nicely show that an attractive bias can be detected in the retrocue period activity, but they could still yield further specificity about when and where that bias emerges.

      We are grateful for this suggestion. Before going into detail, we would like to explain our motivation for choosing the present analysis approach that included averaging time points within an epoch of interest.

      Our aim was to detect a neuronal signature of serial dependence which is manifested as an attractive shift of about 3.5° degrees within the 360° direction space. To be able to detect such a small effect in the neural data and given the limited resolution of the reconstruction method and the noisy MEG signals, we needed to maximize the signal-to-noise ratio. A common method to obtain this is by averaging data points. In our study we asked subjects to perform 1022 trials, down-sampled the MEG data from the recorded sampling rate of 1200 Hz to 10 Hz (one data point per 100 ms) that we used for the estimation of reconstruction fidelity and calculated the final neural shift estimates by averaging time points that showed a robust reconstruction fidelity, thus representing interpretable data points.

      Our procedure to maximize the signal-to-noise ratio was successful as we were able to reliably reconstruct the presented and remembered motion direction in all epochs (Figure 1a and 1b in the manuscript). However, the reconstruction did not work equally well for all time points within each epoch. In particular, there were time points with a non-significant reconstruction fidelity. In consequence, for the much smaller neural shift effect we did not expect to observe reliable time-resolved results, i.e., when considering each time point separately. Instead, we used the reconstruction results to define the time window in order to calculate the neural shift, i.e., we averaged across all time points with a significant reconstruction fidelity.

      Author response image 1 depicts the neural shift separately for each time point during the retro-cue epoch. Importantly, the gray parts of the time courses indicate time points where the reconstruction of the presented or cued stimulus was not significant. This means that the reconstructed maxima at those time points were very variable/unreliable and therefore the neural shifts were hardly interpretable.

      Author response image 1.

      Time courses of the reconstruction shift reveal a tendency for an attractive bias during the retrocue phase. Time courses of the neural shift separately for each time point during the S1 (left panel), S2 (middle panel) and retro-cue epochs (right panel). Gray lines indicate time points with non-significant reconstruction fidelities and therefore very variable and non-interpretable neural reconstruction shifts. The colored parts of the lines correspond to the time periods of significant reconstruction fidelities with interpretable reconstruction shifts. Error bars indicate the middle 95% of the resampling distribution. Time points with less than 5% (equaling p < .05) of the resampling distribution below 0° are indicated by a colored circle. N = 10.

      First, the time courses in the Author response image 1 show that the neural bias varied considerably between subjects, as revealed by the resampling distributions, at given time points. In this resampling procedure, we drew 10 participants in 10.000 iterations with replacement and calculated the reconstruction shift based on the mean reconstruction of the resampled participants. The observed variability stresses the necessity to average the values across all time points that showed a significant reconstruction fidelity to increase the signal-to-noise ratio.

      Second, despite this high variability/low signal-to-noise ratio, Author response image 1 (right panel) shows that our choice for this procedure was sensible as it revealed a clear tendency of an attractive shift at almost all time points between 300 through 1500 ms after retro-cue onset with only a few individual time-points showing a significant effect (uncorrected for multiple comparisons). It is worth to mention that this time course did not overlap with the time course of previous target cross-reconstruction (Appendix 1—figure 2, right panel), as there was no significant target cross-reconstruction during the retro-cue epoch with an almost flat profile around zero. Also, there was no overlap with previous target decoding in the retro-cue epoch (Figure 5 in the manuscript). Here, the previous target was reactivated significantly only at early time points of 200 and 300 ms post cue onset (i.e., at time points with a non-significant reconstruction fidelity and therefore no interpretable neural shift), while the nominally highest values of the attractive neural shift were visible at later time points that also showed a significant reconstruction fidelity (Figure 2b in the manuscript).

      Third, Author response image 1 (left and middle panel) shows the time courses of the neural shift during the S1 and S2 epochs. While no neural shift could be observed for S1, during the S2 epoch the time-resolved analysis indicated an initial attractive shift followed by a (nonsignificant) tendency for a repulsive shift. After averaging neural shifts across time points with a significant reconstruction fidelity, there was no significant effect with an overall tendency for repulsion, as reported in the paper. The attractive part of the neural shift during the S2 epoch was nominally strongest at very early time points (at 100-300 ms after S2 onset) and overlapped perfectly with the reactivation of the previous target as shown by the cross-reconstruction analysis (Appendix 1—figure 2, middle panel). This overlap suggests that the neural attractive shift did not reflect an actual bias of the early S2 representation, but rather a consequence of the concurrent reactivation of the previous target in the same neural code as the current representation. Finally, this neural attractive shift during S2 presentation did not correlate with the behavioral error (single trial-wise correlation: no significant time points during S2 epoch) or the behavioral bias (subject-wise correlation). In contrast, for the retro-cue epoch, we observed a significant correlation between the neural attractive shift and behavior.

      Together, the time-resolved results show a clear tendency for an attractive neural bias during the retro-cue phase, thus supporting our interpretation that the attractive shift during the retro-cue phase reflects a direct neuronal signature of serial dependence. However, these additional analyses also demonstrated a large variability between participants and across time points, warranting a cautious interpretation. We conclude that our initial approach of averaging across time points was an appropriate way of reducing the high level of noise in the data and revealed the reported significant and robust attractive neural shift in the retrocue phase.

      (5) A few other potentially interesting (but inessential considerations): A benchmark property of serial dependence is its feature-specificity, in that the attractive bias occurs only between current and previous stimuli that are within a certain range of similarity to each other in feature space. I would be very curious to see if the neural reconstructions manifest this principle - for instance, if one were to plot the trialwise reconstruction deviation from 0, across the full space of current-previous trial distances, as in the behavioral data. Likewise, something that is not captured by the DoG fivng approach, but which this dataset may be in a position to inform, is the commonly observed (but little understood) repulsive effect that appears when current and previous stimuli are quite distinct from each other. As in, Figure 1b shows an attractive bias for direction differences around 30 degrees, but a repulsive one for differences around 170 degrees - is there a corresponding neural signature for this component of the behavior?

      We appreciate the reviewer's idea to split the data. However, given that our results strongly relied on the inclusion of all data points, i.e., including all distances in motion direction between the current S1, S2 or target and the previous target and requiring data averaging, we are concerned that our study was vastly underpowered to be able to inform whether the attractive bias occurs only within a certain range of inter-stimulus similarity. To address this important question, future studies would require neural measurements with much higher signal-to-noise-ratio than the present MEG recordings with two sessions per participant and 1022 trials in total.

      Reviewer #2 (Public Review):

      Summary:

      The study aims to probe the neural correlates of visual serial dependence - the phenomenon that estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The authors utilize an established retro-cue working memory task together with magnetoencephalography, which allows to probe neural representations of motion direction during encoding and retrieval (retro-cue) periods of each trial. The main finding is that neural representations of motion direction are not systematically biased during the encoding of motion stimuli, but are attracted towards the motion direction of the previous trial's target during the retrieval (retro-cue period), just prior to the behavioral response. By demonstrating a neural signature of attractive biases in working memory representations, which align with attractive behavioral biases, this study highlights the importance of post-encoding memory processes in visual serial dependence.

      Strengths:

      The main strength of the study is its elegant use of a retro-cue working memory task together with high temporal resolution MEG, enabling to probe neural representations related to stimulus encoding and working memory. The behavioral task elicits robust behavioral serial dependence and replicates previous behavioral findings by the same research group. The careful neural decoding analysis benefits from a large number of trials per participant, considering the slow-paced nature of the working memory paradigm. This is crucial in a paradigm with considerable trial-by-trial behavioral variability (serial dependence biases are typically small, relative to the overall variability in response errors). While the current study is broadly consistent with previous studies showing that attractive biases in neural responses are absent during stimulus encoding (previous studies reported repulsive biases), to my knowledge it is the first study showing attractive biases in current stimulus representations during working memory. The study also connects to previous literature showing reactivations of previous stimulus representations, although the link between reactivations and biases remains somewhat vague in the current manuscript. Together, the study reveals an interesting avenue for future studies investigating the neural basis of visual serial dependence.

      Weaknesses:

      (1) The main weakness of the current manuscript is that the authors could have done more analyses to address the concern that their neural decoding results are driven by signals related to eye movements. The authors show that participants' gaze position systematically depended on the current stimuli's motion directions, which together with previous studies on eye movement-related confounds in neural decoding justifies such a concern. The authors seek to rule out this confound by showing that the consistency of stimulus-dependent gaze position does not correlate with (a) the neural reconstruction fidelity and (b) the repulsive shift in reconstructed motion direction. However, both of these controls do not directly address the concern. If I understand correctly the metric quantifying the consistency of stimulus-dependent gaze position (Figure S3a) only considers gaze angle and not gaze amplitude. Furthermore, it does not consider gaze position as a function of continuous motion direction, but instead treats motion directions as categorical variables. Therefore, assuming an eye movement confound, it is unclear whether the gaze consistency metric should strongly correlate with neural reconstruction fidelity, or whether there are other features of eye movements (e.g., amplitude differences across participants, and tuning of gaze in the continuous space of motion directions) which would impact the relationship with neural decoding. Moreover, it is unclear whether the consistency metric, which does not consider history dependencies in eye movements, should correlate with attractive history biases in neural decoding. It would be more straightforward if the authors would attempt to (a) directly decode stimulus motion direction from x-y gaze coordinates and relate this decoding performance to neural reconstruction fidelity, and (b) investigate whether gaze coordinates themselves are history-dependent and are attracted to the average gaze position associated with the previous trials' target stimulus. If the authors could show that (b) is not the case, I would be much more convinced that their main finding is not driven by eye movement confounds.

      The reviewer is correct that our eye-movement analysis approach considered gaze angle (direction) and not gaze amplitude. We considered gaze direction to be the more important feature to control for when investigating the neural basis of serial dependence that manifests, given the stimulus material used in our study, as a shift/deviation of angle/direction of a representation towards the previous target motion direction. To directly relate gaze direction and MEG data to each other we equaled the temporal resolution of the eye tracking data to match that of the MEG data. Specifically, our analysis procedure of gaze direction provided a measure indicating to which extent the variance of the gaze directions was reduced compared with random gaze direction patterns, in relation to the specific stimulus direction within each 100 ms time bin. Importantly, this procedure was able to reveal not only systematic gaze directions that were in accordance with the stimulus direction or the opposite direction, but also picked up all stimulus-related gaze directions, even if the relation differed across participants or time.

      Our analysis approach was highly sensitive to detect stimulus-related gaze directions during all task phases (Appendix 1—figure 3). As expected, we found systematic gaze directions when S1 and S2 were presented on the screen, and they were reduced thereafter, indicating a clear relationship between stimulus presentation and eye movement. Systematic gaze directions were also present in the retro-cue phase where no motion direction was presented. Here they showed a clearly different temporal dynamic as compared to the S1 and S2 phases. They appeared at later time points and with a higher variability between participants, indicating that they coincided with retrieving the target motion direction from working memory.

      To relate gaze directions with MEG results, we calculated Spearman rank correlations. We found that there was no systematic relationship at any time point between the stimulus related reconstruction fidelity and the amount of stimulus-related gaze direction. Even more, the correlation varied strongly from time point to time point revealing its random nature. In addition to the lack of significant correlations, we observed clearly distinct temporal profiles for gaze direction (Appendix 1—figure 3a and Appendix 1—figure 3b) and the reconstruction fidelities (Figure 2b in the manuscript, Appendix 1—figure 3c), in particular in the critical retro-cue phase.

      We favored this analysis approach over one that directly decoded stimulus motion direction from x-y gaze coordinates, as we considered it hardly feasible to compute an inverted encoding model with only two eye-tracker channels as an input (in comparison to 271 MEG sensors), and to our knowledge, this has not been done before. Other decoding methods have previously been applied to x-y gaze coordinates. However, in contrast to the inverted encoding model, they did not provide a measure of the representation shift which would be crucial for our investigation of serial dependence.

      We appreciate the suggestion to conduct additional analyses on eye tracking data (including different temporal and spatial resolution and different features) and their relation to MEG data. However, the first author, who ran all the analyses, has in the meantime left academia. Unfortunately, we currently do not have sufficient resources to perform additional analyses.

      While the presented eye movement control analysis makes us confident that our MEG finding was not crucially driven by stimulus-related gaze directions, we agree with the reviewer that we cannot completely exclude that other eye movement-related features could have contributed to our MEG findings. However, we would like to stress that whatever that main source for the observed MEG effect was (shift of the neuronal stimulus representation, (other) features of gaze movement, or shift of the neuronal stimulus representation that leads to systematic gaze movement), our study still provided clear evidence that serial dependence emerged at a later post-encoding stage of object processing in working memory. This central finding of our study is hard to observe with behavioral measures alone and is not affected by the possible effects of eye movements.

      We have slightly modified our conclusion in the Results and Appendix 1. Please see also our response to comment 1 from reviewer 3.

      (2) I am not convinced by the across-participant correlation between attractive biases in neural representations and attractive behavioral biases in estimation reports. One would expect a correlation with the behavioral bias amplitude, which is not borne out. Instead, there is a correlation with behavioral bias width, but no explanation of how bias width should relate to the bias in neural representations. The authors could be more explicit in their arguments about how these metrics would be functionally related, and why there is no correlation with behavioral bias amplitude.

      We are grateful for this suggestion. We correlated the individual neuronal shift with the two individual parameter fits of the behavior shift, i.e., amplitude (a) and tuning width (w). We found a significant correlation between the individual neural bias and the w parameter (r = .70, p = .0246) but not with the a parameter (r = -.35, p = .3258) during the retro-cue period (Appendix 1—figure 1). This indicates that a broader tuning width of the individual bias (as reflected by a smaller w parameter) was associated with a stronger individual neural attraction.

      It is important to note that for the calculation of the neural shift, all trials entered the analysis to increase the signal-to-noise ratio, i.e., it included many trials where current and previous targets were separated by, e.g., 100° or more. These trials were unlikely to produce serial dependence. Subjects with a more broadly tuned serial dependence had more interitem differences that showed a behavioral attraction and therefore more trials affected by serial dependence that entered the calculation of the neural shift. In contrast, individual differences in the amplitude (a) parameter were most likely too small, and higher individual amplitude did not involve more trials as compared to smaller amplitude to affect the neural bias in a way to be observed in a significant correlation.

      We have added this explanation to Appendix 1.  

      (3) The sample size (n = 10) is definitely at the lower end of sample sizes in this field. The authors collected two sessions per participant, which partly alleviates the concern. However, given that serial dependencies can be very variable across participants, I believe that future studies should aim for larger sample sizes.

      We want to express our appreciation for raising this issue. We apologize that we did not explicitly explain and justifythe choice for the sample size used in our paper, in particular, as we had in fact performed a formal a-priori power analysis.

      At the time of the sample size calculation, there were no comparable EEG or MEG studies to inform our power calculation. Thus, we based our calculation merely on the behavioral effect reported in the literature and, in particular, observed in a behavioral study from our lab that included four different experiments with overall more than 100 participants with 1632 trials each (see Fischer et al., 2020), in which the behavioral serial dependence effect (target vs. nontarget) was very robust. Based on the contrast between target and non-target with an effect size of 1.359 in Experiment 1, a power analysis with 80% desired power led to a small, estimated sample size of 6 subjects.

      However, we expected that the detection of the neural signature of this effect would require more participants. Therefore, we based our power calculation on a much smaller behavioral effect, i.e. the modulation of serial dependence by the context-feature congruency that we observed in our previous study (Fischer et al., 2020). In particular, we focused on Experiment 1 of the previous study that used color as the feature for retro-cueing, as we planned to use exactly the same paradigm for the MEG study. In contrast to the serial dependence effect, its modulation by color resulted in a more conservative power estimate: Based on an effect size of 0.856 in that experiment, a sample size of n = 10 should yield a power of 80% with two MEG sessions per subject.

      At the time when we conducted our study, two other studies were published that investigated serial dependence on the neural level. Both studies included a smaller number of data points than our study: Sheehan & Serences (2022) recorded about 840 trials in each of 6 participants, resulting in fewer data points both on the participant and on the trial level. Hajonides et al. (2023) measured 20 participants with 400 trials each, again resulting in fewer datapoints than our study (10 participants with 1022 trials each). Taken together, our a-priori sample size estimation resulted in comparable if not higher power as compared to other similar studies, making us feel confident that the estimated sample was sufficient to yield reliable results.

      We have now included this description and the results of this power analysis in the Materials and Methods section.

      Despite this, we fully agree with the reviewer that our study would profit from higher power. With the knowledge of the results from this study, future projects should attempt to increase substantially the signal-to-noise-ratio by increasing the number of trials in particular, in order to observe, e.g., robust time-resolved effects (see our comments to review 1).

      References:

      Fischer C, Czoschke S, Peters B, Rahm B, Kaiser J, Bledowski C (2020) Context information supports serial dependence of multiple visual objects across memory episodes. Nature Communication 11: 1932.

      Sheehan TC, Serences JT (2022) Attractive serial dependence overcomes repulsive neuronal adaptation PLOS Biology 20: e3001711.

      Hajonides JE, Van Ede F, Stokes MG, Nobre AC, Myers NE (2023) Multiple and Dissociable Effects of Sensory History on Working-Memory Performance Journal of Neuroscience 43: 2730–2740.

      (4) It would have been great to see an analysis in source space. As the authors mention in their introduction, different brain areas, such as PPC, mPFC, and dlPFC have been implicated in serial biases. This begs the question of which brain areas contribute to the serial dependencies observed in the current study. For instance, it would be interesting to see whether attractive shifts in current representations and pre-stimulus reactivations of previous stimuli are evident in the same or different brain areas.

      We appreciate this suggestion. As mentioned above, we currently do not have sufficient resources to perform a MEG source analysis.

      Reviewer #3 (Public Review):

      Summary:

      This study identifies the neural source of serial dependence in visual working memory, i.e., the phenomenon that recall from visual working memory is biased towards recently remembered but currently irrelevant stimuli. Whether this bias has a perceptual or postperceptual origin has been debated for years - the distinction is important because of its implications for the neural mechanism and ecological purpose of serial dependence. However, this is the first study to provide solid evidence based on human neuroimaging that identifies a post-perceptual memory maintenance stage as the source of the bias. The authors used multivariate pattern analysis of magnetoencephalography (MEG) data while observers remembered the direction of two moving dot stimuli. After one of the two stimuli was cued for recall, decoding of the cued motion direction re-emerged, but with a bias towards the motion direction cued on the previous trial. By contrast, decoding of the stimuli during the perceptual stage was not biased.

      Strengths:

      The strengths of the paper are its design, which uses a retrospective cue to clearly distinguish the perceptual/encoding stage from the post-perceptual/maintenance stage, and the rigour of the careful and well-powered analysis. The study benefits from high within participant power through the use of sensitive MEG recordings (compared to the more common EEG), and the decoding and neural bias analysis are done with care and sophistication, with appropriate controls to rule out confounds.

      Weaknesses:

      A minor weakness of the study is the remaining (but slight) possibility of an eye movement confound. A control analysis shows that participants make systematic eye movements that are aligned with the remembered motion direction during both the encoding and maintenance phases of the task. The authors go some way to show that this eye gaze bias seems unrelated to the decoding of MEG data, but in my opinion do not rule it out conclusively. They merely show that the strengths of the gaze bias and the strength of MEGbased decoding/neural bias are uncorrelated across the 10 participants. Therefore, this argument seems to rest on a null result from an underpowered analysis.

      Our MEG as well eye-movement analysis showed that they were sensitive to pick up robustly stimulus-related effects, both for presented and remembered motion directions. When relating both signals to each other by correlating MEG reconstruction strength with gaze direction, we found a null effect, as pointed out by the reviewer. Importantly, there was also a null effect when the shift of the reconstruction (representing our main finding) was correlated with gaze direction. Furthermore, an examination of the individual time courses of gaze direction and individual MEG reconstruction strength revealed that the lack of a relationship between MEG and gaze data did not rest on a singular observation but was present across all time points. Even more, the temporal profile of the correlation varied strongly from time point to time point revealing its random nature and indicating that there was no hint of a pattern that just failed to reach significance. Taking these observations together, our MEG findings were unlikely to be explained by eye position.

      Nevertheless, we agree with the reviewer that there is general problem of interpreting a null effect with a limited number of observations (and an analysis approach that focused on one out of many possible features of the gaze movement). Thus, we admit that there is a (slight) possibility that eye movements contributed to the observed MEG effects. This possibility, however, did not affect our novel finding that serial dependence occurred during the postencoding stage of object processing in working memory.

      Please see also our response to point 1 from reviewer 2.

      Impact:

      This important study contributes to the debate on serial dependence with solid evidence that biased neural representations emerge only at a relatively late post-perceptual stage, in contrast to previous behavioural studies. This finding is of broad relevance to the study of working memory, perception, and decision-making by providing key experimental evidence favouring one class of computational models of how stimulus history affects the processing of the current environment.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor concerns:

      The significance statement opens "Our perception is biased towards sensory input from the recent past." This is a semantic point, but it seems a somewhat odd statement, given there is so much debate about whether serial dependence is perceptual vs. decisional, and that the current work indeed claims that it emerges at a late, post-encoding stage.

      Thank you for this point. We agree. “Visual cognition is biased towards sensory input from the recent past.” would be a more appropriate statement. According to the Journal's guidelines, however, the paragraph with the Significant Statement will be not included in the final manuscript.

      It would be preferable for data and code to be available at review so that reviewers might verify some procedural points for clarity.

      Code and preprocessed data used for the presented analyses are now available on OSF via http://osf.io/yjc93/. Due to storage limitations, only the preprocessed MEG data for the main IEM analyses focusing on the current direction are uploaded. For access to additional data, please contact the authors.

      For instance, I could use some clarification on the trial sequence. The methods first say the direction was selected randomly, but then later say each direction occurred equally often, and there were restrictions on the relationships between current and previous trial items. So it seems it couldn't have truly been random direction selection - was the order selected randomly from a predetermined set of possibilities?

      For the S1/S2 stimuli in a trial the dots moved fully coherent in a direction randomly drawn from a pool of directions between 5° and 355° spaced 10° from one another, therefore avoiding cardinal directions. Across trials, there was a predetermined set of possible differences in motion direction between the current and the previous target. This set included 18 motion direction differences, ranging from -170° to 180°, in steps of 10°. Trial sequences were balanced in a way that each of these differences occurred equally often during a MEG session.

      I could also use some additional assurance the sample size (participants or data points) is sufficient for the analysis approach deployed here.

      We performed a formal a-priori power analysis to justify our choice for the sample size. Please see our response to reviewer 2, point 3, where we explained the procedure of the apriori power analysis in detail. We have now included this description and the results of this power analysis in the Materials and Methods.

      Did you consider a decoding approach, instead of reconstruction, to test what information predominates the signal, in an unbiased way?

      Thank you for this argument. With our analysis approach based on the inverted encoding model, we believe to be unbiased, since we first reconstructed whether the MEG signal contained information about the presented and remembered motion direction. Only in the next step, we tested whether this reconstructed signal showed an offset and if so, whether this offset was biased towards or away from the previous target. A decoding approach aims to answer classification questions and is not suitable to reveal the actual shifts of the neural information. In our study, we could decode, e.g., the current direction or the previous target, but this would not answer the question of whether and at which stage of object processing the current representation was biased towards the past. Moreover, in a decoding approach to reveal which information predominates in the signal, we would have to classify different options (e.g. current information vs previous), thereby biasing the possible set of results more than in our chosen analysis.

      I think the claim of a "direct" neural signature may come off as an overstatement when the spatial and temporal aspects of the attractive bias are still so coarsely specified here.

      Thank you for pointing this out. We agree that the term “direct neural signature” can be seen as an overstatement when it is interpreted to indicate a narrowly defined activity of a brain region (ideally via “direct” invasive recordings) that reflects serial dependence. Our definition of the term “direct” referred to the observation of an attractive shift in a neural representation of the current target motion direction item towards the previous target. This was in contrast to previous “indirect” evidence for the neural basis of serial dependence based on either repulsive shifts of neural representations that were opposite to the attractive bias in behavior or on a reactivation of previous information in the current trial without presenting evidence for the actual neural shift. With this definition in mind, we consider the title of our study a valid description of our findings.

      Reviewer #2 (Recommendations For The Authors):

      I was wondering why the authors chose a bootstrap test for their neural bias analysis instead of a permutation test, similar to the one they used for their behavioral analysis. As far as I know, bootstrap tests do not provide guaranteed type-1 error rate control. The procedure for the permutation test would be quite straightforward here, randomly permuting the sign of each participant's neural shift and recording the group-average shift in a permutation distribution. This test seems more adequate and more consistent with the behavioral analysis.

      Thank you for this comment. We adapted a resampling approach (bootstrapping) that was similar to that by Ester et al. (2020) who also investigated categorical biases and also applied a reconstruction method (Inverted Encoding Model) to assess significance of a bias of the reconstructed orientation against zero in a certain direction. The bootstrapping method relied on a) detecting an offset against zero and b) evaluating the robustness of the observed effect across participants. In contrast, a permutation approach, as suggested by the reviewer, assesses whether an empirical neural shift is more extreme than the permutation distribution. The permutation approach seems more suited to assess the magnitude of the shift which in our study was not a priority. Therefore, we reasoned that the bootstrapping for our inference statistics was better suited to assess the direction of the neural shift and its robustness across participants.

      We have added this additional information to the Materials and Methods:

      References:

      Ester EF, Sprague TC, Serences JT (2020) Categorical biases in human occipitoparietal cortex. Journal of Neuroscience 40:917–931.

      The manuscript could be improved by more clearly spelling how the training and testing data were labelled, particularly for the reactivation analyses. If I understood correctly, in the first reactivation analysis the authors train and test on current trial data, but label both training and testing data according to the previous trial's motion direction. In the second analysis, they label the training data according to the current motion direction, but label the testing data according to the previous motion direction. Is that correct?

      Yes, this is correct. Please see also our response to reviewer 1, point 2 and 3, for a detailed description.

      I was surprised to see that the shift in the reconstructed direction is about three times larger than the behavioral attraction bias. Would one not expect these to be comparable in magnitude? It would be helpful to address and discuss this in the discussion section.

      Thank you for pointing this out. We agree with the reviewer that as both measures provided an identical metric (angle degree), one would expect that their magnitudes should be directly comparable. However, we speculate that these magnitudes inform only about the direction of the bias and their significant difference from zero, thus they operate on different scales and are not directly comparable. For example, Hallenbeck et al. (2022) showed that fMRI-based reconstructed orientation bias and behavioral bias correlated on both individual and group level, despite strong magnitude differences. This is in line with our observation and supports the speculation that the magnitudes of neural and behavioral biases operate on different scales and, thus, are not directly comparable.

      We have updated to the Discussion accordingly.

      References:

      Hallenbeck GE, Sprague TC, Rahmati M, Sreenivasan KK, Curtis CE (2022) Working memory representations in visual cortex mediate distraction effects Nature Communications 12: 471.

      Reviewer #3 (Recommendations For The Authors):

      (1) It may be worth showing that the gaze bias towards the current/cued stimulus is not biased towards the previous target. One option might be to run the same analysis pipeline used for the MEG decoding but on the eye-tracking data. Another could be to remove all participants with significant gaze bias, but given the small sample size, this might not be feasible.

      We appreciate this suggestion. However, as mentioned above, we currently do not have sufficient resources to conduct additional analyses on the eye tracking data.

      (2) Minor typo: Figure 3c - bias should be 11.7º, not -11.7º.

      Corrected. Thank you!

      Note on data/code availability: The authors state that preprocessed data and analysis code will be made available on publication, but are not available yet.

      Code and preprocessed data used for the present analyses are now available on OSF via http://osf.io/yjc93/. Due to storage limitations, only the preprocessed MEG data for the main IEM analyses focusing on the current direction are uploaded. For access to additional data, please contact the authors.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Participants in this study completed three visits. In the first, participants received experimental thermal stimulations which were calibrated to elicit three specific pain responses (30, 50, 70) on a 0-100 visual analogue scale (VAS). Experimental pressure stimulations were also calibrated at an intensity to the same three pain intensity responses. In the subsequent two visits, participants completed another pre-calibration check (Visit 2 of 3 only). Then, prior to the exercise NALOXONE or a SALINE placebo-control was administered intravenously. Participants then completed 1 of 4 blocks of HIGH (100%) or LOW (55%) intensity cycling which was tailored according to a functional threshold power (FTP) test completed in Visit 1. After each block of cycling lasting 10 minutes, participants entered an MRI scanner and were stimulated with the same thermal and pressure stimulations that corresponded to 30, 50, and 70 pain intensity ratings from the calibration stage. Therefore, this study ultimately sought to investigate whether aerobic exercise does indeed incur a hypoalgesia effect. More specifically, researchers tested the validity of the proposed endogenous pain modulation mechanism. Further investigation into whether the intensity of exercise had an effect on pain and the neurological activation of pain-related brain centres were also explored.

      Results show that in the experimental visits (Visit 2 and 3), when participants exercised at two distinct intensities as intended. Power output, heart rate, and perceived effort ratings were higher during the HIGH versus LOW-intensity cycling. In particular. HIGH intensity exercise was perceived as "hard" / ~15 on the Borg (1974, 1998) scale, whereas LOW intensity exercise was perceived as "very light" / ~9 on the same scale.

      The fMRI data from Figure 1 indicates that the anterior insula, dorsal posterior insula, and middle cingulate cortex show pronounced activation as stimulation intensity and subsequent pain responses increased, thus linking these brain regions with pain intensity and corroborating what many studies have shown before.

      Results also showed that participants rated a higher pain intensity in the NALOXONE condition at all three stimulation intensities compared to the SALINE condition. Therefore, the expected effect of NALOXONE in this study seemed to occur whereby opioid receptors were "blocked" and thus resulted in higher pain ratings compared to a SALINE condition where opioid receptors were "not blocked". When accounting for participant sex, NALOXONE had negligible effects at lower experimental nociceptive stimulations for females compared to males who showed a hyperalgesia effect to NALOXONE at all stimulation intensities (peak effect at 50 VAS). Females did show a hyperalgesia effect at stimulation intensities corresponding to 50 and 70 VAS pain ratings. The fMRI data showed that the periaqueductal gray (PAG) showed increased activation in the NALOXONE versus SALINE condition at higher thermal stimulation intensities. The PAG is well-linked to endogenous pain modulation.

      When assessing the effects of NALOXONE and SALINE after exercise, results showed no significant differences in subsequent pain intensity ratings.

      When assessing the effect of aerobic exercise intensity on subsequent pain intensity ratings, authors suggested that aerobic exercise in the form of a continuous cycling exercise tailored to an individual's FTP is not effective at eliciting an exercise-induced hypoalgesia response irrespective of exercise intensity. This is because results showed that pain responses did not differ significantly between HIGH and LOW intensity exercise with (NALOXONE) and without (SALINE) an opioid antagonist. Therefore, authors have also questioned the mechanisms (endogenous opioids) behind this effect.

      Strengths:

      Altogether, the paper is a great piece of work that has provided some truly useful insight into the neurological and perceptual mechanisms associated with pain and exercise-induced hypoalgesia. The authors have gone to great lengths to delve into their research question(s) and their methodological approach is relatively sound. The study has incorporated effective pseudo-randomisation and conducted a rigorous set of statistical analyses to account for as many confounds as possible. I will particularly credit the authors on their analysis which explores the impact of sex and female participants' stage of menses on the study outcomes. It would be particularly interesting for future work to pursue some of these lines of research which investigate the differences in the endogenous opioid mechanism between sexes and the added interaction of stage of menses or training status.

      There are certainly many other areas that this article contributes to the literature due to the depth of methods the research team has used. For example, the authors provide much insight into: the impact of exercise intensity on the exercise-induced hypoalgesia effect; the impact of sex on the endogenous opioid modulation mechanism; and the impact of exercise intensity on the neurological indices associated with endogenous pain modulation and pain processing. All of which, the researchers should be credited for due to the time and effort they have spent completing this study. Indeed, their in-depth analysis of many of these areas provides ample support for the claims they make in relation to these specific questions. As such, I consider their evidence concerning the fMRI data to be very convincing (and interesting).

      Weaknesses:

      Although the authors have their own view of their results, I do however, have a slightly different take on what the post-exercise pain ratings seem to show and its implications for judging whether an exercise-induced hypoalgesia effect is present or not. From what I have read, I cannot seem to find whether the authors have compared the post-exercise pain ratings against any data that was collected pre-exercise/at rest or as part of the calibration. Instead, I believe the authors have only compared post-exercise pain ratings against one another (i.e., HIGH versus LOW, NALOXONE versus SALINE). In doing so, I think the authors cannot fully assume that there is no exercise-induced hypoalgesia effect as there is no true control comparison (a no-exercise condition).

      In more detail, Figure 6A appears to show an average of all pain ratings combined per participant (is this correct?). As participants were exposed to stimulations expected to elicit a 30, 50, or 70 VAS rating based on pre-calibration values, therefore the average rating would be expected to be around 50. What Figure 6A shows is that in the SALINE condition, average pain ratings are in fact ~10-15 units lower (~35) and then in the NALOXONE condition, average pain ratings are ~5 units lower (~45) for both exercise intensities. From this, I would surmise the following:

      It appears there is an exercise-induced hypoalgesia effect as average pain ratings are ~30% lower than pre-calibrated/resting pain ratings within the SALINE condition at the same temperature of stimulation (it would also be interesting to see if this effect occurred for the pressure pain).

      It appears there is evidence for the endogenous opioid mechanism as the NALOXONE condition demonstrates a minimal hypoalgesia effect after exercise. I.e., NALOXONE indeed blocked the opioid receptors, and such inhibition prevented the endogenous opioid system from taking effect.

      It appears there is no effect of exercise intensity on the exercise-induced hypoalgesia effect.

      That is, participants can cycle at a moderate intensity (55% FTP) and incur the same hypoalgesia benefits as cycling at an intensity that demarcates the boundary between heavy and severe intensity exercise (100%FTP). This is a great finding in my mind as anyone wishing to reduce pain can do so without having to engage in exercise that is too effortful/intense and therefore aversive - great news! This likely has many applications within the field of public health.

      I will very slightly caveat my summaries with the fact that a more ideal comparison here would be a control condition whereby participants did the same experimental visit but without any exercise prior to entering the MRI scanner. I consider the overall strength of the evidence to be solid, with the answer to the primary research question still a little ambiguous.

      Reviewer #2 (Public review):

      Summary:

      This interesting study compared two different intensities of aerobic exercise (low-intensity, high-intensity) and their efficacy in inducing a hypoalgesic reaction (i.e. exercise-induced hypoalgesia; EIH). fMRI was used to identify signal changes in the brain, with the infusion of naloxone used to identify hypoalgesia mechanisms. No differences were found in postexercise pain perception between the high-intensity and low-intensity conditions, with naloxone infusion causing increased pain perception across both conditions which was mirrored by activation in the medial frontal cortex (identified by fMRI). However, the primary conclusion made in this manuscript (i.e. that aerobic exercise has no overall effect on pain in a mixed population sample) cannot be supported by this study design, because the methodology did not include a baseline (i.e. pain perception following no exercise) to compare high/low-intensity exercise against. Therefore, some of the statements/implications of the findings made in this manuscript need to be very carefully assessed.

      Strengths:

      (1) The use of fMRI and naloxone provides a strong approach by which to identify possible mechanisms of EIH.

      (2) The infusion of naloxone to maintain a stable concentration helps to ensure a consistent effect and that the time course of the protocol won't affect the consistency of changes in pain perception.

      (3) The manipulation checks (differences in intensity of exercise, appropriate pain induction) are approached in a systematic way.

      (4) Whilst the exploratory analyses relating to the interactions for fitness level and sex were not reported in the study pre-registation, they do provide some interesting findings which should be explored further.

      Weaknesses:

      (1) Given that there is no baseline/control condition, it cannot be concluded that aerobic exercise has no effect on pain modulation because that comparison has not been made (i.e. pain perception at 'baseline' has not been compared with pain perception after high/lowintensity exercise). Some of the primary findings/conclusions throughout the manuscript state that there is 'No overall effect of aerobic exercise on pain modulation', but this cannot be concluded.

      (2) Across the manuscript, a number of terms are used interchangeably (and applied, it seems, incorrectly) which makes the interpretation of the manuscript difficult (e.g. how the author's use the term 'exercise-induced pain').

      (3) There is a lack of clarity on the interventions used in the methods, for example, it is not exactly clear the time and order in which the exercise tasks were implemented.

      (4) The exercise test (functional threshold power) used to set the intensity of the low/high exercise bouts is not an accurate means of demarcating steady state and non-steady state exercise. As a result, at the intensity selected for the high-intensity exercise in this study, it is likely that the challenge presented for the high-intensity exercise would have been very different between participants (e.g. some would have been in the 'heavy' domain, whereas others would be in the 'severe' domain).

      (5) It is likely that participants did not properly understand how to use the 6-20 Borg scale to rate their perceived effort, and so caution must be taken in how this RPE data is used/interpreted.

      (6) Although interesting, the secondary analyses (relating to the interaction effects of fitness level and sex) were not included in the study pre-registration, and so the study was not designed to undertake this analysis. These findings should be taken with caution.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Participants in this study completed three visits. In the first one, participants received experimental thermal stimulations which were calibrated to elicit three specific pain responses (30, 50, 70) on a visual analogue scale (VAS). Experimental pressure stimulations were also calibrated at an intensity to the same three pain intensity responses. In the subsequent two visits, participants completed another pre-calibration check (Visit 2 of 3 only). Then, prior to the exercise NALOXONE or a SALINE placebo-control was administered intravenously. Participants then completed 1 of 4 blocks of HIGH (100%) or LOW (55%) intensity cycling which was tailored according to a functional threshold power (FTP) test completed in Visit 1. After each block of cycling lasting 10 minutes, participants entered an MRI scanner and were stimulated with the same thermal and pressure stimulations that corresponded to 30, 50, and 70 pain intensity ratings from the calibration stage. Therefore, this study ultimately sought to investigate whether aerobic exercise does indeed incur a hypoalgesia effect. More specifically, researchers tested the validity of the proposed endogenous pain modulation mechanism.

      Further investigation into whether the intensity of exercise had an effect on pain and the neurological activation of pain-related brain centres was also explored.

      Results show that in the experimental visits (Visit 2 and 3) when participants exercised at two distinct intensities as intended. Power output, heart rate, and perceived effort ratings were higher during the HIGH versus LOW-intensity cycling. In particular, HIGH intensity exercise was perceived as "hard" / ~15 on the Borg (1974) scale, whereas LOW intensity exercise was perceived as "very light" / ~9 on the Borg (1974) scale.

      The fMRI data from Figure 1 indicates that the anterior insula, dorsal posterior insula, and middle cingulate cortex show pronounced activation as stimulation intensity and subsequent pain responses increase, thus linking these brain regions with the percept of pain intensity and corroborating what many studies have shown before.

      Results also showed that participants rated a higher pain intensity in the NALOXONE condition at all three stimulation intensities compared to the SALINE condition. Therefore, the expected effect of NALOXONE in this study seemed to occur whereby opioid receptors were "blocked" and thus resulted in higher pain ratings compared to a SALINE condition where opioid receptors were "not blocked". When accounting for participant sex, NALOXONE had negligible effects at lower experimental nociceptive stimulations for females compared to males who showed a hyperalgesia effect to NALOXONE at all stimulation intensities (peak effect at 50 VAS). Females did show a hyperalgesia effect at stimulation intensities corresponding to 50 and 70 VAS pain ratings. The fMRI data showed that the periaqueductal gray (PAG) showed increased activation in the NALOXONE versus SALINE condition at higher thermal stimulation intensities. The PAG is well-linked to endogenous pain modulation.

      When assessing the effects of NALOXONE and SALINE after exercise, results showed no significant differences in subsequent pain intensity ratings.

      When assessing the effect of aerobic exercise intensity on subsequent pain intensity ratings, authors suggested that aerobic exercise in the form of a continuous cycling exercise tailored to an individual's FTP is not effective at eliciting an exercise-induced hypoalgesia response irrespective of exercise intensity. This is because results showed that pain responses did not differ significantly between HIGH and LOW-intensity exercise with (NALOXONE) and without (SALINE) an opioid antagonist. Therefore, authors have also questioned the mechanisms (endogenous opioids) behind this effect.

      Altogether, the paper is a great piece of work that has provided some truly useful insight into the neurological and perceptual mechanisms associated with pain and exercise-induced hypoalgesia. The authors have gone to great lengths to delve into their research question(s) and their methodological approach is relatively sound. Although the authors have their own view of their results, I do however, have a slightly different take on what the post-exercise pain rating seems to show and its implications for judging whether an exercise-induced hypoalgesia effect is present or not. From what I have read, I cannot seem to find whether the authors have compared the post-exercise pain ratings against any data that was collected preexercise/at rest or as part of the calibration. Instead, I believe the authors have only compared post-exercise pain ratings against one another (i.e., HIGH versus LOW, NALOXONE versus SALINE). In doing so, I think the authors cannot fully question whether there is an exerciseinduced hypoalgesia effect as there is no true control comparison (a no-exercise condition). Nevertheless, there are certainly many other areas that this article contributes to the literature due to the depth of methods the research team has used. For example, the authors provide much insight into: the impact of exercise intensity on the exercise-induced hypoalgesia effect; the impact of sex on the endogenous opioid modulation mechanism; and the impact of exercise intensity on the neurological indices associated with endogenous pain modulation and pain processing. All of which, the researchers should be credited for due to the time and effort they have spent completing this study.

      I have provided some specific comments for the authors to consider. They are organised to correspond to each section as it is presented, and I have denoted the line I am referring to each time.

      To conclude, thank you to the authors for their work, and thank you to the editor for the opportunity to contribute to the review of this paper. I hope my comments are seen as useful and I look forward to seeing the authors' responses.

      We sincerely appreciate the reviewer's insightful comments, which highlight the strengths of our study. In response to the concerns raised, we have made several key revisions to the original manuscript to address the reviewers’ comments. As for the lack of a resting control condition, we acknowledge that our study was not designed to test the overall effect of exercise versus no exercise. However, our primary objective was to compare different exercise intensities, hypothesising that low-intensity (LI) exercise would induce less pain modulation as compared to high-intensity (HI) exercise. By exploring this, we aimed to enhance understanding of the dose-response relationship between exercise and pain modulation. To better reflect this focus, we have revised the misleading phrasing regarding the ‘overall’ effect of exercise to clearly emphasize our primary aim: comparing HI and LI exercise.

      This reviewer suggests an interesting interpretation of the data suggesting that exercise induced hypoalgesia might have occurred for both exercise intensities since the pain ratings provided were lower than the anticipated intensities as determined by the calibration. Given that this difference is lower in the naloxone (NLX) condition could provide evidence of opioidergic mechanisms underlying this effect. Unfortunately, the current study is not designed to comprehensively answer this question since there was no resting control condition. In particular, the lower pain ratings under SAL (Figure 6) could be due to exercise triggering the descending pain modulatory system (DPMS), but equally due to the default activation of the DPMS. Only an additional “no exercise” condition could disentangle this. Furthermore, habituation to noxious stimuli can influence pain ratings, resulting in lower pain ratings during the experiment as compared to the calibration. We have now provided a more detailed overview of the pain ratings at different stimulus intensities after HI and LI exercise in both drug treatment conditions for heat and pressure pain ratings. We elaborated on the specific comments raised in more detail in the following sections.

      Specific Comments

      (1) Abstract

      Line 25 - "we were unable to"... personal preference but this wording is a little 'weighted' in my view. I personally do not think researchers search to prove hypotheses correct, rather we search to prove hypotheses wrong, and therefore only through repeated attempts of falsification can we surmise that something holds true.

      We agree with the reviewer that the chosen wording can be perceived as weighted and have rephrased the sentence.

      Line 33 to 35 - the "...but individual factors... might play a role" is a crucial caveat to this sentence for me. Whilst I can understand that the results of the authors' study indicate that prior assumptions about exercise-induced hypoalgesia and its opioidergic mechanisms may be questioned, I think a little more evidence is needed to finally decide whether aerobic exercise has no overall effect on experimental pain responses. (see more in the Results comments below).

      We thank the reviewer for their comment. We agree that no claims can be made regarding the effect of aerobic exercise per se on pain modulation compared to no exercise based on the current data. Furthermore, we agree that more research is needed to further advance our understanding of (non-)opioidergic mechanisms in exercise-induced pain modulation. However, based on the data presented in this study we propose that the involvement of endogenous opioids in exercise-induced hypoalgesia could be influenced by sex and fitness levels since we could show differences in opioidergic involvement between males and females of different fitness levels. Future studies should account for the fitness levels and sex of the sample investigated.

      (2) Introduction

      Line 48 - please predefine anterior cingulate cortex here.

      We thank the reviewer for detecting this and have introduced the abbreviation for the anterior cingulate cortex in the referenced line.

      Line 49 - please predefine periaqueductal gray here instead of line 52.

      We have introduced the abbreviation for periaqueductal grey in the referenced line.

      Line 47 to 54 - when discussing the descending pain modulatory systems, authors seem to be relating specifically to the intensity/magnitude of pain experiences. However, the different brain regions that are mentioned may have varying "roles" according to which dimension of pain is of focus.

      Hofbauer et al. (2001) - https://doi.org/10.1152/jn.2001.86.1.402

      Rainville et al. (1997) - https://doi.org/10.1126/science.277.5328.968

      The two above studies provide some nice earlier findings on the brain regions - some of which are mentioned by the authors in this section - associated with the processing of pain quality in addition to the intensity of pain... simply attach here if they are of interest to the authors.

      The studies by Hofbauer et al. (2001) and Rainville et al. (1997) provide interesting findings on the effect of hypnotic suggestions on pain affect and the perceived intensity of a painful stimulus. However, these studies did not investigate exercise-induced changes in brain regions of the DPMS. The studies referenced in the relevant section of the manuscript are (one of the few) imaging studies that have indeed investigated brain structures of the DPMS in the context of exercise and pain modulation and, thus, were included in this paragraph to focus on the findings of these studies as well as emphasise the scarcity of imaging studies investigating exercise-induced pain modulation. Given these divergent research topics of the proposed studies, we suggest not including them in this paragraph to maintain a clearer line of argument and focus on exercise-induced pain modulation in brain regions of the DPMS.

      L59 to 61 - a minor comment about the phrasing within this sentence and a recommended change is provided below for the flow of the sentence/paragraph.

      "...there are instances where administration of µ-opioid antagonists has decreased exerciseinduced pain modulation (Droste et al. 1988; etc.) whereas in others there has been little effect (Droste et al. 1988; etc.).

      We have altered the sentence based on the reviewers' suggestions to improve the flow and coherence of the sentence.

      L56 to 72 - Whilst the current version of this paragraph scans well enough, I find that the narrative flits between the mechanisms being discussed and the rationale/shortcomings of current research. I think that the original content of this paragraph can be structured into:

      A- The endogenous opioid system is a likely candidate to explain how exercise elicits a hypoalgesia response.

      B- Citation(s) of the imaging studies (Boecker et al., 2008, etc.) and earlier literature which support A (e.g., Janal et al. 1984).

      C- Further support of this theory as µ-opioid antagonists like naloxone seem to counteract the endogenous opioid effect (Haier et al., 1981).

      D- Introduction of the caveats of previous research such as the studies that observed that µ-opioids did not impact the endogenous pain modulation system during exercise (e.g., Droste et al., 1991, etc.) and the range of different interventions and exercise modalities which make it difficult to draw clear conclusions of the pain modulation effect.

      To me, this structure would set out the details you have already put together in a more orderly and systematic way and also will lead nicely into your ensuing paragraph (Line 74 onwards).

      We appreciate the reviewers' constructive comments on structuring this paragraph. We agree that the proposed version eases the readability and comprehension of the paragraph and have, thus, adapted the restructured paragraph according to the reviewer’s suggestion.

      L75 - Why are single-arm pre-post measures and designs an issue? If you can elaborate a little more this would be very insightful for a reader.

      Single-arm pre-post measurement studies involve participants being assigned to a single experimental condition, with pain assessments conducted only once before and once following an intervention. This study design presents some limitations, particularly in the context of examining exercise-induced modulation of pain (Vaegter and Jones, 2020). Such designs are potentially confounded by the effects of habituation to noxious stimuli, as highlighted by Vaegter and Jones (2020). Incorporating randomised controlled trials with multiple measurement blocks not only mitigates these limitations but also provides a clearer understanding of how individual bouts of exercise influence pain perception. We have now added this to the paper.

      L80 - The reference for the functional threshold power assessment is provided as a number. Please could the authors change to reflect which study/studies they are referring to here (I presume it is the Borszcz and/or the McGrath studies?).

      We apologise for this oversight and have now updated the reference to be displayed correctly. The reviewer is correct in assuming that Borszcz et al. (2018) is the referenced study here.

      L88 - Did participants also receive pressure pain stimulations in addition to the thermal stimuli, as the figure suggests?

      Note Since read on to L102-104 and understood why pressure pain was included but not mentioned due to results. However, I would still recommend including pressure pain stimulations in this line, if possible, to be consistent with what Figure 1 shows and later text in the Methods section also shows.

      We thank the reviewer for their suggestion to mention pressure pain at the referenced line to increase the clarity and consistency of the experimental paradigm. Pressure and heat pain were applied in alternating fashion during scanning. Whilst the results of pressure pain are not included in this study we agree with the reviewer that it should be mentioned again as part of the methods and have added this.

      L94 - I really like Figure 1. Great job.

      Could the authors please define the inter-trial interval (ITI) in the legend? And please could the authors clarify what unit the 30, 50, and 70 figures in the "18 trials per block" section refer to.

      We thank the reviewer for their positive feedback. We have now included a definition of inter-trial-interval (ITI) in the figure legend. Furthermore, we adapted Figure 1 so that the units of the stimulus intensities (30, 50, 70) on the Visual Analog Scale (VAS) are included in the figure allowing for a clearer identification.

      (3) Results

      General comment for figures ... is there a specific reason the authors chose for error bars to be represented by an SE value as opposed to an SD value?

      The reason I ask is that participant responses seem to vary (See Figure 2A and 2E-G as an example). Error bars showing SD values would perhaps do justice to the variability in participant response(s), whereas the SE may be a better representation of the variability in responses due to the assessor's methods of collection. Whilst the SE error bars are narrow (great job on that!), the individual responses are clearly varied which I speculate could be because of the interventions that have been implemented (i.e., exercise intensity).

      The use of Standard Error (SE) is more common in the cognitive neuroscience literature.

      However, as this reviewer noted, we have also included individual data points alongside the SE, thereby providing a comprehensive view that allows for a thorough interpretation of the data distribution.

      L102 to 104 - In fact, it is interesting that exercise did not impact the pressure pain ratings whereas the same cannot be said for thermal pain. In line with some of my comments below about the impact of exercise on pain intensity responses, I would be intrigued to see the results of the pressure pain ratings in more detail.

      Another note on this... Whilst the results for the pressure pain may be beyond the scope of this paper and will be reported separately, knowing of this data is tantalising for a reader. I would suggest to: A) either mention the pressure pain and include the analysis of the data; or B) not mention the pressure pain altogether and save it for the subsequent paper. Either way, I look forward to seeing further discussion on this in future work.

      We have now summarised the behavioural results of exercise on pressure pain ratings below in Supplemental Figure S1.

      There was no hypoalgesic effect evident in the behavioural pain ratings comparing HI to LI exercise in the saline (SAL) condition (β = 0.57, CI [-1.73, 2.86], SE = 1.17, t(1354) = 0.48, P = 0.63; Supplemental Figure S1A, blue bars) as well as no interaction of drug treatment and exercise intensity on pressure pain ratings (β = -1.43, CI [-4.87, 2.01], SE = 1.75, t(2756.02) = -0.82, P = 0.42; Supplemental Figure S1). Post-hoc paired t-tests (Bonferroni-corrected) confirmed there to be no significant differences between the drug treatment conditions at LI (P = 0.18) or HI (P = 0.85) and no significant difference between the exercise intensities in the SAL (P = 0.65) and NLX (P = 0.48) conditions, confirming no significant differences in drug treatment between the exercise intensities.

      Furthermore, there was no significant effect of fitness level on differences in pain ratings (LI – HI exercise) in the SAL condition (β = 3.16, CI [-1.64, 7.97], SE = 2.37, t(38) = 1.34, P = 0.19; Supplemental Figure S1B) and no significant correlation between fitness level and difference pain ratings (r = 0.25, P = 0.13). Finally, there was no significant interaction of drug treatment, exercise intensity, and sex on difference pain ratings (β =-7.97, CI [-18.67, 2.73], SE = 5.51, t(190) = -1.45, P = 0.15; Supplemental Figure S1C-D).

      Exercise did not appear to affect pressure pain ratings and we have now added this to the discussion and in the methods section. However, we think that the figure should be part of the supplements.

      L112 to 113 - Fantastic work for including this analysis in your study. Great job.

      We appreciate the reviewers’ positive feedback on conducting these crucial analyses when investigating sex and gender differences in pain.

      L186 to 189 - It is fascinating that there appears to be no effect of NALOXONE on pain ratings within female participants at a VAS rating of 30 for thermal pain as well as a much diminished hyperalgesia effect at a VAS rating of 50 compared to males. Meanwhile, at higher intensity stimulations corresponding to a VAS rating of 70, females in fact demonstrate a more pronounced hyperalgesia effect compared to males. In addition, the hyperalgesia effect of NALOXONE for males seems to "peak" at a VAS rating of 50. The mechanisms behind these findings alone would be incredibly exciting to explore... but maybe in another study.

      We agree with the reviewer that the differences in males and females are fascinating results and concur that this may hint at varying degrees of opioidergic involvement at different stimulus intensities. This finding is intriguing and potentially clinically relevant, warranting further investigation in future research, although it lies beyond the scope of the current paper.

      L189 - To double check... Figures 4A and 4B refer to the entire cohort (male and female responses combined) whereas C-E are separated by sex?

      In addition, as there are no annotations to the top of Figures 4C-E were no significant differences observed between saline and naloxone conditions per each stimulus intensity? i.e., similar tests to what are shown in Table S6 but separated for each sex.

      Without getting too carried away, there may be something here that indicates a difference between sexes concerning the opioid-driven pain modulation response on a neurological level (i.e., brain region activation).

      The reviewer is correct in assuming that Figures 4A and 4B refer to the entire cohort whilst Fig. 4C – 4E are split for males and females. The full output of the analyses for Fig. 4A and 4B are reported in Supplemental Tables S5 – S7. Furthermore, the full output of the LMER analyses for Fig. 4E is reported in Supplemental Table S10. We agree with the reviewer that additional annotations in Fig. 4C – Fig. 4E ease interpretation and have, thus, added them to the respective figures, denoting the significance of the interaction term stimulus intensity and drug treatment for females (Fig. 4C) and males (Fig. 4D), respectively. For completeness, we now report the post-hoc paired samples t-tests for females and males in the Supplemental Tables S8 and S9, respectively.

      L254 to 258 - "we could not establish an overall hypoalgesia effect of exercise...". Do the results of the exercise intensity x drug treatment provide an answer for this exact hypothesis? After checking the methods section, I cannot seem to find whether the statistical analysis has involved a comparison of the pain ratings after the high (alone), low (alone), or high and low (combined) exercise compared to ratings during control or pre-calibration as part of precalibration (i.e., pain ratings in a rested state without any exercise yet completed).

      We concur with the reviewer's assessment that the study design and statistical analyses cannot address the ‘overall’ effect of exercise compared to no exercise. Please refer back to our general response before comment 1, where we have addressed this point.

      As it seems that the analysis assesses the differences between high and low-intensity exercise, to me, the results of the exercise intensity x drug treatment analysis do not assess whether there is an exercise-induced hypoalgesia effect or not. Instead, it seems to assess whether the intensity of exercise is a differentiating factor in the expected exercise-induced hypoalgesia effect to subsequent pain intensity ratings to experimental pain stimulation. For the authors to judge whether aerobic exercise does or does not have a hypoalgesia effect, then the exercise conditions (either combined or standalone) would have to be compared to a control condition or a data set that involved pain ratings from a pre-exercise timepoint.

      We thank the reviewer for their comment. We would like to point out the we concluded there to be no hypoalgesic effect between the LI and HI exercise based on the LMER model comparing the behavioural pain ratings between the exercise conditions in the SAL condition (β = 1.19, CI [-1.85, 4.22], SE = 1.55, t(1354) = 0.77, P = 0.44; Figure 6A, blue bars and Table S9). The statistical model investigating the interaction of exercise intensity and drug treatment served to show that NLX did not modulate pain differently between the LI and HI exercise conditions.

      Given that our experiment involved different exercise levels in a randomized order, a simple pre vs post analysis is not straightforward. Nevertheless, we have set up a model where we take into account the rating time point (pain ratings provided before each exercise block (prepain ratings) and following each exercise block (post-pain ratings)) at each stimulus intensity (VAS 30, 50, 70) and exercise intensity (LI and HI). The model also takes into account the exercise intensity performed in the previous block, the overall block number as well as the varying subject intercepts. The analysis was completed for heat (Author response image 1A) and pressure (Author response image 1B) pain ratings in the SAL condition to establish whether there was a significant effect of exercise intensity on the changes from pre to post-pain ratings. The model for heat pain yielded a significant main effect for stimulus intensity (β = 1.43, CI [1.34, 1.52], SE = 0.05, t(2054.95) = 31.61, P < 0.001) but no significant interaction of exercise intensity, rating time point, and stimulus intensity (P = 0.14). The model for pressure pain in the SAL condition yielded a significant main effect of stimulus intensity (β = 1.00, CI [0.92, 1.08], SE = 0.04, t(2054.99) = 24.68, P < 0.001) and block number (β = 1.14, CI [0.35, 1.94], SE = 0.41, t(2055.98) = 2.80, P = 0.005) but not interaction of exercise intensity, rating time point, and stimulus intensity (P = 0.38).

      Author response image 1.

      Heat (A) and Pressure (B) pain ratings in the saline (SAL) condition for pre (purple) and post (turquoise) exercise pain ratings at LI and HI exercise and all stimulus intensities (VAS 30, 50, 70). The bars depict the mean pain rating pre and post-exercise and the dots depict the subject-specific mean ratings. The error bars depict the SEM.

      Another point of consideration is that Figure 6A appears to show an average of all pain ratings combined per participant (is this correct?). As participants were exposed to stimulations expected to elicit a 30, 50, or 70 VAS rating based on pre-calibration values, therefore the average rating would be expected to be around 50. What Figure 6A shows is that in the SALINE condition, average pain ratings are in fact ~10-15 units lower (~35) and then in the NALOXONE condition, average pain ratings are ~5 units lower (~45) for both exercise intensities. From this, I would surmise the following:

      • It appears there is an exercise-induced hypoalgesia effect as average pain ratings are ~30% lower than pre-calibrated/resting pain ratings within the SALINE condition at the same temperature of stimulation (it would also be interesting to see if this effect occurred for the pressure pain).

      • It appears there is evidence for the endogenous opioid mechanism as the NALOXONE condition demonstrates a minimal hypoalgesia effect after exercise. I.e., NALOXONE indeed blocked the opioid receptors, and such inhibition prevented the endogenous opioid system from taking effect.

      • It appears there is no effect of exercise intensity on the exercise-induced hypoalgesia effect. That is, participants can cycle at a moderate intensity (55% FTP) and incur the same hypoalgesia benefits as cycling at an intensity that demarcates the boundary between heavy and severe intensity exercise (100%FTP). This is a winner in my mind. Anyone wishing to reduce pain can do so without having to engage in exercise that is too effortful and therefore aversive - great news!

      I will very slightly caveat my summaries with the fact that a more ideal comparison here would be a control condition whereby participants did the same experimental visit but without any exercise prior to entering the MRI scanner.

      As a result of this interpretation of your findings, I do not think that aerobic exercise as a means to cause subsequent hypoalgesia to experimental thermal nociception can be fully discounted. On the contrary, I think your results showed in Figure 6A are evidence for it.

      The reviewer is correct in assuming that Figure 6A shows the averaged pain ratings across all stimulus intensities (VAS 30, 50, and 70) for each subject. To provide more details, we have split Figure 6A by stimulus intensity, now depicting the pain ratings for LI and HI exercise and treatment condition (SAL and NLX) at VAS 30, 50, and 70 (Supplemental Fig. S8). The LMER was extended to include the stimulus intensity and yielded a significant main effect of stimulus intensity (β = 1.39, CI [1.31, 1.47], SE = 0.04, t(2753.12) = -34.082, P < 0.001) and a significant interaction of stimulus intensity and drug treatment (β = 0.12, CI [0.01, 0.24], SE = 0.06, t(2751) = 2.13, P = 0.03) but no significant interaction of exercise intensity, drug treatment, and stimulus intensity (β = -0.05, CI [-0.20, 0.11], SE = 0.08, t(2751) = -0.56, P = 0.58).

      The reviewer further suggests that the average pain ratings in the SAL condition are lower than the anticipated stimulus intensity, thus, indicating exercise-induced hypoalgesia. While this interpretation is one possibility, there is an alternative explanation: the lower pain ratings may stem from habituation to heat pain (Greffrath et al., 2007; Jepma et al., 2014; May et al., 2012). To support this perspective, we have visualised data from other studies in our lab that have been conducted with the same thermode head and device (TSA-2), using the same calibration procedure and aiming for the same stimulus intensities (VAS 30, 50, and 70). In both studies (Author response image 2A: Study 1: Behavioural sample; Author response image 2B: Study 2: fMRI sample; Author response image 2C: Original Exercise Study), participants did not engage in an exercise task and the pain ratings at VAS 30 and VAS 50 were lower than the anticipated intensities (VAS 30: 11.1/13.4; VAS 50: 35.0/35.9). Furthermore, in a previous study by (Wittkamp et al., 2024), the authors showed that, despite calibrating the heat stimuli at VAS 60, participants rated the pain stimuli with M = 48.58 (SD = 13.79).

      This discrepancy observed between calibrated intensities and ratings provided could be attributable to habituation effects, especially at low-intensity stimuli. Moreover, we would like to point the reviewer to the highest stimulus intensity at VAS 70 (Author response image 2C), where no habituation in all three data sets (including the current study) has taken place. This consistency suggests that exercise-induced hypoalgesia may not be present in our findings or potentially confounded by habituation effects.

      Author response image 2.

      Heat pain ratings at different intensities (30, 50, and 70 VAS) in different study samples. Bars depict the mean ratings in the saline (SAL) condition. Individual data points depict subject-specific mean pain ratings. Error bars depict the SEM.

      The reviewer further suggests that there is evidence for endogenous opioidergic modulation since the pain ratings in the NLX condition are lower than the anticipated intensities. We fully agree but, again, would argue that the DPMS can exert its effects on painful stimuli in a default manner, i.e. irrespective of any exercise effect.

      We concur with the reviewer’s interpretation that there is no effect of exercise intensity on exercise-induced hypoalgesia since the ratings between both exercise intensities are not significantly different.

      Finally, we agree that our data does not allow for the interpretation of an ‘overall’ effect of exercise-induced hypoalgesia and would like to point out that we did not aim to claim this. Rather, the data suggests there to be no effect of LI vs. HI aerobic exercise on pain modulation. We acknowledge, however, that the phrasing involving ‘overall’ can be misleading and have revised this to focus on the comparison between LI and HI exercise, thereby enhancing precision and clarity.

      Note This is also where it would be really interesting to see the pain pressure data if it were to be included. Mainly to see whether it coheres with what the thermal stimulation stuff shows.

      We have provided the ratings for the pressure pain ratings in the SAL condition below (Author response image 3).

      Author response image 3.

      Pressure pain ratings in the SAL condition at stimulus intensity (VAS 30, 50, and 70). Bars depict the mean ratings in the saline (SAL) condition. Individual data points depict subject-specific mean pain ratings. Error bars depict the SEM.

      L259 - As mentioned in the comment above. Could the authors distinguish what is being shown in Figure 6A? Are the data presented as the pooled mean for all stimulation intensities? If not, what data is displayed per bar/column?

      We thank the reviewer for their comment. The reviewer is correct in assuming that the bars in Figure 6A depict the pooled means across all stimulus intensities (VAS 30, 50, 70) for each drug treatment condition and exercise intensity. To allow for a more detailed comprehension of the data, we have split Figure 6A by stimulus intensity, now depicting the pain ratings for LI and HI exercise and treatment condition (SAL and NLX) at VAS 30, 50, and 70 (Supplemental Figure S8). The LMER was extended to include the stimulus intensity and yielded a significant main effect of stimulus intensity (β = 1.39, CI [1.31, 1.47], SE = 0.04, t(2753.12) = -34.082, P < 0.001) and a significant interaction of stimulus intensity and drug treatment (β = 0.12, CI [0.01, 0.24], SE = 0.06, t(2751) = 2.13, P = 0.03) but no significant interaction of exercise intensity, drug treatment, and stimulus intensity (β = -0.05, CI [-0.20, 0.11], SE = 0.08, t(2751) = -0.56, P = 0.58).

      L278 - Can the authors please provide a reference that explains how W.kg-1 at FTP is a measure of fitness level?

      We thank the reviewer for their comment. The obtained FTP value was corrected for the weight of each participant (Watt/kg), yielding a weight-corrected fitness measure that allows for better comparison between subjects. We denoted this in the figures as W*kg-1 which serves to be the equivalent term.

      L296 - Take the line away from Figure 7A... Does the individual data show a positive relation between pain rating changes and W.kg-1? Besides the three data points (1 on the far right of the figure and the two on the far left), I find it hard to see any real trend.

      We acknowledge the reviewers’ concern regarding the regression line and the visual clarity of the individual data points. However, it is important to note that the significant main effect of fitness level on differences in pain ratings in the SAL condition (β = 6.45, CI [1.25, 11.65], SE = 2.56, t(38) = 2.52, P = 0.02) supports the assertion that higher fitness levels are associated with greater hypoalgesia following HI exercise compared to LI exercise. While the trend may not be visible for all data points, the statistical analysis provides a robust basis for the observed relationship (r = 0.33, P = 0.038).

      We have conducted an additional LMER model where we have excluded the subjects with the highest and lowest FTP values (sub-28 with 3.19 W/kg and sub-06 with 0.76 W/kg, respectively.) The LMER still yields a significant main effect of fitness level (β = 6.82, CI [1.25, 11.65], SE = 3.18, t(34) = 2.14, P = 0.039; Author response image 4) and a positive correlation between the difference ratings and fitness level approaching significance (r = 0.32, P = 0.057).

      Author response image 4.

      Fitness level on difference pain ratings (LI-HI exercise) without subjects with highest and lowest FTP (N = 37). (A) Subject-specific differences in heat pain ratings (dots) between LI and HI exercise conditions (LI – HI exercise pain ratings) and corresponding regression line pooled across all stimulus intensities in the SAL condition. Fitness level (FTP) showed a significant positive relation to heat pain ratings with a significant main effect of FTP (P = 0.039) on difference ratings.

      (4) Discussion

      L356 to 358 - Exactly. What you write here, I agree with. Your testing allowed you to judge whether there is an effect of aerobic exercise intensity on pain modulation. However, I think this has been a little conflated with the idea that there is "no overall effect of aerobic exercise on pain modulation" in other areas of the article (L358-361, Results, and Abstract). As per my previous comment, I am not sure this (no overall effect) is true.

      We agree with the reviewer and have adapted the manuscript so that the misleading phrase including ‘overall’ is removed.

      L358 to 365 - One addition to this debate about whether this is a hypoalgesia effect of aerobic exercise. In 358 - 361 (particularly the end of 361) there is a strong conclusion that there is no direct involvement of the endogenous opioid system. Then glance onto L364 to 365 and there is then an almost conflicting summary that a hypoalgesia effect driven by opioidergic regions of the brain (and ergo endogenous opioids) is in effect. If there were no direct endogenous opioid involvement, then differences between NALOXONE (blockade of the opioid mechanism) and SALINE conditions would not exist.

      We thank the reviewer for their comment. The structure of this paragraph aimed to guide the reader towards a more nuanced understanding of the possible mechanisms and caveats in exercise-induced pain modulation. Whilst our data suggest an effect of NLX on pain ratings where we showed significantly higher pain ratings in the NLX condition compared to the SAL condition we could not identify an interaction between treatment and exercise intensity. This suggests that there is no significant difference in opioidergic involvement between HI and LI exercise. Our exploratory analyses, however, show an effect of endogenous opioids involved as an underlying mechanism dependant on sex and fitness level.

      My perspective is that an exercise-induced hypoalgesia effect has occurred (based on the data in Figure 6A) but that this effect is certainly caveated by the sex and fitness levels that this study has observed (and kudos for it).

      As mentioned above, based on the current data we cannot untangle whether the reduced pain ratings in the SAL condition are due to habituation to noxious stimuli or an actual hypoalgesic effect of exercise (or potentially a mix of both). However, we fully agree with the reviewer that exercise-induced pain modulation is influenced by fitness level and sex.

      L390 - "endogenous pain modulation through μ-opioid receptors increases with increasing pain intensity". Aside from the general discussion about whether aerobic exercise causes a post-exercise hypoalgesia effect. This finding is also interesting for the pain incurred during exercise in the form of naturally occurring muscle pain and may also be clinically relevant as it could be that the endogenous pain modulation "system" could be primed through repeated exercise as your results show that the fitness level (i.e., a close correlate of how much someone has engaged in exercise and therefore 'activated' the endogenous pain modulation system) is associated with a more pronounced post-exercise hypoalgesia effect.

      This is an interesting aspect. With regards to the pain induced by exercise itself (i.e. muscle pain) we did not gather any data on this type of pain and interpreting this would be mere speculation. However, it is an interesting hypothesis to investigate in future studies whether the pain induced by exercise is potentially influenced by the endogenous opioid system. We agree with the reviewers’ interpretation that repeated exercise might prime the endogenous opioid system, especially in fitter individuals who engage more frequently in exercise and, thus, ‘train’ the endogenous opioid system. We have included this line of interpretation in the original manuscript, where we suggest that the mFC, a brain region with high µ-opioid receptor density, might be ‘trained’ by repeated exercise and, therefore, shows increase activation in fitter individuals after short bouts of exercise.

      L404 to 405 - "a resting baseline does not control for unspecific factors such as attentional load or distraction (Brooks et al., 2017; Sprenger et al., 2012) through exercise." I am not sure I agree. A control condition allows one to truly deduce whether exercise causes a hypoalgesia effect or not. The attentional load may be a factor, but I would argue this is distinct from endogenous pain modulation - unless there is a study that shows cognitive load alone can elicit endogenous opioids like exercise. About distraction, this would be the case if the pain measures were taken during the exercise. However, as the pain measures taken in the MRI were post-exercise and there was no added distraction related to the exercise present anymore, then I do not think any added effect of distraction due to the exercise and its effect on postexercise pain measure is relevant any longer.

      We agree with the reviewer that a resting baseline condition in the context of exercise induced pain modulation would allow for the investigation of a potential hypoalgesic effect of exercise compared to no exercise. It is important to note that both studies (Brooks et al., 2017; Sprenger et al., 2012) have indeed shown that the effect of cognitive pain modulation is mediated by endogenous opioids.

      L406 - I do not think a low-intensity exercise is a true "control" condition. It certainly does allow the study to compare the dose-response relationship but as the individual is exercising (even at a moderate physiological intensity) then comparison of HIGH vs LOW does not tell us whether exercise does or does not cause hypoalgesia. In contrast, the results from Figure 6A seem to show that even LOW intensity exercise has a hypoalgesia effect and this is a good thing for those who cannot exercise at high intensities (e.g., chronic populations).

      Please refer back to our general response before comment 1, where we have addressed this point.

      L410 - A small digression in relation to the exercise intensities:

      The intensity domains (moderate - heavy - severe) are not truly controlled within this study (mainly for the LOW condition), and therefore some participants could have exercised within different exercise intensity domains than others. To explain, the exercise intensity domains are distinguishable by the physiological responses associated with the boundaries of each of these domains. The FTP is believed to be a demarcation point between heavy and severe intensity domains (though kinesiologists debate the validity of this). Other concepts similar to FTP are Critical Power or the Respiratory Compensation Point. Ultimately, the boundary between heavy and severe intensity domains is characterised by the highest possible intensity by which a steady-state in oxygen kinetics (V̇ O2) occurs (Burnley & Jones, 2018). If this is expressed as a power output (Watts) and then a percentage of this power output is used to prescribe exercise intensity, then the physiological response is not always as expected. The reason is that for some people the gaseous exchange threshold (the demarcation point between the moderate and heavy intensity domains) is not always the same percentage between resting and FTP/Critical Power/Respiratory Compensation Point for each person. As a result, some individuals who are prescribed an intensity of 55% FTP/Critical Power/Respiratory Compensation Point may subsequently exercise within the moderate intensity domain (most people did based on the heart rate and RPE responses) whilst some others might actually exercise more within the heavy intensity domain. A quick check of Figures 3B-C could indicate that this might have been the case for two or three participants, but that is inference and speculation as we cannot truly know unless gas parameters were taken (which is perfectly understandable that they have not been taken because this study has done so much else). However, the importance of this for this study is that if some participants did indeed exercise at a slightly higher physiological intensity, this undermines the LOW condition as a "control" as the physiological stimulus between conditions (Brownstein et al., 2023). It means that the proposed differences in endogenous opioids (Vaegter et al., 2015; 2019) between exercise intensities may not have been present and therefore summarising a lack of an exercise induced hypoalgesia effect is slightly confounded. This is one factor contributing to my scepticism about the conclusion that there is a lack of an exercise-induced hypoalgesia response.

      We thank the reviewer for their comment as it touches upon the challenges of estimating exercise intensities precisely. It is, indeed, crucial to consider the boundaries between moderate, heavy, and severe intensity domains, as delineated by physiological markers such as the Functional Threshold Power (FTP), Critical Power, and the Respiratory Compensation Point (VO2max) (Burnley & Jones, 2018). Previous research has shown that the FTP and FTP20 tests are reliable and convenient methods to estimate approximate measures of VO2max (Denham et al., 2020) and that the FTP test is a useful test for performance prediction in moderately trained cyclists (Sørensen et al., 2019).

      We acknowledge that without direct measurements of VO2max, it is challenging to determine the precise intensity domain in which each participant was operating. While the RPE and HR might suggest that some participants performed in the moderate intensity domain in the LI exercise condition, we could still ascertain there to be a significant difference in the relative power (%FTP), heart rate (HR), and rating of perceived exertion (RPE) between the LI and HI exercise conditions. In the overall sample, the consistency in relative power, heart rate, and RPE responses among participants suggests that the exercise doses were effectively communicated and adhered to; therefore, the validity of the LI exercise condition remains robust.

      While we did not include metabolic assessments in our protocol, our study focused on providing a comprehensive analysis of the exercise-induced hypoalgesia phenomenon across two distinct exercise intensities. Additionally, the rationale for selecting specific exercise intensities was grounded in the existing literature, which indicates significant differences in the hypoalgesic response between exercise intensity levels (Jones et al., 2019; Vaegter et al., 2014).

      According to the reviewer, the potential lack of difference between the exercise conditions might contribute to the fact that there was no difference in endogenous opioid release and, thus, no difference in pain ratings between the exercise conditions. However, our data still suggests that there is an influence of endogenous opioids in the HI exercise condition in males with higher fitness levels. Together with recent findings on the association of µ-opioid receptor activation and fitness levels in men (Saanijoki et al., 2022), as well as the difference in µ-opioid receptor availability between high and moderate aerobic exercise (Saanijoki et al., 2018), we would hypothesise that the release of endogenous opioids after short HI bouts of exercise depend on fitness levels (and potentially sex).

      Finally, we propose that discussing exercise intensity domains within the context of our study enriches the understanding of exercise-induced hypoalgesia without undermining the integrity of our findings. We have, therefore, included this in the discussion of the manuscript.

      L417 - For some reason I am doubting this value (r = 0.61). Could this be checked? I think it is higher in their study. r = 0.88?

      Also, as someone with a kinesiology background, I would argue this is a given anyway. The maximum power one can cycle for 20 minutes is related to the maximum power one can cycle for 60 minutes, this is expected. (That is no slight on the authors of this study, more a remark that readers could look and figure that for themselves if they needed to know).

      We thank the reviewer for their comment. We have carefully re-checked the correlation coefficient between the FTP20 and FTP60 tests in the study by Borsczc et al. (2018) and have corrected the correlation coefficient to r = 0.88. We thank the reviewer for detecting this. Whilst we agree that it seems somehow intuitive that the FTP20 and FTP60 should correlate highly, we wanted to provide the reader with a better understanding of where the FTP20 tests originated from and how it is suitable to assess aerobic fitness levels without having to maintain a steady power output for 60 minutes.

      L428 - Kudos to the authors for taking a standardised approach to this. Hopefully, my comment earlier might provide some extra food for thought about exercise intensity. I think there are several other ways future research could prescribe exercise without the need for expensive and cumbersome bits of equipment to know how hard people are exercising.

      We strongly agree with the reviewer and hope that our study can inspire future research to implement more convenient and inexpensive ways to establish aerobic (and anaerobic) fitness levels.

      L456 to 458 - Would it be possible to revisit this and check whether the pooled mean of all stimulation intensities for pain intensity ratings after pressure pain is lower than 50? If so, I think it can also be assumed that there is a slight hypoalgesia effect occurring for pressure pain too.

      We have revisited the pressure pain ratings pooled across all stimulus intensities (VAS 30,50, and 70). Indeed, the ratings are below 50 VAS (Supplemental Figure S1A) in the SAL and NLX conditions. As mentioned before lower pain ratings after LI exercise cannot be taken as evidence for exercise-induced analgesia.

      L495 to L499 - I find this fascinating. Great finding.

      We thank the reviewer for their positive feedback.

      (5) Methods

      L650 - "Watts"

      We have changed the sentence accordingly.

      L651 - beats per minute can also be represented as b.min-1 and cadence as revolutions.min-1.

      To allow for easier interpretation of the results in a broader readership we would like to propose to maintain the original abbreviations.

      L678 - Just to check what the authors mean by "on the second experimental day", they are actually referring to Visit 2 of 3 (first experimental visit of 2) as it is shown in Figure 1?

      We apologise for the lack of clarity. Indeed, the second experimental day refers to the third visit in the study. We have added this to the sentence to increase clarity.

      L708 - would change the end of the sentence to "and remained blinded throughout the study"

      We have changed the sentence accordingly.

      L742 - comma after "in one participant".

      We have added the missing comma.

      L746 - slight mistype... RPE in brackets instead of PRE

      We have changed the abbreviation to RPE.

      L747 - In case the authors are interested in affective measures in future studies... Hardy and Rejeski (1989) have a 9-point Likert scale rating affective valence which might be useful to check out.

      Thank you. The scale by Hary and Rejeski (1989) is a very relevant measure of affective valence during exercise, and we will consider this in future studies.

      L755 - Four squares for the thermode to be applied were drawn on the arm but through the methods I can only seem to see that the thermode was applied to the second square during calibration. During the MRI scan, did someone move the thermode to different squares for different stimulations?

      We appreciate the reviewers' question. Indeed, the heat calibration and recalibration on the first and second day, respectively, have always been completed on the same skin patch (patch 2) to allow for comparability of calibration across days. During the experimental sessions, the thermode head was repositioned in a randomised order across participants (i.e., skin patch 14-3-2) before each block. This was done manually before the MRI block commenced. The order of thermode head position was kept constant within participants across experimental days (day 2 and day 3).

      L764 - ITI predefined?

      We thank the reviewer for their comment and would like to point to line 130 in the revised manuscript where the abbreviation for inter-trial-interval (ITI) was first introduced.

      (6) Other Sections + Supplementary Materials

      L891 - I apologise in advance for this comment as it is the most trivial comment you will ever receive, but there is an extra "." On this line after J.N. initials for methodology.

      We have changed the punctuation accordingly.

      Table S1 - Strictly speaking, some of the intensity denominations in this table are not exactly an "intensity".

      Iannetta et al. (2020) - https://doi.org/10.1249/mss.0000000000002147 provides a commentary on intensity domains as well as Burnley and Jones (2018) - https://doi.org/10.1080/17461391.2016.1249524

      Likewise in this table - the term "without fatigue" in the description column is not strictly true as participants will naturally fatigue but authors are referring more to a "steady state".

      We have changed the name of the column to ‘Description’ to describe the test phase as proposed by Allen and Coggen (2012) and previously implemented by McGrath et al. (2019) and not the ‘intensity domains’ (as specified by Iannetta et al. (2020)). Further, we have refined the wording in Table S1 and replaced the term ‘without fatigue’ with ‘steady state’.

      Once again, thank you to the authors for their great work on this project and to the editor for the chance to review this paper.

      We would like to thank this reviewer for their very insightful and important comments and for pointing out the strengths of the manuscript. We believe the suggestions will help to improve the quality of the manuscript.

      Reviewer #2 (Recommendations for the authors):

      Summary:

      This interesting study compared two different intensities of aerobic exercise (low-intensity, high-intensity) and their efficacy in inducing a hypoalgesic reaction (i.e. exercise-induced hypoalgesia; EIH). fMRI was used to identify signal changes in the brain, with the infusion of naloxone used to identify hypoalgesia mechanisms. No differences were found in postexercise pain perception between the high-intensity and low-intensity conditions, with naloxone infusion causing increased pain perception across both conditions which was mirrored by activation in the medial frontal cortex (identified by fMRI). However, the primary conclusion made in this manuscript (i.e. that aerobic exercise has no overall effect on pain in a mixed population sample) cannot be supported by this study design, because the methodology did not include a baseline (i.e. pain perception following no exercise) to compare high/low-intensity exercise against. Therefore, some of the statements/implications of the findings made in this manuscript need to be very carefully assessed.

      Strengths:

      (1) The use of fMRI and naloxone provides a strong approach by which to identify possible mechanisms of EIH.

      (2) The infusion of naloxone to maintain a stable concentration helps to ensure a consistent effect and that the time course of the protocol won't affect the consistency of changes in pain perception.

      (3) The manipulation checks (differences in intensity of exercise, appropriate pain induction) are approached in a systematic way.

      (4) Whilst the exploratory analyses relating to the interactions for fitness level and sex were not reported in the study pre-registation, they do provide some interesting findings which should be explored further.

      Weaknesses:

      (1) Given that there is no baseline/control condition, it cannot be concluded that aerobic exercise has no effect on pain modulation because that comparison has not been made (i.e. pain perception at 'baseline' has not been compared with pain perception after high/low intensity exercise). Some of the primary findings/conclusions throughout the manuscript state that there is 'No overall effect of aerobic exercise on pain modulation', but this cannot be concluded.

      (2) Across the manuscript, a number of terms are used interchangeably (and applied, it seems, incorrectly) which makes the interpretation of the manuscript difficult (e.g. how the author's use the term 'exercise-induced pain').

      (3) There is a lack of clarity on the interventions used in the methods, for example, it is not exactly clear the time and order in which the exercise tasks were implemented.

      (4) The exercise test (functional threshold power) used to set the intensity of the low/high exercise bouts is not an accurate means of demarcating steady state and non-steady state exercise. As a result, at the intensity selected for the high-intensity exercise in this study, it is likely that the challenge presented for the high-intensity exercise would have been very different between participants (e.g. some would have been in the 'heavy' domain, whereas others would be in the 'severe' domain).

      (5) It is likely that participants did not properly understand how to use the 6-20 Borg scale to rate their perceived effort, and so caution must be taken in how this RPE data is used/interpreted.

      (6) Although interesting, the secondary analyses (relating to the interaction effects of fitness level and sex) were not included in the study pre-registration, and so the study was not designed to undertake this analysis. These findings should be taken with caution.

      We thank the reviewer for their insightful comments that contribute to improving the quality of the manuscript. In response to the identified weaknesses, we have made key revisions to enhance clarity and rigor. Regarding the lack of a resting control condition, we acknowledge that our study does not assess the overall effect of exercise versus no exercise. Our primary objective was to compare high- (HI) and low-intensity (LI) exercise on pain modulation, hypothesizing that lower intensities would have minimal effects. We revised the manuscript to eliminate misleading phrases about an "overall" effect, clearly emphasizing our aim to investigate the comparative effects of different exercise intensities. To address terminology inconsistencies, we have adopted "exercise-induced pain modulation," reflecting existing literature that recognizes both hypoalgesia and hyperalgesia associated with exercise (Vaegter and Jones, 2020). We clarified this terminology in the introduction and specified the pain modalities used in our study. We also improved methodological transparency by better describing the timing and order of exercise and drug treatment interventions. Concerning exercise intensity estimation, we acknowledge the complexities in classifying moderate, heavy, and severe domains. We added the study by Wong et al. (2023) to discuss the potential limitations of the FTP estimation protocol. Although direct measures of VO2max or blood lactate are absent in our study, our findings, including perceived exertion (RPE) scores and relative power data, support that participants were primarily in the heavy-intensity domain during HI exercise. To clarify RPE ratings, we adjusted the presentation to align with the Borg scale's intended anchor points, ensuring greater accuracy in reported exertion levels. Statistical analyses confirm significant differences in RPE between exercise intensities. These revisions aim to clarify our intent and methodologies, ultimately strengthening the contribution of our research to understanding exercise-induced pain modulation.

      (1) Lines 27-33 - please present some data and accompanying statistical output in the results section of the abstract.

      We thank the reviewer for their comment. In the results section of the abstract, we report whether the findings are (not) significant using the general threshold of P < 0.05. However, we prefer not to include more detailed data and statistical outputs here, as these are thoroughly presented in the results section and do not contribute to the abstract’s primary purpose of providing a concise summary.

      (2) Line 29 - please indicate how fitness level was quantified.

      The functional threshold power (FTP) adjusted for weight served as an indication of cardiovascular fitness level. We have now included this in the abstract.

      (3) Line 35 - please include a sentence detailing the implications of your findings.

      We have now included a sentence on the implications of our findings in the abstract.

      (4) Introduction general - I appreciate that it was an exploratory analysis, however, the introduction does not particularly lay the groundwork for this (e.g., the influence of fitness level, sex, etc) - please include some background within the introduction to establish the role level of fitness/exercise/training/physical activity on pain modulation.

      A paragraph detailing the role of fitness level and sex in the context of exercise-induced pain modulation and endogenous opioid release was part of the introduction of our manuscript but has been removed as per the reviewing editor’s request (as the inclusion of sex and fitness level was not part of the preregistration). We have now re-included a shortened version of this paragraph to provide some background on these potentially crucial factors in exercise-induced pain modulation.

      (5) Lines 40-41 - reference needed.

      We thank the reviewer for detecting this and have now included references concerning the release of endogenous opioids and the term exercise-induced hypoalgesia.

      (6) Lines 48-49 - please provide the full terms for ACC and PAG (PAG has been provided on line 52, but should be presented earlier).

      We thank the reviewer for detecting this. We now introduce the abbreviations for the periaqueductal grey (PAG) and anterior cingulate cortex (ACC) in the correct lines.

      (7) Line 49 - the term exercise-induced pain is often used interchangeably (incorrectly) with many different types of pain experienced during/after exercise (e.g. muscle burn/ache, DOMS, injury etc.). Please see O'Malley et al 2024 (doi: 10.1113/EP091687).

      We thank the reviewer for their comment. Despite the distinction between different types of pain induced by exercise being important, this is less relevant for the current study. We would like to point out that the full term used is exercise-induced pain modulation, referring to the modulation of (experimental) pain through exercise. We have deliberately chosen this term as it summarises exercise-induced hypoalgesia as well as hyperalgesia. Therefore, we did not refer to pain induced by exercise and would disagree that this term has been used interchangeably with different types of pain in the current manuscript.

      (8) Line 57 - neither of these studies looked at exercise-induced pain, rather they examined experimentally induced pain (e.g. cold pressor test) or chronic pain and how exercise might exacerbate it. This leads back to the previous comment - it is important to define what is meant by exercise-induced pain (EIP) from the offset, and then remain consistent in the reference to this.

      We agree with the reviewer and have cited the studies accordingly. We would like to point out that the current study does not investigate exercise-induced pain but the modulation of experimental pain through exercise and have used the term exercise-induced pain modulation consistently in the manuscript to describe this.

      (9) Line 61 - Droste et al and Olausson et al are missing from the reference list.

      We apologise for this oversight and have now updated the reference list to include the studies by Droste et al. (1991) and Olaussen et al. (1986).

      (10) Line 61 - Do you mean exercise-induced hypoalgesia, or modulation of exercise-induced pain - it is not clear? EIH is introduced in Line 40 and in consistent with what the Koltyn study explored. Conversely, Koltyn induced pain using heat and pressure, rather than exercise.

      In this manuscript, we have opted for the term ‘exercise-induced pain modulation’ since previous research has shown that exercise can elicit hypoalgesia as well as hyperalgesia (for review see Vaegter and Jones (2020)). Thus, the term refers to the modulation of pain through exercise. We have now included a sentence detailing the use of the term ‘exercise-induced pain modulation’ in the first passage of the introduction. Corresponding to Koltyn et al. (2014), we have used heat and pressure stimuli to induce pain and investigate the modulating effect of different exercise intensities on these pain modalities.

      (11) Line 62 and 64 - Both the Janal study and Haier study are missing from the reference list.

      We apologise for this oversight and have now updated the reference list to include the studies by Janal et al. (1984) and Haier et al. (1981).

      (12) Line 62 and 64 - define long/short distance/duration.

      We have revised the terminology from "short-duration" to "short-distance" to facilitate a more precise comparison of the exercise protocols employed in the studies by Janal et al. (1984) and Haier et al. (1981). Specifically, the long-distance run conducted by Janal et al. (1984) spanned 6.3 miles (10.3 km), while the short-distance run executed by Haier et al. (1981) covered 1 mile (1.6 km).

      (13) Line 62 - what type of pain?

      Janal et al. (1984) implemented thermal, ischemic, and cold pressor pain in their study and observed a hypoalgesic effect in response to thermal and ischemic pain that was reversed under NLX administration. We have now specified this in the text.

      (14) Line 67 - please place "i.e., the insula, ACC and prefrontal regions" in parentheses.

      Done.

      (15) Lines 67-69 - please provide clarity on the nature of the interventions being employed. For example, are you referring to interventions to reduce/overcome pain? Or are you referring to approaches to experimentally induce or increase pain during exercise? In either case, please be specific on the interventions employed, and why this variation in approach may make it challenging to draw a conclusion

      The interventions employed by several studies aimed to investigate the pharmacological underpinnings of the pain modulatory effect of exercise and were, thus, pharmacological interventions. The primary objective of these interventions is usually not to reduce/induce/decrease/increase pain but to block a specific receptor type to infer the involvement/role of these receptor types in pain modulation through exercise. In the context of exercise and pain specifically, the most frequently used pharmacological intervention consists of administering a µ-opioid receptor antagonist (naltrexone/naloxone (NLX)). Depending on which type of µ-opioid receptor antagonist is used, different administration protocols are employed (i.e., oral or intravenous administration, different doses, only bolus without constant injection). This variability in the administration protocols of these pharmacological interventions can account for different findings of the extent of opioidergic involvement in exercise-induced pain modulation. We have now refined the according section to increase the precision and clarity of the interventions used.

      (16) Line 69 - administration of what?

      This passage refers to the variability of administration of µ-opioid receptor antagonists such as naloxone (NLX) or naltrexone. We have now specified this in the according line.

      (17) Line 74 - EIH?

      As described above, we have chosen the term 'exercise-induced pain modulation' as an umbrella term for both exercise-induced hypoalgesia and hyperalgesia. However, the reviewer is correct that specifically studies investigating exercise-induced hypoalgesia have been criticised. Still, the proposed criticism also applies to studies detecting hyperalgesia and we would, thus, argue to retain the term ‘exercise-induced pain modulation’ here for the sake of consistency.

      (18) Line 75 - please define "single-arm pre-post measurements"

      We appreciate the reviewers' comment. Single-arm pre-post measurement studies involve participants being assigned to a single experimental condition, with pain assessments conducted only once prior to and once following the intervention. This study design presents several limitations, particularly in the context of examining exercise-induced modulation of pain (Vaegter and Jones, 2020). Such designs do not consider the effects of habituation to noxious stimuli, as highlighted by Vaegter and Jones (2020). Consequently, when measuring pain levels with only one pre- and one post-intervention assessment, there is a risk of misinterpreting the outcomes where a reduction in post-intervention pain ratings might erroneously be credited to the exercise intervention itself, rather than being a result of habituation to the noxious stimuli experienced. Incorporating randomised controlled trials with multiple measurement blocks not only mitigates these limitations but also provides a clearer understanding of how individual bouts of exercise influence pain perception.

      (19) Line 84 - is (40) a reference?

      We apologise for this oversight and have now updated the reference by Borszcz et al. (2018) to be displayed correctly.

      (20) Line 86 - is that 10 min per block (i.e. 40 min exercise time), or 10 min in total? If the former please include "per block" at the end of the sentence (Line 87).

      The reviewer is correct in assuming that we employed 10 min of cycling per block, resulting in a total of 40 minutes of cycling. We have updated the sentence now including ‘per block’ as suggested by the reviewer.

      (21) Line 89 - when you refer to "painfulness" are you referring to the intensity of pain experienced? If so, I think "pain intensity" would be more appropriate.

      In the current study, participants were asked about the ‘painfulness’ of each stimulus based on previous studies (Horing et al., 2019; Horing & Büchel, 2022; Tinnermann et al., 2022). The term ‘painfulness’ is a composite measure of ‘pain intensity’ (sensory dimension) and ‘pain unpleasantness’ (affective dimension) (Talbot et al., 2019). Since unpleasantness is also a definitional criterion of pain (‘Terminology | International Association for the Study of Pain’, n.d.) and previous research shows a high correlation between ‘pain unpleasantness’ and ‘pain intensity’ (Granot et al., 2008; Talbot et al., 2019) we have opted for the term ‘painfulness’ as a more comprehensive measure. Inherently, these two measures are highly correlated.

      (22) Line 91-93 - the way this is written could be suggestive of this being separate to the cycling blocks. Please rephrase to confirm that this was administered prior to the commencement of the cycling blocks.

      We have refined the sentence to make it clearer that the drug treatment was administered before the cycling block commenced on each of the experimental days. We would like to further specify, that whilst the bolus dose of the treatment was administered prior to the experiment, a constant intravenous supply of SAL/NLX was maintained throughout the experiment using an infusion pump.

      (23) Methods general - why only 10 min of exercise? It is likely that there is a 'dose effect' of exercise on EIH, whereby the intensity of exercise and the duration of the exercise are important. Short-duration but high-intensity exercise can induce EIH, as can moderate duration low-intensity exercise. But, for this protocol, was the intensity high enough or long enough to meet the 'dose' needed?

      We thank the reviewer for their question. Our decision to employ 10-minute exercise blocks was rooted in both scientific evidence on exercise-induced hypoalgesia and the (clinical) applicability of the findings. Research has shown that exercise durations ranging from 8 minutes to 2 hours of aerobic exercise can induce hypoalgesia (for review see Koltyn (2002)). Specifically, several studies induce hypoalgesia at 10-15 minutes of aerobic exercise (Gomolka et al., 2019; Gurevich et al., 1994; Haier et al., 1981; Jones et al., 2019; Sternberg et al., 2001; Vaegter et al., 2015). Furthermore, many prior studies have employed exercise durations that are tailored to professional or amateur athletes which may not be practical for healthy individuals with lower fitness levels who may find it challenging to engage in longer sessions, such as an hour of running. When considering applying these findings to the clinical chronic pain population it is crucial to assess the manageability of proposed exercise protocols. We believe that 10 minutes of exercise, whilst being a relatively brief exercise duration, may still be sufficient to elicit exercise-induced hypoalgesia.

      (24) Methods general - what was the time gap between each round (i.e. after the fMRI, how long before the participant started the next cycling block?).

      After each fMRI run the participants were taken out of the MR scanner. The HR and SPO2 were measured and participants were given the chance to go to the restroom before positioning them on the bike and starting the next block. All in all, the time following the fMRI scan and before the new block commenced ranged between 5-10 minutes. We have now included this specification in the methods section.

      (25) Methods general - there is some evidence to show that the EIH effect is less consistently shown when heat is used to induce pain - was there a reason heat was used as the pain induction method here?

      We thank the reviewer for their comment. Indeed, previous meta-analyses by Naugle et al. (2012) report larger effect sizes for pressure pain (Cohen’s d = 0.69) closely followed by heat pain (d = 0.59). In light of this evidence, we included both pain modalities in the current study. Notably, we found no significant differences in pressure pain responses between LI and HI exercise. It is important to emphasise that the term "pressure pain" predominantly encompasses studies employing handheld pressure algometry, whereas our investigation utilised a pressure cuff. This methodological variation raises the possibility that our findings—and corresponding effect sizes—may not be directly comparable to prior pressure pain studies.

      (26) Methods general - please be consistent in the use of terminology. In some areas, you use the phrase "cycling block" whereas in other areas it is referred to as a "cycling run".

      We have revised the methods section to be more precise with the terms ‘run’ and ‘block’.

      (27) Line 571-573 - Please detail how participants were excluded based on scores from STAI and BDI-II.

      We apologise for the misspelling, as it should be that one participant was excluded based on a BMI (body mass index) below 18. No participant had to be excluded based on the STAI or BDI-II score in the current study. We have corrected this in the manuscript.

      (28) Line 636-651 - the FTP20 test has been shown not to be a valid marker of the separation between the heavy and severe exercise intensity domains (see Wong et al 2023 - https://doi.org/10.1080/02640414.2023.2176045). Given that participants completed the high intensity cycle in 'zone 4' (91-106% of FTP), it is probable that participants could have completed this 10 min in either the heavy or the severe exercise intensity domains, with significant implications for the relative challenge this 10 min of exercise. Why was zone 4 used? What are the implications of this? Please discuss and include this as a limitation.

      We thank the reviewer for their comment as it touches upon the challenges of accurately estimating exercise intensities. It is indeed crucial to consider the boundaries between moderate, heavy, and severe intensity domains, as delineated by physiological markers.

      The study by Wong et al. (2023) is interesting; it assesses blood lactate and VO2 levels at FTP and FTP+15 Watts. Despite being highly relevant for the field some of the findings should be interpreted with caution due to the low sample size of 13 participants, consisting of 11 male and only 2 female cyclists, which may limit generalisability. Additionally, the testing protocol implemented in the study to determine participants' FTP consisted of a 5-minute self paced pedalling at 100 Watts followed by a 20-minute maximal, self-paced time trial. This differs from the FTP20 test as implemented in the current study (see Supplemental Table S1) or by other studies (McGrath et al., 2019). The finding in Wong et al. (2023) that participants were only able to sustain cycling at FTP for an average of 33 minutes suggests that the deviating protocol overestimates FTP. Mackey and Horner (2021) propose that the validity of the FTP20 test might rely on the warm-up used before FTP20 testing and the training status of athletes.

      However, we acknowledge that without direct measurements of VO2max or blood lactate levels, it is challenging to determine the precise intensity domain in which each participant was operating in the current study. Still, the RPE (low: M = 8.59, SD = 1.32; high: M = 14.92, SD = 1.98) suggests that participants operated in the heavy-intensity domain in the HI exercise condition. This is further supported by the relative power (%FTP) maintained in the HI (M = 105; SD = 0.05; Author response image 5, purple) and LI (M = 58; SD = 0.06; Author response image 5, green) exercise conditions (difference: t(37) = 44.58, P < 2.2e-16, d = 6.46) confirming the accuracy of the implemented FTP test as well as the maintained power throughout the cycling blocks. Thus, we would argue that participants in the current study predominantly exercised the heavy domain during the HI exercise condition. We have included the relative Power in Figure 3A, replacing the absolute Power.

      Finally, we propose that discussing exercise intensity domains within the context of our study enriches the understanding of exercise-induced hypoalgesia without undermining the integrity of our findings. We have now included a discussion of the validity of the FTP20 test as a demarcation point concerning the intensity domains.

      Author response image 5.

      Raincloud plot of relative power (%FTP) during low (green) and high (purple) intensity exercise. Individual data points depict subject-specific averages across blocks.

      (29) Line 676 - please provide further information on each cycling run/block. Did each participant complete a total of 4 runs (i.e., a total of 40 minutes of exercise), with 2 runs completed at a high intensity and 2 runs completed at a low intensity in a randomised order (e.g., for one participant this could be 10 minutes at low, followed by 10 minutes at high, followed by 10 minutes a low, followed by 10 minutes at high)? Figure 1 details this nicely, however, it would be helpful to read in-text.

      The reviewer is correct in assuming that there were a total of 4 blocks on each experimental day. Participants completed cycling in 2 blocks at HI and in 2 blocks at LI in a pseudorandomised order. This order was kept constant across experimental days (i.e. completing the same block order on Day 2 and Day 3). We have detailed this further in the Methods section.

      (30) Discussion general - it is possible that EIH could be induced via different mechanisms and that these mechanisms are at least in part due to exercise intensity. For example, EIH from higher-intensity exercise might have some contribution from CPM.

      We thank the reviewer for their comment. Previous research aimed to disentangle the two seemingly similar mechanisms of exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM) (Ellingson et al., 2014; Rice et al., 2019; Samuelly-Leichtag et al., 2018; Vaegter et al., 2014). CPM is typically induced by applying a tonic noxious stimulus that decreases pain sensitivity to another noxious stimulus applied simultaneously or shortly after at a distant body part (Graven-Nielsen & Arendt-Nielsen, 2010). Despite EIH and CPM showing distinct mechanisms, it cannot be completely ruled out that there are at least partially overlapping mechanisms driving the two phenomena (Rice et al., 2019). Due to our study design, where the time difference between cycling blocks and the applied pain was on average five minutes, it is unlikely that CPM is the driving pain modulatory mechanism in our study setup.

      (31) Line 101 - as this was preregistered, should the study design be followed and then reported?

      We have conducted the study adhering to the preregistered study design and now report the results for pressure pain (Supplemental Figure S1). Some of the preregistered analyses (i.e. directly comparing heat and pressure pain) were beyond the scope of the current study and will be reported separately.

      (32) Line 110 - please provide some data on the fitness levels and how this is classified as high/low.

      The FTP (relative to body weight) was used as an estimate of cardiovascular and endurance fitness (Valenzuela et al., 2018). We refrained from classifying the fitness levels dichotomously as low or high since this is a subjective measure in a sample of healthy individuals of diverse fitness levels. Instead, we utilised the FTP as a more nuanced metric for comparison.

      (33) Lines 159-160 - in the context of the difference in intensity between the sessions. But, it is likely that the high-intensity exercise would have posed quite different relative challenge between participants.

      We thank the reviewer for their comment. As described above, we did not obtain direct measurements of VO2max or blood lactate levels making it challenging to determine the precise intensity domain in which each participant was operating in the current study. However, all participants received the same instructions to the BORG rating scale ensuring the comparability of RPE across participants to a certain extent.

      (34) Figure 3C - what instructions and familiarisation were given to participants regarding the 6-20 Borg scale? In Figure 3C it looks as though several participants rated the low exercise intensity at 6. This would/should be equivalent to sitting quietly, so it looks as though at least several participants did not understand how to use the RPE - please discuss.

      Indeed, three participants rated the LI exercise condition at 6 due to an error in the translation of the scale instruction. Participants were instructed that the lower anchor point of the scale (6) referred to ‘extremely light’ instead of ‘no exertion’. Thus, we have rescaled the RPE ratings where a rating of 6 now corresponds to a 7 (‘extremely light’) on the BORG scale and again calculated the paired t-test. There is still a significant difference in the RPE between exercise intensities (t(38) = 19.65, P < 2.2e-16, d = 3.69; Author response image 6). We have corrected this in the manuscript accordingly and updated Figure 3C.

      Author response image 6.

      Raincloud plot of rating of perceived exertion (RPE) on the BORG scale during low (green) and high (purple) intensity exercise. Individual data points depict subject-specific averages across blocks. A rating of 6 reflects ‘no exertion’ and 20 reflects ‘maximal exertion’.

      (35) Line 171 - is (37, 38) a reference?

      We apologise for this oversight and have now updated the references to be displayed correctly.

      (36) Line 176-18 - is this interaction sufficiently powered? Differences between sexes are not mentioned in the pre-registered study

      We have conducted an additional post-hoc power analysis for the interaction of drug, fitness level, and sex on differential heat pain ratings. We employed the power analysis for mixed models implemented in R (powerCurve) with 1000 simulations. This revealed that with a power of α = 0.8, a sample size of n = 27 would have been sufficient to detect this effect (Author response image 7). Despite not having preregistered the factor ‘sex’, we believe that the observed results provide valuable insights that contribute to a deeper understanding of the data. We have established these analyses to be exploratory, emphasising the need for caution in their interpretation. However, we feel it is essential to report these findings to inform future studies, ensuring that such factors are adequately considered.

      Author response image 7.

      Post-hoc power analysis for behavioural effects from the linear mixed effects (LMER) model with interaction drug, fitness level, and sex using the R package powerCurve with α = 0.8 and 1000 simulations.

      (37) Line 227 - this is not what this analysis shows. The comparison is low vs high-intensity exercise on pain modulation, not exercise vs. no exercise. You cannot conclude that aerobic exercise has no effect on pain modulation because you did not do that comparison (i.e. no baseline (without exercise) for pain).

      We agree with the reviewer and have rephrased the sub-headline accordingly to reflect that there is no difference in exercise-induced hypoalgesia between HI and LI aerobic exercise.

      (38) Methods General - why was a control condition not used, or at least a baseline pain response, so that low/high-intensity exercise could be compared to a baseline? Given this, I'm not sure I agree with the study conclusions (abstract: 'These results indicate that aerobic exercise has no overall effect on pain in a mixed population sample') because you have compared high vs low-intensity exercise, not exercise vs. no exercise.

      As for the lack of a resting control condition, we acknowledge that our study was not designed to test the overall effect of exercise versus no exercise. However, our primary objective was to compare different exercise intensities, hypothesising that low-intensity (LI) exercise would induce less pain modulation as compared to high-intensity (HI) exercise. By exploring this, we aimed to enhance understanding of the dose-response relationship between exercise and pain modulation. To better reflect this focus, we have revised the misleading phrasing regarding the ‘overall’ effect of exercise to clearly emphasize our primary aim: comparing HI and LI exercise. This reviewer suggests an interesting interpretation of the data suggesting that exercise-induced hypoalgesia might have occurred for both exercise intensities since the pain ratings provided were lower than the anticipated intensities as determined by the calibration. Given that this difference is lower in the naloxone (NLX) condition could provide evidence of opioidergic mechanisms underlying this effect.

      Unfortunately, the current study is not designed to comprehensively answer this question since there was no resting control condition. In particular, the lower pain ratings under SAL (Figure 6) could be due to exercise triggering the descending pain modulatory system (DPMS), but equally due to the default activation of the DPMS. Only an additional “no exercise” condition could disentangle this. Furthermore, habituation to noxious stimuli can influence pain ratings, resulting in lower pain ratings during the experiment as compared to the calibration.

      (39) Line 285 - or that better-trained individuals have a greater EIH response to higher intensity exercise, but both those of low and high fitness have established EIH after low intensity exercise. Given there isn't a 'no exercise' baseline, it is hard to make conclusions about EIH effect generally, only comparisons between high/low exercise intensity.

      We thank the reviewer for their comment. We agree that we cannot establish whether all participants showed a hypoalgesic response to the LI exercise with the current study design. However, our results show that participants with higher fitness levels showed increased hypoalgesia after HI exercise compared to those with lower fitness levels. We have refined the sentence accordingly.

      (40) Figure 7A - the regression line here is not that convincing.

      We acknowledge the reviewers’ concern regarding the regression line. However, it is important to note that the significant main effect of fitness level on differences in pain ratings in the SAL condition (β = 6.45, CI [1.25, 11.65], SE = 2.56, t(38) = 2.52, P = 0.02) supports the assertion that higher fitness levels are associated with greater hypoalgesia following HI exercise compared to LI exercise. While the trend may not be visible for all data points, the statistical analysis provides a robust basis for the observed relationship (r = 0.33, P = 0.038).

      (41) Line 354 - the NLX infusion was double-blind, but what are the implications of participants knowing that they completed high/low-intensity exercise - this cannot be blinded.

      The reviewer is correct that the exercise intensities cannot be blinded. To account for potential expectation effects of exercise on several psychological and physiological domains (including pain), participants completed a questionnaire on the calibration day where they had to indicate their expectations of to what extent acute exercise affects several domains (Lindheimer et al., 2019). They could rate each domain on a Likert scale ranging from ‘large decrease’ (-3) to ‘large increase’ (3) with 0 denoting ‘no effect’. This format was chosen to allow measuring the direction and magnitude of expectation effects and to avoid being directive or suggestive (Lindheimer et al., 2019). Despite including other psychological and physiological domains in the questionnaire (i.e., stress, anxiety, energy, memory) we focused on the specific pain domains (muscle pain, joint pain, and whole body pain) to establish participant’s expectations regarding the effect of acute exercise on pain. We tested whether the expectation ratings for each pain type were significantly different from 0 (no effect) using a one-sample t-test.

      There was no significant effect for muscle pain (t(38) = 1.78, P = 0.08, M = 0.39, SE = 0.12), joint pain (t(38) = -0.12, P = 0.90, M = -0.03, SE = 0.11), or ‘whole-body pain (t(38) = -1.05, P = 0.30, M = -0.21, SE = 0.12) suggesting there to be no expectation effect on these pain domains in the overall sample (Supplemental Figure S10A). Since there is variation in the data we calculated the correlation of the expectation ratings in the different pain domains with the difference score between the pain ratings in the SAL condition (LI – HI rating; Supplemental Figure S10B). This analysis yielded no significant correlation in either of the pain domains (joint pain: r = 0.11, P = 0.49; muscle pain: r = -0.07, P = 0.68; whole-body pain: r = 0.07, P = 0.68).

      Moreover, given that we have not been able to show a difference between the exercise intensities on pain modulation, expectation effects are likely not to contribute to this null effect.

      (42) Line 356-358 - and this comparison (and primary hypothesis) is not blinded.

      While we agree with the reviewer that this comparison is not – and potentially cannot be – blinded, we would like to reiterate our results from the previous paragraph that indicate that such expectation effects of exercise on pain were not present in the sample and, thus, did not seem to have influenced the results. It is noteworthy that the double-blind design of our study design specifically pertains to the pharmacological intervention employed.

      (43) Line 358-360 - this could be explained by both types of exercise inducing EIH via the same mechanism (which is disrupted by NLX).

      We thank the reviewer for their comment and would like to refer back to the reviewer's comment number 38 for a response to this.

      (44) Line 360-361 - this conclusion cannot be drawn, because you have only compared high vs low intensity exercise. So, the conclusion should be 'These results suggest that there is no difference between high and low aerobic exercise intensity on heat-induced pain'.

      We agree with the reviewer and have rephrased the sentence to reflect the claim accurately.

      (45) Line 396 - as previously discussed, this conclusion cannot be drawn through this study design.

      We agree with the reviewer and have rephrased the sub-headline accordingly to reflect that there is no difference in exercise-induced hypoalgesia between HI and LI aerobic exercise.

      (46) Line 399 - please expand on this point - it is critical to the hypothesis and should also be included in the introduction. What intensities/duration/dose of aerobic exercise is generally established to cause EIH?

      We thank the reviewer and agree that this is a crucial aspect that requires further specification. Below we have expanded on the duration/intensities shown to elicit exercise-induced hypoalgesia and included a concise version of this detailed paragraph in the manuscript introduction.

      For aerobic exercise, different methods have been employed to determine exercise intensity levels i.e., through the VO2max, age-predicted HRmax, or incremental intensities (Koltyn, 2002). Most studies using VO2max as a measure of exercise intensity (Koltyn et al., 1996; Micalos & Arendt-Nielsen, 2016; Vaegter et al., 2014) were able to induce hypoalgesia with HI levels ranging between 65%-75% VO2max. When using the HRmax as a measure of determining exercise intensities, HI exercise at 70%-75% of the HRmax has been shown to produce greater hypoalgesia compared to moderate intensity at 50% HRmax (Naugle et al., 2014; Vaegter et al., 2014). Furthermore, previous research has suggested that HI exercise produces greater hypoalgesia compared to LI exercise (60-70% HRmax vs. light activity: M. D. Jones et al., 2019; 70% vs. 50% HRmax: Naugle et al., 2014; 75% vs. 50% VO2max: Vaegter et al., 2014).

      Furthermore, different durations can be regarded as suitable with durations between 8 minutes to 2 hours of aerobic exercise having been shown to induce hypoalgesia (for review see Koltyn (2002)). Hoffman et al. (2004) showed a hypoalgesic response after 30 minutes but not after 10 minutes at 75% VO2max of cycling. In contrast, other studies were able to induce hypoalgesia at 10-15 minutes of HI aerobic exercise (75% VO2may: Gomolka et al., 2019; 63% VO2max: Gurevich et al., 1994; self-paced: Haier et al., 1981; 60-70% HRmax: Jones et al., 2019; 85% HRmax: Sternberg et al., 2001; 75% VO2max: Vaegter et al., 2015).

      (47) Line 400-401 - please define high intensity.

      We thank the reviewer for their comment. The referenced studies by Vaegter et al. (2014) and Jones et al. (2019) based the estimation of HI and LI exercise on an age-related target heart rate corresponding to VO2max and HRmax, respectively. In Vaegter et al. (2014), the HI condition corresponded to 75% VO2max, while the LI to 50% VO2max. In Jones et al. (2019), the HI exercise condition corresponded to 60% and 70% of HRmax, while the LI condition was defined as pedalling slowly against a light resistance of 0.5 kg of force to maintain a rating of perceived exertion (RPE) not above resting. We have included this clarification in the relevant section to elucidate the intensities of the chosen exercise conditions.

      (48) Line 403-405 - I'm not sure I follow (perhaps I have misunderstood) - pain induction was completed after exercise in the MRI scanner, so there was no distraction effect of exercise in either condition. A baseline could have been established in the same way and there would be exactly the same conditions, just without prior exercise.

      We agree with the reviewer that a resting baseline condition in the context of exercise induced pain modulation allows for the investigation of a potential hypoalgesic effect of exercise compared to no exercise. Nevertheless, it is important to note that previous studies (Brooks et al., 2017; Sprenger et al., 2012) have shown that cognitive pain modulation is mediated by endogenous opioids. Therefore, tasks with different attentional loads potentially influence post-task pain ratings. Although, we agree with the reviewer that the effect of distraction or attentional load would be minimal in the MR scanner, there still could be an effect of different cognitive loads from exercise vs. no exercise. Nevertheless, we focus the discussion on investigating the dose-response relationship between different exercise intensities where an ‘active’ control condition might contribute to a more nuanced understanding of exercise-induced pain modulation.

      (49) Line 403-411 - this is fine (although I do not agree that this was the best methodological decision), however, it does limit the conclusions that can be drawn (as previously mentioned). That is, you cannot conclude that no EIH occurred, only that there was no difference between low and high-intensity exercise in post-exercise pain response.

      We agree with the reviewer that the comparison of HI vs. LI exercise does not allow for an interpretation of the overall effect of exercise as opposed to no exercise on pain modulation. The comparison of HI and LI exercise allows the investigation of a dose-response relationship of these distinct exercise intensities. While LI exercise might not be a 'pure' control condition in the traditional sense, it is valuable for exploring the complexities of exercise and pain interaction.

      (50) Line 419-422 - sorry I do not follow - you say that moderate intensity exercise most reliably induces EIH but then select exercise intensities that are likely to be in the heavy or severe intensity domain? Please also include in this discussion the limitations of FTP20 as a threshold marker (see Wong et al) and the implications on the results/conclusions.

      We thank the reviewer for their comment. In the referenced sentence, we have defined the HI exercise as described in the reviews. Specifically, Wewege and Jones (2020) reported hypoalgesia to be greater after higher-intensity exercise, although the intensity was not further specified. Naugle et al. (2012) noted that HI exercise (i.e., 75% of VO2max) produced greater hypoalgesia, while Koltyn (2002) indicated that hypoalgesia occurs at intensities ranging from 60% to 75% of VO2max but more reliably at 75% VO2max or higher. Consequently, we have removed the term ‘moderate’, as it does not accurately reflect what has been reported in the reviews and could be misleading. Moreover, we have clarified the specific criteria for what is considered high (or higher) intensity exercise in the referenced reviews.

      We kindly ask the reviewers to refer back to the previous comment (reviewer comment number 28) regarding the discussion of the intensity domains and the FTP20 test as demarcation point for these intensity domains.

      (51) Line 422-425 - indeed, pacing is an important element of this test, which inexperienced cyclists have difficulty with when they are not provided with proper familiarisation.

      We agree with the reviewer that the FTP20 test has mainly been validated and employed in experienced cyclists and requires further validation in non-athletes of both sexes. However, since we have used an extensive warm-up period and several paced steps (intervals, 5-minute time-trial) as well as recovery periods (Supplemental Table S1) based on McGrath et al. (2019) we propose that participants were thoroughly familiarised with the elements of pacing before the estimation of the FTP in the 20-minutes took place. On average, participants showed a variation of M = 21.80 Watts (SE = 1.44 Watts) during the 20-minute paced FTP20 test (Supplemental Figure S11A). Interestingly, our data suggests that participants with a higher FTP showed higher variation of power output (Watts) during the 20-minute FTP test compared to individuals with lower fitness levels (Supplemental Figure S11B).

      (52) Line 425-427 - please remove this, the RPE difference between exercise bouts is not evidence that participants cycled at FTP.

      We thank the reviewer for their comment. However, we would propose to include the rating of perceived exertion (RPE) since it shows that the exercise intensities have been perceived as significantly different by the participants. This behavioural measure of exertion is potentially important for a broader audience to understand the exercise implementation beyond physiological markers.

      (53) Line 432 - high vs. low-intensity aerobic exercise

      We have changed the sentence accordingly to support the claim of the study that there was no difference in exercise-induced pain modulation between HI and LI aerobic exercise.

      (54) Line 447-449 - this seems contradictory to the first line of this paragraph (430-432) - i.e. that the heterogenous sample may have caused the null finding. Why deliberately select a participant sample that is likely to lead to a null effect?

      In the current study, we aimed to include participants of diverse fitness levels and both sexes to verify the findings on exercise-induced pain modulation in a broader population. We consider this important concerning translational aspects of EIH. Indeed, our heterogeneous sample may have ‘caused’ the observed null effect, but at the same time, it suggests that more homogenous (sometimes composed solely of male athletes) samples employed in many earlier studies might have skewed the understanding of exercise-induced pain modulation and thus unintentionally suggested a (non-existing) generalisation of this effect to the general population.

      (55) Line 532-456 - although Koltyn found electrical pain to have the greatest effect?

      The review by Naugle et al. (2012) reported effect sizes for heat (Cohens d = 0.59) and pressure pain intensity (d = 0.69) following aerobic exercise but did not provide effect sizes for electrical pain intensity. They noted that the effect size for electrical pain intensity after isometric exercise was d = 0.40, which is lower than that for heat and pressure pain. While Koltyn (2002) stated that electrical and pressure stimuli induce exercise-induced hypoalgesia more consistently than thermal pain, the study did not clarify whether this applies to pain threshold, intensity, or tolerance, nor did they provide effect sizes. Given that electrical, pressure, and heat pain are the most commonly used methods to induce quantifiable pain in the context of exercise studies (Vaegter and Jones, 2020), we based our decision to use heat and pressure pain primarily on Naugle et al.'s findings.

      (56) Line 468-469 - why leave out content that was pre-registered (i.e. difference between pressure and heat pain) but includes analysis that wasn't (i.e. sex differences)? If a study is going to be pre-registered, then isn't it important to follow that design?

      We thank the reviewer for this comment. We have conducted the study adhering to the preregistered study design and now report the results for pressure pain (Supplemental Figure S1). Some of the preregistered analyses (i.e. directly comparing heat and pressure pain) were beyond the scope of the current study and will be reported separately.

      (57) Line 532-525 - and how could this have been accounted for?

      We apologise for any confusion, as we are unsure about the specific reference the reviewer is making based on the provided line numbers. We believe the question relates to how the potential effects of endocannabinoids were considered in the current study design, and we've addressed that in our response. In human studies, it is not possible to centrally block endocannabinoids, which makes it difficult to directly estimate their role in exercise-induced pain modulation in humans. Measuring endocannabinoids in the blood might not adequately capture changes in endocannabinoid levels in the brain throughout the different exercise intensity conditions. Despite these limitations, exploring the role of endocannabinoids in exercise-induced pain modulation presents a promising avenue for future research that could enhance our understanding of pain mechanisms and improve pain management strategies.

      58) Limitations General - please include the other limitations discussed in this review.

      Done.

      (59)Line 530 - please amend this conclusion, in line with previous comments.

      Done.

      We would like to thank the reviewer for critically evaluating the manuscript and providing insightful comments. We appreciate the reviewer recognising the strengths of our work and believe that their suggestions will contribute to improving the quality of the manuscript.

    2. eLife Assessment

      In this valuable study, Nold et al. examined exercise-induced pain modulation in a pharmacological within-subject fMRI study using the opioid-antagonist naloxone and different levels of aerobic exercise intensity and pain. This investigation provides solid evidence to show that the intensity of exercise does not seem to impact the hypoalgesic effect. Moreover, exploratory analysis identified that fitness level and sex may potentially play a role in exercise-induced hypoalgesia, and that further confirmatory studies are required in order to verify these findings.

    3. Reviewer #1 (Public review):

      Summary:

      Participants in this study completed three visits. In the first, participants received experimental thermal stimulations which were calibrated to elicit three specific pain responses (30, 50, 70) on a 0-100 visual analogue scale (VAS). Experimental pressure stimulations were also calibrated at an intensity to the same three pain intensity responses. In the subsequent two visits, participants completed another pre-calibration check (Visit 2 of 3 only). Then, prior to the exercise NALOXONE or a SALINE placebo-control was administered intravenously. Participants then completed 1 of 4 blocks of HIGH (100%) or LOW (55%) intensity cycling which was tailored according to a functional threshold power (FTP) test completed in Visit 1. After each block of cycling lasting 10 minutes, participants entered an MRI scanner and were stimulated with the same thermal and pressure stimulations that corresponded to 30, 50, and 70 pain intensity ratings from the calibration stage. Therefore, this study ultimately sought to investigate whether aerobic exercise does indeed incur a hypoalgesia effect. More specifically, researchers tested the validity of the proposed endogenous pain modulation mechanism. Further investigation into whether the intensity of exercise had an effect on pain and the neurological activation of pain-related brain centres were also explored. Results show that in the experimental visits (Visit 2 and 3), when participants exercised at two distinct intensities as intended. Power output, heart rate, and perceived effort ratings were higher during the HIGH versus LOW intensity cycling. In particular. HIGH intensity exercise was perceived as "hard" / ~15 on the Borg (1974, 1998) scale, whereas LOW intensity exercise was perceived as "very light" / ~9 on the same scale.

      The fMRI data from Figure 1 indicates that the anterior insula, dorsal posterior insula and middle cingulate cortex show pronounced activation as stimulation intensity and subsequent pain responses increased, thus linking these brain regions with pain intensity and corroborating what many studies have shown before.

      Results also showed that participants rated a higher pain intensity in the NALOXONE condition at all three stimulation intensities compared to the SALINE condition. Therefore, the expected effect of NALOXONE in this study seemed to occur whereby opioid receptors were "blocked" and thus resulted in higher pain ratings compared to a SALINE condition where opioid receptors were "not blocked". When accounting for participant sex, NALOXONE had negligible effects at lower experimental nociceptive stimulations for females compared to males who showed a hyperalgesia effect to NALOXONE at all stimulation intensities (peak effect at 50 VAS). Females did show a hyperalgesia effect at stimulation intensities corresponding to 50 and 70 VAS pain ratings. The fMRI data showed that the periaqueductal gray (PAG) showed increased activation in the NALOXONE versus SALINE condition at higher thermal stimulation intensities. The PAG is well-linked to endogenous pain modulation.

      When assessing the effects of NALOXONE and SALINE after exercise, results showed no significant differences in subsequent pain intensity ratings.

      When assessing the effect of aerobic exercise intensity on subsequent pain intensity ratings, authors suggested that aerobic exercise in the form of a continuous cycling exercise tailored to an individual's FTP is not effective at eliciting an exercise-induced hypoalgesia response -irrespective of exercise intensity. This is because results showed that pain responses did not differ significantly between HIGH and LOW intensity exercise with (NALOXONE) and without (SALINE) an opioid antagonist. Therefore, authors have also questioned the mechanisms (endogenous opioids) behind this effect.

      Strengths:

      Altogether, the paper is great piece of work that has provided some truly useful insight into the neurological and perceptual mechanisms associated with pain and exercise-induced modulation of pain. The authors have gone to great lengths to delve into their research question(s) and their methodological approach is relatively sound. The study has incorporated effective pseudo-randomisation and conducted a rigorous set of statistical analysis to account for as many confounds as possible. I will particularly credit the authors on their analysis which explores the impact of sex and female participants' stage of menses on the study outcomes. It would be particularly interesting for future work to pursue some of these lines of research which investigate the differences in the endogenous opioid mechanism between sexes and the added interaction of stage of menses or training status - all of which the authors point out in their discussion.

      There are certainly many other areas that this article contributes to the literature due to the depth of methods the research team have used. For example, the authors provide much insight into: the impact of exercise intensity on the exercise-induced hypoalgesia effect; the impact of sex on the endogenous opioid modulation mechanism; and the impact of exercise intensity on the neurological indices associated with endogenous pain modulation and pain processing. All of which, the researchers should be credited for due to the time and effort they have spent completing this study. Indeed, their in-depth analysis of many of these areas provides ample support for the claims they make in relation to these specific questions. As such, I consider their evidence concerning the fMRI data to be very convincing (and interesting).

      Weaknesses:

      Although the authors have their own view of their results, I, however, do still maintain a slightly different take on what the post-exercise pain ratings seem to show and its implications for judging whether an exercise-induced hypoalgesia effect is present or not and whether this is related to the opioid system.

      For example, my basic assumptions relate to data which appears to show that there is an exercise-induced hypoalgesia effect as average pain ratings are ~30% lower than pre-calibrated/resting pain ratings within the SALINE condition at the same temperature of stimulation. Then, it appears there is evidence for the endogenous opioid mechanism as the NALOXONE condition demonstrates a minimal hypoalgesia effect after exercise. I.e., NALOXONE indeed blocked the opioid receptors, and such inhibition prevented the endogenous opioid system from taking effect.

      However, through a comprehensive revision of their work, the authors have addressed many areas that myself and my fellow reviewer have questioned and provided a comprehensive set of responses and edits about this. So while I may have some opposing views on the mechanisms at play, I believe that each reader can decide and interpret the data for themselves which has been presented well by the authors.

    4. Reviewer #2 (Public review):

      Summary:

      This interesting study compared two different intensities of aerobic exercise (low-intensity, high-intensity) and their efficacy in inducing a hypoalgesic reaction (i.e. exercise-induced hypoalgesia; EIH). fMRI was used to identify signal changes in the brain, with infusion of naloxone used to identify hypoalgesia mechanisms. No differences were found in post exercise pain perception between the high-intensity and low-intensity conditions, with naloxone infusion causing increased pain perception across both conditions which was mirrored by activation in the medial frontal cortex (identified by fRMI).

      Strengths:

      • The use of fMRI and naloxone provides a strong approach by which to identify possible mechanisms of EIH.

      • The infusion of naloxone to maintain a stable concentration helps to ensure a consistent effect and that the time-course of the protocol won't affect consistency of changes in pain perception

      • The manipulation checks (differences in intensity of exercise, appropriate pain induction) are approached in a systematic way.

      • The interactions for fitness level and sex provide some interesting findings which should be explored further.

      Weaknesses:

      • Given the absence of a baseline/control condition (for exercise), the efficacy of high/low intensity exercise on EIH cannot be assessed. Providing this would have extended and strengthened the findings/conclusions.

      • Whilst the exercise test (functional threshold power) used to set the intensity of the low/high exercise bouts set participants to exercise at different intensities, this method does not ensure that they exercised above/below particular thresholds (i.e. within either heavy or severe domains). This could have created very different relative challenges between participants.

    1. Reviewer #2 (Public review):

      The work has significant implications for understanding immune evasion and nutrient uptake mechanisms in trypanosomes.

      While the experimental rigor is commendable, revisions are needed to clarify methodological limitations and to broaden the discussion of functional consequences.

      The authors argue that prior studies missed surface-localized TfR due to harsh washing/fixation (e.g., methanol). While this is plausible, additional evidence would strengthen the claim.

      It remains unclear how centrifugation steps of various lengths (as in previous publications) can equally and quantitatively redistribute TfR into the flagellar pocket. If this were the case, it should be straightforward for the authors to test this experimentally.

      If TfR is distributed over the cell surface, live-cell imaging with fluorescent transferrin should be performed as a control. Modern detection limits now reach the single-molecule level, and transient immobilization of live trypanosomes has been established, which would exclude hydrodynamic surface clearance as a confounding factor.

      In most images, TfR is not evenly distributed on the surface but rather appears punctate. Could this reflect localization to membrane domains? Immuno-EM with high-pressure frozen parasites could resolve this question and is relatively straightforward.

      The authors might consider discussing whether differences in parasite life cycle stages (procyclic versus bloodstream forms) or culture conditions (e.g., cell density) affect localization. The developmentally regulated retention of GPI-anchored procyclin in the flagellar pocket might be worth mentioning.

    2. eLife Assessment

      This valuable manuscript investigates the localisation of nutrient receptors in bloodstream stage trypanosomes, with implications for both nutrient uptake and immune evasion. Results after direct fixation of the cells in culture medium provide convincing evidence that the amounts of receptors on the surface of the cell, as opposed to the flagellar pocket, have previously been severely underestimated. Some results were essentially confirmatory, and there are questions regarding the quantitation of ligand binding by transferring receptors.

    3. Reviewer #1 (Public review):

      Summary:

      An interesting manuscript from the Carrington lab is presented investigating the behavior of single vs double GPI-anchored nutrient receptors in bloodstream form (BSF) T. brucei. These include the transferrin receptor (TfR), the HpHb receptor (HpHbR), and the factor H receptor (FHR). The central question is why these critical proteins are not targeted by host-acquired immunity. It has generally been thought that they are sequestered in the flagellar pocket (FP), where they are subject to rapid endocytosis - any Ab:receptor complexes would be rapidly removed from the cell surface. This manuscript challenges that assumption by showing that these receptors can be found all over the outer cell body and flagella surfaces, if one looks in an appropriate manner (rapid direct fixation in culture media).

      The main part of the manuscript focuses on TfR, typically a GPI1 heterodimer of very similar E6 (GPI anchored) and E7 (truncated, no GPI) subunits. These are expressed coordinately from 15 telomeric expression sites (BES), of which only one can be transcribed at a time. The authors identify a native E6:E7 pair in BES7 in which E7 is not truncated and therefore forms a GPI2 heterodimer. By in situ genetic manipulation, they generate two different sets of GPI1:GPI2 TfR combinations expressed from two different BESs (BES1 and BES7). Comparative analyses of these receptors form the bulk of the data.

      The main findings are:

      (1) Both GPI1 and GPI2 TfR can be found on the cell body/flagellar surface. (2) Both are functional for Tf binding and uptake. (3) GPI2 TfR is expressed at ~1.5x relative to GPI1 TfR. (4) Ultimate TfR expression level (protein) is dependent on the BES from which it is expressed.

      Most of these results are quite reasonably explained in light of the hydrodynamic flow model of the Engstler lab and the GPI valence model of the Bangs lab. Additional experiments, again by rapid fixation, with HpHbR and FHR, show that these GPI1 receptors can also be seen on the cell surface, in contrast to published localizations.

      It is quite interesting that the authors have identified a native GPI2 TfR. However, essentially all of the data with GPI2 TfR are confirmatory for the prior, more detailed studies of Tiengwe et al. (2017). That said, the suggestion that GPI2 was the ancestral state makes good evolutionary sense, and begs the question of why trypanosomes prefer GPI1 TfR in 14 of 15 ESs (i.e., what is the selection pressure?).

      Strengths and weaknesses:

      (1) BES7 TfR subunit genes (BES7_Tb427v10): There are actually three (in order 5'-3'): E7gpi, E6.1 and E6.2. E6.1 and E6.2 have a single nucleotide difference. This raises the issue of coordinate expression. If overall levels of E6 (2 genes) are not down-regulated to match E7 (1 gene), this will result in a 2x excess of E6 subunits. The most likely fate of these is the formation of non-functional GPI2 homodimers on the cell surface, as shown in Tiengwe et al. (2017), which will contribute to the elevated TfR expression seen in BES7.

      (2) Surface binding studies: This is the most puzzling aspect of the entire manuscript. That surface GPI2 TfR should be functional for Tf binding and uptake is not surprising, as this has already been shown by Tiengwe et al. (2017), but the methodology for this assay raises important questions. First, labeled Tf is added at 500 nM to live cells in complete media containing 2.5 uM unlabeled Tf - a 5x excess. It is difficult to see how significant binding of labeled TfR could occur in as little as 15 seconds under these conditions. Second, Tiengwe et al. (2017) found that trypanosomes taken directly from culture could not bind labeled Tf in direct surface labeling experiments. To achieve binding, it was necessary to first culture cells in serum-free media for a sufficient time to allow new unligated TfR to be synthesized and transported to the surface. This result suggests that essentially all surface TfR is normally ligated and unavailable to the added probe. Third, the authors have themselves argued previously, based on binding affinities, that all surface-exposed TfR is likely ligated in a natural setting (DOI: 10.1002/bies.202400053). Could the observed binding actually be non-specific due to the high levels of fixative used?

      (3) Variable TfR expression in different BESs: It appears that native TfR is expressed at higher levels from BES7 compared to BES1, and even more so when compared to BES3. This raises the possibility that the anti-TfR used in these experiments has differential reactivity with the three sets of TfRs. The authors discount this possibility due to the overall high sequence similarities of E6s and E7s from the various ESs. However, their own analyses show that the BES1, BES3, and BES7 TfRs are relatively distal to each other in the phylogenetic trees, and this Reviewer strongly suspects that the apparent difference in expression is due to differential reactivity with the anti-TfR used in this work. In the grand scheme, this is a minor issue that does not impact the other major conclusions concerning TfR localization and function, nor the behavior of HpHbR and FHR. However, the authors make very strong conclusions about the role of BESs in TfR expression levels, even claiming that it is the 'dominant determinant' (line 189).

      (4) Surface immuno-localization of receptors: These experiments are compelling and useful to the field. To explain the difference with essentially all prior studies, the authors suggest that typical fixation procedures allow for clearance of receptor:ligand complexes by hydrodynamic flow due to extended manipulation prior to fixation (washing steps). Despite the fact that these protocols typically involve ice-cold physiological buffers that minimize membrane mobility, this is a reasonable possibility. Have the authors challenged their hypothesis by testing more typical protocols themselves? Other contributing factors that could play a role are the use of deconvolution, which tends to minimize weak signals, and also the fact that investigators tend to discount weak surface signals as background relative to stronger internal signals.

      (5) Shedding: A central aspect of the GPI valence model (Schwartz et al., 2005, Tiengwe et al., 2017) is that GPI1 reporters that reach the cell body surface are shed into the media because a single dimyristoylglycerol-containing GPI anchor does not stably associate with biological membranes. As the authors point out, this is a major factor contributing to higher steady-state levels of cell-associated GPI2 TfR relative to GPI1 TfR. Those studies also found that the size/complexity of the attached protein correlated inversely with shedding, suggesting exit from the flagellar pocket as a restricting factor in cell body surface localization. The amount of newly synthesized TfR shed into the media was ~5%, indicating that very little actually exits the FP to the outer surface. In this regard, is it possible to know the overall ratio of cell surface:FP:endosomal localized receptors? Could these data not be 'harvested' from the 3D structural illumination imaging?

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The manuscript "Rho-ROCK liberates sequestered claudin for rapid de novo tight junction formation" by Cho and colleagues investigates de novo tight junction formation during the differentiation of immortalized human HaCaT keratinocytes to granular-like cells, as well as during epithelial remodeling that occurs upon the apoptotic of individual cells in confluent monolayers of the representative epithelial cell line EpH4. The authors demonstrate the involvement of Rho-ROCK with well-conducted experiments and convincing images. Moreover, they unravel the underlying molecular mechanism, with Rho-ROCK activity activating the transmembrane serine protease Matriptase, which in turn leads to the cleavage of EpCAM and TROP2, respectively, releasing Claudins from EpCAM/TROP2/Claudin complexes at the cell membrane to become available for polymerization and de novo tight junction formation. These functional studies in the two different cell culture systems are complemented by localization studies of the according proteins in the stratified mouse epidermis in vivo.

      In total, these are new and very intriguing and interesting findings that add important new insights into the molecular mechanisms of tight junction formation, identifying Matriptase as the "missing link" in the cascade of formerly described regulators. The involvement of TROP2/EpCAM/Claudin has been reported recently (Szabo et al., Biol. Open 2022; Bugge lab), and Matriptase had been formerly described to be required for in tight junction formation as well, again from the Bugge lab. Yet, the functional correlation/epistasis between them, and their relation to Rho signaling, had not been known thus far.

      However, experiments addressing the role of Matriptase require a little more work.

      Strengths:

      Convincing functional studies in two different cell culture systems, complemented by supporting protein localization studies in vivo. The manuscript is clearly written and most data are convincingly demonstrated, with beautiful images and movies.

      Weaknesses:

      The central finding that Rho signaling leads to increased Matriptase activity needs to be more rigorously demonstrated (e.g. western blot specifically detecting the activated version or distinguishing between the full-length/inactive and processed/active version).

      We plan to provide more direct evidence that matriptase activation is regulated by the Rho-ROCK pathway, utilizing antibodies that specifically recognize the activated form of matriptase.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigate how epithelia maintain intercellular barrier function despite and during cellular rearrangements upon e.g. apoptotic extrusion in simple epithelia or regenerative turnover in stratified epithelia like this epidermis. A fundamental question in epithelial biology. Previous literature has shown that Rho-mediated local regulation of actomyosin is essential not only for cellular rearrangement itself but also for directly controlling tight junction barrier function. The molecular mechanics however remained unclear. Here the authors use extensive fluorescent imaging of fixed and live cells together with genetic and drug-mediated interference to show that Rho activation is required and sufficient to form novo tight junctional strands at intercellular contacts in epidermal keratinocytes (HaCat) and mammary epithelial cells. After having confirmed previous literature they then show that Rho activation activates the transmembrane protease Matriptase which cleaves EpCAM and TROP2, two claudin-binding transmembrane proteins, to release claudins and enable claudin strand formation and therefore tight junction barrier function.

      Strengths:

      The presented mechanism is shown to be relevant for epithelial barriers being conserved in simple and stratifying epithelial cells and mainly differs due to tissue-specific expression of EpCAM and TROP2. The authors present careful state-of-the-art imaging and logical experiments that convincingly support the statements and conclusion. The manuscript is well-written and easy to follow.

      Weaknesses:

      Whereas the in vitro evidence of the presented mechanism is strongly supported by the data, the in vivo confirmation is mostly based on the predicted distribution of TROP2. Whereas the causality of Rho-mediated Matriptase activation has been nicely demonstrated it remains unclear how Rho activates Matriptase.

      As noted, while we have demonstrated that Rho activation is both necessary and sufficient to induce matriptase activation, the precise mechanism by which Rho mediates this activation remains unclear. As discussed in the manuscript, several potential molecular mechanisms could underlie the contribution of Rho to matriptase activation. As part of our future work, we intend to systematically investigate each of these mechanisms.

    1. eLife Assessment

      The study is a timely and important contribution to our knowledge of the circuit mechanisms of fear analgesia. The novel cue-induced analgesia paradigm allowed a compelling identification of a brainstem circuit element, i.e., somatostatin-expressing neurons within the ventrolateral periaqueductal grey that project to the rostroventral medulla, in mediating fear analgesia. The vlPAG is a known region of pain modulation, and this study adds key insight to the circuit involved in fear-associated analgesia. This work will be of interest to systems and behavioral neuroscientists, especially those interested in emotional behavior, pain, and/or brainstem function.

    2. Reviewer #1 (Public review):

      Summary:

      In the manuscript by Winke et al, the authors present evidence that fear-induced analgesia is mediated by somatostatin projection cells from the vlPAG to the RVM. This study uses a mouse model of fear-induced analgesia, and incorporates optogenetic circuit manipulation with behaviour and electrophysiology to gain a meaningful insight into a novel circuit involved in fear-induced analgesia.

      Strengths:

      (1) This is a well-constructed study with appropriate controls and analyses.

      (2) Alternative interpretations of the data are systematically considered and eliminated via rational experiments. The authors are commended for a nice piece of experimental work.

      (3) The vlPAG is a known region of pain modulation, and this study adds valuable insight to the circuit involved in fear-associated analgesia.

      Weaknesses:

      (1) Only male mice are included in this study.

      (2) Animals are excluded from analyses based on clearly defined criteria, but it is not clear how many mice were excluded from each group.

      (3) The authors implement a pain sensitivity assay that involves a hot plate with progressively increasing temperature. The time to nociceptive responses is reported. Without reporting the actual temperature at which the mice respond, it makes it difficult to compare nociceptive responses to previously published work (which typically use a defined and static hotplate temperature).

      (4) The authors present evidence that inhibition of SST vlPAG cells enhances spinal nociceptive electrophysiological responses, but the corresponding pain sensitivity is not altered (Figure 2, CS- condition). The reason for the discrepancy between electrophysiological and behavioural responses is not clear.

    3. Reviewer #2 (Public review):

      Summary:

      Wenke et al. investigated the role of vlPAG somatostatin-expressing neurons in the mediation of analgesia during defensive states. A newly developed paradigm of cued fear-conditioned analgesia, which consists of a combination of an auditory fear retrieval session and a pain test, was used to evaluate this cell population's contribution to fear-mediated analgesia. Optogenetic manipulation of vlPAG SST+ neurons modulated the responses to a nociceptive cue (Hot Plate) presented concomitantly with an aversively conditioned tone. At the same time, alterations in the freezing levels could be observed during optogenetic activation of vlPAG SST+ neurons. In order to disentangle the impact of these cells on analgesia from their impact on the expression of defensive behaviors, the authors performed electrophysiological recordings from the dorsal horn in the spinal cord of anesthetized mice. A vlPAG-RVM-DH pathway was identified to trigger nociceptive C-fibers upon optic activation of the RVM. Finally, pathway-specific activation of SST+ vlPAG-RVM neurons could abolish CS-induced analgesia.

      Strengths:

      The study addresses a relevant topic, that is, brainstem circuits for pain-modulatory mechanisms as part of defensive states evoked by threat. This is important because the circuit mechanisms underlying pain are still not fully understood, and defining molecular markers of cellular circuit substrates may support the identification of potential pharmaceutical targets in treating pain. The authors confirm a previous study in that a somatostatin-positive cellular population presents a crucial vlPAG circuit element mediating anti-nociceptive effects. Key novelty aspects of the present study are the demonstration that these neurons seem to play a role specifically in threat-induced analgesia. This was possible by the elegant design and application of a novel fear analgesia paradigm, combined with cell- and pathway-specific optogenetics.

      Weaknesses:

      Despite the convincing and rigorous experimental approach, the study leaves some interpretational room when it comes to the proposed circuit mechanism. This could either be addressed by additional experiments or by more discussion of alternative circuit layouts.

      Major Comments:

      (1) The paper by Zhang et al. (https://pubmed.ncbi.nlm.nih.gov/36641028/), which identified a role for vlPAG SOM+ neurons in mediating anti-nociception in neuropathic pain, needs to be referenced and its results discussed, if not reconciled. While functionally, both studies find an analgetic role of vlPAG SOM+ neurons projecting to the RVM, Zhang et al., using slice physiology, characterize those neurons as glutamatergic. In Figure 4E of Zhang et al. they find general (fear-independent) analgetic effects with PAG-RVM specificity by performing chemogenetic experiments.

      It can be argued that in addition to the two functionally distinct inhibitory SOM subtypes hypothesized by Winke et al., there is another, excitatory subpopulation. Also, the different experimental conditions (chronic vs. acute pain, non-threat vs. fearful cues/contexts may recruit different vlPAG SOM+ populations. All of this is conceivable, yet I wonder whether the contrasting findings could more parsimoniously be reconciled. The author's own results presented here in Supplementary Figure 3 suggests that SOM+ vlPAG cells are co-localizing with glutamate and thus could also be excitatory. In addition to this rather complementary piece of evidence, a more extensive characterization of vlPAG neurons using IHC and slice physiology would be needed to justify the unambiguous identification of their inhibitory nature.

      In the absence of a direct identification of these cells exclusively releasing GABA, an alternative explanation should be considered. What about looking at vlPAG SOM+ neurons as a putatively mixed bag of local, inhibitory interneurons and long-range, RVM-projecting excitatory cells? This model would then open up interesting questions as to the actual function of somatostatin as a modulator of vlPAG circuit activity and associated function, and from my perspective, would nicely fit into the view of PAG circuits as integrators of complex survival responses.

      (2) "Our data indicate that the optogenetic inhibition of SST+ vlPAG cells promotes analgesia irrespective of the animal's defensive state. In contrast, the optogenetic activation of long-range SST+ vlPAG cells that project to the rostral ventromedial medulla (RVM) abolishes the analgesia mediated by fear behavior." (lines 32-35). Consider toning down these conclusions, as contrasting activation with inhibition of two different (though overlapping) populations cannot be fully conclusive. Alternatively, a pathway-specific (vlPAG-RVM) inhibitory experiment could help to fully understand the circuit mechanism and verify the necessity of these neurons.

      (3) Despite an overall very thorough reporting style, some information is missing from the manuscript:

      a) In Figures 2d and f, what are the freezing levels during optogenetic manipulation? From Figure 3d, one can expect that freezing is inhibited during the hot plate test, which could bias the NC response towards shorter latencies. b) In Figure 5, the histological experiment showing the vlPAG-to-RVM pathway is presented by a qualitative image only. Here, some quantification would strengthen the finding. c) In Figures 6 c and d "Consistently, activation of the SST+ vlPAG-RVM pathway during CFCA had no impact on CS-presentation, whereas the same manipulation performed during CS+ blocked the increase in NC response latency compared to GFP controls." (line 194-196). Is it possible that the NC response cannot be any lower than the one during CS-, thus constituting a floor effect? d) Connected to major point 1- this experiment is important for defining the circuit mode and therefore should be as convincing as possible. However, for the colocalization experiment in Supplementary Figure 3, the methodological description is missing and thus makes it hard to comprehend how this data set was generated (how many data points, etc.). The visual depiction of the results is non-standard and not easily graspable. Consider e.g., a Venn diagram.

    4. Reviewer #3 (Public review):

      Summary:

      Conditioned analgesia refers to the ability of a learned fear cue to suppress pain-related behavior and neural activity. Understudied, the authors developed a novel conditioned analgesia procedure in which a cue that had been paired or unpaired with shock was played while a hot plate increased temperature. Compared to several control conditions, the authors found increased latency to a nociceptive response (paw licking). The authors identified somatostatin neurons in the periaqueductal gray as a likely mediator of the behavior. They then showed that: (1) stimulating vlPAG-SST neurons blocked nociceptive response latency increases to the CS+, (2) stimulating vlPAG-SST neurons suppressed fear retrieval freezing, (3) stimulating vs. inhibiting vlPAG-SST neurons drove opposing modulation of c-fibers and Aδ-fibers, (4) direct-projecting vlPAG SST neurons modulate freezing while RVM-projecting vlPAG SST neurons modulate conditioned analgesia.

      Strengths:

      These experiments have many strengths. The behavioral assay is chief among them. The assay is robust and controls for confounding factors to reveal a repeatable effect of a shock-paired cue to delay nociceptive responding. The optogenetic experiments provide the correct level of temporal precision, given the authors' time-specific interest in cued responding. Combining neuronal manipulations with spinal recordings is particularly innovative, especially in the context of more behavioral neuroscience-based assays. All-in-all, I found this to be an exceptionally strong set of experiments.

      Weaknesses:

      No obvious weaknesses were identified by this Reviewer.

    1. eLife Assessment

      This valuable study addresses the structural basis of voltage-activation of BK channels using atomistic simulations of several microseconds, to assess conformational changes that underlie both voltage-sensing and gating of the pore. The findings, including movement of specific charged residues, combined with the degree to which these movements are coupled to pore movements, provide a solid basis for understanding voltage-gating mechanisms in this class of channels. This paper will likely be of interest to ion channel biologists and biophysicists focused on voltage-dependent channel gating mechanisms.

    2. Reviewer #1 (Public review):

      Summary:

      This study provides new insight into the non-canonicial voltage-gating mechanism of BK channels through prolonged (10 us) MD simulations of the Slo1 transmembrane domain conformation and K+ conduction in response to high imposed voltages (300, 750 mV). The results support previous conclusions based on functional and structural data and MD simulations that the voltage-sensor domain (VSD) of Slo1 undergoes limited conformational changes compared to Kv channels, and predicts gating charge movement comparable in magnitude to experimental results. The gating charge calculations further indicate that R213 and R210 in S4 are the main contributors owing to their large side chain movements and the presence of a locally focused electric field, consistent with recent experimental and MD simulation results by Carrasquel-Ursulaez et al.,2022. Most interestingly, changes in pore conformation and K+ conduction driven by VSD activation are resolved, providing information regarding changes in VSD/pore interaction through S4/S5/S6 segments proposed to underly electromechanical coupling.

      Strengths:

      Include that the prolonged timescale and high voltage of the simulation allow apparent equilibration in the voltage-sensor domain (VSD) conformational changes and at least partial opening of the pore. The study extends the results of previous MD simulations of VSD activation by providing quantitative estimates of gating charge movement, showing how the electric field distribution across the VSD is altered in resting and activated states, and testing the hypothesis that R213 and R210 are the primary gating charges by steered MD simulations. The ability to estimate gating charge contributions of individual residues in the WT channel is useful as a comparison to experimental studies based on mutagenesis which have yielded conflicting results that could reflect perturbations in structure. Use of dynamic community analysis to identify coupling pathways and information flow for VSD-pore (electromechanical) coupling as well as analysis of state-dependent S4/S5/S6 interactions that could mediate coupling provide useful predictions extending beyond what has been experimentally tested.

      Weaknesses:

      Weaknesses include that a truncated channel (lacking the C-terminal gating ring) was used for simulations, which is known to have reduced single channel conductance and electromechanical coupling compared to the full-length channel. In addition, as VSD activation in BK channels is much faster than opening, the timescale of simulations was likely insufficient to achieve a fully open state as supported by differences in the degree of pore expansion in replicate simulations, which are also smaller than observed in Ca-bound open structures of the full-length channel. Taken together, these limitations suggest that inferences regarding coupling pathways and interactions in the fully open voltage-activated channel may be only partially supported and therefore incomplete. That said, adequate discussion regarding these limitations are provided together with dynamic community analysis based on the Ca-bound open structure. The latter supports the main conclusions based on simulations, while providing an indication of potential interaction differences between simulated and fully open conformations. Another limitation is that while the simulations convincingly demonstrate voltage-dependent channel opening as evidenced by pore expansion and conduction of K+ and water through the pore, single channel conductance is underestimated by at least an order of magnitude, as in previous studies of other K+ channels. These quantitative discrepancies suggest that MD simulations may not yet be sufficiently advanced to provide insight into mechanisms underlying the extraordinarily large conductance of BK channels.

      Comments on revisions:

      My previous questions and concerns have been adequately addressed.

      My only new comment is that the numbering of residues in Fig. S8 does not match the standard convention for hSlo and needs to be doublechecked. For the residues I checked, the numbers appear to be shifted 3 compared hSlo (e.g. Y315, P317, E318, G324 should be Y318, P320, E321, G327).

    3. Reviewer #2 (Public review):

      Summary:

      The manuscript by Jia and Chen addresses the structural basis of voltage-activation of BK channels using computational approaches. Although a number of experimental studies using gating current and patch-clamp recording have analyzed voltage-activation in terms of observed charge movements and the apparent energetic coupling between voltage-sensor movement and channel opening, the structural changes that underlie this phenomenon have been unclear. The present studies use a reduced molecular system comprising the transmembrane portion of the BK channel (i.e. the cytosolic domain was deleted), embedded in a POPC membrane, with either 0 or 750 mV applied across the membrane. This system enabled acquisition of long simulations of 10 microseconds, to permit tracking of conformational changes of the channel. The authors principal findings were that the side chains of R210 and R213 rapidly moved toward the extracellular side of the membrane (by 8 - 10 Å), with greater displacements than any of the other charged transmembrane residues. These movements appeared tightly coupled to movement of the pore-lining helix, pore hydration, and ion permeation. The authors estimate that R210 and R213 contribute 0.25 and 0.19 elementary charges per residue to the gating current, which is roughly consistent with estimates based on electrophysiological measurements that used the full-length channel.

      Strengths:

      The methodologies used in this work are sound, and these studies certainly contribute to our understanding of voltage-gating of BK channels. An intriguing observation is the strongly coupled movement of the S4, S5, and S6 helices that appear to underlie voltage-dependent opening. Based on Fig 2a-d, the substantial movements of the R210 and R213 side chains occur nearly simultaneously to the S6 movement (between 4 - 5 usec of simulation time). This seems to provide support for a "helix-packing" mechanism of voltage gating in the so-called "non-domain-swapped" voltage-gated K channels.

      Weaknesses:

      The main limitation is that these studies used a truncated version of the BK channel, and there are likely to be differences in VSD-pore coupling in the context of the full-length channels that will not be resolved in the present work. Nonetheless, the authors provide a strong rationale for their use of the truncated channel, and the results presented will provide a good starting point for future computational studies of this channel.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewing Editor Comments:

      The resubmitted version of the manuscript adequately addressed several initial comments made by reviewing editors, including a more detailed analysis of the results (such as those of bilayer thickness). This version was seen by 2 reviewers. Both reviewers recognize this work as being an important contribution to the field of BK and voltage-dependent ion channels in general. The long trajectories and the rigorous/novel analyses have revealed important insights into the mechanisms of voltage-sensing and electromechanical coupling in the context of a truncated variant of the BK channel. Many of these observations are consistent with structural and functional measurements of the channel, available thus far. The authors also identify a novel partially expanded state of the channel pore that is accessed after gating-charge displacement, which informs the sequence of structural events accompanying voltage-dependent opening of BK.

      However, there are key concerns regarding the use of the truncated channel in the simulations. While many gating features of BK are preserved in the truncated variant, studies have suggested that opening of the channel pore to voltage-sensing domain rearrangement is impaired upon gating-ring deletion. So the inferences made here might only represent a partial view of the mechanism of electromechanical coupling.

      It is also not entirely clear whether the partially expanded pore represents a functionally open, sub-conductance, or another closed state. Although the authors provide evidence that the inner pore is hydrated in this partially open state, in the absence of additional structural/functional restraints, a confident assignment of a functional state to this structure state is difficult. Functional measurements of the truncated channel seem to suggest that not only is their single channel conductance lower than full-length channels, but they also appear to have a voltage-independent step that causes the gates to open. It is unclear whether it is this voltage-independent step that remains to be captured in these MD trajectories. A clean cut resolution of this conundrum might not be feasible at this time, but it could help present the various possibilities to the readers.

      We appreciate the positive comments and agree that there will likely be important differences between the mechanistic details of voltage activation between the Core-MT and full-length constructs of BK channels. We also agree that the dilated pore observed in the simulation may not be the fully open state of Core-MT.

      Nonetheless, the notion that the simulation may not have captured the full pore opening transition or the contribution of the CTD should not render the current work “incomplete”, because a complete understanding of BK activation would be an unrealistic goal beyond the scope of this work. We respectfully emphasize that the main insights of the current simulations are the mechanisms of voltage sensing (e.g., the nature of VSD movements, contributions of various charged residues, how small charge movements allow voltage sensing, etc.) as well as the role of the S4-S5-S6 interface in VSD-pore coupling. As noted by the Editor and reviewers, these insights represent important steps towards establishing a more complete understanding of BK activation.

      Below are the specific comments of the two experts who have assessed the work and made specific suggestions to improve the manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) Although the successful simulation of V-dependent K+ conduction through the BK channel pore and analysis of associated state dependent VSD/pore interactions and coupling analysis is significant, there are two related questions that are relevant to the conclusions and of interest to the BK channel community which I think should be addressed or discussed.

      One key feature of BK channels is their extraordinarily large conductance compared to other K+ selective channels. Do the simulations of K+ conductance provide any insight into this difference? Is the predicted conductance of BK larger than that of other K+ channels studied by similar methods? Is there any difference in the conductance mechanism (e.g., the hard and soft knock-on effects mentioned for BK)?

      The molecular basis of the large conductance of BK channels is indeed an interesting and fundamental question. Unfortunately, this is beyond the scope of this work and the current simulation does not appear to provide any insight into the basis of large conductance. It is interesting to note, though, the conductance is apparently related to the level of pore dilation and the pore hydration level, as increasing hydration level from ~30 to ~40 waters in the pore increases the simulated conductance from ~1.5 to 6 pS (page 8). This is consistent with previous atomistic simulations (Gu and de Groot, Nature Communications 2023; ref. 33) showing that the pore hydration level is strongly correlated with observed conductance. As noted in the manuscript, the conductance mechanism through the filter appears highly similar to previous simulations of other K+ channels (Page 8). Given the limit conductance events observed in the current simulations, we will refrain from discussing possible basis of the large conductance in BK channels except commenting on the role of pore hydration (page 8; also see below in response to #5).

      The pore in the MD simulations does not open as wide as the Ca-bound open structure, which (as the authors note) may mean that full opening requires longer than 10 us. I think that is highly likely given that the two 750 mV simulations yielded different degrees of opening and that in BK channels opening is generally much slower than charge movement. Therefore, a question is - do any of the conclusions illustrated in Figures 6, S5, S6 differ if the Ca-bound structure is used as the open state? For example, I expect the interactions between S5 and S6 might at least change to some extent as S6 moves to its final position. In this case, would conclusions about which residues interact, and get stronger or weaker, be the same as in Figures S6 b,c? Providing a comparison may help indicate to what extent the conclusions are dependent on achieving a fully open conformation.

      We appreciate the reviewer’s suggestion and have further analyzed the information flow and coupling pathways using the simulation trajectory initiated from the Ca2+-bound cryo-EM structure (sim 7, Table S1). The new results are shown in two new SI Figures S7 and S8, and new discussion has been added to pages 14-15. Comparing Figures 5 and S7, we find that dynamic community, coupling pathways, and information flow are highly similar between simulation of the open and closed states, even though there are significant differences in S5 contacts in the simulated open state vs Ca2+-bound open state (Figure S8). Interestingly, there are significant differences in S4-S5 packing in the simulated and Ca2+-bound open states (Figure S8 top panel), which likely reflect important difference in VSD/pore interactions during voltage vs Ca2+ activation.

      (2) P4 Significance -"first, successful direct simulation of voltage-activation"

      This statement may need rewording. As noted above Carrasquel-Ursulaez et al.,2022 (reference 39) simulated voltage sensor activation under comparable conditions to the current manuscript (3.9 us simulation at +400 mV), and made some similar conclusions regarding R210, R213 movement, and electric field focusing within the VSD. However, they did not report what happens to the pore or simulate K+ movement. So do the authors here mean something like "first, successful direct simulation of voltage-dependent channel opening"?

      We agree with the reviewer and have revised the statement to “ … the first successful direct simulation of voltage-dependent activation of the big potassium (BK) channel, ..”

      (3) P5 "We compare the membrane thickness at 300 and 750 mV and the results reveal no significant difference in the membrane thickness (Figure S2)" The figure also shows membrane thickness at 0 mV and indicates it is 1.4 Angstroms less than that at 300 or 750 mV. Whether or not this difference is significant should be stated, as the question being addressed is whether the structure is perturbed owing to the use of non-physiological voltages (which would include both 300 and 750 mV).

      We have revised the Figure S2 caption to clarify that one-way ANOVA suggest the difference is not significant.

      (4) P7 "It should be noted that the full-length BK channel in the Ca2+ bound state has an even larger intracellular opening (Figure 2f, green trace), suggesting that additional dilation of the pore may occur at longer timescales."

      As noted above, I agree it is likely that additional pore dilation may occur at longer timescales. However, for completeness, I suppose an alternative hypothesis should be noted, e.g. "...suggesting that additional dilation of the pore may occur at longer timescales, or in response to Ca-binding to the full length channel."

      This is a great suggestion. Revised as suggested.

      (5) Since the authors raise the possibility that they are simulating a subconductance state, some more discussion on this point would be helpful, especially in relation to the hydrophobic gate concept. Although the Magleby group concluded that the cytoplasmic mouth of the (fully open) pore has little impact on single channel conductance, that doesn't rule out that it becomes limiting in a partially open conformation. The simulation in Figure 3A shows an initial hydration of the pore with ~15 waters with little conductance events, suggesting that hydration per se may not suffice to define a fully open state. Indeed, the authors indicate that the simulated open state (w/ ~30-40 waters) has 1/4th the simulated conductance of the open structure (w/ ~60 waters). So is it the degree of hydration that limits conductance? Or is there a threshold of hydration that permits conductance and then other factors that limit conductance until the pore widens further? Addressing these issues might also be relevant to understanding the extraordinarily large conductance of fully open BK compared to other K channels.

      We agree with the reviewer’s proposal that pore hydration seems to be a major factor that can affect conductance. This is also well in-line with the previous computational study by Gu and de Groot (2023). We have now added a brief discussion on page 8, stating “Besides the limitation of the current fixed charge force fields in quantitively predicting channel conductance, we note that the molecular basis for the large conductance of BK channels is actually poorly understood (78). It is noteworthy that the pore hydration level appears to be an important factor in determining the apparent conductance in the simulation, which has also been proposed in a previous atomistic simulation study of the Aplysia BK channel (33).”

      Minor points

      (1) P5 "the fully relaxed pore profile (red trace in Figure S1d, top row) shows substantial differences compared to that of the Ca2+-free Cryo-EM structure of the full-length channel." For clarity, I suggest indicating which is the Ca-free profile - "... Ca2+-free Cryo-EM structure of the full-length channel (black trace)."

      We greatly appreciate the thoughtful suggestion. Revised as suggested.

      (2) P8 "Consistent with previous simulations (78-80), the conductance follows a multi-ion mechanism, where there are at least two K+ ions inside the filter" For clarity, I suggest indicating these are not previous simulations of BK channels (e.g., "previous simulations of other K+ channels ...").

      Revised as suggested. Thank you.

      (3) Figure 2, S1 - grey traces representing individual subunits are very difficult to see (especially if printed). I wonder if they should be made slightly darker. Similar traces in Figure 3 are easier to see.

      The traces in Figure S1 are actually the same thickness in Figure 3 and they appear lighter due to the size of the figure. Figure 2 panels a-c have been updated to improve the resolution.

      (4) Figure 2 - suggest labeling S6 as "S6 313-324" (similar to S4 notation) to indicate it is not the entire segment.

      Figure 2 panel d) has been updated as suggested.

      (5) Figure 2 legend - "Voltage activation of Core-MT BK channels. a-d)..."

      It would be easier to find details corresponding to individual panels if they were referenced individually. For example:

      "a-d) results from a 10-μs simulation under 750 mV (sim2b in Table S1). Each data point represents the average of four subunits for a given snapshot (thin grey lines), and the colored thick lines plot the running average. a) z-displacement of key side chain charged groups from initial positions. The locations of charged groups were taken as those of guanidinium CZ atoms (for Arg) and sidechain carboxyl carbons (for Asp/Glu) b) z-displacement of centers-of-mass of VSD helices from initial positions, c) backbone RMSD of the pore-lining S6 (F307-L325) to the open state, and d) tilt angles of all TM helices. Only residues 313-324 of S6 were included inthe tilt angle calculation, and the values in the open and closed Cryo-EM structures are marked using purple dashed lines. "

      We appreciate the thoughtful suggestion and have revised the caption as suggested.

      (6) Figure S1 - column labels a,b,c, and d should be referenced in the legend.

      The references to column labels have been added to Figure S1 caption.

      (7) References need to be double-checked for duplicates and formatting.

      a) I noticed several duplicate references, but did not do a complete search: Budelli et al 2013 (#68, 100), Horrigan Aldrich 2002 (#22,97), Sun Horrigan 2022 (#40, 86), Jensen et al 2012 (#56,81).

      b) Reference #38 is incorrectly cited with the first name spelled out and the last name abbreviated.

      We appreciate the careful proofreading of the reviewer. The duplicated references were introduced by mistake due to the use of multiple reference libraries. We have gone through the manuscript and removed a total of 5 duplicated references.

      Reviewer #2 (Recommendations for the authors):

      This manuscript has been through a previous level of review. The authors have provided their responses to the previous reviewers, which appear to be satisfactory, and I have no additional comments, beyond the caveats concerning interpretations based on the truncated channel, which are noted above.

      We greatly appreciate the constructive comments and insightful advice. Please see above response to the Reviewing Editor’s comments for response and changes regarding the caveats concerning interpretations of the current simulations.

    1. eLife Assessment

      Sanchez-Vasquez et al establish an innovative approach to induce aneuploidy in preimplantation embryos. This important study extends the author's previous publications evaluating the consequences of aneuploidy in the mammalian embryo. In this work, the authors investigate the developmental potential of aneuploid embryos and characterize changes in gene expression profiles under normoxic and hypoxic culture conditions. Using a solid methodology they identify sensitivity to Hif1alpha loss in aneuploid embryos, and in further convincing experiments they assess how levels of DNA damage and DNA repair are altered under hypoxic and normoxic conditions.

    2. Reviewer #1 (Public review):

      Summary:

      This paper developed a model of chromosome mosaicism by using a new aneuploidy-inducing drug (AZ3146), and compared this to their previous work where they used reversine, to demonstrate the fate of aneuploid cells during murine preimplantation embryo development. They found that AZ3146 acts similarly to reversine in inducing aneuploidy in embryos, but interestingly showed that the developmental potential of embryos is higher in AZ3146-treated vs. reversine-treated embryos. This difference was associated with changes in HIF1A, p53 gene regulation, DNA damage, and fate of euploid and aneuploid cells when embryos were cultured in a hypoxic environment.

      Strengths:

      In the current study, the authors investigate the fate of aneuploid cells in the preimplantation murine embryo using a specific aneuploidy-inducing compound to generate embryos that were chimeras of euploid and aneuploid cells. The strength of the work is that they investigate the developmental potential and changes in gene expression profiles under normoxic and hypoxic culture conditions. Further, they also assessed how levels of DNA damage and DNA repair are altered in these culture conditions. They also assessed the allocation of aneuploid cells to the divergent cell lineages of the blastocyst stage embryo.

      Weaknesses:

      The authors have still not addressed the inconsistent/missing description for sample size, the appropriate number of * for each figure panel, and the statistical tests used.

      The authors assign 5% oxygen as hypoxia. This is not the case as the in vivo environment is close to this value. 5% is normoxia. Clinical IVF/embryo culture occurs at 5% O2. Please adjust your narrative around this.

    3. Reviewer #2 (Public review):

      Summary:

      This study by Sanchez-Vasquez is a very innovative approach to induce aneuploidy and then study the contribution of treated cells to different lineages, including post implantation. It connects well to the authors previous work to induce mosaic aneuploidies. The authors identify sensitivity to HIF1a loss in treated embryos with likely aneuploidy. This work is part of an important line of work with evaluates the consequences of aneuploidy in mammalian embryo.

      Weaknesses:

      Given that this is a study on the induction of aneuploidy, it would be meaningful to assess aneuploidy immediately after induction, and then again before implantation. This is also applicable to the competition experiments on page 7/8. What is shown is the competitiveness of treated cells. Because the publication centers around aneuploidy, inclusion of such data in the main figure at all relevant points would strengthen it. There is some evaluation of karyotypes only in the supplemental - why? Would be good not to rely on a single assay that the authors appear to not give much importance.

    4. Author response:

      The following is the authors’ response to the original reviews.

      We deeply appreciate the reviewer comments on our manuscript. We have proceeded with all the minor changes mentioned. We also want to emphasize three major points:

      (1) Reversine has been shown to have several off-targets effects. Including inducing apoptosis (Chen et al. J Bone Oncol. 2024).

      (2) Hypoxia varies from 2% to 6%. Our definition of hypoxia is 5% concentration of oxygen with 5% concentration of CO<sub>2</sub>, taking into consideration the standard levels of oxygen in the IVF clinics. Physiological oxygen in mouse varies from ~1.5% to 8%.

      (3) Natale et al. 2004 (Dev Bio) and Sozen et al. 2015 (Mech of Dev) described that inhibition of p38 deeply affect the development of pre-implantation embryos after the 8-cell stage. For this reason, comprehensible dissect the interaction between p53, HIF1A and p38 during aneuploid stress is challenging. We do not discard a double function of p38 during lineage specification and in response to DNA damage.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 69: Please add the species used in your cited publications (murine).

      Fixed

      (2) Line 72: Consider changing "Because" to "As".

      Fixed

      (3) Line 88: "from the nuclei" - please refer to where the reader may find the example provided (Figure S1A).

      Fixed

      (4) Line 89: This should be Figure S1B as no quantification is presented in S1A. S1A only contains examples of micronuclei.

      Fixed

      (5) Line 91: Refer to Figure S1A.

      Fixed

      (6) Line 91-93: Are these numbers correct? The query arises from the numbers presented in Figure S1B. Please define how the median was calculated; is it micronuclei CREST+ plus micronuclei CREST-?

      Fixed. We did not differentiate in these percentage the presence of CREST.

      (7) Line 95: extra/missing bracket?

      Fixed

      (8) Line 88-91:

      [a] Regarding the number of cells with micronuclei in this text, please clarify your sample size and how the percentages were calculated as they currently do not align (e.g., are these the total number of embryos from a single experimental replicate?).

      Also, different numbers are found here and in the figure legend: (DMSO-22/256 cells from 32 embryos; Rev-82/144 cells from 18 embryos; AZ-182/304 cells from 38 embryos) vs. Fig S1 legend (DMSO-n=128 cells; Rev-72 cells; AZ-152 cells).

      [c] Is the median calculated using the numbers presented above? If yes, then the numbers do not tally, please check (DMSO-22/256 cells=8.6%; Rev-82/144 cells=56.9%; AZ-182/304 cells =59.9%) vs. Line 91-93: DMSO=12.5%, Rev=75%; AZ=62.5% blastomeres had micronuclei.

      The percentage represents the average of aneuploidy per embryo after normalization.

      See table for DMSO. This number represents the average of aneuploid cells each aneuploid embryo has. Notice that some embryos are fully diploid. Some have more that 12.5% -> 25%. Most of the aneuploid embryos have 12.5% of aneuploidy. It is not black and white as how many aneuploid cell there is in the sample but a full understanding of how aneuploid are the aneuploid embryos in each sample.

      Author response image 1.

      (9) Line 108:

      [a] "n=28 per treatment" please clarify whether this refers to the number of embryos or cells and also add how many independent replicate experiments this data is representative of. as the text only refers to Figure 1C you can remove the P-values for ** and *.

      Number of embryos. Fixed

      (10) Line 111: Suggest citing Figure 1C at the end of the sentence.

      Fixed

      (11) Line 118-119: the reference to figures require updating to ensure they refer to the appropriate figure; ...decidua (Figure S1C)...viable E9.5 embryos (Figure S1D).

      Fixed

      (12) Line 126: A description of the data in Figures 1D and 1E is missing. Also, consider describing the DNA damage observed in the DMSO control group. Visually, it appears that DNA damage reduces from the 8-cell to the morula stage (Figure 1E) but increases at the blastocyst stage (Figure S2A)? Point for discussion for a normal rate of DNA damage?

      Agree, there is some DNA damage in the TE in blastocyst

      (13) Line 134: 8 EPI and 4 PE cells in what group?

      Fixed: DMSO-treated embryos

      (14) Line 137: Could this also suggest that AZ and reversine induce DNA damage through a different mechanism/pathway, resulting in the differential impact observed? Despite both being inhibitors of Mps1.

      This is a possibility.

      (15) Line 153: the legend for Figure 2A says the Welch t-test was performed, but the Mann-Whitney U-test was stated here. Which is correct?

      Welch’s t-test

      (16) Line 155: ...at the blastocyst stage. Compared to what?

      DMSO-treated embryos

      (17) Line 160: Data in Figure 2B requires the definition of P-values for , , . Please add one for and remove the one for **.

      Fixed

      (18) Line 173-174: Data in Fig. 4 requires the definition of the P-values for ****. Please remove the others.

      Fixed

      (19) Line 180: Instead of jumping across figures, this section would benefit from stating the numbers directly to allow for an accurate comparison, e.g. 64 and 7 in Figure 2D vs. X and Y in Figure 1C.

      (20) Line 187: Hif1a should be italicised.

      Fixed

      (21) Line 197: Based on the description here, I believe you are missing a reference to Figure 1A.

      Fixed

      (22) Line 203: Instead of jumping across figures, this section would benefit from stating the numbers directly to allow for accurate comparison, "particularly in the TE and PE" (67 vs 54; and 11 vs 6, respectively).

      (23) Line 209-210:

      [a] "...lowered the number of yH2AX foci..." is this a visual observation as quantification was performed for yH2AX intensity, not quantification of foci?

      A description for PARP1 levels in morula stage embryos was presented ("...relatively low in morula), but not for yH2AX levels at this stage of development. Missing description?

      Fixed

      (24) Line 235: This sentence would benefit from being specific about the environmental conditions...eg "Under normoxia, DMSO/AZ3146-treated...",

      (25) Line 238: The sentence should reference Figure 4F not 4G.

      Fixed

      (26) Line 242-243:

      [a] "slightly increased... in the TE (49.06%) and PE (50%) but, strikingly, reduced... EPI (33.3%)" compared to what and in which figure?

      Assuming you are comparing normoxia (4F) to hypoxia (4G), the numbers change for the TE (46.75% to 49.06%, respectively), EPI (42.88% to 33.3%, respectively), and PE (28.57% to 50%, respectively); yet these data were described as "strikingly different" for EPI (9.58 decrease) but only "slightly increased" for PE (21.42 increase). Suggest using appropriate adjectives to describe the results.

      Fixed

      (27) Line 256: It is stated in line 255 that treatment was performed at the zygote stage, yet this sentence says reversine treatment occurred at the 2-cell stage? Which is correct? Please amend appropriately. Refer to the comment below regarding adding a schematic to aid readers

      Fixed

      (28) Line 259: "n>27 per treatment" please clarify whether this refers to the number of embryos or cells and also add how many independent replicate experiments this data is representative of. Data in Figures S5A-B requires a definition of P-values for , . Please remove for *, *.

      Fixed

      (29) Line 261: AZ3146/reversine stated here, the figure shows Reversine/AZ3146. Please consider being consistent.

      Fixed

      (30) Line 263: "... normal morphology and cavitation (Figure S5D); however the image presented for Rev/DMSO and Rev/AZ3146 chimeras appear smaller with a distorted/weird shape when compared to DMSO/AZ. I believe the description does not match the images presented.

      Fixed

      (31) Line 267: "...similar results as 8-cell stage derived chimeras"; however, there is only a reference to Fig S5E which depicts 2-cell/zygote stage (see comment above for line 256 regarding required clarification of stage of treatment) derived chimeras. There is also a missing reference to Figure 4B, D, and/or F?

      Fixed

      (32) Line 271: add a reference to Figure S5E.

      Fixed

      (33) Line 283: "AZ3146/reversine" should be "Reversine/AZ3146" to match the figure.

      Fixed

      (34) Line 284: Figures 5E-F show both morphology and cavitation; the text should reflect this.

      Fixed

      (35) Line 281-285: I think this text requires editing to improve clarity. It is difficult for this reader to understand the authors' interpretation of the results....inhibiting HIF1A reduces morphology and cavitation. That's correct. However, this also diminished the contribution of AZ3146-treated cells to all 3 cell lineages; this is not quite accurate. AZ3146-treated cells were significantly reduced in total cell numbers because TE was significantly reduced. It is not appropriate to generalise this result to all 3 lineages, as EPI and TE appear to increase AZ's contribution following IDF treatment, albeit non-statistically significant.

      Fixed

      (36) Line 320: citation? ....reversine-treated embryos. Is this referring to your previous publication...Bolton 2016?

      Fixed

      (37) Line 344: missing space between 7.5 and IU.

      Fixed

      (38) Line 358: animal ethics approval number/code missing.

      Fixed

      (39) Line 397: missing space between "...previously" and "(Bermejo...".

      Fixed

      (40) Line 417: missing space between "...control" and "(Gu et...".

      Fixed

      (41) Line 421: missing space between "protocol" and "(Eakin...".

      Fixed

      (42) Line 427-429: Medium-grade mosaic chimeras were referred to as DMSO:AZ:Rev (3:3:2) here; but Figure 4 and associated legend says otherwise. Please amend appropriately. Were all medium mosaics generated in this manner? As I could only find Rev/AZ chimeras; my understanding of the Rev/AZ chimeras is 1:1 Rev:AZ instead of 3:2:3 DMSO:Rev:AZ.

      Fixed

      (43) Line 428: "reversine-treaded: please correct spelling.

      Fixed

      (44) Line 593: "n=28 per treatment" Please clarify whether this refers to the number of embryos or cells and also add how many independent replicate experiments this data is representative of.

      Fixed

      (45) Line 597: "through morula stage" when compared to what group?

      DMSO-treated embryos

      (46) Line 598: Data in Figure S5A-B requires the definition of P-values for , , **. Please remove for . Please define the error bars. SEM/95% confidence interval?

      Fixed

      (47) Line 604-607: Regarding 2B, no statistical test is stated yet Mann-Whitney was stated in Line 160 of the results section. Please confirm which test was used and include it in both sections for consistency.

      Fixed

      (48) Line 608: "Chemical downregulation of HIF1A"... this is not described in the results/methods section or shown in the figure. Please amend all sections for accuracy.

      Fixed

      (49) Line 613: please change "effect in" to "effect on".

      Fixed

      (50) Line 614: Please clarify the number of embryos or cells and also add how many independent replicate experiments this data is representative of. Data in Figure 2 also requires a definition of P-value for ****.

      Fixed

      (51) Line 625: Please clarify the number of embryos or cells and also add how many independent replicate experiments this data is representative of. Data in Figure 3 also requires a definition of P-value for ****.

      Fixed

      (52) Line 627: description requires editing to improve accuracy "...is only slightly increased at the 8-cell stage after exposure to reversine and AZ3146". However, the results show significantly higher DNA damage with Reversine treatment, but not with AZ when compared to DMSO. Please amend accordingly.

      Fixed

      (53) Line 629: Please define the error bars. SEM/95% confidence interval?

      Fixed

      (54) Line 634-635: it is written here that chimeras were made from 1:1 DMSO/AZ3146 and Reversine/DMSO; but Figure 4A shows 1:1 DMSO(grey):AZ3146(blue), and Reversine(red):AZ3146(blue), which contradicts the legend + method section; see comments for Line 427-429. Please amend these sections accordingly.

      Fixed

      (55) Line 648: reversine/AZ3146 chimeras? Refer to comments above.

      Fixed

      (56) Line 649-650: ...AZ-treated blastomeres contribute similarly to reversine-blastomeres to the TE and EPI but significantly increase contribution to the EPI? Please add the appropriate comparison group.

      Fixed

      (57) Line 652: Please clarify the number of embryos or cells and also add how many independent replicate experiments this data is representative of.

      Fixed

      (58) Line 664: Please clarify the number of embryos or cells and also add how many independent replicate experiments this data is representative of.

      Fixed

      (59) Line 675-677: FigS1B legend requires a definition of P-value for * and ****, can omit **

      Fixed

      (60) Line 678-680: FigS1C and S1D legend: sample size and replicates? Only mentioned in Lines 117-120, which requires back calculation.

      Fixed

      (61) Line 682-694: (1) Fig. S2B legend: missing P-value description for *** and ***; statistical test not stated, please add. Also, Figure S2E, only requires the definition for , and can omit others.

      Fixed

      (62) Line 702: FigS3B: missing description for ****, omit others.

      Fixed

      (63) Line 704-705: missing description for Rev/AZ group and hypoxia vs. normoxia conditions.

      Fixed

      (64) Line 712-713: "n>27 per treatment" Please clarify whether this refers to the number of embryos or cells and also add how many independent replicate experiments this data is representative of. Data in Figure S5 requires the definition of P-values for , . Please remove for *, *.

      Fixed

      (65) Line 713-715: could benefit from a description of which were marked from mTmG; e.g. why is DMSO, Rev, Rev in Green for [D]; does this mean 2-cell stage chimeras were only made with embryos treated with DMSO and Reversine? Has it been tested if you did this with AZ3146, do the proportions remain the same? This would be interesting to know.

      DMSO and reversine are in green because they are the cells mark with green in the chimeras. We also did chimeras with AZ3146. Hope this clarifies.

      (66) Line 719-721: why is there a difference between the proportion of aneuploid cells for the different chimeras? AZ in D/AZ, and R/AZ groups; while only R in D/R group? Is this because you only count those that were marked with mTmG (e.g. based on [Fig S5D])? (67) Line 724: low- and medium-grade chimeras would indicate quality, recommend adding low/medium grade aneuploid/mosaic chimeras.

      Fixed

      (68) Line 725-729: it may be my mistake, but I think the results description is not found within the Results section, but only here in the legend? Please include this detail also in the Results section.

      Fixed

      (69) Line 729: which is AZ or Rev cells?

      (70) References - Page number missing for some references; abbreviated version vs. non abbreviated version of journal titles used. Please be consistent/meet journal requirements.

      Fixed

      (71) Figures

      Figure 1: [C] both AZ-NANOG and DMSO-SOX17 have mean/median(?) of 11 cells (described in results), yet in this figure (on the same axis) these groups are not level. Are the numbers correct? This is also the case for Rev-SOX17 which is described in the results as having 8 cells yet appears to be above the 8 mark in the graphs; AZ-CDX2, which has 64 cells yet appears to be below the 60 mark; AZ-total, which has 82 cells yet appears to be below the 80 mark. In [E] the label orientation, "ns" has both horizontal and vertical orientation. Please make appropriate changes throughout to reflect accuracy.

      Figure 3: [C] As for Figure 1, DMSO-NANOG, which is described in results as having 14 cells, yet appears to be below the 13 mark in the graph; DMSO-SOX17, which has 6 cells yet appears to be above the 7 mark.

      These is due to average

      Figure 4: [D and E] random numerals appear in the bars on the graph. 9,10 and 7, 14? Are these sample size numbers? If they are, they should appear in all bars/groups or in the legend.

      Yes, these are sample sizes

      Figure 5: [D and G] same comment as for Fig 4 above, random numbers in the graph.

      Yes, these are sample sizes

      (72) Supplementary figures. Figure S2 [A] No quantification? This is important to add as representative images are only a 2D plane, which can be easily misinterpreted. [E] Should the y-axis label be written as "Number of cells normalised to DMSO group", or similar? Or is there a figure missing to depict the ratio of cells in each cell lineage normalised to the DMSO group, which is the description written in the legend? But I don't see a figure showing the ratio, just the absolute number of cells. Is this a missing figure or a mislabelled axis?

      Quantification at the blastocyst stage is misleading due to high cellular heterogeneity.

      Reviewer #3 (Recommendations for the authors):

      (1) The statement in the abstract: "embryos with a low proportion of aneuploid cells have a similar likelihood of developing to term as fully euploid embryos" Line 48-50 Capalbo does not really answer as the biopsy may not be reflective of ICM.

      This is a great point. Trophectoderm biopsies may not reflect the real proportion of aneuploidy in the ICM. We emphasize this in discussion and Fig. S4.

      (2) Line 69/70, at least 50% Singla et al/Bolton. It would be helpful to elaborate a bit more on this study. How can this be assessed when analysis results in destruction?

      (3) Differences in the developmental potential of reversine versus AZ-treated embryos. It is not entirely clear why. The differences in non-dividing cells if any are small, and the -crest cells are rather minor also. Could these drugs have other effects that are not evaluated in the study?

      Yes, specifically, reversine has been shown to have several off-targets effects. Including inducing apoptosis (Chen et al 2024).

      (4) Lines 45-46 understanding of reduction of aneuploidy should mention/discuss the paper of attrition/selection, of the kind by the Brivanlou lab for instance, or others. As well as allocation to specific lineages, including the authors' work.

      Dr. Brinvanlou experiments in gastruloids do not represent the same developmental stage of pre-implantation embryos. Comparison between models is debatable.

      (5) Line 53: human experiments are more limited due to access to samples. What does 'not allowed' mean? By who, where?

      NIH does not allow to experiment with human embryos for ethical reasons.

      (6) The figure callouts to S1A in lines 93,97. What is a non-dividing nucleus? For how long is it observed?

      A non-dividing nucleus is an accumulation of DNA in a round form without define separation of the chromosomes and their specific kinetochores (CREST antibody). The presence of non-dividing nucleus during the 4 -to-8 cell stage can indicate activation of the spindle assembly checkpoint during prometaphase. Example of non-dividing nucleus can be observed in Fig S1.B.

      (7) Line 108 A relatively minor effect on cell number and quality of blastocysts is observed. It is not surprising that thereafter, developmental potential is also high. At that stage, what are the individual cell karyotypes?

      Due to technical limitations, we can’t determine the specific karyotypes of these cells.

      (8) Line 153. The p53 increase of 1.3 fold is not dramatic.

      The levels of p53 at the morula stage is 7-fold differences. In contrast, at the blastocyst stage, a change in 1.3-fold is indeed less dramatic. This can be a result of the elimination of aneuploid cells or mechanism to counter the activation of the p53 pathway, like overexpression of the Hif1a pathway.

      (9) Line 155. Is there a more direct way to test for p38 activation?

      Natale et al 2004 (Dev Biol) and Sozen et al 2015 (Mech of Dev) described that inhibition of p38 deeply affect the development of pre-implantation embryos after the 8-cell stage. For this reason, comprehensible dissect the interaction between p53, HIF1A and p38 during aneuploid stress is challenging. We do not discard a double function of p38 during lineage specification and in response to DNA damage.

      (10) Line 191/192 Low oxygen conditions, is this equal to hypoxia? What is the definition of hypoxia here? The next sentence says physiological. Is that the same or different?

      Low oxygen can be defined as hypoxia. This varies from 2% to 6%. Our definition of hypoxia is 5% concentration of oxygen with 5% concentration of CO<sub>2</sub>, taking into consideration the standard levels of oxygen in the IVF clinics. Physiological oxygen in mouse varies from ~1.5% to 8%.

      (11) The question is whether there is something specific about HIF1 and aneuploidy, or whether another added stress would have similar effects on the competitiveness of treated cells.

      That is a great follow up of our work.

      (12) Line 300. Is p21 unregulated at the protein level or mRNA level? Please indicate.

      mRNA level.

      (13) Figure 1D/E H2Ax intensity is cell cycle phase-dependent. It might be meaningful to count foci by the nucleus and show both ways of analysis.

      (14) Check the spelling of phalloidin.

      Fixed in text and figures!

    1. eLife Assessment

      This paper identifies a crucial step in the regulation of tight junction formation by identifying Rho-ROCK activity-dependent activation of the serine protease Matriptase, making Claudins available for tight junction formation. The reviewers were satisfied with the revisions and found the work important and the approach convincing.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript by Cho and colleagues investigates de novo tight junction formation during the differentiation of immortalized human HaCaT keratinocytes to granular-like cells, as well as during epithelial remodeling that occurs upon the apoptotic of individual cells in confluent monolayers of the representative epithelial cell line EpH4. The authors demonstrate the involvement of Rho-ROCK with well-conducted experiments and convincing images. Moreover, they unravel the underlying molecular mechanism, with Rho-ROCK activity activating the transmembrane serine protease Matriptase, which in turn leads to the cleavage of EpCAM and TROP2, respectively, releasing Claudins from EpCAM/TROP2/Claudin complexes at the cell membrane to become available for polymerization and de novo tight junction formation. These functional studies in two different cell culture systems are complemented by localization studies of the according proteins in the stratified mouse epidermis in vivo.

      In total, these are new and very intriguing and interesting findings that add important new insights into the molecular mechanisms of tight junction formation, identifying Matriptase as the "missing link" in the cascade of formerly described regulators. The involvement of TROP2/EpCAM/Claudin has been reported recently (Szabo et al., Biol. Open 2022; Bugge lab), and Matriptase had been formerly described to be required for tight junction formation as well, again from the Bugge lab. Yet, the functional correlation / epistasis between them, and their relation to Rho signaling, had not been known thus far.

      Strengths:

      Convincing functional studies in two different cell culture systems, complemented by supporting protein localization studies in vivo. The manuscript is clearly written and most data are convincingly demonstrated, with beautiful images and movies.

      Weaknesses:

      The previously described weaknesses have been fully wiped out during the revisions.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript the authors investigate how epithelia maintain intercellular barrier function despite and during cellular rearrangements upon e.g. apoptotic extrusion in simple epithelia or regenerative turnover in stratified epithelia like this epidermis. A fundamental question in epithelial biology. Previous literature has shown that Rho mediated local regulation of actomyosin is essential not only for cellular rearrangement itself but also directly controls tight junction barrier function. The molecular mechanics however remained unclear. Here the authors use extensive fluorescence imaging of fixed and live cells together with genetic and drug mediated interference to show that Rho activation is required and sufficient to form de novo tight junctional strands at intercellular contacts in epidermal keratinocytes (HaCat) and mammary epithelial cells. After having confirmed previous literature they then show that Rho activation activates the transmembrane protease matriptase which cleaves EpCAM and TROP2, two claudin binding transmembrane proteins, to release claudins and enable claudin strand formation and therefore tight junction barrier function.

      Strengths:

      The presented mechanism is shown to be relevant for epithelial barriers being conserved in simple and stratifying epithelial cells and mainly differs due to tissue specific expression of EpCAM and TROP2. The authors present carefull state of the art imaging and logical experiments that convincingly support the statements and conclusion. The manuscript is well written and easy to follow.

      Weaknesses:

      Whereas the in vitro evidence of the presented mechanism is strongly supported by the data, the in vivo confirmation is mostly based on the predicted distribution of TROP2. Whereas the causality of Rho mediated matriptase activation has been nicely demonstrated it remains unclear how Rho activates matriptase.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript "Rho-ROCK liberates sequestered claudin for rapid de novo tight junction formation" by Cho and colleagues investigates de novo tight junction formation during the differentiation of immortalized human HaCaT keratinocytes to granular-like cells, as well as during epithelial remodeling that occurs upon the apoptotic of individual cells in confluent monolayers of the representative epithelial cell line EpH4. The authors demonstrate the involvement of Rho-ROCK with well-conducted experiments and convincing images. Moreover, they unravel the underlying molecular mechanism, with Rho-ROCK activity activating the transmembrane serine protease Matriptase, which in turn leads to the cleavage of EpCAM and TROP2, respectively, releasing Claudins from EpCAM/TROP2/Claudin complexes at the cell membrane to become available for polymerization and de novo tight junction formation. These functional studies in the two different cell culture systems are complemented by localization studies of the according proteins in the stratified mouse epidermis in vivo.

      In total, these are new and very intriguing and interesting findings that add important new insights into the molecular mechanisms of tight junction formation, identifying Matriptase as the "missing link" in the cascade of formerly described regulators. The involvement of TROP2/EpCAM/Claudin has been reported recently (Szabo et al., Biol. Open 2022; Bugge lab), and Matriptase had been formerly described to be required for in tight junction formation as well, again from the Bugge lab. Yet, the functional correlation/epistasis between them, and their relation to Rho signaling, had not been known thus far.

      However, experiments addressing the role of Matriptase require a little more work.

      Strengths:

      Convincing functional studies in two different cell culture systems, complemented by supporting protein localization studies in vivo. The manuscript is clearly written and most data are convincingly demonstrated, with beautiful images and movies.

      Weaknesses:

      The central finding that Rho signaling leads to increased Matriptase activity needs to be more rigorously demonstrated (e.g. western blot specifically detecting the activated version or distinguishing between the full-length/inactive and processed/active version).

      First, we thank the reviewer for their fair evaluation of our manuscript and for providing constructive feedback. Regarding the detection of matriptase activation—which Reviewer 1 identified as a weakness—we fully agree that direct validation is crucial. Therefore, in this revision we have carried out additional experiments using the M69 antibody, which specifically recognizes the activated form of matriptase. Details of these new experiments are provided in our point-by-point responses below.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigate how epithelia maintain intercellular barrier function despite and during cellular rearrangements upon e.g. apoptotic extrusion in simple epithelia or regenerative turnover in stratified epithelia like this epidermis. A fundamental question in epithelial biology. Previous literature has shown that Rho-mediated local regulation of actomyosin is essential not only for cellular rearrangement itself but also for directly controlling tight junction barrier function. The molecular mechanics however remained unclear. Here the authors use extensive fluorescent imaging of fixed and live cells together with genetic and drug-mediated interference to show that Rho activation is required and sufficient to form novo tight junctional strands at intercellular contacts in epidermal keratinocytes (HaCat) and mammary epithelial cells. After having confirmed previous literature they then show that Rho activation activates the transmembrane protease Matriptase which cleaves EpCAM and TROP2, two claudin-binding transmembrane proteins, to release claudins and enable claudin strand formation and therefore tight junction barrier function.

      Strengths:

      The presented mechanism is shown to be relevant for epithelial barriers being conserved in simple and stratifying epithelial cells and mainly differs due to tissue-specific expression of EpCAM and TROP2. The authors present careful state-of-the-art imaging and logical experiments that convincingly support the statements and conclusion. The manuscript is well-written and easy to follow.

      Weaknesses:

      Whereas the in vitro evidence of the presented mechanism is strongly supported by the data, the in vivo confirmation is mostly based on the predicted distribution of TROP2. Whereas the causality of Rho-mediated Matriptase activation has been nicely demonstrated it remains unclear how Rho activates Matriptase.

      Thank you for your valuable feedback on our manuscript. As Reviewer 2 points out, the precise mechanism by which the Rho/ROCK pathway activates matriptase remains unclear. We have discussed the possible molecular mechanisms in the Discussion section. Elucidating the detailed mechanism of matriptase activation will be the focus of our future work.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Comment 1-1 - Matriptase activation by Rho: The authors show activation of Matriptase in western blots by the simple reduction of (full-length?) protein level in Figures 5 and 7. Most publications however show activated Matriptase either by antibodies detecting specifically the active form (including the publication referenced in this manuscript), or the appearance of the activated form next to the inactive form (based on different molecular weights). Therefore, it is not completely clear whether the treatment with Rho activators (Figure 5) results in an overall decrease of Matriptase, or really in an increase in the activated form. Therefore, the authors should show the actual increase of the active form. As a control, the impact of camostat treatment and overexpression of Hai1 on the active form of Matriptase could be included. It also should be indicated in the figure legend how long cells had been treated with the drugs before being subjected to lysis. Moreover, the western blots need to be quantified.

      We performed a more rigorous analysis using the M69 antibody, which specifically recognizes the activated form of matriptase and has been widely used in previous studies(e.g. Benaud et al., 2001; Hung et al., 2004; Wang et al., 2009). We likewise confirmed a significant increase in M69 signals by both western blotting and immunostaining from samples in which matriptase was activated by acid medium treatment (Figure 5A). Crucially, we also observed matriptase activation with the M69 antibody both in Rho/ROCK activator-treated cells (Figure 5A) and in differentiated granular-layer-like cells (Figures 7A and 7D). These findings strongly support the conclusion that matriptase is activated downstream of the Rho/ROCK pathway.

      Comment 1-2 - Based on their results, the authors conclude that Matriptase cleaves TROP2 in the SG2 layer of the epidermis, which is a little contradictory to former studies, which have shown Matriptase to be most prominently expressed and active in the basal layer and only little in the spinous layer (e.g Chen et al., Matriptase regulates proliferation and early, but not terminal, differentiation of human keratinocytes. J Invest Dermatol.2013). In this light, one could also argue that inhibiting Matriptase "simply" reduces epidermal differentiation. Can other differentiation markers be tested to rule that the effects on tight junctions are secondary consequences of interferences with earlier / more global steps of keratinocyte differentiation?

      As the reviewer noted, previous studies have demonstrated that matriptase is essential for keratinocyte differentiation, and that it cleaves substrates beyond EpCAM and TROP2—any of which could potentially influence the differentiation process. To test this possibility, we chose to monitor maturation of adherens junction (AJ) as an indicator of keratinocyte differentiation into granular-layer cells. Prior work has shown that during differentiation into granular-layer cells, AJs develop and experience increased intercellular mechanical tension, and that this rise in mechanical tension at AJs is critical for subsequent TJ formation (Rübsam et al., 2017). To assess AJ tension, we stained with the α-18 monoclonal antibody, which specifically recognizes the tension-dependent conformational change of α-catenin, a core AJ component. In control cells, differentiation into granular-layer like cells led to a marked increase in α-18 signal at cell–cell adhesion sites. Importantly, when HaCaT cells were treated with Camostat to inhibit matriptase and then induced to differentiate, we observed an equivalent increase in α-18 signal at AJs (Figure 7F). However, we did not detect claudin enrichment at cell-cell contacts under these conditions (Figures 7F and 7H). These results suggest that matriptase inhibition does not impair AJ maturation during granular-layer differentiation, but does profoundly disrupt TJ formation. While we cannot rule out the possibility that matriptase acts more broadly from these results, we judged that a comprehensive substrate survey lies outside the scope of the present manuscript.

      Comment 1-3 - In addition, as in Figure 5, full-length levels of Matriptase in Figure 7A need to be complemented by the active version to demonstrate more convincingly that TROP2 processing coincides with (and is most likely caused by) increased Matriptase activation. In the quantification in 7B, levels actually go up again after 2 and 4 hours. How is that explained, and what would this mean with respect to tight junction formation seen at 24 h of differentiation? The TROP2 cleavage shown in Figure 7A should be quantified.

      This comment is related to Comment 1-1. Using the M69 antibody, which specifically recognizes the activated matriptase, we directly demonstrated that matriptase activation occurs during the differentiation of granular layer-like cells (Figures 7A and 7D). Furthermore, we performed quantitative analysis of TROP2 cleavage and found that, compared with undifferentiated cells, differentiation into granular-layer like cells was accompanied by an increase in the cleaved TROP2 fragments (Figures 7A and 7B).

      Minor points:

      Comment 1-4 - Figure 1B and C: Including orthogonal views would be a nice add-on to appreciate the findings.

      In the revised version, we have added the corresponding orthogonal views to Figure 1B and Figure 1C.

      Comment 1-5 - Figure 2D: last row: indication of orthogonal view.

      We stated that the bottom panels are orthogonal views in the figure legend of Figure 2D.

      Comment 1-6 - Figure 3A: quantification is missing. GST-Rhotekin assay is missing in methods.

      In the revised manuscript, we have added quantitative analysis for Figure 3A. We have also supplemented the Materials and Methods section with detailed information on the GST–Rhotekin assay used to quantify levels of active RhoA.

      Comment 1-7 - Figure 4H: quantification of the Western blot is missing.

      In the revised manuscript, we have added quantitative analysis for Figure 4H as Figure 4I.

      Comment 1-8 - Figure 5 and 6: Quantifications of Western blots are missing.

      In the revised manuscript, we have added quantitative analyses for Figure 5D as Figure 5F and for Figure 6A as Figure 6B.

      Comment 1-9 - Figure 7C: quantification of the Western blot is missing.

      Figure 7C does not present western blotting data. For the other western blotting results, we have added quantitative analyses as suggested by Reviewer 1.

      Comment 1-10 - Figure 8I: Including Hai1 overexpression would be good for a complete picture.

      Following Reviewer 1’s suggestion, we have added staining data for Hai1-overexpressing cells to Figure 8J.

      Comment 1-11 - Line 377: The authors say they found Matriptase always present in lateral membranes. I did not find evidence for this in the manuscript.

      Previous studies have demonstrated that in polarized epithelial cells, matriptase is localized to the basolateral membrane below TJs (Buzza et al., 2010; Wang et al., 2009). We also found that matriptase consistently localizes to the basolateral membrane but more crucially that it becomes activated there during differentiation into granular layer cells. We added these new data as Figures 7C-7E in the revised manuscript. These findings suggest that matriptase activation occurs without a change in its subcellular localization.

      Comment 1-12 - Line 381: should most likely say: and ADAM17 but it is not known whether...

      We corrected the sentence in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      The authors have added a significant number of quantifications verifying their observations, which was a major comment in a previous version of the manuscript and thus I have only a few minor comments which should be addressed.

      Comment 2-1 - It is not required to have scale bars in every image of a panel if the same scale is used.

      Unnecessary scale bars were removed. Specifically, scale bars were removed from Figure 1B, 1C, 1F, 8F, 8G, and 8H.

      Comment 2-2 - Throughout all figures: Please state for non-quantified images whether this is a representative example and for how many technical or biological repeats this is representative. Also for "N" number, state what the N stands for and if this is what the dots in the graph represent. Are these the number of junctions or technical, experimental or biological repeats?

      In the revised manuscript, we have added the number of independent experiments and corresponding “N” values to the Quantification and Statistical Analysis subsection of the Materials and Methods.

      Comment 2-3 - Some Zooms have a scale bar (6d), and some do not (e.g. 5b).

      The scale bar was removed from the magnified image in Figure 6D.

    1. eLife Assessment

      This valuable study by Wu et al presents data on bacterial cell organization, demonstrating that the two structures that account for bacterial motility - the chemotaxis complex and the flagella - colocalize to the same pole in Pseudomonas aeruginosa cells. The work provides convincing results for the regulation underlying this spatial organization and its functioning.

    2. Reviewer #1 (Public review):

      Summary:

      The study by Wu et al presents interesting data on bacterial cell organization, a field that is progressing now, mainly due to the advances in microscopy. Based mainly on fluorescence microscopy images, the authors aim to demonstrate that the two structures that account for bacterial motility, the chemotaxis complex and the flagella, colocalize to the same pole in Pseudomonas aeruginosa cells and to expose the regulation underlying their spatial organization and functioning.

      Comments on revisions:

      The authors have addressed all major and minor points that I raised in a satisfying way during the revision process. The work can now be regarded as complete, the assumptions were clarified, the results are convincing, the conclusions are justified, and the novelty has been made clear.

      This manuscript will be of interest to cell biologists, mainly those studying bacteria, but not only

    3. Reviewer #2 (Public review):

      Summary:

      Here, the authors studied the molecular mechanisms by which the chemoreceptor cluster and flagella motor of Pseudomonas aeruginosa (PA) are spatially organized in the cell. They argue that FlhF is involved in localizing the receptors-motor to the cell pole, and even without FlhF, the two are colocalized. Finally, the authors argue that the functional reason for this colocalization is to insulate chemotactic signaling from other signaling pathways, such as cyclic-di-GMP signaling.

      Strength:

      The experiments and data are high quality. It is clear that the motor and receptors co-localize, and that elevated CheY levels lead to elevated c-di-GMP.

      Weakness:

      The explanation for the functional importance of receptor-motor colocalization is plausible but is still not conclusively demonstrated. Colocalization might reduce CheY levels throughout the cell in order to reduce cross-talk with c-di-GMP. This would mean that if physiologically-relevant levels of CheYp near the pole were present throughout the cell, c-di-GMP levels would be elevated to a point that is problematic for the cell. Clearly demonstrating this seems challenging.

    4. Reviewer #3 (Public review):

      Summary:

      The authors investigated the assembly and polar localization of the chemosensory cluster in P. aeruginosa. They discovered that a certain protein (FlhF) is required for the polar localization of the chemosensory cluster while a fully-assembled motor is necessary for the assembly of the cluster. They found that flagella and chemosensory clusters always co-localize in the cell; either at the cell pole in wild type cells or randomly-located in the cell in FlhF mutant cells. They hypothesize that this co-localization is required to keep the level of another protein (CheY-P), which controls motor switching, at low levels as the presence of high-levels of this protein (if the flagella and chemosensory clusters were not co-localized) is associated with high-levels of c-di-GMP and cell aggregations.

      Strengths:

      The manuscript is clearly written and straightforward. The authors applied multiple techniques to study the bacterial motility system including fluorescence light microscopy and gene editing. In general, the work enhances our understanding of the subtlety of interaction between the chemosensory cluster and the flagellar motor to regulate cell motility.

      Weaknesses:

      The major weakness for me in this paper is that the authors never discussed how the flagellar genes expression is controlled in P. aeruginosa. For example, in E. coli there is a transcriptional hierarchy for the flagellar genes (early, middle, and late genes, see Chilcott and Hughes, 2000). Similarly, Campylobacter and Helicobacter have a different regulatory cascade for their flagellar genes (See Lertsethtakarn, Ottemann, and Hendrixson, 2011). How does the expression of flagellar genes in P. aeruginosa compare to other species? how many classes are there for these genes? is there a hierarchy in their expression and how does this affect the results of the FliF and FliG mutants? In other words, if FliF and FliG are in class I (as in E. coli) then their absence might affect the expression of other later flagellar genes in subsequent classes (i.e., chemosensory genes). Also, in both FliF and FliG mutants no assembly intermediates of the flagellar motor are present in the cell as FliG is required for the assembly of FliF (see Hiroyuki Terashima et al. 2020, Kaplan et al. 2019, Kaplan et al. 2022). It could be argued that when the motor is not assembled then this will affect the expression of the other genes (e.g., those of the chemosensory cluster) which might play a role in the decreased level of chemosensory clusters the authors find in these mutants.

      Comments on revisions:

      I believe the authors have performed additional experiments that improved their manuscript and they have answered many of my comments and those of the other reviewers. I am supportive of publishing this manuscript, but I still find the following points that are not clear to me (probably I am misunderstanding some points; the authors can clarify).

      (1) In response to reviewer 1, the authors say that they "analyzed and categorized the distribution of the chemotaxis complex in both wild-type and flhF mutant strains into three patterns: precise-polar, near-polar, and mid-cell localization." I can see what they mean by polar and mid-cell, but near-polar sounds a bit elusive? Can they provide examples of this stage and mention how accurately they can identify it? Also, do the pie charts they show in Figure S4 really show "significant alterations"? There is a difference between 98% and 85% as they mention in their response to reviewer 1, but I am not sure that this is significant? Probably they can explain/change the language in the text? Also, the number of cells they counted for FlhF mutant is more than the double of other strains (WT and FlhF FliF mutant)?

      (2) One thing that also confused me is the following: One point that the authors stress is that FlhF localizes both the flagellum and the chemoreceptors to the pole. However, if I look at Figure 2B, the flagellum and the chemoreceptors still co-localize together (although not at the pole). If FlhF was responsible for co-localizing both of them to the pole, then wouldn't one expect them to be randomly localized in this mutant and by that I mean that they do not co-localize but that each of them (the flagellum and the chemoreceptors) are located in a different random location of the cell (not co-localized). The fact that they are still co-localized together in this mutant could also be interpreted by, for example, that FlhF localizes the flagellum to the pole and another mechanism localizes the chemoreceptors to the flagellum, hence, they still co-localize in this mutant because the chemoreceptors follow the flagellum by another mechanism to wherever it goes?

      (3) In the response to reviewers, the authors mention "suggesting that the assembly of the receptor complex is likely influenced mainly by the C-ring and MS-ring structures rather than by the P ring" . However, in the article, they still write "The complete assembly of the motor serves as a partial prerequisite for the assembly of the chemotaxis complex, and its assembly site is also regulated by the polar anchor protein FlhF" despite their FlgI results which is not in accordance with this statement? Also, As I mentioned in my previous report, in FliG and FliF mutant the motor does not assemble (see Hiroyuki Terashima et al. 2020., and Kaplan et al., 2022).

      (4) The authors have said in their response to my point "and currently, there is no evidence that FliA activity is influenced by proteins like FliG". I just want to clarify what I meant in my previous report: In E. coli, FliA binds to FlgM, and when the hook is assembled FlgM is secreted outside the cell allowing FliA to trigger the transcription of class III genes, which include the chemosensory genes (see Figure 5 in Beeby et al, 2020 in FEMS Microbiology, and Chilcott and Hughes, 2000). This implies that if the hook is not built, then late genes (including the chemoreceptors) should not be present. However, in Kaplan et al., 2019, the authors imaged a FliF mutant in Shewanella oneidensis (Figure S3) and still saw that chemoreceptors are present (I believe the authors must highlight this). This suggests that species such as Shewanella and Pseudomonas have a different assembly process than that E. coli, and although the authors say that in the text, I believe they still can refine this part more in the spirit of what I wrote here.

      I do not like to ask for additional experiments in the second round of review, so for me if the authors modify the text to tackle these points and allow for probable alternative explanations/ highlight gaps/ modify language used for some claims, then that is fine with me.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study by Wu et al presents interesting data on bacterial cell organization, a field that is progressing now, mainly due to the advances in microscopy. Based mainly on fluorescence microscopy images, the authors aim to demonstrate that the two structures that account for bacterial motility, the chemotaxis complex and the flagella, colocalize to the same pole in Pseudomonas aeruginosa cells and to expose the regulation underlying their spatial organization and functioning.

      Strengths:

      The subject is of importance.

      Weaknesses:

      The conclusions are too strong for the presented data. The lack of statistical analysis makes this paper incomplete. The novelty of the findings is not clear.

      We have strengthened the data analysis by including appropriate statistical tests to support our conclusions more convincingly. Additionally, we have refined the description of the research background to better emphasize the novelty and significance of our findings. Please see the detailed responses below for further information.

      Major issues:

      (1) The novelty is in question since in the Abstract the authors highlight their main finding, which is that both the chemotaxis complex and the flagella localize to the same pole, as surprising. However, in the Introduction they state that "pathway-related receptors that mediate chemotaxis, as well as the flagellum are localized at the same cell pole17,18". I am not a pseudomonas researcher and from my short glance at these references, I could not tell whether they report colocalization of the two structures to the same pole. However, I trust the authors that they know the literature on the localization of the chemotaxis complex and flagella in their organism. See also major issue number 5 on the novelty regarding the involvement of c-di-GMP.

      We thank the reviewer for this valuable comment and appreciate the opportunity to clarify our statements.

      Kazunobu et al. (ref. 18) used scanning electron microscopy to preliminarily characterize the flagellation pattern of Pseudomonas aeruginosa during cell division, showing that existing flagella are located at the old pole. Zehra et al. (ref. 17), through fluorescence microscopy, observed that CheA and CheY proteins in dividing cells are typically also present at the old pole. Based on these observations, we inferred in the Introduction that the chemotaxis complex and flagellum may localize to the same cell pole.

      However, this inference is indirect and lacks direct live-cell evidence of colocalization, leaving its validity to be confirmed. This uncertainty was indeed the starting point and motivation for our study.

      In our work, we simultaneously visualized flagellar filaments and core chemoreceptor proteins at the single-cell level in P. aeruginosa. We characterized the assembly and spatial coordination of the chemotaxis network and flagellar motor throughout the cell cycle, providing direct evidence of their colocalization and coordinated assembly. This represents a significant advance beyond prior indirect observations and supports the novelty of our study.

      Accordingly, we have revised the relevant statements in lines 71-75 of the manuscript to better reflect the current state of the literature and emphasize the novelty of our direct observations.

      (2) Statistics for the microscopy images, on which most conclusions in this manuscript are based, are completely missing. Given that most micrographs present one or very few cells, together with the fact that almost all conclusions depend on whether certain macromolecules are at one or two poles and whether different complexes are in the same pole, proper statistics, based on hundreds of cells in several fields, are absolutely required. Without this information, the results are anecdotal and do not support the conclusions. Due to the importance of statistics for this manuscript, strict statistical tests should be used and reported. Moreover, representative large fields with many cells should be added as supportive information.

      We thank the reviewer for this important comment, which significantly improves the rigor and persuasiveness of our manuscript.

      For the colocalization analyses presented in Fig. 1D and Fig. 2B, we quantified 145 and 101 cells with fluorescently labeled flagella, respectively, and observed consistent colocalization of the chemoreceptor complexes and flagella in all examined cells (now added in the figure legends). Regarding the distribution patterns of chemoreceptors shown in Fig. 3A, we have now included comprehensive statistical analyses for both wild-type and mutant strains. For each strain, more than 300 cells were analyzed across at least three independent microscopic fields, providing robust statistical power (detailed data are presented in Fig. 3C).

      To further strengthen the evidence, statistical tests were applied to confirm the significance and reproducibility of our findings (Fig. 3C). In addition, representative large-field fluorescence images containing numerous cells have been added to the supplementary materials (Fig. S1 and Fig. S3).

      The problem is more pronounced when the authors make strong statements, as in lines 157-158: "The results revealed that the chemoreceptor arrays no longer grow robustly at the cell pole (Figure 2A)". Looking at the seven cells shown in Figure 2A, five of them show polar localization of the chemoreceptors. The question is then: what is the percentage of cells that show precise polar, near-polar, or mid cell localization (the three patterns shown here) in the mutant and in the wild type? Since I know that these three patterns can also be observed in WT cells, what counts is the difference, and whether it is statistically significant.

      We thank the reviewer for raising this important point. Following the reviewer's suggestion, we have now analyzed and categorized the distribution of the chemotaxis complex in both wild-type and flhF mutant strains into three patterns: precise-polar, near-polar, and mid-cell localization. For each strain, more than 200 cells across three independent fields of view were quantified.

      Our statistical analysis shows that in the wild-type strain, approximately 98% of cells exhibit precise polar localization of the chemotaxis complex. In contrast, the ΔflhF mutant displays a clear shift in distribution, with about 5% of cells showing mid-cell localization and 9.5% showing near-polar localization. These differences demonstrate a significant alteration in the spatial pattern upon flhF deletion.

      We have revised the relevant text in lines 166-170 accordingly and included the detailed statistical data in the newly added Fig. S4.

      Even for the graphs shown in Figures 3C and 3D, where the proportion of cells with obvious chemoreceptor arrays and absolute fluorescence brightness of the chemosensory array are shown, respectively, the questions that arise are: for how many individual cells these values hold and what is the significance of the difference between each two strains?

      The number of cells analyzed for each strain is indicated in the original manuscript: 372 wild-type cells (line 123), 221 ΔflhF cells (line 172), 234 ΔfliG cells (line 197), 323 ΔfliF cells (line 200), 672 ΔflhFΔfliF cells (line 202), and 242 ΔmotAΔmotCD cells (line 207). For each strain, data were collected from three independent fields of view. We have now also provided the number of cells in Fig. 3 legend.

      We have now performed statistical comparisons using t-tests between strains. Notably, the measured values in Fig. 3C exhibit a clear, monotonic decrease with successive gene knockouts, supporting the robustness of the observed trend.

      Regarding the absolute fluorescence intensity shown in the original Fig. 3D, the mutants did not display consistent directional changes compared to the wild type. Reliable comparison of absolute fluorescence intensity requires consistent fluorescent protein maturation levels across strains. Given the likely variability in maturation levels between strains, we concluded that this data may not accurately reflect true differences in protein concentrations. Therefore, we have removed the fluorescence intensity graph from the revised manuscript to avoid potential misinterpretation.

      (3) The authors conclude that "Motor structural integrity is a prerequisite for chemoreceptor self-assembly" based on the reduction in cells with chemoreceptor clusters in mutants deleted for flagellar genes, despite the proper polar localization of the chemotaxis protein CheY. They show that the level of CheY in the WT and the mutant strains is similar, based on Western blot, which in my opinion is over-exposed. "To ascertain whether it is motor integrity rather than functionality that influences the efficiency of chemosensory array assembly", they constructed a mutant deleted for the flagella stator and found that the motor is stalled while CheY behaves like in WT cells. The authors further "quantified the proportion of cells with receptor clusters and the absolute fluorescence intensity of individual clusters (Figures 3C-D)". While Figure 3DC suggests that, indeed, the flagella mutants show fewer cells with a chemotaxis complex, Figure 3D suggests that the differences in fluorescence intensity are not statistically significant. Since it is obvious that the regulation of both structures' production and localization is codependent, I think that it takes more than a Western blot to make such a decision.

      We thank the reviewer for the suggestions. To further clarify that the assembly of flagellar motors and chemoreceptor clusters occurs in an orderly manner rather than being merely codependent, we performed additional experiments. Specifically, we constructed a ΔcheA mutant strain, in which chemoreceptor clusters fail to assemble. Using in vivo fluorescent labeling of flagellar filaments, we observed that the proportion of cells with flagellar filaments in the ΔcheA strain was comparable to that of the wild type (Fig. S5).

      In contrast, mutants lacking complete motor structures, such as ΔfliF and ΔfliG, showed a significant reduction in the proportion of cells with obvious receptor clusters (Fig. 3C). Based on these results, we conclude that the structural integrity of the flagellar motor is, to a certain extent, a prerequisite for the self-assembly of chemoreceptor clusters.

      Accordingly, we have revised the relevant statement in lines 213-217 of the manuscript to reflect this clarification.

      (4) I wonder why the authors chose to label CheY, which is the only component of the chemotaxis complex that shuttles back and forth to the base of the flagella. In any case, I think that they should strengthen their results by repeating some key experiments with labeled CheW or CheA.

      We thank the reviewer for this valuable suggestion. In our study, we initially focused on the positional relationship between chemoreceptor clusters and flagella, then investigated factors influencing cluster distribution and assembly efficiency. The physiological significance of motor and cluster co-localization was ultimately proposed with CheY as the starting point.

      Previous work by Harwood's group demonstrated that both CheY-YFP and CheA-GFP localize to the old poles of dividing Pseudomonas aeruginosa cells. Since our physiological hypothesis centers on CheY, we chose to label CheY-EYFP in our experiments.

      To further strengthen our conclusions, we constructed a plasmid expressing CheA-CFP and introduced it into the cheY-eyfp strain via electroporation. Fluorescence imaging revealed a high degree of spatial overlap between CheA-CFP and CheY-EYFP (Fig. S2), confirming that CheY-EYFP accurately marks the location of the chemoreceptor complex.

      We have revised the manuscript accordingly (lines 119-123) and added these data as Fig. S2.

      (5) The last section of the results is very problematic, regarding the rationale, the conclusions, and the novelty. As far as the rationale is concerned, I do not understand why the authors assume that "a spatial separation between the chemoreceptors and flagellar motors should not significantly impact the temporal comparison in bacterial chemotaxis". Is there any proof for that?

      We apologize for the lack of clarity in our original explanation. The rationale behind the statement was initially supported by comparing the timescales of CheY-P diffusion and temporal comparison in chemotaxis. Specifically, the diffusion time for CheY-P to traverse the entire length of a bacterial cell is approximately 100 ms (refs 39&40), whereas the timescale for bacterial chemotaxis temporal comparison is on the order of seconds (ref 41).

      To clarify and strengthen this argument, we have expanded the discussion as follows:

      The diffusion coefficient of CheY in bacterial cells is about 10 µm2/s, which corresponds to an estimated end-to-end diffusion time on the order of 100 ms (refs 40&41). If the chemotaxis complexes were randomly distributed rather than localized, diffusion times would be even shorter. In contrast, the timescale for the chemotaxis temporal comparison is on the order of seconds (ref. 42). Additionally, a study by Fukuoka and colleagues reported that intracellular chemotaxis signal transduction requires approximately 240 ms beyond CheY or CheY-P diffusion time (ref. 41). Moreover, the intervals of counterclockwise (CCW) and clockwise (CW) rotation of the P. aeruginosa flagellar motor under normal conditions are 1-2 seconds, as determined by tethered cell or bead assays (refs. 30&43).

      Taken together, these indicate that for P. aeruginosa, which moves via a run-reverse mode, the potential 100 ms reduction in response time due to co-localization of the chemotaxis complex and motor has a limited effect on overall chemotaxis timing.

      We have revised the corresponding text accordingly (lines 238-245) to better explain this rationale.

      More surprising for me was to read that "The signal transduction pathways in E. coli are relatively simple, and the chemotaxis response regulator CheY-P affects only the regulation of motor switching". There are degrees of complexity among signal transduction pathways in E. coli, but the chemotaxis seems to be ranked at the top. CheY is part of the adaptation. Perfect adaptation, as many other issues related to the chemotaxis pathway, which include the wide dynamic range, the robustness, the sensitivity, and the signal amplification (gain), are still largely unexplained. Hence, such assumptions are not justified.

      We apologize for the confusion and imprecision in our original statements. Our intention was to convey that the chemotaxis pathway in E. coli is relatively simple compared to the more complex chemosensory systems in P. aeruginosa. We did not mean to generalize this simplicity to all signal transduction pathways in E. coli.

      We acknowledge that E. coli chemotaxis is a highly sophisticated system, involving processes such as perfect adaptation, wide dynamic range, robustness, sensitivity, and signal amplification, many aspects of which remain incompletely understood. CheY indeed plays a crucial role in adaptation and motor switching regulation.

      Accordingly, we have revised the original text (lines 249-255) to avoid any misunderstanding.

      More perplexing is the novelty of the authors' documentation of the effect of the chemotaxis proteins on the c-di-GMP level. In 2013, Kulasekara et al. published a paper in eLife entitled "c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility". In the same year, Kulasekara published a paper entitled "Insight into a Mechanism Generating Cyclic di-GMP Heterogeneity in Pseudomonas aeruginosa". The authors did not cite these works and I wonder why.

      We apologize for having been unaware of these important references and thank the reviewer for bringing them to our attention. We have now cited the eLife paper and the PhD thesis titled "Insight into a Mechanism Generating Cyclic di-GMP Heterogeneity in Pseudomonas aeruginosa" by Kulasekara et al.

      Regarding novelty, there are key differences between our findings and those reported by Kulasekara et al. While they proposed that CheA influences c-di-GMP heterogeneity through interaction with a specific phosphodiesterase (PDE), our results demonstrate that overexpression of CheY leads to an increase in intracellular c-di-GMP levels.

      We have revised the original text accordingly (lines 358-362) to clarify these distinctions.

      (6) Throughout the manuscript, the authors refer to foci of fluorescent CheY as "chemoreceptor arrays". If anything, these foci signify the chemotaxis complex, not the membrane-traversing chemoreceptors.

      We thank the reviewer for this clarification. We have revised the manuscript accordingly to refer to the fluorescent CheY foci as representing the chemotaxis complex rather than the chemoreceptor arrays.

      Conclusions:

      The manuscript addresses an interesting subject and contains interesting, but incomplete, data.

      Reviewer #2 (Public Review):

      Summary:

      Here, the authors studied the molecular mechanisms by which the chemoreceptor cluster and flagella motor of Pseudomonas aeruginosa (PA) are spatially organized in the cell. They argue that FlhF is involved in localizing the receptors-motor to the cell pole, and even without FlhF, the two are colocalized. FlhF is known to cause the motor to localize to the pole in a different bacterial species, Vibrio cholera, but it is not involved in receptor localization in that bacterium. Finally, the authors argue that the functional reason for this colocalization is to insulate chemotactic signaling from other signaling pathways, such as cyclic-di-GMP signaling.

      Strengths:

      The experiments and data look to be high-quality.

      Weaknesses:

      However, the interpretations and conclusions drawn from the experimental observations are not fully justified in my opinion.

      I see two main issues with the evidence provided for the authors' claims.

      (1) Assumptions about receptor localization:

      The authors rely on YFP-tagged CheY to identify the location of the receptor cluster, but CheY is a diffusible cytoplasmic protein. In E. coli, CheY has been shown to localize at the receptor cluster, but the evidence for this in PA is less strong. The authors refer to a paper by Guvener et al 2006, which showed that CheY localizes to a cell pole, and CheA (a receptor cluster protein) also localizes to a pole, but my understanding is that colocalization of CheY and CheA was not shown. My concern is that CheY could instead localize to the motor in PA, say by binding FliM. This "null model" would explain the authors' observations, without colocalization of the receptors and motor. Verifying that CheY and CheA are colocalized in PA would be a very helpful experiment to address this weakness.

      We thank the reviewer for this valuable suggestion. We agree that verifying the colocalization of CheY and CheA would strengthen our conclusions. To address this, we constructed a plasmid expressing CheA-CFP and introduced it into the CheY-EYFP strain by electroporation. Fluorescence imaging revealed a high degree of spatial overlap between CheA-CFP and CheY-EYFP signals, indicating that CheY-EYFP indeed marks the location of the chemoreceptor complex rather than the flagellar motor.

      We have revised the manuscript accordingly (lines 118-123) and included these results in the new Fig. S2.

      (2) Argument for the functional importance of receptor-motor colocalization at the pole:

      The authors argue that colocalization of the receptors and motors at the pole is important because it could keep phosphorylated CheY, CheY-p, restricted to a small region of the cell, preventing crosstalk with other signaling pathways. Their evidence for this is that overexpressing CheY leads to higher intracellular cdG levels and cell aggregation. Say that the receptors and motors are colocalized at the pole. In E. coli, CheY-p rapidly diffuses through the cell. What would prevent this from occurring in PA, even with colocalization?

      We appreciate the reviewer's insightful question. The colocalization of both the signaling source (the kinase) and sink (the phosphatase) at the chemoreceptor complex at the cell pole results in a rapid decay of CheY-P concentration within approximately 0.2 µm from the cell pole, leading to a nearly uniform distribution elsewhere in the cell, as demonstrated by Vaknin and Berg (ref. 46). This spatial arrangement effectively confines high CheY-P levels to the pole region. When the motor is also localized at the cell pole, this reduces the need for elevated CheY-P concentrations throughout the cytoplasm, thereby minimizing potential crosstalk with other signaling pathways.

      We have revised the manuscript accordingly (lines 280-286) to clarify this point.

      Elevating CheY concentration may increase the concentration of CheY-p in the cell, but might also stress the cells in other unexpected ways. It is not so clear from this experiment that elevated CheY-p throughout the cell is the reason that they aggregate, or that this outcome is avoided by colocalizing the receptors and motor at the same pole. If localization of the receptor array and motor at one pole were important for keeping CheY-p levels low at the opposite pole, then we should expect cells in which the receptors and motor are not at the pole to have higher CheY-p at the opposite pole. According to the authors' argument, it seems like this should cause elevated cdG levels and aggregation in the delta flhF mutants with wild-type levels of CheY. But it does not look like this happened. Instead of varying CheY expression, the authors could test their hypothesis that receptor-motor colocalization at the pole is important for preventing crosstalk by measuring cdG levels in the flhF mutant, in which the motor (and maybe the receptor cluster) are no longer localized in the cell pole.

      We thank the reviewer for raising the important point regarding potential cellular stress caused by elevated CheY concentrations, as well as for the suggestion to test the hypothesis using ΔflhF mutants.

      First, as noted above, CheY-P concentration rapidly decreases away from the receptor complex. While deletion of flhF alters the position of the receptor complex, thereby shifting the region of high CheY-P concentration, it does not increase CheY-P levels elsewhere in the cell. Importantly, in the ΔflhF strain, the receptor complex and the motor still colocalize, so this mutant may not effectively test the role of receptor-motor colocalization in preventing crosstalk as suggested.

      Regarding the possibility that elevated CheY levels stress the cells independently of CheY-P signaling, prior work in <i.E. coli by Cluzel et al. (ref. 11) showed that overexpressing CheY several-fold did not cause phenotypic changes, indicating that simple CheY overexpression alone may not be generally stressful. Furthermore, our data indicate that the increase in c-di-GMP levels and subsequent cell aggregation upon CheY overexpression is not an all-or-none switch but occurs progressively as CheY concentration rises.

      To further confirm that CheY overexpression promotes aggregation through increased c-di-GMP levels, we performed additional experiments co-overexpressing CheY and a phosphodiesterase (PDE) from E. coli to reduce intracellular c-di-GMP. These experiments showed that PDE expression mitigates cell aggregation caused by CheY overexpression (Fig. S8).

      We have revised the manuscript accordingly (lines 290-294) and added these new results in Fig. S8.

      Reviewer #3 (Public Review):

      Summary:

      The authors investigated the assembly and polar localization of the chemosensory cluster in P. aeruginosa. They discovered that a certain protein (FlhF) is required for the polar localization of the chemosensory cluster while a fully-assembled motor is necessary for the assembly of the cluster. They found that flagella and chemosensory clusters always co-localize in the cell; either at the cell pole in wild-type cells or randomly-located in the cell in FlhF mutant cells. They hypothesize that this co-localization is required to keep the level of another protein (CheY-P), which controls motor switching, at low levels as the presence of high levels of this protein (if the flagella and chemosensory clusters were not co-localized) is associated with high-levels of c-di-GMP and cell aggregations.

      Strengths:

      The manuscript is clearly written and straightforward. The authors applied multiple techniques to study the bacterial motility system including fluorescence light microscopy and gene editing. In general, the work enhances our understanding of the subtlety of interaction between the chemosensory cluster and the flagellar motor to regulate cell motility.

      Weaknesses:

      The major weakness in this paper is that the authors never discussed how the flagellar gene expression is controlled in P. aeruginosa. For example, in E. coli there is a transcriptional hierarchy for the flagellar genes (early, middle, and late genes, see Chilcott and Hughes, 2000). Similarly, Campylobacter and Helicobacter have a different regulatory cascade for their flagellar genes (See Lertsethtakarn, Ottemann, and Hendrixson, 2011). How does the expression of flagellar genes in P. aeruginosa compare to other species? How many classes are there for these genes? Is there a hierarchy in their expression and how does this affect the results of the FliF and FliG mutants? In other words, if FliF and FliG are in class I (as in E. coli) then their absence might affect the expression of other later flagellar genes in subsequent classes (i.e., chemosensory genes). Also, in both FliF and FliG mutants no assembly intermediates of the flagellar motor are present in the cell as FliG is required for the assembly of FliF (see Hiroyuki Terashima et al. 2020, Kaplan et al. 2019, Kaplan et al. 2022). It could be argued that when the motor is not assembled then this will affect the expression of the other genes (e.g., those of the chemosensory cluster) which might play a role in the decreased level of chemosensory clusters the authors find in these mutants.

      We thank the reviewer for the insightful comments. P. aeruginosa possesses a four-tiered transcriptional regulatory hierarchy controlling flagellar biogenesis. Within this system, fliF and fliG belong to class II genes and are regulated by the master regulator FleQ. In contrast, chemotaxis-related genes such as cheA and cheW are regulated by intracellular free FliA, and currently, there is no evidence that FliA activity is influenced by proteins like FliG.

      To verify that the expression of core chemotaxis proteins was not affected by deletion of fliG, we performed Western blot analyses to compare CheY levels in wild-type, ΔfliF, and ΔfliG strains. We observed no significant differences, indicating that the reduced presence of receptor clusters in these mutants is not due to altered expression of chemotaxis proteins.

      Accordingly, we have revised the manuscript (lines 341-348) and updated Fig. 3B to reflect these findings.

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):

      The reviewers comment on several important aspects that should be addressed, namely: the lack of statistical analysis; the need for clarifications regarding assumptions made regarding receptor localization; the functional importance of receptor-motor colocalization; and the need for an elaborate discussion of flagellar gene expression. Also, two reviewers pointed out the need to prove the co-localization of CheY and CheA; This is important since CheY is dynamic, shuttling back and forth from the chemotaxis complex to the base of the flagella, whereas CheA (or cheW or, even better, the receptors) is considered less dynamic and an integral part of the chemotaxis complex.

      Reviewer #1 (Recommendations For The Authors):

      Minor points:

      Line 43: "ubiquitous" - I would choose another word.

      We changed "ubiquitous" to "widespread".

      Line 49: "order" - change to organize.

      We changed "order" to "organize".

      Line 52: "To grow and colonize within the host, bacteria have evolved a mechanism for migrating...". Motility "towards more favorable environments" is an important survival strategy of bacteria in various ecological niches, not only within the host.

      We revised it to "grow and colonize in various ecological niches".

      Line 72: Define F6 in "F6 pathway-related receptors".

      The proteins encoded by chemotaxis-related genes collectively constitute the F6 pathway, which we have now explained in the manuscript text.

      Line 72-73: Do references 17 &18 really report colocalization of the chemotaxis receptor and flagella to the same pole? If these or other reports document such colocalization, then the sentence in the Abstract "Surprisingly, we found that both are located at the same cell pole..." is not correct.

      Kazunobu et al. (ref. 18) used scanning electron microscopy to preliminarily characterize the flagellation pattern of Pseudomonas aeruginosa during cell division, showing that existing flagella are located at the old pole. Zehra et al. (ref. 17), through fluorescence microscopy, observed that CheA and CheY proteins in dividing cells are typically also present at the old pole. Based on these observations, we inferred in the Introduction that the chemotaxis complex and flagellum may localize to the same cell pole.

      However, this inference is indirect and lacks direct live-cell evidence of colocalization, leaving its validity to be confirmed. This uncertainty was indeed the starting point and motivation for our study.

      In our work, we simultaneously visualized flagellar filaments and core chemoreceptor proteins at the single-cell level in P. aeruginosa. We characterized the assembly and spatial coordination of the chemotaxis network and flagellar motor throughout the cell cycle, providing direct evidence of their colocalization and coordinated assembly. This represents a significant advance beyond prior indirect observations and supports the novelty of our study.

      Accordingly, we have revised the relevant statements in lines 71-75 of the manuscript to better reflect the current state of the literature and emphasize the novelty of our direct observations.

      Line 108: "CheY has been shown to colocalize with chemoreceptors". The authors rely here (reference 29) and in other places on findings in E. coli. However, in the Introduction, they describe the many differences between the motility systems of P. aeruginosa and E. coli, e.g., the number of chemosensory systems and their spatial distribution (E. coli is a peritrichous bacterium, as opposed to the monotrichous bacterium P. aeruginosa). There seem to be proofs for colocalization of the Che and MCP proteins in P. aeruginosa, which should be cited here.

      Thank you for pointing this out. Harwood's group reported that a cheY-YFP fusion strain exhibited bright fluorescent spots at the cell pole, which disappeared upon knockout of cheA or cheW-genes encoding structural proteins of the chemotaxis complex. This strongly suggests colocalization of CheY with MCP proteins in P. aeruginosa. We have now cited this study as reference 17 in the manuscript.

      Figure 1B: Please replace the order of the schematic presentations, so that the cheY-egfp fusion, which is described first in the text, is at the top.

      We have modified the order of related images in Fig. 1B.

      Line 127: "by introducing cysteine mutations". Replace either by "by introducing cysteines" or by "by substituting several residues with cysteines".

      We changed the relevant statement to "by introducing cysteines".

      Line 144-145: "Given that the physiological and physical environments of both cell poles are nearly identical.". I think that also the physical, but certainly the physiological environment of the two poles is not identical. First, one is an old pole, and the other a new pole. Second, many proteins and RNAs were detected mainly or only in one of the poles of rod-shaped Gram-negative bacteria that are regarded as symmetrically dividing. Although my intuition is that the authors are correct in assuming that "it is unlikely that the unipolar distribution of the chemoreceptor array can be attributed to passive regulatory factors", relating it to the (false) identity between the poles is incorrect.

      We thank the reviewer for this important correction. We agree that the physiological environments of the two poles are not identical, given that one is the old pole and the other the new pole, and that many proteins and RNAs show polar localization in rod-shaped Gram-negative bacteria. Accordingly, we have revised the original text (lines 150-152) to read:

      “Despite potential differences in the physical and especially physiological environments at the two cell poles, it is unlikely that the unipolar distribution of the chemotaxis complex can be attributed to passive regulatory factors.”

      Lines 151-154: "Considering the consistent colocalization pattern between chemosensory arrays and flagellar motors in P. aeruginosa". Does the word consistent relate to different reports on such colocalization or to the results in Figure 1D? In case it is the latter, then what is the word consistent based on? All together only 7 cells are presented in the 5 micrographs that compose Figure 1D (back to statistics...).

      We thank the reviewer for raising this point. To clarify, the word "consistent" refers to the observation of colocalization shown in Figure 1D & Figure S3. As noted in the revised figure legend for Figure 1D, a total of 145 cells with labeled flagella were analyzed, all exhibiting consistent colocalization between flagella and chemosensory arrays. Additionally, we have included a new image showing a large field of co-localization in the wild-type strain as Figure S3 to better illustrate this consistency.

      Figure 2A: Omit "Subcellular localization of" from the beginning of the caption.

      We removed the relevant expression from the caption.

      Reviewer #2 (Recommendations For The Authors):

      I strongly recommend checking that CheY localizes to the receptor cluster in PA. This could be done by tagging cheA with a different fluorophore and demonstrating their colocalization. It would also be helpful to check that they are colocalized in the delta flhF mutant.

      We thank the reviewer for this valuable suggestion. We constructed a plasmid expressing CheA-CFP and introduced it into the CheY-EYFP strain by electroporation. Fluorescence imaging revealed a high degree of spatial overlap between CheA-CFP and CheY-EYFP signals, indicating that CheY-EYFP indeed marks the location of the chemoreceptor complex.

      We have revised the manuscript accordingly (lines 118-123) and included these results in the new Fig. S2.

      The experiments under- and over-expressing CheY part seemed too unrelated to receptor-motor colocalization. I think the authors should think about a more direct way of testing whether colocalization of the motor and receptors is important for preventing signaling crosstalk. One way would be to measure cdG levels in WT and in delta flhF mutants and see if there is a significant difference.

      We thank the reviewer for raising the important point regarding potential cellular stress caused by elevated CheY concentrations, as well as for the suggestion to test the hypothesis using flhF mutants.

      First, as noted in the response to your 2nd comment in Public Review, CheY-P concentration rapidly decreases away from the receptor complex. While deletion of flhF alters the position of the receptor complex, thereby shifting the region of high CheY-P concentration, it does not increase CheY-P levels elsewhere in the cell. Importantly, in the ΔflhF strain, the receptor complex and the motor still colocalize, so this mutant may not effectively test the role of receptor-motor colocalization in preventing crosstalk as suggested.

      Regarding the possibility that elevated CheY levels stress the cells independently of CheY-P signaling, prior work in E. coli by Cluzel et al. (ref. 11) showed that overexpressing CheY several-fold did not cause phenotypic changes, indicating that simple CheY overexpression alone may not be generally stressful. Furthermore, our data indicate that the increase in c-di-GMP levels and subsequent cell aggregation upon CheY overexpression is not an all-or-none switch but occurs progressively as CheY concentration rises.

      To further confirm that CheY overexpression promotes aggregation through increased c-di-GMP levels, we performed additional experiments co-overexpressing CheY and a phosphodiesterase (PDE) from E. coli to reduce intracellular c-di-GMP. These experiments showed that PDE expression mitigates cell aggregation caused by CheY overexpression (Fig. S8).

      We have revised the manuscript accordingly (lines 290-294) and added these new results in Fig. S8.

      Reviewer #3 (Recommendations For The Authors):

      (1) Can the authors elaborate more on the hierarchy of flagellar gene expression in P. aeruginosa and how this relates to their work?

      We thank the reviewer for the suggestion. We have now described the hierarchy of flagellar gene expression in P. aeruginosa in lines 341-348.

      (2) I would suggest that the authors check other flagellar mutants (than FliF and FliG) where the motor is partially assembled (e.g., any of the rod proteins or the P-ring protein), together with FlhF mutant, to see how a partially assembled motor affects the assembly of the chemosensory cluster.

      We thank the reviewer for this valuable suggestion. The P ring, primarily composed of FlgI, acts as a bushing for the peptidoglycan layer, and its absence leads to partial motor assembly. We constructed a ΔflgI mutant and observed that the proportion of cells exhibiting distinct chemotactic complexes was similar to that of the wild-type strain, suggesting that the assembly of the receptor complex is likely influenced mainly by the C-ring and MS-ring structures rather than by the P ring. We have revised the original text accordingly (lines 217-220) and added the corresponding data as Figure S6.

      (3) I would suggest that the authors check the levels of CheY in cells induced with different concentrations of arabinose (i.e., using western blotting just like they did in Figure 3B).

      We have assessed the levels of CheY in cells induced with different concentrations of arabinose using western blotting, as suggested. The results have been incorporated into the manuscript (lines 274-275) and are presented in Figure S7.

      (4) To my eyes, most of the foci in FliF-FlhF mutant in Figure 3A are located at the pole (which is unlike the FlhF mutant in Figure 2). Is this correct? I would suggest that the authors also investigate this to see where the chemosensory cluster is located.

      We thank the reviewer for pointing this out. The distribution of the chemotaxis complex in the ΔflhFΔfliF strain was investigated and showed in Fig. S4. Indeed, most of the chemoreceptor foci in this mutant are located at the pole. This probably suggests that, in the absence of both FlhF and an assembled motor, the position of the receptor complex may be largely influenced by passive factors such as membrane curvature. This interesting possibility warrants further investigation in future studies.

    1. eLife Assessment

      This important study demonstrates that slow fluctuations in serotonin release during wakefulness and non-REM sleep correspond to periods of heightened arousal or enhanced offline information processing. The evidence supporting this claim is convincing, and the methodology is robust and broadly applicable, likely to benefit many researchers in the field. This work will be of significant interest to neuroscientists studying sleep, memory, and neuromodulation.

    2. Reviewer #1 (Public review):

      Summary:

      In this work, authors recorded the dynamics of the 5-HT with fiber photometry from CA1 in one hemisphere and LFP from CA1 in the other hemisphere. They have observed an ultra-slow oscillation in the 5-HT signal both during wakefulness and NREM sleep. The authors have studied different phases of the ultra-slow oscillation to examine the potential difference in the occurrence of some behavioral state-related physiological phenomena (hippocampal ripples, EMG, and inter-area coherence).

      Strengths:

      The relation between the falling/rising phase of the ultra-slow oscillation and the ripples is sufficiently shown. There are some minor concerns about the observed relations that should be addressed with some further analysis.

      Systematic observations have started to establish a strong relation between the dynamics of neural activity across the brain and measures of behavioral arousal. Such relations span a wide range of temporal scales that are heavily inter-related. Ultra-slow time scales are specifically understudied due to technical limitations and neuromodulatory systems are the strongest mechanistic candidates for controlling/modulating the neural dynamics at these time scales. The hypothesis of the relation between a specific time scale and one certain neuromodulator (5-HT in this manuscript) could have a significant impact on the understanding of the hierarchy in the temporal scales of neural activity.

      Weaknesses:

      weaknesses appropriately addressed by reviewers in the current version

    3. Reviewer #2 (Public review):

      Summary:

      In their study, Cooper et al. investigated the spontaneous fluctuations in extracellular 5-HT release in the CA1 region of the hippocampus using GRAB5-HT3.0. Their findings revealed the presence of ultra-low frequency (less than 0.05 Hz) oscillations in 5-HT levels during both NREM sleep and wakefulness. The phase of these 5-HT oscillations was found to be related to the timing of hippocampal ripples, microarousals, electromyogram (EMG) activity, and hippocampal-cortical coherence. In particular, ripples were observed to occur with greater frequency during the descending phase of 5-HT oscillations, and stronger ripples were noted to occur in proximity to the 5-HT peak during NREM. Microarousal and EMG peaks occurred with greater frequency during the ascending phase of 5-HT oscillations. Additionally, the strongest coherence between the hippocampus and cortex was observed during the ascending phase of 5-HT oscillations. These patterns were observed in both NREM sleep and the awake state, with a greater prevalence in NREM. The authors posit that 5-HT oscillations may temporally segregate internal processing (e.g., memory consolidation) and responsiveness to external stimuli in the brain.

      Strengths:

      The findings of this research are novel and intriguing. Slow brain oscillations lasting tens of seconds have been suggested to exist, but to my knowledge they have never been analyzed in such a clear way. Furthermore, although it is likely that ultra-slow neuromodulator oscillations exist, this is the first report of such oscillations, and the greatest strength of this study is that it has clarified this phenomenon both statistically and phenomenologically.

      Weaknesses:

      As with any paper, this one has some limitations. While there is no particular need to pursue them, I will describe ten of them below, including future directions:

      Contralateral recordings: 5-HT levels and electrophysiological recordings were obtained from opposite hemispheres due to technical limitations. Ipsilateral simultaneous recordings may show more direct relationships.

      Sample size: The number of mice used in the experiments is relatively small (n=6). Validation with a larger sample size would be desirable.

      Lack of causality: The observed associations show correlations, not direct causal relationships, between 5-HT oscillations and neural activity patterns.

      Limited behavioral states: The study focuses primarily on sleep and quiet wakefulness. Investigation of 5-HT oscillations during a wider range of behavioral states (e.g., exploratory behavior, learning tasks) may provide a more complete understanding.

      Generalizability to other brain regions: The study focuses on the CA1 region of the hippocampus. It's unclear whether similar 5-HT oscillation patterns exist in other brain regions.

      Long-term effects not assessed: Long-term effects of ultra-low 5-HT oscillations (e.g., on memory consolidation or learning) were not assessed.

      Possible species differences: It's uncertain whether the findings in mice apply to other mammals, including humans.

      Technical limitations: The temporal resolution and sensitivity of the GRAB5-HT3.0 sensor may not capture faster 5-HT dynamics.

      Interactions with other neuromodulators: The study does not explore interactions with other neuromodulators (e.g., norepinephrine, acetylcholine) or their potential ultraslow oscillations.

      Limited exploration of functional significance: While the study suggests a potential role for 5-HT oscillations in memory consolidation and arousal, direct tests of these functional implications are not included.

    4. Reviewer #3 (Public review):

      Summary:

      Activity of serotonin (5-HT) releasing neurons as well as 5-HT levels in brain structures targeted by serotoninergic axons are known to fluctuate substantially across the animal's sleep/wake cycle, with high 5-HT during wakefulness (WAKE), intermediate 5-HT levels during non-REM sleep (NREM) and very low 5-HT levels during REM sleep. Recent studies have shown that during NREM, activity of 5-HT neurons in raphe nuclei oscillates at very low frequencies (0.01 - 0.05 Hz) and this ultraslow oscillation is negatively coupled to broadband EEG power. However, how exactly this 5-HT oscillation affects neural activity in downstream structures is unclear.

      The present study addresses this gap by replicating the observation of the ultraslow oscillation in the 5-HT system, and further observing that hippocampal sharp wave-ripples (SWRs), biomarkers of offline memory processing, occur preferentially in barrages on the falling phase of the 5-HT oscillation during both wakefulness and NREM sleep. In contrast, the study found that the raising phase of the 5-HT oscillation is associated with microarousals during NREM and increased muscular activity during WAKE. Finally, the raising 5-HT phase was also found to be associated with increased synchrony between the hippocampus and neocortex.

      In vivo findings are further supported by an ex vivo demonstration of dose-dependent serotonergic SWR modulation, lends support to the potential causal relationship between 5-HT slow oscillation and hippocampal dynamics.

      Overall, the study constitutes a valuable contribution to the field by reporting a close association between, on one hand, raising 5-HT and arousal and, on the other hand, falling 5-HT and offline memory processes.

      Strengths:

      The study makes a compelling use of the state-of-the art methodology to address its aims: the genetically encoded 5-HT sensor used in the study is ideal for capturing the ultraslow 5-HT dynamics and the novel detection method for SWRs outperforms current state-of-the-art algorithms and will be useful to many scientists in the field. Explicit validation of both of these methods is a particular strength of this study.

      The analytical methods used in the article are appropriate and are convincingly applied, the use of a general linear mixed model for statistical analysis is a particularly welcome choice as it guards against pseudoreplication while preserving statistical power.

      Pharmacological demonstration of serotonergic SWR modulation in brain slices adds further weight to the possible direct role of 5-HT in hippocampal dynamics in vivo.

      Overall, the manuscript makes a strong case for distinct sub-states across WAKE and NREM, associated with different phases of the 5-HT oscillation.

      Weaknesses:

      All in vivo evidence presented in the study is correlational, although the ex vivo results do suggest a possibility of a causal relationship between 5HT levels and hippocampal dynamics in the intact brain.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      In this work, the authors recorded the dynamics of the 5-HT with fiber photometry from CA1 in one hemisphere and LFP from CA1 in the other hemisphere. They observed an ultra-slow oscillation in the 5-HT signal during both wake fulness and NREM sleep. The authors have studied different phases of the ultra-slow oscillation to examine the potential difference in the occurrence of some behavioral state-related physiological phenomena hippocampal ripples, EMG, and inter-area coherence).

      Strengths

      The relation between the falling/rising phase of the ultra-slow oscillation and the ripples is sufficiently shown. There are some minor concerns about the observed relations that should be addressed with some further analysis.

      Systematic observations have started to establish a strong relation between the dynamics of neural activity across the brain and measures of behavioral arousal. Such relations span a wide range of temporal scales that are heavily inter-related. Ultra-slow time-scales are specifically under-studied due to technical limitations and neuromodulatory systems are the strongest mechanistic candidates for controlling/modulating the neural dynamics at these time-scales. The hypothesis of the relation between a specific time-scale and one certain neuromodulator (5-HT in this manuscript) could have a significant impact on the understanding of the hierarchy in the temporal scales of neural activity.

      Weaknesses:

      One major caveat of the study is that different neuromodulators are strongly correlated across all time scales and related to this, the authors need to discuss this point further and provide more evidence from the literature (if any) that suggests similar ultra-slow oscillations are weaker or lack from similar signals recorded for other neuromodulators such as Ach and NA.

      The reviewer is correct to point out that the levels of different neuromodulators are often correlated. For example, most monoaminergic neurons, including serotonergic neurons of the raphe nuclei, show similar firing rates across behavioral states, firing most during wake behavior, less during NREM, and ceasing firing during ‘paradoxical sleep’ or REM (Eban-Rothschild et al 2018). Notably, other neuromodulators, such as acetylcholine (ACh), show the opposite pattern across states, with highest levels observed during REM, an intermediate level during wake behavior, and the lowest level during NREM (Vazquez et al. 2001). Despite these differences, ultraslow oscillations of both monoaminergic and non-monoaminergic neuromodulators, have been described, albeit only during NREM sleep (Zhang et al. 2021, Zhang et al. 2024, Osorio-Ferero et al. 2021, Kjaerby et al. 2022). How ultraslow oscillations of different neuromodulators are related has been only recently explored (Zhang et al. 2024). In this study, dual recording of oxytocin (Oxt) and ACh with GRAB sensors showed that the levels of the two neuromodulators were indeed correlated at ultraslow frequencies with a 2 s temporal shift. Furthermore, this shift could be explained by a hippocampal-to-lateral septum intermediate pathway, in which the level of ACh causally impacts hippocampal activity, which then in turn controls Oxt levels. Given the known temporal relationship between ripples, ACh and Oxt, and now with our work, between ripples and 5-HT, one could infer the relative timing of ultraslow oscillations of ACh, Oxt and 5-HT. While dual recordings of norepinephrine (NE) and 5-HT have not been performed, a similar correlation with temporal shift could be hypothesized given the parallel relationships between NE and spindles (OsorioFerero et al. 2021), and 5-HT and ripples, with the known temporal delay between ripples and spindles (Staresina et al. 2023). The fact that the locus coerulus receives particularly dense projections from the dorsal raphe nucleus (Kim et al. 2004) further suggests that 5-HT ultraslow oscillations could drive NE oscillations. How exactly ultraslow oscillations of serotonin are related to ultraslow oscillations of different neuromodulators in different brain regions remains to be studied.

      We have further addressed this question and how it relates to the issue of causality in the Discussion section of the manuscript (p. 13):

      “In addition to the difficulties involved with typical causal interventions already mentioned, the fact that the levels of different neuromodulators are interrelated and affected by ongoing brain activity makes it very hard to pinpoint ultraslow oscillations of one specific neuromodulator as controlling specific activity patterns, such as ripple timing. While a recent paper purported to show a causative effect of norepinephrine levels on ultraslow oscillations of sigma band power, the fact that optogenetic inhibition of locus coerulus (LC) cells, but also excitation, only caused a minor reduction of the ultraslow sigma power oscillation suggests that other factors also contribute (Osorio-Forero et al., 2021). Generally, it is thought that many neuromodulators together determine brain states in a combinatorial manner, and it is probable that the 5-HT oscillations we measure, like the similar oscillations in NE, are one factor among many.

      Nevertheless, given the known effects of 5-HT on neurons, it is not unlikely that the 5-HT fluctuations we describe have some impact on the timing of ripples, MAs, hippocampal-cortical coherence, or EMG signals that correlate with either the rising or descending phase. In fact, causal effects of 5-HT on ripple incidence (Wang et al. 2015, ul Haq et al. 2016 and Shiozaki et al. 2023), MA frequency (Thomas et al. 2022), sensory gating (Lee et al. 2020), which is subserved by inter-areal coherence (Fisher et al. 2020), and movement (Takahashi et al. 2000, Alvarez et al. 2022, Jacobs et al. 1991 and Luchetti et al. 2020) have all been shown. Our added findings that serotonin affects ripple incidence in hippocampal slices in a dose-dependent manner (Figure S1) further suggests that the relationship between ultraslow 5-HT oscillations and ripples we report may indeed result, at least in part, from a direct effect of serotonin on the hippocampal network.

      Whether these ‘causal’ relationships between 5-HT and the different activity measures we describe can be used to support a causal link between ultraslow 5-HT oscillations and the correlated activity we report remains an open question. To that point, some studies have described changes in ultraslow oscillations due to manipulation of serotonin signaling. Specifically, reduction of 5-HT1a receptors in the dentate gyrus was recently shown to reduce the power of ultraslow oscillations of calcium activity in the same region (Turi et al. 2024). Furthermore, psilocin, which largely acts on the 5-HT2a receptor, decreased NREM episode length from around 100 s to around 60 s, and increased the frequency of brief awakenings (Thomas et al. 2022). While ultraslow oscillations were not explicitly measured in this study, the change in the rhythmic pattern of NREM sleep episodes and brief awakenings, or microarousals, suggests an effect of psilocin on ultraslow oscillations during NREM. Although these studies do not necessarily point to an exclusive role for 5-HT in controlling ultraslow oscillations of different brain activity patterns, they show that changes in 5-HT can contribute to changes in brain activity at ultraslow frequencies.”

      A major question that has been left out from the study and discussion is how the same level of serotonin before and after the peak could be differentially related to the opposite observed phenomenon. What are the possible parallel mechanisms for distinguishing between the rising and falling phases? Any neurophysiological evidence for sensing the direction of change in serotonin concentration (or any other neuromodulator), and is there any physiological functionality for such mechanisms?

      We have added a paragraph in the discussion to address how this differentiation of the 5-HT signal may be carried out (Discussion, paragraph #3, p. 10):

      “In order for the ultraslow oscillation phase to segregate brain activity, as we have observed, the hippocampal network must somehow be able to sense the direction of change of serotonin levels. While single-cell mechanisms related to membrane potential dynamics are typically too fast to explain this calculation, a theoretical work has suggested that feedback circuits can enable such temporal differentiation, also on the slower timescales we observe (Tripp and Eliasmith, 2010). Beyond the direction of change in serotonin levels, temporal differentiation could also enable the hippocampal network to discern the steeper rising slope versus the flatter descending slope that we observe in the ultraslow 5-HT oscillations (Figure S2), which may also be functionally relevant (Cole and Voytek, 2017). The distinction between the rising and falling phase of ultraslow oscillations is furthermore clearly discernible at the level of unit responses, with many units showing preferences for either half of the ultraslow period (Figure S6). Another factor that could help distinguish the rising from the falling phase is the level of other neuromodulators, as it is likely the combination of many neuromodulators at any given time that defines a behavioral substate. Given the finding that ACh and Oxt exhibit ultraslow oscillations with a temporal shift (Zhang et al. 2024), one could posit that distinct combinations of different levels of neuromodulators could segregate the rising from the falling phase via differential effects of the combination of neuromodulators on the hippocampal network.”

      Functionally, the ability to distinguish between the rising and falling phases of an oscillatory cycle is a form of phase coding. A well-known example of this can be seen in hippocampal place cells, which fire relative to the ongoing theta oscillations. The key advantage of phase coding is that it introduces an additional dimension, i.e. phase of firing, beyond the simple rate of neural firing. This allows for the multiplexing of information (Panzeri et al., 2010), enabling the brain to encode more complex patterns of activity. Moreover, phase coding is metabolically more efficient than traditional spike-rate coding (Fries et al., 2007).

      Reviewer #2 (Public review):

      Summary:

      In their study, Cooper et al. investigated the spontaneous fluctuations in extracellular 5-HT release in the CA1 region of the hippocampus using GRAB5-HT3.0. Their findings revealed the presence of ultralow frequency (less than 0.05 Hz) oscillations in 5-HT levels during both NREM sleep and wakefulness. The phase of these 5-HT oscillations was found to be related to the timing of hippocampal ripples, microarousals, electromyogram (EMG) activity, and hippocampal-cortical coherence. In particular, ripples were observed to occur with greater frequency during the descending phase of 5-HT oscillations, and stronger ripples were noted to occur in proximity to the 5-HT peak during NREM. Microarousal and EMG peaks occurred with greater frequency during the ascending phase of 5-HT oscillations. Additionally, the strongest coherence between the hippocampus and cortex was observed during the ascending phase of 5-HT oscillations. These patterns were observed in both NREM sleep and the awake state, with a greater prevalence in NREM. The authors posit that 5-HT oscillations may temporally segregate internal processing (e.g., memory consolidation) and responsiveness to external stimuli in the brain.

      Strengths:

      The findings of this research are novel and intriguing. Slow brain oscillations lasting tens of seconds have been suggested to exist, but to my knowledge they have never been analyzed in such a clear way. Furthermore, although it is likely that ultra-slow neuromodulator oscillations exist, this is the first report of such oscillations, and the greatest strength of this study is that it has clarified this phenomenon both statistically and phenomenologically.

      Weaknesses:

      As with any paper, this one has some limitations. While there is no particular need to pursue them, I will describe ten of them below, including future directions:

      (1) Contralateral recordings: 5-HT levels and electrophysiological recordings were obtained from opposite hemispheres due to technical limitations. Ipsilateral simultaneous recordings may show more direct relationships.

      Although we argue that bilateral symmetry defines both the serotonin system and many hippocampal activity patterns (Methods: Dual fiber photometry and silicon probe recordings), we agree that ipsilateral recordings would be superior to describe the link between serotonin and electrophysiology in the hippocampus. In addition to noting that a recent study has adopted the same contralateral design (Zhang et al. 2024), we add a reference further supporting bilateral hippocampal synchrony, specifically of dentate spikes (Farrell et al. 2024). However, as functional lateralization has been recently proposed to underlie certain hippocampal functions in the rodent (Jordan 2020), future studies should ideally include both imaging and electrophysiology in a single hemisphere to guarantee local correlations rather than assuming inter-hemispheric synchrony. This could be accomplished using an integrated probe with attached optical fibers, as described in Markowitz et al. 2018, which is however technically more challenging and has, to our knowledge, not yet been implemented with fiber photometry recordings with GRAB sensors. Given the required separation of a few hundred micrometers between the probe shanks and the optical fiber cannula, it is important to consider whether the recordings are capturing the same neuronal populations. For example, there is a risk of recording electrical activity from dorsal hippocampal neurons while simultaneously measuring light signals from neurons in the intermediate hippocampus, which are functionally distinct populations (Fanselow and Dong 2009).

      (2) Sample size: The number of mice used in the experiments is relatively small (n=6). Validation with a larger sample size would be desirable.

      While larger sample sizes generally reduce the influence of random variability and minimize the impact of outliers on conclusions, our use of mixed-effects models mitigates these concerns by accounting for both inter-session and inter-mouse variability. With this approach, we explicitly model random effects, such as the variability between individual mice and sessions, alongside fixed effects (such as treatment), which ensures that our results are not driven by random fluctuations in a few individual mice or sessions. Furthermore, the inclusion of random intercepts and slopes in the models allows for the possibility that different animals and/or sessions have different baseline characteristics and respond to different degrees of magnitude to the treatment. In summary, while validating these findings with a larger sample size would certainly help detect more subtle effects, we are confident in the robustness of the conclusions presented.

      (3) Lack of causality: The observed associations show correlations, not direct causal relationships, between 5-HT oscillations and neural activity patterns.

      We agree that the data we present in this study is largely correlational and generally avoid claims of causality in the manuscript. In the Discussion section, we discuss barriers to interpreting typical causal interventions in vivo, such as optogenetic activation of raphe nuclei: “The two previously mentioned in vivo studies showing reduced ripple incidence…”(paragraph #10, pg. 12), as well as an added section on further causality considerations in the Discussion section of the manuscript (paragraph #12, pg. 13): “In addition to the difficulties involved with…”

      Due to these barriers, as a first step, we wanted to describe how physiological changes in serotonin levels are correlated to changes in the hippocampal activity. Equipped with a deeper understanding of physiological serotonin dynamics, future studies could explore interventions that modulate serotonin in keeping with the natural range of serotonin fluctuations for a given state. On that point, another challenge which we have not mentioned in the manuscript is that modulating serotonin, or any neuromodulator’s levels, has the potential, depending on the degree of modulation, to transition the brain to an entirely different behavioral state. This then complicates interpretation, as one is not sure whether effects observed are due to the changes in the neuromodulator itself, or secondary to changes in state. At the same time, 5-HT activity drives networks which in return can change the release of other neurotransmitters, leading to indirect effects.

      The results of our in vitro experiments suggest that a causal relationship between serotonin and ripples is possible (Figure S1). Though the hippocampal slice preparation is clearly an artificial model, it provides a controlled environment to isolate the effects of serotonin manipulation on the hippocampal formation, without the confounding influence of systemic 5-HT fluctuations in other brain regions. Notably, the dose-dependent effects of serotonin (5-HT) wash-in on ripple incidence observed in vitro closely mirror the inverted-U dose-response curve seen in our in vivo experiments across states, where small increases in serotonin lead to the highest ripple incidence, and both lower and higher levels correspond to reduced ripple activity. This parallel suggests that the gradual washing of serotonin in our in vitro system may mimic the tonic firing changes in serotonergic neurons that occur during state transitions in vivo. These findings underscore the importance of studying how different dynamics of serotonin modulation can differentially affect hippocampal network activity.

      (4) Limited behavioral states: The study focuses primarily on sleep and quiet wakefulness. Investigation of 5-HT oscillations during a wider range of behavioral states (e.g., exploratory behavior, learning tasks) may provide a more complete understanding.

      We agree that future studies should investigate a broader range of behavioral states. For this study, as we were focused on general sleep and wake patterns, our recordings were done in the home cage, and we limited ourselves to the basic behavioral states described in the paper. Future studies should be designed to investigate ultraslow 5-HT oscillations during different behaviors, such as continuous treadmill running. Specifically, a finer segregation of extended wake behaviors by level of arousal could greatly add to our understanding of the role of ultraslow serotonin oscillations.

      (5) Generalizability to other brain regions: The study focuses on the CA1 region of the hippocampus. It's unclear whether similar 5-HT oscillation patterns exist in other brain regions.

      Given the reported ultraslow oscillations of population activity in serotonergic neurons of the dorsal raphe nucleus (Kato et al. 2022) as well as the widespread projections of the serotonergic nuclei, we would expect a broad expression of ultraslow 5-HT oscillations throughout the brain. So far, ultraslow 5-HT oscillations have been described in the basal forebrain, as well as in the dentate gyrus, in addition to what we have shown in CA1 (Deng et al. 2024 and Turi et al. 2024). Furthermore, our results showing that hippocampal-cortical coherence changes according to the phase of hippocampal ultraslow 5-HT oscillations suggests that 5-HT can affect oscillatory activity either indirectly by modulating hippocampal cells projecting to the cortical network or directly by modulating the cortical postsynaptic targets. Given the heterogeneity in projection strength, as well as in pre- and postsynaptic serotonin receptor densities across brain regions (de Filippo & Schmitz, 2024), it would be interesting to see whether local ultraslow 5-HT oscillations are differentially modulated, e.g. in terms of oscillation power. Future studies investigating different brain regions via implantation of multiple optic fibers in different brain areas or using the mesoscopic imaging approach adopted in Deng et al. 2024, will be needed to examine the extent of spatial heterogeneity in this ultraslow oscillation.

      (6) Long-term effects not assessed: Long-term effects of ultra-low 5-HT oscillations (e.g., on memory consolidation or learning) were not assessed.

      While beyond the scope of our current study, we agree that an important next step would involve modulating the ultraslow serotonin oscillation after learning, and then examining potential effects on memory consolidation, presumably via changes in ripple dynamics, though many possibilities could explain potential effects. There, our results suggest it would be important to isolate effects due to the change in ultraslow oscillation features, rather than simply overall levels of 5-HT. To that end, it would be important to test different modulation dynamics, specifically modulating the oscillation strength, around a constant mean 5-HT level by carefully timed optogenetic stimulation/inhibition. Afterwards, showing a clear correlation between the strength of the 5-HT modulation and memory performance would be important to establishing the relationship, as done in Lecci et al 2017, where more prominent ultraslow oscillations of sigma power in the cortex during sleep, alongside a higher density of spindles, were correlated with better memory consolidation. Given the tight coupling of spindles and ripples during sleep, it is possible that a similar effect on memory consolidation would be observed following changes in ultraslow 5-HT oscillation power.

      (7) Possible species differences: It's uncertain whether the findings in mice apply to other mammals, including humans.

      We agree that the experiments should ultimately be replicated in humans. In the 2017 study by Lecci et al., the authors highlighted the shared functional requirements for sleep across species, despite apparent differences, such as variations in sleep volume. To explore these commonalities, the researchers conducted parallel experiments in both mice and humans, aiming to identify a universal organizing structure. They discovered that the ultraslow oscillation of sigma power serves this role, enabling both species to balance the competing demands of arousability and sleep imperviousness. Based on this finding, it is plausible that ultraslow oscillations of serotonin, which similarly modulate activity according to arousal levels, would serve a comparable function in humans.

      (8) Technical limitations: The temporal resolution and sensitivity of the GRAB5-HT3.0 sensor may not capture faster 5-HT dynamics.

      The kinetics of the GRAB5-HT3.0 sensor used in this study limit the range of serotonin dynamics we can observe. However, the ultraslow oscillations we measure reflect temporal changes on the scale of 20 s and greater, whereas the GRAB sensor we use has sub-second on kinetics and below 2 s off kinetics (Deng et al. 2024). Therefore, the sensor is capable of reporting much faster activity than the ultraslow oscillations we observe, indicating that the ultraslow 5-HT signal accurately reflects the dynamics on this time scale. Furthermore, the presence of ultraslow oscillations in spiking activity—observed in the hippocampal formation (Gonzalo Cogno et al., 2024; Aghajan et al., 2023; Penttonen et al., 1999) and in the dorsal raphe (Mlinar et al., 2016), which are not affected by the same temporal smoothing, suggests that the oscillations we record are not likely due to signal aliasing, but instead reflect genuine oscillatory activity. Of course, this does not preclude that other, faster serotonin dynamics are also present in our signal, some of which may be too fast to be observed. For instance, rapid serotonin signaling via the ionotropic 5-HT3a receptors could be missed in our recordings. Additionally, with the fiber photometry approach we adopted, we are limited to capturing spatially broad trends in serotonin levels, potentially overlooking more localized dynamics.

      (9) Interactions with other neuromodulators: The study does not explore interactions with other neuromodulators (e.g., norepinephrine, acetylcholine) or their potential ultraslow oscillations.

      We agree that the interaction between neuromodulators in the context of ultraslow oscillations is an important issue, which we have addressed in our response to reviewer #1 under ‘Weaknesses.’

      (10) Limited exploration of functional significance: While the study suggests a potential role for 5-HT oscillations in memory consolidation and arousal, direct tests of these functional implications are not included.

      We agree and reference our answer to (6) regarding memory consolidation. Regarding arousal, direct tests of arousability to different sensory stimuli during different phases of the ultraslow 5-HT oscillation during sleep would be beneficial, in addition to the indirect measures of arousal we examine in the current study, e.g. degree of movement (icEMG) and long range coherence. In line with what we have shown, Cazettes et al. (2021) has demonstrated a direct relationship between 5-HT levels and pupil size, an indicator of arousal level, which like our findings, is consistent across behavioral states.

      Reviewer #3 (Public review):

      Summary:

      The activity of serotonin (5-HT) releasing neurons as well as 5-HT levels in brain structures targeted by serotonergic axons are known to fluctuate substantially across the animal's sleep/wake cycle, with high 5-HT levels during wakefulness (WAKE), intermediate levels during non-REM sleep (NREM) and very low levels during REM sleep. Recent studies have shown that during NREM, the activity of 5HT neurons in raphe nuclei oscillates at very low frequencies (0.01 - 0.05 Hz) and this ultraslow oscillation is negatively coupled to broadband EEG power. However, how exactly this 5-HT oscillation affects neural activity in downstream structures is unclear.

      The present study addresses this gap by replicating the observation of the ultraslow oscillation in the 5-HT system, and further observing that hippocampal sharp wave-ripples (SWRs), biomarkers of offline memory processing, occur preferentially in barrages on the falling phase of the 5-HT oscillation during both wakefulness and NREM sleep. In contrast, the raising phase of the 5-HT oscillation is associated with microarousals during NREM and increased muscular activity during WAKE. Finally, the raising 5-HT phase was also found to be associated with increased synchrony between the hippocampus and neocortex. Overall, the study constitutes a valuable contribution to the field by reporting a close association between raising 5-HT and arousal, as well as between falling 5-HT and offline memory processes.

      Strengths:

      The study makes compelling use of the state-of-the-art methodology to address its aims: the genetically encoded 5-HT sensor used in the study is ideal for capturing the ultraslow 5-HT dynamics and the novel detection method for SWRs outperforms current state-of-the-art algorithms and will be useful to many scientists in the field. Explicit validation of both of these methods is a particular strength of this study.

      The analytical methods used in the article are appropriate and are convincingly applied, the use of a general linear mixed model for statistical analysis is a particularly welcome choice as it guards against pseudoreplication while preserving statistical power.

      Overall, the manuscript makes a strong case for distinct sub-states across WAKE and NREM, associated with different phases of the 5-HT oscillation.

      Weaknesses:

      All of the evidence presented in the study is correlational. While the study mostly avoids claims of causality, it would still benefit from establishing whether the 5-HT oscillation has a direct role in the modulation of SWR rate via e.g. optogenetic activation/inactivation of 5-HT axons. As it stands, the possibility that 5-HT levels and SWRs are modulated by the same upstream mechanism cannot be excluded.

      We agree that causality claims cannot be made with our data, and acknowledge the interest in exploring causal interactions between ultraslow serotonin oscillations and the correlated activity we measure. We address this point in depth in our answer to Reviewer #2, Weaknesses #3.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      One major question in the presented data is the nature of the asymmetrical shape of the targeted slow events. How much does it reflect the 5-HT concentration and how much is this shape affected by the dynamics of the designed 5-HT sensor? This needs to be addressed in more detail referencing the original paper for the used sensor.

      We have added a paragraph in the Results section of the manuscript to address the asymmetric waveform of the ultraslow 5-HT oscillations and whether it could be affected by the asymmetric kinetics of the GRAB sensor we use: “The waveform of these ultraslow 5-HT oscillations…” (Results, paragraph #4, pg. 5). We include an extended answer to the question here:

      Indeed, the GRAB5-HT3.0 sensor we use in the study shows activation response kinetics which are faster than their deactivation time, with time constants at 0.25 s and 1.39 s, respectively (Deng et al. 2024). Likewise, the slope of the rising phase of the ultraslow serotonin oscillation we measure is faster than the slope of the falling phase, and the ratio of time spent in the rising phase versus the falling phase is less than 1, indicating longer falling phases (Figure S2). Although we cannot completely rule out that the asymmetric shape of the ultraslow serotonin oscillations we record is affected by this asymmetry in the 5-HT sensor kinetics, we believe this is unlikely, as the 5-HT signal clearly contains reductions in 5-HT levels that are much faster than the descending phase of the ultraslow oscillation. Although it is difficult to directly compare the different-sized signals, the reported timescales of off kinetics, on the order of a few seconds (Deng et al. 2024), are far below the tens of seconds timescale of the ultraslow oscillation. Furthermore, the finding that some dorsal raphe neurons modulate their firing rate at ultraslow frequencies, and moreover that all examples of such ultraslow oscillations shown display clear asymmetry in rising time versus decay, suggests that the asymmetry we observe in our data could be due to neural activity rather than temporal smoothing by the sensor (Mlinar et al. 2016). In this same direction, another study found similar asymmetry in extracellular 5-HT levels measured with fast scan cyclic voltammetry (FSCV), a technique with greater temporal resolution (sampling rate of 10 Hz) than GRAB sensors, after single pulse stimulation (Bunin and Wightman 1998). In this study, 5-HT was shown to be released extrasynaptically, making the longer clearing time compared to the release time intuitive. Finally, the observation that the onsets and offsets of ripple clusters, recorded with a sampling rate of 20 kHz, are precisely aligned with the peaks and troughs of ultraslow serotonin oscillations (Figure 1, H1-2, columns 2-3) suggests that the duration of the falling phase is not artificially distorted by the temporal smoothing of the sensor dynamics.

      Regardless of the dynamics of the serotonin concentration, it should be noted that the elicited neuronal effect might have different dynamics compared to the 5-HT concentration that need to be more studied: to address this one can either examine the average of the broadband LFP (not high passfiltered by the amplifier) or the distribution of simultaneously recorded spiking activity around the peak of ultra-slow oscillations.

      We have added Figure S6, showing unit activity relative to the phase of ultraslow serotonin oscillations.

      From this analysis, we uncover three groups of units which are largely preserved across states (Figure S6, E vs. F), albeit with a slight temporal shift rightward from NREM to WAKE (Figure S6, C vs. D). Namely, some units spike preferentially during the rising phase, some during the falling phase, and a third group have no clear phase preference. Unit activity during the falling phase is unsurprising, as it is where ripples largely occur, which themselves are associated with spike bursts. During the rising phase, the unit activity we observe could correspond to firing of the hippocampal subpopulation known to be active during NREM interruption states (Jarosiewicz et al. 2002, Miyawaki et al. 2017). While the units’ phase preference was tested based on the category of rising vs. falling phase, as this division described most variation in the data, a few units in the ‘No preference’ group showed heightened activity near the oscillation peak. However, given the very small number of units with this preference, more unit data is needed to describe this group, ideally with high-density recordings. Overall, most units showed a falling vs. rising phase preference, indicating a phase coding of hippocampal activity by 5-HT ultraslow oscillations.

      Related to the previous point, it would be helpful to show the average cycle shape of these oscillations (relative to the phase 0 extracted in Figure 3) and do the shape comparison across sessions and also wake/NREM

      We agree, and to this end we have added Figure S2. From this waveform analysis, we show that the ultraslow serotonin oscillation is asymmetric, with the rising phase having a greater slope, but shorter length, than the falling phase. While this asymmetry is observed both in NREM and WAKE, the slope difference and length ratio difference in rising vs. falling phase is greater in NREM (Figure S2. B).

      In Figure 3D, there seem to be oscillatory rhythms with faster cycles on top of the targeted oscillations. That would make the phase estimation less accurate, e.g. in the left panel, in the second cycle, it is not clear if there are two faster cycles or it is one slow cycle as targeted, and if noted in the rising phase of the second fast cycle there are no ripples. This might suggest that regardless of specific oscillation frequency whenever 5-HT is started to get released, the ripples are suppressed and once the 5-HT is not synaptically effective anymore the ripples start to get generated while the photometry signal starts to wane with the serotonin being cleared. Still, if there is any rhythmicity between bouts of no ripple, it would suggest an ultra-slow regularity in the 5-HT release.

      The reviewer is correct to point out that some faster increases in serotonin, which occur on top of the ultraslow oscillations we measure, seem to be associated with decreased ripple incidence, as in the example referenced. The dominance of ultraslow frequencies in the power spectrum of the 5-HT signal suggests, however, that oscillations faster than the ultraslow oscillations we describe are far less prevalent in the data. While there may be some coupling of ripples and other measures to serotonin oscillations of different frequencies, this may be hard or impossible to detect with phase analysis based on their infrequent occurrence and nonstationary nature. In fact, we show in Figure S3 that the strongest phase modulation of ripples by ultraslow serotonin oscillations is observed in the frequencies we use (0.01-0.06 Hz). Methodologically, phase analysis indeed assumes stationary signals, which are rare if not absent in physiological data (Lo et al. 2009), however generally the narrower the frequency band, the better the phase estimation. The narrow frequency band we use provides phase estimates that are largely robust and unaffected by the presence of faster oscillations, as can be seen in the example phase traces shown in Figure 4.

      The hypothesis that the rising phase burst of synaptic serotonin is what silences ripples, and that with the clearing of serotonin from the synapses, ripples recover, is a possible explanation of our findings. However, if this were the case, one could expect the ripple rate to increase over the course of the falling phase of ultraslow 5-HT oscillations, as 5-HT decreases, and peak at the trough. This is at odds with what we observe, namely a fairly uniform distribution of ripples along the falling phase (Figure 3F2,F4). Furthermore, the Mlinar et al. 2016 study describes a subpopulation of raphe neurons whose firing rates themselves oscillate at ultraslow frequencies, rather than on-off bursting at ultraslow frequencies, which would argue against this hypothesis. However, as this study looks at a small number of neurons in slices, further in vivo experiments examining firing rates of median raphe neurons are required to understand how the ultraslow oscillation of extracellular serotonin that we measure is generated as well as how it is related to ripple rates.

      In Figure 3B, it is not clear why IRI is z-scored. It would be informative to have the actual value of IRI. What is the z relative to? Is it the mean value of IRI in each recording session? Is this to reduce the variability across sessions?

      We have now included in Figure 3D a box plot displaying the IRI distributions across different states and sessions. To minimize inter-session variability, data were z-scored within each session for visualization purposes. However, all general linear models were based on raw data, and as a result, the raw differences in IRI are shown in Figure 3C.

      Figure 3E, panel labels don't match with the caption

      We are grateful to the reviewer for pointing out this mistake, which we have corrected in the updated version of the manuscript.

      In the text related to Figure 3E, the related analysis can be more clearly described. "phase preference of individual ripples" does not immediately suggest that the occurring phase of each ripple relative to the targeted oscillation is extracted. I suggest performing this analysis individually for each session and summarizing the results across the sessions.

      We have reworded the sentence in Results: 5-HT and ripples to better reflect the analysis performed: “Next, we calculated the ultraslow 5-HT phases at which individual ripples occurred during both NREM and WAKE (3E-F) ...”. Regarding session-level data, we have added Figure S3, which shows session level mean phase vectors, as well as the grand mean across sessions for both NREM and WAKE. Included in this figure are session level means for frequency bands outside of the ultraslow band we used in our study, intended to show that ripples are most strongly timed by the ultraslow band (0.01-0.06 Hz), reflected by the greater amplitude of the mean phase vector for this band.

      Figure 3E2, based on the result of ripple-triggered 5-HT in left panels of 2H1-2, one would expect to see a preferred phase closer to 180 (toward the end of the falling phase), it would be helpful to compare and discuss the results of these two analyses.

      The reviewer is correct to point out the apparent discrepancy in where the mean ripple falls with respect to the ongoing serotonin oscillation between the two figures mentioned. We have addressed this point in Results: 5-HT and ripples, paragraph #4: “This result appear to be at odds with…”.

      Regarding the analysis in 3F, please also compare the power distribution of ripples between NREM and wake. This will help to better understand the potential difference behind the observed difference: how much the strong ripples are comparable between wake and NREM. It is also necessary to report the ripple detection failure rate across ripples with different strengths.

      We have added a figure showing analysis done on a subset of the data in which ripples were manually curated in order to evaluate the performance of the ripple detection model (Figure S7) and explanatory text in Methods: Model performance: ‘To ensure that our model …’. In summary, while missed ripples did tend to have lower power than correctly detected ripples, including them did not change the distribution of ripples by the phase of the ultraslow serotonin oscillation (Figure S7C). We would also note that while the phase preference is noisier than what is presented in Figure 3F because this analysis was done with a small subset of all recorded ripples, the fact that ripples occur more clearly on the falling phase is visible for both detected ripples and detected + false negative ripples.

      The mixed-effects model examining the influence of 5-HT ultraslow oscillation phase on ripple power revealed no significant effect of state (p = 0.088). This indicates that whether the data were collected during NREM or wake periods did not significantly impact ripple power and that the lack of a significant effect (in Figure 3G,H) in WAKE is probably not due to a difference in the distribution of ripple power between states.

      4D, y label is z?

      We are grateful for the reviewer to point that out, yes, the y label should be ‘z-score’, as the two traces represent z-scored 5-HT (blue) and z-scored shuffled data (orange). Figure 4D2 and Figure 2H1-2, which show similar data, have been corrected to address this oversight.

      Relating to Figure 4, EMG comparison across phases of the oscillations is insightful. Two related and complementary analyses are to compare the theta and gamma power between the falling and rising phases.

      We have addressed this suggestion in Figure S5 A-C. While low gamma, high gamma and theta power are modulated identically in NREM, with higher power observed during the falling phase than the rising phase, during WAKE, different patterns can be seen. Specifically, low gamma power shows no phase preference, while high gamma shows a peak near the center of the ultraslow 5-HT oscillation. Theta power, as in NREM, is higher during the falling phase of ultraslow 5-HT oscillations. Increased power across many frequency bands was shown to coincide with decreases in DRN population activity during NREM, which matches with what we report here (Kato et al. 2022). In summary, while NREM patterns are consistent in all frequency bands tested, aligning with the pattern of ripple incidence, in WAKE low and high gamma power show different relationships to ultraslow 5-HT phase.

      In the manuscript, we have used the data in both Figure S5 and S6 (unit activity relative to ultraslow 5-HT oscillations), to argue against the idea that our coherence findings result from a lack of activity in the rising phase (see next question), which would have the effect of ‘artificially’ reducing coherence in the falling phase relative the rising phase. The text can be found in Results: 5-HT and hippocampal cortical coherence, paragraph #2.

      The results presented in Figure 5 could be puzzling and need to be further discussed: if the ripple band activity is weak during the rising phase, in what circumstances the coherence between cortex and CA1 is specifically very strong in this band?

      As mentioned in the previous answer, we have addressed this concern in Results: 5-HT and hippocampal-cortical coherence, paragraph #2. In summary, it is true that the higher coherence in rising phase than in the falling phase for the highest frequency band (termed ‘high frequency oscillation’ (HFO), 100-150 Hz) could be unexpected, given that ripples occur largely during the falling phase. A few points could help explain this finding. Firstly, it should be noted that power in the 100-150 Hz band can arise from physiological activity outside of ripples, such as filtered non-rhythmic spike bursts (Liu et al. 2022), whose coherent occurrence in the rising phase could explain the coherence findings. Secondly, coherence is a compound measure which is affected by both phase consistency and amplitude covariation (Srinath and Ray 2014), thus from only amplitude one cannot predict coherence. Furthermore, HFO power in the cortex is highest near the peak of ultraslow 5-HT oscillations (Figure S5D), as opposed to the falling phase peak in the hippocampus. This shows a lack of covariation in amplitude by phase between the hippocampus and cortex at this frequency band. An alternative explanation of our findings regarding coherence could be that in the rising phase, there is simply little to no activity, which is easier to ‘synchronize’ than bouts of high activity. Hippocampal unit activity in the rising phase (Figure S6) suggests however, that it is not likely to be the absence of activity supporting higher coherence in the rising phase across frequencies. Additional experiments using high density recordings should be conducted to examine 5-HT ultraslow oscillations and their role in gating activity across brain regions, though these results strongly suggest some role exists.

      Reviewer #2 (Recommendations for the authors):

      I would like to offer two comments. I believe that these are not unusual requests, and thus I would like the authors to respond.

      (1) It would be prudent to investigate the possibility that the observed correlation between ultraslow and hippocampal ripples/microarousals is merely superficial and that there are unidentified confounding factors at play. For example, it would be beneficial to provide evidence that administering a serotonin receptor inhibitor result in the disappearance of the slow oscillation of ripples and microarousals, or that the correlation with ultraslow is no longer present. Please note that the former experiments do not require GRAB5-HT3.0 imaging.

      We agree that causality claims cannot be made with our data and acknowledge the interest in exploring causal interactions between ultraslow serotonin oscillations and the correlated activity we measure. We address this point in depth in our answer to Reviewer #2, Weaknesses #3. We would further like to note that given the large number of serotonin receptors and the lack of selectivity of many serotonin receptor antagonists, a pharmacological approach would be difficult, though the results certainly useful. Finally, we highlight the psilocin study, which reported changes in the rhythmic occurrence of microarousals, and therefore likely ultraslow oscillations, after administering a 5-HT2a receptor agonist, suggesting a potential causal effect of 5-HT (via 5-HT2a receptor) on MA occurrence (Thomas et al. 2022).

      (2) The slow frequency appears to be associated with the default mode network as observed in fMRI signals. The neural basis of the default mode network remains unclear; therefore, a more detailed examination of this possibility would be beneficial.

      We agree that it would be interesting to investigate the role of 5-HT in the neural basis of the DMN.

      The DMN as described in humans (Raichle et al. 2001) and rodents (Lu et al. 2012) may indeed include some parts of the hippocampus and perhaps some of our neocortical recordings could also be considered part of the DMN. The fact that the activity across the inter-connected brain structures of the DMN is correlated at ultraslow time scales (Gutierrez-Barragan et al. 2019, Mantini et al. 2007), as well as serotonin’s ability to modulate the DMN is intriguing (Helmbold et al. 2016). Further studies simultaneously recording DMN activity via fMRI and electrical activity via silicon probes, as done in Logothetis et al. 2001, could elucidate further a potential link between ultraslow oscillations and the DMN, with serotonergic modulation as a means to understand any potential contribution of serotonin.

      Reviewer #3 (Recommendations for the authors):

      (1) The impact of the study would benefit from an experiment causally testing the effect of hippocampal 5-HT levels on hippocampal physiology, e.g. using optogenetic manipulations.

      We agree that causality claims cannot be made with our data and acknowledge the interest in exploring causal interactions between ultraslow serotonin oscillations and the correlated activity we measure. We address this point in depth in our answer to Reviewer #2, Weaknesses #3.

      (2) Data presentation: the figures are of poor resolution, making some diagram details and, more importantly, some example traces (e.g. Figure 1A, right) impossible to see. This should be corrected by either increasing figure resolution or making important figure elements large enough to be readable.

      We apologize for the poor resolution and have corrected it in the updated version of the manuscript.

      (3) Differences in some figure panels are not statistically assessed: Figure 1H (differences in spectrum peak power), Figure 3E1 & Figure 3E3 (directional bias of the circular distributions), Figure 4C (difference from 0 mean).

      We acknowledge this oversight and have added statistical tests for all three figures, as well as further information regarding the models used in Methods: Statistics.

      (4) Lines 279-280: the claim that the study shows "organization of activity by ultraslow oscillations of 5-HT" implies a causal role of 5-HT in organizing hippocampal activity. I suggest that this statement be toned down to reflect the correlational nature of the presented evidence.

      We have rephrased the sentence in question to the following: “In our study, including both NREM and WAKE periods allowed us to additionally show that the temporal organization of activity relative to ultraslow 5-HT oscillations operates according to the same principles in both states...”, which we believe better reflects the temporal correlation we describe.

      (5) While the study claims to use the EMG (i.e. electromyograph) signal, it does not describe any electrodes placed inside the muscle in the methods section. The SleepScoreMaster toolbox used in the study estimates the EMG using high-frequency activity correlated across recording channels, so I assume this is how this signal was obtained. While such activity may well reflect muscular noise to some degree, it is an indirect measure as the electrodes are not in the muscle. Since the EMG signal is central to the message of the manuscript, the method for calculating it should be described in the methods section and it should be explicitly labelled as an indirect measure in the main text, e.g. by referring to this signal as pseudo-EMG.

      We agree and have added explanatory text to the State Scoring subsection in Methods. Given that the EMG we refer to is derived from intracranial data, and not from traditional EMG probes, we now refer to the EMG as intracranial EMG, or icEMG for short, throughout the main text.

      (6) Is ripple frequency or ripple duration different across the rising and falling phases of the ultraslow oscillation?

      We have now investigated this suggestion in Figure S4, where we show that ripple frequency is higher in the falling phase than rising phase, while ripple duration appears to show no phase preference.

      (7) Lines 315-317: I am not sure why the manuscript refers to the coupling between EMG and 5-HT levels as 'puzzling' given that, as stated, the locomotion-inducing effects of 5-HT are well documented. While the fact that even non-locomotory motor activity may be associated with 5-HT rise is certainly interesting (although not sure if 'puzzling'), the manuscript does not directly compare the association of 5-HT levels with locomotory and non-locomotory EMG spikes. Thus, I think this discussion point is not fully warranted.

      We agree and have rephrased the discussion point in question to reflect that the EMG link to serotonin oscillations is not necessarily surprising, given both the literature linking 5-HT and spontaneous movement in the hippocampus, as well as the involvement of 5-HT in repetitive movements, where the role for a regularly-occurring oscillation is perhaps more intuitive.

      (8) Line 441: Reference #67 does not describe the use of fiber photometry.

      The reviewer is to correct to point out this typo, which has been now corrected. The reference in question should be 64, where fiber photometry experiments are described. For further clarity, we have changed our referencing scheme to include authors and years in in-text references.

      (9) In Figures 3E1-3, the phase has different bounds than in the other Figures in the manuscript (0:360 vs -180:180), this should be corrected for consistency.

      We agree and have made changes so that all figures have a phase range of -180 to 180°.

      References

      (1) Z. M Aghajan, G. Kreiman, I. Fried, Minute-scale periodicity of neuronal firing in the human entorhinal cortex. Cell Rep 42, 113271 (2023).

      (2) M.A. Bunin, R.M. Wightman (1998). Quantitative Evaluation of 5-Hydroxytryptamine (Serotonin) Neuronal Release and Uptake: An Investigation of Extrasynaptic Transmission. J. Neurosci. 18 (13) 4854-4860

      (3) F. Cazettes, D. Reato, J. P. Morais, A. Renart, Z. F. Mainen, Phasic Activation of Dorsal Raphe Serotonergic Neurons Increases Pupil Size. Curr Biol 31, 192-197.e4 (2021).

      (4) Cole SR, Voytek B. Brain Oscillations and the Importance of Waveform Shape. Trends Cogn Sci. 21(2):137-149 (2017).

      (5) F. Deng, et al., Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo. Nat Methods 21, 692–702 (2024).

      (6) C. Dong, et al., Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184, 2779-2792.e18 (2021).

      (7) A. Eban-Rothschild, L. Appelbaum, L. de Lecea, Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacol. 43, 937–952 (2018).

      (8) M. S. Fanselow, H.-W. Dong, Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

      (9) J. S. Farrell, E. Hwaun, B. Dudok, I. Soltesz, Neural and behavioural state switching during hippocampal dentate spikes. Nature 1–6 (2024). https://doi.org/10.1038/s41586-024-07192-8.

      (10) De Filippo, R., & Schmitz, D. (2024). Transcriptomic mapping of the 5-HT receptor landscape. Patterns (New York, N.Y.), 5(10), 101048.

      (11) M. J. Fisher, et al., Neural mechanisms of sensory gating: Insights from human and animal studies. NeuroImage 207, 116374 (2020).

      (12) P. Fries, D. Nikolić, W. Singer, The gamma cycle. Trends in Neurosciences 30, 309–316 (2007).

      (13) S. Gonzalo Cogno, et al., Minute-scale oscillatory sequences in medial entorhinal cortex. Nature 625, 338–344 (2024).

      (14) D. Gutierrez-Barragan, M. A. Basson, S. Panzeri, A. Gozzi, Infraslow State Fluctuations Govern Spontaneous fMRI Network Dynamics. Current Biology 29, 2295-2306.e5 (2019).

      (15) K. Helmbold, et al., Serotonergic modulation of resting state default mode network connectivity in healthy women. Amino Acids 48, 1109–1120 (2016).

      (16) B. Jarosiewicz, B. L. McNaughton, W. E. Skaggs, Hippocampal Population Activity during the Small-Amplitude Irregular Activity State in the Rat. J. Neurosci. 22, 1373–1384 (2002).

      (17) J. T. Jordan, The rodent hippocampus as a bilateral structure: A review of hemispheric lateralization. Hippocampus 30, 278–292 (2020).

      (18) T. Kato, et al., Oscillatory Population-Level Activity of Dorsal Raphe Serotonergic Neurons Is Inscribed in Sleep Structure. J. Neurosci. 42, 7244–7255 (2022).

      (19) M.A. Kim, H. S. Lee, B. Y. Lee, B. D. Waterhouse, Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Research 1026, 56–67 (2004).

      (20) C. Kjaerby, et al., Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci 25, 1059–1070 (2022).

      (21) S. Lecci, et al., Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci Adv 3, e1602026 (2017).

      (22) A. A. Liu, et al., A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 13, 6000 (2022).

      (23) M.-T. Lo, P.-H. Tsai, P.-F. Lin, C. Lin, Y. L. Hsin, The nonlinear and nonstationary properties in eeg signals: probing the complex fluctuations by hilbert–huang transform. Adv. Adapt. Data Anal. 01, 461–482 (2009).

      (24) N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

      (25) H. Lu, et al., Rat brains also have a default mode network. Proc Natl Acad Sci U S A 109, 3979–3984 (2012).

      (26) D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, M. Corbetta, Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104, 13170– 13175 (2007).

      (27) J. E. Markowitz, et al., The striatum organizes 3D behavior via moment-to-moment action selection. Cell 174, 44-58.e17 (2018).

      (28) H. Miyawaki, Y. N. Billeh, K. Diba, Low Activity Microstates During Sleep. Sleep 40, zsx066 (2017).

      (29) B. Mlinar, A. Montalbano, L. Piszczek, C. Gross, R. Corradetti, Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices. Front Cell Neurosci 10, 195 (2016).

      (30) A. Osorio-Forero, et al., Noradrenergic circuit control of non-REM sleep substates. Current Biology 31, 5009-5023.e7 (2021).

      (31) S. Panzeri, N. Brunel, N. K. Logothetis, C. Kayser, Sensory neural codes using multiplexed temporal scales. Trends in Neurosciences 33, 111–120 (2010).

      (32) M. E. Raichle, et al., A default mode of brain function. Proc Natl Acad Sci U S A 98, 676–682 (2001).

      (33) R. Srinath, S. Ray, Effect of amplitude correlations on coherence in the local field potential. J Neurophysiol 112, 741–751 (2014).

      (34) B. P. Staresina, J. Niediek, V. Borger, R. Surges, F. Mormann, How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat Neurosci 26, 1429–1437 (2023).

      (35) C. W. Thomas, et al., Psilocin acutely alters sleep-wake architecture and cortical brain activity in laboratory mice. Transl Psychiatry 12, 77 (2022).

      (36) G. F. Turi, et al., Serotonin modulates infraslow oscillation in the dentate gyrus during Non-REM sleep. eLife 13 (2025).

      (37) J. Vazquez, H. A. Baghdoyan, Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 280, R598–R601 (2001).

      (38) J. Wan, et al., A genetically encoded sensor for measuring serotonin dynamics. Nat Neurosci 24, 746–752 (2021).

      (39) Y. Zhang, et al., Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. Proc. Natl. Acad. Sci. U.S.A. 118, e2016432118 (2021).

      (40) Y. Zhang, et al., Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron (2024).

    1. eLife Assessment

      This important study by Lee et al. explores the heterogeneous response of non-growing bacteria to the antimicrobial peptide (AMP) tachyplesin. The authors identify a subpopulation of cells that evade lethal damage by limiting the intracellular accumulation of a fluorescently labeled tachyplesin analog. The study provides compelling evidence that reduced drug accumulation underlies the decreased susceptibility of this subpopulation to the AMP. The molecular basis of this phenotype is well supported by the data.

    2. Reviewer #1 (Public review):

      Summary:

      This work contributes several important and interesting observations regarding the heterotolerance of non-growing Escherichia coli and Pseudomonas aeruginosa to the antimicrobial peptide tachyplesin. The primary mechanism of action of tachyplesin is thought to be disruption of the bacterial cell envelope, leading to leakage of cellular contents after a threshold level of accumulation. Although the MIC for tachyplesin in exponentially growing E. coli is just 1 ug/ml, the authors observe that a substantial fraction of a stationary phase population of bacteria survives much higher concentrations, up to 64 ug/ml. By using a fluorescently labelled analogue of tachyplesin, the authors show that the amount of per-cell intracellular accumulation of tachyplesin displays a bimodal distribution, and that the fraction of "low accumulators" correlates with the fraction of survivors. Using a microfluidic device, they show that low accumulators exclude propidium iodide, suggesting that their cell envelopes remain largely intact, while high accumulators of tachyplesin also stain with propidium iodide. They show that this phenomenon holds for several clinical isolates of E. coli with different genetic determinants of antibiotic resistance, and for a strain of Pseudomonas aeruginosa. However, the bimodal distribution does not occur in these organisms for several other antimicrobial peptides, or for tachyplesin in Klebsiella pneumoniae or Staphylococcus aureus, indicating some degree of specificity in the interaction between AMP and bacterial cell envelope. They next explore the dynamics of the fluorescent tachyplesin accumulation and show interestingly that a high degree of accumulation is initially seen in all cells, but that the "low accumulator" subpopulation manages to decrease the amount of intracellular fluorescence over time, while the "high accumulator"subpopulation continues to increase its intracellular fluorescence. Focusing on increased efflux as a hypothesised mechanism for the "low accumulator" phenotype, based on transcriptomic analysis of the two subpopulations, the authors screen putative efflux inhibitors to see if they can block the formation of the low accumulator subpopulation. They find that both the protonophore CCCP and the SSRI sertraline can block the formation of this subpopulation and that a combination of sertraline plus tachyplesin kills a greater fraction of the stationary phase cells than either agent alone, similar to the killing observed when growing cells are treated with tachyplesin.

      Strengths:

      This study provides new insight into the heterogeneous behaviours of non-growing bacteria when exposed to an antimicrobial peptide, and into the dynamics of their response. The single-cell analysis by FACS and microscopy is compelling. The results provide a much-needed single cell perspective on the phenomenon of tolerance to AMPs and a good starting point for further exploration.

      Weaknesses:

      The authors have substantially improved the clarity of the manuscript and have added additional experiments to probe further the location of the AMP relative to low and high accumulators, and the physiological states of these sub-populations. These experiments strengthen the assertion that low accumulators keep the AMP at the cell surface while high accumulators permit intracellular access to the AMP.

      The phenomenon of the emergence of low accumulators, which are phenotypically tolerant to the antimicrobial peptide tachyplesin, is interesting and important even if there is still work to be done to understand the mechanism by which it occurs.

    3. Reviewer #2 (Public review):

      Summary:

      This study reports on the existence of subpopulations of isogenic E. coli and P. aeruginosa cells that are tolerant to the antimicrobial peptide tachyplesin and are characterized by accumulation of low levels of a fluorescent tachyplesin-NBD conjugate. The authors then set out to address the molecular mechanisms, providing interesting insights even though the mechanism remains incompletely defined: The work demonstrates that increased efflux may cause this phenotype, putatively together with other changes in membrane lipid composition. The authors further demonstrate that pharmacological manipulation can prevent generation of tolerance. The authors are cautious in their interpretation and the claims made are largely justified by the data.

      Strengths:

      Going beyond the commonly used bulk techniques for studying susceptibility to AMPs, Lee et al. used of fluorescent antibiotic conjugates in combination with flow cytometry analysis to study variability in drug accumulation at the single cell level. This powerful approach enabled the authors to expose bimodal drug accumulation pattern that were condition dependent, but conserved across a variety of E. coli clinical isolates. Using cell sorting in combination with colony-forming unit assays as well as quantitative fluorescence microscopic analysis in a microfludics-setup the authors compellingly demonstrate that low accumulators (where fluorescence signal is mostly restricted to the membrane), can survive antibiotic treatment, whereas high accumulators (with high intracellular fluorescence) were killed.

      The relevance of efflux for the ´low accumulator´ phenotype and its survival is convincingly demonstrated by the following lines of evidence: i) A time-course experiment on tachyplesin-NBD pre-loaded cells revealed that all cells initially were high accumulators, before a subpopulation of cells subsequently managed to reduce signal intensity, demonstrating that the ´low accumulator´ phenotype is an induced response and not a pre-existing property. Ii) Double-mutants deficient in the delta acrA delta tolC double-KO, which showed reduced levels of low accumulators´. Interestingly, ´low accumulator´populations were nearly abrogated in bacteria deficient in the qse quorum sensing system, suggesting its centrality for the tachyplesin response. Even though this system may control acrA, the strength of the phenotype may suggest that it may control additional as-of-yet unidenitified factors relevant in the response to tachyplesin. Iii) treatment with efflux pump inhibitor sertraline and verapamil (even though some caution needs to be taken since it is not perfectly selective, see weakness) prevents generation of low accumulators. The observation that sertraline enhances tachyplesin-based killing is an important basis for developing combination therapies.

      The study convincingly illustrates how susceptibility to tachyplesin adaptively changes in a heterogeneous way dependent on the growth phases and nutrient availability. This is highly relevant also beyond the presented example of tachyplesin and similar subpopulation-based adaptive changes to the susceptibility towards antimicrobial peptides or other drugs may occur during infections in vivo and they would likely be missed by standardized in vitro susceptibility testing.

      Weaknesses:

      Some mechanistic questions regarding tachyplesin-accumulation and survival remain. One general shortcoming of the setup of the transcriptomics experiment is that the tachyplesin-NBD probe itself has antibiotic efficacy and induces phenotypes (and eventually cell death) in the ´high accumulator´ cells. As the authors state themselves, this makes it challenging to interpret whether any differences seen between the two groups are causative for the observed accumulation pattern of if they are a consequence of differential accumulation and downstream phenotypic effects.

    4. Reviewer #3 (Public review):

      Summary:

      This important study shows that stationary phase bacteria survive antimicrobial peptide treatment by switching on efflux pumps, generating low accumulating subpopulations that evade killing-a finding with clear implications for the design of peptide based antibiotics and for researchers studying antimicrobial resistance. The evidence is solid and frequently convincing, as diverse single cell assays, genetics and chemical inhibition coherently link reduced intracellular peptide to survival, even though a few mechanistic details warrant further exploration.

      Strengths:

      The authors investigate how Escherichia coli (and, to a lesser extent, Pseudomonas aeruginosa) survive exposure to the antimicrobial peptide (AMP) tachyplesin. Because resistance to AMPs is thought to rely heavily on non genetic adaptations rather than on classical mutation based mechanisms, the study focuses on phenotypic heterogeneity and seeks to pinpoint the cellular processes that protect a subset of cells. Using fluorescently labelled tachyplesin, single cell imaging, flow cytometry, transcriptomics, targeted genetics, and chemical perturbations, the authors report that stationary phase cultures harbor two phenotypic states: high accumulating cells that die and low accumulating cells that survive. They further propose and show that inducible efflux activity is the primary driver of survival and show that either efflux inhibition (sertraline, verapamil) or nutrient supplementation prevents the emergence of low accumulators and boosts killing.

      The experiments unambiguously reveal that the cells respond to stress heterogeneously, with two distinct subpopulations - one with better survival than the other. This primary phenotype is convincingly shown across various E. coli strains, including clinical isolates. The authors probed the underlying mechanism from several angles, with important additional experiments in the revised version that strengthens the original conclusions in several ways. Newly added efflux assays with ethidium bromide, together with proteinase treatment experiments and ΔacrAΔtolC and ΔqseB/qseC mutant data, illustrate that the low accumulating subpopulation can actively export intracellular compounds. The authors took great care to temper their language to acknowledge other potential alternatives that could explain some of the data such as altered influx, vesicle release or proteolysis, metabolic activity of the cells, indirect effects of sertraline treatment, etc. Additional metabolic dye measurements confirm that low accumulators are less metabolically active, and a new data on nutrient supplementation shows that forcing growth increases peptide uptake and lethality. The authors clarify the crucial point of where antimicrobial peptides actually bind on the cell within the broader survival mechanism and present their conclusions, along with potential caveats, with commendable clarity.

      Weaknesses:

      Despite these advances, the contribution of efflux may require more direct evidence to further dissect whether efflux is necessary, sufficient, or contributory. The facts that the key low-efflux mutant still retains a small fraction of survivors and that the inhibitors used may cause other physiological changes leading to higher efflux are still unaccounted for. The lipidomic and vesicle findings, while intriguing, remain descriptive, and direct tests of their functional relevance would further solidify the mechanistic models.

      Conclusion:

      Even with these limitations, the study provides valuable insight into non genetic resistance mechanisms to AMPs and highlights inducible heterogeneity as a critical obstacle to peptide therapeutics. In a much broader context, this study also underscores the importance of efflux physiology even for those antimicrobials that seemingly would not have intracellular targets.

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      We would like to thank Reviewer 1 for recognising the importance of our findings on the heterogeneity in bacterial responses to tachyplesin.

      (1) A double deletion of acrA and tolC (two out of the three components of the major constitutive RND efflux pump) reduces the appearance of the low accumulator phenotype, but interestingly, the single deletions have no effect, and a well-characterised inhibitor of RND efflux pumps also has no effect. The authors identify a two-component system, qseCB, that appears necessary for the appearance of low accumulators, but this system has pleiotropic effects on many cellular systems, with only tenuous connections to efflux. The selected pharmacological agents that could prevent the appearance of low accumulators do not offer clear insight into the mechanism by which low accumulators arise, because they have diverse modes of action.

      We have added that “QseBC, was previously inferred to mediate resistance to a tachyplesin analogue by upregulating efflux genes based on transcriptomic analysis and hyper susceptibility of ΔqseBΔqseC mutants[113]”. However, we have also acknowledged that “it is conceivable that the deletion of QseBC has pleiotropic effects on other cellular mechanisms involved in tachyplesin accumulation.” and that “it is also conceivable that sertraline prevented the formation of the low accumulator phenotype via efflux independent mechanisms”

      These amendments are reported on lines 525-527, 532-534 and 539-541 of our revised manuscript.

      (2) The transcriptomics data collected for low and high accumulator sub-populations are interesting, but in my opinion, the conclusions that can be drawn from these data remain overstated. It is not possible to make any claims about the total amount of "protein synthesis, energy production, and gene expression" on the basis of RNA-Seq data. The reads from each sample are normalised, so there is no information about the total amount of transcript. Many elements of total cellular activity are post-transcriptionally regulated, so it is impossible to assess from transcriptomics alone. Finally, the transcriptomic data are analysed in aggregated clusters of genes that are enriched for biological processes, for example: "Cluster 2 included processes involved in protein synthesis, energy production, and gene expression that were downregulated to a greater extent in low accumulators than high accumulators". However, this obscures the fact that these clusters include genes that are generally inhibitory of the process named, as well as genes that facilitate the process.

      We have now acknowledged that “that our data do not take into account post-transcriptional modifications that represent a second control point to survive external stressors.”

      These amendments are reported on lines 534-535 of our revised manuscript.

      The raw transcript counts can be found in Figure 3 – Source Data, we had added these data in our previous manuscript as requested by this reviewer.

      We would also like to clarify that we have analysed our transcriptomic data via both clustering (i.e. Figure 3) and direct comparison of genes of interest (Table S1) and transcription factors (i.e. genes that are generally inhibitory of the process named, as well as genes that facilitate the process, Figure S12).

      Finally, we would like to point out that in our revised manuscript (both this and its previous version) we are stating “Cluster 2 included processes involved in protein synthesis, energy production, and gene expression that were downregulated to a greater extent in low accumulators than high accumulators”. We do not think this is an overstatement, we do not use these data to make conclusions on the total amount of "protein synthesis, energy production, and gene expression".

      (3) The authors have added an experiment to attempt to assess overall metabolic activity in the low accumulator and high accumulator populations, which is a welcome addition. They apply the redox dye resazurin and observe lower resorufin (reduced form) fluorescence in the low accumulator population, which they take to indicate a lower respiration rate. This seems possible, however, an important caveat is that they have shown the low accumulator population to retain substantially lower amounts of multiple different fluorescent molecules (tachyplesin-NBD, propidium iodide, ethidium bromide) intracellularly compared to the high accumulator population. It seems possible that the low accumulator population is also capable of removing resazurin or resorufin from the intracellular space, regardless of metabolic rate. Indeed, it has previously been shown that efflux by RND efflux pumps influences resazurin reduction to resorufin in both P. aeruginosa and E. coli. By measuring only the retained redox dye using flow cytometry, the results may be confounded by the demonstrated ability of the low accumulator population to remove various fluorescent dyes. More work is needed to strongly support broad conclusions about the physiological states of the low and high accumulator populations. The phenomenon of the emergence of low accumulators, which are phenotypically tolerant to the antimicrobial peptide tachyplesin, is interesting and important even if there is still work to be done to understand the mechanism by which it occurs.

      We have now clarified that these assays were performed in the presence of 50 μM CCCP and that “CCCP was included to minimise differences in efflux activity and preserve resorufin retention between low and high accumulators, though some variability in efflux may still persist.” We have now added this information on lines 401-406. This information was only present in the caption of Figure S16 of our previous version of this manuscript.

      We agree with the reviewers that more work needs to be done to fully understand this new phenomenon and we had already acknowledged in our previous version of this manuscript that other mechanisms could play a role in this new phenomenon, see lines 489-517 of the current manuscript.

      Reviewer 2:

      We would like to thank the reviewer for recognising that all their previous comments have now been satisfactorily addressed.

      (1) Some mechanistic questions regarding tachyplesin-accumulation and survival remain. One general shortcoming of the setup of the transcriptomics experiment is that the tachyplesin-NBD probe itself has antibiotic efficacy and induces phenotypes (and eventually cell death) in the ´high accumulator´ cells. As the authors state themselves, this makes it challenging to interpret whether any differences seen between the two groups are causative for the observed accumulation pattern of if they are a consequence of differential accumulation and downstream phenotypic effects.

      We agree with the reviewer and we had explicitly acknowledged this possibility on lines 281-285 (of the previous and current version of this manuscript).

      (2) The statement ´ Moreover, we found that the fluorescence of low accumulators decreased over time when bacteria were treated with 20 μg mL´ is, in my opinion, not supported by the data shown in Figure S4C. That figure shows that the abundance of ´low accumulator´ cells decreases over time. Following the rationale that protease K treatment may cleave surface associated/ extracellular tachyplesin-NDB, this should lead to a shift of ´low accumulator´ population to the left, indicating reduced fluorescence intensity per cell. This is not so case, but the population just disappears. However, after 120 min of treatment more cells appear in the ´high accumulator´ state. This result is somewhat puzzling.

      We agree with the reviewer that our previous discussion of this data could have been misleading. We have now reworded this part of the text as following: “We found that the fluorescence of high accumulators did not decrease over time when tachyplesin-NBD was removed from the extracellular environment and bacteria were treated with 20 μg mL<sup>-1</sup> (0.7 μM) proteinase K, a widely-occurring serine protease that can cleave the peptide bonds of AMPs [43–45] (Figure S4B and C). These data suggest that tachyplesin-NBD primarily accumulates intracellularly in high accumulators.”

      It is conceivable that extended exposure to proteinase K (i.e. we see a decrease in the abundance of low accumulators after 90 min treatment with proteinase K) increased the permeability to tachyplesin-NBD of low accumulators allowing tachyplesin-NBD to move from either the extracellular space or the membrane to the cell interior. However, we do not have data to prove this point.

      Therefore, we have now removed our claim that the data obtained using proteinase K suggest that tachyplesin-NBD accumulates primarily in the membranes of low accumulators. We believe that our two separate microscopy analyses provide more direct, stronger and less ambiguous evidence that tachyplesin-NBD accumulates primarily in the membranes of low accumulators.

      (3) The authors used the metabolic dye resazurin to measure the metabolic activity of low vs. high accumulators. I am not entirely convinced that the lower fluorescence resorufin fluorescence in tachyplesin-NBD accumulators really indicates lower metabolic activity, since a cell's fluorescence levels would also be affected by the cellular uptake and efflux. It appears plausible that the lower resorufin-fluorescence may result from reduced accumulation/increased efflux in the ‘low-tachyplesin NBD´ population.

      We have now clarified that these assays were performed in the presence of 50 μM CCCP and that “CCCP was included to minimise differences in efflux activity and preserve resorufin retention between low and high accumulators, though some variability in efflux may still persist.” We have now added this information on lines 401-406. This information was only present in the caption of Figure S16 of our previous version of this manuscript.

      (4) P8 line 343. The text should refer to Figure. 13B, instead of 14B

      We have now changed the text accordingly on line 337.

      Reviewer 3:

      We would like to thank the reviewer for recognising that we have done a very impressive job in taking care of their comments.

      (1) Despite these advances, the contribution of efflux may require more direct evidence to further dissect whether efflux is necessary, sufficient, or contributory. The facts that the key low efflux mutant still retains a small fraction of survivors and that the inhibitors used may cause other physiological changes leading to higher efflux are still unaccounted for. The lipidomic and vesicle findings, while intriguing, remain descriptive, and direct tests of their functional relevance would further solidify the mechanistic models.

      We agree with the reviewers that more work needs to be done to fully understand this new phenomenon and we had already acknowledged in our previous version of this manuscript that other mechanisms could play a role in this new phenomenon, see lines 489-517 of the current manuscript.

    1. Author response:

      Reviewer #1 (Public review):

      (1) Legionella effectors are often activated by binding to eukaryote-specific host factors, including actin. The authors should test the following: a) whether Lfat1 can fatty acylate small G-proteins in vitro; b) whether this activity is dependent on actin binding; and c) whether expression of the Y240A mutant in mammalian cells affects the fatty acylation of Rac3 (Figure 6B), or other small G-proteins.

      We were not able to express and purify the full-length recombinant Lfat1 to perform fatty acylation of small GTPases in vitro. However, in cellulo overexpression of the Y240A mutant still retained ability to fatty acylate Rac3 and another small GTPase RheB (see Author response image 1 below). We postulate that under infection conditions, actin-binding might be required to fatty acylate certain GTPases due to the small amount of effector proteins that secreted into the host cell.

      Author response image 1.

      (2) It should be demonstrated that lysine residues on small G-proteins are indeed targeted by Lfat1. Ideally, the functional consequences of these modifications should also be investigated. For example, does fatty acylation of G-proteins affect GTPase activity or binding to downstream effectors?

      We have mutated K178 on RheB and showed that this mutation abolished its fatty acylation by Lfat1 (see Author response image 2 below). We were not able to test if fatty acylation by Lfat1 affect downstream effector binding.

      Author response image 2.

      (3) Line 138: Can the authors clarify whether the Lfat1 ABD induces bundling of F-actin filaments or promotes actin oligomerization? Does the Lfat1 ABD form multimers that bring multiple filaments together? If Lfat1 induces actin oligomerization, this effect should be experimentally tested and reported. Additionally, the impact of Lfat1 binding on actin filament stability should be assessed. This is particularly important given the proposed use of the ABD as an actin probe.

      The ABD domain does not form oligomer as evidenced by gel filtration profile of the ABD domain. However, we do see F-actin bundling in our in vitro -F-actin polymerization experiment when both actin and ABD are in high concentration (data not shown). Under low concentration of ABD, there is not aggregation/bundling effect of F-actin.

      (4) Line 180: I think it's too premature to refer to the interaction as having "high specificity and affinity." We really don't know what else it's binding to.

      We have revised the text and reworded the sentence by removing "high specificity and affinity."

      (5) The authors should reconsider the color scheme used in the structural figures, particularly in Figures 2D and S4.

      Not sure the comments on the color scheme of the structure figures.

      (6) In Figure 3E, the WT curve fits the data poorly, possibly because the actin concentration exceeds the Kd of the interaction. It might fit better to a quadratic.

      We have performed quadratic fitting and replaced Figure 3E.

      (7) The authors propose that the individual helices of the Lfat1 ABD could be expressed on separate proteins and used to target multi-component biological complexes to F-actin by genetically fusing each component to a split alpha-helix. This is an intriguing idea, but it should be tested as a proof of concept to support its feasibility and potential utility.

      It is a good suggestion. We plan to thoroughly test the feasibility of this idea as one of our future directions.

      (7) The plot in Figure S2D appears cropped on the X-axis or was generated from a ~2× binned map rather than the deposited one (pixel size ~0.83 Å, plot suggests ~1.6 Å). The reported pixel size is inconsistent between the Methods and Table 1-please clarify whether 0.83 Å refers to super-resolution.

      Yes, 0.83 Å is super-resolution. We have updated in the cryoEM table

      Reviewer #2 (Public review):

      Weaknesses:

      (1) The authors should use biochemical reactions to analyze the KFAT of Llfat1 on one or two small GTPases shown to be modified by this effector in cellulo. Such reactions may allow them to determine the role of actin binding in its biochemical activity. This notion is particularly relevant in light of recent studies that actin is a co-factor for the activity of LnaB and Ceg14 (PMID: 39009586; PMID: 38776962; PMID: 40394005). In addition, the study should be discussed in the context of these recent findings on the role of actin in the activity of L. pneumophila effectors.

      We have new data showed that Actin binding does not affect Lfat1 enzymatic activity. (see figure; response to Reviewer #1). We have added this new data as Figure S7 to the paper. Accordingly, we also revised the discussion by adding the following paragraph.

      “The discovery of Lfat1 as an F-actin–binding lysine fatty acyl transferase raised the intriguing question of whether its enzymatic activity depends on F-actin binding. Recent studies have shown that other Legionella effectors, such as LnaB and Ceg14, use actin as a co-factor to regulate their activities. For instance, LnaB binds monomeric G-actin to enhance its phosphoryl-AMPylase activity toward phosphorylated residues, resulting in unique ADPylation modifications in host proteins (Fu et al, 2024; Wang et al, 2024). Similarly, Ceg14 is activated by host actin to convert ATP and dATP into adenosine and deoxyadenosine monophosphate, thereby modulating ATP levels in L. pneumophila–infected cells (He et al, 2025). However, this does not appear to be the case for Lfat1. We found that Lfat1 mutants defective in F-actin binding retained the ability to modify host small GTPases when expressed in cells (Figure S7). These findings suggest that, rather than serving as a co-factor, F-actin may serve to localize Lfat1 via its actin-binding domain (ABD), thereby confining its activity to regions enriched in F-actin and enabling spatial specificity in the modification of host targets.”

      (2) The development of the ABD domain of Llfat1 as an F-actin domain is a nice extension of the biochemical and structural experiments. The authors need to compare the new probe to those currently commonly used ones, such as Lifeact, in labeling of the actin cytoskeleton structure.

      We fully agree with the reviewer’s insightful suggestion. However, a direct comparison of the Lfat1 ABD domain with commonly used actin probes such as Lifeact, as well as evaluation of the split α-helix probe (as suggested by Reviewer #1), would require extensive and technically demanding experiments. These are important directions that we plan to pursue in future studies.

    1. eLife Assessment

      This valuable study reports the development of a novel organoid system for studying the emergence of autorhythmic gut peristaltic contractions through the interaction between interstitial cells of Cajal and smooth muscle cells. The authors further utilized the system to provide convincing evidence for a previously unappreciated potential role for smooth muscle cells in regulating the firing rate of interstitial cells of Cajal. The work will be of interest to those studying development and physiology of the gut.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, the authors developed an organoid system containing smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs; pacemaker cells), but few enteric neurons. This system generates rhythmic contractions similar to those observed in the developing gut. The stereotypical arrangement of SMCs and ICCs within the organoid allowed the authors to identify these cell types without the need for antibody staining. Leveraging this feature, they used calcium imaging and pharmacological approaches to investigate how calcium transients develop through interactions between the two cell types.

      The authors first show that calcium transients are synchronized among ICC-ICC, SMC-SMC, and SMC-ICC pairs. They then used gap junction inhibitors to suggest that gap junctions are specifically involved in ICC-to-SMC signaling. Finally, they applied inhibitors of myosin II and L-type Ca²⁺ channels to demonstrate that SMC contraction is crucial for the generation of rhythmic activity in ICCs, suggesting the presence of SMC-to-ICC signaling. Additionally, they show that two organoids become synchronized upon fusion, with SMCs mediating this synchronization.

      Strengths:

      The organoid system provides a useful model for studying the specific roles of SMCs and ICCs in live samples.

      Weaknesses:

      Since all functional analyses were conducted pharmacologically in vitro, the findings need to be further validated through genetic approaches in vivo in future studies.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, Yagasaki et al. describe an organoid system to study the interactions between smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs). While these interactions are essential for the control of rhythmic intestinal contractility (i.e., peristalsis), they are poorly understood, largely due to the complexity of and access to the in vivo environment and the inability to co-culture these cell types in vitro for long term under physiological conditions. The "gut contractile organoids" organoids described herein are reconstituted from stromal cells of the fetal chicken hindgut that rapidly reorganize into multilayered spheroids containing an outer layer of smooth muscle cells and an inner core of interstitial cells. The authors demonstrate that they contract cyclically and additionally use calcium imagining to show that these contractions occur concomitantly with calcium transients that initiate in the interstitial cell core and are synchronized within the organoid and between ICCs and SMCs. Furthermore, they use several pharmacological inhibitors to show that these contractions are dependent upon non-muscle myosin activity and, surprisingly, independent of gap junction activity. Finally, they develop a 3D hydrogel for the culturing of multiple organoids and found that they synchronize their contractile activities through interconnecting smooth muscle cells, suggesting that this model can be used to study the emergence of pacemaking activities. Overall, this study provides a relatively easy-to-establish organoid system that will be of use in studies examining the emergence of rhythmic peristaltic smooth muscle contractions and how these are regulated by interstitial cell interactions. However, further validation and quantification will be necessary to conclusively determine show the cellular composition of the organoids and how reproducible their behaviors are.

      Strengths:

      This work establishes a new self-organizing organoid system that can easily be generated from the muscle layers of the chick fetal hindgut to study the emergence of spontaneous smooth muscle cell contractility. A key strength of this approach is that the organoids seem to contain few cell types (though more validation is needed), namely smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs). These organoids are amenable to live imaging of calcium dynamics as well as pharmacological perturbations for functional assays, and since they are derived from developing tissues, the emergence of the interactions between cell types can be functionally studied. Thus, the gut contractile organoids represent a reductionist system to study the interactions between SMCs and ICCs in comparison to the more complex in vivo environment, which has made studying these interactions challenging.

      Weaknesses:

      The study lacks complementary in vivo experiments, but these will be exciting to follow up in future studies.

    4. Reviewer #3 (Public review):

      Summary:

      The paper presents a novel contractile gut organoid system that allows for in vitro studying of rudimentary peristaltic motions in embryonic tissues by facilitating GCaMP-live imaging of Ca2+ dynamics, while highlighting the importance and sufficiency of ICC and SMC interactions in generating consistent contractions reminiscent of peristalsis. It also argues that ENS at later embryonic stages might not be necessary for coordination of peristalsis.

      Strengths:

      The manuscript by Yagasaki, Takahashi, and colleagues represents an exciting new addition to the toolkit available for studying fundamental questions in the development and physiology of the hindgut. The authors carefully lay out the protocol for generating contractile gut organoids from chick embryonic hindgut and perform a series of experiments that illustrate the broader utility of these organoids for studying the gut. This reviewer is highly supportive of the manuscript following highly responsive revisions in response to prior reviewer feedback.

    5. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable study reports the development of a novel organoid system for studying the emergence of autorhythmic gut peristaltic contractions through the interaction between interstitial cells of Cajal and smooth muscle cells. While the utility of the organoids for studying hindgut development is well illustrated by showing, for example, a previously unappreciated potential role for smooth muscle cells in regulating the firing rate of interstitial cells of Cajal, some of the functional analyses are incomplete. There are some concerns about the specificity and penetrance of perturbations and the reproducibility of the phenotypes. With these concerns properly addressed, this paper will be of interest to those studying the development and physiology of the gut.

      We greatly appreciate constructive comments raised by the Editors and all the Reviewers. We have newly conducted pharmacological experiments using Nifedipine, a L-type Ca<sup>2+</sup> blocker known to operate in smooth muscles (new Fig 7). The treatment abrogated not only the oscillation of SMCs but also that in ICCs, further corroborating our model that not only ICC-to-SMC interactions but also the reverse direction, namely SMC-to-ICC feedback signals, are operating to achieve coordinated/stable rhythm of gut contractile organoids.

      Concerning the issues of the specificity and penetrance in pharmacological experiments with gap junction inhibitors, we have carefully re-examined effects by multiple blockers (CBX and 18b-GA) at different concentrations (new Fig 5D and Fig. S3B).We have newly found that: (1) the effects observed by CBX (100 µM) that the latency of Ca<sup>2+</sup> peaks between ICCs (preceding) and SMCs (following) was abolished are not seen by 18b-GA at any concentrations including 100 µM, implying that the latency of Ca<sup>2+</sup> peaks between these cells is governed by connexin(s) that are not inhibited by18bGA. Such difference in inhibiting effects by these two drugs were previously reported in multiple model systems including guts (Daniel et al., 2007; Parsons & Huizinga, 2015; Schultz et al., 2003).

      Regarding the penetrance of the drugs, we have carried out earlier administration (Day 3) of the gap junction inhibitor, either CBX (100 µM) or 18b-GA (100 µM), in the course of organoidal formation in culture when cells are still at 2D to exclude a possible penetrance problem (new Fig. S3C). There treatments render no or little effects to the patterns of organoidal contractions in a way similar to the drug administration at Day 7. As already shown in the first version, CBX (100 µM) eliminates the latency of Ca<sup>2+</sup> peaks, we believe that this drug successfully penetrates into the organoid and exerts its specific effects.

      Unfortunately, due to very unstable condition in climate including extreme heat and sporadically occurring bird flu epidemic since the last summer in Japan, the poultry farm must have faced problems. In the course of revision experiments, we got in a serious trouble at multiple times with unhealthy eggs/embryos lasting from last summer until present. These unfortunate incidents did not allow us to engage in the revision experiments as fully as we originally planned. Nevertheless, we did our very best within a limited time fame, and we believe that the revised version is suitable as a final version of an eLife article.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors developed an organoid system that contains smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs; pacemaker) but few enteric neurons, and generates rhythmic contractions as seen in the developing gut. The stereotypical arrangements of SMCs and ICCs in the organoid allowed the authors to identify these cell types in the organoid without antibody staining. The authors took advantage of this and used calcium imaging and pharmacology to study how calcium transients develop in this system through the interaction between the two types of cells. The authors first show that calcium transients are synchronized between ICC-ICC, SMC-SMC, and SMC-ICC. They then used gap junction inhibitors to suggest that gap junctions are specifically involved in ICC-to-SMC signaling. Finally, the authors used an inhibitor of myosin II to suggest that feedback from SMC contraction is crucial for the generation of rhythmic activities in ICCs. The authors also show that two organoids become synchronized as they fuse and SMCs mediate this synchronization.

      Strengths:

      The organoid system offers a useful model in which one can study the specific roles of SMCs and ICCs in live samples.

      Thank you very much for the constructive comments.

      Weaknesses:

      Since only one blocker each for gap junction and myosin II was used, the specificities of the effects were unclear.

      We appreciate these comments. We have addressed those of “weaknesses” as described in “Responses to the eLife assessment” (please see above).

      Reviewer #2 (Public Review):

      Summary:

      In this study, Yagasaki et al. describe an organoid system to study the interactions between smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs). While these interactions are essential for the control of rhythmic intestinal contractility (i.e., peristalsis), they are poorly understood, largely due to the complexity of and access to the in vivo environment and the inability to co-culture these cell types in vitro for long term under physiological conditions. The "gut contractile organoids" organoids described herein are reconstituted from stromal cells of the fetal chicken hindgut that rapidly reorganize into multilayered spheroids containing an outer layer of smooth muscle cells and an inner core of interstitial cells. The authors demonstrate that they contract cyclically and additionally use calcium imagining to show that these contractions occur concomitantly with calcium transients that initiate in the interstitial cell core and are synchronized within the organoid and between ICCs and SMCs. Furthermore, they use several pharmacological inhibitors to show that these contractions are dependent upon non-muscle myosin activity and, surprisingly, independent of gap junction activity. Finally, they develop a 3D hydrogel for the culturing of multiple organoids and found that they synchronize their contractile activities through interconnecting smooth muscle cells, suggesting that this model can be used to study the emergence of pacemaking activities. Overall, this study provides a relatively easy-to-establish organoid system that will be of use in studies examining the emergence of rhythmic peristaltic smooth muscle contractions and how these are regulated by interstitial cell interactions. However, further validation and quantification will be necessary to conclusively determine show the cellular composition of the organoids and how reproducible their behaviors are.

      Strengths:

      This work establishes a new self-organizing organoid system that can easily be generated from the muscle layers of the chick fetal hindgut to study the emergence of spontaneous smooth muscle cell contractility. A key strength of this approach is that the organoids seem to contain few cell types (though more validation is needed), namely smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs). These organoids are amenable to live imaging of calcium dynamics as well as pharmacological perturbations for functional assays, and since they are derived from developing tissues, the emergence of the interactions between cell types can be functionally studied. Thus, the gut contractile organoids represent a reductionist system to study the interactions between SMCs and ICCs in comparison to the more complex in vivo environment, which has made studying these interactions challenging.

      Thank you very much for the constructive comments.

      Weaknesses:

      The study falls short in the sense that it does not provide a rigorous amount of evidence to validate that the gut organoids are made of bona fide smooth muscle cells and ICCs. For example, only two "marker" proteins are used to support the claims of cell identity of SMCs and ICCs. At the same time, certain aspects of the data are not quantified sufficiently to appreciate the variance of organoid rhythmic contractility. For example, most contractility plots show the trace for a single organoid. This leads to a concern for how reproducible certain aspects of the organoid system (e.g. wavelength between contractions/rhythm) might be, or how these evolve uniquely over time in culture. Furthermore, while this study might be able to capture the emergence of ICC-SMC interactions as they related to muscle contraction and pacemaking, it is unclear how these interactions relate to adult gastrointestinal physiology given that the organoids are derived from fetal cells that might not be fully differentiated or might have distinct functions from the adult. Finally, despite the strength of this system, discoveries made in it will need to be validated in vivo. Thank you very much for the comments, which are helpful to improve our MS. In the revised version, we have additionally used antibody against desmin, known to be a maker for mature SMCs (new Fig 3B). The signal is seen only in the peripheral cells overlapping with the αSMA staining (line 169-170).

      Concerning the reproducibility, while contractility changes were shown for a representative organoid in the original version, experiments had been carried out multiple times, and consistent data were reproduced as already mentioned in the text of the first version of MS. However, we agree with this reviewer that it must be more convincing if we assess quantitatively. We have therefore conducted quantitative assessments of organoidal contractions and Ca<sup>2+</sup> transients (new Fig. 2B, new Fig. 4D, new Fig 5D, E, new Fig. 6B, new Fig. 7B, new Fig. 8C, new Fig. S2, S3). Details such as repeats of experiments and size of specimens are carefully described in the revised version (Figure legends)

      In particular, in place of contraction numbers/time, we have plotted “contraction intervals” between two successive peaks (Fig. 2B and others). Actually, with your suggestion, we have tried to perform a periodicity analysis of organoid contractions. Unfortunately, no clear value has been obtained, probably because the contractions/Ca<sup>2+</sup> transitions are not as “regularly periodical” as seen in conventional physics. This led us to perform the peak-interval analysis. Methods to quantify the contraction intervals are carefully explained in the revised version.

      As already mentioned in the “Our provisional responses” following the receipt of Reviewers’ comments, we agree that our organoids derived from embryonic hind gut (E15) might not necessarily recapitulate the full function of cells in adult. However, it has well been accepted in the field of developmental biology that studies with embryonic tissue/cells make a huge contribution to unveil complicated physiological cell functions. Nevertheless, we have carefully considered in the revised version so that the MS would not send misleading messages. We agree that in vivo validation of our gut contractile organoid must be wonderful, and this is a next step to go.

      Reviewer #3 (Public Review):

      Summary:

      The paper presents a novel contractile gut organoid system that allows for in vitro studying of rudimentary peristaltic motions in embryonic tissues by facilitating GCaMPlive imaging of Ca<sup>2+</sup> dynamics, while highlighting the importance and sufficiency of ICC and SMC interactions in generating consistent contractions reminiscent of peristalsis. It also argues that ENS at later embryonic stages might not be necessary for coordination of peristalsis.

      Strengths:

      The manuscript by Yagasaki, Takahashi, and colleagues represents an exciting new addition to the toolkit available for studying fundamental questions in the development and physiology of the hindgut. The authors carefully lay out the protocol for generating contractile gut organoids from chick embryonic hindgut, and perform a series of experiments that illustrate the broader utility of these organoids for studying the gut. This reviewer is highly supportive of the manuscript, with only minor requests to improve confidence in the findings and broader impact of the work. These are detailed below.

      Thank you very much for the constructive comments.

      Weaknesses:

      (1) Given that the literature is conflicting on the role GAP junctions in potentiating communication between intestinal cells of Cajal (ICCs) and smooth muscle cells (SMCs), the experiments involving CBX and 18Beta-GA are well-justified. However, because neither treatment altered contractile frequency or synchronization of Ca++ transients, it would be important to demonstrate that the treatments did indeed inhibit GAP junction function as administered. This would strengthen the conclusion that GAP junctions are not required, and eliminate the alternative explanation that the treatments themselves failed to block GAP junction activity.

      Thank you for these comments, and we agree. In the revised version, we have verified the drugs, CBX and 18b-GA, using dissociated embryonic heart cells in culture, a well-established model for the gap junction study (new Fig. S3D, line 237-239). Expectedly, both inhibitors abrogate the rhythmic beats of heart cells, and importantly, cells’ beats resume after wash-out of the drug.

      (2) Given that 5uM blebbistatin increases the frequency of contractions but 10uM completely abolishes contractions, confirming that cell viability is not compromised at the higher concentration would build confidence that the phenotype results from inhibition of myosin activity. One could either assay for cell death, or perform washout experiments to test for recovery of cyclic contractions upon removal of blebbistatin. The latter may provide access to other interesting questions as well. For example, do organoids retain memory of their prior setpoint or arrive at a new firing frequency after washout?

      We greatly appreciate these suggestions and also interesting ideas to explore! In the revised version, we have newly conducted washout experiments (new Fig. 6B) (10 µM drug is washed-out from culture medium), and found that contractions resume, showing that cell viability is not compromised at 10 µM concentration (line 257-259). Intriguingly, the resumed rhythm appears more regular than that before drug administration. Thus, the contraction rhythm of the organoid might be determined by cellcell interactions at any given time rather than by memory of their prior setpoint. This is an interesting issue we would like to further explore in the future. These issues, although potentially interesting, are not mentioned in the text of the revised version, since it is too early to interpret there observations.

      (3) Regulation of contractile activity was attributed to ICCs, with authors reasoning that Tuj1+ enteric neurons were only present in organoids in very small numbers (~1%).

      However, neuronal function is not strictly dependent on abundance, and some experimental support for the relative importance of ICCs over Tuj1+ cells would strengthen a central assumption of the work that ICCs the predominant cell type regulating organoid contraction. For example, one could envision forming organoids from embryos in which neural crest cells have been ablated via microdissection or targeted electroporation. Another approach would be ablation of Tuj1+ cells from the formed organoids via tetrodotoxin treatment. The ability of organoids to maintain rhythmic contractile activity in the total absence of Tuj1+ cells would add confidence that the ICCs are indeed the driver of contractility in these organoids.

      We agree. In the revised version, we have conducted TTX administration (new Fig. S2C). Changes in contractility by this treatment is not detected, supporting the argument that neural cells/activities are not essential for rhythmic contractions of the organoid (line 178-181).

      (4) Given the implications of a time lag between Ca++ peaks in ICCs and SMCs, it would be important to quantify this, including standard deviations, rather than showing representative plots from a single sample.

      In the revised version, we have elaborated a series of quantitative assessments as mentioned above (please see our responses to the “eLife assessments” at the beginning of these correspondences). The latency between Ca<sup>2+</sup> peaks in ICCs and SMCs is shown in new Fig. 4D, in which measured value is 700 msec-terraced since the time-lapse imaging was performed with 700 msec intervals (as already described in the first version).

      117 peaks for 14 organoids have been assessed (line 218).

      (5) To validate the organoid as a faithful recreation of in vivo conditions, it would be helpful for authors to test some of the more exciting findings on explanted hindgut tissue. One could explant hindguts and test whether blebbistatin treatment silences peristaltic contractions as it does in organoids, or following RCAS-GCAMP infection at earlier stages, one could test the effects of GAP junction inhibitors on Ca++ transients in explanted hindguts. These would potentially serve as useful validation for the gut contractile organoid, and further emphasize the utility of studying these simplified systems for understanding more complex phenomena in vivo.

      Thank you very much for insightful comments. We would love to explore these issues in near future. Just a note is that it was previously reported that Nifedipine silences peristaltic contractions in ex-vivo cultured gut (Chevalier et al., 2024; Der et al., 2000).

      (6) Organoid fusion experiments are very interesting. It appears that immediately after fusion, the contraction frequency is markedly reduced. Authors should comment on this, and how it changes over time following fusion. Further, is there a relationship between aggregate size and contractile frequency? There are many interesting points that could be discussed here, even if experimental investigation of these points is left to future work.

      It would indeed be interesting to explore how cell communications affect/determine the contraction rhythm, and our novel organoids must serve as an excellent model to address these fundamental questions. We have observed multiple times that when two organoids fuse, they undergo “pause”, and resume coordinated contractions as a whole, and we have mentioned such notice briefly in the revised version (line 282). To know what is going on during this pause time should be tempting. In addition, we have an impression that the larger in size organoids grow, the slower rhythm they count. We would love to explore this in near future.

      (7) Minor: As seen in Movie 6 and Figure 6A, 5uM blebbistatin causes a remarkable increase in the frequency of contractions. Given the regular periodicity of these contractions, it is a surprising and potentially interesting finding, but authors do not comment on it. It would be helpful to note this disparity between 5 and 10 uM treatments, if not to speculate on what it means, even if it is beyond the scope of the present study to understand this further.

      We assume that the increase in the frequency of contractions at 5 µM might be due to a shorter refractory period caused by a decreasing magnitude (amplitude) of contraction. We have made a short description in the revised text (line 256-257).

      (8) Minor: While ENS cells are limited in the organoid, it would be helpful to quantify the number of SMCs for comparison in Supplemental Figure S2. In several images, the number of SMCs appears quite limited as well, and the comparison would lend context and a point of reference for the data presented in Figure S2B.

      In the revised version, the number of SMCs has been counted and added in Fig. S2B. Contrary to that SMCs are more abundant than ICCs in an intact gut, the proportion is reversed in our organoid (line 181-183). It might due to treatments during cell dissociation/plating.

      (9) Minor: additional details in the Figure 8 legend would improve interpretation of these results. For example, what is indicated in orange signal present in panels C, G and H? Is this GCAMP?

      We apologize for this confusion. In the revised version, we have added labeling directly in the photos of new Fig. 9 (old Fig. 8). For C, G and H, the left photo is mRuby3+GCaMP6s, and the right one is GCaMP6s only.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have a few comments for the authors to consider:

      (1) Figure 4C: The authors propose that calcium signals propagate from ICC to SMC based on the results presented in this figure. While it is observed that the peak of the calcium signal in ICC precedes that in SMC, it's worth noting that the onset of the rise in calcium signals occurs simultaneously in ICC and SMC. Doesn't this suggest that they are activated simultaneously? The latency observed for the peaks of calcium signals could reflect different kinetics of the rise in calcium concentration in the two types of cells rather than the order of calcium signal propagation.

      We greatly appreciate these comments. We have re-examined kinetics of GCaMP signals in ICC and SMC, but we did not succeed in validating rise points precisely. We agree that the possibility that the rise in calcium signals could be occurring simultaneously. To clarify these issues, analyses with higher resolution is required, such as using GCaMP6f or GCaMP7/8. Nevertheless, the disappearance of the latency of Ca<sup>2+</sup> peak by CBX implies a role of gap junction in ICC to SMC signaling. In the revised version, we replaced the wording “rise” by “peak” when the latency is discussed.

      (2) Figure 5C: The specific elimination of the latency in the calcium signal peaks between ICC and SMC is interesting. However, I am curious about how gap junction inhibitors specifically eliminate the latency between ICC and SMC without affecting other aspects of calcium transients in these cells, such as amplitude and synchronization among ICCs and/or SMCs. Readers of the manuscript would expect some discussion on possible mechanisms underlying this specificity. Additionally, I wonder if the elimination of the latency was observed consistently across all samples examined. The authors should provide information on the frequency and number of samples examined, and whether the elimination occurs when 18-beta-GA is used.

      In the revised version, we have elaborated quantitative demonstration. For the effects by CBX on latency or Ca<sup>2+</sup> peaks, a new graph has been added to new Fig 5, in which 100 µM eliminated the latency. Intriguingly, the latency appears to be attributed to a gap junction that is not inhibited by18-beta-GA (please see new Fig. S3E). As already mentioned above, inhibiting activity of both CBX and 18-beta-GA has been verified using dissociated cells of embryonic heart, a popular model for gap junction studies.

      At present, we do not know how gap junction(s) contribute to the latency of Ca<sup>2+</sup> peaks without affecting synchronization among ICCs and/or SMCs (we have not addressed amplitude of the oscillation in this study). Actually, it was surprising to us to find that GJ’s contribution is very limited. We do not exclude the importance of GJs, and currently speculate that GJs might be important for the initiation of contraction/oscillation signals, whereas the requirement of GJs diminishes once the ICC-SMC interacting rhythm is established. What we observed in this study might be the synchronization signals AFTER these interactions are established (Day 7 of organoidal culture). Upon the establishment, it is possible that mechanical signaling elicited by smooth muscles’ contraction might become prominent as a mediator for the (stable) synchronization, as implicated by experiments with blebbistatin and Nifedipin, the latter being newly added to the revised version (new Fig. 7). We have added such speculation, although briefly in Discussion (line 374-377)

      (3) Figure 6: The significant effects of blebbistatin on calcium dynamics in both ICC and SMC are intriguing. However, since only one blocker is utilized, the specificity of the effects is unclear. If other blockers for muscle contraction are available, they should be employed. Considering that a rise in calcium concentration precedes contraction, calcium transients should persist even if muscle contraction is inhibited. One concern is whether blebbistatin inadvertently rendered the cells unhealthy. The authors should demonstrate at least that contraction and calcium transients recover after removal of the drug. The frequency and number of samples examined should be shown, as requested for Figure 5C above.

      Thank you for these critical comments. A possible harmfulness of the drugs was also raised by other reviewers, and we have therefore conducted wash-out experiments in the revised version (new Fig. 6B). Contractions resume after wash-out showing that cell viability is not compromised at 10 µM concentration. The number of samples examined has been described more explicitly in the revised version. Regarding the blocker of SMC, we have newly carried out pharmacological assays using nifedipine, a blocker of a L-type Ca<sup>2+</sup> channel known to operate in smooth muscle cells (new Fig 7) (Chevalier et al., 2024; Der et al., 2000). As already explained in the “Responses to eLife assessment”, the treatment abrogated ICCs’ rhythm and synchronous Ca<sup>2+</sup> transients between ICCs and SMCs, further corroborating our model that not only ICC-to-SMC interactions but also SMC-to-ICC feedback signals are operating to achieve coordinated/stable rhythm of gut contractile organoids of Day 7 culture (please also see our responses shown above for Comment (2)).

      Reviewer #2 (Recommendations For The Authors):

      Major:

      (1) The claim that organoids contain functional SMCs and ICCs is insufficient as it currently relies on only c-Kit and aSMA antibodies. This conclusion could be additionally supported by staining with other markers of contractile smooth muscle (e.g. TAGLN and MYH14) and an additional accepted marker of ICCs (e.g. ANO1/TMEM16). Moreover, it should be demonstrated whether these cells are PDGFRA+, as PDGFRA is a known marker of other mesenchymal fibroblast cell types. These experiments would additionally rule out whether these cells were simply less differentiated myofibroblasts. Given that there might not be available antibodies that react with chicken protein versions, the authors could support their conclusions using alternative approaches, such as fluorescent in situ hybridization. A more thorough approach, such as single-cell RNA sequencing to compare the cell composition of the in vitro organoids to the in vivo colon, would fully justify the use of these organoids as a system for studying in vivo cell physiology.

      With these suggestions provided, we have newly stained contractile organoids with anti-desmin antibody, known to be a marker for differentiated SMCs. As shown in new Fig. 3B, desmin-positive cells perfectly overlapped with aSMA-staining, indicating that the peripherally enclosing cells are SMCs. Regarding the interior cells, as this Reviewer concerned, there are no antibodies against ANO1/TMEM16 which are available for avian specimens. The anti- c-Kit antibody used in this study is what we raised in our hands by spending years (Yagasaki et al., 2021)), in which the antibody was carefully validated in intact guts of chicken embryos by multiple methods including Western Blot analyses, immunostaining, and in situ hybridization. We have attempted several times to perform organoidal whole-mount in situ hybridization for expression of PDGFRα, but we have not succeeded so far. In addition, as explained to the Editor, the very unhealthy condition of purchased eggs these past 7 months did not allow us to continue any further. We are planning to interrogate cell types residing in the central area of the organoid, results of which will be reported in a separate paper in near future.

      (2) The key ICC-SMC relationship and physiological interaction seems to arise developmentally, but the mechanisms of this transition are not well defined (Chevalier 2020). To further support the claim that ICC-SMC interactions can be interrogated in this system, this study would benefit from establishing organoids at distinct developmental stages to (a) show that they have unique contractile profiles, and (b) demonstrate that they evolve over time in vitro toward an ICC-driven mechanism.

      We agree with these comments. We tried to prepare gut contractile organoids derived from different stages of development, and we had an impression that slightly younger hindguts are available for the organoid preparations. In addition, not only the hindgut, but also midgut and caecum also yield organoids. However, since formed organoids derived from these “non-E15 hindgut” vary substantially in shapes, contraction frequencies/amplitudes etc., we are currently not ready to report these preliminary observations. Instead, we decided to optimize and elaborate in vitro culture conditions by focusing on the E15 hindgut, which turned out to be most stable in our hands. Nevertheless, it is tempting to see how organoid evolves over time during gut development.

      (3) This manuscript would be greatly enhanced by a functional examination of the prospective organoid ICCs. For example, the authors could test whether the c-Kit inhibitor Imatinib, which has previously been used to impair ICC differentiation and function in the developing chick gut (Chevalier 2020), has an effect on contractility at different stages.

      Following the paper of (Chevalier 2020), we had already conducted similar experiments with Imatinib in the culture with our organoids, but we did not see detectable effects. In that paper, the midgut of younger embryos was used, whereas we used E15 hindgut to prepare organoids. It would be interesting to see if we add Imanitib earlier during organoidal formation, and this is a next step to go.

      (4) It is claimed that there is a 690s msec delay in SMC spike relative to ICC spike, however, it is unclear where this average is derived from and whether the organoid calcium trace shown in Figure 4C is representative of the data. The latency quantification should be shown across multiple organoids, and again in the case of carbenoxolone treatment, to better understand the variations in treatment.

      We apologize that the first version failed to clearly demonstrate quantitative assessments. In the revised version, we have elaborated quantitative assessments (117 peaks for 14 organoids) (line 216-218). In new Fig. 4D, measured value is 700 msecterraced since as already mentioned in the first version, the time-lapse imaging was performed with 700 msec intervals.

      (5) As above, a larger issue is that only single traces are shown for each organoid. This makes it challenging to understand the variance in contractile properties across multiple organoids. While contraction frequencies are shown several times, the manuscript would benefit from additional quantifications, such as rhythm (average wavelength between events) in control and perturbed conditions.

      We have substantially elaborated quantitative assessments (please also see our responses to the “Public Review”). In particular, in place of contraction numbers/time, we have plotted “contraction intervals” between two successive peaks (Fig. 2B and others). Actually, we have tried to perform a periodicity analysis of organoid contractions. Unfortunately, no clear value has been obtained, probably because the contractions/Ca<sup>2+</sup> transitions are not as “regularly periodical” as seen in conventional physics. This led us to perform the peak-interval analysis. Methods to quantify the contraction intervals are carefully explained in the revised version.

      (6) The synchronicity observed between ICCs and SMCs within the organoid is interesting, and should be emphasized by making analyses more quantitative so as to understand how consistent and reproducible this phenomenon is across organoids. Moreover, one of the most exciting parts of the study is the synchronicity established between organoids in the hydrogel system, but it is insufficiently quantified. For example, how rapidly is pacemaking synchronization achieved?

      As we replied above to (5), and described in the responses to the “Public Review”, we have substantially elaborated quantitative assessments in the revised version. Concerning the synchronicity between ICCs and SMCs, our data explicitly show that as long as the organoid undergoes healthy contraction, they perfectly match their rhythm (Fig. 4) making it difficult to display quantitatively. Instead, to demonstrate such synchronicity more convincingly, we have carefully described the number of peaks and the number of independent organoids we analyzed in each of Figure legends. In the experiments with hydrogels, the time required for two organoids to start/resume synchronous contraction varies greatly. For example, for the experiment shown in new Fig 9F, it takes 1 day to 2 days for cells crawling out of organoids and cover the surface of the hydrogel. In the experiments shown in new Fig. 8, two organoids undergo “pause” before resuming contractions. In the revised version, we have briefly mentioned our notice and speculation that active cell communications take place during this pausing time, (line 282-283 in Result and line 437-439 in Discussion). We agree with this reviewer saying that the pausing time is potentially very interesting. However, it is currently difficult to quantify these phenomena. More elaborate experimental design might be needed.

      (7) Smooth muscle layers in vivo are well organized into circular and longitudinal layers. To establish physiological relevance, the authors should demonstrate if these organoids have multiple layers (though it looks like just a single outer layer) and if they show supracellular organization across the organoid.

      The immunostaining data suggest that peripherally lining cells are of a single layer, and we assume that they might be aligned in register with contracting direction. However, to clarify these issues, observation with higher resolution would be required.

      (8) To further examine whether the organoids contain true functional ICCs, the authors should test whether their calcium transients are impacted by inhibitors of L-type calcium channels, such as nifedipine and nicardipine. These channels have been demonstrated to be important for SMCs but not ICCs, so one might expect to see continued transients in the core ICCs but a loss of them in SMCs (Lee et al., 1999; PMID: 10444456)

      We appreciate these comments. We have accordingly conducted new experiments with Nifedipine. Contrary to the expectation, Nifedipine ceases not only organoidal contractions, but also ICC activities (and its resulting synchronization) (new Fig. 7). These findings actually corroborate our model already mentioned in the first version that ICCs receive mechanical feedback from SMC’s contraction to stably maintain their oscillatory rhythm. We believe that the additional findings with Nifedipine have improved the quality of our paper. Concerning the central cells in the organoid, we have additionally used anti-desmin antibody known to mark differentiated SMCs. Desmin signals perfectly overlap with those of aSMA in the peripheral single layer, supporting that the peripheral cells are SMCs and central cells are ICCs. The anti c-Kit antibody used in this study is what we raised in our hands by spending years (Yagasaki et al., 2021)), in which the antibody was carefully validated in intact guts of chicken embryos by multiple methods including Western Blot analyses, immunostaining, and in situ hybridization.

      ANO1/TMEM16 are known to stain ICCs in mice. Antibodies against ANO1/TMEM16 available for avian specimens are awaited.

      (9) Despite Tuj1+ enteric neurons only making up a small fraction of the organoids, the authors should still functionally test whether they regulate any aspect of contractility by treating organoids with an inhibitor such as tetrodotoxin to rule out a role for them.

      Thank you for these advices, which are also raised by other reviewers. We have conducted TTX administration (new Fig. S2C). Changes in contractility by this treatment is not detected, supporting the argument that neural cells/activities are not essential for rhythmic contractions of the organoid (line 178-181).

      (10) Finally, the manuscript is written to suggest that the focus of the study is to establish a system to interrogate ICC-SMC interactions in gut physiology and peristalsis. However, the organoids designed in this study are derived from the fetal precursors to the adult cell types. Thus, they might not accurately portray the adult cell physiology. I don't believe that this is a downfall, but rather a strength of the study that should be emphasized. That is, the focus could be shifted toward stressing the power of this new system as a reductionist, self-organizing model to examine the developmental emergence of contractile synchronization in the intestine - in particular that arising through ICC-SMC interactions.

      We appreciate these advices. In the revised MS, we are careful so that our findings do not necessarily portray the physiological functions in adult gut.

      Minor:

      More technical information could be used in the methods:

      (1) What concentration of Matrigel is used for coating, and what size were the wells that cells were deposited into?

      We have added, “14-mm diameter glass-bottom dishes (Matsunami, D11130H)” and “undiluted Matrigel (Corning, 354248) at 38.5°C for 20 min” (line 471473).

      (2) How were organoids transferred to the hydrogels? And were the hydrogels coated?

      We have added “Organoids were transferred to the hydrogel using a glass capillary” (line 560-561).

      (3) Tests for significance and p values should be added where appropriate (e.g. Figure S3B).

      We have added these in Figure legend of new Fig. S3.

      Reviewer #3 (Recommendations For The Authors):

      This is an exciting study, and while the majority of our comments are minor suggestions to improve the clarity and impact of findings, it would be important to verify the effective disruption of GAP junction function with CBX or 18Beta-GA treatments before concluding they are not required for coordination of contractility and initiation by ICCs. It is possible that sufficient contextual support exists in the literature for the nature of treatments used, but this may need to be conveyed within the manuscript to allay concerns that the results could be explained by ineffective inhibition of GAP junctions.

      Thank you very much for these advices. In the revised version, we have newly carried out experiments with dissociated embryonic heart cells cultured in vitro, a model widely used for gap junction studies (Fig. S3D). Both CBX or 18b-GA exert efficient inhibiting activity on contractions of heart cells. We have added the following sentence, “The inhibiting activity of the drugs used here was verified using embryonic heart culture (line 237-239)”.

    1. eLife Assessment

      The study presents a comprehensive multi-approach and functional investigation of RBMX2 as a host factor involved in Mycobacterium bovis pathogenesis and its potential role in promoting epithelial-mesenchymal transition and lung cancer progression. The findings are valuable since the possible connection between M. bovis and lung cancer and the underlying mechanisms provides a promising direction for future research. The evidence is solid with methods, data, and analyses broadly supporting the claims, albeit with minor weaknesses that, if addressed, will make the evidence stronger. The study remains of great interest to microbiology, oncology, and drug discovery scientists.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript presents a compelling study identifying RBMX2 as a novel host factor upregulated during Mycobacterium bovis infection.

      The study demonstrates that RBMX2 plays a role in:

      (1) Facilitating M. bovis adhesion, invasion, and survival in epithelial cells.

      (2) Disrupting tight junctions and promoting EMT.

      (3) Contributing to inflammatory responses and possibly predisposing infected tissue to lung cancer development.

      By using a combination of CRISPR-Cas9 library screening, multi-omics, coculture models, and bioinformatics, the authors establish a detailed mechanistic link between M. bovis infection and cancer-related EMT through the p65/MMP-9 signaling axis. Identification of RBMX2 as a bridge between TB infection and EMT is novel.

      Strengths:

      This topic and data are both novel and significant, expanding the understanding of transcriptomic diversity beyond RBM2 in M. bovis responsive functions.

      Weaknesses:

      (1) The abstract and introduction sometimes suggest RBMX2 has protective anti-TB functions, yet results show it facilitates pathogen adhesion and survival. The authors need to rephrase claims to avoid contradiction.

      (2) While p65/MMP-9 is convincingly implicated, the role of MAPK/p38 and JNK is less clearly resolved.

      (3) Metabolomics results are interesting but not integrated deeply into the main EMT narrative.

      (4) A key finding and starting point of this study is the upregulation of RBMX2 upon M. bovis infection. However, the authors have only assessed RBMX2 expression at the mRNA level following infection with M. bovis and BCG. To strengthen this conclusion, it is essential to validate RBMX2 expression at the protein level through techniques such as Western blotting or immunofluorescence. This would significantly enhance the credibility and impact of the study's foundational observation.

      (5) The manuscript would benefit from a more in-depth discussion of the relationship between tuberculosis (TB) and lung cancer. While the study provides experimental evidence suggesting a link via EMT induction, integrating current literature on the epidemiological and mechanistic connections between chronic TB infection and lung tumorigenesis would provide important context and reinforce the translational relevance of the findings.

    3. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript presents a compelling study identifying RBMX2 as a novel host factor upregulated during Mycobacterium bovis infection.

      The study demonstrates that RBMX2 plays a role in:

      (1) Facilitating M. bovis adhesion, invasion, and survival in epithelial cells.

      (2) Disrupting tight junctions and promoting EMT.

      (3) Contributing to inflammatory responses and possibly predisposing infected tissue to lung cancer development.

      By using a combination of CRISPR-Cas9 library screening, multi-omics, coculture models, and bioinformatics, the authors establish a detailed mechanistic link between M. bovis infection and cancer-related EMT through the p65/MMP-9 signaling axis. Identification of RBMX2 as a bridge between TB infection and EMT is novel.

      Strengths:

      This topic and data are both novel and significant, expanding the understanding of transcriptomic diversity beyond RBM2 in M. bovis responsive functions.

      Weaknesses:

      (1) The abstract and introduction sometimes suggest RBMX2 has protective anti-TB functions, yet results show it facilitates pathogen adhesion and survival. The authors need to rephrase claims to avoid contradiction.

      We sincerely appreciate the reviewer's valuable feedback regarding the need to clarify RBMX2's role throughout the manuscript. We have carefully revised the text to ensure consistent messaging about RBMX2's function in promoting M. bovis infection. Below we detail the specific modifications made:

      (1) Introduction Revisions:

      Changed "The objective of this study was to elucidate the correlation between host genes and the susceptibility of M.bovis infection" to "The objective of this study was to identify host factors that promote susceptibility to M.bovis infection"

      Revised "RBMX2 polyclonal and monoclonal cell lines exhibited favorable phenotypes" to "RBMX2 knockout cell lines showed reduced bacterial survival"

      Replaced "The immune regulatory mechanism of RBMX2" with "The role of RBMX2 in facilitating M.bovis immune evasion"

      (2) Results Revisions:

      Modified "RBMX2 fails to affect cell morphology and the ability to proliferate and promotes M.bovis infection" to "RBMX2 does not alter cell viability but significantly enhances M.bovis infection"

      Strengthened conclusion in Figure 4: "RBMX2 actively disrupts tight junctions to facilitate bacterial invasion"

      (3) Discussion Revisions:

      Revised screening description: "We screened host factors affecting M.bovis susceptibility and identified RBMX2 as a key promoter of infection"

      Strengthened concluding statement: "In summary, RBMX2 drives TB pathogenesis by compromising epithelial barriers and inducing EMT"

      These targeted revisions ensure that:

      All sections consistently present RBMX2 as promoting infection; the language aligns with our experimental finding; potential protective interpretations have been eliminated. We believe these modifications have successfully addressed the reviewer's concern while maintaining the manuscript's original structure and scientific content. We appreciate the opportunity to improve our manuscript and thank the reviewer for this constructive suggestion.

      (2) >While p65/MMP-9 is convincingly implicated, the role of MAPK/p38 and JNK is less clearly resolved.

      We sincerely appreciate the reviewer's insightful comment regarding the roles of MAPK/p38 and JNK in our study. Our experimental data clearly demonstrated that RBMX2 knockout significantly reduced phosphorylation levels of p65, p38, and JNK (Fig. 5A), indicating potential involvement of all three pathways in RBMX2-mediated regulation.

      Through systematic functional validation, we obtained several important findings:

      In pathway inhibition experiments, p65 activation (PMA treatment) showed the most dramatic effects on both tight junction disruption (ZO-1, OCLN reduction) and EMT marker regulation (E-cadherin downregulation, N-cadherin upregulation);

      p38 activation (ML141 treatment) exhibited moderate effects on these processes;

      JNK activation (Anisomycin treatment) displayed minimal impact.

      Most conclusively, siRNA-mediated silencing of p65 alone was sufficient to:

      Restore epithelial barrier function

      Reverse EMT marker expression

      Reduce bacterial adhesion and invasion

      These results establish a clear hierarchy in pathway importance: p65 serves as the primary mediator of RBMX2's effects, while p38 plays a secondary role and JNK appears non-essential under our experimental conditions. We have now clarified this relationship in the revised Discussion section to strengthen this conclusion.

      This refined understanding of pathway hierarchy provides important mechanistic insights while maintaining consistency with all our experimental data. We thank the reviewer for this valuable suggestion that helped improve our manuscript.

      (3) Metabolomics results are interesting but not integrated deeply into the main EMT narrative.

      Thank you for this constructive suggestion. In this article, we detected the metabolome of RBMX2 knockout and wild-type cells after Mycobacterium bovis infection, which mainly served as supporting evidence for our EMT model. However, we did not conduct an in-depth discussion of these findings. We have now added a detailed discussion of this section to further support our EMT model.

      ADD:Meanwhile, metabolic pathways enriched after RBMX2 deletion, such as nucleotide metabolism, nucleotide sugar synthesis, and pentose interconversion, primarily support cell proliferation and migration during EMT by providing energy precursors, regulating glycosylation modifications, and maintaining redox balance; cofactor synthesis and amino sugar metabolism participate in EMT regulation through influencing metabolic remodeling and extracellular matrix interactions; chemokine and cGMP-PKG signaling pathways may further mediate inflammatory responses and cytoskeletal rearrangements, collectively promoting the EMT process.

      (4) A key finding and starting point of this study is the upregulation of RBMX2 upon M. bovis infection. However, the authors have only assessed RBMX2 expression at the mRNA level following infection with M. bovis and BCG. To strengthen this conclusion, it is essential to validate RBMX2 expression at the protein level through techniques such as Western blotting or immunofluorescence. This would significantly enhance the credibility and impact of the study's foundational observation.

      Thank you for your comment. We have supplemented the experiments in this part and found that Mycobacterium bovis infection can significantly enhance the expression level of RBMX2 protein.

      (5) The manuscript would benefit from a more in-depth discussion of the relationship between tuberculosis (TB) and lung cancer. While the study provides experimental evidence suggesting a link via EMT induction, integrating current literature on the epidemiological and mechanistic connections between chronic TB infection and lung tumorigenesis would provide important context and reinforce the translational relevance of the findings.

      We sincerely appreciate the valuable comments from the reviewer. We fully agree with your suggestion to further explore the relationship between tuberculosis (TB) and lung cancer. In the revised manuscript, we will add a new paragraph in the Discussion section to systematically integrate the current literature on the epidemiological and mechanistic links between chronic tuberculosis infection and lung cancer development, including the potential bridging roles of chronic inflammation, tissue damage repair, immune microenvironment remodeling, and the epithelial-mesenchymal transition (EMT) pathway. This addition will help more comprehensively interpret the clinical implications of the observed EMT activation in the context of our study, thereby enhancing the biological plausibility and clinical translational value of our findings.

      ADD:There is growing epidemiological evidence suggesting that chronic TB infection represents a potential risk factor for the development of lung cancer. Studies have shown that individuals with a history of TB exhibit a significantly increased risk of lung cancer, particularly in areas of the lung with pre-existing fibrotic scars, indicating that chronic inflammation, tissue repair, and immune microenvironment remodeling may collectively contribute to malignant transformation 74. Moreover, EMT not only endows epithelial cells with mesenchymal features that enhance migratory and invasive capacity but is also associated with the acquisition of cancer stem cell-like properties and therapeutic resistance 75. Therefore, EMT may serve as a crucial molecular link connecting chronic TB infection with the malignant transformation of lung epithelial cells, warranting further investigation in the intersection of infection and tumorigenesis.

      Reviewer #2 (Public review):

      Summary:

      I am not familiar with cancer biology, so my review mainly focuses on the infection part of the manuscript. Wang et al identified an RNA-binding protein RBMX2 that links the Mycobacterium bovis infection to the epithelial-Mesenchymal transition and lung cancer progression. Upon mycobacterium infection, the expression of RBMX2 was moderately increased in multiple bovine and human cell lines, as well as bovine lung and liver tissues. Using global approaches, including RNA-seq and proteomics, the authors identified differential gene expression caused by the RBMX2 knockout during M. bovis infection. Knockout of RBMX2 led to significant upregulations of tight-junction related genes such as CLDN-5, OCLN, ZO-1, whereas M. bovis infection affects the integrity of epithelial cell tight junctions and inflammatory responses. This study establishes that RBMX2 is an important host factor that modulates the infection process of M. bovis.

      Strengths:

      (1) This study tested multiple types of bovine and human cells, including macrophages, epithelial cells, and clinical tissues at multiple timepoints, and firmly confirmed the induced expression of RBMX2 upon M. bovis infection.

      (2) The authors have generated the monoclonal RBMX2 knockout cell lines and comprehensively characterized the RBMX2-dependent gene expression changes using a combination of global omics approaches. The study has validated the impact of RBMX2 knockout on the tight-junction pathway and on the M. bovis infection, establishing RBMX2 as a crucial host factor.

      Weaknesses:

      (1) The RBMX2 was only moderately induced (less than 2-fold) upon M. bovis infection, arguing its contribution may be small. Its value as a therapeutic target is not justified. How RBMX2 was activated by M. bovis infection was unclear.

      Thank you for your valuable and constructive comments. In this study, we primarily utilized the CRISPR whole-genome screening approach to identify key factors involved in bovine tuberculosis infection. Through four rounds of screening using a whole-genome knockout cell line of bovine lung epithelial cells infected with Mycobacterium bovis, we identified RBMX2 as a critical factor.

      Although the transcriptional level change of RBMX2 was less than two-fold, following the suggestion of Reviewer 1, we examined its expression at the protein level, where the change was more pronounced, and we have added these results to the manuscript.

      Regarding the mechanism by which RBMX2 is activated upon M. bovis infection, we previously screened for interacting proteins using a Mycobacterium tuberculosis secreted and membrane protein library, but unfortunately, we did not identify any direct interacting proteins from M. tuberculosis (https://doi.org/10.1093/nar/gkx1173).

      (2) Although multiple time points have been included in the study, most analyses lack temporal resolution. It is difficult to appreciate the impact/consequence of M. bovis infection on the analyzed pathways and processes.

      We appreciate the valuable comments from the reviewers. Although our study included multiple time points post-infection, in our experimental design we focused on different biological processes and phenotypes at distinct time points:

      During the early phase (e.g., 2 hours post-infection), we focused on barrier phenotypes; during the intermediate phase (e.g., 24 hours post-infection), we concentrated more on pathway activation and EMT phenotypes;

      And during the later phase (e.g., 48–72 hours post-infection), we focused more on cell death phenotypes, which were validated in another FII article (https://doi.org/10.3389/fimmu.2024.1431207).

      We also examined the impact of varying infection durations on RBMX2 knockout EBL cellular lines via GO analysis. At 0 hpi, genes were primarily related to the pathways of cell junctions, extracellular regions, and cell junction organization. At 24 hpi, genes were mainly associated with pathways of the basement membrane, cell adhesion, integrin binding and cell migration By 48 hpi, genes were annotated into epithelial cell differentiation and were negatively regulated during epithelial cell proliferation. This indicated that RBMX2 can regulate cellular connectivity throughout the stages of M. bovis infection.

      For KEGG analysis, genes linked to the MAPK signaling pathway, chemical carcinogen-DNA adducts, and chemical carcinogen-receptor activation were observed at 0 hpi. At 24 hpi, significant enrichment was found in the ECM-receptor interaction, PI3K-Akt signaling pathway, and focal adhesion. Upon enrichment analysis at 48 hpi, significant enrichment was noted in the TGF-beta signaling pathway, transcriptional misregulation in cancer, microRNAs in cancer, small cell lung cancer, and p53 signaling pathway.

      Reviewer #3 (Public review):

      Summary:

      This study investigates the role of the host protein RBMX2 in regulating the response to Mycobacterium bovis infection and its connection to epithelial-mesenchymal transition (EMT), a key pathway in cancer progression. Using bovine and human cell models, the authors have wisely shown that RBMX2 expression is upregulated following M. bovis infection and promotes bacterial adhesion, invasion, and survival by disrupting epithelial tight junctions via the p65/MMP-9 signaling pathway. They also demonstrate that RBMX2 facilitates EMT and is overexpressed in human lung cancers, suggesting a potential link between chronic infection and tumor progression. The study highlights RBMX2 as a novel host factor that could serve as a therapeutic target for both TB pathogenesis and infection-related cancer risk.

      Strengths:

      The major strengths lie in its multi-omics integration (transcriptomics, proteomics, metabolomics) to map RBMX2's impact on host pathways, combined with rigorous functional assays (knockout/knockdown, adhesion/invasion, barrier tests) that establish causality through the p65/MMP-9 axis. Validation across bovine and human cell models and in clinical tissue samples enhances translational relevance. Finally, identifying RBMX2 as a novel regulator linking mycobacterial infection to EMT and cancer progression opens exciting therapeutic avenues.

      Weaknesses:

      Although it's a solid study, there are a few weaknesses noted below.

      (1) In the transcriptomics analysis, the authors performed (GO/KEGG) to explore biological functions. Did they perform the search locally or globally? If the search was performed with a global reference, then I would recommend doing a local search. That would give more relevant results. What is the logic behind highlighting some of the enriched pathways (in red), and how are they relevant to the current study?

      We appreciate the reviewer's thoughtful questions regarding our transcriptomic analysis. In this study, we employed a localized enrichment approach focusing specifically on gene expression profiles from our bovine lung epithelial cell system. This cell-type-specific analysis provides more biologically relevant results than global database searches alone.

      Regarding the highlighted pathways, these represent:

      (1) Temporally significant pathways showing strongest enrichment at each stage:

      • 0h: Cell junction organization (immediate barrier response)

      • 24h: ECM-receptor interaction (early EMT initiation)

      • 48h: TGF-β signaling (chronic remodeling)

      (2) Mechanistically linked to our core findings about RBMX2's role in:

      • Epithelial barrier disruption

      • Mesenchymal transition

      • Chronic infection outcomes

      We selected these particular pathways because they:

      (1) Showed the most statistically significant changes (FDR <0.001)

      (2) Formed a coherent biological narrative across infection stages

      (3) Were independently validated in our functional assays

      This targeted approach allows us to focus on the most infection-relevant pathways while maintaining statistical rigor.

      (2) While the authors show that RBMX2 expression correlates with EMT-related gene expression and barrier dysfunction, the evidence for direct association remains limited in this study. How does RBMX2 activate p65? Does it bind directly to p65 or modulate any upstream kinases? Could ChIP-seq or CLIP-seq provide further evidence for direct RNA or DNA targets of RBMX2 that drive EMT or NF-κB signaling?

      We sincerely appreciate the reviewer's in-depth questions regarding the mechanisms by which RBMX2 activates p65 and its association with EMT. Although the molecular mechanism remains to be fully elucidated, our study has provided experimental evidence supporting a direct regulatory relationship between RBMX2 and the p65 subunit of the NF-κB pathway. Specifically, we investigated whether the transcription factor p65 could directly bind to the promoter region of RBMX2 using CHIP experiments. The results demonstrated that the transcription factor p65 can physically bind to the RBMX2 region.

      Furthermore, dual-luciferase reporter assays were conducted, showing that p65 significantly enhances the transcriptional activity of the RBMX2 promoter, indicating a direct regulatory effect of RBMX2 on p65 expression.

      These findings support our hypothesis that RBMX2 activates the NF-κB signaling pathway through direct interaction with the p65 protein, thereby participating in the regulation of EMT progression and barrier function.

      In our subsequent work papers, we will also employ experiments such as CLIP to further investigate the specific mechanisms through which RBMX2 exerts its regulatory functions.

      (3) The manuscript suggests that RBMX2 enhances adhesion/invasion of several bacterial species (e.g., E. coli, Salmonella), not just M. bovis. This raises questions about the specificity of RBMX2's role in Mycobacterium-specific pathogenesis. Is RBMX2 a general epithelial barrier regulator or does it exhibit preferential effects in mycobacterial infection contexts? How does this generality affect its potential as a TB-specific therapeutic target?

      Thank you for your valuable comments. When we initially designed this experiment, we were interested in whether the RBMX2 knockout cell line could confer effective resistance not only against Mycobacterium bovis but also against Gram-negative and Gram-positive bacteria. Surprisingly, we indeed observed resistance to the invasion of these pathogens, albeit weaker compared to that against Mycobacterium bovis.

      Nevertheless, we believe these findings merit publication in eLife. Moreover, RBMX2 knockout does not affect the phenotype of epithelial barrier disruption under normal conditions; its significant regulatory effect on barrier function is only evident upon infection with Mycobacterium bovis.

      Importantly, during our genome-wide knockout library screening, RBMX2 was not identified in the screening models for Salmonella or Escherichia coli, but was consistently detected across multiple rounds of screening in the Mycobacterium bovis model.

      (4) The quality of the figures is very poor. High-resolution images should be provided.

      Thank you for your feedback; we provided higher-resolution images.

      (5) The methods are not very descriptive, particularly the omics section.

      Thank you for your comments; we have revised the description of the sequencing section.

      (6) The manuscript is too dense, with extensive multi-omics data (transcriptomics, proteomics, metabolomics) but relatively little mechanistic integration. The authors should have focused on the key mechanistic pathways in the figures. Improving the narratives in the Results and Discussion section could help readers follow the logic of the experimental design and conclusions.

      Thank you for your valuable comments. We have streamlined the figures and revised the description of the results section accordingly.

    4. Reviewer #2 (Public review):

      Summary:

      I am not familiar with cancer biology, so my review mainly focuses on the infection part of the manuscript. Wang et al identified an RNA-binding protein RBMX2 that links the Mycobacterium bovis infection to the epithelial-Mesenchymal transition and lung cancer progression. Upon mycobacterium infection, the expression of RBMX2 was moderately increased in multiple bovine and human cell lines, as well as bovine lung and liver tissues. Using global approaches, including RNA-seq and proteomics, the authors identified differential gene expression caused by the RBMX2 knockout during M. bovis infection. Knockout of RBMX2 led to significant upregulations of tight-junction related genes such as CLDN-5, OCLN, ZO-1, whereas M. bovis infection affects the integrity of epithelial cell tight junctions and inflammatory responses. This study establishes that RBMX2 is an important host factor that modulates the infection process of M. bovis.

      Strengths:

      (1) This study tested multiple types of bovine and human cells, including macrophages, epithelial cells, and clinical tissues at multiple timepoints, and firmly confirmed the induced expression of RBMX2 upon M. bovis infection.

      (2) The authors have generated the monoclonal RBMX2 knockout cell lines and comprehensively characterized the RBMX2-dependent gene expression changes using a combination of global omics approaches. The study has validated the impact of RBMX2 knockout on the tight-junction pathway and on the M. bovis infection, establishing RBMX2 as a crucial host factor.

      Weaknesses:

      (1) The RBMX2 was only moderately induced (less than 2-fold) upon M. bovis infection, arguing its contribution may be small. Its value as a therapeutic target is not justified. How RBMX2 was activated by M. bovis infection was unclear.

      (2) Although multiple time points have been included in the study, most analyses lack temporal resolution. It is difficult to appreciate the impact/consequence of M. bovis infection on the analyzed pathways and processes.

    5. Reviewer #3 (Public review):

      Summary:

      This study investigates the role of the host protein RBMX2 in regulating the response to Mycobacterium bovis infection and its connection to epithelial-mesenchymal transition (EMT), a key pathway in cancer progression. Using bovine and human cell models, the authors have wisely shown that RBMX2 expression is upregulated following M. bovis infection and promotes bacterial adhesion, invasion, and survival by disrupting epithelial tight junctions via the p65/MMP-9 signaling pathway. They also demonstrate that RBMX2 facilitates EMT and is overexpressed in human lung cancers, suggesting a potential link between chronic infection and tumor progression. The study highlights RBMX2 as a novel host factor that could serve as a therapeutic target for both TB pathogenesis and infection-related cancer risk.

      Strengths:

      The major strengths lie in its multi-omics integration (transcriptomics, proteomics, metabolomics) to map RBMX2's impact on host pathways, combined with rigorous functional assays (knockout/knockdown, adhesion/invasion, barrier tests) that establish causality through the p65/MMP-9 axis. Validation across bovine and human cell models and in clinical tissue samples enhances translational relevance. Finally, identifying RBMX2 as a novel regulator linking mycobacterial infection to EMT and cancer progression opens exciting therapeutic avenues.

      Weaknesses:

      Although it's a solid study, there are a few weaknesses noted below.

      (1) In the transcriptomics analysis, the authors performed (GO/KEGG) to explore biological functions. Did they perform the search locally or globally? If the search was performed with a global reference, then I would recommend doing a local search. That would give more relevant results. What is the logic behind highlighting some of the enriched pathways (in red), and how are they relevant to the current study?

      (2) While the authors show that RBMX2 expression correlates with EMT-related gene expression and barrier dysfunction, the evidence for direct association remains limited in this study. How does RBMX2 activate p65? Does it bind directly to p65 or modulate any upstream kinases? Could ChIP-seq or CLIP-seq provide further evidence for direct RNA or DNA targets of RBMX2 that drive EMT or NF-κB signaling?

      (3) The manuscript suggests that RBMX2 enhances adhesion/invasion of several bacterial species (e.g., E. coli, Salmonella), not just M. bovis. This raises questions about the specificity of RBMX2's role in Mycobacterium-specific pathogenesis. Is RBMX2 a general epithelial barrier regulator or does it exhibit preferential effects in mycobacterial infection contexts? How does this generality affect its potential as a TB-specific therapeutic target?

      (4) The quality of the figures is very poor. High-resolution images should be provided.

      (5) The methods are not very descriptive, particularly the omics section.

      (6) The manuscript is too dense, with extensive multi-omics data (transcriptomics, proteomics, metabolomics) but relatively little mechanistic integration. The authors should have focused on the key mechanistic pathways in the figures. Improving the narratives in the Results and Discussion section could help readers follow the logic of the experimental design and conclusions.

    1. eLife Assessment

      This work describes an inference technique for extracting information about relative contributions of excitatory and inhibitory synaptic drive onto single neurons in neural networks. The electrophysiological techniques and results are of high quality, and the analytical work is novel and potentially powerful, yet with several untested assumptions underlying the approach. This is nevertheless solid work that will be valuable to neuroscience labs interested in exploring alternative approaches to studies of integrated synaptic connectivity.

    2. Reviewer #2 (Public review):

      Summary:

      By measuring intracellular changes in membrane voltage from a single neuron of the medulla the authors attempted to develop a method for determining the balance of excitatory and inhibitory synaptic drive onto a single neuron.

      Strengths:

      This data-driven approach to explore neural circuits is described well in this study and could be valuable in identifying microcircuits that generate rhythms. Importantly, perhaps, this inference method could enable microcircuits to be studied without the need for time-consuming anatomical tracing or other more involved electrophysiological techniques. Therefore, I can see the value in developing an approach of this type.

      Weaknesses:

      The implications of several assumptions associated with this inference technique have been considered by the authors.

      Most importantly, it is my understanding that this approach assumes a linear I-V when extracting information about the excitatory and inhibitory synaptic conductances (see equations 6 and 7). In Figure 6, the authors explore the impact of varying the reversal potential for the extraction of information about synaptic drive, but this still assumes that the underlying conductance is linear. However, open rectification will be a feature of any conductance generated by asymmetric distributions of ions (see the GHK current equation) and will therefore be a particular issue for the inhibition resulting from asymmetrical Cl- ion gradients across GABA-A receptors as well as the K+ conductance indirectly activated by GABA-B receptor activation. The mixed cation conductance that underlies most synaptic excitation will also generate a non-linear I-V relationship due to the inward rectification associated with polyamine block of AMPA receptors. The authors present evidence that the I-V relationship is linear over most of the voltage range examined, and this is a helpful addition. The authors have discussed the absence of active conductances contributing to the I-V, but I still wonder how the extraction of information concerning the excitatory and inhibitory conductances relies on the assumption of a linear I-V for these conductances.

      This approach has similarities to earlier studies undertaken in the visual cortex that estimated the excitatory and inhibitory synaptic conductance changes that contributed to membrane voltage changes during receptive field stimulation. However, these approaches also involved the recording of transmembrane current changes during visual stimulation that were undertaken in voltage-clamp at various command voltages to estimate the underlying conductance changes. Molkov et al have attempted to essentially deconvolve the underlying conductance changes without this information and I am concerned that this simply may not be possible. However, I appreciate the efforts taken by the authors to address this issue.

      The current balance equation (1) cited in this study is based upon the parallel conductance model developed by Hodgkin & Huxley. One key element of the HH equations is the inclusion of an estimate of the capacitive current generated due to the change in voltage across the membrane capacitance. While the present study considers the impact of membrane capacitance, a deeper discussion on how variations in capacitance across different neuron types might affect inference accuracy would be useful. Differences in capacitance could introduce variability in inferred conductances, potentially influencing model predictions.

      Studies using acute slicing preparations to examine circuit effects have often been limited to the study of small microcircuits, especially feedforward and feedback interneuron circuits. It is widely accepted that any information gained from this approach will always be compromised by the absence of patterned afferent input from outside the brain region being studied. In this study, descending control from the Pons and the neocortex will not be contributing much to the synaptic drive and ascending information from respiratory muscles will also be absent completely. This may not have been such a major concern if this study had been limited to demonstrating the feasibility of a methodological approach. However, this limitation does need to be considered when using an approach of this type to speculate on the prevalence of specific circuit motifs within the medulla (Figure 4). Therefore, I would argue that some discussion of this limitation should be included in this manuscript.

    3. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      Comments on revisions)

      The authors have done a good job at revising the manuscript to put this work into the context of earlier work on brainstem central pattern generators.

      Thank you.

      I still believe the case for the method is not as convincing as it would have been if the method had been validated first on oscillations produced by a known CPG model. Why would the inference of synaptic types from the model CPG voltage oscillations be predetermined? Such inverse problems are quite complicated and their solution is often not unique or sufficiently constrained. Recovering synaptic weights (or CPG parameters) from limited observations of a highly nonlinear system is not warranted (Gutenkunst et al., Universally sloppy parameter sensitivities in systems biology models, PLoS Comp. Biol. 2007; www.doi.org/10.1371/journal.pcbi.0030189) especially when using surrogate biological models like Hodgkin-Huxley models.

      The model of the CPG is irrelevant for such a test of validity because what we reconstruct are postsynaptic conductances of an individual neuron. The network creates a periodic input to this neuron and thus forms a periodic pattern of excitatory and inhibitory conductances. The nature of this input, whether autonomously generated or created artificially (say by periodic optogenetic stimulation), is generally not important. To illustrate this, we used a one-compartment conductance-based (Hodgkin-Huxley style) model neuron incorporating a certain common set of channels (fast sodium (I<sub>NaF</sub>), potassium delayed rectifier (I<sub>Kdr</sub>), persistent sodium (I<sub>NaP</sub>), calcium-dependent potassium (I<sub>KCa</sub>), and cationic non-specific current (I<sub>CAN</sub>)), as well as excitatory and inhibitory synaptic channels whose conductances were implemented as predefined periodic functions. The test suggested by the reviewer would be to implement a current-step protocol similar to the experiments and apply our technique to see if the reconstructed conductance profiles match those predefined functions. Below we show the reconstruction steps for the following arbitrarily chosen pattern:

      𝑔<sub>𝐸𝑋𝐶</sub>(𝑡) /𝑔<sub>𝐿𝐸𝐴𝐾</sub> = 0.1(1 + sin(π𝑡)) and 𝑔<sub>𝐼𝑁𝐻</sub>(𝑡)/𝑔<sub>𝐿𝐸𝐴𝐾</sub> = 0.1 (1 + cos(π𝑡)). Author response image 1 below shows the baseline activity of this model neuron in the absence of the injected current.

      Author response image 1.

      Then we applied a current-step protocol with four steps producing different levels of hyperpolarization and applied our method by calculating the total conductance using linear regression (see the current-voltage plots below) and then decomposing it into the excitatory and inhibitory components.

      Author response image 2.

      As one can see, the reconstructed conductances in Author response image 3 below are nearly identical to their theoretical profiles. This is not surprising because all voltage-dependent currents in the model neuron were inactive in the range of voltages matching our experimental conditions. Therefore, the model could be reduced to just the leak current, synaptic currents and the injected current, which matches precisely the model we used in our manuscript.

      Author response image 3.

      In p.2, the edited section refers to the interspike interval being much smaller than the period of the network. More important is to mention the relationship between the decay time of inhibitory synapses and the period of the network.

      This interpretation misunderstands the focus of our method. The edited sections (including in the theory section of Results) highlight the conditions under which the capacitive current becomes negligible, emphasizing that the membrane time constant must be much smaller than the network oscillation period. This separation of time scales ensures that the membrane potential adjusts quickly to changes in postsynaptic conductance, rendering the capacitive current insignificant over the network’s rhythm. In contrast, the synaptic decay time governs how presynaptic inputs are transduced into postsynaptic conductances—a process relevant to understanding synaptic dynamics but not directly tied to our method’s core objective. Our approach reconstructs postsynaptic conductances from intracellular recordings, not presynaptic spike trains. While interpreting these conductance profiles in terms of specific synaptic connections would indeed involve synaptic decay dynamics, such an analysis exceeds the scope of our paper. Thus, the condition emphasized in the edited sections—concerning the membrane time constant and network period—is the critical one for our method’s applicability, and the synaptic decay time, while relevant to broader synaptic modeling, does not undermine our conclusions.

      We have added the requirement for a much smaller membrane time constant in the Introduction on page 2. The Results theory section already incorporates an extensive discussion of this requirement.

      Comments from the editors:

      We apologize for the delay in coming to this decision, but there was quite a bit of post-review discussion that needed to be resolved. There are two issues that the reviewers agree should be addressed. They remain unconvinced that the simplifying assumptions of the approach are valid. 1) The main issue with the phase argument is that the biological synaptic conductance depends on time and not on the phase of the respiratory cycle as mentioned in the first round of reviews. The approximation g(t)=g(phase) seems to be far too simple to be biologically realistic.

      As we elaborate below, time and phase are fundamentally and mathematically equivalent representations of the same underlying dynamics in a periodic system, and thus, a phase-based representation—where conductances are expressed as functions of the cycle’s phase—is a justified and effective approach for capturing their behavior. We have added this explanation to the theory section of Results. Below are the bases for our assertion.

      In a periodic system, such as the respiratory CPG, the system’s behavior repeats at regular intervals, defined by a period T. For the respiratory cycle in our experimental preparation, this period is approximately 3–4 seconds, encompassing phases like inspiration, post-inspiration, and expiration. In such systems:

      Time (t) is a continuous variable that progresses linearly.

      Phase (φ) represents the position within one cycle, typically normalized between 0 and 1 (or 0 to 2π in some contexts). It can be mathematically related to time via: φ(t) = (t mod T)/T, where (t mod T) is the time elapsed within the current cycle.

      Because the system is periodic, any variable that repeats with period T—such as synaptic conductance in a rhythmically active network—can be expressed as a function of either time or phase. Specifically, if g(t) is periodic with period T, then g(t) = g(t+T). This periodicity allows us to redefine g(t) in terms of phase: g(t) = g(φ(t)), where φ(t) maps time onto a repeating cycle. Thus, in a periodic system, time and phase are fundamentally equivalent representations of the same underlying dynamics. Saying that synaptic conductance depends on phase is mathematically equivalent to saying it depends on time in a periodic manner.

      In a rhythmically active network like the respiratory central pattern generator (CPG), the synaptic conductances, regardless of the specific mechanisms by which they are formed, exhibit periodicity that matches the network’s oscillatory cycle. This occurs because the conductances are driven by the repetitive activity of presynaptic neurons, which are synchronized to the network’s overall rhythm. As a result, the synaptic conductances vary with the same period as the network, making a phase-based representation—where conductances are expressed as functions of the cycle’s phase—a justified and effective approach for capturing their behavior. In our study, we utilized the in situ arterially perfused brainstem-spinal cord preparation from mature rats, which is known to produce a highly periodic respiratory rhythm. To ensure the consistency of this periodicity, we carefully selected recordings where the coefficient of variation of the respiratory cycle period was less than 10%, as outlined in our methods. This strict selection criterion confirms the stability and regularity of the rhythm, supporting the validity of using a phase representation to analyze the synaptic conductances.

      (2) Figure S1 is problematic. First, the currents injected appear to be infinitesimally small.

      There was a typo in the current units, which should be nA and not pA, as evident from the injected current–membrane potential plots in Figure 1B. Figure S1 has been corrected.

      Second, the input resistance is completely independent of voltage, as though there was little or no contribution from hyperpolarization activated currents, which would be surprising.

      While hyperpolarization-activated currents are indeed present in many neuronal types and could theoretically affect input resistance, our data consistently show linear I-V relationships across the voltage range tested (-60 to -100 mV) for the neurons analyzed (see Figure S1 and Author response image 4-9 below). This linearity suggests that, under our experimental conditions, the contribution of voltage-dependent currents, such as h-currents, is negligible within this range.

      Additionally, we now indicate in the manuscript in the theory section of Results how the presence of significant hyperpolarization-activated h-currents would impact our synaptic conductance reconstruction method. In current-clamp recordings, non-linearity from h-currents could introduce voltage-dependent changes in total conductance unrelated to synaptic inputs, potentially skewing the reconstruction. However, this concern does not apply to voltage-clamp recordings, where the membrane potential is held constant, eliminating contributions from voltage-dependent intrinsic currents. As strong evidence of the minimal influence of h-currents, we directly compared synaptic conductance reconstructions using both current-clamp and voltage-clamp protocols in a subset of neurons. The results from these two approaches were highly consistent, indicating that h-currents do not significantly affect our findings. This robustness across experimental methods reinforces the reliability of our conclusions.

      Together, the linear I-V relationships and the agreement between current- and voltage-clamp reconstructions provide compelling evidence that our method accurately captures synaptic conductances without interference from h-currents.

      Typical examples of I-V relationships for each respiratory neuron firing phenotype:

      Author response image 4.

      ramp-I

      Author response image 5.

      pre-I/I

      Author response image 6.

      post-I

      Author response image 7.

      aug-E

      Author response image 8.

      early-I

      Author response image 9.

      late-I

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study aims to create a comprehensive repository about the changes in protein abundance and their modification during oocyte maturation in Xenopus laevis.

      Strengths:

      The results contribute meaningfully to the field.

      Weaknesses:

      The manuscript could have benefitted from more comprehensive analyses and clearer writing. Nonetheless, the key findings are robust and offer a valuable resource for the scientific community.

      We would like to thank the reviewer for his/her positive feedback on our article. The public review points out that "The manuscript could have benefitted from more comprehensive analyses and clearer writing." We have rewritten several sections and provided more detailed explanations of the analysis and interpretation of some data (see below for details). We have also followed all of the reviewer's recommendations, some of which specifically highlighted areas lacking clarity. We would also like to thank the reviewer for pointing out some errors, for which we apologize, and which have now been corrected. We sincerely appreciate the reviewer's thorough work, as it has greatly enhanced the clarity and precision of the manuscript.

      Reviewer #2 (Public review):

      Summary:

      The authors analyzed Xenopus oocytes at different stages of meiosis using quantitative phosphoproteomics. Their advanced methods and analyses revealed changes in protein abundances and phosphorylation states to an unprecedented depth and quantitative detail. In the manuscript they provide an excellent interpretation of these findings putting them in the context of past literature in Xenopus as well as in other model systems.

      Strengths:

      High quality data, careful and detailed analysis, outstanding interpretation in the context of the large body of the literature.

      Weaknesses:

      Merely a resource, none of the findings are tested in functional experiments.

      I am very impressed by the quality of the data and the careful and detailed interpretation of the findings. In this form the manuscript will be an excellent resource to the cell division community in general, and it presents a very large number of hypotheses that can be tested in future experiments. Xenopus has been and still is a popular and powerful model system that led to critical discoveries around countless cellular processes, including the spindle, nuclear envelope, translational regulation, just to name a few. This also includes a huge body of literature on the cell cycle describing its phosphoregulation. It is indeed somewhat frustrating to see that these earlier studies using phosphomutants and phospho-antibodies were just scratching the surface. The phosphoproteomics analysis presented here reveals much more extensive and much more dynamic changes in phosphorylation states. Thereby, in my opinion, this manuscript opens a completely new chapter in this line of research, setting the stage for more systematic future studies.

      We thank the reviewer for his/her extremely positive comments. The public review points out that "none of the findings are tested in functional experiments." This is entirely accurate. We focused our work on obtaining the highest quality proteomic and phosphoproteomic data possible, and then sought to highlight these data by connecting them with existing functional data from the literature. This approach has opened up research avenues with enormous, previously unforeseen potential, in a wide range of biological fields (cell cycle, meiosis, oogenesis, embryonic development, cell biology, cellular physiology, signaling, evolution, etc.). We chose not to delay publication by experimentally investigating the narrow area in which we are specialists (meiotic maturation), while our data offer a vast array of research opportunities across various fields. Our goal was, therefore, to present this extensive dataset as a resource for different scientific communities, who can explore their specific biological questions using our data. This is why we submitted our article to the "Repository" section of eLife. Nevertheless, in the context of the comparative analysis of the mouse and Xenopus phosphoproteomes performed at the reviewer’s request, we felt it was important to complement this new section with functional experiments that not only validate the proteomic data but also provide new insights into certain proteins and their regulation by Cdk1 (new paragraph lines 824-860 and new Figure 9).

      We are also grateful to the reviewer for the recommendation to improve the manuscript by including more comparisons between our Xenopus data and those from other systems. We have followed this suggestion (see below), which has significantly enriched the article (new paragraph lines 824-860 and new Figure 9).

      Reviewer #3 (Public review):

      Summary:

      The authors performed time-resolved proteomics and phospho-proteomics in Xenopus oocytes from prophase I through the MII arrest of the unfertilized egg. The data contains protein abundance and phosphorylation sites of a large number set of proteins at different stages of oocyte maturation. The large sets of the data are of high quality. In addition, the authors discussed several key pathways critical for the maturation. The data is very useful for the researchers not only researchers in Xenopus oocytes but also those in oocyte biology in other organisms.

      Strengths:

      The data of proteomics and phospho-proteomics in Xenopus oocyte maturation is very useful for future studies to understand molecular networks in oocyte maturation.

      Weaknesses:

      Although the authors offered molecular pathways of the phosphorylation in the translation, protein degradation, cell cycle regulation, and chromosome segregation. The author did not check the validity of the molecular pathways based on their proteomic data by the experimentation.

      We thank the reviewer for his/her positive comments. The public review points out that "The author did not check the validity of the molecular pathways based on their proteomic data by the experimentation." This is entirely accurate. We focused our work on obtaining the highest quality proteomic and phosphoproteomic data possible, and then sought to highlight these data by connecting them with existing functional data from the literature. This approach has opened up research avenues with enormous, previously unforeseen potential, in a wide range of biological fields (cell cycle, meiosis, oogenesis, embryonic development, cell biology, cellular physiology, signaling, evolution, etc.). We chose not to delay publication by experimentally investigating the very narrow area in which we are specialists (meiotic maturation), while our data offer a vast array of research opportunities across various fields. Our goal was, therefore, to present this extensive dataset as a resource for different scientific communities, who can explore their specific biological questions using our data. This is why we submitted our article to the "Repository" section of eLife. Nevertheless, in the context of the comparative analysis of the mouse and Xenopus phosphoproteomes performed at the reviewer’s request, we felt it was important to complement this new section with functional experiments that not only validate the proteomic data but also provide new insights into certain proteins and their regulation by Cdk1 (new paragraph lines 824-860 and new Figure 9).

      We have also followed all of the reviewer's recommendations and thank him/her, as the suggestions have significantly enhanced the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Fig. 1 -> In the Figure legend "mPRβ" is called "mPRb". In the Figure, it is indicated that PKA substrates are always activated by the phosphorylation. As the relevant substrates and the mode-of-action of the Arpp19 phosphorylation are not clear at the moment, this seems to be preliminary. It could for example also be conceivable that PKA phosphorylation inhibits a translation activator. In addition, the PG-dependent translation of RINGO/Speedy should be included in the model.

      We fully agree with the reviewer. PKA substrates can either be activators of the Cdk1 activation pathway, which are inhibited by phosphorylation by PKA, or repressors of the same pathway, which are activated by phosphorylation by PKA. This is now illustrated in the new Fig. 1. In addition, we have also included RINGO/Speedy in the model and in the text (lines 78-79) and corrected "mPRb" in the legend.

      (2) Lane 51-52 -> it is questionable if the meiotic divisions can be called "embryonic processes"

      We agree with the reviewer comment, and we have removed the word “embryonic”.

      (3) Lane 53 and lane 106-107 -> recent data have indicated that transcription already starts during cell cycle 12 and 13 in most cells (e.g. Blitz and Cho: Control of zygotic genome activation in Xenopus (2021))

      We apologize for this mistake. The text has been corrected and the reference added (lines 53 and 107).

      (4) Lane 61-62 -> "MI" and "MII" are given as abbreviation for "first and second meiotic spindle"

      The text has been clarified to explain that MI is referred to metaphase I and MII stands for metaphase II (lines 61-64).

      (%) Lane 131-132 -> "single-cell" is mentioned redundantly in this sentence.

      The sentence has been corrected (lines 131-132).

      (6) Fig. 2B -> it is not explained what is plotted as "Average levels" on the x-Axis. Is it the average of expression over all samples or at a given time point? Are the values given as a concentration or are the values normalized? If so, how were they normalized?

      We agree with the reviewer comment that “Average levels” may have been unclear. In the new Fig. 2B, we have re-plotted the graph using the average protein concentration during meiosis, measured as described in the Methods section.

      (7) In Fig. 2-supplement 3E -> from the descriptions it is not entirely clear to me what the difference to the data in Fig. 2B is?

      We thank the reviewer for his/her question regarding the relationship between the data in Fig. 2B and Fig. 2-supplement 3E. We confirm that the raw data visualized in Fig. 2-supplement 3E are the same as those in Fig. 2B. However, in Fig. 2-supplement 3E, the data are color-coded differently to highlight the number of proteins whose concentrations change during meiotic divisions, based on the threshold adopted. The legend of Fig. 2-supplement 3E has been modified to clarify this point.

      (8) Lane 225-226 -> Kifc1 is a minus-end directed motor

      This mistake has been corrected (lines 232-233).

      (9) Lane 271 -> Serbp1, here mentioned to be involved in stabilization of mRNAs, has also been implicated in the regulation of ribosomes (e.g. Leesch et al. 2023). Regarding the overall topic of this manuscript, this could be mentioned as well.

      We agree with the referee that the important role of Serbp1 in the control of ribosome hibernation needs to be mentioned. We have included this point in the revised manuscript together with the reference (lines 277-279).

      (10) Lane 360-363 -> it is mentioned that APPL1 and Akt2 act "to induce meiosis". Furthermore, in the Nader et al. 2020 paper, Akt2 phosphorylation is reported to happen within 30min after PG treatment. In the present work, they only seem to get phosphorylated when Cdk1 is activated. Is there an explanation for this discrepancy?

      Indeed, Nader et al. (2020) indicate that Akt2 is phosphorylated on Ser473 (actually, they should have mentioned Ser474, which is the phosphorylated residue on Akt2; Ser473 corresponds to the numbering of Akt1) between 5 and 30 minutes post-Pg, which supports their hypothesis of an early role for this kinase. However, these conclusions should be taken with caution, considering that their functional experiment using antisense against Akt2 depletes only 25% of the protein, the antibody used to visualize Akt2 phosphorylation also recognizes phosphorylated Akt1 and Akt3, and they did not analyze phosphorylation of the protein after 30 minutes. Therefore, we cannot determine whether the level observed at 30 minutes represents a maximum or if it is just the onset of the phosphorylation that peaks later, possibly after activation of Cdk1, for example.

      Regarding our measurements: we clearly observe phosphorylation of Akt2 following Cdk1 activation on Ser131. We did not detect Akt2 phosphorylation on Ser474, but since our measurements started 1 hour post-Pg, this protein may have returned to a dephosphorylated state on Ser474.

      Therefore, the observations of Nader et al. and ours involve different residues and different phosphorylation kinetics, Nader et al. limiting their analysis to the first 30 minutes, whereas we started at 1 hour.

      We have revised the manuscript text to make these aspects clearer (lines 387-392).

      (11) Fig. 3B -> it could be made clearer in the Figure that all these sites belong to class I

      A title “Class I proteins” has been added in Fig. 3B to clarify it.

      (12) Lane 433-434 -> the authors write that the proteomic data of this study confirm that PATL1 is accumulating during meiotic maturation. However, in Fig. 2B PATL1 is not among the significantly enriched proteins.

      We apologize for this error. Indeed, PATL1 protein is not significantly enriched. The text has been corrected (lines 461-465).

      (13) Fig. 4B -> Zar2 is color-coded to increase in abundance. This is clearly different to published results and what is shown in Fig. 2B of this manuscript.

      Indeed, our dataset shows that the quantity of Zar2 decreases. This does not appear anymore in Figure 2B since Zar2 average concentration cannot be estimated. We made an error in the color coding, which has now been corrected in Figure 4B.

      (14) Lane 442-444 -> it might be worth mentioning that the interaction between CPEB1 and Maskin, and thus probably its role in regulation of translation, could not be reproduced in other studies (Minshall et al.: CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes (2007) or Duran-Arque et al.: Comparative analyses of vertebrate CPEB proteins define two subfamilies with coordinated yet distinct functions in post-transcriptional gene regulation (2022)).

      This clarification is now mentioned in the text, supported by the two references that have been added (lines 471-477).

      (15) Lane 483-485 -> The meaning of these sentences is not entirely clear to me. What exactly is the similarity with the function of Emi1? What does "...binding of Cyclin B1..." mean (binding to which other protein?). What is the similarity between Emi1 and CPEB1/BTG4, both of which are regulators of mRNA stability/polyadenylation?

      We apologize if these sentences were unclear. Our intention was to emphasize the central role of ubiquitin ligases in regulating multiple events during meiotic divisions. We used SCF<sup>βTrCP</sup>, a wellstudied ubiquitin ligase in Xenopus and mouse oocytes during meiosis, as an example. SCF<sup>βTrCP</sup> regulates the degradation of several substrates, including Emi1, Emi2, CPEB1, and Btg4, whose degradation or stabilization is essential for the proper progression of meiosis. Lastly, we highlighted that these regulatory processes, mediated by protein degradation, may be conserved in mitosis, as for example the destruction of Emi1. We have rewritten this paragraph for clarity (lines 513-518).

      (16) Lane 521-522 and 572-573 -> the authors write that Myt1 was not detected in their proteome. However, in Fig. 6A they list "pkmyt1" as a class II protein. On Xenbase, "pkmyt1" is the Cdk1 kinase, "Myt1" is a transcription factor, so the authors might have been looking for the wrong protein.

      We thank the reviewer for this accurate observation. We have modified the text to correct this error (lines 554 and 607).

      (17) Lane 564-565 -> The authors state that Cdk1 activity can be measured by analyzing Cdc27 S428 phosphorylation. However, in vivo the net phosphorylation of a site is always depending on the relevant kinase and phosphatase activities. As S428 is a Cdk1 site, it is not unlikely that it is dephosphorylated by PP2A-B55, which by itself is under the control of Cdk1. Do the authors have direct evidence that the change in phosphorylation of S428 can only be attributed to the changes in Cdk1 activity?

      There is evidence in the literature that Cdc27 is dephosphorylated by PP2A (Torres et al., 2010). In Xenopus oocytes, PP2A activity is high during prophase (Lemonnier et al., 2021) and decreases at the time of Cdk1 activation, mediated by the Greatwall-ENSA/Arpp19 system, remaining low until MII (Labbé et al., 2021). Therefore, the period where fluctuations in Cdk1 activity are difficult to assess, from NEBD to MII, corresponds to a phase of inhibited PP2A activity. As a result, the phosphorylation level of Cdc27 reflects primarily the activity of Cdk1. We have added this clarification in the text (lines 597-600).

      (18) Fig. 7C and 7D -> in 7C, for Nup35/Nup53 there is a phospho-peptide GIMEVRS(60)PPLHSGG. In Fig. 7D phosphorylation of GVMEMRS(59)PLFSGG is analyzed. Is this the same phosphosite/region of Nup35/Nup53? How can there be a slightly different version of the same peptide in one protein? Are these the L- and S-version of Nup35/Nup53? It is also very surprising that the two phosphosites belong to different classes, class III and class II, respectively.

      We thank the reviewer for this observation. The peptides GIMEVRS(60)PPLHSGG and GVMEMRS(59)PLFSGG correspond to the same phosphorylation site in the L and S versions of Xenopus laevis Nup35, respectively. The L version peptide was classified as Class III, while the S version was not assigned to any class due to its high phosphorylation level in prophase, which prevented it from meeting the log<sub>2</sub> fold-change threshold of 1 required by our analysis to detect significant differences.

      (19) Table 1 -> second last column is headed "Whur, 2014"

      The typo has been corrected.

      (20) Fig. 8 -> Why are all the traces starting at t=1h after PG?

      The labeling of the graphs in Fig. 8 has been corrected, and the traces now begin at t0.

      (21) Lane 754 -> Although a minority, there are also some minus-end directed kinesins, e.g. Kifc1

      We agree with the reviewer. We should have mentioned that, in addition to dyneins, some kinesins are minus-end directed motors, especially since one of them, Kifc1, is regulated at the level of its accumulation. We have rephrased the relevant sentences to incorporate this observation (lines 790-793).

      (22) Section "Assembly of microtubule spindles and microtubule dynamics" -> Although this section clearly has a strong focus on phosphorylation, it might be worth mentioning again that many regulators of the microtubule spindle, e.g. TXP2, are among the upregulated proteins in Fig. 2B/C

      We have already discussed that the protein levels of certain key regulators of the mitotic spindle (Tpx2, PRC1, SSX2IP, Kif11/Eg5 among others) are subject to control during meiotic maturation in a previous chapter “Protein accumulation: the machinery of cell division and DNA replication” (lines 230-239). We agree with the reviewer that this important observation can be mentioned again at the beginning of this chapter on phosphorylation control. We have added a sentence regarding this at the start of the paragraph (lines 774-775).

      Reviewer #2 (Recommendations for the authors):

      While I find the manuscript excellent and detailed already in its current form, I would appreciate including even more comparisons to other systems. In particular, a similar phosphoproteomics experiment has been performed in starfish oocytes undergoing meiosis (Swartz et al, eLife, 2021), and there are several studies on mitosis of diverse mammalian cells. It would be very exciting to see to what extent changes are conserved.

      We thank the reviewer for this recommendation, which we have attempted to follow. We have matched our dataset of mass spectrometry using the the phosphor-occupancy_matlab package, available as part of our code repository (https://github.com/elizabeth-van-itallie) previously described in (Van Itallie et al, 2025). Unfortunately, we were unable to match our dataset with the data from Swartz et al. (2021) on starfish oocyte due to the low sequence conservation. However, we have compared our dataset with the dataset from Sun et al. (2024) on mouse oocyte maturation. We identified a total of 408 conserved phosphorylation sites, which mapped to 320 proteins in Xenopus and 277 in mice (refer to a new paragraph: lines 824-860, new Figure 9, Methods: lines 1011-1032 and 1060-1065, and Appendix 7). The phosphorylation patterns during meiosis showed a significant crossspecies correlation (Pearson r = 0.39, p < 0.0001; see new Figure 9A), demonstrating the evolutionary conservation of phosphoproteomic regulation. Important phosphorylation events, including Plk1 at T201, Gwl at S467, and Erk2 at T188, were upregulated in both species, in line with the activation of the Cdk1 and MAPK signaling cascades (Figure 6B, new Figure 9A-B). We validated several of these phosphorylation sites by western blotting and demonstrated their dependency on Cdk1 activation (new Figure 9C). Together, these findings reinforce the notion that fundamental phospho-regulatory pathways are conserved during oocyte maturation in vertebrates.

      Reviewer #3 (Recommendations for the authors):

      (1) Page 6, the first paragraph of Results section: Please describe the method on how the authors measured and quantified the proteomes in different stages of Xenopus oocyte maturation briefly. Without the experimental design, it is very hard to evaluate the results in the following paragraphs.

      As requested by the reviewer, we added a few sentences describing the method of proteomics and phosphoproteomics measurements in oocytes resuming meiosis (lines 151-158).

      (2) In the phospho-proteome, it is better to classify the amino acids for the phosphorylation such as Ser, Thr, and Tyr. Particularly how many tyrosine phosphorylations are in the list.

      Our phosphosites dataset contains 80% Ser, 19.9% Thr, and 0.01% Tyr. Phospho-Tyr are slightly less abundant than what has been described in the literature (in most cells “roughly 85-90% of protein phosphorylation happens on Ser, ~10% on Thr, and less than 0.05% on Tyr" after Sharma et al., 2014. The same observation was made regarding the distribution of phosphorylated amino acids in mouse oocytes, where phospho-Tyr abundance is relatively diminished in oocytes compared to mouse organs (Sun et al., 2024). These observations are now reported in the manuscript (lines 309-313).

      (3) In class II (Figure 3), when Cdk1 (line 326) is a major kinase, how many phosphorylation sites are a target of Cdk1 (with the Cdk1-motif)? Moreover, do the authors find any other consensus sequences for the phosphorylation? Those are either known or unknown. This information would be useful for the readers.

      We thank the reviewer for this valuable comment. To address it, we used the kinase prediction server (https://kinase-library.phosphosite.org/kinase-library/score-site) to analyze Class II phosphosites. These new results are mentioned in lines 340-349 and illustrated in a new Figure (Figure 3—figure supplement 1A). We identified 303 sites predicted to be phosphorylated by Cdk1. Of these, 166 were also predicted as Erk1/2 targets, reflecting the similarity between Cdk1 and Erk1/2 consensus motifs.

      Cdk1 substrate phosphorylation is governed by more than just the presence of a consensus sequence. In addition to its preference for the (S/T)P×(K/R) motif, Cdk1/cyclin complexes achieve specificity through docking interactions with short linear motifs (SLiMs) recognized by the cyclin subunit (as LxF motifs)(Loog & Morgan, 2005), and via the Cdk-binding subunits Cks1 or Cks2, which interact with phosphorylated threonine residues in primed substrates (Örd et al, 2019). These mechanisms promote processive multisite phosphorylation and allow Cdk1 to target substrates even at non-canonical sites. Our motif-based analysis captures only part of this complexity and may underestimate the number of true Cdk1 targets.

      To further explore kinase involvement across phosphosite classes, we extended the analysis to all clusters and identified the most enriched kinase predictions for each (lines 360-365, new Figure 3— figure supplement 1B). In Class II, the most enriched kinases included Cdk1, Erk2, and Plk1, supporting the conclusions derived from the identification of the phosphosites of this Class. But others such as Cdk2, Cdk3, Cdk5, Cdk16, KIS, JNK1, and JNK3 were also identified.

      (4) Figure 3B: Why do the authors show this kind of Table only for Class I, not Classes II-V? It would be informative to show candidate proteins in other classes.

      We chose to present the candidate proteins from Class I in a table format because the number of phosphosites (136) was too small to allow a meaningful Gene Ontology (GO) enrichment analysis. Therefore, we manually curated the data and highlighted proteins whose Class I phosphosites are associated with specific biological processes. For Classes II–V, the higher number of phosphosites allowed us to perform GO enrichment analyses. Since several of the enriched processes were shared across different classes, and some proteins have phosphosites in multiple classes, we opted to organize the results by biological processes rather than by class. We agree with the reviewer that it is indeed valuable to highlight interesting proteins with Class II–V phosphosites. We have done so in Figures 4 through 8, using graphical representations instead of tables, in order to make the data more accessible and avoid long tables. Additionally, the Supplementary Figures provide detailed phosphorylation trends for many of the proteins discussed in the main figures.

      (5) It would be nice if the authors compare this phospho-proteome in Xenopus oocyte maturation with that in mouse oocyte maturation (Sun et al. 2024) in terms of evolutional conservation of the phospho-proteomes.

      We thank the reviewer for this suggestion. As now detailed in the manuscript, we compared our Xenopus phosphoproteome with the dataset from Sun et al. (2024) on mouse oocyte maturation using the the phospho_occupancy_matlab package, available as part of our code repository (https://github.com/elizabeth-van-itallie) previously described in (Van Itallie et al, 2025). We identified 408 conserved phosphorylation sites corresponding to 320 Xenopus and 277 mouse proteins (see new paragraph: lines 824-860, new Figure 9, Methods: lines 1011-1032 and 1060-1065, and Appendix 7). Phosphorylation dynamics across meiosis were significantly correlated between the species (Pearson r = 0.39, p < 0.0001; new Figure 9A), highlighting evolutionary conservation of the phosphoproteomes. Key phosphorylation events such as Plk1 at T201, Gwl at S467, and Erk2 at T188 increased in both species, consistent with activation of the Cdk1 and MAPK pathways (Figure 6B, new Figure 9A–B). We validated experimentally several of these phosphorylation sites by western blot (Erk2, Plk1, Fak1 and Akts1) and demonstrated their dependency on Cdk1 activation (new Figure 9C). Together, these new findings support the conservation of key phospho-regulatory mechanisms across vertebrate oocyte maturation.

      Minor points:

      (1) Reference lists: Please add Sun et al (2024) shown in line 115.

      This important reference has been added (lines 115, 134, 313 and 826).

      (2) Figure 1, red arrows for the inhibition: This should be "T" shape for a better understanding of these complicated pathways.

      We agree with the reviewer’s remark, and we have modified Figure 1.

      (3) Line 236-238: The authors referred to the absence of Cdc6 in oocyte maturation in Xenopus. However, Figure 2C shows that Cdc6 belongs to a list of accumulating proteins with Orc1 and Ocr2 etc. and the authors did not discuss this discrepancy in the text. Please clarity the claim.

      We apologize for the unclear wording in our text. The section of the manuscript regarding the pre-RC components may have been misleading. The text has been revised to clarify that Cdc6 was not detected in prophase-arrested oocytes by western blot and that it accumulates during meiotic maturation after MI, enabling oocytes to replicate DNA (lines 243-250).

      (4) Line 306: Please add the link to phosphosite.org.

      The link has been added (line 319).

    2. eLife Assessment

      This important paper describes a comprehensive quantitative phospho-proteomic analysis of the meiotic progression of Xenopus oocytes. Using time-resolved proteomic analyses, the authors provide insights into changes in protein levels and phosphorylation states to an unprecedented depth, quality, and quantitative detail. The key findings are compelling and offer a helpful resource for the scientific community.

    3. Reviewer #1 (Public review):

      In the revised version of the manuscript, the authors have adequately addressed all our concerns. The authors should spell check their manuscript, e.g., correct phosphor-site to phospho-site etc.

      Summary:

      The study aims to create a comprehensive repository about the changes in protein abundance and their modification during oocyte maturation in Xenopus laevis.

    4. Reviewer #2 (Public review):

      Summary:

      The authors analyzed Xenopus oocytes at different stages of meiosis using quantitative phosphoproteomics. Their advanced methods and analyses revealed changes in protein abundances and phosphorylation states to an unprecedented depth and quantitative detail. In the manuscript they provide an excellent interpretation of these findings putting them in the context of past literature in Xenopus as well as in other model systems. The clarity of these explanations improved significantly in the revised version of the manuscript, and several minor imprecisions have been corrected as well.

      Strengths:

      High-quality data, careful and detailed analysis, and outstanding interpretation in the context of the large body of literature.

      Weaknesses:

      Merely a resource, none of the findings are tested in functional experiments.

      I am very impressed by the quality of the data and the careful and detailed interpretation of the findings. In this form, the manuscript will be an excellent resource to the cell division community in general, and it presents a very large number of hypotheses that can be tested in future experiments. Xenopus has been and still is a popular and powerful model system that led to critical discoveries around countless cellular processes, including the spindle, nuclear envelope, and translational regulation, just to name a few. This also includes a huge body of literature on the cell cycle describing its phosphoregulation. It is indeed somewhat frustrating to see that these earlier studies using phospho-mutants and phospho-antibodies were just scratching the surface. The phosphoproteomics analysis presented here reveals much more extensive and much more dynamic changes in phosphorylation states. Thereby, in my opinion, this manuscript opens a completely new chapter in this line of research, setting the stage for more systematic future studies.

    5. Reviewer #3 (Public review):

      Summary:

      The authors performed time-resolved proteomics and phospho-proteomics in Xenopus oocytes from prophase I through the MII arrest of the unfertilized egg. The data contains protein abundance and phosphorylation sites of a large number set of proteins at different stages of oocyte maturation. The large sets of data are of high quality. In addition, the authors discussed several key pathways critical for the maturation. The data is very useful for researchers, not only researchers in Xenopus oocytes but also those in oocyte biology in other organisms.

      Strengths:

      The data of proteomics and phospho-proteomics in Xenopus oocyte maturation is very useful for future studies to understand molecular networks in oocyte maturation.

      Weaknesses:

      Although the authors offered molecular pathways of the phosphorylation in translation, protein degradation, cell cycle regulation, and chromosome segregation. The authors did not check the validity of the molecular pathways based on their proteomic data by experimentation. But this is not essential since this is a resource paper.

    1. eLife Assessment

      The authors quantified intentions and knowledge gaps in scientists' use of sex as a biological variable in their work, and used a workshop intervention to show that while willingness was high, pressure points centered on statistical knowledge and perceived additional monetary costs to research. These important findings demonstrate the difficulty in changing understanding - while interventions can improve knowledge and decrease perceived barriers, the impact was small. The evidence was solid, although the sample size was small for the intervention.

    2. Reviewer #1 (Public review):

      Summary:

      The authors use the theory of planned behavior to understand whether or not intentions to use sex as a biological variable (SABV), as well as attitude (value), subjective norm (social pressure), and behavioral control (ability to conduct behavior), across scientists at a pharmacological conference. They also used an intervention (workshop) to determine the value of this workshop in changing perceptions and misconceptions. Attempts to understand the knowledge gaps were made.

      Strengths:

      The use of SABV is limited in terms of researchers using sex in the analysis as a variable of interest in the models (and not a variable to control). To understand how we can improve on the number of researchers examining the data with sex in the analyses, it is vital we understand the pressure points that researchers consider in their work. The authors identify likely culprits in their analyses. The authors also test an intervention (workshop) to address the main bias or impediments for researchers' use of sex in their analyses.

      Weaknesses:

      There are a number of assumptions the authors make that could be revisited:

      (1) that all studies should contain across sex analyses or investigations. It is important to acknowledge that part of the impetus for SABV is to gain more scientific knowledge on females. This will require within sex analyses and dedicated research to uncover how unique characteristics for females can influence physiology and health outcomes. This will only be achieved with the use of female-only studies. The overemphasis on investigations of sex influences limits the work done for women's health, for example, as within-sex analyses are equally important.

      (2) It should be acknowledged that although the variability within each sex is not different on a number of characteristics (as indicated by meta-analyses in rats and mice), this was not done on all variables, and behavioral variables were not included. In addition, across-sex variability may very well be different, which, in turn, would result in statistical sex significance. In addition, on some measures, there are sex differences in variability, as human males have more variability in grey matter volume than females. PMID: 33044802.

      (3) The authors need to acknowledge that it can be important that the sample size is increased when examining more than one sex. If the sample size is too low for biological research, it will not be possible to determine whether or not a difference exists. Using statistical modelling, researchers have found that depending on the effect size, the sample size does need to increase. It is important to bare this in mind as exploratory analyses with small sample size will be extremely limiting and may also discourage further study in this area (or indeed as seen the literature - an exploratory first study with the use of males and females with limited sample size, only to show there is no "significance" and to justify this as an reason to only use males for the further studies in the work.

    3. Reviewer #2 (Public review):

      Summary:

      The investigators tested a workshop intervention to improve knowledge and decrease misconceptions about sex inclusive research. There were important findings that demonstrate the difficulty in changing opinions and knowledge about the importance of studying both males and females. While interventions can improve knowledge and decrease perceived barriers, the impact was small.

      Strengths:

      The investigators included control groups and replicated the study in a second population of scientists. The results appear to be well substantiated. These are valuable findings that have practical implications for fields where sex is included as a biological variable to improve rigor and reproducibility.

      Weaknesses:

      I found the figures difficult to understand and would have appreciated more explanation of what is depicted, as well as greater space between the bars representing different categories.

    4. Reviewer #3 (Public review):

      Summary:

      This manuscript aims to determine cultural biases and misconceptions in inclusive sex research and evaluate the efficacy of interventions to improve knowledge and shift perceptions to decrease perceived barriers for including both sexes in basic research.

      Overall, this study demonstrates that despite the intention to include both sexes and a general belief in the importance of doing so, relatively few people routinely include both sexes. Further, the perceptions of barriers to doing so are high, including misconceptions surrounding sample size, disaggregation, and variability of females. There was also a substantial number of individuals without the statistical knowledge to appropriately analyze data in studies inclusive of sex. Interventions increased knowledge and decreased perception of barriers.

      Strengths:

      (1) This manuscript provides evidence for the efficacy of interventions for changing attitudes and perceptions of research.

      (2) This manuscript also provides a training manual for expanding this intervention to broader groups of researchers.

      Weaknesses:

      The major weakness here is that the post-workshop assessment is a single time point, soon after the intervention. As this paper shows, intention for these individuals is already high, so does decreasing perception of barriers and increasing knowledge change behavior, and increase the number of studies that include both sexes?

      Similarly, does the intervention start to shift cultural factors? Do these contribute to a change in behavior?

    5. Author response:

      Reviewer #1 (Public review):

      Summary:

      The authors use the theory of planned behavior to understand whether or not intentions to use sex as a biological variable (SABV), as well as attitude (value), subjective norm (social pressure), and behavioral control (ability to conduct behavior), across scientists at a pharmacological conference. They also used an intervention (workshop) to determine the value of this workshop in changing perceptions and misconceptions. Attempts to understand the knowledge gaps were made.

      Strengths:

      The use of SABV is limited in terms of researchers using sex in the analysis as a variable of interest in the models (and not a variable to control). To understand how we can improve on the number of researchers examining the data with sex in the analyses, it is vital we understand the pressure points that researchers consider in their work. The authors identify likely culprits in their analyses. The authors also test an intervention (workshop) to address the main bias or impediments for researchers' use of sex in their analyses.

      Weaknesses:

      There are a number of assumptions the authors make that could be revisited:

      (1) that all studies should contain across sex analyses or investigations. It is important to acknowledge that part of the impetus for SABV is to gain more scientific knowledge on females. This will require within sex analyses and dedicated research to uncover how unique characteristics for females can influence physiology and health outcomes. This will only be achieved with the use of female-only studies. The overemphasis on investigations of sex influences limits the work done for women's health, for example, as within-sex analyses are equally important.

      The Sex and Gender Equity in Research (SAGER) guidelines (1) provide guidance that “Where the subjects of research comprise organisms capable of differentiation by sex, the research should be designed and conducted in a way that can reveal sex-related differences in the results, even if these were not initially expected.”. This is a default position of inclusion where the sex can be determined and analysis assessing for sex related variability in response. This position underpins many of the funding bodies new policies on inclusion.

      However, we need to place this in the context of the driver of inclusion. The most common reason for including male and female samples is for those studies that are exploring the effect of a treatment and then the goal of inclusion is to assess the generalisability of the treatment effect (exploratory sex inclusion)(2). The second scenario is where sex is included because sex is one of the variables of interest and this situation will arise because there is a hypothesized sex difference of interest (confirmatory sex inclusion).

      We would argue that the SABV concept was introduced to address the systematic bias of only studying one sex when assessing treatment effect to improve the generalisability of the research. Therefore, it isn’t directly to gain more scientific knowledge on females. However, this strategy will highlight when the effect is very different between male and female subjects which will potentially generate sex specific hypotheses.

      Where research has a hypothesis that is specific to a sex (e.g. it is related to oestrogen levels) it would be appropriate to study only the sex of interest, in this case females. The recently published Sex Inclusive Research Framework gives some guidance here and allows an exemption for such a scenario classifying such proposals “Single sex study justified” (3).

      We plan to add an additional paragraph to the introduction to clarify the objectives behind inclusion and how this assists the research process.

      (2) It should be acknowledged that although the variability within each sex is not different on a number of characteristics (as indicated by meta-analyses in rats and mice), this was not done on all variables, and behavioral variables were not included. In addition, across-sex variability may very well be different, which, in turn, would result in statistical sex significance. In addition, on some measures, there are sex differences in variability, as human males have more variability in grey matter volume than females. PMID: 33044802.

      The manuscript was highlighting the common argument used to exclude the use of females, which is that females are inherently more variable as an absolute truth. We agree there might be situations, where the variance is higher in one sex or another depending on the biology. We will extend the discussion here to reflect this, and we will also link to the Sex Inclusive Research Framework (3) which highlights that in these situations researchers can utlise this argument provided it is supported with data for the biology of interest.

      (3) The authors need to acknowledge that it can be important that the sample size is increased when examining more than one sex. If the sample size is too low for biological research, it will not be possible to determine whether or not a difference exists. Using statistical modelling, researchers have found that depending on the effect size, the sample size does need to increase. It is important to bare this in mind as exploratory analyses with small sample size will be extremely limiting and may also discourage further study in this area (or indeed as seen the literature - an exploratory first study with the use of males and females with limited sample size, only to show there is no "significance" and to justify this as an reason to only use males for the further studies in the work.

      The reviewer raises a common problem: where researchers have frequently argued that if they find no sex differences in a pilot then they can proceed to study only one sex. The SAGER guidelines (1), and now funder guidelines (4, 5), challenge that position. Instead, the expectation is for inclusion as the default in all experiments (exploratory inclusion strategy) to allow generalisable results to be obtained. When the results are very different between the male and female samples, then this can be determined. This perspective shift (2) requires a change in mindset and understanding that the driver behind inclusion is of generalisability not exploration of sex differences. This will be added to the introduction as an additional paragraph exploring the drivers behind inclusion.

      We agree with the reviewer that if the researcher is interested in sex differences in an effect (confirmatory inclusion strategy, aka sex as a primary variable) then the N will need to be higher. However, in this situation, one, of course, must have male and female samples in the same experiment to allow the simultaneous exploration to assess the dependency on sex.

      Reviewer #2 (Public review):

      Summary:

      The investigators tested a workshop intervention to improve knowledge and decrease misconceptions about sex inclusive research. There were important findings that demonstrate the difficulty in changing opinions and knowledge about the importance of studying both males and females. While interventions can improve knowledge and decrease perceived barriers, the impact was small.

      Strengths:

      The investigators included control groups and replicated the study in a second population of scientists. The results appear to be well substantiated. These are valuable findings that have practical implications for fields where sex is included as a biological variable to improve rigor and reproducibility.

      Thank you for assessment and highlighting these strengths. We appreciate your recognition of the value and practical implications of this work.

      Weaknesses:

      I found the figures difficult to understand and would have appreciated more explanation of what is depicted, as well as greater space between the bars representing different categories.

      We plan to review the figures and figure legends to improve clarity of the data.

      Reviewer #3 (Public review):

      Summary:

      This manuscript aims to determine cultural biases and misconceptions in inclusive sex research and evaluate the efficacy of interventions to improve knowledge and shift perceptions to decrease perceived barriers for including both sexes in basic research.

      Overall, this study demonstrates that despite the intention to include both sexes and a general belief in the importance of doing so, relatively few people routinely include both sexes. Further, the perceptions of barriers to doing so are high, including misconceptions surrounding sample size, disaggregation, and variability of females. There was also a substantial number of individuals without the statistical knowledge to appropriately analyze data in studies inclusive of sex. Interventions increased knowledge and decreased perception of barriers. Strengths:

      (1) This manuscript provides evidence for the efficacy of interventions for changing attitudes and perceptions of research.

      (2) This manuscript also provides a training manual for expanding this intervention to broader groups of researchers.

      Thank you for highlighting these strengths. We appreciate your recognition that the intervention was effect in changing attitudes and perception. We deliberately chose to share the material to provide the resources to allow a wider engagement.

      Weaknesses:

      The major weakness here is that the post-workshop assessment is a single time point, soon after the intervention. As this paper shows, intention for these individuals is already high, so does decreasing perception of barriers and increasing knowledge change behavior, and increase the number of studies that include both sexes? Similarly, does the intervention start to shift cultural factors? Do these contribute to a change in behavior?

      Measuring change in behaviour following an intervention is challenging and hence we had implemented an intention score as a proxy for behaviour. We appreciate the benefit of a long-term analysis, but it was beyond the scope of this study and would need a larger dataset size to allow for attrition. We agree that the strategy implemented has weaknesses. We plan to extend the limitation section in the discussion to include these.

      References

      (1) Heidari S, Babor TF, De Castro P, Tort S, Curno M. Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use. Res Integr Peer Rev. 2016;1:2.

      (2) Karp NA. Navigating the paradigm shift of sex inclusive preclinical research and lessons learnt. Commun Biol. 2025;8(1):681.

      (3) Karp NA, Berdoy M, Gray K, Hunt L, Jennings M, Kerton A, et al. The Sex Inclusive Research Framework to address sex bias in preclinical research proposals. Nat Commun. 2025;16(1):3763.

      (4) MRC. Sex in experimental design - Guidance on new requirements https://www.ukri.org/councils/mrc/guidance-for-applicants/policies-and-guidance-for-researchers/sex-in-experimental-design/: UK Research and Innovation; 2022

      (5) Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509(7500):282-3.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this interesting and original paper, the authors examine the effect that heat stress can have on the ability of bacterial cells to evade infection by lytic bacteriophages. Briefly, the authors show that heat stress increases the tolerance of Klebsiella pneumoniae to infection by the lytic phage Kp11. They also argue that this increased tolerance facilitates the evolution of genetically encoded resistance to the phage. In addition, they show that heat can reduce the efficacy of phage therapy. Moreover, they define a likely mechanistic reason for both tolerance and genetically encoded resistance. Both lead to a reorganization of the bacterial cell envelope, which reduces the likelihood that phage can successfully inject their DNA.

      Strengths:

      I found large parts of this paper well-written and clearly presented. I also found many of the experiments simple yet compelling. For example, the experiments described in Figure 3 clearly show that prior heat exposure can affect the efficacy of phage therapy. In addition, the experiments shown in Figures 4 and 6 clearly demonstrate the likely mechanistic cause of this effect. The conceptual Figure 7 is clear and illustrates the main ideas well. I think this paper would work even without its central claim, namely that tolerance facilitates the evolution of resistance. The reason is that the effect of environmental stressors on stress tolerance has to my knowledge so far only been shown for drug tolerance, not for tolerance to an antagonistic species.

      Weaknesses:

      I did not detect any weaknesses that would require a major reorganization of the paper, or that may require crucial new experiments. However, the paper needs some work in clarifying specific and central conclusions that the authors draw. More specifically, it needs to improve the connection between what is shown in some figures, how these figures are described in the caption, and how they are discussed in the main text. This is especially glaring with respect to the central claim of the paper from the title, namely that tolerance facilitates the evolution of resistance. I am sympathetic to that claim, especially because this has been shown elsewhere, not for phage resistance but for antibiotic resistance. However, in the description of the results, this is perhaps the weakest aspect of the paper, so I'm a bit mystified as to why the authors focus on this claim. As I mentioned above, the paper could stand on its own even without this claim.

      Thank you for your feedback. We understand your concern regarding the central claim that tolerance facilitates the evolution of resistance, while the paper can stand on its own without this claim, we think it provides an important layer to the interpretation of our findings. Considering your comments, we plan to revise the title and adjust to “Heat Stress Induces Phage Tolerance in Bacteria”.

      More specific examples where clarification is needed:

      (1) A key figure of the paper seems to be Figure 2D, yet it was one of the most confusing figures. This results from a mismatch between the accompanying text starting on line 92 and the figure itself. The first thing that the reader notices in the figure itself is the huge discrepancy between the number of viable colonies in the absence of phage infection at the two-hour time point. Yet this observation is not even mentioned in the main text. The exclusive focus of the main text seems to be on the right-hand side of the figure, labeled "+Phage". It is from this right-hand panel that the authors seem to conclude that heat stress facilitates the evolution of resistance. I find this confusing, because there is no difference between the heat-treated and non-treated cells in survivorship, and it is not clear from this data that survivorship is caused by resistance, not by tolerance/persistence. (The difference between tolerance and resistance has only been shown in the independent experiments of Figure 1B.)

      Thank you for your helpful comment. Figure 2d presents colony counts from a plating assay following the phage killing experiment in Figure 2c. Bacteria collected after 0 and 2 hours of phage exposure were plated on both phage-free (−phage) and phage-containing (+phage) plates. The “−phage” condition reflects total survivors, while the “+phage” condition indicates the resistant subset.

      As seen in Figure 2d (left part), heat-treated bacteria showed markedly higher survival on phage-free plates than untreated cells, which were largely eliminated by phage. However, resistant colony counts on phage-containing plates were similar between two groups (as shown in figure 2d right part), suggesting that heat stress increased survival but did not promote resistance.

      To clarify, we have revised the labels in Figure 2d as follows: “Total” will replace “-phage” to indicate the total survivors from the phage killing assay, and “Resisters” will replace “+phage” to indicate the resistant survivors, which are detected on phage-containing plates. This adjustment should eliminate any confusion and better reflect the experimental design.

      Figure 2F supports the resistance claim, but it is not one of the strongest experiments of the paper, because the author simply only used "turbidity" as an indicator of resistance. In addition, the authors performed the experiments described therein at small population sizes to avoid the presence of resistance mutations. But how do we know that the turbidity they describe does not result from persisters?

      I see three possibilities to address these issues. First, perhaps this is all a matter of explaining and motivating this particular experiment better. Second, the central claim of the paper may require additional experiments. For example, is it possible to block heat induced tolerance through specific mutations, and show that phage resistance does not evolve as rapidly if tolerance is blocked? A third possibility is to tone down the claim of the paper and make it about heat tolerance rather than the evolution of heat resistance.

      Thank you for your thoughtful comment. We appreciate the opportunity to clarify the interpretation of Figure 2f and the rationale behind the experimental design. We agree that turbidity alone cannot fully distinguish resistance from persistence. However, our earlier experiments (Figures 2d and 2e) demonstrated that heat-treated survivors remained largely susceptible to phage, indicating that heat stress does not directly induce resistance. This led us to hypothesize that heat enhances phage tolerance, which in turn increases the likelihood of resistance emergence during subsequent infection.

      To test this, we used a low initial bacterial population (~10³ CFU per well) to minimize the chance of pre-existing resistance. Bacteria were exposed to phages at MOIs of 1, 10, and 100 and incubated for 24 hours in 100 µL volumes. This setup ensured:

      (1) The low initial population minimizes the presence of pre-existing resistant mutants, ensuring that any phage-resistant bacteria observed arise during the infection process.

      (2) The high MOI (≥ 1) ensures that each bacterial cell has a high probability of infection by at least one phage.

      (3) The small volume (100 µL per well) maximizes the interaction between bacteria and phages, ensuring rapid infection of susceptible bacteria, which leads to clear wells. If resistant mutants arise, they will grow and cause turbidity.

      Thus, the turbidity observed in heat-treated samples reflects de novo emergence and outgrowth of resistant mutants from a tolerant population. This assay supports the idea that heat-induced tolerance increases the probability of resistance evolution, rather than directly causing resistance.

      We have revised the text to better explain this experimental logic and adjust the framing of our conclusions accordingly.

      A minor but general point here is that in Figure 2D and in other figures, the labels "-phage" and "+phage" do not facilitate understanding, because they suggest that cells in the "-phage" treatment have not been exposed to phage at all, but that is not the case. They have survived previous phage treatment and are then replated on media lacking phage.

      Thank you for your valuable comment. To clarify, we have revised the labels in Figure 2d as follows: “Total” will replace “-phage” to indicate the total survivors from the phage killing assay, and “Resisters” will replace “+phage” to indicate the resistant survivors, which are detected on phage-containing plates.

      (2) Another figure with a mismatch between text and visual materials is Figure 5, specifically Figures 5B-F. The figure is about two different mutants, and it is not even mentioned in the text how these mutants were identified, for example in different or the same replicate populations. What is more, the two mutants are not discussed at all in the main text. That is, the text, starting on line 221 discusses these experiments as if there was only one mutant. This is especially striking as the two mutants behave very differently, as, for example, in Figure 5C. Implicitly, the text talks about the mutant ending in "...C2", and not the one ending in "...C1". To add to the confusion, the text states that the (C2) mutant shows a change in the pspA gene, but in Figure 5f, it is the other (undiscussed) mutant that has a mutation in this gene. Only pspA is discussed further, so what about the other mutants? More generally, it is hard to believe that these were the only mutants that occurred in the genome during experimental evolution. It would be useful to give the reader a 2-3 sentence summary of the genetic diversity that experimental evolution generated.

      Thank you for your thoughtful comment. In our heat treatment evolutionary experiment, we isolated six distinct bacterial clones, of which two are highlighted in the manuscript as representative examples. One clone, BC2G11C1, acquired both heat tolerance and phage resistance, while another clone, BC3G11C2, became heat-tolerant but did not develop resistance to phage infection. This variation highlights the inherent diversity in evolutionary responses when exposed to selective pressures. It demonstrates that not all evolutionary pathways lead to the same outcome, even under similar stress conditions. This variability is a key observation in our study, illustrating that different genetic adaptations may arise depending on the specific mutations or genetic context, and not every strain will evolve phage resistance in parallel with heat tolerance. We have updated the manuscript to better reflect this diversity in the evolutionary trajectories observed.

      Reviewer #2 (Public review):

      Summary:

      An initial screening of pretreatment with different stress treatments of K. pneumoniae allowed the identification of heat stress as a protection factor against the infection of the lytic phage Kp11. Then experiments prove that this is mediated not by an increase of phage-resistant bacteria but due to an increase in phage transient tolerant population, which the authors identified as bacteriophage persistence in analogy to antibiotic persistence. Then they proved that phage persistence mediated by heat shock enhanced the evolution of bacterial resistance against the phage. The same trait was observed using other lytic phages, their combinations, and two clinical strains, as well as E. coli and two T phages, hence the phenomenon may be widespread in enterobacteria.

      Next, the elucidation of heat-induced phage persistence was done, determining that phage adsorption was not affected but phage DNA internalization was impaired by the heat pretreatment, likely due to alterations in the bacterial envelope, including the downregulation of envelope proteins and of LPS; furthermore, heat treated bacteria were less sensitive to polymyxins due to the decrease in LPS.

      Finally, cyclic exposure to heat stress allowed the isolation of a mutant that was both resistant to heat treatment, polymyxins, and lytic phage, that mutant had alterations in PspA protein that allowed a gain of function and that promoted the reduction of capsule production and loss of its structure; nevertheless this mutant was severely impaired in immune evasion as it was easily cleared from mice blood, evidencing the tradeoffs between phage/heat and antibiotic resistance and the ability to counteract the immune response.

      Strengths:

      The experimental design and the sequence in which they are presented are ideal for the understanding of their study and the conclusions are supported by the findings, also the discussion points out the relevance of their work particularly in the effectiveness of phage therapy and allows the design of strategies to improve their effectiveness.

      Weaknesses:

      In its present form, it lacks the incorporation of some relevant previous work that explored the role of heat stress in phage susceptibility, antibiotic susceptibility, tradeoffs between phage resistance and resistance against other kinds of stress, virulence, etc., and the fact that exposure to lytic phages induces antibiotic persistence.

      Thank you for your insightful comments. I appreciate your suggestion regarding the inclusion of relevant previous works. I have now incorporated additional citations to discuss these points, including studies on the relationship between heat stress and antibiotic resistance, as well as the tradeoffs between phage resistance and other stress factors.

      Reviewer #3 (Public review):

      PspA, a key regulator in the phage shock protein system, functions as part of the envelope stress response system in bacteria, preventing membrane depolarization and ensuring the envelope stability. This protein has been associated in the Quorum Sensing network and biofilm formation. (Moscoso M., Garcia E., Lopez R. 2006. Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J. Bacteriol. 188:7785-7795; Vidal JE, Ludewick HP, Kunkel RM, Zähner D, Klugman KP. The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun. 2011 Oct;79(10):4050-60.)

      It is interesting and very well-developed.

      (1) Could the authors develop experiments about the relationship between Quorum Sensing and this protein?

      (2) It would be interesting to analyze the link to phage infection and heat stress in relation to Quorum. The authors could study QS regulators or AI2 molecules.

      Thank you for your insightful comments and for bringing up the role of PspA in quorum sensing and biofilm formation. However, we would like to clarify a potential misunderstanding: the PspA discussed in our manuscript refers to phage-shock protein A, a key regulator in the bacterial envelope stress response system. This is distinct from the pneumococcal surface protein A, which has been associated with quorum sensing and biofilm formation in Streptococcus pneumoniae (as referenced in your comment).

      To avoid any confusion for readers, we will ensure that our manuscript explicitly states “phage-shock protein A (PspA)” at its first mention. We appreciate your feedback and hope this clarification addresses your concern.

      (3) Include the proteins or genes in a table or figure from lytic phage Kp11 (GenBank: ON148528.1).

      Thank you for your helpful suggestion. We have now included a figure, as appropriate summarizing the proteins of the lytic phage Kp11 (GenBank: ON148528.1) in supplementary Figure S1.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Issues unrelated to those discussed in the public review

      (1) Figure 4a and its caption describe an evolution experiment, but they do not mention how many cycles of high-temperature treatment and growth this experiment lasted. I assume it lasted for more than one cycle, because the methods section mentions "cycles", but the number is not provided.

      Thank you for pointing this out. The evolutionary experiment shown in Figure 5a involved 11 cycles of high-temperature treatment and growth. We have now explicitly stated this in the figure legend to ensure clarity: BC: Batch culture, G: Evolution cycle number, C: Colony. BC2G11C1 refers to the first colony from batvh culture 2 after 11 rounds of heat treatment.

      (2) It is not clear what Figure 5F is supposed to show. What are the gray boxes? The caption claims that the figure shows non-synonymous mutations, but the only information it contains is about genes that seem to be affected by mutation. Judging from the mismatch between the main text and the figure, the mutants with these mutations may actually be mislabeled.

      Thank you for your careful review. Figure 5f highlights the non-synonymous mutations identified in the evolved strains. The gray boxes represent the ancestral strain’s whole genome without mutations, serving as a control. The corresponding labels indicate the specific mutations found in each evolved strain. We have clarified this in the figure caption to improve clarity. Additionally, we have carefully reviewed the labeling to ensure accuracy and consistency between the figure, main text, and sequencing data.

      (3) I think that the acronym NC, which is used in just about every figure, is explained nowhere in the paper. Spell out all acronyms at first use.

      Thank you for pointing this out. We have rivewed ensure that NC is clearly defined at its first mention in the text and figure legends to improve clarity. Additionally, we have reviewed the manuscript to ensure that all acronyms are properly introduced when first used.

      (4) The same holds for the acronym N.D. This is an especially important oversight because N.D. could mean "not determined" or "not detectable", which would lead to very different interpretations of the same figure.

      Thank you for your careful review. We have clarified the meaning of N.D., which stands for non-detectable, at its first use to avoid ambiguity and ensure accurate interpretation in the figure legend. Additionally, we have reviewed the manuscript to ensure that all acronyms are clearly defined.

      (5) The panel labels (a,b, etc.) in all figure captions are very difficult to distinguish from the rest of the text, and should be better highlighted, for example by using a bold font. However, this is a matter of journal style and will probably be fixed during typesetting.

      Thank you for your suggestion. We have adjusted the figure captions to better distinguish panel labels, such as using bold font, to improve readability and final formatting will follow the journal’s style during typesetting.

      (6) Line 224: enhanced insusceptibility -> reduced susceptibility.

      Thank you for your suggestion. We have revised “enhanced insusceptibility” to “reduced susceptibility” for clarity and precision.

      (7) Line 259: mice -> mouse.

      Thank you for catching this. We have corrected “mice” to “mouse”.

      Reviewer #2 (Recommendations for the authors):

      I have no concerns about the experimental design and conclusions of your work; however, I strongly recommend incorporating several relevant pieces of the literature related to your work, in the discussion of your manuscript, specifically:

      (1) Previous studies about the role of heat stress in phage infections, see:

      Greenrod STE, Cazares D, Johnson S, Hector TE, Stevens EJ, MacLean RC, King KC. Warming alters life-history traits and competition in a phage community. Appl Environ Microbiol. 2024 May 21;90(5):e0028624. doi: 10.1128/aem.00286-24. Epub 2024 Apr 16. PMID: 38624196; PMCID: PMC11107170.

      Thank you for your thoughtful comment. We have ensured to incorporate the study by Greenrod et al. (2024) into the discussion to enrich the context of our findings. As this article pointed out, a temperature of 42°C can indeed limit phage infection in bacteria, acting as a barrier from the phage’s perspective. Our study builds on this by demonstrating that bacteria pre-treated with high temperatures exhibit tolerance to phage infection. These findings, together with the work you referenced, underscore the importance of heat stress or elevated temperature in host-phage interactions, with 42°C being particularly relevant in the context of fever. We will make sure to clarify this connection in our revised manuscript.

      (2) The effect of heat stress and the tolerance/resistance against other antibiotics besides polymyxins, see:

      Lv B, Huang X, Lijia C, Ma Y, Bian M, Li Z, Duan J, Zhou F, Yang B, Qie X, Song Y, Wood TK, Fu X. Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS. Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2217254120. doi: 10.1073/pnas.2217254120. Epub 2023 Mar 14. PMID: 36917671; PMCID: PMC10041086.

      Thank you for bringing this study to our attention. We have incorporated the findings from Lv et al. (2023) into the discussion of our manuscript, highlighting how sublethal temperatures may facilitate the killing of bacteria by antibiotics like kanamycin. This is consistent with our data showing enhanced susceptibility of heat-shocked bacteria to kanamycin. The study also provides insights into the potential role of PMF, which is relevant to our work on PspA, and strengthens the broader context of heat stress influencing both antibiotic resistance and tolerance.

      (3) Perhaps the most relevant overlooked fact was that recently it was demonstrated for E. coli, Klebsiella and Pseudomonas that pretreatment with lytic phages induced antibiotic persistence! Please discuss this finding and its implications for your work, see:

      Fernández-García L, Kirigo J, Huelgas-Méndez D, Benedik MJ, Tomás M, García-Contreras R, Wood TK. Phages produce persisters. Microb Biotechnol. 2024 Aug;17(8):e14543. doi: 10.1111/1751-7915.14543. PMID: 39096350; PMCID: PMC11297538.

      Sanchez-Torres V, Kirigo J, Wood TK. Implications of lytic phage infections inducing persistence. Curr Opin Microbiol. 2024 Jun;79:102482. doi: 10.1016/j.mib.2024.102482. Epub 2024 May 6. PMID: 38714140.

      Thank you for suggesting this important reference. We agree that the phenomenon of phage-induced bacterial persistence is highly relevant to our study. While our manuscript focuses on the role of heat stress in bacterial tolerance and resistance, we acknowledge that bacterial persistence against phages is an established concept. We have incorporated this finding into our discussion, emphasizing how persistence and tolerance can overlap in their effects on bacterial survival, especially under stress conditions like heat treatment. This will provide a more comprehensive understanding of how phage interactions with bacteria can lead to both persistence and resistance.

      (4) Finally, you observed a tradeoff pf the pspA* mutant increased phage/heat/polymyxin resistance and decreased immune evasion (perhaps by being unable to counteract phagocytosis), those tradeoffs between gaining phage resistance but losing resistance to the immune system, virulence impairment and resistance against some antibiotics had been extensively documented, see:

      Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R, Drulis-Kawa Z. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol. 2021 Dec;23(12):7723-7740. doi: 10.1111/1462-2920.15476. Epub 2021 Mar 27. PMID: 33754440.

      Gordillo Altamirano F, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, Archer SK, Morris FC, Oliveira C, Kielty L, Korneev D, O'Bryan MK, Lithgow TJ, Peleg AY, Barr JJ. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol. 2021 Feb;6(2):157-161. doi: 10.1038/s41564-020-00830-7. Epub 2021 Jan 11. PMID: 33432151.

      García-Cruz JC, Rebollar-Juarez X, Limones-Martinez A, Santos-Lopez CS, Toya S, Maeda T, Ceapă CD, Blasco L, Tomás M, Díaz-Velásquez CE, Vaca-Paniagua F, Díaz-Guerrero M, Cazares D, Cazares A, Hernández-Durán M, López-Jácome LE, Franco-Cendejas R, Husain FM, Khan A, Arshad M, Morales-Espinosa R, Fernández-Presas AM, Cadet F, Wood TK, García-Contreras R. Resistance against two lytic phage variants attenuates virulence and antibiotic resistance in Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2024 Jan 17;13:1280265. doi: 10.3389/fcimb.2023.1280265. Erratum in: Front Cell Infect Microbiol. 2024 Mar 06;14:1391783. doi: 10.3389/fcimb.2024.1391783. PMID: 38298921; PMCID: PMC10828002.

      Thank you for highlighting these important studies. We have incorporated the work by Majkowska-Skrobek et al. (2021), Gordillo Altamirano et al. (2021), and García-Cruz et al. (2024) into the discussion to provide further context to the evolutionary trade-offs observed in our study. The findings in these studies, which describe the cross-sensitization to antimicrobials and the loss of multidrug resistance in phage-resistant bacteria, align with our observations of trade-offs in the pspA mutant. Specifically, our results show that while the pspA mutant exhibits increased resistance to phage, heat, and polymyxins, it also experiences a decrease in immune evasion and potential virulence. These trade-offs are significant in understanding the broader consequences of developing resistance to phages and other stressors.

    2. eLife Assessment

      This important study analyzes the effect of heat treatment on phage-bacterial interactions and convincingly shows that prior heat exposure alters the bacterial cell envelope, enhancing persistence and bacterial survival when exposed to lytic phages. The study will interest researchers working on antibiotic resistance, tolerance, and phage therapy.

    3. Reviewer #1 (Public review):

      Summary:

      In this interesting and original paper, the authors examine the effect that heat stress can have on the ability of bacterial cells to evade infection by lytic bacteriophages. Briefly, the authors show that heat stress increases tolerance of Klebsiella pneumoniae to infection by the lytic phage Kp11. They also argue that this increased tolerance facilitates the evolution of genetically encoded resistance to the phage. In addition, they show that heat can reduce the efficacy of phage therapy. Moreover, they define a likely mechanistic reason for both tolerance and genetically encoded resistance. Both lead to a reorganization of the bacterial cell envelope, which reduces the likelihood that phage can successfully inject their DNA.

      Strengths:

      I found large parts of this paper well written and clearly presented. I also found many of the experiments simple yet compelling. For example, the experiments described in figure 3 clearly show that prior heat exposure can affect the efficacy of phage therapy. In addition the experiments shown in figure 4 and 6 clearly demonstrate the likely mechanistic cause of this effect. The conceptual figure 7 is clear and illustrates the main ideas well. I think this paper would be publishable even without its central claim, namely that tolerance facilitates the evolution of resistance. The reason is that the effect of environmental stressors on stress tolerance has to my knowledge so far only been shown for drug tolerance, not for tolerance to an antagonistic species.

      Weaknesses:

      I did not detect any weaknesses that would require a major reorganization of the paper, or that may require crucial new experiments without which the paper should not be published. The originally submitted paper needed some work in clarifying specific and central conclusions that the authors draw, which the authors have done during revision.

    4. Reviewer #2 (Public review):

      Summary:

      An initial screening of pretreatment with different stress treatments of K. pneumonia allowed the identification of heat stress as a protection factor against the infection of the lytic phage Kp11. Then experiments prove that this is mediated not by an increase of phage resistant bacteria but due to an increase in phage transient tolerant population, that the authors identified as bacteriophage persistence in analogy to antibiotic persistence. Then they proved that phage persistence mediated by heath shock enhanced the evolution of bacterial resistance against the phage. The same trait was observed using other lytic phages, their combinations and two clinical strains, as well as E. coli and two T phages, hence the phenomenon may be widespread in enterobacteria.

      Next, the elucidation of heat induced phage persistence was done, determining that phage adsorption was not affected but phage DNA internalization was impaired by the heat pretreatment, likely to alterations in the bacterial envelope, including the downregulation of envelope proteins and of LPS; furthermore, heat treated bacteria were less sensitive to polymyxins due to the decrease in LPS.

      Finally, cyclic exposure to heat stress allowed the isolation of a mutant that was both resistant to heat treatment, polymyxins and lytic phage, that mutant had alterations in PspA protein that allowed a gain of function and that promoted the reduction of capsule production and loss of its structure; nevertheless this mutant was severely impaired in immune evasion as it was easily cleared from mice blood, evidencing the trade-off's between phage/heat and antibiotic resistance and the ability to counteract the immune response.

      Strengths:

      The experimental design and the sequence in which they are presented is ideal for the understanding of their study and the conclusions are supported by the findings, also the discussion points out the relevance of their work particularly in the effectiveness of phage therapy and allow the design of strategies to improve their effectiveness.

      Weaknesses:

      In its present form it lacks the incorporation of some relevant previous work that explored the role of heat stress in phage susceptibility, antibiotic susceptibility, trade offs between phage resistance and resistance against other kinds of stress, virulence, etc. and the fact that exposure to lytic phages induces antibiotic persistence.

      Comments on revised version:

      Thanks for addressing most of my comments; however, although you replied this in the rebuttal:

      "Thank you for highlighting these important studies. We have incorporated the work by Majkowska-Skrobek et al. (2021), Gordillo Altamirano et al. (2021), and García-Cruz et al. (2024) into the discussion "

      I was not able to find the new section in the discussion of the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Structural colors (SC) are based on nanostructures reflecting and scattering light and producing optical wave interference. All kinds of living organisms exhibit SC. However, understanding the molecular mechanisms and genes involved may be complicated due to the complexity of these organisms. Hence, bacteria that exhibit SC in colonies, such as Flavobacterium IR1, can be good models.

      Based on previous genomic mining and co-occurrence with SC in flavobacterial strains, this article focuses on the role of a specific gene, moeA, in SC of Flavobacterium IR1 strain colonies on an agar plate. moeA is involved in the synthesis of the molybdenum cofactor, which is necessary for the activity of key metabolic enzymes in diverse pathways.

      The authors clearly showed that the absence of moeA shifts SC properties in a way that depends on the nutritional conditions. They further bring evidence that this effect was related to several properties of the colony, all impacted by the moeA mutant: cell-cell organization, cell motility and colony spreading, and metabolism of complex carbohydrates. Hence, by linking SC to a single gene in appearance, this work points to cellular organization (as a result of cell-cell arrangement and motility) and metabolism of polysaccharides as key factors for SC in a gliding bacterium. This may prove useful for designing molecular strategies to control SC in bacterial-based biomaterials.

      Strengths:

      The topic is very interesting from a fundamental viewpoint and has great potential in the field of biomaterials.

      Thank you for this.

      The article is easy to read. It builds on previous studies with already established tools to characterize SC at the level of the flavobacterial colony. Experiments are well described and well executed. In addition, the SIBR-Cas method for chromosome engineering in Flavobacteria is the most recent and is a leap forward for future studies in this model, even beyond SC.

      We appreciate these comments.

      Weaknesses:

      The paper appears a bit too descriptive and could be better organized. Some of the results, in particular the proteomic comparison, are not well exploited (not explored experimentally). In my opinion, the problem originates from the difficulty in explaining the link between the absence of moeA and the alterations observed at the level of colony spreading and polysaccharide utilization, and the variation in proteomic content.

      We have looked at the organisation of the manuscript carefully in this revision, as suggested. In terms of the proteomics, there are a large number of proteins affected by the moeA deletion and not all could be followed up. We chose spreading, structural colour formation and starch degradation to follow up phenotypically, as the most likely to be relevant. For example, (L615-617) we discuss the downregulation of GldL (which is known to be involved Flavobacterial gliding motility [Shrivastava et al., 2013]) in the moeA KO as a possible explanation for the reduced colony spreading of this mutant. Changes in polysaccharide (starch) utilization were seen on solid medium, as well as in the proteomic profile where we observed the upregulation of carbohydrate metabolism proteins linked to PUL (polysaccharide utilisation locus) operons (Terrapon et al., 2015), such as PAM95095-90 (Figure 8), and other carbohydrate metabolism-related proteins, including a pectate lyase (Table S7) which is involved in starch degradation (Aspeborg et al., 2012). And as noted in L555-566 and Figure 9, alterations in starch metabolism were investigated experimentally.

      First, the effect of moeA deletion on molybdenum cofactor synthesis should be addressed.

      MoeA is the last enzyme in the MoCo synthesis pathway, thus if only MoeA is absent the cell would accumulate MPT-AMP (molybdopterin-adenosine monophosphatase) (Iobbi-Nivol & Leimkühler, 2013), and the expressed molybdoenzymes would not be functional. In L582-585, we commented how the lack of molybdenum cofactor may affect the synthesis of molybdoenzymes. However, if you meant to analyse the presence of the small molecules, i.e. the cofactors involved in these pathways, that was an assay we were not able to perform. However, in L585-587, we addressed how the deletion of moeA affected the proteins encoded by the rest of genes in the operon which is relevant to the question.

      Second, as I was reading the entire manuscript, I kept asking myself if moeA (and by extension molybdenum cofactor) was really involved in SC or it was an indirect effect. For example, what if the absence of moeA alters the cell envelope because the synthesis of its building blocks is perturbed, then subsequently perturbates all related processes, including gliding motility and protein secretion? It would help to know if the effects on colony spreading and polysaccharide metabolism can be uncoupled. I don't think the authors discussed that clearly.

      The message of the paper is that the moeA gene, as predicted from a previous genomics analysis, is important in SC. This is based on the representation of the moeA gene in genomes of bacteria that display SC. This analysis does not predict the mechanism. When knocked out, a significant change in structural colour occurred, supporting this hypothesis. Whether this effect is direct or indirect is difficult to assess, as this referee rightly suggests. In order to follow up this central result, we performed proteomics (both intra- and extracellular). As we observed, the deletion of a single gene generated many changes in the proteomic profile, thus in the biological processes. Based on the known functions of molybdenum cofactor, we could only hypothesize that pterin metabolism is important for SC, not exactly how.

      We have discussed the links between gliding/spreading and polysaccharide metabolism more clearly, with reference to the literature, as quite a bit is known here including possible links to SC.

      “Polysaccharide metabolism in IR1 has been linked to changes in colony color and motility through the study of fucoidan metabolism (van de Kerkhof et al., 2022). Polysaccharide degradation and gliding motility are coupled to the same mechanism: the phylum-specific type IX secretion system, used for the secretion of enzymes and proteins involved in both functions (McKee et al., 2021).” [L622-626]

      Reviewer #2 (Public review):

      Summary:

      The authors constructed an in-frame deletion of moeA gene, which is involved in molybdopterin cofactor (MoCo) biosynthesis, and investigated its role in structural colors in Flavobacterium IR1. The deletion of moeA shifted colony color from green to blue, reduced colony spreading, and increased starch degradation, which was attributed to the upregulation of various proteins in polysaccharide utilization loci. This study lays the ground for developing new colorants by modifying genes involved in structural colors.

      Major strengths and weaknesses:

      The authors conducted well-designed experiments with appropriate controls and the results in the paper are presented in a logical manner, which supports their conclusions.

      We appreciate these comments.

      Using statistical tests to compare the differences between the wild type and moeA mutant, and adding a significance bar in Figure 4B, would strengthen their claims on differences in cell motility regarding differences in cell motility.

      Thank you. Figure 4B contains the significance bars that represent the standard deviation of the mean value of the three replicates, but we have modified it to make them more clear.

      Additionally, in the result section (Figure 6), the authors suggest that the shift in blue color is "caused by cells which are still highly ordered but narrower", which to my knowledge is not backed up by any experimental evidence.

      Thanks. We mentioned that the mutant cells are narrower than the wild type based on the estimated periodicity resulting from the goniometry analysis (L427-430). We will now say “likely to be narrower based on the estimated periodicity from the optical analysis” rather than just “narrower”.

      “This optical analysis aligns with visual observations, confirming the blue shift in ΔmoeA, and suggests that this change in SC is caused by cells which are likely to be narrower based on the estimated periodicity from the optical analysis.” [L409-411]

      Overall, this is a well-written paper in which the authors effectively address their research questions through proper experimentation. This work will help us understand the genetic basis of structural colors in Flavobacterium and open new avenues to study the roles of additional genes and proteins in structural colors.

      Much appreciated.

      Recommendations for the authors:

      Reviewing Editor Comments:

      As you will see, the reviewers were rather positive about the paper but suggested a number of points to improve it, including a discussion of the direct role of moeA as well as specific editorial comments.

      Reviewer #1 (Recommendations for the authors):

      More specific comments to the authors:

      (1( Line 300, Paragraph on bioinformatic analysis of molybdopterin operon : As written, it is not clear whether this operon is crucial for pterin cofactor synthesis or only some genes are involved. And what is the contribution of moeA?

      Based on the bioinformatic analysis done in Zomer et al., 2024, we know the score of which genes of the molybdopterin cofactor synthesis operon may be more relevant to the display of SC, in addition to moeA. We chose moeA to KO as it had the highest score, being careful to delete the coding sequence and not any upstream promoter. The other genes in the predicted operon are moaE, moaC2, and moaA. Then in the proteomic analysis (L435-442), we analysed how the encoded proteins from this operon were upregulated (MoaA, MoaC2, and MobA), indicating also the unaltered proteins (MoeZ and MoaE) and the undetected proteins (MoaD and SumT). Nevertheless, the operon is crucial for pterin cofactor synthesis because it contains all the genes involved in the pathway, and moeA encoded the enzyme for the last reaction of the pathway, being the the molecule produced in the mutated pathway the adenylated molybdopterin (MPT-AMP) instead of molybdenum cofactor (MoCo).

      (2) Paragraph line 342 on moeA mutant phenotyping :

      Is the reduction in colony spreading caused by a defect in single-cell gliding motility or is the cause more complex? This can be quantified.

      We believe the cause is more complex. As mentioned above, for example, in (L615-617) we discuss the downregulation of GldL (which is known to be involved Flavobacterial gliding motility [Shrivastava et al., 2013]) in the moeA KO as a possible explanation for the reduced colony spreading of this mutant. This cannot be explained simply by spreading, but must (from the optical analysis) indicate changes in cell organisation/dimensions.

      (3) During the description of the moeA mutant phenotype (associated with Figures 2 and 4) and throughout the article, the optical properties are « functions » of colony spreading and moeA-dependent metabolism. However it is not quite clear if these two effects are independent or if one may be a consequence of the other.

      As noted above, colony spreading alone does not explain the blue-shift in SC observed. Given the function of MoeA (molybdate insertion into MPT-AMP [adenylated molybdopterin], MoMPT [molybdenum-molybdopterin] formation) for the synthesis of MoCo (molybdenum cofactor), the primary effect seems to be on metabolism but as we are dealing with an influential enzymatic cofactor a number of secondary effects are likely, and indeed the proteomics supports this. It is likely that the effect on spreading is secondary as seen with the downregulation of GldL (see above), but we cannot be sure.

      (4) Paragraph starting line 381 and Figure 5 on gliding motility:

      Gliding motility has to be tested at the level of single cells, allowing a more thorough characterization of the spreading defects. In addition, since gliding is entangled with Type IX-dependent secretion in Flavobacteria, the authors should test if Type IXdependent was perturbed in the absence of moeA.

      Based on the intracellular and extracellular proteomic analyses, the regulated T9SS proteins in the absence of moeA are the downregulation of GldL and SprT, and the upregulation of PorU. It shows the log2 FC (moeA/WT) of each these extracellular proteins:

      Author response table 1.

      <-1: downregulated in moeA KO, -1<X<1: no significant regulation, >1: upregulated in moeA KO, -: not detected

      (5) L401: In my opinion, the section "Quantification of the optical responses of IR1 WT and ΔmoeA colonies" should be moved up, before the characterization of motility.

      We have done this, as suggested. The section was moved from L401-423 to L388-411.

      (6) L475: Proteome comparison: « Of the total known proteins in IR1, 27.5% (1,504 proteins) extracellular proteins were identified » Are some of these proteins also found in the cell fraction? Wouldn't it be more accurate to write that « 1504 proteins were found in the extracellular fraction"?

      We have done this, as suggested.

      “Of the total known proteins in IR1, 27.5% (1,504 proteins) proteins were detected in the extracellular fraction, 60.4% (909) were statistically significant (p<0.01), with 20.5% (186) considered downregulated, and 20% (182) upregulated in ΔmoeA (Figure 7B).” [L484-486]

      How can the authors exclude contamination of the extracellular fraction? This could easily explain the number of proteins lacking secretion signals: "29.6% (55) were likely secreted through a non-classical way, lacking typical secretion sequence motifs in their N-terminus."

      Based on the results from SecretomeP and SignalP, we excluded contamination, reducing the significant downregulated proteins from 186 (L476) to 69 (L486), and the upregulated ones from 182 (L477) to 111 (L500).

      (7) L490: if the protein misannotated flagellin is highly downregulated, why not push the analysis a bit further and ask what true function may be perturbed? In addition, it should not be classified as a motility protein in Table S6 and considered as a motility protein in the article.

      We reconsidered the information given by this and decided to remove it because after checking the homology of the polypeptide by Blast searching, we feel it is probably due to a missannotation.

      As is, the whole proteomic section is not that useful. Too many functions are evoked and the reader is not directed toward any particular conclusion. The most convincing hits from the proteomic analysis should be confirmed using another method. Transcriptional regulation could be easily probed by RT-qPCR. Or, since genetics is possible, proteins could be tagged and levels compared by western blot maybe? Do knock-out of the encoding genes generate any phenotype on SC? This would bring weight to the proteomic analysis.

      We have revised the proteomics section and removed functions that are not directly relevant to our conclusion.

      We feel the most important observation suggested by proteomics was the possible link between moeA and starch metabolism, because the metabolism of complex polysaccharides is important in the Flavobacteriia and known to be linked to SC (van de Kerkhof et al., 2022). It was not possible to follow up every pathway suggested by the proteomics, but the study is appropriately performed with the correct statistics.

      (8) Figure 9 : Does the absence of moeA affect the spreading of ASWS? Were colony sizes similar during the starch degradation assay? How can the authors rule out the idea that starch degradation is impacted by the difference in spreading rather than an independent function of moeA in starch metabolism? Slower spreading could lead to the accumulation of amylases, hence stronger activity. Why does starch degradation only accumulate at the center of the colony in the WT case?

      The colonies of the WT and moeA had similar size during the starch degradation assay (2 days). However, after day 3, only WT colonies kept expanding on diameter.

      Starch degradation is logically in the centre of the colony as it is where the greatest concentration of cells exists, secreting degradative enzymes, for the longest time. Presumably starch degradation at the colony edge is not yet seen as the action of extracellular enzymes is low and has not had time to degrade the starch to the point that there is no iodine staining.

      “In contrast to other media where ΔmoeA colony expansion was less than WT, the ΔmoeA showed similar colony spreading and stronger starch degradation, supporting a role of moeA in complex polysaccharides metabolism.” [L562-565]

      (9) Finally, I am not quite sure what the authors mean by « a role of moeA in complex polysaccharides metabolism ». Are they referring to enzymes secreted in the medium to degrade starch? or to the incorporation and use of starch degradation products?

      We meant that the deletion of moeA showed an increase of extracellular starch degradation as seen in the iodine assay (Figure 9), as well as the upregulation of three different PUL operons (Figure 8).

      Reviewer #2 (Recommendations for the authors):

      The paper in general is well written with proper experimentation. However, here are a few recommendations for improving the writing and presentation, including minor corrections to the text and figures.

      Thank you.

      (1) It would be helpful for the readers if you could expand on "some metabolic pathways" in line 71. Please provide examples of metabolic pathways that are linked to SC.

      We have done this.

      “A recent bioinformatic study has shown the possible link of some metabolic pathways, such as carbohydrate, pterin, and acetolactate metabolism, to bacterial SC (Zomer et al., 2024).”[L70-72]

      (2) "Line 79 : a bioinformatics analysis", please mention what kind of bioinformatics analysis was done and by whom to provide clarity for the readers: Either mention bio info analysis or give more details on what kind of bio info analysis and study done by whom"

      We have clarified this, as suggested.

      “A large-scale, genomic-based analysis of 117 bacteria strains (87 with SC and 30 without) identified genes potentially involved in SC by comparing gene presence/absence, providing a SC-score (Zomer et al., 2024). By this method, pterin pathway genes were strongly predicted to be involved in SC.” [L80-83]

      (3) Please correct "Bacteria strains used in this study" to "bacterial" strains in Line 122.

      We have done so.

      (4) Please indicate in "Lines 394-396" that there were no vortex patterns observed in the moeA mutant.

      We have done so.

      “In contrast, ΔmoeA exhibited limited motility, with a more tightly packed cell organization and a fine, slow-moving layer at the edge (Figure 6, blue arrows), and did not show a ‘vortex’ pattern. This suggests that moeA deletion significantly impairs cell motility and colony expansion.” [428-L431]

      (5) In Figure 4 it looks like with a different carbon source (ASWB with agar and Fucoidan (ASWBF)) the moeA mutant and wild type exchanges its phenotype compared to ASWBKC. Could you explain why this happens in the discussion by highlighting the differences between fucose and Kappa-Carrageenan or confirm if there are any differences in the carbohydrate utilization between the wild type and moeA mutant using biolog assays?

      We have explained the differences. Biolog would not be appropriate as we are looking for metabolic processes of bacteria on surfaces (agar) and this is not necessarily appropriate to biolog, which we understand uses liquid cultivation in microplates.

      “On different polysaccharide media, the ΔmoeA strain showed varied SC and colony expansion patterns: green/blue SC and low colony expansion on agar, intense blue SC and low colony expansion on kappa-carrageenan, dull green SC and low colony expansion on fucoidan, and blue/green SC with higher colony expansion on starch. Interestingly, the color phenotype of the WT and ΔmoeA exchanged their phenotype on kappa-carrageenan (a simple linear sulfated polysaccharide of D-galactopyranose) and fucoidan (a complex sulfated polysaccharide of fucose and other sugars as galactose, xylose, arabinose and rhamnose), showing the importance of the polysaccharide metabolism in SC. While reduced motility has been associated with dull or absent SC, and reduced polysaccharide metabolism (Kientz et al., 2012a; Johansen et al., 2018), ΔmoeA showed reduced motility, but an intense blue SC, and high polysaccharide metabolism. Based on these results, we established a link among polysaccharide metabolism, MoCo biosynthesis, and SC, showing that intense SC is not strictly dependent on motility.” [L636-648]

      (6) In the discussion "Line 632" it is unclear what loss is being limited, and it would help strengthen your discussion if you could add references for lines: 633-636. There are a lot of hypotheses in lines 637-642, it would help the readers if you could clearly mention that these are hypotheses and will need experimental evidence or provide appropriate evidence to support these claims.

      We have done this.

      “Ecologically, we hypothesize that dense, highly structured bacterial colonies, such as necessary for the SC phenotype, can enhance the uptake of metabolic degradation products from complex polysaccharides. These large macromolecules are often partially hydrolyzed extracellularly because they are too large to pass through bacterial cell membranes. For example, marine Vibrionaceae strains that produce lower levels of extracellular alginate lyases tend to aggregate more strongly, potentially facilitating localized degradation and uptake of polysaccharides (D’Souza et al., 2023). Additionally, certain marine bacteria employ a "selfish" mechanism to internalize large polysaccharide fragments into their periplasmic space, minimizing loss to the environment and enhancing substrate utilization (Reintjes et al., 2017). Bacteria secrete enzymes into the surrounding environment to break these polysaccharides down into more easily absorbable monosaccharides or oligosaccharides. This mechanism suggests that the colony structure could create a physical barrier that keeps these products concentrated and near the cells, allowing the colony to efficiently access and utilize these products, preventing the leakage into the surrounding environment. While SC may also yield other ecological benefits associated with growth in biofilms, the highly structured colonies that characterize SC may be more resistant against invasion by competitor species scavenging for degradation products, than an unstructured biofilm. This model is consistent with the observation that SC is associated with polysaccharide metabolism genes, and with the recent observation that SC is mainly localized on surface and interface environments such as airwater interfaces, tidal flats, and marine particles (Zomer et al., 2024).” [L650-670]

      (7) It would help the readers if you could expand on how polysaccharide metabolism is linked to motility in Line 610.

      As indicated previously, this is known and we will clarify.

      “Polysaccharide metabolism in IR1 has been linked to changes in colony color and motility through the study of fucoidan metabolism (van de Kerkhof et al., 2022).” [L622-623]

    2. eLife Assessment

      This manuscript presents important findings on how structural color can be manipulated through a specific single-gene mutation in a motile bacterium. Compelling data provide a promising model to identify genes and molecular mechanisms supporting this widespread optical phenomenon. This work will be of interest to biophysicists and microbiologists working on structural colors and Flavobacterium.

    3. Reviewer #1 (Public review):

      Structural colors (SC) are based on nanostructures reflecting and scattering light and producing optical wave interference. All kinds of living organisms exhibit SC. However, understanding the molecular mechanisms and genes involved may be complicated due to the complexity of these organisms. Hence, bacteria that exhibit SC in colonies, such as Flavobacterium IR1, can be good models.

      Based on previous genomic mining and co-occurrence with SC in flavobacterial strains, this article focuses on the role of a specific gene, moeA, in SC of Flavobacterium IR1 strain colonies on an agar plate. moeA is involved in the synthesis of the molybdenum cofactor, which is necessary for the activity of key metabolic enzymes in diverse pathways.

      The authors clearly showed that the absence of moeA shifts SC properties in a way that depends on the nutritional conditions. They further bring evidence that this effect was related to several properties of the colony, all impacted by the moeA mutant: cell-cell organization, cell motility and colony spreading, and metabolism of complex carbohydrates. Hence, by linking SC to a single gene in appearance, this work points to cellular organization (as a result of cell-cell arrangement and motility) and metabolism of polysaccharides as key factors for SC in a gliding bacterium. This may prove useful for designing molecular strategies to control SC in bacterial-based biomaterials.

    4. Reviewer #2 (Public review):

      The authors constructed an in-frame deletion of moeA gene, which is involved in molybdopterin cofactor (MoCo) biosynthesis, and investigated its role in structural colors in Flavobacterium IR1. The deletion of moeA shifted colony color from green to blue, reduced colony spreading, and increased starch degradation, which was attributed to the upregulation of various proteins in polysaccharide utilization loci. This study lays the ground for developing new colorants by modifying genes involved in structural colors.

      Overall, this is a well-written paper in which the authors effectively address their research questions through proper experimentation. This work will help us understand the genetic basis of structural colors in Flavobacterium and open new avenues to study the roles of additional genes and proteins in structural colors.

    1. eLife Assessment

      This manuscript offers important insights into how polyphosphate (polyP) influences protein phase separation differently from DNA. The authors present compelling evidence that polyP distinguishes among protein conformational ensembles, leading to divergent condensate maturation behaviors that include unfolding and polyproline II formation. In response to reviewer feedback, the authors addressed key concerns by incorporating charge-equivalent DNA controls and extending structural analysis to FruR variants, further reinforcing the polymer-specific effects of polyP. While some discrepancies between protein systems remain unresolved, the study enhances our understanding of how biopolymers influence protein assembly and conformational transitions.

    2. Reviewer #1 (Public review):

      In the article Goyal and colleagues investigate the role of negatively charged biopolymers, i.e., polyphosphate (polyP) and DNA, play in phase separation of cytidine repressor (CytR) and fructose repressor (FruR). The authors find that both negative polymers drive the formation of metastable protein/polymer condensates. However, polyP-driven condensates form more gel- or solid-like structures over time while DNA-driven condensates tend to dissipate over time. The authors link this disparate condensate behavior to polyP-induced structures within the enzymes. Specifically, they observe the formation of polyproline II-like structures within two tested enzyme variants in the presence of polyP. Together, their results provide a unique insight into the physical and structural mechanism by which two unique negatively charged polymers can induce distinct phase transitions with the same protein. This study will be a welcomed addition to the condensate field and provide new molecular insights into how binding partner-induced structural changes within a given protein can affect the mesoscale behavior of condensates.

    3. Reviewer #2 (Public review):

      Summary:

      In the article Goyal et al. investigate how protein/polymer phase transition behavior is modulated by different binding partners-specifically, DNA and polyphosphate (PolyP). The authors show that while both DNA and PolyP can induce metastable condensates, only PolyP drives unique phase transition behaviors by effectively discriminating among initial protein ensembles with varying degrees of conformational heterogeneity, compactness, and plasticity. This selectivity is attributed to PolyP's ability to unfold the enzyme during condensate formation, supported by the observation of polyproline II-rich structures in two tested variants (CytR WT and DM). Overall, this work offers valuable insights into the mechanistic factors underlying condensation assembly and advances our understanding of how molecular interactions influence phase behavior.

      Strengths:

      The authors employed a well-designed and technically sound experimental approach to investigate how the initial protein conformational ensemble influences phase transition behavior in the presence of two charged polymers. Specifically, they examined phase transitions of CytR and FruR variants in the context of either polyphosphate (PolyP) or DNA, enabling a direct comparison that effectively highlights key differences. This study provides mechanistic insights into the role of PolyP in driving condensation and may contribute to a broader understanding of assembly processes involving PolyP, particularly in the context of bacterial stress responses.

      Weaknesses:

      The primary weakness of this manuscript lies in the lack of a consistent trend linking the unique phase transitions observed in protein/PolyP systems to the initial protein conformational ensemble. The observed differences in assembly and maturation behavior do not consistently correlate with conformational heterogeneity, plasticity, or compactness of the starting ensemble. This is particularly evident in the divergent outcomes between the CytR/PolyP and FruR/PolyP systems. Consequently, the phase behavior of protein/PolyP condensates does not reliably reflect the composition of the initial conformational ensemble, limiting its effectiveness as a probe for conformational state characterization.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      In the article titled "Polyphosphate discriminates protein conformational ensembles more efficiently than DNA promoting diverse assembly and maturation behaviors," Goyal and colleagues investigate the role of negatively charged biopolymers, i.e., polyphosphate (polyP) and DNA, play in phase separation of cytidine repressor (CytR) and fructose repressor (FruR). The authors find that both negative polymers drive the formation of metastable protein/polymer condensates. However, polyPdriven condensates form more gel- or solid-like structures over time while DNA-driven condensates tend to dissipate over time. The authors link this disparate condensate behavior to polyP-induced structures within the enzymes. Specifically, they observe the formation of polyproline II-like structures within two tested enzyme variants in the presence of polyP. Together their results provide a unique insight into the physical and structural mechanism by which two unique negatively charged polymers can induce distinct phase transitions with the same protein. This study will be a welcomed addition to the condensate field and provide new molecular insights into how binding partner-induced structural changes within a given protein can affect the mesoscale behavior of condensates. The concerns outlined below are meant to strengthen the manuscript.

      Recommendation:

      We value the reviewer’s positive comments and appreciate time taken to provide detailed feedback that has certainly helped improve our manuscript.

      Major Concerns:

      (1) The biggest concern in this manuscript lies with experiments comparing polyP45, which has a net negative charge of -47, and double-stranded DNA of 45 base pairs (as stated in the methods), which will have a net negative charge of -90. Given the dependence of phase separation and phase transitions on not only net charge but charge density, this is an important factor to consider when comparing the effect of these molecules. It is unclear how or if the authors considered these factors in the design of their experiments. Because of the factor of 2 difference in net charge over the same number of polymer chain components, i.e. a chain of 45 pi vs. a chain of 45 double-stranded base pairs, it is unclear if the results from polyP vs. DNA are directly comparable. One solution would be to repeat all DNA experiments using single-stranded DNA so that the net charge is similar to polyP over the same chain length. Another possibility would be to repeat DNA experiments using a doublestranded DNA of 23 base pairs. This would allow for a nearly equal net charge (-46 vs. -47 for polyP), but the charge density would still be 2X polyP. As it stands now, the perceived differences in DNA vs. polyP behavior may be an artifact arising from the difference in net charge and charge density between DNA and polyP.

      To address the reviewer’s concerns regarding charge density differences between polyP and DNA, we conducted an experiment using a higher DNA concentration (11.24 µM) to obtain charge equivalence between the two experiments (i.e. the total concentration of charges). As shown in Figure S5, even at higher DNA concentration, the condensates undergo progressive dissolution over time. This observation indicates that the differential maturation of condensates, arising from distinct initial protein ensembles, are governed by the intrinsic properties of polyP. Charge density (i.e. the number of charges per unit volume of the polymer), on the other hand, is an intrinsic feature of the polymer which is naturally different between DNA and polyP. In fact, the primary result of our work is our observation that polyP can discern the starting ensembles more efficiently, likely through actively engaging and interacting with the ensemble while DNA appears to be a passive player. The differences are not an artifact as they arise from fundamental features of two natural anionic polymers found within cells. In other words, the outcomes could be very different if the concentration of one polymer dominates over the other (see the response below).

      (2) One outstanding question the authors do not address relates to how mixtures of CytR or FruR, DNA, and polyP behave. In the bacterial cytoplasm, these molecules are all in the same compartment (admittedly that compartment is not well mixed due to unique condensate-driven organization). Would the authors expect to see similar effects of polyP and DNA if they were in the same solution? Perhaps the authors could run a set of experiments where they vary the ratios of DNA and polyP to probe how increased levels of "stress", i.e. increased levels of polyP vs. DNA, alter the formation and behavior of enzymatic condensates.

      Following this comment, we investigated the phase separation behavior of CytR WT in the presence of different charge ratios of polyP-DNA mixtures. As seen in Author response image 1,panel A below, the outcomes are highly sensitive to the starting concentrations: at higher charge concentration of polyP (left panel), the OD and ThT fluorescence intensity is high at lower time points, both decrease and increase again. Fluorescence microscopy images (panel B) reveal similar trends, but the more fascinating outcome are the FRAP recovery profiles which recover extremely fast and fully at zero time point (panel C) despite aggregation-like tendencies observed in ThT fluorescence assays. However, at longer time points (20 and 40 mins) the FRAP recovery is significantly weaker but recovers to ~65% at 1 hour (panel C). At high relative polyP concentrations with respect to DNA, droplets are formed first which then transition into aggregates (liquid-to-solid transition; middle image in panel A). At relatively high DNA concentrations it appears that both droplets and aggregates co-exist as both OD and ThT fluorescence are moderately high. Given these complex behaviors, we have not included the same in the current manuscript as we still do not fully understand the origins of these differences. In fact, we are planning to extend this study by exploring the combinations in detail to understand the relative roles played by the two polymers in ternary mixtures.

      Author response image 1.

      (3) In Figure 1H, the recovery trace shows the fractional recovery of DM to near WT levels. It is clear from the images that recovery of the bleached region occurs, but the overall fluorescence intensity of DM is much lower than WT, even when accounting for the difference in starting condensate sizes in the Pre-Bleach images. Shouldn't this qualitative difference in total fluorescence be reflected in the quantitative trace?

      In Figure 2H, as the reviewer rightly points out, there is a clear difference in the absolute fluorescence intensity between WT and DM condensates. We would like to clarify that the recovery traces shown in Figure 2I were normalized to the pre-bleach intensity of each individual condensate to reflect fractional recovery. This normalization is intended to highlight the relative mobility of the protein within each condensate, but it does not capture the difference in total fluorescence intensity between WT and DM.

      (4) A description of the molten-globular variant Y19A FruR should be included in the main text where the variant is introduced. There is currently no additional description of the molten-globular variant in the Supplement as suggested by the manuscript.

      Figure 6A depicts the three-dimensional structure of FruR WT, with tyrosine residues Y19 and Y28, shown in red, forming stacking interactions. In the Y19A mutant, the loss of these interactions results in little changes in secondary structure (as shown in Figure 6E) but disrupts the protein’s tertiary structure, resulting in a molten globular state. The FruR work is now published in JPCB and can be found at https://doi.org/10.1021/acs.jpcb.4c03895, and is also appropriately cited in the revised version (reference 53).

      (5) Throughout the manuscript, the authors discuss polyP and DNA being able (or unable) to "distinguish" between different variants of CytR and FruR. This is confusing and suggests that DNA or polyP can choose to bind one form over another. The authors should re-work the language in this section to better reflect their direct observations for the behavior of protein in CD experiments and condensate behavior in imaging and turbidity experiments.

      We have now modified the text where necessary. The experiments were not done in the presence of both polyP and DNA, but in isolation (protein + polyP or protein + DNA). Hence, our aim is to convey that polyP is the polymer that leads to variable outcomes because of its ability to ‘interact’ differently with the different starting ensembles.

      Minor Concerns:

      (1) For all Figures, please include the number of measurements, i.e., N = ...

      We have updated all figure legends to include the number of measurements, indicated as N = ..., as suggested.

      (2) For all Figures, please place panel labels, i.e., A, B, C, etc., in the same respective location for each panel. As currently mapped out, it is difficult to easily determine which data are associated with each panel because the IDs are in various locations.

      Due to variations in data presentation and spacing within individual plots, it was challenging to place all labels in exactly the same position without obscuring important details. We have therefore maintained the labels as they were before.

      (3) In the introduction, it would be helpful for the authors to specify exactly what is meant by chaperone. Given the context, it seems that the authors refer to the chaperone activity as one that prevents aggregation. Is this correct?

      We refer to chaperone activity specifically as the ability to prevent aggregation of proteins. We have now clarified this definition in the Introduction section of the revised manuscript.

      (4) The results for experiments shown in Figure 3 need additional setup in the text. Were these measurements taken immediately after mixing WT, DM, or P33A with polyP? If so, why do condensates immediately appear and then dissipate before ThT-detected aggregates begin forming? Or were condensates allowed to form and then transferred to a different buffer, after which measurements were taken? Without a brief description of the experimental setup, interpreting the results is difficult.

      The condensates appear immediately after adding polyP to protein solutions, indicating that the condensate phase is kinetically accessible on mixing polyP with DM or the WT. As illustrated in Figure 3A and 3B, for WT protein, the condensates undergo liquid to solid transition over the time as this likely is the most thermodynamically stable phase. Effectively, this work is to convey that it is important to look at time-dependence of even droplets when formed as they may not be the most stable phase.

      (5) Please include images of P33A over the time course of the experiment in Figure 3B.

      We have included the representative images of P33A in presence of polyP over the time in Figure 3B in the revised manuscript.

      (6) In Figures 3D, E, G, and H, please plot each measurement separately with mean and standard deviation to enable the reader to see each data point.

      We have now revised Figures 3D, E, G, and H to show individual data points along with the mean and standard deviation.

      (7) In the top paragraph on page 12, "fast-moving molecules" can be replaced with "dynamic molecules", as this offers a better description of the FRAP data.

      We have incorporated the suggested changes.

      (8) In the "Structural changes within the condensates spans over three hours" results section on page 15, the conclusion reads "In summary, we find that both the WT and the DM 'unfold' on forming condensates with polyP..." The way this is written suggests that WT and DM behave in a similar manner. Given the CD data, however, it seems that by 4 hours, DM forms alpha helices while the WT does not. This suggests that while each unfolds, the conformation at 4 hours is different. The summary should reflect these differences.

      We fully agree with the reviewer on this. The summary is now modified to include the fact the DM forms alpha helices at 4 hours while the WT does not.

      (9) At the end of the first paragraph of the results section "DNA does not discriminate the conformational ensembles" the authors should refer to Figure 2G, where they show the altered morphology of polP-P33A condensates.

      We have now included the reference to Figure 2G.

      (10) The authors refer to droplets "solubilizing" throughout the manuscript. It seems that dissolve is a better term to use. Solubilize is better associated with individual biomolecules while dissolve is better associated with condensate behavior.

      We thank the reviewer for pointing this out. We have revised the manuscript to replace “solubilize” with “dissolve”.

      (11) In Figures 5L and 5N, please change the Y-axis scale so that each curve is visible on the plot.

      We have adjusted the Y-axis scale in Figures 5L, 5M, and 5N to ensure that each curve is clearly visible and for easier comparison among the variants.

      (12) The authors should show an image of FruR WT and Y19A with DNA for a direct comparison with experiments in which FruR and polyP were used. The addition of turbidity measurements of samples shown in Figure 6D will offer another direct comparison. As written, there is no way for the author to directly compare the effects of polyP and DNA on FruR phase transitions.

      As suggested, we have now included representative images of FruR WT and Y19A with DNA (Figure 6K and 6L) to enable a direct comparison with the FruR–polyP experiments. Also, we have already shown turbidity measurements in Figure 6B and 6C corresponding to the samples shown in Figure 6D.

      Reviewer 2:

      In this study, Goyal et al demonstrate that the assembly of proteins with polyphosphate into either condensates or aggregates can reveal information on the initial protein ensemble. They show that, unlike DNA, polyphosphate is able to effectively discriminate against initial protein ensembles with different conformational heterogeneity, structure, and compactness. The authors further show that the protein native ensemble is vital on whether polyphosphate induces phase separation or aggregation, whereas DNA induces a similar outcome regardless of the initial protein ensemble. This work provides a way to improve our mechanistic understanding of how conformational transitions of proteins may regulate or drive LLPS condensate and aggregate assemblies within biological systems.

      We thank the reviewer for the favorable comments on the manuscript.

      Major Concerns:

      (1) The authors are using bacterial proteins (CytR and FruR) and solely represent polyphosphates as polyP45 (a polyphosphate with 45 Pi units). However, in bacterial systems, polyphosphates can be significantly longer (in the order of 100s to 1000 Pi units). Additionally, the experiments were run at neutral pH (7.0), and though this is fairly appropriate for the cytoplasm, volutin granules (where polyphosphates often accumulate) are typically considered slightly acidic (pH 5.5-6.5). From a physiological perspective, understanding how pH and the length of polyphosphate influence the ability to induce condensates or aggregates could be of importance.

      We appreciate the reviewer’s insightful comments regarding the physiological relevance of polyphosphate length and pH. In our current study, we used polyP45 as it is easily available commercially and we conducted our experiments at pH 7 to mimic the general cytoplasm conditions. We agree that polyphosphates in bacterial cells can be significantly longer (hundreds to thousands of Pi units) and conducting experiments at slightly more acidic environment would be physiologically relevant. We plan to use longer polyP from Regene Tiss Inc. and acidic pH to explore how polyphosphate-induced phase separation of CytR vary with pH as a part of a future study. One could imagine doing all the experiments listed in the manuscript at different pH conditions for the different variants, but this could not be a part of the current work which has a specific focus on the differences in maturation properties depending on the nature of starting ensemble. However, the pKa values of the internal hydroxyl groups is ~2.2 (DOI:10.2147/IJN.S389819) indicating that the polyP carries near identical charges in the pH range between 4-7, and hence we expect little change in the charged status of polyP. On the other hand, the protonation states of charged amino acids within CytR could vary with pH, thus influencing its assembly properties.

      (2) In the study, the longest metastable condensate induced by polyphosphate lasted approximately 3 hours before resolubilizing. It would be nice if the authors were able to generate a longer-lived condensate phase that would enable further mechanistic studies (e.g., NMR).

      We agree that generating longer-lived condensates would be highly valuable for mechanistic studies. However, the formation and stability of condensates is an intrinsic property of protein, and optimizing different conditions for a longer-lived condensate phase is beyond the scope of the current study. It is possible that the condensates are long-lived with longer polyP, but it is not clear if this would indeed be the case. We would also like to state here that while it is common to report on the liquid-to-solid transition in condensates, the intrinsic metastability of droplets (when there is no aggregation) is rarely reported. One possibility is to mutationally introduce cysteine residues and induce the formation of disulphide bridges (as done in a recent work, doi: 10.1021/jacs.4c09557) that make the condensate highly stable kinetically; however, this would also complicate the interpretation as the mechanism of condensate formation might be very different. We have therefore reported our results as an observation arising from differences in the nature of the poly-anionic polymers.

      (3) The authors showed that CytR DM (fully folded), CytR WT (minor state folded), and CytR P33A (highly disordered) with polyphosphates lead to longer-lived condensates that resolubilize, shorterlived condensates that aggregate, and immediate aggregating, respectively. Whereas FruR (folded) and FruR Y19A (molten globular) with polyphosphate induce spontaneous aggregation and short-lived condensates, respectively. I would expect FruR to be more similar to CytR DM and FruR Y19A more similar to CytR WT in terms of structure and conformational dynamics and plasticity, yet they have opposing results. This raises a bit of concern. Meaning, that though polyphosphate discriminates between the different ensembles, is it actually possible to obtain information on the initial ensemble composition?

      In the current study, we show that CytR WT (less structured) and FruR Y19A (molten globule) form short-lived condensates that aggregate. We agree with the reviewer that while CytR DM (fully folded) forms condensates that dissolve over time, FruR WT (fully folded) variant forms aggregates immediately upon polyP addition. The observations show that polyP can discriminate between different protein conformations, in contrast to DNA, which does not show such selectivity. However, we acknowledge that while polyP-induced behavior reflects aspects of protein ensemble properties, it does not provide direct insight into the nature of the initial conformational ensemble.

      (4) In the case of FruR with polyphosphate, no CD for the secondary structure analysis was provided as it was for CytR. It would be useful to see if the polyphosphate-induced structural changes observed for CytR hold true for FruR as well.

      We thank the reviewer for the suggestion. In response, we have performed far-UV CD experiments on FruR variants in the presence of polyP. Similar to the CytR WT, FruR WT shows unfolding upon polyP addition. A similar outcome is noted for the Y19A variant though there is significant residual helix content in the condensate unlike the WT. The CD spectra of FruR variants have been added to Figure 6.

      Minor Concerns/Suggestions:

      Under conclusion, third paragraph, first sentence. This sentence reads, "Our observations thus establish that polyP efficiently discriminates the conformational features of proteins than DNA, contributing to the diverse outcomes."

      We thank the reviewer for pointing this out. The sentence has been revised for clarity. It now reads “Our observations establish that polyP is more sensitive to the conformational features of proteins than DNA, thereby contributing to the diverse outcomes.”

      One experimental suggestion. Seeing that protein dynamics and plasticity seem to play a role. For either CytR WT or DM, it would be interesting to see the influence of temperature. Altering the temperature is a good way to perturb the population distribution of conformation sub-states and to alter kinetics. It may be that at a lower temperature (maybe 5C) for the WT you reduce conformational dynamics and you obtain results more similar to that of the DM. Alternatively, heating the DM would be another option. Obviously, there are additional challenges that may arise with changing the temperature, but if it were to work I think it could add some value.

      We thank the reviewer for the thoughtful suggestion. Due to limitations in our current experimental setup (as the reviewer notes as ‘challenges’)- the confocal set up does not have a temperature controller - we will not be to perform temperature-controlled assays. However, the ‘structure’ of CytR variants do not vary much between 280 – 298 K, and this is one of the reasons for choosing three variants without altering any other thermodynamic property. If temperature were varied, the dynamics of polyP would also change and hence the true molecule origins of any differences we might observe will be confounded by the dynamic effects on polyP as well. In this work, we have eliminated any dynamic differences in polyP by performing the experiments at a fixed temperature.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      One enduring mystery involving the evolution of genomes is the remarkable variation they exhibit with respect to size. Much of that variation is due to differences in the number of transposable elements, which often (but not always) correlates with the overall quantity of DNA. Amplification of TEs is nearly always either selectively neutral or negative with respect to host fitness. Given that larger effective population sizes are more efficient at removing these mutations, it has been hypothesized that TE content, and thus overall genome size, may be a function of effective population size. The authors of this manuscript test this hypothesis by using a uniform approach to analysis of several hundred animal genomes, using the ratio of synonymous to nonsynonymous mutations in coding sequence as a measure of the overall strength of purifying selection, which serves as a proxy for effective population size over time. The data convincingly demonstrates that it is unlikely that effective population size has a strong effect on TE content and, by extension, overall genome size (except for birds).

      Strengths:

      Although this ground has been covered before in many other papers, the strength of this analysis is that it is comprehensive and treats all the genomes with the same pipeline, making comparisons more convincing. Although this is a negative result, it is important because it is relatively comprehensive and indicates that there will be no simple, global hypothesis that can explain the observed variation.

      Weaknesses:

      In several places, I think the authors slip between assertions of correlation and assertions of cause-effect relationships not established in the results.

      Several times in the previous version of the manuscript we used the expression “effect of dN/dS on…” which might suggest a causal relationship. We have rephrased these expressions and highlighted the changes in the main text, so that correlation is not mistaken with causation (see also responses to detailed comments below).

      In other places, the arguments end up feeling circular, based, I think, on those inferred causal relationships. It was also puzzling why plants (which show vast differences in DNA content) were ignored altogether.

      The analysis focuses on metazoans for two reasons: one practical and one fundamental.

      The practical reason is computational. Our analysis included TE annotation, phylogenetic estimation and dN/dS estimation, which would have been very difficult with the hundreds, if not thousands, of plant genomes available. If we had included plants, it would have been natural to include fungi as well, to have a complete set of multicellular eukaryotic genomes, adding to the computational burden. The second fundamental reason is that plants show important genome size differences due to more frequent whole genome duplications (polyploidization) than in animals. It is therefore possible that the effect of selection on genome size is different in these two groups, which would have led us to treat them separately, decreasing the interest of this comparison. For these reasons we chose to focus on animals that still provide very wide ranges of genome size and population size well suited to test the impact of genetic drift on the genomic TE content.

      Reviewer #2 (Public review):

      Summary:

      The Mutational Hazard Hypothesis (MHH) is a very influential hypothesis in explaining the origins of genomic and other complexity that seem to entail the fixation of costly elements. Despite its influence, very few tests of the hypothesis have been offered, and most of these come with important caveats. This lack of empirical tests largely reflects the challenges of estimating crucial parameters.

      The authors test the central contention of the MHH, namely that genome size follows effective population size (Ne). They martial a lot of genomic and comparative data, test the viability of their surrogates for Ne and genome size, and use correct methods (phylogenetically corrected correlation) to test the hypothesis. Strikingly, they not only find that Ne is not THE major determinant of genome size, as is argued by MHH, but that there is not even a marginally significant effect. This is remarkable, making this an important paper.

      Strengths:

      The hypothesis tested is of great importance.

      The negative finding is of great importance for reevaluating the predictive power of the tested hypothesis.

      The test is straightforward and clear.

      The analysis is a technical tour-de-force, convincingly circumventing a number of challenges of mounting a true test of the hypothesis.

      Weaknesses:

      I note no particular strengths, but I believe the paper could be further strengthened in three major ways.

      (1) The authors should note that the hypothesis that they are testing is larger than the MHH.

      The MHH hypothesis says that (i) low-Ne species have more junk in their genomes and

      (ii) this is because junk tends to be costly because of increased mutation rate to nulls, relative to competing non/less-junky alleles.

      The current results reject not just the compound (i+ii) MHH hypothesis, but in fact any hypothesis that relies on i. This is notably a (much) more important rejection. Indeed, whereas MHH relies on particular constructions of increased mutation rates of varying plausibility, the more general hypothesis i includes any imaginable or proposed cost to the extra sequence (replication costs, background transcription, costs of transposition, ectopic expression of neighboring genes, recombination between homologous elements, misaligning during meiosis, reduced organismal function from nuclear expansion, the list goes on and on). For those who find the MHH dubious on its merits, focusing this paper on the MHH reduces its impact - the larger hypothesis that the small costs of extra sequence dictate the fates of different organisms' genomes is, in my opinion, a much more important and plausible hypothesis, and thus the current rejection is more important than the authors let on.

      The MHH is arguably the most structured and influential theoretical framework proposed to date based on the null assumption (i), therefore setting the paper up with the MHH is somehow inevitable. Because of this, we mostly discuss the assumption (ii) (the mutational aspect brought about by junk DNA) and the peculiarities of TE biology that can drive the genome away from the expectations of (i). We however agree that the hazard posed by extra DNA is not limited to the gain of function via the mutation process, but can be linked to many other molecular processes as mentioned above. Moreover, we also agree that our results can be interpreted within the general framework of the nearly-neutral theory. They demonstrate that mutations, whether increasing or decreasing genome size, have a distribution of fitness effects that falls outside the range necessary for selection in larger populations. In the revised manuscript, we made the concept of hazard more comprehensive and further stressed that this applies not only to TEs but any nearly-neutral mutation affecting non-coding DNA (lines 491-496): “Notably, these results not only reject the theory of extra non-coding DNA being costly for its point mutational risk, but also challenges the more general idea of its accumulation depending on other kinds of detrimental effects, such as increased replication, pervasive transcription, or ectopic recombination. Therefore, our results can be considered more general than a mere rejection of the MHH hypothesis, as they do not support any theory predicting that species with low Ne would accumulate more non-coding DNA.”

      (2) In addition to the authors' careful logical and mathematical description of their work, they should take more time to show the intuition that arises from their data. In particular, just by looking at Figure 1b one can see what is wrong with the non-phylogenetically-corrected correlations that MHH's supporters use. That figure shows that mammals, many of which have small Ne, have large genomes regardless of their Ne, which suggests that the coincidence of large genomes and frequently small Ne in this lineage is just that, a coincidence, not a causal relationship. Similarly, insects by and large have large Ne, regardless of their genome size. Insects, many of which have large genomes, have large Ne regardless of their genome size, again suggesting that the coincidence of this lineage of generally large Ne and smaller genomes is not causal. Given that these two lineages are abundant on earth in addition to being overrepresented among available genomes (and were even more overrepresented when the foundational MHH papers collected available genomes), it begins to emerge how one can easily end up with a spurious non-phylogenetically corrected correlation: grab a few insects, grab a few mammals, and you get a correlation. Notably, the same holds for lineages not included here but that are highly represented in our databases (and all the more so 20 years ago): yeasts related to S. cerevisiae (generally small genomes and large median Ne despite variation) and angiosperms (generally large genomes (compared to most eukaryotes) and small median Ne despite variation). Pointing these clear points out will help non-specialists to understand why the current analysis is not merely a they-said-them-said case, but offers an explanation for why the current authors' conclusions differ from the MHH's supporters and moreover explain what is wrong with the MHH's supporters' arguments.

      We thank the referee for this perspective. We agree that comparing dispersion of the points from the non-phylogenetically corrected correlation with the results of the phylogenetic contrasts intuitively emphasizes the importance of accounting for species relatedness. We added on to the discussion to stress the phylogenetic structure present in the data (lines 408-417): “It is important to note how not treating species traits as non-independent leads to artifactual results (Figure 2B-C). For instance, mammals have on average small population sizes and the largest genomes. Conversely, insects tend to have large Ne and overall small genomes. With a high sampling power and phylogenetic inertia being taken into account, our meta-analysis clearly points at a phylogenetic structure in the data: the main clades are each confined to separate genome size ranges regardless of their dN/dS variation. The other way around, variability in genome size can be observed in insects, irrespective of their dN/dS. Relying on non phylogenetically corrected models based on a limited number of species (such as that available at the time of the MHH proposal) can thus result in a spurious positive scaling between genome size and Ne proxies.”

      (3) A third way in which the paper is more important than the authors let on is in the striking degree of the failure of MHH here. MHH does not merely claim that Ne is one contributor to genome size among many; it claims that Ne is THE major contributor, which is a much, much stronger claim. That no evidence exists in the current data for even the small claim is a remarkable failure of the actual MHH hypothesis: the possibility is quite remote that Ne is THE major contributor but that one cannot even find a marginally significant correlation in a huge correlation analysis deriving from a lot of challenging bioinformatic work. Thus this is an extremely strong rejection of the MHH. The MHH is extremely influential and yet very challenging to test clearly. Frankly, the authors would be doing the field a disservice if they did not more strongly state the degree of importance of this finding.

      We respectfully disagree with the review that there is currently no evidence for an effect of Ne on genome size evolution. While it is accurate that our large dataset allows us to reject the universality of Ne as the major contributor to genome size variation, this does not exclude the possibility of such an effect in certain contexts. Notably, there are several pieces of evidence that find support for Ne to determine genome size variation and to entail nearly-neutral TE dynamics under certain circumstances, e.g. of particularly strongly contrasted Ne and moderate divergence times (Lefébure et al., 2017 Genome Res 27: 1016-1028; Mérel et al., 2021 Mol Biol Evol 38: 4252-4267; Mérel et al., 2024 biorXiv: 2024-01; Tollis and Boissinot, 2013 Genome Biol Evol 5: 1754-1768; Ruggiero et al., 2017 Front Genet 8: 44). The strength of such works is to analyze the short-term dynamics of TEs in response to N<sub>e</sub> within groups of species/populations, where the cost posed by extra DNA is likely to be similar. Indeed, the MHH predicts genome size to vary according to the combination of drift and mutation under the nearly-neutral theory of molecular evolution. Our work demonstrates that it is not true universally but does not exclude that it could exist locally. Moreover, defence mechanisms against TEs proliferation are often complex molecular machineries that might or might not evolve according to different constraints among clades. We have detailed these points in the discussion (lines 503-518).

      Reviewer #3 (Public review):

      Summary

      The Mutational Hazard Hypothesis (MHH) suggests that lineages with smaller effective population sizes should accumulate slightly deleterious transposable elements leading to larger genome sizes. Marino and colleagues tested the MHH using a set of 807 vertebrate, mollusc, and insect species. The authors mined repeats de novo and estimated dN/dS for each genome. Then, they used dN/dS and life history traits as reliable proxies for effective population size and tested for correlations between these proxies and repeat content while accounting for phylogenetic nonindependence. The results suggest that overall, lineages with lower effective population sizes do not exhibit increases in repeat content or genome size. This contrasts with expectations from the MHH. The authors speculate that changes in genome size may be driven by lineage-specific host-TE conflicts rather than effective population size.

      Strengths

      The general conclusions of this paper are supported by a powerful dataset of phylogenetically diverse species. The use of C-values rather than assembly size for many species (when available) helps mitigate the challenges associated with the underrepresentation of repetitive regions in short-read-based genome assemblies. As expected, genome size and repeat content are highly correlated across species. Nonetheless, the authors report divergent relationships between genome size and dN/dS and TE content and dN/dS in multiple clades: Insecta, Actinopteri, Aves, and Mammalia. These discrepancies are interesting but could reflect biases associated with the authors' methodology for repeat detection and quantification rather than the true biology.

      Weaknesses

      The authors used dnaPipeTE for repeat quantification. Although dnaPipeTE is a useful tool for estimating TE content when genome assemblies are not available, it exhibits several biases. One of these is that dnaPipeTE seems to consistently underestimate satellite content (compared to repeat masker on assembled genomes; see Goubert et al. 2015). Satellites comprise a significant portion of many animal genomes and are likely significant contributors to differences in genome size. This should have a stronger effect on results in species where satellites comprise a larger proportion of the genome relative to other repeats (e.g. Drosophila virilis, >40% of the genome (Flynn et al. 2020); Triatoma infestans, 25% of the genome (Pita et al. 2017) and many others). For example, the authors report that only 0.46% of the Triatoma infestans genome is "other repeats" (which include simple repeats and satellites). This contrasts with previous reports of {greater than or equal to}25% satellite content in Triatoma infestans (Pita et al. 2017). Similarly, this study's results for "other" repeat content appear to be consistently lower for Drosophila species relative to previous reports (e.g. de Lima & Ruiz-Ruano 2022). The most extreme case of this is for Drosophila albomicans where the authors report 0.06% "other" repeat content when previous reports have suggested that 18%->38% of the genome is composed of satellites (de Lima & Ruiz-Ruano 2022). It is conceivable that occasional drastic underestimates or overestimates for repeat content in some species could have a large effect on coevol results, but a minimal effect on more general trends (e.g. the overall relationship between repeat content and genome size).

      There are indeed some discrepancies between our estimates of low complexity repeats and those from the literature due to the approach used. Hence, occasional underestimates or overestimates of repeat content are possible. As noted, the contribution of “Other” repeats to the overall repeat content is generally very low, meaning an underestimation bias. We thank the reviewer for providing this interesting review.

      We emphasized these points in the discussion of our revised manuscript (lines 358-376): “While the remarkable conservation of avian genome sizes has prompted interpretations involving further mechanisms (see discussion below), dnaPipeTE is known to generally underestimate satellite content (Goubert et al. 2015). This bias is more relevant for those species that exhibit large fractions of satellites compared to TEs in their repeatome. For instance, the portions of simple and low complexity repeats estimated with dnaPipeTE are consistently smaller than those reported in previous analyses based on assembly annotation for some species, such as Triatoma infestans (0.46% vs 25%; 7 Mbp vs 400 Mbp), Drosophila eugracilis (1.28% vs 10.89%; 2 Mbp vs 25 Mbp), Drosophila albomicans (0.06% vs 18 to 38%; 0.12 Mbp vs 39 to 85 Mbp) and some other Drosophila species (Pita et al. 2017; de Lima and Ruiz-Luano 2022; Supplemental Table S2). Although the accuracy of Coevol analyses might occasionally be affected by such underestimations, the effect is likely minimal on the general trends. Inability to detect ancient TE copies is another relevant bias of dnaPipeTE. However, the strong correlation between repeat content and genome size and the consistency of dnaPipeTE and earlGrey results, even in large genomes such as that of Aedes albopictus, indicate that dnaPipeTE method is pertinent for our large-scale analysis. Furthermore, such an approach is especially fitting for the examination of recent TEs, as this specific analysis is not biased by very repetitive new TE families that are problematic to assemble.”

      Not being able to correctly estimate the quantity of satellites might pose a problem for quantifying the total content of junk DNA. However, the overall repeat content mostly composed of TEs correlates very well with genome size, both in the overall dataset and within clades (with the notable exception of birds) so we are confident that this limitation is not the explanation of our negative results. Moreover, while satellite information might be missing, this is not problematic to test our hypothesis, as we focus on TEs, whose proliferation mechanism differs significantly from that of tandem repeats and largely account for genome size variation.

      Another bias of dnaPipeTE is that it does not detect ancient TEs as well as more recently active TEs (Goubert et al., 2015 Genome Biol Evol 7: 1192-1205). Thus, the repeat content used for PIC and coevolve analyses here is inherently biased toward more recently inserted TEs. This bias could significantly impact the inference of long-term evolutionary trends.

      Indeed, dnaPipeTE is not good at detecting old TE copies due to the read-based approach, biasing the outcome towards new elements. We agree that TE content can be underestimated, especially in those genomes that tend to accumulate TEs rather than getting rid of them. However, the sum of old TEs and recent TEs is extremely well correlated to genome size (Pearson’s correlation: r = 0.87, p-value < 2.2e-16; PIC: slope = 0.22, adj-R<sup>2</sup> = 0.42, p-value < 2.2e-16). Our main result therefore does not rely on an accurate estimation of old TEs. In contrast, we hypothesized that recent TEs could be interesting because selection could be more likely to act on TEs insertion and dynamics rather than on non-coding DNA as a whole. Our results demonstrate that this is not the case. It should be noted that in spite of its limits towards old TEs, dnaPipeTE is well-suited for this analysis as it is not biased by highly repetitive new TE families that are challenging to assemble. In the revised manuscript, we now emphasize the limitations of dnaPipeTE and discuss the consequences on our results. See lines 359-374 (reported above) and lines 449-455: “On the other hand, it is conceivable the avian TE diversity to be underappreciated due to the limits of sequencing technologies used so far in resolving complex repeat-rich regions. For instance, employment of long-reads technologies allowed to reveal more extended repeated regions that were previously ignored with short read assemblies (Kapusta and Suh 2017; Benham et al. 2024). Besides, quite large fractions might indeed be satellite sequences constituting relevant fractions of the genome that are challenging to identify with reference- or read-based methods (Edwards et al. 2025).”

      Finally, in a preliminary work on the dipteran species, we showed that the TE content estimated with dnaPipeTE is generally similar to that estimated from the assembly with earlGrey (Baril et al., 2024 Mol Biol Evol 38: msae068) across a good range of genome sizes going from drosophilid-like to mosquito-like (TE genomic percentage: Pearson’s r = 0.88, p-value = 1.951e-10; TE base pairs: Pearson’s r = 0.90, p-value = 3.573e-11; see also the corrected Supplementary Figure S2 and new Supplementary Figure S3). While TEs for these species are probably dominated by recent to moderately recent TEs, Ae. albopictus is an outlier for its genome size and the estimations with the two methods are largely consistent. However, the computation time required to estimate TE content using EarlGrey was significantly longer, with a ~300% increase in computation time, making it a very costly option (a similar issue applicable to other assembly-based annotation pipelines). Given the rationale presented above, we decided to use dnaPipeTE instead of EarlGrey.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Since I am not an expert in the field, some of these comments may simply reflect a lack of understanding on my part. However, in those cases, I hope they can help the authors clarify important points. I did have a bunch of comments concerning the complexity of the relationship between TEs and their hosts that would likely affect TE content, but I ended up deleting most of them because they were covered in the discussion. However, I do think that in setting up the paper, particularly given the results, it might have been useful to introduce those issues in the introduction. That is to say, treating TEs as a generic mutagen that will fit into a relatively simple model is unlikely to be correct. What will ultimately be more interesting are the particulars of the ways that the relationships between TEs and their host evolve over time. Finally, given the huge variation in plant genes with respect to genome size and TE content, along with really interesting variation in deletion rates, I'm surprised that they were not included. I get that you have to draw a line somewhere, and this work builds on a bunch of other work in animals, but it seems like a missed opportunity.

      We chose to restrict the introduction to the rationale behind the MHH as it is the starting point and focus of the manuscript. Because the aspects of the complexity of TE-host relationships are only covered in a speculative way, we limited them to the discussion but it is true that introducing them at the very beginning gives a more comprehensive overview. The introduction now includes a few sentences about lineage-specific selective effect of TEs and TE-host evolution (lines 83-86): “On top of that, an alternative TE-host-oriented perspective is that the accumulation of TEs in particular depends on their type of activity and dynamics, as well as on the lineage-specific silencing mechanisms evolved by host genomes (Ågren and Wright 2011).”

      Page 4. "The MHH is highly popular..." Evidence for this? It is fine as is, but it could also be seen as a straw man argument. Perhaps make clear this is an opinion of the authors?

      That MHH is popular and well-known is more a fact than an opinion: the original paper by Lynch and Conery (2003) and “The origins of genome architecture” by Lynch (2007) have respectively 1872 and 1901 citations to the present date (04/03/2025). Besides, the MHH is often invoked in highly cited reviews about TEs, e.g. Bourque et al., 2018 Genome Biol 19:1-12; Wells and Feschotte, 2020 Annu Rev Genet 54: 539-561.

      Page 4. "on phylogenetically very diverse datasets..." Given the fact that even closely related plants can show huge variation in genome size, it's a shame that they weren't included here. There are also numerous examples of closely related plants that are obligate selfers and out-crossers.

      This is true, and some studies already tested MHH in specific plant groups (Ågren et al., 2014 BMC Genom 15: 1-9; Hu et al., 2011 Nat Genet 43: 476-481; Wright et al., 2008 Int J Plant Sci 169: 105-118), including selfers vs out-crossers cases (Glémin et al., 2019 Evolutionary genomics: statistical and computational methods: 331-369). Further development in this kingdom would be interesting. However, the boundary was set to metazoans since the very beginning of analyses to maintain a large phylogenetic span and a manageable computational burden. Furthermore, some of the included animal clades are supposed to display good Ne contrasts according to known LHTs or to previous literature: for instance, the very different Ne of mammals and insects, as well as more narrowed examples like Drosophilidae and solitary vs eusocial hymenopterans.

      Page 6. "species-poor, deep-branching taxa were excluded" I see why this was done, as these taxa would not provide close as well as distant comparisons, but I would have thought they might have provided some interesting outlying data. As the geneticists say, value the exceptions.

      The reason to exclude them was not only that they would solely provide very distant comparisons. The lack of a rich and balanced sampling would imply calculating nucleotide substitution rates over hundreds of millions of years, which typically lead to saturation of synonymous sites. In case of saturation of synonymous sites, the synonymous divergence will be underestimated, and therefore, the dN/dS ratio no longer a valuable estimate of N<sub>e</sub>. Outside vertebrates and insects, the available genomes in a clade would mostly correspond to a few species from an entire phylum, making it challenging to estimate dN/dS and to correlate present day genome size with Ne estimated over hundreds of millions of years.

      Figure 1. What are the scaling units for each of these values? I get that dN/dS is between 0 and 1, but what about genome sizes? Are these relative sizes? Are TE content values a percent of the total? This may be mentioned elsewhere, but I think it is worth putting that information here as well.

      Thanks for pointing this out. Both genome sizes and TE contents are in bp, we added this information in the legend of the figure.

      Page 8. TE content estimates are invariably wrong given the diversity of TEs and, in many genomes, the presence of large numbers of low copy number "dead" elements. If that varies between taxa, this could cause problems. Given that, I would have liked to see the protocols used here be compared to a set of "gold standard" genomes with exceptionally well-annotated TEs (Humans and D. melanogaster, for instance).

      As already mentioned, dnaPipeTE is indeed biased towards young TEs (elements older than 25-30% are generally not detected). TE content can therefore be underestimated, especially in those genomes that tend to accumulate TEs rather than getting rid of them. Although most of them do not have “gold-standard” genomes, a comparison of dnaPipeTE with TE annotations from assemblies is already provided for a subset of species. Some variation can be present - see Supplemental Figure S6 and comments of Reviewer#3 about detection of satellite sequences. However, the subset covers a good range of genome sizes and overall dnaPipeTE emerges as an appropriate tool to characterize the general patterns of repeat content variation.

      Page 11. "close to 1 accounts for more..." I would say "closer" rather than "close".

      Agreed and changed.

      Page 11. "We therefore employed this parameter..." I know you made the point earlier, but maybe reiterate the general point here that selection is lower on average with a lower effective population size. Actually, I'm wondering if we don't need a different term for long-term net effective population size, which dN/dS is measuring.

      We reiterated here the relationship among dN/dS, Ne and magnitude of selection (lines 200-204): “a dN/dS closer to 1 accounts for more frequent accumulation of mildly deleterious mutations over time due to increased genetic drift, while a dN/dS close to zero is associated with a stronger effect of purifying selection. We therefore employed this parameter as a genomic indicator of N<sub>e</sub>, as the two are expected to scale negatively between each other.”

      Page 11. "We estimated dN/dS with a mapping method..." I very much appreciate that the authors are using the same pipeline for the analysis of all of these taxa, but I would also be interested in how these dN/dS values compare with previously obtained values for a subset of intensively studied taxa.

      The original publication of the method demonstrated that dN/dS estimations using mapping are highly similar to those obtained with maximum likelihood methods, such as implemented in CODEML (Romiguier et al., 2014 J Evol Biol 27: 593-603). Below is the comparison for 16 vertebrate species from Figuet et al. (2016 Mol Biol Evol 33: 1517-1527), where dN/dS are reasonably correlated (slope = 0.57, adjusted-R<sup>2</sup> = 0.39, p-value=0.006). That being said, some noise can be present as the compared genes and the phylogeny used are different. Although we expect some value between 0 and 1, some range of variation is to be expected depending on both the species used and the markers, as substitution rates and/or selection strength might be different. Differences in dN/dS for the same species would not necessarily imply an issue with one of the methods.

      Author response image 1.

      Page 12. " As expected, Bio++ dN/dS scales positively with..." Should this be explicitly referenced earlier? I do see that references mentioning both body mass and longevity are included earlier, but the terms themselves are not.

      We added a list of the expected correlations for dN/dS and LHTs at the beginning of the paragraph (lines 205-208): “In general, dN/dS is expected to scale positively with body length, age at first birth, maximum longevity, age at sexual maturity and mass, and to scale negatively with metabolic rate, population density and depth range.”

      Page 12. "dN/dS estimation on the trimmed phylogeny deprived of short and long branches results in a stronger correlation with LHTs, suggesting that short branches..." and what about the long branches? Trimming them helps because LHTs change over long periods of time?

      Trimming of long branches should avoid saturation in the signal of synonymous substitutions if present (whereby increase in dN is not parallelled by corresponding increase in dS due to depletion of all sites). Excluding very long branches was one of the reasons why we excluded taxonomic groups with few species. See lines 131-133: “For reliable estimation of substitution rates, this dataset was further downsized to 807 representative genomes as species-poor, deep-branching taxa were excluded”. Correlating present-day genome size with Ne estimates over long periods of time could weaken a potential correlation. However, exploratory analyses (not included) did not indicate that excluding long branches improved the relationship between Ne and genome size/TE content. The rationale is explained in Materials and Methods but was wrongly formulated. We rephrased it and added a reference (lines 636-638): “Estimation of dN/dS on either very long or short terminal branches might lead to loss of accuracy due to branch saturation (Weber et al. 2014) or to a higher variance of substitution rates, respectively”.

      Table 2. "Expected significant correlations are marked in bold black; significant correlations opposite to the expected trend are marked in bold red." Expected based on the initial hypothesis? Perhaps frame it as a test of the hypothesis?

      As per the comment above, we added a sentence in the main text to clarify the expected correlations for dN/dS and LHTs (lines 205-208): “In general, dN/dS is expected to scale positively with body length, age at first birth, maximum longevity, age at sexual maturity and mass, and to scale negatively with metabolic rate, population density and depth range.”. The second expected correlation is that between dN/dS and genome size/TE content, which is stated at the beginning of paragraph 2.5 (lines 244-245): “If increased genetic drift leads to TE expansions, a positive relationship between dN/dS and TE content, and more broadly with genome size, should be observed.”.

      Page 14. "Based on the available traits, the two kinds of Ne proxies analyzed here correspond in general..." the two kinds being dN/dS and a selection of LHT?

      We rephrased the sentence as such (lines 233-234): “Based on the available traits, the estimations of dN/dS ratios obtained using two different methods correspond in general to each other”.

      Table 3. Did you explain why there is a distinction between GC3-poor and GC3-rich gene sets?

      No, the explanation is missing, thank you for pointing it out. The choice comes from the observations made by Mérel et al. (2024 biorXiv: 2024-01), who do find a stronger relationship between dN/dS and genome size in Drosophila using the same tool (Coevol) in GC3-poor genes than in GC3-rich ones or in random sets of genes exhibiting heterogeneity in GC3 content. There are several possible explanations for this. First, mixing genes with various base compositions in the same concatenate can alter the calculation of codon frequency and impair the accuracy of the model estimating substitution rates.

      Moreover, base composition and evolutionary rates may not be two independent molecular traits, at the very least in Drosophila, and more generally in species experiencing selection on codon bias. Because optimal codons are enriched in G/C bases at the third position (Duret and Mouchiroud, 1999 PNAS 96: 4482-4487), GC3-rich genes are likely to be more expressed and therefore evolve under stronger purifying selection than GC3-poor genes in Drosophila.

      Accordingly, Merel and colleagues observed significantly higher dN/dS estimates for GC3-poor genes than for GC3-rich genes. Additionally, selection on codon usage acting on these highly expressed genes, that are GC3-rich, violates the assumed neutrality of dS. This implies that dN/dS estimates based on genes under selection on codon bias are likely less appropriate proxies of Ne than expected.

      Although some of these observations may be specific to Drosophila, this criterion was taken into consideration as taking restricted gene subsets was required for Coevol runs. We added this explanation in materials and methods (lines 723-738).

      Page 16. "Coevol dN/dS scales negatively with genome size across the whole dataset (Slope = -0.287, adjusted-R<sup>2</sup> = 0.004, p-value = 0.039) and within insects" Should I assume that none of the other groups scale negatively on their own, but cumulatively, all of them do?

      Yes, and this is an “insect-effect”: the regression of the whole dataset is negative but it is not anymore when insects are removed (with the model still being far from significant).

      Page 16. "Overall, we find no evidence for a recursive association of dN/dS with genome size and TE content across the analysed animal taxa as an effect of long-term Ne variation." I get the point, but this is starting to feel a bit circular. What you see is a lack of an association between dN/dS and TE content, but what do you mean by "as an effect of..." here? You are using dN/dS as a proxy, so the wording here feels odd.

      See the reply below.

      Page 17. I'm not sure that "effect" here is the word to use. You are looking at associations, not cause-effect relationships. Certainly, dN/dS is not causing anything; it is an effect of variation in purifying selection.

      Agreed, dN/dS is the ratio reflecting the level of purifying selection, not the cause itself. dN/dS is employed here as the independent variable in the correlation with genome size or TE content. dN/dS has an “effect” on the dependent variables in the sense that it can predict their variation, not in the sense that it is causing genome size to vary. We rephrased this and similar sentences to avoid misunderstandings (changes are highlighted in the revised text).

      Page 17. "Instead, mammalian TE content correlates positively with metabolic rate and population density, and negatively with body length, mass, sexual maturity, age at first birth and longevity." I guess I'm getting tripped up by measures of current LHTs and historical LHTs which, I'm assuming, varies considerably over the long periods of time that impact TE content evolution.

      PIC analyses can be considered as correlations on current LHTs as we compare values (or better, contrasts) at the tips of phylogenies. In the case of Coevol, traits are inferred at internal nodes, in such a way that the model should take into account the historical variation of LHTs, too.

      Page 18. "positive effect of dN/dS on recent TE insertions..." Again, this is not a measure of the effect of dN/dS on TE insertions, it is a measure of correlation. I know it's shorthand, but in this case, I think it really matters that we avoid making cause inferences.

      We have rephrased this as ”...very weak positive correlation of dN/dS with recent TE insertions…”.

      Page 18. "are consistent with the scenarios depicted by genome size and overall TE content in the corresponding clades." Maybe be more explicit here at the very end of the results about what those scenarios are.

      Correlating the recent TE content with dN/dS and LHTs basically recapitulates the relationship found using the other genomic traits (genome size and overall TE content). We have rephrased the closing sentence as “Therefore, the coevolution patterns between population size and recent TE content are consistent with the pictures emerging from the comparison of population size proxies with genome size and overall TE content in the corresponding clades” (lines 312-315).

      Page 19. "However, the difficulty in assembling repetitive regions..." I would say the same is true of TE content, which is almost always underestimated for the same reasons.

      “Repetitive regions” is here intended as an umbrella term including all kinds of repeats, from simple ones to transposable elements.

      Page 20. "repeat content has a lower capacity to explain size compared to other clades." Perhaps, but I'm not convinced this is not due to large numbers of low copy number elements, perhaps purged at varying rates. Are we certain that dnaPipeTE would detect these? Have rates of deletion in the various taxa examined been estimated?

      It is possible that low copy number elements are detected differently, according to the rate of decay in different species and depending also on the annotation method (indeed low copy families are less likely to be captured during read sampling by dnaPipeTE). A negative correlation between assembly size and deletion rate was observed in birds (Ji et al., 2023 Sci Adv 8: eabo0099). So we should expect a rate of TE removal inversely proportional to genome size, a positive correlation between TE content and genome size, and negative relationship between TE content and deletion rate, too. The relationship of TE content with deletion rate and genome size however appears more complex than this, even this paper using assembly-based TE annotations. However, misestimations of repeat content are also potentially due to the limited capacity of dnaPipeTE of detecting simple and low complexity repeats (see comments from Reviewer#3), which might be important genomic components in birds (see a few comments below).

      Page 21. "DNA gain, and their evolutionary dynamics appear of prime importance in driving genome size variation." How about DNA loss over time?

      See response to the comment below.

      Page 22. "in the latter case, the pace of sequence erosion could be in the long run independent of drift and lead to different trends of TE retention and degradation in different lineages." Ah, I see my earlier question is addressed here. How about deletion as a driver as well?

      Deletion was not investigated here. However, deletion processes are surely very different across animals and their impact merits to be studied as well within a comparative framework. Small scale deletion events have even been proposed to contrast the increase in genome size by TE expansion (Petrov et al., 2002 Theor Popul Biol 61: 531-544). In fact, their magnitude would not be high enough to effectively contrast processes of genome expansion in most organisms (Gregory, 2004 Gene 324: 15-34). However, larger-scale deletions might play an important role in genome size determinism by counterbalancing DNA gain (Kapusta et al., 2017 PNAS 114: E1460-E1469; Ji et al., 2023 Sci Adv 8: eabo0099). For sake of space we do not delve in detail into this issue, but we do provide some perspectives about the role of deletion (see lines 518-521 and 535-541).

      Page 22. "however not surprising given the higher variation of TE load compared to the restricted genome size range." I admit, I'm struggling with this. If it isn't genes, and it isn't satellites, and it isn't TEs, what is it?

      Most birds having ~1Gb genomes and displaying very low TE contents. Other studies annotated TEs in avian genome assemblies and also found a not so strong correlation between amount of TEs and genome size (Ji et al., 2023 Sci Adv 8: eabo0099, Kapusta and Suh, 2016 Ann N Y Acad Sci 1389: 164-185). It is possible that the TE diversity is underappreciated in birds due to the limits of sequencing technologies used so far in resolving complex repeat-rich regions. For instance, employment of long-reads technologies allowed to reveal more extended repeated regions that were previously ignored with short read assemblies (Kapusta and Suh, 2016 Ann N Y Acad Sci 1389: 164-185). Besides, quite large fractions might indeed be satellite sequences constituting relevant fractions of the genome (Edwards et al., 2025 biorXiv: 2025-02). We added this perspective in the discussion (lines 446-455): “As previous studies find relatively weak correlations between TE content and genome size in birds (Ji et al. 2022; Kapusta and Suh 2017), it is possible for the very narrow variation of the avian genome sizes to impair the detection of consistent signals. On the other hand, it is conceivable the avian TE diversity to be underappreciated due to the limits of sequencing technologies used so far in resolving complex repeat-rich regions. For instance, employment of long-reads technologies allowed to reveal more extended repeated regions that were previously ignored with short read assemblies (Kapusta and Suh 2017; Benham et al. 2024). Besides, quite large fractions might indeed be satellite sequences constituting relevant fractions of the genome that are challenging to identify with reference- or read-based methods (Edwards et al. 2025).” See also responses to Reviewer#3’s concerns about dnaPipeTE.

      Page 24. "Our findings do not support the quantity of non-coding DNA being driven in..." Many TEs carry genes and are "coding".

      Yes. Non-coding DNA intended as the non-coding portion of genomes not directly involved in organisms’ functions and fitness (in other words sequences not undergoing purifying selection). TEs do have coding parts but are in most part molecular parasites hijacking hosts’ machinery.

      Page 25. "There is some evidence of selection acting against TEs proliferation." Given that the vast majority of TEs are recognized and epigenetically silenced in most genomes, I'd say the evidence is overwhelming. Here I suspect you mean evidence for success in preventing proliferation. Actually, since we know that systems of TE silencing have a cost, it might be worth considering how the costs and benefits of these systems may have influenced overall TE content.

      We meant selection against TE proliferation in the making, notably visible at the level of genome-wide signatures for relaxed/effective selection. We rephrased it as “Evidence for signatures of negative selection against TE proliferation exist at various degrees.” (line 543).

      Reviewer #3 (Recommendations for the authors):

      Page 14: Please define GC3-rich and GC3-poor gene sets and how they were established, as well as why the analyses were conducted separately on GC3-rich and GC3-poor genes.

      We added a detailed explanation for the choice of GC3-rich and GC3-poor genes (see modified section Methods - Phylogenetic independent contrasts and Coevol reconstruction, lines 723-738).

      “Genes were selected according to their GC content at the third codon position (GC3). Indeed, mixing genes with heterogeneous base composition in the same concatenate might result in an alteration of the calculation of codon frequencies, and consequently impair the accuracy of the model estimating substitution rates (Mérel et al. 2024). Moreover, genes with different GC3 levels can reflect different selective pressures, as highly expressed genes should be enriched in optimal codons as a consequence of selection on codon usage. In Drosophila, where codon usage bias is at play, most optimal codons present G/C bases at the third position (Duret and Mouchiroud, 1999), meaning that genes with high GC3 content should evolve under stronger purifying selection than GC3-poor genes. Accordingly, Mérel et al. (2024) do find a stronger relationship between dN/dS and genome size when using GC3-poor genes, as compared to GC3-rich genes or gene concatenates of random GC3 composition. Finally, dN/dS can be influenced by GC-biased gene conversion (Bolívar et al. 2019; Ratnakumar et al. 2010), and the strength at which such substitution bias acts can be reflected by base composition. For these reasons, two sets of 50 genes with similar GC3 content were defined in order to employ genes undergoing similar evolutionary regimes.”

      Please add lines between columns and rows in tables. Table 3 is especially difficult to follow due to its size, and lines separating columns and rows would vastly help with readability.

      We added lines delimiting cells in all the main tables.

      Throughout the text and figures, please be consistent with either scientific names or common names for lineages or clades.

      Out of the five groups, for four of them the common name is the same as the scientific one (except Aves/birds).

      Regarding the title for section 3.1, I don't believe "underrate" is the best word here. I find this title confusing.

      We replaced the term “underrate” with “underestimate” in the title.

      The authors report that read type (short vs. long) does not have a significant effect on assembly size relative to C-value. However, the authors (albeit admittedly in the discussion) removed lower-quality assemblies using a minimum N50 cutoff. Thus, this lack of read-type effect could be quite misleading. I strongly recommend the authors either remove this analysis entirely from the manuscript or report results both with and without their minimum N50 cutoff. I expect that read type should have a strong effect on assembly size relative to C-value, especially in mammals where TEs and satellites comprise ~50% of the genome.

      Yes, it's likely that if we took any short-read assembly, we would have a short-read effect. We do not mean to suggest that in general short reads produce the same assembly quality as long reads, but that in this dataset we do not need to account for the read effect in the model to predict C-values. Adding the same test including all assemblies will be very time-consuming because C-values should be manually checked as already done for the species. If we removed this test, readers might wonder whether our genome size predictions are not distorted by a short-read effect. We now make it clear that this quality filter likely has an outcome on our observations: “This suggests that the assemblies selected for our dataset can mostly provide a reliable measurement of genome size, and thus a quasi-exhaustive view of the genome architecture.” (lines 333-335).

      There seem to be some confusing inconsistencies between Supplementary Table S2 and Supplementary Figure S2. In Supplementary Table S2, the authors report ~24% of the Drosophila pectinifera genome as unknown repeats. This is not consistent with the stacked bar plot for D. pectinifera in Supplementary Figure S2.

      True, the figure is wrong, thank you for spotting the error. The plot of Supplemental Figure S2 was remade with the correct repeat proportions as in Supplementary Tables S2 and S4. Because the reference genome sizes on which TE proportions are calculated are different for the two methods, we added another supplemental figure showing the same comparison in Kbp (now Supplemental Figure S3).

      At the bottom of page 20: "many species with a high duplication score in our dataset correspond to documented duplication" How many?

      Salmoniformes (9), Acipenseriformes (1), Cypriniformes (3) out of 23 species with high duplication score. It’s detailed in the results (lines 193-196): “Of the 24 species with more than 30% of duplicated BUSCO genes, 13 include sturgeon, salmonids and cyprinids, known to have undergone whole genome duplication (Du et al. 2020; Li and Guo 2020; Lien et al. 2016), and five are dipteran species, where gene duplications are common (Ruzzante et al. 2019).”

      Top of page 21: "However, the contribution of duplicated genes to genome size is minimal compared to the one of TEs, and removing species with high duplication scores does not affect our results: this implies that duplication does not impact genome size strongly enough to explain the lack of correlation with dN/dS." This sentence is confusing and needs rewording.

      We reworded the sentence (lines 383-384): “this implies that duplication is unlikely to be the factor causing the relationship between genome size and dN/dS to deviate from the pattern expected from the MHH”.

      Beginning of section 3.3: "Our dN/dS calculation included several filtering steps by branch length and topology: indeed, selecting markers by such criteria appears to be an essential step to reconcile estimations with different methodologies" A personal communication is cited here. Are there really no peer-reviewed sources supporting this claim?

      This mainly comes from a comparison of dN/dS calculation with different methods (notably ML method of bpp vs Coevol bayesian framework) on a set of Zoonomia species. We observed that estimations with different methods appeared correlated but with some noise: filtering out genes with deviant topologies (by a combination of PhylteR and of an unpublished Bayesian shrinkage model) reconciled even more the estimations obtained from different methods. Results are not shown here but the description of an analogous procedure is presented in Bastian, M. (2024). Génomique des populations intégrative: de la phylogénie à la génétique des populations (Doctoral dissertation, Université lyon 1) that we added to the references.

      Figure 2 needs to be cropped to remove the vertical gray line on the right of the figure as well as the portion of visible (partly cropped) text at the top. What is the "Tree scale" in Figure 1?

      Quality of figure 2 in the main text was adjusted. The tree scale is in amino acid substitutions, we added it in the legend of the figure.

      It is also unclear whether the authors used TE content or overall repeat content for their analyses.

      The overall repeat content includes both TEs and other kinds of repeats (simple repeats, low complexity repeats, satellites). The contribution of such other repeats to the total content is generally quite low for most species compared to that of TEs (only 13 genomes in all dataset have more than 3% of “Other” repeats). Conversely, the “other” repeats were not included in the recent content since the divergence of a copy from its consensus sequence is pertinent only for TEs.

    2. eLife Assessment

      This important study offers a powerful empirical test of a highly influential hypothesis in population genetics. It incorporates a large number of animal genomes spanning a broad phylogenetic spectrum and treats them in a rigorous unified pipeline, providing the convincing negative result that effective population size scales neither with the content of transposable elements nor with overall genome size. These observations demonstrate that there is still no simple, global hypothesis that can explain the observed variation in transposable element content and genome size in animals.

    3. Reviewer #1 (Public review):

      Summary:

      One enduring mystery involving the evolution of genomes is the remarkable variation they exhibit with respect to size. Much of that variation is due to differences in the number of transposable elements, which often (but not always) correlates with the overall quantity of DNA. Amplification of TEs is nearly always either selectively neutral or negative with respect to host fitness. Given that larger effective population sizes are more efficient at removing these mutations, it has been hypothesized that TE content, and thus overall genome size, may be a function of effective population size. The authors of this manuscript test this hypothesis by using a uniform approach to analysis of several hundred animal genomes, using the ration of synonymous to nonsynonymous mutations in coding sequence as a measure of overall strength of purifying selection, which serves as a proxy for effective population size over time. The data convincingly demonstrates that it is unlikely that effective population size has a strong effect on TE content and, by extension, overall genome size (except for birds, which are weird).

      Strengths:

      Although this ground has been covered before in many other papers, the strength of this analysis is that it is comprehensive and treats all the genomes with the same pipeline, making comparisons more convincing. Although this is a negative result, it is important because it is relatively comprehensive and indicates that there will be no simple, global hypothesis that can explain the observed variation.

      Weaknesses:

      In the first draft, the authors slipped between assertions of correlation and assertions of cause-effect relationships not established in the results. However, they have corrected the language so that it more carefully makes this distinction.

    4. Reviewer #3 (Public review):

      The Mutational Hazard Hypothesis (MHH) suggests that lineages with smaller effective population sizes should accumulate slightly deleterious transposable elements leading to larger genome size. Marino and colleagues tested the MHH using a set of 807 vertebrate, mollusc and insect species. The authors mined repeats de novo and estimated dN/dS for each genome. Then, they used dN/dS and life history traits as reliable proxies for effective population size and tested for correlations between these proxies and repeat content while accounting for phylogenetic nonindependence. The results suggest that overall, lineages with lower effective population sizes do not exhibit increases in repeat content or genome size. This contrasts with expectations from the MHH. The authors speculate that changes in genome size may be driven by lineage-specific host-TE conflicts rather than effective population size.

      Strengths:

      The general conclusions of this paper are supported by a powerful dataset of phylogenetically diverse species. Furthermore, the hypothesis tested is important and has proved challenging to test in the past due to technical challenges and confounding factors. The use of C-values rather than assembly size for many species (when available) helps to mitigate the challenges associated with underrepresentation of repetitive regions in short-read based genome assemblies. Overall, both the phylogenetic breadth of species considered and the approaches employed make the results highly convincing.

      Weaknesses:

      My primary concerns were related to possible biases in the author's data due to their approach to TE annotation. The authors have sufficiently acknowledged and addressed these concerns in their revised manuscript. I note no further weaknesses.

    1. eLife Assessment

      This manuscript reports valuable findings on the role of the Srs2 protein in turning off the DNA damage signaling response initiated by Mec1 (human ATR) kinase. The data provide convincing evidence that Srs2 interaction with PCNA and ensuing SUMO modification is required for checkpoint downregulation. However, while the model that Srs2 acts at gaps after camptothecin-induced DNA damage is reasonable, direct experimental evidence for this is currently lacking. The work will be of interest to cell biologists studying genome integrity.

    2. Reviewer #1 (Public review):

      Overall, the data presented in this manuscript is of good quality. Understanding how cells control RPA loading on ssDNA is crucial to understanding DNA damage responses and genome maintenance mechanisms. The authors used genetic approaches to show that disrupting PCNA binding and SUMOylation of Srs2 can rescue the CPT sensitivity of rfa1 mutants with reduced affinity for ssDNA. In addition, the authors find that SUMOylation of Srs2 depends on binding to PCNA and the presence of Mec1.

      Comments on previous revisions:

      I am satisfied with the revisions made by the authors, which helped clarify some points that were confusing in the initial submission.

    3. Reviewer #2 (Public review):

      This is an interesting paper that delves into the post-translational modifications of the yeast Srs2 helicase and proteins with which it interacts in coping with DNA damage. The authors use mutants in some interaction domains with RPA and Srs2 to argue for a model in which there is a balance between RPA binding to ssDNA and Srs2's removal of RPA.

      The manuscript mostly addresses previous concerns by doubling down on the model without providing additional direct evidence of interactions between Srs2 and PCNA, and that "precise sites of Srs2 actions in the genome remain to be determined." One additional Srs2 allele has been examined, showing some effect in combination with rfa1-zm2.

    4. Reviewer #3 (Public review):

      The superfamily I 3'-5' DNA helicase Srs2 is well known for its role as an anti-recombinase, stripping Rad51 from ssDNA, as well as an anti-crossover factor, dissociating extended D-loops and favoring non-crossover outcome during recombination. In addition, Srs2 plays a key role in in ribonucleotide excision repair. Besides DNA repair defects, srs2 mutants also show a reduced recovery after DNA damage that is related to its role in downregulating the DNA damage signaling or checkpoint response. Recent work from the Zhao laboratory (PMID: 33602817) identified a role of Srs2 in downregulating the DNA damage signaling response by removing RPA from ssDNA. This manuscript reports further mechanistic insights into the signaling downregulation function of Srs2.

      Using the genetic interaction with mutations in RPA1, mainly rfa1-zm2, the authors test a panel of mutations in Srs2 that affect CDK sites (srs2-7AV), potential Mec1 sites (srs2-2SA), known sumoylation sites (srs2-3KR), Rad51 binding (delta 875-902), PCNA interaction (delta 1159-1163), and SUMO interaction (srs2-SIMmut). All mutants were generated by genomic replacement and the expression level of the mutant proteins was found to be unchanged. This alleviates some concern about the use of deletion mutants compared to point mutations. Double mutant analysis identified that PCNA interaction and SUMO sites were required for the Srs2 checkpoint dampening function, at least in the context of the rfa1-zm2 mutant. There was no effect of this mutants in a RFA1 wild type background. This latter result is likely explained by the activity of the parallel pathway of checkpoint dampening mediated by Slx4, and genetic data with an Slx4 point mutation affecting Rtt107 interaction and checkpoint downregulation support this notion. Further analysis of Srs2 sumoylation showed that Srs2 sumoylation depended on PCNA interaction, suggesting sequential events of Srs2 recruitment by PCNA and subsequent sumoylation. Kinetic analysis showed that sumoylation peaks after maximal Mec1 induction by DNA damage (using the Top1 poison camptothecin (CPT)) and depended on Mec1. This data are consistent with a model that Mec1 hyperactivation is ultimately leading to signaling downregulation by Srs2 through Srs2 sumoylation. Mec1-S1964 phosphorylation, a marker for Mec1 hyperactivation and a site found to be needed for checkpoint downregulation after DSB induction, did not appear to be involved in checkpoint downregulation after CPT damage. The data are in support of the model that Mec1 hyperactivation when targeted to RPA-covered ssDNA by its Ddc2 (human ATRIP) targeting factor, favors Srs2 sumoylation after Srs2 recruitment to PCNA to disrupt the RPA-Ddc2-Mec1 signaling complex. Presumably, this allows gap filling and disappearance of long-lived ssDNA as the initiator of checkpoint signaling, although the study does not extend to this step.

      Strengths:

      (1) The manuscript focuses on the novel function of Srs2 to downregulate the DNA damage signaling response and provide new mechanistic insights.

      (2) The conclusions that PCNA interaction and ensuing Srs2-sumoylation are involved in checkpoint downregulation are well supported by the data.

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Overall, the data presented in this manuscript is of good quality. Understanding how cells control RPA loading on ssDNA is crucial to understanding DNA damage responses and genome maintenance mechanisms. The authors used genetic approaches to show that disrupting PCNA binding and SUMOylation of Srs2 can rescue the CPT sensitivity of rfa1 mutants with reduced affinity for ssDNA. In addition, the authors find that SUMOylation of Srs2 depends on binding to PCNA and the presence of Mec1.

      Comments on revisions:

      I am satisfied with the revisions made by the authors, which helped clarify some points that were confusing in the initial submission.

      Thank you.

      Reviewer #2 (Public Review):

      This revised manuscript mostly addresses previous concerns by doubling down on the model without providing additional direct evidence of interactions between Srs2 and PCNA, and that "precise sites of Srs2 actions in the genome remain to be determined." One additional Srs2 allele has been examined, showing some effect in combination with rfa1-zm2. Many of the conclusions are based on reasonable assumptions about the consequences of various mutations, but direct evidence of changes in Srs2 association with PNCA or other interactors is still missing. There is an assumption that a deletion of a Rad51-interacting domain or a PCNA-interacting domain have no pleiotropic effects, which may not be the case. How SLX4 might interact with Srs2 is unclear to me, again assuming that the SLX4 defect is "surgical" - removing only one of its many interactions.

      Previous studies have already provided direct evidence for the interaction between Srs2 and PCNA through the Srs2’s PIM region (Armstrong et al, 2012; Papouli et al, 2005); we have added these citations in the text. Similarly. Srs2 associations with SUMO and Rad51 have also been demonstrated (Colavito et al, 2009; Kolesar et al, 2016; Kolesar et al., 2012), and these studies were cited in the text.

      We did not state that a deletion of a Rad51-interacting domain or a PCNA-interacting domain have no pleiotropic effects. We only assessed whether these previously characterized mutant alleles could mimic srs2∆ in rescuing rfa1-zm2 defects.

      We assessed the genetic interaction between slx4-RIM and srs2-∆PIM mutants, and not the physical interaction between the two proteins. As we described in the text, our rationale for this genetic test is based on that the reports that both slx4 and srs2 mutants impair recovery from the Mec1 induced checkpoint, thus they may affect parallel pathways of checkpoint dampening.

      One point of concern is the use of t-tests without some sort of correction for multiple comparisons - in several figures. I'm quite sceptical about some of the p < 0.05 calls surviving a Bonferroni correction. Also in 4B, which comparison is **? Also, admittedly by eye, the changes in "active" Rad53 seem much greater than 5x. (also in Fig. 3, normalizing to a non-WT sample seems odd).

      Claims made in this work were based only on pairwise comparison not multi-comparison. We have now made this point clearer in the graphs and in Method. As the values were compared between a wild-type strain and a specific mutant strain, or between two mutants, we believe that t-test is suitable for statistical analysis.

      Figure 4B, ** indicates that the WT value is significantly different from that of the slx4-RIM srs2-∆PIM double mutant and from that of srs2-∆PIM single mutant. We have modified the graph to indicate the pair-wide comparison. The 5-fold change of active Rad53 levels was derived by comparing the values between the srs2∆ PIM slx4<sup>RIM</sup>-TAP double mutant and wild-type Slx4-TAP. In Figure 3, normalization to the lowest value affords better visualization. This is rather a stylish issue; we would like to maintain it as the other reviewers had no issues.

      What is the WT doubling time for this strain? From the FACS it seems as if in 2 h the cells have completed more than 1 complete cell cycle. Also in 5D. Seems fast...

      Wild-type W303 strain has less than 90 min doubling time as shown by many labs, and our data are consistent with this. The FACS profiles for wild-type cells shown in Figures 3C, 4C, and 5C are consistent with each other, showing that after G1 cells entered the cell cycle, they were in G2 phase at the 1-hour time points, and then a percentage of the cells exited the first cell cycle by two hours.

      I have one over-arching confusion. Srs2 was shown initially to remove Rad51 from ssDNA and the suppression of some of srs2's defects by deleting rad51 made a nice, compact story, though exactly how srs2's "suppression of rad6" fit in isn't so clear (since Rad6 ties into Rad18 and into PCNA ubiquitylation and into PCNA SUMOylation). Now Srs2 is invoked to remove RPA. It seems to me that any model needs to explain how Srs2 can be doing both. I assume that if RPA and Rad51 are both removed from the same ssDNA, the ssDNA will be "trashed" as suggested by Symington's RPA depletion experiments. So building a model that accounts for selective Srs2 action at only some ssDNA regions might be enhanced by also explaining how Rad51 fits into this scheme.

      While the anti-recombinase function of Srs2 was better studied, its “anti-RPA” role in checkpoint dampening was recently described by us (Dhingra et al, 2021) following the initial report by the Haber group some time ago (Vaze et al, 2002). A better understanding of this new role is required before we can generate a comprehensive picture of how Srs2 integrates the two functions (and possibly other functions). Our current work addresses this issue by providing a more detailed understanding of this new role of Srs2.

      Single molecular data showed that Srs2 strips both RPA and Rad51 from ssDNA, but this effect is highly dynamic (i.e. RPA and Rad51 can rebind ssDNA after being displaced) (De Tullio et al, 2017). As such, generation of “deserted” ssDNA regions lacking RPA and Rad51 in cells can be an unlikely event. Rather, Srs2 can foster RPA and Rad51 dynamics on ssDNA. Additional studies will be needed to generate a model that integrates the anti-recombinase and the anti-RPA roles of Srs2.

      As a previous reviewer has pointed out, CPT creates multiple forms of damage. Foiani showed that 4NQO would activate the Mec1/Rad53 checkpoint in G1- arrested cells, presumably because there would be singlestrand gaps but no DSBs. Whether this would be a way to look specifically at one type of damage is worth considering; but UV might be a simpler way to look. As also noted, the effects on the checkpoint and on viability are quite modest. Because it isn't clear (at least to me) why rfa1 mutants are so sensitive to CPT, it's hard for me to understand how srs2-zm2 has a modest suppressive effect: is it by changing the checkpoint response or facilitating repair or both? Or how srs2-3KR or srs2-dPIM differ from rfa1-zm2 in this respect. The authors seem to lump all these small suppressions under the rubric of "proper levels of RPA-ssDNA" but there are no assays that directly get at this. This is the biggest limitation.

      CPT treatment is an ideal condition to examine how cells dampen the DNA damage checkpoint, because while most genotoxic conditions (e.g. 4NQO, MMS) induce both the DNA replication checkpoint and the DNA damage checkpoint, CPT was shown to only induced the latter (Menin et al, 2018; Minca & Kowalski, 2011; Redon et al, 2003; Tercero et al, 2003). Future studies examining 4NQO and UV conditions can further expand our understanding of checkpoint dampening in different conditions.

      We have previously provided evidence to support the conclusion that srs2 suppression of rfa1-zm is partly mediated by changing checkpoint levels (Dhingra et al., 2021). We cannot exclude the possibility that the suppression may also be related to changes of DNA repair; we have now added this note in the text.

      Regarding direct testing RPA levels on DNA, we have previously shown that srs2∆ increased the levels of chromatin associated Rfa1 and this is suppressed by rfa1-zm2 (Dhingra et al., 2021). We have now included chromatin fractionation data to show that srs2-∆PIM also led to an increase of Rfa1 on chromatin, and this was suppressed by rfa1-zm2 (new Fig. S2).

      Srs2 has also been implicated as a helicase in dissolving "toxic joint molecules" (Elango et al. 2017). Whether this activity is changed by any of the mutants (or by mutations in Rfa1) is unclear. In their paper, Elango writes: "Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules" Given the involvement of SLX4, perhaps the authors should examine the roles of structure-specific nucleases in CPT survival?

      Srs2 has several roles, and its role in RPA antagonism can be genetically separated from its role in Rad51 regulation as we have shown in our previous work (Dhingra et al., 2021) and this notion is further supported by evidence presented in the current work. Srs2’s role in dissolving "toxic joint molecules” was mainly observed during BIR (Elango et al, 2017). Whether it is related to checkpoint dampening will be interesting to address in the future but is beyond of the scope of the current work that seeks to answer the question how Srs2 regulates RPA during checkpoint dampening. Similarly, determining the roles of Mus81 and Yen1 and other structural nucleases in CPT survival is a worthwhile task but it is a research topic well separated from the focus of this work.

      Experiments that might clarify some of these ambiguities are proposed to be done in the future. For now, we have a number of very interesting interactions that may be understood in terms of a model that supposes discriminating among gaps and ssDNA extensions by the presence of PCNA, perhaps modified by SUMO. As noted above, it would be useful to think about the relation to Rad6.

      Several studies have shown that Srs2’s functional interaction with Rad6 is based on Srs2-mediated recombination regulation (reviewed by (Niu & Klein, 2017). Given that recombinational regulation by Srs2 is genetically separable from the Srs2 and RPA antagonism (Dhingra et al., 2021), we do not see a strong rationale to examine Rad6 in this work, which addresses how Srs2 regulates RPA. With this said, this study has provided basis for future studies of possible cross-talks among different Srs2-mediated pathways.

      Reviewer #3 (Public Review):

      The superfamily I 3'-5' DNA helicase Srs2 is well known for its role as an anti-recombinase, stripping Rad51 from ssDNA, as well as an anti-crossover factor, dissociating extended D-loops and favoring non-crossover outcome during recombination. In addition, Srs2 plays a key role in in ribonucleotide excision repair. Besides DNA repair defects, srs2 mutants also show a reduced recovery after DNA damage that is related to its role in downregulating the DNA damage signaling or checkpoint response. Recent work from the Zhao laboratory (PMID: 33602817) identified a role of Srs2 in downregulating the DNA damage signaling response by removing RPA from ssDNA. This manuscript reports further mechanistic insights into the signaling downregulation function of Srs2.

      Using the genetic interaction with mutations in RPA1, mainly rfa1-zm2, the authors test a panel of mutations in Srs2 that affect CDK sites (srs2-7AV), potential Mec1 sites (srs2-2SA), known sumoylation sites (srs2-3KR), Rad51 binding (delta 875-902), PCNA interaction (delta 1159-1163), and SUMO interaction (srs2SIMmut). All mutants were generated by genomic replacement and the expression level of the mutant proteins was found to be unchanged. This alleviates some concern about the use of deletion mutants compared to point mutations. Double mutant analysis identified that PCNA interaction and SUMO sites were required for the Srs2 checkpoint dampening function, at least in the context of the rfa1-zm2 mutant. There was no effect of this mutants in a RFA1 wild type background. This latter result is likely explained by the activity of the parallel pathway of checkpoint dampening mediated by Slx4, and genetic data with an Slx4 point mutation affecting Rtt107 interaction and checkpoint downregulation support this notion. Further analysis of Srs2 sumoylation showed that Srs2 sumoylation depended on PCNA interaction, suggesting sequential events of Srs2 recruitment by PCNA and subsequent sumoylation. Kinetic analysis showed that sumoylation peaks after maximal Mec1 induction by DNA damage (using the Top1 poison camptothecin (CPT)) and depended on Mec1. This data are consistent with a model that Mec1 hyperactivation is ultimately leading to signaling downregulation by Srs2 through Srs2 sumoylation. Mec1-S1964 phosphorylation, a marker for Mec1 hyperactivation and a site found to be needed for checkpoint downregulation after DSB induction, did not appear to be involved in checkpoint downregulation after CPT damage. The data are in support of the model that Mec1 hyperactivation when targeted to RPA-covered ssDNA by its Ddc2 (human ATRIP) targeting factor, favors Srs2 sumoylation after Srs2 recruitment to PCNA to disrupt the RPA-Ddc2-Mec1 signaling complex. Presumably, this allows gap filling and disappearance of long-lived ssDNA as the initiator of checkpoint signaling, although the study does not extend to this step.

      Strengths:

      (1) The manuscript focuses on the novel function of Srs2 to downregulate the DNA damage signaling response and provide new mechanistic insights.

      (2) The conclusions that PCNA interaction and ensuing Srs2-sumoylation are involved in checkpoint downregulation are well supported by the data.

      Weaknesses:

      (1) Additional mutants of interest could have been tested, such as the recently reported Pin mutant, srs2-Y775A (PMID: 38065943), and the Rad51 interaction point mutant, srs2-F891A (PMID: 31142613).

      (2) The use of deletion mutants for PCNA and RAD51 interaction is inferior to using specific point mutants, as done for the SUMO interaction and the sites for post-translational modifications.

      (3) Figure 4D and Figure 5A report data with standard deviations, which is unusual for n=2. Maybe the individual data points could be plotted with a color for each independent experiment to allow the reader to evaluate the reproducibility of the results.

      Comments on revisions:

      In this revision, the authors adequately addressed my concerns. The only issue I see remaining is the site of Srs2 action. The authors argue in favor of gaps and against R-loops and ssDNA resulting from excessive supercoiling. The authors do not discuss ssDNA resulting from processing of onesided DSBs, which are expected to result from replication run-off after CPT damage but are not expected to provide the 3'-junction for preferred PCNA loading. Can the authors exclude PCNA at the 5'-junction at a resected DSB?

      We have now added a sentence stating that we cannot exclude the possibility that PCNA may be positioned at a 5’-junction, as this can be observed in vitro, albert that PCNA loading was seen exclusively at a 3’-junction in the presence of RPA (Ellison & Stillman, 2003; Majka et al, 2006).

      Recommendations For the authors:

      Reviewer #2 (Recommendations For the authors):

      A Bonferroni correction should be made for the multiple comparisons in several figures.

      Specific comments:

      l. 41. This is a too long and confusing sentence.

      Sentence shortened: “These data suggest that Srs2 recruitment to PCNA proximal ssDNA-RPA filaments followed by its sumoylation can promote checkpoint recovery, whereas Srs2 action is minimized at regions with no proximal PCNA to permit RPA-mediated ssDNA protection”.

      l. 60. Identify Ddc2 and Mec1 as ATRIP and ATR.

      Done.

      l. 125 "fails to downregulate RPA levels on chromatin and Mec1-mediated DDC..." fails to downregulate RPA and fails to reduce Mec1-mediated DDC?

      Sentence modified: “fails to downregulate both the RPA levels on chromatin and the Mec1-mediated DDC”

      l. 204 "consistent with the notion that Srs2 has roles beyond RPA regulation"... What other roles? It's stripping of Rad51? Removing toxic joint molecules? Something else?

      Sentence modified: “consistent with the notion that Srs2 has roles beyond RPA regulation, such as in Rad51 regulation and removing DNA joint molecules”.

      l. 249 "Significantly, srs2-ΔPIM and -3KR increased the percentage of rfa1-zm2 cells transitioning into the G1 phase" No. Just back to normal. As stated in l. 258: "258 We found that srs2-ΔPIM and srs2-3KR mutants on their own behaved normally in the two DDC assays described above." All of these effects are quite small.

      Sentence modified: “Compared with rfa1-zm2 cells, srs2-∆PIM rfa1-zm2 and srs2-3KR rfa1-zm2 cells showed increased percentages of cells transitioning into the G1 phase”.

      l. 468 "Our previous work has provided several lines of evidence to support that Rad51 removal by Srs2 is separable from the Srs2-RPA antagonism (Dhingra et al., 2021). What evidence? See my comment above about not having both proteins removed at the same time.

      We have addressed this point in our initial rebuttal and some key points are summarized below. In our previous report (Dhingra et al., 2021), we provided several lines of evidence to support the conclusion that Rad51 is not relevant to the Srs2-RPA antagonism. For example, while rad51∆ rescues the hyper-recombination phenotype of srs2∆ cells, rad51∆ did not affect the hyper-checkpoint phenotype of srs2∆. In contrast, rfa1-zm1/zm2 have the opposite effects, that is, rfa1zm1/zm2 suppressed the hyper-checkpoint, but not the hyper-recombination, phenotype of srs2∆ cells. The differential effects of rad51∆ and rfa1-zm1/zm2 were also seen for the ATPase dead allele of Srs2 (srs2K41A). For example, rfa1-zm2 rescued hyper-checkpoint and CPT sensitivity of srs2-K41A cells, while rad51∆ had neither effect. These and other data described by Dhingra et al (2021) suggest that Srs2’s effects on checkpoint vs. recombination can be separated genetically. Consistent with our conclusion summarized above, deleting the Rad51 binding domain in Srs2 (srs2-∆Rad51BD) has no effect on rfa1-zm2 phenotype in CPT (Fig. 2D). This data provides yet another evidence that Srs2 regulation of Rad51 is separable from the Srs2RPA antagonism.

      l. 525 "possibility, we tested the separation pin of Srs2 (Y775), which was shown to enables its in vitro helicase activity during the revision of our work..." ?? there was helicase activity during the revision of your work? Please fix the sentence.

      Sentence modified: “we tested the separation pin of Srs2 (Y775). This residue was shown to be key for the Srs2’s helicase activity in vitro in a report that was published during the revision of our work (Meir et al, 2023).”

      Fig. 3. "srs2-ΔPIM and -3KR allow better G1 entry of rfa1-zm2 cells." is it better entry or less arrest at G2/M? One implies better turning off of a checkpoint, the other suggests less activation of the checkpoint.

      This is a correct statement. For all strains examined in Figure 3, cells were seen in G2/M phase after 1-hour CPT treatment, suggesting proper arrest.

      References:

      Armstrong AA, Mohideen F, Lima CD (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483: 59-63

      Colavito S, Macris-Kiss M, Seong C, Gleeson O, Greene EC, Klein HL, Krejci L, Sung P (2009) Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res 37: 6754-6764.

      De Tullio L, Kaniecki K, Kwon Y, Crickard JB, Sung P, Greene EC (2017) Yeast Srs2 helicase promotes redistribution of single-stranded DNA-bound RPA and Rad52 in homologous recombination regulation. Cell Rep 21: 570-577

      Dhingra N, Kuppa S, Wei L, Pokhrel N, Baburyan S, Meng X, Antony E, Zhao X (2021) The Srs2 helicase dampens DNA damage checkpoint by recycling RPA from chromatin. Proc Natl Acad Sci U S A 118: e2020185118

      Elango R, Sheng Z, Jackson J, DeCata J, Ibrahim Y, Pham NT, Liang DH, Sakofsky CJ, Vindigni A, Lobachev KS et al (2017) Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nat Commun 8: 1790

      Ellison V, Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 1: E33

      Kolesar P, Altmannova V, Silva S, Lisby M, Krejci L (2016) Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. J Biol Chem 291: 7594-7607.

      Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 40: 7831-7843.

      Majka J, Binz SK, Wold MS, Burgers PM (2006) Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions. J Biol Chem 281: 27855-27861

      Meir A, Raina VB, Rivera CE, Marie L, Symington LS, Greene EC (2023) The separation pin distinguishes the pro- and anti-recombinogenic functions of Saccharomyces cerevisiae Srs2. Nat Commun 14: 8144

      Menin L, Ursich S, Trovesi C, Zellweger R, Lopes M, Longhese MP, Clerici M (2018) Tel1/ATM prevents degradation of replication forks that reverse after Topoisomerase poisoning. EMBO Rep 19: e45535

      Minca EC, Kowalski D (2011) Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation. Nucleic Acids Res 39: 2610-2623

      Niu H, Klein HL (2017) Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair. FEMS Yeast Res 17: fow111

      Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19: 123-133

      Redon C, Pilch DR, Rogakou EP, Orr AH, Lowndes NF, Bonner WM (2003) Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep 4: 678-684

      Tercero JA, Longhese MP, Diffley JFX (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11: 1323-1336

      Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber JE (2002) Recovery from checkpointmediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10: 373-385

    1. eLife Assessment

      This study reports a fundamental observation concerning cell death regulation by the anti-apoptotic BCL2 family NOXA. The authors convincingly demonstrate that NOXA is destabilized through the interaction with WSB2, a substrate receptor in CRL5 ubiquitin ligase complex, sensitizing the cells to treatments. These are key findings for cell biologists and cancer researchers as they identified a new target impacting drug responsiveness in cancer therapies.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Jiao D et al reported the induction of synthetic lethality by combined inhibition of anti-apoptotic BCL-2 family proteins and WSB2, a substrate receptor in CRL5 ubiquitin ligase complex. Mechanistically, WSB2 interacts with NOXA to promote its ubiquitylation and degradation. Cancer cells deficient in WSB2, as well as heart and liver tissues from Wsb2-/- mice exhibit high susceptibility to apoptosis induced by inhibitors of BCL-2 family proteins. The anti-apoptotic activity of WSB2 is partially dependent on NOXA.

      Overall, the finding that WSB2 disruption triggers synthetic lethality to BCL-2 family protein inhibitors by destabilizing NOXA is rather novel. The manuscript is largely hypothesis-driven, with experiments that are adequately designed and executed. However, there are quite a few issues for the authors to address, including those listed below.

      Specific comments from the previous round of review:

      (1) At the beginning of the Results section, a clear statement is needed as to why the authors are interested in WSB2 and what brought them to analyze "the genetic co-dependency between WSB2 and other proteins".

      (2) In general, the biochemical evidence supporting the role of WSB2 as a SOCS box-containing substrate-binding receptor of CRL5 E3 in promoting NOXA ubiquitylation and degradation is relatively weak. First, since NOXA2 binds to WSB2 on its SOCS box, which consists of a BC box for Elongin B/C binding and a CUL5 box for CUL5 binding, it is crucial to determine whether the binding of NOXA on the SOCS box affects the formation of CRL5WSB2 complex. The authors should demonstrate the endogenous binding between NOXA and the CRL5WSB2 complex. Additionally, the authors may also consider manipulating CUL5, SAG, or ElonginB/C to assess if it would affect NOXA protein turnover in two independent cell lines. Second, in all the experiments designed to detect NOXA ubiquitylation in cells, the authors utilized immunoprecipitation (IP) with FLAG-NOXA/NOXA, followed by immunoblotting (IB) with HA-Ub. However, it is possible that the observed poly-Ub bands could be partly attributed to the ubiquitylation of other NOXA binding proteins. Therefore, the authors need to consider performing IP with HA-Ub and subsequently IB with NOXA. Alternatively, they could use Ni-beads to pull down all His-Ub-tagged proteins under denaturing conditions, followed by the detection of FLAG-tagged NOXA using anti-FLAG Ab. The authors are encouraged to perform one of these suggested experiments to exclude the possibility of this concern. Furthermore, an in vitro ubiquitylation assay is crucial to conclusively demonstrate that the polyubiquitylation of NOXA is indeed mediated by the CRL5WSB2 complex.

      (3) In their attempt to map the binding regions between NOXA and WSB2, the authors utilized exogenous proteins of both WSB2 and NOXA. To strengthen their findings, it would be more convincing to perform IP with exogenous wt/mutant WSB2 or NOXA and subsequently perform IB to detect endogenous NOXA or WSB2, respectively. Additionally, an in vitro binding assay using purified proteins would provide further evidence of a direct binding between NOXA and WSB2.

      Comments on latest version:

      The authors have adequately addressed my previous comments.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      I In this manuscript, Jiao D et al reported the induction of synthetic lethal by combined inhibition of anti-apoptotic BCL-2 family proteins and WSB2, a substrate receptor in CRL5 ubiquitin ligase complex. Mechanistically, WSB2 interacts with NOXA to promote its ubiquitylation and degradation. Cancer cells deficient in WSB2, as well as heart and liver tissues from Wsb2-/- mice exhibit high susceptibility to apoptosis induced by inhibitors of BCL-2 family proteins. The anti-apoptotic activity of WSB2 is partially dependent on NOXA.

      Overall, the finding, that WSB2 disruption triggers synthetic lethality to BCL-2 family protein inhibitors by destabilizing NOXA, is rather novel. The manuscript is largely hypothesis-driven, with experiments that are adequately designed and executed. However, there are quite a few issues for the authors to address, including those listed below.

      Specific comments:

      (1) At the beginning of the Results section, a clear statement is needed as to why the authors are interested in WSB2 and what brought them to analyze "the genetic co-dependency between WSB2 and other proteins".

      We thank the reviewer for raising this important point. We agree that a clear rationale should be provided at the beginning of the Results section. As reported in previous studies [Ref: 1, 2, 3], strong synthetic interactions have been observed between WSB2 and several mitochondrial apoptosis-related factors, including MCL-1, BCL-xL, and MARCH5. We have referenced these findings in the Discussion section. Motivated by these studies, we became interested in the role of WSB2 and aimed to investigate the specific mechanisms underlying its synthetic lethality with anti-apoptotic BCL-2 family members. We will revise the beginning of the Results section to clearly state this rationale.

      (1) McDonald, E.R., 3rd et al. Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 170, 577-592 e510 (2017).

      (2) DeWeirdt, P.C. et al. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat Commun 11, 752 (2020).

      (3) DeWeirdt, P.C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat Biotechnol 39, 94-104 (2021).

      (2) In general, the biochemical evidence supporting the role of WSB2 as a SOCS box-containing substrate-binding receptor of CRL5 E3 in promoting NOXA ubiquitylation and degradation is relatively weak. First, since NOXA binds to WSB2 on its SOCS box, which consists of a BC box for Elongin B/C binding and a CUL5 box for CUL5 binding, it is crucial to determine whether the binding of NOXA on the SOCS box affects the formation of CRL5WSB2 complex. The authors should demonstrate the endogenous binding between NOXA and the CRL5WSB2 complex. Additionally, the authors may also consider manipulating CUL5, SAG, or ElonginB/C to assess if it would affect NOXA protein turnover in two independent cell lines.

      We thank the reviewer for raising this important point. To determine whether endogenous NOXA binds to the intact CRL5<sup>WSB2</sup> complex, we performed co-immunoprecipitation assays using an antibody against NOXA. Indeed, NOXA co-immunoprecipitated with all subunits of the CRL5<sup>WSB2</sup> complex (Figure 2—figure supplement 1D), suggesting that NOXA binding to WSB2 does not disrupt interactions between WSB2 and the other CRL5 subunits. Moreover, depletion of CRL5 complex components (RBX2/SAG, CUL5, ELOB, or ELOC) through siRNAs in C4-2B or Huh-7 cells also resulted in a marked increase in NOXA protein levels.

      Second, in all the experiments designed to detect NOXA ubiquitylation in cells, the authors utilized immunoprecipitation (IP) with FLAG-NOXA/NOXA, followed by immunoblotting (IB) with HA-Ub. However, it is possible that the observed poly-Ub bands could be partly attributed to the ubiquitylation of other NOXA binding proteins. Therefore, the authors need to consider performing IP with HA-Ub and subsequently IB with NOXA. Alternatively, they could use Ni-beads to pull down all His-Ub-tagged proteins under denaturing conditions, followed by the detection of FLAG-tagged NOXA using anti-FLAG Ab. The authors are encouraged to perform one of these suggested experiments to exclude the possibility of this concern. Furthermore, an in vitro ubiquitylation assay is crucial to conclusively demonstrate that the polyubiquitylation of NOXA is indeed mediated by the CRL5WSB2 complex.

      We appreciate the reviewer for raising these important considerations regarding our ubiquitylation assays. We fully acknowledge the reviewer's concern that classical ubiquitination assays could potentially detect ubiquitination of proteins interacting with NOXA. However, we would like to clarify that our experimental conditions effectively mitigate this issue. Specifically, cells were lysed using buffer containing 1% SDS followed by boiling at 105°C for 5 minutes. These rigorous denaturing conditions ensure disruption of non-covalent protein interactions, thereby effectively eliminating the possibility of detecting ubiquitination signals from NOXA-associated proteins.

      Regarding the suggestion to perform an in vitro ubiquitination assay, we agree this experiment would indeed provide additional evidence. However, due to significant technical complexities associated with reconstituting CRL5-based E3 ubiquitin ligase activity in vitro—which would require the expression and purification of at least six recombinant proteins—such experiments are rarely performed in this context. Furthermore, NOXA is uniquely localized as a membrane protein on the mitochondrial outer membrane, posing additional significant challenges for protein expression and purification. Given the robustness of our current in vivo ubiquitylation assay under stringent denaturing conditions, we believe our existing data sufficiently and conclusively demonstrate NOXA ubiquitination mediated by the CRL5<sup>WSB2</sup> complex.

      (3) In their attempt to map the binding regions between NOXA and WSB2, the authors utilized exogenous proteins of both WSB2 and NOXA. To strengthen their findings, it would be more convincing to perform IP with exogenous wt/mutant WSB2 or NOXA and subsequently perform IB to detect endogenous NOXA or WSB2, respectively. Additionally, an in vitro binding assay using purified proteins would provide further evidence of a direct binding between NOXA and WSB2.

      We thank the reviewer for raising these important issues. In response to the reviewer’s suggestion to map the binding regions between NOXA and WSB2 more convincingly, we have indeed performed semi-endogenous Co-IP assays, which yielded results consistent with our exogenous protein experiments (Figure 3—figure supplement 1A, B). Concerning the recommendation to further validate direct interaction using purified recombinant proteins, we encountered substantial technical difficulties in obtaining pure and soluble recombinant WSB2 protein. Additionally, given that NOXA is an outer mitochondrial membrane protein and the interaction occurs on mitochondria, we believe that an in vitro binding assay may have limited physiological relevance. We hope the reviewer can appreciate these practical challenges and our current evidence supporting the strong interaction between NOXA and WSB2.

      Reviewer #2 (Public Review):

      Summary:

      Exploring the DEP-MAP database and two drug-screen databases, the authors identify WSB2 as an interactor of several BCL2 proteins. In follow-up experiments, they show that CRL5/WSB2 controls NOXA protein levels via K48 ubiquitination following direct protein-protein interaction, and cell death sensitivity in the context of BH3 mimetic treatment, where WSB2 depletion synergizes with drug treatment.

      Strengths:

      The authors use a set of orthogonal methods across different model cell lines and a new WSB2 KO mouse model to confirm their findings. They also manage to correlate WSB2 expression with poor prognosis in prostate and liver cancer, supporting the idea that targeting WSB2 may sensitize cancers for treatment with BH3 mimetics.

      Weaknesses:

      The conclusions drawn based on the findings in cancer patients are very speculative, as regulation of NOXA cannot be the sole function of CRL5/WSB2 and it is hence unclear what causes correlation with patient survival. Moreover, the authors do not provide a clear mechanistic explanation of how exactly higher levels of NOXA promote apoptosis in the absence of WSB2. This would be important knowledge, as usually high NOXA levels correlate with high MCL1, as they are turned over together, but in situations like this, or loss of other E3 ligases, such as MARCH, the buffering capacity of MCL1 is outrun, allowing excess NOXA to kill (likely by neutralizing other BCL2 proteins it usually does not bind to, such as BCLX). Moreover, a necroptosis-inducing role of NOXA has been postulated. Neither of these options is interrogated here.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Figure 2J. The authors showed that "the mRNA levels of NOXA were even reduced in WSB2-KO cells compared to parental cells". What is the possible mechanism? This point should at least be discussed.

      We thank the reviewer for raising these important issues. The underlying mechanisms for the significantly lower mRNA levels of NOXA following the KO of WSB2 are not fully understood at present. However, we propose that this could represent a form of negative feedback regulation at the level of gene expression. Specifically, when the protein levels of BNIP3/3L rise sharply, it may activate mechanisms that suppress their own mRNA synthesis or stability, serving as a buffering system to prevent further protein accumulation. Such negative feedback loops may be critical for maintaining cellular homeostasis and avoiding excessive protein production. Moreover, this phenomenon is frequently observed in other studies investigating substrates targeted by E3 ubiquitin ligases for degradation. We have elaborated on this point in the Discussion section.

      (2) Figure 2M. A previous study has clearly demonstrated that NOXA is subjected to ubiquitylation and degradation by CRL5 E3 ligase (PMID: 27591266). This paper should be cited. Also, in that publication, NOXA ubiquitylation is via the K11 linkage, not the K48 linkage. The authors should include K11R mutant in their assay.

      We thank the reviewer for raising this important issue. We thank the reviewer for suggesting the relevant reference (PMID: 27591266), which we have now cited accordingly. Additionally, we would like to clarify that our new in vivo ubiquitination assays included the K11R and K11-only ubiquitin mutants, and our data demonstrate that WSB2-mediated NOXA ubiquitination indeed involves the K11 linkage ubiquitination(Figure 2—figure supplement 1E).

      (3) Figure 3H, J. The authors stated, "By mutating these lysine residues to arginine, we found that WSB2-mediated NOXA ubiquitination was completely abolished". Which one of the three lysine residues is playing the dominant role?

      We thank the reviewer for raising this important issue. To address this, we generated FLAG-NOXA mutants individually substituting lysine residues K35, K41, and K48 with arginine. In vivo ubiquitination assays demonstrated that lysine 48 (K48) is the predominant residue responsible for WSB2-mediated NOXA ubiquitination (Figure 3—figure supplement 1C).

      (4) Figure 3N. The authors need to show that the fusion peptide containing C-terminal NOXA peptide competitively inhibits the interaction between endogenous WSB2 and NOXA and extends the protein half-life of NOXA, leading to NOXA accumulation.

      We sincerely thank the reviewer for raising these important issues. As suggested, we investigated whether the fusion peptide containing the C-terminal NOXA sequence competitively disrupts the interaction between endogenous WSB2 and NOXA, subsequently influencing NOXA stability. Our results demonstrated that treatment with this fusion peptide indeed significantly reduced the endogenous interaction between WSB2 and NOXA (Figure 3—figure supplement 1D). Furthermore, we observed that the peptide dose-dependently increased endogenous NOXA protein levels and prolonged its protein half-life, thereby resulting in the accumulation of NOXA (Figure 3N; Figure 3—figure supplement 1E, F). These findings collectively indicate that the fusion peptide competitively inhibits the WSB2-NOXA interaction, stabilizes NOXA protein, and enhances its accumulation.

      (5) Figure 4. a) It would be better to investigate whether WSB2 knockdown can sensitize cancer cells to the treatment with ABT-737 or AZD5991, evidenced by a decrease in both IC50 values and clonogenic survival rates and whether such sensitization is dependent on NOXA. b) The authors need to show the levels of cleaved caspase-3/7/9 and the percentages of apoptotic cells in shNC cells upon silencing of WSB2 in Figure 4A-F. c) It will be more convincing to repeat the experiment to show synthetic lethality by WSB2 disruption and MCL-1 inhibitor AZD5991 treatment using another cell line, such as WSB2-deficient Huh-7 cells in Figure 4 I&J.

      We sincerely thank the reviewer for these valuable and constructive suggestions. Regarding point (a): We believe that our current Western blot and flow cytometry data (Figure 4G–L) have already provided strong evidence that WSB2 depletion enhances apoptosis in response to ABT-737 and AZD5991. Therefore, we consider that additional IC50 and clonogenic survival assays, while informative, may not be essential for supporting our conclusion. Furthermore, as shown in Figure 5A–F, we found that silencing NOXA largely, though not completely, reversed the enhanced apoptosis triggered by these inhibitors in WSB2-deficient cells, suggesting that the sensitization effect is at least partially dependent on NOXA.

      Regarding point (b): We have shown that WSB2 knockout alone had no impact on the levels of cleaved caspase-3/7/9 or the percentages of apoptotic cells in Huh-7 and C4-2B cells (Figure 4G-L and Figure 4—figure supplement 1A-D), indicating that WSB2 loss does not induce apoptosis on its own under basal conditions.

      Regarding point (c): We appreciate the reviewer’s suggestion and have now repeated the experiment in WSB2 knockout Huh-7 cells. The new results further support the synthetic lethality between WSB2 loss and AZD5991 treatment (Figure 4—figure supplement 1C, D).

      (6) Figure 5A/C/E. The effect of siNOXA is minor, if any, for cleavage of caspases. The same thing for Figure 6F/H.

      We appreciate the reviewer’s insightful observation regarding the relatively modest effect of shNOXA on caspase cleavage in Figures 5A/C/E and Figures 6F/H. Indeed, we acknowledge that the reduction in caspase cleavage following NOXA knockdown is moderate. However, consistent with our discussions in the manuscript, NOXA knockdown significantly—but not completely—rescued the increased apoptosis observed in WSB2-deficient cells treated with BCL-2 family inhibitors. This suggests that while NOXA plays a notable role, additional mechanisms or unidentified targets may also be involved in WSB2-mediated regulation of apoptosis.

      (7) Figure 5 I&J. The authors may consider performing IHC staining, immunofluorescence, or WB analysis to show the levels of NOXA and cleaved caspases or PARP in xenograft tumors. This would provide in vivo evidence of significant apoptosis induction resulting from the co-administration of ABT-737 and R8-C-terminal NOXA peptide.

      We appreciate the reviewer's thoughtful suggestion regarding additional immunohistochemical or immunofluorescence analyses in xenograft tumors. However, due to current limitations in available antibodies suitable for reliable detection of NOXA by IHC and IF, we are unable to perform these experiments. We greatly appreciate the reviewer's understanding of this technical constraint. Nevertheless, our existing data collectively supports the conclusion that the combination of ABT-737 and R8-C-terminal NOXA peptide significantly enhances apoptosis in vivo.

      (8) Figure 7. Does an inverse correlation exist between the protein levels of WSB2 and NOXA in RPAD or LIHC tissue microarrays? On page 12, in the first paragraph, Figure 7M-P was cited incorrectly.

      We sincerely thank the reviewer for raising this important issue. As mentioned above, due to current limitations regarding the availability of suitable antibodies that can reliably detect NOXA by IHC, we regret that it is not feasible to experimentally address this question at this time.

      Additionally, we have carefully corrected the citation error involving Figure 7M-P on page 12, as pointed out by the reviewer.

      (9) Figure S1D. BCL-W levels were reduced upon WSB2 overexpression, which should be acknowledged.

      We sincerely thank the reviewer for raising this important issue. We acknowledge that BCL-W protein levels were slightly reduced upon WSB2 overexpression in Figure S1D. However, this effect is distinct from the pronounced reduction observed in NOXA protein levels. We have revised the manuscript to clarify this point. Additionally, we recognize that transient overexpression systems may occasionally lead to non-specific or artifactual changes. Our exogenous expression and co-immunoprecipitation experiments did not support an interaction between BCL-W and WSB2. Therefore, the observed reduction of BCL-W under these conditions may not reflect a physiologically relevant regulation.

      (10) Figure S4. Given WSB2 KO mice are viable; the authors may consider determining whether these mice are more sensitive to radiation-induced tissue damage or but more resistant to radiation-induced tumorigenesis?

      We sincerely thank the reviewer for this insightful and biologically meaningful suggestion. We agree that investigating the potential role of WSB2 in radiation-induced tissue damage and tumorigenesis would be of great interest. However, conducting such experiments requires access to specialized irradiation facilities, which are currently unavailable to us. Nevertheless, we recognize the value of this line of investigation and plan to explore it in our future studies.

      (11) All data were displayed as mean{plus minus}SD. However, for data from three independent experiments, it is more appropriate to present the results as mean{plus minus}SEM, not mean{plus minus}SD.

      We sincerely thank the reviewer for highlighting this important issue. In line with the reviewer's suggestion, we have revised the manuscript accordingly and now present data from three independent experiments as mean ± SEM.

      (12) The figure legends require careful review: i) The low dose of ABT-199 (Figure 6H) and the dose of ABT-199 used in Figure 6I are missing. ii) The legends for Figure S1D-E are incorrect. iii) The name of the antibody in the legend of Figure S3C is incorrect.

      We sincerely thank the reviewer for raising these important issues. We have carefully corrected all the errors mentioned. In addition, we have thoroughly reviewed the manuscript to prevent similar errors.

      Reviewer #2 (Recommendations For The Authors):

      The authors focus on NOXA, after initially identifying WSB2 to interact with several BCL2 proteins. The rationale behind this is that WSB2 depletion or overexpression affects NOXA levels, but none of the other BCL2 proteins tested, as stated in the text. Yet, BCLW is also depleted upon overexpression of WSB2 (Supplementary Figure 1). How does this phenomenon relate to the sensitization noted, is BCL-W higher in WSB2 KO cells? It does not seem so though. This warrants discussion.

      We appreciate the reviewer for raising this important issue. Our results showed that overexpression of WSB2 markedly reduced NOXA levels, while the levels of other BCL-2 family proteins remained unaffected or minimally affected, such as BCL-W (Figure 2—figure supplement 1A). Furthermore, depletion of WSB2 through shRNA-mediated KD or CRISPR/Cas9-mediated KO in C4-2B cells or Huh-7 cells led to a marked increase in the steady-state levels of endogenous NOXA, without affecting other BCL-2 family proteins examined, included BCL-W (Figure 2A-C, Figure 2—figure supplement 2A, B).

      If WSB2 depletion does not affect MCL1 levels, how does excess NOXA actually kill? Does it bind to any (other) prosurvival proteins under conditions of WSB2 depletion? Is the MCL1 half-life changed?

      We appreciate the reviewer for raising this important point. NOXA is a BH3-only protein known to promote apoptosis primarily by binding to and neutralizing anti-apoptotic BCL-2 family members, especially MCL-1, via its BH3 domain. It can inhibit MCL-1 either through competitive binding or by facilitating its ubiquitination and subsequent proteasomal degradation. In our system, the total protein levels of MCL-1 remained unchanged in WSB2 knockout cells, suggesting that NOXA may not be promoting apoptosis through enhanced MCL-1 degradation. Instead, we speculate that the accumulation of NOXA in WSB2-deficient cells enhances apoptosis by sequestering MCL-1 through direct binding, thereby freeing pro-apoptotic effectors such as BAK and BAX. In line with our observations, Nakao et al. reported that deletion of the mitochondrial E3 ligase MARCH5 led to a pronounced increase in NOXA expression, while leaving MCL-1 protein levels unchanged in leukemia cell lines (Leukemia. 2023 ;37:1028-1038., PMID: 36973350).

      Additionally, NOXA has been reported to interact with other anti-apoptotic proteins, including BCL-XL. It is therefore possible that under conditions of WSB2 depletion, excess NOXA may also bind to BCL-XL and relieve its inhibition of BAX/BAK, further contributing to apoptosis. Future experiments assessing NOXA binding partners in WSB2-deficient cells would help clarify this mechanism.

      I think some initial insights into the mechanism underlying the sensitization would add a lot to this study. Is there a role of BFL1/A1 in any of these cell lines, as it can also rather selectively bind to NOXA and is sometimes deregulated in cancer?

      We appreciate the reviewer for raising this important issue. While BFL1/A1 is indeed another anti-apoptotic BCL-2 family member that can selectively bind to NOXA and has been implicated in cancer, our study primarily focuses on the WSB2-NOXA axis. However, given its potential involvement in apoptosis regulation, it would be an interesting direction for future studies to explore whether BFL1/A1 contributes to NOXA-mediated sensitization in specific cellular contexts.

      Otherwise, this is a very nice and convincing study.

    1. eLife Assessment

      This paper reports on a correlation between diminished cardiolipin content and the severity of steatohepatitis in human subjects. This is supported further by experimental evidence from mice in which the gene encoding a key enzyme in cardiolipin synthesis has been compromised in the liver. The correlations established between lipidology, mitochondrial function, and the induction of respiration and oxidative stress are notable and will be useful to researchers in the field. However, given that the causal relationship between lipid perturbation and the progression of steatohepatitis implied in the title has not been tested experimentally, the evidence supporting the paper's key conclusion is incomplete.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript by Brothwell and colleagues describes a central role for hepatic cardiolipin deficiency in MASH. The authors identify cardiolipin as a mediator of two long-standing problems in the field: how dysregulated lipid metabolism relates to altered mitochondrial metabolism during MASLD, and what the innate changes are in the steatotic liver that cause the increased respiration. The authors identified reduced liver cardiolipin in humans with MASH and in a variety of mouse models with MASH. When they knocked out hepatic cardiolipin synthesis, mice developed steatosis and inflammation. These mice also recapitulated the elevated hepatic oxidative metabolism and oxidative stress found in obese humans with MASLD. Some of the in vivo functional data related to glucose homeostasis and substrate metabolism could be stronger, and interpretation of the in vitro flux data needs some clarification, but in both cases, the data are not essential to the main conclusions of the manuscript. Overall, the study offers compelling evidence that cardiolipin is reduced in MASLD and that impaired cardiolipin synthesis is sufficient to recapitulate many features of MASLD.

      Strengths:

      The main strengths of the study are:

      (1) The identification of reduced cardiolipin levels in the liver of humans with MASLD and in a variety of mouse models of MASLD.

      (2) The finding that loss of cardiolipin synthesis recapitulates steatosis and inflammation in MASH.

      (3) The finding that loss of cardiolipin increases mitochondrial respiration, ROS production, and fat oxidation (in a separate hepatocyte cell line), again recapitulates several previous studies in obese humans with MASLD.

      (4) Evidence, though less definitive, that cardiolipin deficiency promotes electron leak by disrupting respiratory supercomplexes and preventing CoQ reduction.

      Weaknesses:

      (1) Figure 3A-D tries to make the point that liver CLS KO causes defects in substrate handling in vivo, based on glucose and pyruvate tolerance tests. The KO mice have a blunted response to a glucose tolerance test, but the pyruvate tolerance test showed very little (almost no) effect on glucose levels in either WT or LKO mice. The small blunting of the response in the LKO is impossible to interpret (if it's real), since the ability to clear glucose is also increased, and no tracers were used. It might be useful to monitor pyruvate and lactate levels during the experiment. However, this reviewer doesn't think the data is essential to prove the authors' main points.

      (2) After presenting convincing evidence that respiration is elevated in isolated mitochondria from CLS KO liver, the authors follow up the findings by investigating whether 13C-palmitate and 13C-glucose oxidation are altered by CLS knockdown in murine Hepa1-6 cells (Figure 4). A few comments are worth mentioning about Figure 4:

      a. It is not clear why the authors chose to use a hepatoma cell line rather than primary hepatocytes from LKO mice. The latter would be more convincing, since there could be important differences in metabolism between hepatoma cells and hepatocytes (e.g., preference for fatty acids vs glucose). Nevertheless, I think the approach is sufficient to test the general effect of loss of CLS on substrate metabolism.

      b. The authors use the M+2 enrichments of TCA cycle intermediates to infer rates of oxidation of [U-13C]palmitate or [U-13C]glucose. It is important to note that this kind of data reports fractional carbon sources (i.e., substrate preference) rather than rates of oxidation. For example, data from the 13C-palmitate experiment indicates that the CLS KD cells increase the fractional contribution from 13C palmitate (compared to glucose, for example) to the TCA cycle, but the actual rate of palmitate oxidation is not implicit in the data. However, it is reasonable to suggest that, in combination with the increased rates of O2 consumption observed in isolated mitochondria, this data supports increased fat oxidation.

      c. I have some concern that the [U-13C]glucose experiment is more complicated to interpret than the description implies. I'm not sure what happens in this cell line, but in the liver, most labeling from pyruvate (i.e., originating from glucose in this case) enters the TCA cycle via pyruvate carboxylase, with smaller amounts entering via PDH (depending on the nutritional state). Since one could expect pyruvate carboxylase to contribute M+3 labeled TCA cycle intermediates initially, and M+2 on the first turn of the cycle, it's hard to conclude what the data indicates about glucose oxidation. The authors could generalize the conclusion by framing the TCA cycle enrichment data as the contribution of glucose carbons and noting in Figure 4A that pyruvate carbons can enter the TCA cycle via PDH or pyruvate carboxylase, without attempting to assign their relative contributions. There are better ways to do it, but it's a small nuance here since the authors aren't making a critical point about the pathways.

    1. eLife Assessment

      This important manuscript investigates the role of olfactory cues in Pieris brassicae larvae, focusing on their interactions with the host plant Brassica oleracea and the parasitoid wasp Cotesia glomerata. The authors' demonstration that impaired olfactory perception reduces caterpillar performance and increases susceptibility to parasitism is convincing. These findings highlight the ecological significance of olfaction in mediating feeding behavior and predator avoidance in herbivorous insects.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript focuses on the olfactory system of Pieris brassicae larvae and the importance of olfactory information in their interactions with the host plant Brassica oleracea and the major parasitic wasp Cotesia glomerata. The authors used CRISPR/Cas9 to knockout odorant receptor co-receptors (Orco), and conducted a comparative study on the behavior and olfactory system of the mutant and wild-type larvae. The study found that Orco-expressing olfactory sensory neurons in antennae and maxillary palps of Orco knockout (KO) larvae disappeared, and the number of glomeruli in the brain decreased, which impairs the olfactory detection and primary processing in the brain. Orco KO caterpillars show weight loss and loss of preference for optimal food plants; KO larvae also lost weight when attacked by parasitoids with the ovipositor removed, and mortality increased when attacked by untreated parasitoids. On this basis, the authors further studied the responses of caterpillars to volatiles from plants attacked by the larvae of the same species and volatiles from plants on which the caterpillars were themselves attacked by parasitic wasps. Lack of OR mediated olfactory inputs prevents caterpillars from finding suitable food sources and from choosing spaces free of enemies.

      Strengths:

      The findings help to understand the important role of olfaction in caterpillar feeding and predator avoidance, highlighting the importance of odorant receptor genes in shaping ecological interactions.

      Weaknesses:

      There are the following major concerns:

      (1) Possible non-targeted effects of Orco knockout using CRISPR/Cas9 should be analyzed and evaluated in Materials and Methods and Results

      (2) Figure 1E: Only one olfactory receptor neuron was marked in WT. There are at least three olfactory sensilla at the top of the maxillary palp. Therefore, to explain the loss of Orco expressing neurons in the mutant (Figure 1F), a more rigorous explanation of the photo is required.

      (3) In Figure 1G, H, the four glomeruli circled by dotted lines: their corresponding relationship between the two figures needs to be further clarified.

      (4) Line 130: Since the main topic in this study is the olfactory system of larvae, the experimental results of this part are all about antennal electrophysiological responses, mating frequency and egg production of female and male adults of wild type and Orco KO mutant, it may be considered to include this part in the supplementary files. It is better to include some data about the olfactory responses of larvae.

      (5) Line 166: The sentences in the text is about the choice test between " healthy plant vs. infested plant", while in Fig 3C, it is "infested plant vs. no plant". The content in the text does not match the figure.

      (6) Lines 174-178: Fig 3A showed that the body weight of Orco KO larvae in the absence of parasitic wasps also decreased compared with that of WT. Therefore, in the experiments of Fig 3A and E, the difference in the body weight of Orco KO larvae in the presence or absence of parasitic wasps without ovipositors should also be compared. The current data cannot determine the reduced weight of KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      (7) Lines 179-181: Fig 3F show that the survival rate of larvae of Orco KO mutant decreased in the presence of parasitic wasps, and the difference in survival rate of larvae of WT and Orco KO mutant in the absence of parasitic wasps should also be compared. The current data cannot determine whether the reduced survival of the KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      (8) In Figure 4B, why do the compounds tested had no volatiles derived from plants? Cruciferous plants have the well-known mustard bomb. In the behavioral experiments the larvae responses to ITC compounds were not included, which is suggested to be explained in the discussion section.

      (9) The custom-made setup and the relevant behavioral experiments in Fig 4C needs to be described in detail (Line 545).

      (10) Materials and Methods Line 448: 10 μL paraffin oil should be used for negative control.

      Comments on revised version:

      The authors have replied my concerns and made revisions accordingly.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript focuses on the olfactory system of Pieris brassicae larvae and the importance of olfactory information in their interactions with the host plant Brassica oleracea and the major parasitic wasp Cotesia glomerata. The authors used CRISPR/Cas9 to knockout odorant receptor coreceptors (Orco), and conducted a comparative study on the behavior and olfactory system of the mutant and wild-type larvae. The study found that Orco-expressing olfactory sensory neurons in antennae and maxillary palps of Orco knockout (KO) larvae disappeared, and the number of glomeruli in the brain decreased, which impairs the olfactory detection and primary processing in the brain. Orco KO caterpillars show weight loss and loss of preference for optimal food plants; KO larvae also lost weight when attacked by parasitoids with the ovipositor removed, and mortality increased when attacked by untreated parasitoids. On this basis, the authors further studied the responses of caterpillars to volatiles from plants attacked by the larvae of the same species and volatiles from plants on which the caterpillars were themselves attacked by parasitic wasps. Lack of OR-mediated olfactory inputs prevents caterpillars from finding suitable food sources and from choosing spaces free of enemies.

      Strengths:

      The findings help to understand the important role of olfaction in caterpillar feeding and predator avoidance, highlighting the importance of odorant receptor genes in shaping ecological interactions.

      Weaknesses:

      There are the following major concerns:

      (1) Possible non-targeted effects of Orco knockout using CRISPR/Cas9 should be analyzed and evaluated in Materials and Methods and Results.

      Thank you for your suggestion. In the Materials and Methods, we mention how we selected the target region and evaluated potential off-target sites by Exonerate and CHOPCHOP. Neither of these methods found potential off-target sites with a more-than-17-nt alignment identity. Therefore, we assumed no off-target effect in our Orco knockout. Furthermore, we did not find any developmental differences between wildtype and knockout caterpillars when these were reared on leaf discs in Petri dishes (Fig S4). We will further highlight this information on the off-target evaluation in the Results section.

      (2) Figure 1E: Only one olfactory receptor neuron was marked in WT. There are at least three olfactory sensilla at the top of the maxillary palp. Therefore, to explain the loss of Orcoexpressing neurons in the mutant (Figure 1F), a more rigorous explanation of the photo is required.

      Thank you for pointing this out. The figure shows only a qualitative comparison between WT and KO and we did not aim to determine the total number of Orco positive neurons in the maxillary palps or antennae of WT and KO caterpillars, but please see our previous work for the neuron numbers in the caterpillar antennae (Wang et al., 2024). We did indeed find more than one neuron in the maxillary palps, but as these were in very different image planes it was not possible to visualize them together. However, we will add a few sentences in the Results and Discussion section to explain the results of the maxillary palp Orco staining.

      (3) In Figure 1G, H, the four glomeruli are circled by dotted lines: their corresponding relationship between the two figures needs to be further clarified.

      Thank you for pointing this out. The four glomeruli in Figure 1G and 1H are not strictly corresponding. We circled these glomeruli to highlight them, as they are the best visualized and clearly shown in this view. In this study, we only counted the number of glomeruli in both WT and KO, however, we did not clarify which glomeruli are missing in the KO caterpillar brain. We will further clarify this in the figure legend.

      (4) Line 130: Since the main topic in this study is the olfactory system of larvae, the experimental results of this part are all about antennal electrophysiological responses, mating frequency, and egg production of female and male adults of wild type and Orco KO mutant, it may be considered to include this part in the supplementary files. It is better to include some data about the olfactory responses of larvae.

      Thank you for your suggestion. We do agree with your suggestion, and we will consider moving this part to the supplementary information. Regarding larval olfactory response, we unfortunately failed to record any spikes using single sensillum recordings due to the difficult nature of the preparation; however we do believe that this would be an interesting avenue for further research.

      (5)Line 166: The sentences in the text are about the choice test between " healthy plant vs. infested plant", while in Fig 3C, it is "infested plant vs. no plant". The content in the text does not match the figure.

      Thank you for pointing this out. The sentence is “We compared the behaviors of both WT and Orco KO caterpillars in response to clean air, a healthy plant and a caterpillar-infested plant”. We tested these three stimuli in two comparisons: healthy plant vs no plant, infested plant vs no plant. The two comparisons are shown in Figure 3C separately. We will aim to describe this more clearly in the revised version of this manuscript.

      (6) Lines 174-178: Figure 3A showed that the body weight of Orco KO larvae in the absence of parasitic wasps also decreased compared with that of WT. Therefore, in the experiments of Figure 3A and E, the difference in the body weight of Orco KO larvae in the presence or absence of parasitic wasps without ovipositors should also be compared. The current data cannot determine the reduced weight of KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      Thank you for pointing this out. We did not make a comparison between the data of Figures 3A and 3E since the two experiments were not conducted at the same time due to the limited space in our BioSafety III greenhouse. We do agree that the weight decrease in Figure 3E is partly due to the reduced caterpillar growth shown in Figure 3A. However, we are confident that the additional decrease in caterpillar weight shown in Figure 3E is mainly driven by the presence of disarmed parasitoids. To be specific, the average weight in Figure 3A is 0.4544 g for WT and 0.4230 g for KO, KO weight is 93.1% of WT caterpillars. While in Figure 3E, the average weight is 0.4273 g for WT and 0.3637 g for KO, KO weight is 85.1% of WT caterpillars. We will discuss this interaction between caterpillar growth and the effect of the parasitoid attacks more extensively in the revised version of the manuscript.

      (7) Lines 179-181: Figure 3F shows that the survival rate of larvae of Orco KO mutant decreased in the presence of parasitic wasps, and the difference in survival rate of larvae of WT and Orco KO mutant in the absence of parasitic wasps should also be compared. The current data cannot determine whether the reduced survival of the KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      We are happy that you highlight this point. When conducting these experiments, we selected groups of caterpillars and carefully placed them on a leaf with minimal disturbance of the caterpillars, which minimized hurting and mortality. We did test the survival of caterpillars in the absence of parasitoid wasps from the experiment presented in Figure 3A, although this was missing from the manuscript. There is no significant difference in the survival rate of caterpillars between the two genotypes in the absence of wasps (average mortality WT = 8.8 %, average mortality KO = 2.9 %; P = 0.088, Wilcoxon test), so the decreased survival rate is most likely due to the attack of the wasps. We will add this information to the revised version of the manuscript.

      (8) In Figure 4B, why do the compounds tested have no volatiles derived from plants? Cruciferous plants have the well-known mustard bomb. In the behavioral experiments, the larvae responses to ITC compounds were not included, which is suggested to be explained in the discussion section.

      Thank you for the suggestion. We assume you mean Figure 4D/4E instead of Figure 4B. In Figure 4B, many of the identified chemical compounds are essentially plant volatiles, especially those from caterpillar frass and caterpillar spit. In Figure 4D/4E, most of the tested chemicals are derived from plants. But indeed, we did not include ITCs, based on information from the EAG results in Figures 2A & 2B. Butterfly antennae did not respond strongly to ITCs, so we did not include ITCs in the larval behavioural tests. Instead, the tested chemicals in Figure 4D/4E either elicit high EAG responses of butterflies or have been identified as “important” by VIP scores in the chemical analyses. In the EAG results of Plutella xylostella (Liu et al., 2020), moths responded well to a few ITCs, the tested ITCs in our study are actually adopted from this study except for those that were not available to us. However, butterflies did not show a strong response to the tested ITCs; therefore, we did not include ITCs because we expected that Pieris brassicae caterpillars are not likely to show good responses to ITCs. We will add this explanation to the revised version of our manuscript.

      (9) The custom-made setup and the relevant behavioral experiments in Figure 4C need to be described in detail (Line 545).

      We will add more detailed descriptions for the setup and method in the Materials and Methods.

      (10) Materials and Methods Line 448: 10 μL paraffin oil should be used for negative control.

      Thank you for pointing this out. We used both clean filter paper and clean filter paper with 10 μL paraffin oil as negative controls, but we did not find a significant difference between the two controls. Therefore, in the EAG results of Figure 2A/2B, we presented paraffin oil as one of the tested chemicals. We will re-run our statistical tests with paraffin oil as negative control, although we do not expect any major differences to the previous tests.

      Reviewer #2 (Public review):

      Summary:

      This manuscript investigated the effect of olfactory cues on caterpillar performance and parasitoid avoidance in Pieris brassicae. The authors knocked out Orco to produce caterpillars with significantly reduced olfactory perception. These caterpillars showed reduced performance and increased susceptibility to a parasitoid wasp.

      Strengths:

      This is an impressive piece of work and a well-written manuscript. The authors have used multiple techniques to investigate not only the effect of the loss of olfactory cues on host-parasitoid interactions, but also the mechanisms underlying this.

      Weaknesses:

      (1) I do have one major query regarding this manuscript - I agree that the results of the caterpillar choice tests in a y-maze give weight to the idea that olfactory cues may help them avoid areas with higher numbers of parasitoids. However, the experiments with parasitoids were carried out on a single plant. Given that caterpillars in these experiments were very limited in their potential movement and source of food - how likely is it that avoidance played a role in the results seen from these experiments, as opposed to simply the slower growth of the KO caterpillars extending their period of susceptibility? While the two mechanisms may well both take place in nature - only one suggests a direct role of olfaction in enemy avoidance at this life stage, while the other is an indirect effect, hence the distinction is important.

      We do agree with your comment that both mechanisms may be at work in nature and we do address this in the Discussion section. In our study, we did find that wildtype caterpillars were more efficient in locating their food source and did grow faster on full plants than knockout caterpillars. This faster growth will enable wildtype caterpillars to more quickly outgrow the life-stages most vulnerable to the parasitoids (L1 and L2). The olfactory system therefore supports the escape from parasitoids indirectly by enhancing feeding efficiency directly.

      Figure 3D shows that WT caterpillars prefer infested plants without parastioids to infested plants with parasitoids. In addition, we observed that caterpillars move frequently between different leaves. Therefore, we speculate that WT caterpillars make use of volatiles from the plant or from (parasitoid-exposed) conspecifics via their spit or faeces to avoid parts of the plant potentially attracting natural enemies. Knockout caterpillars are unable to use these volatile danger cues and therefore do not avoid plant parts that are most attractive to their natural enemies, making KO caterpillars more susceptible and leading to more natural enemy harassment. Through this, olfaction also directly impacts the ability of a caterpillar to find an enemy-free feeding site.

      We think that olfaction supports the enemy avoidance of caterpillars via both these mechanisms, although at different time scales. Unfortunately, our analysis was not detailed enough to discern the relative importance of the two mechanisms we found. However, we feel that this would be an interesting avenue for further research. Moreover, we will sharpen our discussion on the potential importance of the two different mechanisms in the revised version of this manuscript.

      (2) My other issue was determining sample sizes used from the text was sometimes a bit confusing. (This was much clearer from the figures).

      We will revise the sample size in the text to make it more clear.

      (3) I also couldn't find the test statistics for any of the statistical methods in the main text, or in the supplementary materials.

      Thank you for pointing this out. We will provide more detailed test statistics in the main text and in the supplementary materials of the revised version of the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Abstract

      Line 24: "optimal food plant" should be changed to "optimal food plants"

      Thank you for the suggestion, we will revise it.

      (2) Introduction

      Lines 44-46: The sentence should be rephrased.

      Thank you for the suggestion, we will revise it.

      Line 50: "are" should be changed to "is".

      Thank you for the suggestion, we will revise it.

      Lines 57 and 58: Please provide the Latin names of "brown planthoppers" and "striped stem borer".

      Thank you for the suggestion, we will revise it.

      Line 85: "investigate the influence of odor-guided behavior by this primary herbivore on the next trophic levels"; similarly, Line 160: "investigate if caterpillars could locate the optimal host-plant when supplied with differently treated plants". These sentences are not very accurate in describing the relevant experiments. A: Thank you for the suggestion, we will revise them.

      Reviewer #2 (Recommendations for the authors):

      (1) L53 Remove the "the" from "Under the strong selection pressure"

      Thank you for the suggestion, we will revise it.

      (2) L80 I suggest adding a reference for the spitting behaviour, e.g. Muller et al 2003.

      Thank you for the suggestion, we will add it.

      (3) L89 establishing a homozygous KO insect colony.

      Thank you for the suggestion, we will revise it.

      (4) L107 perhaps this goes against the journal style but I always like to see acronyms explained the first time they are used.

      Thank you for the suggestion, we will try to make it more understandable.

      (5) L146-148 sentence difficult to read - consider rephrasing.

      Thank you for the suggestion, we will revise it.

      (6) L230 do you mean still produce? Rather than still reproduce?

      Thank you for the suggestion, we will revise it.

      (7) L233 missing an and before "a greater vulnerability to the parasitoid wasp".

      Thank you for pointing this out, we will revise it.

      (8) L238 malfunctional is a strange word choice.

      Thank you for pointing this out, we will revise it.

      (9) L181 - can the authors confirm that this lower survival was due to parasitism by the wasps?

      This question is similar to Q(7) of Reviewer 1, so we quote our answer for Q(7) here:

      When conducting these experiments, we selected groups of caterpillars and carefully placed them on a leaf with minimal disturbance of the caterpillars, which minimized hurting and mortality. We did test the survival of caterpillars in the absence of parasitoid wasps from the experiment presented in Figure 3A, although this was missing from the manuscript. There is no significant difference in the survival rate of caterpillars between the two genotypes in the absence of wasp (average mortality WT = 8.8 %, average mortality KO = 2.9 %; P = 0.088, Wilcoxon test), so the decreased survival rate is most likely due to the attack of the wasps. We will add this information to the revised version of the manuscript.

      (10) L474 - has it been tested if wasps still behave similarly after their ovipositor has been removed?

      Thank you for pointing out this issue. We did not strictly compare if disarmed and untreated wasps have similar behaviors. However, we did observe if disarmed wasps can actively move or fly after recovering from anesthesia before releasing into a cage, otherwise we would replace with another active one.

    1. eLife Assessment

      This is an important study that characterized proteins associated with electrical synapses in zebrafish and mouse retinal neurons using proximity labeling approaches, complemented by biochemical and histological validations. The resulting protein interactome datasets are convincing and reveal novel scaffold proteins at the electrical synapse. Additional quantification and validation would strengthen the work further.

    2. Reviewer #1 (Public review):

      This study aims to identify the proteins that compose the electrical synapse, which are much less understood than those of the chemical synapse. Identifying these proteins is important to understand how synaptogenesis and conductance are regulated in these synapses.

      Using a proteomics approach, the authors identified more than 50 new proteins and used immunoprecipitation and immunostaining to validate their interaction of localization. One new protein, a scaffolding protein (Sipa1l3), shows particularly strong evidence of being an integral component of the electrical synapse. The function of Sipa1l3 remains to be determined.

      Another strength is the use of two different model organisms (zebrafish and mice) to determine which components are conserved across species. This approach also expands the utility of this work to benefit researchers working with both species.

      The methodology is robust and there is compelling evidence supporting the findings.

    3. Reviewer #2 (Public review):

      Summary:

      This study aimed to uncover the protein composition and evolutionary conservation of electrical synapses in retinal neurons. The authors employed two complementary BioID approaches: expressing a Cx35b-TurboID fusion protein in zebrafish photoreceptors and using GFP-directed TurboID in Cx36-EGFP-labeled mouse AII amacrine cells. They identified conserved ZO proteins and endocytosis components in both species, along with over 50 novel proteins related to adhesion, cytoskeleton remodeling, membrane trafficking, and chemical synapses. Through a series of validation studies¬-including immunohistochemistry, in vitro interaction assays, and immunoprecipitation-they demonstrate that novel scaffold protein SIPA1L3 interacts with both Cx36 and ZO proteins at electrical synapse. Furthermore, they identify and localize proteins ZO-1, ZO-2, CGN, SIPA1L3, Syt4, SJ2BP, and BAI1 at AII/cone bipolar cell gap junctions.

      Strengths:

      The study demonstrates several significant strengths in both experimental design and validation approaches. First, the dual-species approach provides valuable insights into the evolutionary conservation of electrical synapse components across vertebrates. Second, the authors compare two different TurboID strategies in mice and demonstrate that the HKamac promoter and GFP-directed approach can successfully target the electrical synapse proteome of mouse AII amacrine cells. Third, they employed multiple complementary validation approaches-including retinal section immunohistochemistry, in vitro interaction assays, and immunoprecipitation-providing evidence supporting the presence and interaction of these proteins at electrical synapses.

      Weaknesses:

      The major weakness of this paper is the insufficient number of replicates in the proteomics datasets. The zebrafish datasets include only two biological replicates, while the mouse dataset has only one high-quality replicate. Due to the limited number of replicates, it is not possible to determine which enriched proteins are statistically significant.

      Additionally, the Neutravidin staining in the TurboID condition is not restricted to where Cx35 is expressed but is broadly distributed throughout the INL and IPL in the zebrafish retina (Figure 1B, bottom). Therefore, it is necessary to include NeutrAvidin staining in non-labeled retinas to verify whether the biotinylated proteins are specifically associated with Cx35 expression. Although the western blot results showed increased protein enrichment in the TurboID condition compared to non-labeled retinas, this does not confirm that the streptavidin pull-down proteins are associated with Cx35.

      Similarly, it is important to include NeutrAvidin staining in both TurboID and non-labeled conditions in the mouse retina to verify that the biotinylated proteins are specifically associated with gap junctions.

    4. Reviewer #3 (Public review):

      Summary:

      This study by Tetenborg S et al. identifies proteins that are physically closely associated with gap junctions in retinal neurons of mice and zebrafish using BioID, a technique that labels and isolates proteins in proximal to a protein of interest. These proteins include scaffold proteins, adhesion molecules, chemical synapse proteins, components of the endocytic machinery, and cytoskeleton-associated proteins. Using a combination of genetic tools and meticulously executed immunostaining, the authors further verified the colocalizations of some of the identified proteins with connexin-positive gap junctions. The findings in this study highlight the complexity of gap junctions. Electrical synapses are abundant in the nervous system, yet their regulatory mechanisms are far less understood than those of chemical synapses. This work will provide valuable information for future studies aiming to elucidate the regulatory mechanisms essential for the function of neural circuits.

      Strengths:

      A key strength of this work is the identification of novel gap junction-associated proteins in AII amacrine cells and photoreceptors using BioID in combination with various genetic tools. The well-studied functions of gap junctions in these neurons will facilitate future research into the functions of the identified proteins in regulating electrical synapses.

      The authors have addressed my concerns in the revised manuscript.

    5. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study aims to identify the proteins that compose the electrical synapse, which are much less understood than those of the chemical synapse. Identifying these proteins is important to understand how synaptogenesis and conductance are regulated in these synapses. The authors identified more than 50 new proteins and used immunoprecipitation and immunostaining to validate their interaction of localization. One new protein, a scaffolding protein, shows particularly strong evidence of being an integral component of the electrical synapse. However, many key experimental details are missing (e.g. mass spectrometry), making it difficult to assess the strength of the evidence.

      Strengths:

      One newly identified protein, SIPA1L3, has been validated both by immunoprecipitation and immunohistochemistry. The localization at the electrical synapse is very striking.<br /> A large number of candidate interacting proteins were validated with immunostaining in vivo or in vitro.

      Weaknesses:

      There is no systematic comparison between the zebrafish and mouse proteome. The claim that there is "a high degree of evolutionary conservation" was not substantiated.

      We have added a table as supplementary figure 3 that shows a comparison of all candidates. While there are differences in both proteomes, components such as ZO proteins and the endocytosis machinery are clearly conserved.

      No description of how mass spectrometry was done and what type of validation was done.

      We have contacted the mass spec facility we worked with and added a paragraph explaining the mass spec. procedure in the material and methods section.

      The threshold for enrichment seems arbitrary.

      Yes, the thresholds are somewhat arbitrary. This is due to the fact that experiments that captured larger total amounts of protein (mouse retina samples) had higher signal-to-noise ratio than those that captured smaller total amounts of protein (zebrafish retina). This allowed us to use a more stringent threshold in the mouse dataset to focus on high probability captured proteins.

      Inconsistent nomenclature and punctuation usage.

      We have scanned through the manuscript and updated terms that were used inconsistently in the interim revision of the manuscript.

      The description of figures is very sparse and error-prone (e.g. Figure 6).

      In Figure 1B, there is very broad non-specific labeling by avidin in zebrafish (In contrast to the more specific avidin binding in mice, Figure 2B). How are the authors certain that the enrichment is specific at the electrical synapse?

      The enrichment of the proteins we identified is specific for electrical synapses because we compared the abundance of all candidates between Cx35b-V5-TurboID and wildtype retinas. Proteins that are components of electrical synapses, will only show up in the Cx35b-V5-TurboID condition. The western blot (Strep-HRP) in figure 1C shows the differences in the streptavidin labeling and hence the enrichment of proteins that are part of electrical synapses. Moreover, while the background appears to be quite abundant in sections, biotinylation is a rare posttranslational modification and mainly occurs in carboxylases: The two intense bands that show up above 50 and 75 kDa. The background mainly originates from these two proteins. Therefore, it is easy to distinguish specific hits from non-specific background.

      In Figure 1E, there is very little colocalization between Cx35 and Cx34.7. More quantification is needed to show that it is indeed "frequently associated."

      We agree that “frequently associated” is too strong as a statement. We corrected this and instead wrote “that Cx34.7 was only expressed in the outer plexiform layer (OPL) where it was associated with Cx35b at some gap junctions” in line 151. There are many gap junctions at which Cx35b is not colocalized with Cx34.7.

      Expression of GFP in HCs would potentially be an issue, since GFP is fused to Cx36 (regardless of whether HC expresses Cx36 endogenously) and V5-TurboID-dGBP can bind to GFP and biotinylate any adjacent protein.

      Thank you for this suggestion! There should be no Cx36-GFP expression in horizontal cells, which means that the nanobody cannot bind to anything in these cells. Moreover, to recognize specific signals from non-specific background, we included wild type retinas throughout the entire experiments. This condition controls for non-specific biotinylation.

      Figure 7: the description does not match up with the figure regarding ZO-1 and ZO-2.

      It appears that a portion of the figure legend was left out of the submitted version of the manuscript. We have put the legend for panels A through C back into the manuscript in the interim revision.

      Reviewer #2 (Public review):

      Summary:

      This study aimed to uncover the protein composition and evolutionary conservation of electrical synapses in retinal neurons. The authors employed two complementary BioID approaches: expressing a Cx35b-TurboID fusion protein in zebrafish photoreceptors and using GFP-directed TurboID in Cx36-EGFP-labeled mouse AII amacrine cells. They identified conserved ZO proteins and endocytosis components in both species, along with over 50 novel proteins related to adhesion, cytoskeleton remodeling, membrane trafficking, and chemical synapses. Through a series of validation studies¬-including immunohistochemistry, in vitro interaction assays, and immunoprecipitation - they demonstrate that novel scaffold protein SIPA1L3 interacts with both Cx36 and ZO proteins at electrical synapse. Furthermore, they identify and localize proteins ZO-1, ZO-2, CGN, SIPA1L3, Syt4, SJ2BP, and BAI1 at AII/cone bipolar cell gap junctions.

      Strengths:

      The study demonstrates several significant strengths in both experimental design and validation approaches. First, the dual-species approach provides valuable insights into the evolutionary conservation of electrical synapse components across vertebrates. Second, the authors compare two different TurboID strategies in mice and demonstrate that the HKamac promoter and GFP-directed approach can successfully target the electrical synapse proteome of mouse AII amacrine cells. Third, they employed multiple complementary validation approaches - including retinal section immunohistochemistry, in vitro interaction assays, and immunoprecipitation-providing evidence supporting the presence and interaction of these proteins at electrical synapses.

      Weaknesses:

      The conclusions of this paper are supported by data; however, some aspects of the quantitative proteomics analysis require clarification and more detailed documented. The differential threshold criteria (>3 log2 fold for mouse vs >1 log2 fold for zebrafish) will benefit from biological justification, particularly given the cross-species comparison. Additionally, providing details on the number of biological or technical replicates used in this study, along with analyses of how these replicates compare to each other, would strengthen the confidence in the identification of candidate proteins. Furthermore, including negative controls for the histological validation of proteins interacting with Cx36 could increase the reliability of the staining results.

      While the study successfully characterized the presence of candidate proteins at the electrical synapses between AII amacrine cells and cone bipolar cells, it did not compare protein compositions between the different types of electrical synapses within the circuit. Given that AII amacrine cells form both homologous (AII-AII) and heterologous (AII-cone bipolar cell) electrical synapses-connections that serve distinct functional roles in retinal signaling processing-a comparative analysis of their molecular compositions could have provided important insights into synapse specificity.

      Reviewer #3 (Public review):

      Summary:

      This study by Tetenborg S et al. identifies proteins that are physically closely associated with gap junctions in retinal neurons of mice and zebrafish using BioID, a technique that labels and isolates proteins proximal to a protein of interest. These proteins include scaffold proteins, adhesion molecules, chemical synapse proteins, components of the endocytic machinery, and cytoskeleton-associated proteins. Using a combination of genetic tools and meticulously executed immunostaining, the authors further verified the colocalizations of some of the identified proteins with connexin-positive gap junctions. The findings in this study highlight the complexity of gap junctions. Electrical synapses are abundant in the nervous system, yet their regulatory mechanisms are far less understood than those of chemical synapses. This work will provide valuable information for future studies aiming to elucidate the regulatory mechanisms essential for the function of neural circuits.

      Strengths:

      A key strength of this work is the identification of novel gap junction-associated proteins in AII amacrine cells and photoreceptors using BioID in combination with various genetic tools. The well-studied functions of gap junctions in these neurons will facilitate future research into the functions of the identified proteins in regulating electrical synapses.

      Thank you for these comments.

      Weaknesses:

      I do not see major weaknesses in this paper. A minor point is that, although the immunostaining in this study is beautifully executed, the quantification to verify the colocalization of the identified proteins with gap junctions is missing. In particular, endocytosis component proteins are abundant in the IPL, making it unclear whether their colocalization with gap junction is above chance level (e.g. EPS15l1, HIP1R, SNAP91, ITSN in Figure 3B).

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) It would be helpful to include a comprehensive summary of the results from the quantitative proteomics analyses, such as the number of proteins detected in each species and the number of proteins associated with each GO term. Additionally, a clear figure or table highlighting the specific proteins conserved between zebrafish and mice would strengthen the evidence for evolutionary conservation of proteins at electrical synapses.

      We have added the raw data we received from our mass spec facility including a comparison of all the candidates for different species. Supplementary figure 3.

      (2) A more detailed description of the number of experimental and/or technical replicates would improve the technical rigor of the study. For example, what was the rationale for using different log2 fold-change cutoffs in mice versus zebrafish? Are the replicates consistent in terms of protein enrichment?

      We have added raw data from individual experiments as a supplement (Excel spreadsheet). We have two replicates from zebrafish and two from mice. The first experiment in mice was conducted with fewer retinas and a different promoter (human synapsin promoter) and didn’t yield nearly as many candidates. We are currently running a third experiment with 35 mouse retinas which will most likely detect more candidates as we have identified currently. We can update the proteome in this paper once the analysis is complete. It is not feasible to conduct these experiments with multiple replicates at the same time, since the number of animals that have to be used is simply too high, especially since very specific genotypes are required that are difficult obtain.

      (3) It would be interesting to determine whether there are differences in the presence of candidate proteins between AII-AII gap junctions and AII-cone bipolar cell gap junctions. Given that the subcellular localization of AII-AII gap junctions differs from that of AII-cone bipolar cell gap junctions (with most AII-AII gap junctions located below AII-cone ones), histological validations of the proteins shown in Figure 6 can be repeated for AII-AII gap junctions. This would help reveal similarities or differences in the protein compositions of these two types of gap junctions.

      Thank you for this suggestion. We had similar plans. However, we realized that homologous gap junctions are difficult to recognize with GFP. The dense GFP labeling in the proximal IPL, where AII-AII gap junctions are formed, does not allow us to clearly trace the location of individual dendrites from different cells. Detecting AII-AII gap junctions would require intracellular dye Injections of neighboring AII cells. Unfortunately, we don’t have a set up that would allow this. Bipolar cell terminals, on the contrary, are a lot easier to detect with markers such as SCGN, which is why we decided to focus on AII/ONCB gap junctions.

      (4) In Figures 1 and 2, it would be helpful to clarify in the figure legends whether the proteins in the interaction networks represent all detected proteins or only those selected based on log2 fold-change or other criteria.

      Thank you for this suggestion! We have added a description in lines 643 and 662.

      (5) In Figure 1A (bottom panel), please include a negative control for the Neutravidin staining result from the non-labeling group.

      We only tested the biotinylation for wild type retinas in cell lysates and western blots as shown in figure 1C, which shows an entirely different biotinylation pattern.

      (6) In Figure 2B, please include the results of Neutravidin staining for both the labeling and non-labeling groups.

      Same comment: We see the differences in the biotinylation pattern on western blots, which is distinct for Cx36-EGFP and wild type retinas, although both genotypes were injected with the same AAV construct and the same dose of biotin. We hope that this provides sufficient evidence for the specificity of our approach.

      (7) In Figure 5B, the sizes of multiple proteins detected by Western blotting are inconsistent and confusing. For example, the size of Cx36 in the "FLAG-SJ2BP" panel differs from that in the other three panels. Additionally, in the "Myc-SIPA1L3+" panel, the size of SIPA1l3 appears different between the input and IP conditions.

      Thank you for pointing this out! The differences in the molecular weight can be explained by dimerization. We have indicated the position of the dimer and the monomer bands with arrows. Especially, when larger amounts of Cx36 are coprecipitated Cx36 preferentially occurs as a dimer. This can also be seen in our previous publication:

      S. Tetenborg et al., Regulation of Cx36 trafficking through the early secretory pathway by COPII cargo receptors and Grasp55. Cellular and Molecular Life Sciences 81, 1-17 (2024). Figure 1D

      The band that occurs above 150kDa in the SIPA1L3 input is most likely a non-specific product. The specific band for SIPA1L3 can be seen in the IP sample, which has the appropriate molecular weight. We often see much better immuno reactivity for the protein of interest in IP samples, because the protein is concentrated in these experiments which facilitates its detection.

      (8) How specific are the antibodies used for validating the proteins in this study? Given that many proteins, such as EPS15l1, HIP1R, SNAP91, GPrin1, SJ2BP, Syt4, show broad distribution in the IPL (Figure 3B, 4A, 6D), it is important to validate the specificity of these antibodies. Additionally, including negative controls in the histological validation would strengthen the reliability of the results.

      We carefully selected the antibodies based on western blot data, that confirmed that each antibody detected an antigen of appropriate size. Moreover, the distribution of the proteins mentioned is consistent with function of each protein described in the literature. EPS15L1 and GPrin1 for instance are both membrane-associated, which is evident in Hek cells. Figure 5C.

      A true negative control would require KO tissue and we don’t think that this is feasible at this point.

      (9) In Figure 7F, the model could be improved by highlighting which components may be conserved between zebrafish and mice, as well as which components are conserved between the AII-AII junction and AII-cone bipolar cell junction?

      Thank you for this suggestion. However, we don’t think that this is necessary as our study primarily focuses on the AII amacrine cell.

      Currently we are unable to distinguish differences in the composition of AII-AII and AII-ONCB junctions as described above.

      (10) Are there any functional measurements that could support the conclusion that "loss of Cx36 resulted in a quantitative defect in the formation of electrical synapse density complex"?

      The loss of electrical synapse density proteins is shown by these immunostaining comparisons. Functional measurements necessarily depend on the function of the electrical synapse itself, which is gone in the case of the Cx36 KO. It is not clear that a different functional measurement can be devised.

      Reviewer #3 (Recommendations for the authors):

      (1) It would be very helpful if there were page and line numbers on the manuscript.

      Line and page numbers have been added.

      (2) Typos in the 3rd paragraph, the sentence 'which is triggered by the influx of Calcium though non-synaptic NMDA...'

      Should it read '... Calcium THROUGH non-synaptic NMDA'?

      We have corrected this typo.

      (3) Figure 1B: please add a description of the top panels, 'Cx36 S293'.

      A description of the top panels has been added to the figure legend in line. Line 639.

      (4) Figure 1C: what do the arrows indicate?

      We apologize for the confusion. The arrows in the western blot indicate the position of the Cx35-V5-TurboID construct, which can be detected with streptavidin-HRP and the V5 antibody. We have added a description for these arrows to the figure legend. See line 641.

      (5) Related to the point in the 'Weakness', there are some descriptions of how well some of the gap junction-associated proteins colocalize with Cx36 in immunostaining. For example, 'In comparison to the scaffold proteins, however, the colocalization of Cx36 with each of these endocytic components, was clearly less frequent and more heterogenous, which appears to reflect different stages in the life cycle of Cx36' and 'All of these proteins showed considerable colocalization with Cx36 in AII amacrine cell dendrites'. It would be nice to see quantification data to support these claims.

      Thank you for this suggestion. We have added a colocalization analysis to figure 3 (C & D). We quantified the colocalization for the endocytosis proteins Eps15l1 and Hip1r. This quantification included a flipped control to rule out random overlap. For both proteins we confirmed true colocalization (Figure 3D).

      (6) In Figure 5B, it would be helpful if there were arrows or some kind in western blottings to indicate which bands are supposed to be the targeted proteins.

      We have added arrows in IP samples to indicate bands representing the corresponding protein.

      (7) In the sentence including 'for the PBM of Cx36, as it is the case for ZO-1', what is PBM?

      The PBM means PDZ binding motif. We have added an explanation for this abbreviation in line 244.

      (8) Please add a description of the Cx35b promoter construct in the Method section.

      The Cx35b Promoter is a 6.5kb fragment. We will make the clone available via Addgene to ensure that all details of the clone can be accessed via snapgene or alternative software.

    1. eLife Assessment

      This valuable study explores changes in remote memory impairment in an amyloid pathology mouse model, demonstrating that progressive deficits coincide with inhibitory interneuron alterations. While the findings shed light on circuit remodeling in this model, the mechanistic links between heightened inhibition and memory loss are currently incomplete. Additional data and deeper analysis may be needed to fully substantiate the authors' interpretations.

    2. Reviewer #1 (Public review):

      This study presents evidence that remote memory in the APP/PS1 mouse model of Alzheimer's disease (AD) is associated with PV interneuron hyperexcitability and increased inhibition of cortical engram cells. Its strength lies in the fact that it explores a neglected aspect of memory research - remote memory impairments related to AD (for which the primary research focus is usually on recent memory impairments) -which has received minimal attention to date. While the findings are intriguing, the weakness of the paper hovers around purely correlational types of evidence and superficial data analyses, which require substantial revisions as outlined below.

      Major concerns:

      (1) In light of previous work, including that by the authors themselves, the data in Figure 1 should be complemented by measurements of recent memory recall in order to assess whether remote memories are exclusively impaired or whether remote memory recall merely represents a continuation of recent memory impairments.

      (2) Figure 2 shows electrophysiological properties of PV cells in the mPFC that correlate with the behavior shown in Figure 1. However, the mice used in Figure 2 are different than the mice used in Figure 1. Thus, the data are correlative at best, and the authors need to confirm that behavioral impairments in the APP/PS1 mice crossed to PV-Cre (and SST-Cre mice) used in Figure 2 are similar to those of the APP/PS1 mice used in Figure 1. Without that, no conclusions between behavioral impairments and electrophysiological as well as engram reactivation properties can be made, and the central claims of the paper cannot be upheld.

      (3) The reactivation data starting in Figure 3 should be analysed in much more depth: a) The authors restrict their analysis to intra-animal comparisons, but additional ones should be performed, such as inter-animal (WT vs APP/PS1) as well as inter-age (12-16w vs 16-20w). In doing so, reactivation data should be normalized to chance levels per animal, to account for differences in labelling efficiency - this is standard in the field (see original Tonegawa papers and for a reference). This could highlight differences in total reactivation that are already apparent, such as for instance in WT vs APP/PS1 at 20w (Figure 3o), and highlight a decrease in reactivation in AD mice at this age, contrary to what is stated in lines 213-214. b) Comparing the proportion of mcherry+ cells in PV- and PV+ is problematic, considering that the PV- population is not "pure" like the PV+, but rather likely to represent a mix of different pyramidal neurons (probably from several layers), other inhibitory neurons like SST and maybe even glial cells. Considering this, the statement on line 218 is misleading in saying that PVs are overrepresented. If anything, the same populations should be compared across ages or groups. c) A similar concern applies to the mcherry- population in Figure 4, which could represent different types of neurons that were never active, compared to the relatively homogeneous engram mcherry+ population. This could be elegantly fixed by restricting the comparison to mCherry+Fos+ vs mCherry+Fos- ensembles, and could indicate engram reactivation-specific differences in perisomatic inhibition by PV cells.

      (4) At several instances, there are some doubts about the statistical measures having been employed: a) In Figure 4f, it is unclear why a repeated measurement ANOVA was used as opposed to a regular ANOVA. b) In Supplementary Figure 2b, a Mann-Whitney test was used, supposedly because the data were not normally distributed. However, when looking at the individual data points, the data does seem to be normally distributed. Thus, the authors need to provide the test details as to how they measured the normalcy of distribution.

      Minor concerns:

      (1) Line 117: The authors cite a recent memory impairment here, as shown by another paper. However, given the notorious difficulty in replicating behavioral findings, in particular in APP/PS1 mice (number of backcrossings, housing conditions, etc., might differ between laboratories), such a statement cannot be made. The authors should either show in their own hands that recent memory is indeed affected at 12 weeks of age, or they should omit this statement.

      (2) Pertaining to Figure 3, low-resolution images of the mPFC should be provided to assess the spread of injection and the overall degree of double-positive cells.

    3. Reviewer #2 (Public review):

      This study presents a comprehensive investigation of remote memory deficits in the APP/PS1 mouse model of Alzheimer's disease. The authors convincingly show that these deficits emerge progressively and are paralleled by selective hyperexcitability of PV interneurons in the mPFC. Using viral-TRAP labeling and patch-clamp electrophysiology, they demonstrate that inhibitory input onto labeled engram cells is selectively increased in APP/PS1 mice, despite unaltered engram size or reactivation. These findings support the idea that alterations in inhibitory microcircuits may contribute to cognitive decline in AD.

      However, several aspects of the study merit further clarification. Most critically, the central paradox, i.e., increased inhibitory input without an apparent change in engram reactivation, remains unresolved. The authors propose possible mechanisms involving altered synchrony or impaired output of engram cells, but these hypotheses require further empirical support. Additionally, the study employs multiple crossed transgenic lines without reporting the progression of amyloid pathology in the mPFC, which is important for interpreting the relationship between circuit dysfunction and disease stage. Finally, the potential contribution of broader network dysfunction, such as spontaneous epileptiform activity reported in APP/PS1 mice, is also not addressed.

    1. eLife Assessment

      This valuable study presents a novel approach to enhance the therapeutic potential of mesenchymal stromal cells (MSCs) by genetically modifying their glycogen synthesis pathway, resulting in increased glycogen accumulation and improved cell survival under starvation conditions, particularly in the context of experimental pulmonary fibrosis. The methods and findings are generally solid and could be strengthened by investigating the kinetics of persistence, the immunomodulatory effects, and the underlying improved mechanism of action of MSCs in this pulmonary fibrosis model. If confirmed, this approach could suggest potential methods to improve the therapeutic functionality of MSCs in cell therapy strategies.

    2. Reviewer #1 (Public review):

      Summary:

      This study provides the first evidence that glucose availability, previously shown to support cell survival in other models, is also a key determinant for post-implantation MSC survival in the specific context of pulmonary fibrosis. To address glucose depletion in this context, the authors propose an original, elegant, and rational strategy: enhancing intracellular glycogen stores to provide transplanted MSCs with an internal energy reserve. This approach aims to prolong their viability and therapeutic functionality after implantation.

      Strengths:

      The efficacy of this metabolic engineering strategy is robustly demonstrated both in vitro and in an orthotopic mouse model of pulmonary fibrosis.

      Comments and questions for clarification:

      (1) Glycogen biosynthesis typically involves several enzymes. In this context, could the authors comment on the effect of overexpressing a single enzyme - especially a mutant version - on the structure or quality of the glycogen synthesized?

      (2) Regarding the in vitro starvation experiments (Figure 2C), what oxygen conditions (pO₂) were used? Are these conditions physiologically relevant and representative of the in vivo lung microenvironment?

      (3) In the in vitro model, how many hours does it take for the intracellular glycogen reserve to be completely depleted under starvation conditions?

      (4) For the in vivo model, is there a quantitative analysis of the survival kinetics of the transplanted cells over time for each group? This would help to better assess the role and duration of glycogen stores as an energy buffer after implantation.

      (5) Finally, the study was performed in male mice only. Could sex differences exist in the efficacy or metabolism of the engineered MSCs? It would be helpful to discuss whether the approach could be expected to be similarly effective in female subjects.

      (6) The number of mice for each group and time point should be specified.

    3. Reviewer #2 (Public review):

      Summary:

      In this article, the authors investigate enhancing the therapeutic and regenerative properties of mesenchymal stem cells (MSCs) through genetic modification, specifically by overexpressing genes involved in the glycogen synthesis pathway. By creating a non-phosphorylatable mutant form of glycogen synthase (GYSmut), the authors successfully increased glycogen accumulation in MSCs, leading to significantly improved cell survival under starvation conditions. The study highlights the potential of glycogen engineering to improve MSC function, especially in inflammatory or energy-deficient environments. However, critical gaps in the study's design, including the lack of validation of key findings, limited differentiation assessments, and missing data on MSC-GYSmut resistance to reactive oxygen species (ROS), necessitate further exploration.

      Strengths:

      (1) Novel Approach: The study introduces an innovative method of enhancing MSC function by manipulating glycogen metabolism.

      (2) Increased Glycogen Storage: The genetic modification of GYS1, resulting in GYSmut, significantly increased glycogen accumulation, leading to improved MSC survival under starvation, which has strong implications for enhancing MSC therapeutic properties in energy-deficient environments.

      (3) Potential Therapeutic Impact: The findings suggest significant therapeutic potential for MSCs in conditions that require improved survival, persistence, and immunomodulation, especially in inflammatory or energy-limited settings.

      (4) In Vivo Validation: The in vivo murine model of pulmonary fibrosis demonstrated the improved survival and persistence of MSC-GYSmut, supporting the translational potential of the approach.

      Weaknesses:

      (1) Lack of Differentiation Assessments: The study did not evaluate key MSC differentiation pathways, including chondrogenic and osteogenic differentiation. The absence of analysis of classical MSC surface markers and multipotency limits the understanding of the full potential of MSC-GYSmut.

      (2) Missing Validation of RNA Sequencing Data: Although RNA sequencing data revealed promising transcriptomic changes in chondrogenesis and metabolic pathways, these findings were not experimentally validated, limiting confidence.

      (3) Lack of ROS Resistance Analysis: Resistance to reactive oxygen species (ROS), an important feature for MSCs under regenerative conditions, was not assessed, leaving out a critical aspect of MSC function.

      (4) Inconsistencies in In Vivo Data: There is a discrepancy between the number of animals shown in the figures and the graph (three individuals vs. five animals), as well as missing details on how luciferase signal intensity was quantified, requiring further clarification.

      (5) Limited Exploration of Immunosuppressive Properties: The study did not address the immunosuppressive functions of MSC-GYSmut, which are critical for MSC-based therapies in clinical settings.

      Conclusion:

      The study presents an exciting new direction for enhancing MSC function through glycogen metabolism engineering. While the results show promise, key experiments and validations are missing, and several areas, such as differentiation capacity, ROS resistance, and immunosuppressive properties, require further investigation. Addressing these gaps would solidify the conclusions and strengthen the potential clinical applications of MSC-GYSmut in regenerative medicine.

    1. eLife Assessment

      Valencia et al. combine elegant in vitro biochemical experiments with functional assays in cardiomyocytes to determine which properties of the FHOD3 formin are essential for sarcomere assembly. Using separation-of-function mutants, they show that FHOD3's elongation activity, rather than its nucleation, capping, or bundling activities, is key to its sarcomeric function. This is an important finding and the data presented in the manuscript are convincing; however, the presence of FHOD3 at filament barbed ends in the TIRF elongation assays should probably be verified directly in a future study.

    2. Reviewer #1 (Public review):

      Summary:

      Formins are complex proteins with multiple effects on actin filament assembly, including nucleation, capping with processive elongation, and bundling. Determining which of these activities are important for a given biological process and normal cellular function is a major challenge.

      Here, the authors study the formin FHOD3L, which is essential for normal sarcomere assembly in muscle cells. They identify point mutants of FHOD3L in which formin nucleation and elongation/bundling activities are functionally separated. Expression of these mutants in neonatal rat ventricular myocytes shows that the control of actin filament elongation by formin is the major activity required for normal assembly of functional sarcomeres.

      Strengths:

      The strength of this work is to combine sensitive biochemical assays with excellent work in neonatal rat ventricular myocytes. This combination of approaches is highly effective for analyzing the function of proteins with multiple activities in vitro. The authors have pushed the experiments and data analysis as far as possible with the technologies available to them.

      Weaknesses:

      FHOD3L is not the easiest formin to study because of its relatively weak nucleation activity and the short duration of capping events. This difficulty imposes rigorous biochemical analysis and careful interpretation of the data. As the authors acknowledge, it will be important in future to perform complementary multi-color TIRF experiments to confirm that the brief accelerations in the elongation of actin filaments are indeed due to FHOD3 binding.

    3. Reviewer #3 (Public review):

      Valencia et al. aim to elucidate the biochemical and cellular mechanisms through which the human formin FHOD3 drives sarcomere assembly in cardiomyocytes. To do so, they combined rigorous in vitro biochemical assays with comprehensive in vivo characterizations, evaluating two wild type FHOD3 isoforms and two function-separating mutants. Surprisingly, they found that both wild type FHOD3 isoforms can nucleate new actin filaments, as well as elongate existing actin filaments in conjunction with profilin following barbed-end capping. This is in addition to FHOD3's proposed role as an actin bundler. Next, the authors focused on the longer isoform FHOD3L due to its essential role in sarcomere assembly in cardiomyocytes. They asked whether FHOD3L promote sarcomere assembly through its activity in actin nucleation or rather elongation. To do so, the authors designed two function-separating mutants: the K1193L mutation in the FH2 domain, known for its importance in actin nucleation, and the glycine-serine linker substitution in the FH1 domain ("GS-FH1",) known for its requirement in actin elongation. They demonstrated that while K1193L maintains its elongation activity and greatly diminishes nucleation and bundling, in GS-FH1 keeps its nucleation activity while lose its capacity to drive elongation. Armed with these tools, the authors attempted to rescue FHOD3L siRNA-treated neonatal rat ventricular myocytes (NRVM) with transgenes carrying wild type, K1193L, or GS-FH1 mutant forms of human FHOD3. In each condition, they evaluated the numbers and morphology of sarcomeres, as well as their ability to beat and generate cardiac rhythm. The authors found that while the wild type FHOD3L and the K1193L mutant can rescue sarcomere morphology and physiology, the GS-FH1 mutant fails to do so. Given that in GS-FH1 mainly elongation activity is compromised, the authors concluded that the elongation activity of FHOD3 is essential for its role in sarcomere assembly in cardiomyocytes, while its nucleator activity is dispensable. Overall, this important study provided a broadened view on the biochemical activities of FHOD3, and a pioneering view on a possible cellular mechanism of how FHOD3L drives sarcomere assembly. If further validated, this can lead to new mechanistic models of sarcomere assembly and potentially new therapeutic targets of cardiomyopathy.

      The conclusions of this paper are mostly well supported by the comprehensive biochemical analyses performed by the authors. In my original assessment, I raised the point that the extreme low level of GS-FH1 signal in transfected cells in Figure 6A may reflect a failure of actin-binding by this construct in vivo, rather than its inability of driving elongation. The authors have thoroughly addressed this concern by: 1) providing new images of the GS-FH1 rescue condition with HA-FHOD3L signal intensities matching that of the K1193L rescue condition, and 2) quantitatively demonstrating that the expression levels in the GS-FH1 rescue condition are comparable with that of wild type FHOD3L rescue condition. This is nicely complemented by the new phalloidin staining of the GS-FH1 rescue condition, which showcased additional details of actin puncta reminiscent of that present in muscle stress fibers or premyofibrils. Overall, I am now convinced that the GS-FH1 cannot rescue sarcomere formation even when expressed at comparable levels. Given that GS-FH1 demonstrates actin elongation defects in vitro, it is reasonable to conclude that the actin elongation function of FHOD3L is essential for sarcomere formation in vivo.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Formins are complex proteins with multiple effects on actin filament assembly, including nucleation, capping with processive elongation, and bundling. Determining which of these activities is important for a given biological process and normal cellular function is a major challenge.

      Here, the authors study the formin FHOD3L, which is essential for normal sarcomere assembly in muscle cells. They identify point mutants of FHOD3L in which formin nucleation and elongation/bundling activities are functionally separated. Expression of these mutants in neonatal rat ventricular myocytes shows that the control of actin filament elongation by formin is the major activity required for the normal assembly of functional sarcomeres.

      Strengths:

      The strength of this work is to combine sensitive biochemical assays with excellent work in neonatal rat ventricular myocytes. This combination of approaches is highly effective for analyzing the function of proteins with multiple activities in vitro.

      Weaknesses:

      FHOD3L does not seem to be the easiest formin to study because of its relatively weak nucleation activity and the short duration of capping events. This difficulty imposes rigorous biochemical analysis and careful interpretation of the data, which should be improved in this work.

      We thank the reviewer for their praise and appreciation of our work. Indeed, FHOD3L is a challenging formin to work with.

      Important points are raised here and below regarding the brief elongation events we reported. As suggested, we performed more rigorous analysis of the data and present it in the revised manuscript. We now report that from 45 dim regions analyzed, in three independent experiments with wild type FHOD3L, we detected 40 bursts. (The remaining five could be formin falling off too quickly to detect or the dim spots could be regions of inhomogeneity in intensity, not due to formin.) For comparison to the presented data with FHOD3L-CT, we analyzed the filaments in TIRF assays with no formin present. As the reviewers point out, inhomogeneities in filament intensity are normal. Thus, we examined any dim spots for pauses and/or bursts. As is now reported in Figure 2G,H, the velocity of growth of these dim spots is indistinguishable from the velocity of the rest of the filament. We acknowledge that our numbers may not be perfectly accurate, due to the noise in our system, we believe that the difference of 3-4 fold increase versus no change in rate is substantial and convincing.

      We also determined the number of dim spots per length of filament. We found a higher frequency when FHOD3L-CT or FHOD3S-CT was present vs no formin, as now shown in Figure 2 – supplements 1G and 2E.

      We were asked about the pauses we observe before bursts of elongation and how we know they are functionally relevant. The short answer is that we do not know. We reported them because they were so common: Of the 40 bursts, pauses preceded the burst in 38 cases. We cannot rule out that this pause reflects an interaction with the surface but might expect the frequency to be lower if it were. We revise the text to make our conclusions about pauses more circumspect.

      We are convinced that the brief dim events we observed in the presence of FHOD3L-CT, in fact, reflect formin-mediated elongation and worked hard to improve their presentation, in addition to the added analysis. We include new kymographs, including examples from FHOD3L, FHOD3S, K1193L, and actin alone. We hope that the reviewers are also convinced.

      This does not preclude our interest in the microfluidics and two-color assays, which will be pursued in the future. We have reached out to a colleague who is set up to repeat these measurements with microfluidics-assisted TIRF. The noise should be greatly reduced and the system is also optimal for directly visualizing labeled FHOD3, as suggested. We expect these experimental approaches will provide additional insights.

      Reviewer #2 (Public review):

      This article elucidates the biochemical and cellular mechanisms by which the FHOD-family of formins, particularly FHOD3, contributes to sarcomere formation and contractility in cardiomyocytes. Formins are mainly known to nucleate and elongate actin filaments, with certain family members also exhibiting capping, severing, and bundling activities. Although FHOD3 has been well-established as essential for sarcomere assembly in cardiomyocytes, its precise biochemical functions and contributions to actin dynamics remain poorly understood.

      In this study, the authors combine in vitro biochemical assays with cellular experiments to dissect FHOD3's roles in actin assembly and sarcomere formation. They demonstrate that FHOD3 nucleates actin filaments and acts as a transient elongator, pausing elongation after an initial burst of filament growth. Using separation-of-function mutants, they show thatFHOD3's elongation activity - rather than its nucleation, capping, or bundling capabilities - is key for its sarcomeric function.

      The experiments have been conducted rigorously and well-analyzed, and the paper is clearly written. The data presented support the authors' conclusions. I appreciate the detailed description and rationale behind the FHOD3 constructs used in this study.

      We are happy to hear others find paper to be clearly written and well described.

      However, I was somewhat surprised and a bit disappointed that while the authors conducted single-color TIRF experiments to observe the effects of FHOD3 on single filaments, they did not use fluorescently labeled FHOD3 to directly visualize its behavior. Incorporating such experiments would significantly strengthen their conclusions regarding FHOD3's bursts of elongation interspersed with capping activity. While I understand this might require a few additional weeks of experiments, these data would add considerable value by directly testing the proposed mechanism.

      We appreciate the suggestion and hope to incorporate a two-color approach soon. As noted, FHOD3L is not always easy to work with and we do not have a functional labeled copy of the protein at this time.

      There is a typo in the word "required" in line number 30. The authors also use fit data to extract parameters in several panels (e.g., Figures 2b, 2d, 3a, and 3b). While these fit functions may be intuitive to actin experts, explicitly describing the fit functions in the figure legends or methods would greatly benefit the broader readership.

      Thank you for these comments. We updated the indicated figures and described the analysis in greater detail.

      Reviewer #3 (Public review):

      Valencia et al. aim to elucidate the biochemical and cellular mechanisms through which the human formin FHOD3 drives sarcomere assembly in cardiomyocytes. To do so, they combined rigorous in vitro biochemical assays with comprehensive in vivo characterizations, evaluating two wild-type FHOD3 isoforms and two function-separating mutants. Surprisingly, they found that both wild-type FHOD3 isoforms can nucleate new actin filaments, as well as elongate existing actin filaments in conjunction with profilin following barbed-end capping. This is in addition to FHOD3's proposed role as an actin bundler. Next, the authors asked whether FHOD3L promotes sarcomere assembly in cardiomyocytes through its activity in actin nucleation or rather elongation. With two function-separating mutants, the authors evaluated the numbers and morphology of sarcomeres, as well as their ability to beat and generate cardiac rhythm. The authors found that while the wild-type FHOD3L and the K1193L mutant can rescue sarcomere morphology and physiology, the GS-FH1 mutant fails to do so. Given that in GS-FH1 mainly elongation activity is compromised, the authors concluded that the elongation activity of FHOD3 is essential for its role in sarcomere assembly in cardiomyocytes, while its nucleator activity is dispensable. Overall, this important study provided a broadened view on the biochemical activities of FHOD3, and a pioneering view on a possible cellular mechanism of how FHOD3L drives sarcomere assembly. If further validated, this can lead to new mechanistic models of sarcomere assembly and potentially new therapeutic targets of cardiomyopathy.

      The conclusions of this paper are mostly well supported by the comprehensive biochemical analyses performed by the authors. However, the sarcomere assembly defect phenotype in the GS-FH1 rescue condition requires further investigation, as the extremely low level of GS-FH1 signal in transfected cells in Figure 6A may reflect a failure of actin-binding by this construct in vivo, rather than its inability to drive elongation. Though the authors do show in Figure 6 that GS-FH1 can bind to normal-looking sarcomeres when they are present, this may be due to a lack of siRNA activity in these cells, such that endogenous FHOD3L is still present. In this possible scenario, GS-FH1 may dimerize with endogenous FHOD3L. The authors should demonstrate that GS-FH1 alone can indeed interact with existing actin filaments in vivo. While this has been clearly demonstrated in vitro, given the more complex biochemical environment in vivo where additional unknown binding partners may present, cautions should be made when extrapolating findings from the former to the latter.

      The reviewer is concerned about the low protein levels in the GS-FH1 rescue experiments as reflected in the HA fluorescence intensity distributions shown in Fig. 5 Supplement 2A. While the scenario proposed could explain our observations with the GSFH1 rescues it is quite complex. Nor does the scenario preclude the conclusion that the FH1 domain is critical. We agree that the observed sarcomeres are likely to be residual in cells with incomplete RNAi. We now include the image of a cell that is still full of sarcomeres and note that the GH-FH1 is expressed at a relatively high level and striated throughout the cell. We interpret this as evidence that GS-FH1 is stable when suitable binding sites are available. We cannot exclude that there is more GS-FH1 because there was more endogenous FHOD3L with which to heterodimerize. If the GS-FH1 heterodimer were simply poisoning the wild type protein, we do not expect that it would be bound correctly to sarcomeres. If, instead, heterodimers have some activity, it seems far from sufficient to rescue sarcomere formation, suggesting that two functional FH1 domains are critical.

      Furthermore, we do not see evidence of correlation between protein levels and rescue at the level present in these cells (addressed below). Unfortunately, the proposed IP to test whether FHOD3L binds actin in vivo would only potentially report on filament side binding (both direct and indirect). It would not address whether the GS-FH1 mutant functions as a nucleator, elongator, bundler and/or capping protein in vivo.

      The critical question that we can address is whether the phenotype is due to low protein levels, assuming the protein present is functional, or due to loss of elongation activity by FHOD3L. To address this question, we returned to our data.

      First, we plotted the distributions of the intensities of the cells we analyzed further, in addition to the automated readout of all of the cells in the dish (Fig. 4 supplement 1). These cells were selected randomly and, as should be the case, the distributions of their intensities agree well with the original distributions for the three different rescue constructs: FHOD3L, K1193L, and GS-FH1 (Fig. 6 supplement 1). We then asked whether there was any correlation in HA intensities with the sarcomere metrics. As seen in our pilot data, no correlation is evident in any of the three cases across the range of intensities we collected (400 – 2700 a.u.) (old Fig. 6 supplement C,D,E). We now replace the data from pilot experiments with analysis of HA intensities and sarcomere metrics from the data sets included in the paper (new Fig 6. Supplement 1). Again, little to no correlation was observed (the single highest r-squared value is 0.2 and the remaining eight values are less than or equal to 0.08).

      To more specifically address the question of whether low HA fluorescence intensity is likely to reflect sufficient protein levels to build sarcomeres we re-examined two data sets from the FHOD3L WT rescue data. We found that, by chance, the first replicate of data from the wild type rescue has a comparable intensity distribution to that of the GSFH1 rescues (580 +/- 261 / cell vs. 548 +/- 105 / cell). In addition, we collected all of the data from cells with intensity levels <720, designed to mimic the distribution of the GS-FH1 cells (Fig. 6 supplement 3). We then compared the sarcomere metrics (sarcomere number, sarcomere length, sarcomere width) between the full data set and the two low intensity subsets:

      • Sarcomere number is the only non-normal metric. We therefore used the Mann Whitney U test, which shows no difference between all 3 WT distributions.

      • We compared Z-line lengths by one-way ANOVA and Tukey's post hoc tests, again finding no significant difference for all distributions.

      • Sarcomere length shows a weakly significant difference (p=0.038) between the whole WT data set and bio rep 1, but no difference between the whole WT data set and the HA<720 group.

      Thus, cells expressing wild type FHOD3L at levels comparable to levels detected in GS-FH1 mutant rescues, are fully rescued. Based on these findings we conclude that the expression levels in the GS-FH1 are high enough to rescue the FHOD3 knock down, supporting our conclusion that the defect is due to loss of elongation activity. We have added this analysis and discussion to the revised manuscript.

      Recommendations for the authors:

      Reviewing Editor Comments:

      You will see that the 3 reviewers are very positive about your work and appreciate the elegant combination of biochemical assays and functional tests in cardiomyocytes. We've had a long discussion with them and we all agree that two experiments deserve further effort to make the conclusions of your paper more convincing.

      Thank you.

      The first experiment is the TIRF elongation assay, where the two biochemist Reviewers remain doubtful that these short events are really due to the presence of a formin at the end of the filament. One of them suggests that two-color imaging with a labeled formin should clearly prove this point.

      We agree that the elongation assays can be improved. Given the similarity of processivity of Fhod3L, Fhod3S and Drosophila FhodA (measured by a distinct method), we are inclined to believe them. However, the reviewer raises an excellent point about the accuracy of the measurements given the resolution (and noise) of the data. We are interested in the two-color imaging assay but do not believe it will necessarily simplify the analysis. We suspect that Fhod spends more time at/near the barbed end than is apparent based on elongation rates. The fact that we see repeated events on individual filaments at such low concentrations of FHOD3L (0.1 nM) supports this idea. Otherwise, the likelihood of FHOD3L finding barbed ends so often is really quite low.

      We will return to these experiments, using alternate methods, curious to see what else we learn. In the meantime, we conducted more thorough analysis, including controls, and improved visualization of example traces. Data for elongation analysis and kymographs were acquired with Jfilament. We stretched the x-axis (time) in kymographs for FHOD3L-CT (Fig. 2F), FHOD3S-CT (Fig. 2, supplement 2C), FHOD3L-CT K1193L (Fig. 3, supplement 1A), and actin alone (Fig 2G), and highlighted regions of analysis. The slopes for these regions, separated based on intensity, were fit to the data in KaleidaGraph. The fits are offset from the data such that they do not obscure the filaments and corresponding rates are given. The fact that we never see fast dim regions when FHOD3 is not present, as shown in Fig. 2H and that the frequency of dim events is markedly increased (Fig. 2-supplements 1G and 2E) give us confidence that the events are real. We acknowledge in the text that the precise values of the short events may be inaccurate due to the resolution of our experiments. We hope the reviewers are convinced by the improved analysis.

      The second experiment is the sarcomere assembly defect phenotype in the GS-FH1 rescue condition. This requires further investigation, as the extremely low level of GS-FH1 signal in transfected cells in Figure 6A may reflect a failure of actin-binding/nucleation in vivo, rather than its inability to elongate F-actin. Although you show that GS-FH1 can bind to sarcomeres when they are present, this may be due to a lack of siRNA activity in these cells, such that endogenous FHOD3L is still present. In this possible scenario, GS-FH1 could dimerize with endogenous FHOD3L.

      We agree that the sarcomeres we see are likely to be residual and could reflect some remaining endogenous FHOD3. The reviewers are concerned about the low protein levels in the GSFH1 rescues. First, we do not agree that the levels are “extremely” low. Through careful analysis, we established that 3xHA-FHOD3L intensities between 300 and 3000 a.u./um<sup>2</sup> were sufficient for full rescue. The mean for the GSFH1 experiments is 533 +/- 93, which is well within this range. Furthermore, we did not observe correlation between sarcomere number, length, or width and HA intensity over the full range collected for wild type FHOD3L or within the GS-FH1 data. We previously showed pilot data but now show correlation analysis for every analyzed cell (Fig. 4 – figure supplement 1 D-F). We conducted this analysis on all of the mutant rescue experiments (Fig. 6-supplement 1). Finally, we identified two subpopulations of the wildtype rescue data. One is all of the cells with HA intensity < 720, which gives a distribution of mean 545 +/- 85. The second set is the first biological replicate of wild type rescue, which has a distribution of mean 560 +/- 160. Again correlation shows little relationship between HA levels and sarcomere metrics. Nevertheless, we show intensity level matched images in Fig 6, as opposed to images reflecting average intensities.

      The critical question remains whether the phenotype is due to low protein levels or due to loss of elongation by FHOD3L. Notably, we now show a cell that is full of sarcomeres and has relatively high FHOD3L levels as well, consistent with available binding sites stabilizing mutant protein but not ruling out heterodimerization (Fig. 6 – figure supplement 2C). Others have expressed mutant FHOD3L in a wild type background in mice. They observed poisoning, consistent with heterodimerization. Thus, it is possible that, as suggested, the FHOD3L-GSFH1 detected in sarcomeres is in fact heterodimerized with residual endogenous FHOD3L. In this case, we would still conclude that the protein is not functional enough to rescue, supporting a role for the FH1 domain.

      In the future, we plan to perform experiments with compromised, but not inactive, FH1 domains, as we discuss in the paper.

      We hope that you will find these comments useful.

      Yes, the comments were thoughtful and helped us write a better paper. Thank you.

      Reviewer #1 (Recommendations for the authors):

      Some experiments should be described and analyzed more carefully. This lack of clarity calls into question the interpretation of some experiments. Overall, this study is not yet as convincing as it should be.

      Main recommendations:

      (1) Formin elongation phases in the TIRF experiment are not convincing. They are rare and it is difficult to see any significant difference between the control movie without FHOD3L-CT and the movie with FHOD3L-CT. Filaments assembled in the absence of FHOD3L-CT also show some fluorescence inhomogeneity (which is normal), and measurements of formin elongation rates and capping times are not convincing (for example, the kymograph of the control profilin-actin situation in Figure 2F also shows a fast elongation phase on the right).

      Please see response above. We conducted more thorough analysis and created improved visualizations. We hope the data are more convincing now.

      It is also difficult to understand how an accurate measurement can be made from these noisy kymographs, and the method section should explain that precisely.

      This is a valid point. We added details of analysis to the methods section and we discuss the fact that the measurements are at the limit of our resolution in the paper. We rely on the large (~3-fold) difference in elongation, more than specific elongation rates for our interpretation.

      One of the problems is that these events are too transient to quantify well with noisy data. I noticed that the formin concentration used in these movies is quite low (0.1 nM FHOD3L-CT). Is there a reason for this? Is it possible to increase the formin concentration to increase the number of formin capping/elongation events and provide more convincing movies?

      We acknowledge that the data are noisy. We felt that it was necessary to perform experiments with filaments only tethered at one end, leaving the growing end free. We did so, in part, because when we did experiments with biotinylated actin to anchor the filaments down, we observed pauses in the absence of formin. Ultimately, we compromised, using anchored seeds and a relatively low concentration of NEM-myosin to decrease motion of the actin filaments.

      The experiments were performed with such low FHOD3L-CT because it was a potent nucleator in TIRF assays, making data analysis nearly impossible with more formin present. FHOD3S-CT and FHOD3L-CT K1193L behaved somewhat differently between these experiments and we were able to perform them with 1 nM formin.

      Not seeing formin at the tip of the filaments is an additional difficulty because we do not know if these pauses occur because formin is stuck to the coverslips (which could very well happen with these sticky proteins) or freely bound at the end of a filament as the text suggests. Is there any argument in favor of one scenario over the other?

      This will be an important experiment. As described above, we suspect that Fhod spends more time at/near the barbed end than is apparent based on elongation data. The fact that we see repeated events on individual filaments at such low concentrations of FHOD3L (0.1 nM) supports this idea. Otherwise, the likelihood of FHOD3L finding barbed ends so often is really quite low. In order to address the question about the cause of pauses, we reviewed our data, finding that 38 of 40 bursts were preceded by pauses. We do, however, discuss that we cannot rule out non-specific interactions with the surface.

      (2) Pyrene elongation assays in the presence of profilin are actually more convincing to test the elongation ability of formins. However, such an assay is not presented for all mutants. It should be.

      While we agree to some extent with this comment, we did not include the pyrene data for all of the mutants because the shapes of the curves were even more complicated than those seen with wild type FHOD3L-CT rendering them uninterpretable.

      (3) Some experiments (e.g. in Figure 2E) are performed with yeast profilin, while others (e.g. in Figure 2F) are performed with human profilin. Obviously, both profilins could modulate formin activity differently and the side-by-side interpretation of both experiments is difficult. Could the authors stick to human profilin for all experiments?

      We used to always perform pyrene assays with yeast profilin because it was known to be insensitive to pyrene. These data were collected before we realized that the affinity of human profilin for actin is so high that we could probably do everything with this profilin. We have compared the two profilins for other formins, e.g. Delphilin, Capu, and did not observe detectable differences.

      Minor recommendations:

      (1) The pyrene assays with the light blue colored curve choice are not ideal. I have difficulties seeing some of the curves.

      Thank you. We added symbols to a subset of the traces to make them more visible.

      (2) In the same curves, I can't understand what the +3.75 and 0.078 numbers mean. Could these results be plotted in a clearer way?

      These values are the lowest concentrations in the range tests. They were matching light blue with black outline for visibility. We added symbols and changed the color of the numbering for improved visibility/understanding.

      (3) In Figure 2D, is the Kd of I1163A really determined only from 2 experimental data points?

      Of course not. We now show the figure with extended axes in Fig. 2 - figure supplement 1C.

      (4) In Figure 2C, the shape of the curves suggests that this is not a pure capping assay, but a mix of capping and nucleation. It's not dramatic but could lead to an under-estimation of the capping efficiency.

      We agree with the reviewer that the complicated shapes confound interpretation. Our analysis is based on the earliest slopes, in part, for this reason. We added discussion of this complication to the text.

      Reviewer #3 (Recommendations for the authors):

      Suggestions for additional experiments:

      (1) To evaluate whether GS-FH1 alone can indeed interact with existing actin filaments in vivo, the authors may consider performing immunoprecipitation assays with GS-FH1 extracted from rescued NRVMs.

      An IP of GS-FH1 from cells could show actin filament side binding but, unfortunately, will not provide any information about filament end binding, which is of much greater interest.

      It will be helpful to show phalloidin staining in GS-FH1 rescues in a similar manner as in Figure 6-supplement 1, panel B, and compare that with mock rescue in Figure 4 panel D. It will be essential to prove this prior to concluding that actin elongation activity is essential for sarcomere assembly.

      This is an excellent suggestion. We now include images of phalloidin stained cells from both K1193L and GS-FH1 rescues (Fig. 6A’ – supplement 2A,B). We were intrigued to see small actin punctae that were sometimes aligned. We speculate that these could be pre-premyofibrils and suggest that this is further evidence that the GS-FH1 protein is not completely unstable.

      (2) Prior to sarcomere assembly, a-actinin is known to form short bundles with actin filaments (I-Z-I complex) without clearly defined periodicity. This semi-ordered state then transforms into the more ordered sarcomeres with periodic spacing. It will be valuable to show the phalloidin staining in addition to the a-actinin IF consistently across all conditions. This may lead to further insights into the defects of sarcomere assembly. Along the same vein, higher magnification images showcasing several sarcomeres will help the readers evaluate these defects.

      We agree that there are additional valuable measurements to be made. In order to favor synchronized contraction, we plated the cells at too high a density to reliably identify IZI complexes. We have included some zoomed in images of the phalloidin staining.

      Recommendations for improving the writing:

      The authors mentioned the interaction between cardiac MyBP-C and FHOD3L as essential for the localization of FHOD3L to the C-line of the sarcomere. Can they discuss whether this interaction is important for the role of FHOD3L in sarcomere assembly? If so, how?

      This is a very interesting question that we cannot answer at this time.

      Minor corrections to the text and figures:

      In the legend of Figure 2-Figure Supplement 1, the labels of (F) and (E) are swapped.

      Thank you for catching this.

    1. Author response:

      eLife Assessment

      This useful study presents Altair-LSFM, a solid and well-documented implementation of a light-sheet fluorescence microscope (LSFM) designed for accessibility and cost reduction. While the approach offers strengths such as the use of custom-machined baseplates and detailed assembly instructions, its overall impact is limited by the lack of live-cell imaging capabilities and the absence of a clear, quantitative comparison to existing LSFM platforms. As such, although technically competent, the broader utility and uptake of this system by the community may be limited.

      We thank the reviewers and editors for their thoughtful evaluation of our work and for recognizing the technical strengths of the Altair-LSFM platform, including the custom-machined baseplates and detailed documentation provided to support accessibility and reproducibility. We respectfully disagree, however, with the assessment that the system lacks live-cell imaging capabilities. We are fully confident in the system’s suitability for live-cell applications and will demonstrate this by including representative live-cell imaging data in the revised manuscript, along with detailed instructions for implementing environment control. Moreover, we will expand our discussion to include a broader, more quantitative comparison to existing LSFM platforms—highlighting trade-offs in cost, performance, and accessibility—to better contextualize Altair’s utility and adaptability across diverse research settings.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The article presents the details of the high-resolution light-sheet microscopy system developed by the group. In addition to presenting the technical details of the system, its resolution has been characterized and its functionality demonstrated by visualizing subcellular structures in a biological sample.

      Strengths:

      (1) The article includes extensive supplementary material that complements the information in the main article.

      (2) However, in some sections, the information provided is somewhat superficial.

      Our goal was to make the supplemental content as comprehensive and useful as possible. In addition to the materials provided with the manuscript, our intention is for the online documentation (available at thedeanlab.github.io/altair) to serve as a living resource that evolves in response to user feedback. For this reason, we are especially interested in identifying and expanding any sections that are perceived as superficial, and we would greatly appreciate the reviewer’s guidance on which areas would benefit from further elaboration.

      Weaknesses:

      (1) Although a comparison is made with other light-sheet microscopy systems, the presented system does not represent a significant advance over existing systems. It uses high numerical aperture objectives and Gaussian beams, achieving resolution close to theoretical after deconvolution. The main advantage of the presented system is its ease of construction, thanks to the design of a perforated base plate.

      We appreciate the reviewer’s assessment and the opportunity to clarify our intent. Our primary goal was not to introduce new optical functionality beyond that of existing high-performance light-sheet systems, but rather to reduce the barrier to entry for non-specialist labs.

      (2) Using similar objectives (Nikon 25x and Thorlabs 20x), the results obtained are similar to those of the LLSM system (using a Gaussian beam without laser modulation). However, the article does not mention the difficulties of mounting the sample in the implemented configuration.

      We agree that there are practical challenges associated with handling 5 mm diameter coverslips. However, the Nikon 25x can readily be replaced by a Zeiss W Plan-Apochromat 20x/1.0 objective, which eliminates the need for the 5 mm coverslip[1]. In the revised manuscript, we will more explicitly detail the practical challenges in handling a 5 mm coverslip and mention the alternative detection objective.

      (3) The authors present a low-cost, open-source system. Although they provide open source code for the software (navigate), the use of proprietary electronics (ASI, NI, etc.) makes the system relatively expensive. Its low cost is not justified.

      We understand the reviewer’s concern regarding the use of proprietary control hardware such as the ASI Tiger Controller and NI data acquisition cards. While lower-cost alternatives for analog and digital control (e.g., microcontroller-based systems) do exist, our choice was intentional. By relying on a unified and professionally supported platform, we minimize the complexity of sourcing, configuring, and integrating components from disparate vendors—each of which would otherwise demand specialized technical expertise. Moreover, in future releases, we aim to further streamline the system by eliminating the need for the NI card, consolidating all optoelectronic control through the ASI Tiger Controller. This approach allows users to purchase a fully assembled and pre-configured system that can be operational with minimal effort.

      It is worth noting that the ASI components are not the primary cost driver. The full set—including XYZ and focusing stages, a filter wheel, a tube lens, the Tiger Controller, and basic optomechanical adapters—costs approximately $27,000, or ~18% of the total system cost. Additional cost reductions are possible. For example, replacing the motorized sample positioning and focusing stages with manual alternatives could reduce the cost by ~$12,000. However, this would eliminate key functionality such as autofocusing, 3D tiling, and multi-position acquisition. Open-source mechanical platforms such as OpenFlexure could in principle be adapted, but they would require custom assembly and would need to be integrated into our control software. Similarly, the filter wheel could be omitted in favor of a multi-band emission filter, reducing the cost by ~$5,000. However, this comes at the expense of increased spectral crosstalk, often necessitating spectral unmixing. An industrial CMOS camera—such as the Ximea MU196CR-ON, recently demonstrated in a Direct View Oblique Plane Microscopy configuration[2]—could substitute for the sCMOS cameras typically used in high-end imaging. However, these industrial sensors often exhibit higher noise floors and lower dynamic range, limiting sensitivity for low-signal imaging applications.

      While a $150,000 system represents a significant investment, we consider it relatively cost-effective in the context of advanced light-sheet microscopy. For comparison, commercially available systems with similar optical performance—such as LLSM systems from 3i or Zeiss—are several-fold more expensive.

      (4) The fibroblast images provided are of exceptional quality. However, these are fixed samples. The system lacks the necessary elements for monitoring cells in vivo, such as temperature or pH control.

      We thank the reviewer for their positive comment regarding the quality of our fibroblast images. As noted, the current manuscript focuses on the optical design and performance characterization of the system, using fixed specimens to validate resolution and imaging stability. We acknowledge the importance of environmental control for live-cell imaging. Temperature regulation is routinely implemented in our lab using flexible adhesive heating elements paired with a power supply and PID controller. For pH stabilization in systems that lack a 5% CO<sub>2</sub> atmosphere, we typically supplement the imaging medium with 10–25 mM HEPES buffer. In the revised manuscript, we will introduce a modified sample chamber capable of maintaining user-specified temperatures, along with detailed assembly instructions. We will also include representative live-cell imaging data to demonstrate the feasibility of in vitro imaging using this system.

      Reviewer #2 (Public review):

      Summary:

      The authors present Altair-LSFM (Light Sheet Fluorescence Microscope), a high-resolution, open-source microscope, that is relatively easy to align and construct and achieves sub-cellular resolution. The authors developed this microscope to fill a perceived need that current open-source systems are primarily designed for large specimens and lack sub-cellular resolution or are difficult to construct and align, and are not stable. While commercial alternatives exist that offer sub-cellular resolution, they are expensive. The authors' manuscript centers around comparisons to the highly successful lattice light-sheet microscope, including the choice of detection and excitation objectives. The authors thus claim that there remains a critical need for high-resolution, economical, and easy-to-implement LSFM systems.

      Strengths:

      The authors succeed in their goals of implementing a relatively low-cost (~ USD 150K) open-source microscope that is easy to align. The ease of alignment rests on using custom-designed baseplates with dowel pins for precise positioning of optics based on computer analysis of opto-mechanical tolerances, as well as the optical path design. They simplify the excitation optics over Lattice light-sheet microscopes by using a Gaussian beam for illumination while maintaining lateral and axial resolutions of 235 and 350 nm across a 260-um field of view after deconvolution. In doing so they rest on foundational principles of optical microscopy that what matters for lateral resolution is the numerical aperture of the detection objective and proper sampling of the image field on to the detection, and the axial resolution depends on the thickness of the light-sheet when it is thinner than the depth of field of the detection objective. This concept has unfortunately not been completely clear to users of high-resolution light-sheet microscopes and is thus a valuable demonstration. The microscope is controlled by an open-source software, Navigate, developed by the authors, and it is thus foreseeable that different versions of this system could be implemented depending on experimental needs while maintaining easy alignment and low cost. They demonstrate system performance successfully by characterizing their sheet, point-spread function, and visualization of sub-cellular structures in mammalian cells, including microtubules, actin filaments, nuclei, and the Golgi apparatus.

      We thank the reviewer for their thoughtful summary of our work. We are pleased that the foundational optical principles, design rationale, and emphasis on accessibility came through clearly. We agree that the approach used to construct the microscope is highly modular, and we anticipate that these design principles will serve as the basis for additional system variants tailored to specific biological samples and experimental contexts. To support this, we provide all Zemax simulations and CAD files openly on our GitHub repository, enabling advanced users to build upon our design and create new functional variants of the Altair system.

      Weaknesses:

      There is a fixation on comparison to the first-generation lattice light-sheet microscope, which has evolved significantly since then:

      (1) The authors claim that commercial lattice light-sheet microscopes (LLSM) are "complex, expensive, and alignment intensive", I believe this sentence applies to the open-source version of LLSM, which was made available for wide dissemination. Since then, a commercial solution has been provided by 3i, which is now being used in multiple cores and labs but does require routine alignments. However, Zeiss has also released a commercial turn-key system, which, while expensive, is stable, and the complexity does not interfere with the experience of the user. Though in general, statements on ease of use and stability might be considered anecdotal and may not belong in a scientific article, unreferenced or without data.

      The referee is correct that our comparisons reference the original LLSM design, which was simultaneously disseminated as an open-source platform and commercialized by 3i. While we acknowledge that newer variants of LLSM have been developed—including systems incorporating adaptive optics[3] and the MOSAIC platform (which remains unpublished)—the original implementation remains the most widely described and cited in the literature. It is therefore the most appropriate point of comparison for contextualizing Altair’s performance, complexity, and accessibility. Importantly, this version of LLSM is far from obsolete; it continues to be one of the most commonly used imaging systems at Janelia Research Campus’s Advanced Imaging Center.

      We acknowledge that more recent commercial implementation by Zeiss has addressed several of the practical limitations associated with the original design. In particular, we agree that the Zeiss Lattice Lightsheet 7 system, which integrates a meniscus lens to facilitate oblique imaging through a coverslip, offers a user-friendly experience—albeit with a modest tradeoff in resolution (reported deskewed resolution: 330 nm × 330 nm × 500–1000 nm).

      While we recognize that statements on usability and stability can be subjective, one objective proxy for system complexity is the number of optical elements that require precise alignment during assembly. The original LLSM setup includes approximately 29 optical components that must each be carefully positioned laterally, angularly, and coaxially along the optical path. In contrast, the first-generation Altair system contains only 9 such elements. By this metric, Altair is considerably simpler to assemble and align, supporting our overarching goal of making high-resolution light-sheet imaging more accessible to non-specialist laboratories. In the revised manuscript, we will clarify the scope of our comparison and provide more precise language about what we mean by complexity (e.g., number of optical elements needed to align).

      (2) One of the major limitations of the first generation LLSM was the use of a 5 mm coverslip, which was a hinderance for many users. However, the Zeiss system elegantly solves this problem, and so does Oblique Plane Microscopy (OPM), while the Altair-LSFM retains this feature, which may dissuade widespread adoption. This limitation and how it may be overcome in future iterations is not discussed.

      We agree that the use of 5 mm diameter coverslips, while enabling high-NA imaging in the current Altair-LSFM configuration, may serve as an inconvenience for many users. We will discuss this more explicitly in the revised manuscript. Specifically, we note that changing the detection objective is sufficient to eliminate the need for a 5 mm coverslip. For example, as demonstrated in Moore et al., Lab Chip 2021, pairing the Zeiss W Plan-Apochromat 20x/1.0 objective with the Thorlabs TL20X-MPL allows imaging beyond the physical surfaces of both objectives, removing the constraint imposed by small-format coverslips[1]. In the revised manuscript, we will propose this modification as a straightforward path for increasing compatibility with more conventional sample mounting formats.

      (3) Further, on the point of sample flexibility, all generations of the LLSM, and by the nature of its design, the OPM, can accommodate live-cell imaging with temperature, gas, and humidity control. It is unclear how this would be implemented with the current sample chamber. This limitation would severely limit use cases for cell biologists, for which this microscope is designed. There is no discussion on this limitation or how it may be overcome in future iterations.

      We appreciate the reviewer’s emphasis on the importance of environmental control for live-cell imaging applications. It is worth noting that the original LLSM design, including the system commercialized by 3i, provided temperature control only, without integrated gas or humidity regulation. Despite this, it has been successfully used by a wide range of scientists to generate important biological insights.

      We agree that both OPM and the Zeiss implementation of LLSM offer clear advantages in terms of environmental control, as we previously discussed in detail in Sapoznik et al., eLife, 2020[4]. However, assembly of high numerical aperture OPM systems is highly technical, and no open-source variant of OPM delivers sub-cellular scale resolution yet.

      (4) The authors' comparison to LLSM is constrained to the "square" lattice, which, as they point out, is the most used optical lattice (though this also might be considered anecdotal). The LLSM original design, however, goes far beyond the square lattice, including hexagonal lattices, the ability to do structured illumination, and greater flexibility in general in terms of light-sheet tuning for different experimental needs, as well as not being limited to just sample scanning. Thus, the Alstair-LSFM cannot compare to the original LLSM in terms of versatility, even if comparisons to the resolution provided by the square lattice are fair.

      We thank the reviewer for this comment. It is true that our discussion focused primarily on the square lattice implementation of LLSM. While this could be viewed as a subset of the system’s broader capabilities, we chose this focus intentionally, as the square lattice remains by far the most commonly used variant in practice. Even in the original LLSM publication, 16 out of 20 figure subpanels utilized the square lattice, with only one panel each representing the hexagonal lattice in SIM mode, a standard Bessel beam in incoherent SIM mode, a hex lattice in dithered mode, and a single Bessel in dithered mode. This usage pattern largely reflects the operational simplicity of the square lattice: it minimizes sidelobe growth and enables more straightforward alignment and data processing compared to hexagonal or structured illumination modes.

      In 2019, we performed an exhaustive accounting of published illumination modes in LLSM and found that the SIM mode had only been used in two additional peer-reviewed publications at that time. We will consider updating this table in the revised manuscript and will expand our discussion to acknowledge the broader flexibility of the LLSM platform—including its capacity for structured illumination and alternative light-sheet geometries. However, we will also emphasize that, despite these advanced capabilities, the square lattice remains the dominant mode used by the community and therefore serves as a fair and practical benchmark for comparison.

      (5) There is no demonstration of the system's live-imaging capabilities or temporal resolution, which is the main advantage of existing light-sheet systems.

      In the revised manuscript, we will include a demonstration of live-cell imaging to directly validate the system’s suitability for dynamic biological applications. We will also characterize the temporal resolution of the system. As a sample-scanning microscope, the imaging speed is primarily limited by the performance of the Z-piezo stage. For simplicity and reduced optoelectronic complexity, we currently power the piezo through the ASI Tiger Controller. We will expand the supplementary material to describe the design criteria behind this choice, including potential trade-offs, and provide data quantifying the achievable volume rates under typical operating conditions.

      While the microscope is well designed and completely open source, it will require experience with optics, electronics, and microscopy to implement and align properly. Experience with custom machining or soliciting a machine shop is also necessary. Thus, in my opinion, it is unlikely to be implemented by a lab that has zero prior experience with custom optics or can hire someone who does. Altair-LSFM may not be as easily adaptable or implementable as the authors describe or perceive in any lab that is interested, even if they can afford it. The authors indicate they will offer "workshops," but this does not necessarily remove the barrier to entry or lower it, perhaps as significantly as the authors describe.

      We appreciate the reviewer’s perspective and agree that building any high-performance custom microscope—Altair-LSFM included—requires a baseline familiarity with optics and instrumentation. Our goal is not to eliminate this requirement entirely, but to significantly reduce the technical and logistical barriers that typically accompany custom light-sheet microscope construction.

      Importantly, no machining experience or in-house fabrication capabilities are required—users can simply submit provided design files and specifications directly to the vendor. We will make this process as straightforward as possible by supplying detailed instructions, recommended materials, and vendor-ready files. Additionally, we draw encouragement from the success of related efforts such as mesoSPIM, which has seen over 30 successful implementations worldwide using a similar model of exhaustive online documentation, open-source control software, and community support through user meetings and workshops.

      We recognize that documentation alone is not always sufficient, and we are committed to further lowering barriers to adoption. To this end, we are actively working with commercial vendors to streamline procurement and reduce the logistical burden on end users. Additionally, Altair-LSFM is supported by a Biomedical Technology Development and Dissemination (BTDD) grant, which provides dedicated resources for hosting workshops, offering real-time community support, and generating supplementary materials such as narrated video tutorials. We will expand our discussion in the revised manuscript to better acknowledge these implementation challenges and outline our ongoing strategies for supporting a broad and diverse user base.

      There is a claim that this design is easily adaptable. However, the requirement of custom-machined baseplates and in silico optimization of the optical path basically means that each new instrument is a new design, even if the Navigate software can be used. It is unclear how Altair-LSFM demonstrates a modular design that reduces times from conception to optimization compared to previous implementations.

      We appreciate the reviewer’s comment and agree that our language regarding adaptability may have been too strong. It was not our intention to suggest that the system can be easily modified without prior experience. Meaningful adaptations of the optical or mechanical design would require users to have expertise in optical layout, optomechanical design, and alignment.

      That said, for labs with sufficient expertise, we aim to facilitate such modifications by providing comprehensive resources—including detailed Zemax simulations, CAD models, and alignment documentation. These materials are intended to reduce the development burden for those seeking to customize the platform for specific experimental needs.

      In the revised manuscript, we will clarify this point and explicitly state in the discussion what technical expertise is required to modify the system. We will also revise our language around adaptability to better reflect the intended audience and realistic scope of customization.

      Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a high-resolution, open-source light-sheet fluorescence microscope optimized for sub-cellular imaging.

      The system is designed for ease of assembly and use, incorporating a custom-machined baseplate and in silico optimized optical paths to ensure robust alignment and performance. The authors demonstrate lateral and axial resolutions of ~235 nm and ~350 nm after deconvolution, enabling imaging of sub-diffraction structures in mammalian cells.

      The important feature of the microscope is the clever and elegant adaptation of simple gaussian beams, smart beam shaping, galvo pivoting and high NA objectives to ensure a uniform thin light-sheet of around 400 nm in thickness, over a 266 micron wide Field of view, pushing the axial resolution of the system beyond the regular diffraction limited-based tradeoffs of light-sheet fluorescence microscopy.

      Compelling validation using fluorescent beads and multicolor cellular imaging highlights the system's performance and accessibility. Moreover, a very extensive and comprehensive manual of operation is provided in the form of supplementary materials. This provides a DIY blueprint for researchers who want to implement such a system.

      Strengths:

      (1) Strong and accessible technical innovation: With an elegant combination of beam shaping and optical modelling, the authors provide a high-resolution light-sheet system that overcomes the classical light-sheet tradeoff limit of a thin light-sheet and a small field of view. In addition, the integration of in silico modelling with a custom-machined baseplate is very practical and allows for ease of alignment procedures. Combining these features with the solid and super-extensive guide provided in the supplementary information, this provides a protocol for replicating the microscope in any other lab.

      (2) Impeccable optical performance and ease of mounting of samples: The system takes advantage of the same sample-holding method seen already in other implementations, but reduces the optical complexity. At the same time, the authors claim to achieve similar lateral and axial resolution to Lattice-light-sheet microscopy (although without a direct comparison (see below in the "weaknesses" section). The optical characterization of the system is comprehensive and well-detailed. Additionally, the authors validate the system imaging sub-cellular structures in mammalian cells.

      (3) Transparency and comprehensiveness of documentation and resources: A very detailed protocol provides detailed documentation about the setup, the optical modeling, and the total cost.

      Weaknesses:

      (1) Limited quantitative comparisons: Although some qualitative comparison with previously published systems (diSPIM, lattice light-sheet) is provided throughout the manuscript, some side-by-side comparison would be of great benefit for the manuscript, even in the form of a theoretical simulation. While having a direct imaging comparison would be ideal, it's understandable that this goes beyond the interest of the paper; however, a table referencing image quality parameters (taken from the literature), such as signal-to-noise ratio, light-sheet thickness, and resolutions, would really enhance the features of the setup presented. Moreover, based also on the necessity for optical simplification, an additional comment on the importance/difference of dual objective/single objective light-sheet systems could really benefit the discussion.

      In the revised manuscript, we will expand our discussion to include a broader range of light-sheet microscope designs and imaging modes, including both single- and dual-objective configurations. We agree that highlighting the trade-offs between these approaches—such as working distance, sample geometry constraints, and alignment complexity—will enhance the overall context and utility of the manuscript.

      To further aid comparison, we will include a summary table referencing key image quality parameters such as lateral and axial resolution, and illumination beam NA for Altair-LSFM. Where available, we will reference values from published work—such as the axial resolution reported in Valm et al. (Nature, 2017)—to provide a clearer benchmark. Because such comparisons can be technically nuanced, especially when comparing across systems with different geometries and sample mounting constraints, we will also include a supplementary note outlining the assumptions and limitations of these comparisons.

      (2) Limitation to a fixed sample: In the manuscript, there is no mention of incubation temperature, CO₂ regulation, Humidity control, or possible integration of commercial environmental control systems. This is a major limitation for an imaging technique that owes its popularity to fast, volumetric, live-cell imaging of biological samples.

      We thank the reviewer for highlighting this important consideration. In the revised manuscript, we will provide a detailed description of how temperature control can be implemented using flexible adhesive heating elements, a power supply, and a PID controller. Step-by-step assembly instructions and recommended components will be included to facilitate adoption by users interested in live-cell imaging. We also note that most light-sheet microscopy systems capable of sub-cellular resolution—including the original LLSM design, diSPIM, and ASLM—typically do not incorporate integrated CO<sub>2</sub> or humidity control. These systems often rely on HEPES-buffered media to maintain pH stability, which is generally sufficient for short- to intermediate-term imaging. While full environmental control may be necessary for extended time-lapse studies, it is not a prerequisite for high-resolution volumetric imaging in many applications. Nonetheless, we will include a discussion of the challenges associated with adding CO<sub>2</sub> and humidity control to open or semi-enclosed architectures like Altair-LSFM, and outline potential future paths for integration with commercial incubation systems.

      (3) System cost and data storage cost: While the system presented has the advantage of being open-source, it remains relatively expensive (considering the 150k without laser source and optical table, for example). The manuscript could benefit from a more direct comparison of the performance/cost ratio of existing systems, considering academic settings with budgets that most of the time would not allow for expensive architectures. Moreover, it would also be beneficial to discuss the adaptability of the system, in case a 30k objective could not be feasible. Will this system work with different optics (with the obvious limitations coming with the lower NA objective)? This could be an interesting point of discussion. Adaptability of the system in case of lower budgets or more cost-effective choices, depending on the needs.

      We thank the reviewer for raising this important point. First, we would like to clarify that the quoted $150k cost estimate includes the optical table and laser source. We apologize for any confusion and will communicate this more effectively in the revised manuscript.

      We agree that adaptability is a key concern, especially in academic settings with limited budgets. The detection path can be readily altered depending on experimental needs and cost constraints. For example, in our discussion of alternatives to the 5 mm coverslip geometry, we will describe how switching to a Zeiss W Plan-Apochromat 20x/1.0 in combination with a compatible excitation objective allows high-resolution imaging while accommodating more conventional sample formats. We will expand this to include cost-effective alternatives as well.

      We will also expand our discussion on cost-reduction strategies and the associated trade-offs. These include replacing motorized stages with manual ones, omitting the filter wheel in favor of a multi-band emission filter, or using industrial-grade cameras in place of scientific CMOS detectors. While each change entails some loss in functionality or sensitivity, such modifications allow users to tailor the system to their specific budget and application.

      Finally, we recognize the challenge in communicating exact costs of commercial systems due to variability in configuration and pricing. Nonetheless, we will include approximate figures where possible and note that comparable commercial systems—such as LLSM platforms from 3i and Zeiss—are several-fold more expensive than the system presented here.

      Last, not much is said about the need for data storage. Light-sheet microscopy's bottleneck is the creation of increasingly large datasets, and it could be beneficial to discuss more about the storage needs and the quantity of data generated.

      Data storage is indeed a critical consideration in light-sheet microscopy. In the revised manuscript, we will provide a note outlining typical volume dimensions for live-cell imaging experiments along with the associated data overhead. This will include estimates for voxel counts, bit depth, time-lapse acquisitions, and multi-channel datasets to help users anticipate storage needs. We will also briefly discuss strategies for managing large datasets, file types and compression formats.

      Conclusion:

      Altair-LSFM represents a well-engineered and accessible light-sheet system that addresses a longstanding need for high-resolution, reproducible, and affordable sub-cellular light-sheet imaging. While some aspects-comparative benchmarking and validation, limitation for fixed samples-would benefit from further development, the manuscript makes a compelling case for Altair-LSFM as a valuable contribution to the open microscopy scientific community.

      References

      (1) Moore, R. P. et al. A multi-functional microfluidic device compatible with widefield and light sheet microscopy. Lab Chip 22, 136-147 (2021). https://doi.org/10.1039/d1lc00600b

      (2) Lamb, J. R., Mestre, M. C., Lancaster, M. & Manton, J. D. Direct-view oblique plane microscopy. Optica 12, 469-472 (2025). https://doi.org/10.1364/OPTICA.558420

      (3) Liu, T. L. et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360 (2018). https://doi.org/10.1126/science.aaq1392

      (4) Sapoznik, E. et al. A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. eLife 9 (2020). https://doi.org/10.7554/eLife.57681

      (5) Huisken, J. & Stainier, D. Y. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32, 2608-2610 (2007). https://doi.org/10.1364/ol.32.002608

      (6) Ricci, P. et al. Removing striping artifacts in light-sheet fluorescence microscopy: a review. Prog Biophys Mol Biol 168, 52-65 (2022). https://doi.org/10.1016/j.pbiomolbio.2021.07.003

    2. eLife Assessment

      This useful study presents Altair-LSFM, a solid and well-documented implementation of a light-sheet fluorescence microscope (LSFM) designed for accessibility and cost reduction. While the approach offers strengths such as the use of custom-machined baseplates and detailed assembly instructions, its overall impact is limited by the lack of live-cell imaging capabilities and the absence of a clear, quantitative comparison to existing LSFM platforms. As such, although technically competent, the broader utility and uptake of this system by the community may be limited.

    3. Reviewer #1 (Public review):

      Summary:

      The article presents the details of the high-resolution light-sheet microscopy system developed by the group. In addition to presenting the technical details of the system, its resolution has been characterized and its functionality demonstrated by visualizing subcellular structures in a biological sample.

      Strengths:

      (1) The article includes extensive supplementary material that complements the information in the main article.

      (2) However, in some sections, the information provided is somewhat superficial.

      Weaknesses:

      (1) Although a comparison is made with other light-sheet microscopy systems, the presented system does not represent a significant advance over existing systems. It uses high numerical aperture objectives and Gaussian beams, achieving resolution close to theoretical after deconvolution. The main advantage of the presented system is its ease of construction, thanks to the design of a perforated base plate.

      (2) Using similar objectives (Nikon 25x and Thorlabs 20x), the results obtained are similar to those of the LLSM system (using a Gaussian beam without laser modulation). However, the article does not mention the difficulties of mounting the sample in the implemented configuration.

      (3) The authors present a low-cost, open-source system. Although they provide open source code for the software (navigate), the use of proprietary electronics (ASI, NI, etc.) makes the system relatively expensive. Its low cost is not justified.

      (4) The fibroblast images provided are of exceptional quality. However, these are fixed samples. The system lacks the necessary elements for monitoring cells in vivo, such as temperature or pH control.

    4. Reviewer #2 (Public review):

      Summary:

      The authors present Altair-LSFM (Light Sheet Fluorescence Microscope), a high-resolution, open-source microscope, that is relatively easy to align and construct and achieves sub-cellular resolution. The authors developed this microscope to fill a perceived need that current open-source systems are primarily designed for large specimens and lack sub-cellular resolution or are difficult to construct and align, and are not stable. While commercial alternatives exist that offer sub-cellular resolution, they are expensive. The authors' manuscript centers around comparisons to the highly successful lattice light-sheet microscope, including the choice of detection and excitation objectives. The authors thus claim that there remains a critical need for high-resolution, economical, and easy-to-implement LSFM systems.

      Strengths:

      The authors succeed in their goals of implementing a relatively low-cost (~ USD 150K) open-source microscope that is easy to align. The ease of alignment rests on using custom-designed baseplates with dowel pins for precise positioning of optics based on computer analysis of opto-mechanical tolerances, as well as the optical path design. They simplify the excitation optics over Lattice light-sheet microscopes by using a Gaussian beam for illumination while maintaining lateral and axial resolutions of 235 and 350 nm across a 260-um field of view after deconvolution. In doing so they rest on foundational principles of optical microscopy that what matters for lateral resolution is the numerical aperture of the detection objective and proper sampling of the image field on to the detection, and the axial resolution depends on the thickness of the light-sheet when it is thinner than the depth of field of the detection objective. This concept has unfortunately not been completely clear to users of high-resolution light-sheet microscopes and is thus a valuable demonstration. The microscope is controlled by an open-source software, Navigate, developed by the authors, and it is thus foreseeable that different versions of this system could be implemented depending on experimental needs while maintaining easy alignment and low cost. They demonstrate system performance successfully by characterizing their sheet, point-spread function, and visualization of sub-cellular structures in mammalian cells, including microtubules, actin filaments, nuclei, and the Golgi apparatus.

      Weaknesses:

      There is a fixation on comparison to the first-generation lattice light-sheet microscope, which has evolved significantly since then:

      (1) The authors claim that commercial lattice light-sheet microscopes (LLSM) are "complex, expensive, and alignment intensive", I believe this sentence applies to the open-source version of LLSM, which was made available for wide dissemination. Since then, a commercial solution has been provided by 3i, which is now being used in multiple cores and labs but does require routine alignments. However, Zeiss has also released a commercial turn-key system, which, while expensive, is stable, and the complexity does not interfere with the experience of the user. Though in general, statements on ease of use and stability might be considered anecdotal and may not belong in a scientific article, unreferenced or without data.

      (2) One of the major limitations of the first generation LLSM was the use of a 5 mm coverslip, which was a hinderance for many users. However, the Zeiss system elegantly solves this problem, and so does Oblique Plane Microscopy (OPM), while the Altair-LSFM retains this feature, which may dissuade widespread adoption. This limitation and how it may be overcome in future iterations is not discussed.

      (3) Further, on the point of sample flexibility, all generations of the LLSM, and by the nature of its design, the OPM, can accommodate live-cell imaging with temperature, gas, and humidity control. It is unclear how this would be implemented with the current sample chamber. This limitation would severely limit use cases for cell biologists, for which this microscope is designed. There is no discussion on this limitation or how it may be overcome in future iterations.

      (4) The authors' comparison to LLSM is constrained to the "square" lattice, which, as they point out, is the most used optical lattice (though this also might be considered anecdotal). The LLSM original design, however, goes far beyond the square lattice, including hexagonal lattices, the ability to do structured illumination, and greater flexibility in general in terms of light-sheet tuning for different experimental needs, as well as not being limited to just sample scanning. Thus, the Alstair-LSFM cannot compare to the original LLSM in terms of versatility, even if comparisons to the resolution provided by the square lattice are fair.

      (5) There is no demonstration of the system's live-imaging capabilities or temporal resolution, which is the main advantage of existing light-sheet systems.

      While the microscope is well designed and completely open source, it will require experience with optics, electronics, and microscopy to implement and align properly. Experience with custom machining or soliciting a machine shop is also necessary. Thus, in my opinion, it is unlikely to be implemented by a lab that has zero prior experience with custom optics or can hire someone who does. Altair-LSFM may not be as easily adaptable or implementable as the authors describe or perceive in any lab that is interested, even if they can afford it. The authors indicate they will offer "workshops," but this does not necessarily remove the barrier to entry or lower it, perhaps as significantly as the authors describe.

      There is a claim that this design is easily adaptable. However, the requirement of custom-machined baseplates and in silico optimization of the optical path basically means that each new instrument is a new design, even if the Navigate software can be used. It is unclear how Altair-LSFM demonstrates a modular design that reduces times from conception to optimization compared to previous implementations.

    5. Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a high-resolution, open-source light-sheet fluorescence microscope optimized for sub-cellular imaging.

      The system is designed for ease of assembly and use, incorporating a custom-machined baseplate and in silico optimized optical paths to ensure robust alignment and performance. The authors demonstrate lateral and axial resolutions of ~235 nm and ~350 nm after deconvolution, enabling imaging of sub-diffraction structures in mammalian cells.

      The important feature of the microscope is the clever and elegant adaptation of simple gaussian beams, smart beam shaping, galvo pivoting and high NA objectives to ensure a uniform thin light-sheet of around 400 nm in thickness, over a 266 micron wide Field of view, pushing the axial resolution of the system beyond the regular diffraction limited-based tradeoffs of light-sheet fluorescence microscopy.

      Compelling validation using fluorescent beads and multicolor cellular imaging highlights the system's performance and accessibility. Moreover, a very extensive and comprehensive manual of operation is provided in the form of supplementary materials. This provides a DIY blueprint for researchers who want to implement such a system.

      Strengths:

      (1) Strong and accessible technical innovation:

      With an elegant combination of beam shaping and optical modelling, the authors provide a high-resolution light-sheet system that overcomes the classical light-sheet tradeoff limit of a thin light-sheet and a small field of view. In addition, the integration of in silico modelling with a custom-machined baseplate is very practical and allows for ease of alignment procedures. Combining these features with the solid and super-extensive guide provided in the supplementary information, this provides a protocol for replicating the microscope in any other lab.

      (2) Impeccable optical performance and ease of mounting of samples:

      The system takes advantage of the same sample-holding method seen already in other implementations, but reduces the optical complexity. At the same time, the authors claim to achieve similar lateral and axial resolution to Lattice-light-sheet microscopy (although without a direct comparison (see below in the "weaknesses" section). The optical characterization of the system is comprehensive and well-detailed. Additionally, the authors validate the system imaging sub-cellular structures in mammalian cells.

      (3) Transparency and comprehensiveness of documentation and resources:

      A very detailed protocol provides detailed documentation about the setup, the optical modeling, and the total cost.

      Weaknesses:

      (1) Limited quantitative comparisons:

      Although some qualitative comparison with previously published systems (diSPIM, lattice light-sheet) is provided throughout the manuscript, some side-by-side comparison would be of great benefit for the manuscript, even in the form of a theoretical simulation. While having a direct imaging comparison would be ideal, it's understandable that this goes beyond the interest of the paper; however, a table referencing image quality parameters (taken from the literature), such as signal-to-noise ratio, light-sheet thickness, and resolutions, would really enhance the features of the setup presented. Moreover, based also on the necessity for optical simplification, an additional comment on the importance/difference of dual objective/single objective light-sheet systems could really benefit the discussion.

      (2) Limitation to a fixed sample:

      In the manuscript, there is no mention of incubation temperature, CO₂ regulation, Humidity control, or possible integration of commercial environmental control systems. This is a major limitation for an imaging technique that owes its popularity to fast, volumetric, live-cell imaging of biological samples.

      (3) System cost and data storage cost:

      While the system presented has the advantage of being open-source, it remains relatively expensive (considering the 150k without laser source and optical table, for example). The manuscript could benefit from a more direct comparison of the performance/cost ratio of existing systems, considering academic settings with budgets that most of the time would not allow for expensive architectures. Moreover, it would also be beneficial to discuss the adaptability of the system, in case a 30k objective could not be feasible. Will this system work with different optics (with the obvious limitations coming with the lower NA objective)? This could be an interesting point of discussion. Adaptability of the system in case of lower budgets or more cost-effective choices, depending on the needs.

      Last, not much is said about the need for data storage. Light-sheet microscopy's bottleneck is the creation of increasingly large datasets, and it could be beneficial to discuss more about the storage needs and the quantity of data generated.

      Conclusion:

      Altair-LSFM represents a well-engineered and accessible light-sheet system that addresses a longstanding need for high-resolution, reproducible, and affordable sub-cellular light-sheet imaging. While some aspects-comparative benchmarking and validation, limitation for fixed samples-would benefit from further development, the manuscript makes a compelling case for Altair-LSFM as a valuable contribution to the open microscopy scientific community.