Transparent Peer Review
Download the complete Review Process [PDF] including:
- reviews
- authors' reply
- editorial decisions
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
We are very grateful to the two referees for their constructive comments and suggestions which have helped improve the quality of our manuscript.
------------------------------------------------------------------------------ * Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Ribes et al developed a FACS-based serological assay to detect antibodies against the SARS-CoV-2 spike protein in various hosts. The authors described an assay that is more sensitive and quantitative, allowing the detection of anti-spike antibodies with just a few ul of blood, and highlighted the potential of the assay as an alternative to commercial ELISA-based assays against SARS-CoV-2 spike protein.
Major concerns *
* On sensitivity and specificity - AUC profiles should be performed and included. *
Response: If the Jurkat-flow test was intended for clinical use, the precise determination
of the sensitivity and specificity of the test would indeed be absolutely essential. As was already mentioned at the end of the introduction, the Jurkat-S&R-flow test is only destined to be used by research laboratories, for research purposes. This has now also been clarified at the end of the abstract : “Whilst the Jurkat-flow test is ill-suited and not intended for clinical use ….”
As suggested by the referee, to establish the sensitivity and specificity of a diagnostic test, it is indeed practical to use the Area Under the Receiver Operating Characteristic (ROC) curve (AUC). A ROC curve is a plot of the true positive rate (Sensitivity) in function of the false positive rate (100-Specificity) for different cut-off points of a parameter. Determining properly the sensitivity and specificity of a test thus requires large collections of samples which are known to be either certainly positive or certainly negative, which we did not have access to.
* Are there any cross-reactivity with the other spike proteins from other CoVs? If so, what is the level of cross-reactivity? *
Response: To assess cross-reactivity with other CoVs, we would have needed either Jurkat cells expressing the spike proteins from other CoVs, or sera with known reactivity against CoVs. Since we did not have access to such cells or sera, we were not in a position to address such a question.
* While the authors have showed that the flow-based assay has a more dynamic range, there is insufficient data showing that it is "more sensitive", as stated in the abstract. The authors should reflect this in the text. *
Response: In the abstract, we do not state that the Jurkat-S&R-flow test is more sensitive than the ELISA, but “at least as sensitive”. On the other hand, we state that it is more sensitive than the HAT test, which it clearly is since there are more than a dozen samples on figure 2 that were positive with either or both ELISA and Jurkat-S&R-flow but were negative by HAT.
Of note, we have recently described an improved protocol, called HAT-field, which significantly improves the sensitivity of HAT, albeit at the cost of decreased specificity (https://doi.org/10.1101/2022.01.14.22268980)
* Is trimer or monomer Spike expressed on the surface of the cells? *
Response: Several studies have shown that, when the spike protein is expressed in human cells after transfection or transduction, it is in its native trimeric form at the cells’ surface and can even cause fusion with cells expressing the ACE2 receptor. This has now been clarified in the introduction section.
* While there are significant advantages of the flow-based assay, the authors should discuss the limitations of a flow-based assay as a serological assay, especially for sero-surveillance and cohort studies. For instance, HTS application is usually limited for cell-based assays. In addition, while the assay is relatively cheap, it is worth nothing that the cytometer is an expensive equipment that not all laboratories have. *
Response: We bring the referee’s attention to the fact that those points are discussed at the end of the introduction (line 161-165) : “ Since the Jurkat-flow test calls for the use of both a flow cytometer and cells obtained by tissue culture, it is clearly not destined to be used broadly in a diagnostic context, but its simplicity, modularity, and performances both in terms of sensitivity and quantification capacities should prove very useful for research labs working on characterizing antibody responses directed against SARS-2, both in humans and animal models. “
Minor concerns*: *
Reviewer #1 (Significance (Required)):
As already discussed by the authors, there have already been quite a number of studies that have demonstrated the advantages of a flow-based assay for serological analysis for SARS-CoV-2. However, Ribes et al showed a new way to separate out alloreactivity from specific staining, which is important in reducing false positivity in serological assay. As more and more people receive their vaccination, there is a significant interest in immune-monitoring following vaccination. Given the more dynamic range of the flow-based assay, this is one good way to monitor antibody response. *
Expertise: My research interest focuses on the study of SARS-CoV-2 antibody responses following infection or vaccination. * *
Reviewer #2 (Evidence, reproducibility and clarity (Required)): *
In this paper, Joly and colleagues make use of a flow cytometry-based assay to measure in a reliable and sensitive manner the presence of IgG, IgA and IgM in blood samples from post-COVID human patients and also from laboratory (mouse and hamster) and domestic animals (dogs and cats). They find that the test is appropriate to detect the presence of humoral immunity in all species tested. The manuscript is clearly written and the Figures are clearly presented. The experiments with rodente deliberately infected with inactivated SARS-CoV-2 shows (Fig. 3) that the method is reliable and able to clearly discriminate positive from negative sera. Interestingly, dogs and cats were sampled from households in which the owners had been found to have passed COVID-19 by PCR. Among this cohort of house animals they find more than 90% seroconversion for dogs and slightly less than 30% of clear seroconversion in cats. We find however that the manuscript would benefit by establishing a clear cut-off value of "Specific Stain" for dogs and cats (Fig. 3). This could be implemented by including data from pre-COVID dog and cat sera or in its defect, sera from those species collected at households in which their owners were vaccinated and did not pass the infection. Another point of criticism that could be resolved is that the channels for flow cytometry in Figure 1 do not seem to be adequately compensated and there is evidence of some cross-contamination between FL1 and FL3. *
Responses: We thank the referee for bringing our attention to the fact that we had presented the data on sera from cats and dogs in a confusing manner, which led the referee to believe that the sets of samples presented were representative of the population of animals whose owner had tested positive for Covid-19. In fact, for this experiment, which was only ever intended as a preliminary proof of concept that the test could be adapted very simply to companion animals, we used sets of sera which we knew would contain approximately 50 % of positive and 50 % negative samples because they had previously been screened by sero-neutralisation (incidentally, a manuscript by Bessière et al., describing that work on sera from 131 cats and 156 dogs, has very recently been submitted for publication). To prevent possible confusions, we have now reworded the description of this proof of concept experiment, in the legend of figure 3, the text, and the methods section.
Regarding the question of a clear cut-off value, as when using human samples, we would suggest using a value of 40 for the instruments settings we used, corresponding to an RSS of 20 (i.e. 20 fold the value of the negative control). With such a value, it can be seen that one cat serum would be considered positive whilst showing no neutralising activity, but one dog serum which showed weak neutralising activity would be considered negative. If anything, this example highlights the difficulty in setting a precise cut off value for any biological test.
Regarding the question of inadequate compensation between channels 1 and 3, this is due to the fact that the Cellquest software does not allow for FL1/FL3 compensation, which is explained in the figure legend (see lines 208-210). We decided to simply draw the gates as they appear on figure 1 because attempts at post-acquisition compensation using the Flowjo software did not give satisfactory results. Incidentally, no compensation is required when samples are acquired on a Fortessa flow cytometer, where mCherry can be excited by a different laser (see figure S1) or if one uses the Jurkat-S&G-flow version of the test as in figure 3D for hamster sera (using Jurkat-GFP as negative control, and secondary antibodies conjugated to Alexa 488).
Minor points*: *
*-Figure 1.- Please describe the y- and x-axis. Such as they are is difficult to find out. *
Response: Done
* -It would be advisable to mention in Materials and Methods (page 22) how blood was collected from cats and dogs. *
Response: We thank the referee for highlighting this, and have now provided the information in the relevant method section.
* -Line 856, page 22, "ad libidum" should be "ad libitum" *
Response: We thank the referee for spotting this typo, which has been corrected
* Reviewer #2 (Significance (Required)):
This is another step in the implementation of flow cytometry tests, instead of ELISA or CLIA serological tests based on the use of recombinant proteins, as a more sensitive and reliable method. The description of the high frequency of human-domestic animal transfer of SARS-CoV-2 will also add to the idea that it is humans who transmit the virus to those animals. *
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this paper, Joly and colleagues make use of a flow cytometry-based assay to measure in a reliable and sensitive manner the presence of IgG, IgA and IgM in blood samples from post-COVID human patients and also from laboratory (mouse and hamster) and domestic animals (dogs and cats). They find that the test is appropriate to detect the presence of humoral immunity in all species tested.
The manuscript is clearly written and the Figures are clearly presented. The experiments with rodente deliberately infected with inactivated SARS-CoV-2 shows (Fig. 3) that the method is reliable and able to clearly discriminate positive from negative sera. Interestingly, dogs and cats were sampled from households in which the owners had been found to have passed COVID-19 by PCR. Among this cohort of house animals they find more than 90% seroconversion for dogs and slightly less than 30% of clear seroconversion in cats.
We find however that the manuscript would benefit by establishing a clear cut-off value of "Specific Stain" for dogs and cats (Fig. 3). This could be implemented by including data from pre-COVID dog and cat sera or in its defect, sera from those species collected at households in which their owners were vaccinated and did not pass the infection. Another point of criticism that could be resolved is that the channels for flow cytometry in Figure 1 do not seem to be adequately compensated and there is evidence of some cross-contamination between FL1 and FL3.
Minor points:
This is another step in the implementation of flow cytometry tests, instead of ELISA or CLIA serological tests based on the use of recombinant proteins, as a more sensitive and reliable method. The description of the high frequency of human-domestic animal transfer of SARS-CoV-2 will also add to the idea that it is humans who transmit the virus to those animals.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Ribes et al developed a FACS-based serological assay to detect antibodies against the SARS-CoV-2 spike protein in various hosts. The authors described an assay that is more sensitive and quantitative, allowing the detection of anti-spike antibodies with just a few ul of blood, and highlighted the potential of the assay as an alternative to commercial ELISA-based assays against SARS-CoV-2 spike protein.
Major concerns:
Minor concerns:
As already discussed by the authors, there have already been quite a number of studies that have demonstrated the advantages of a flow-based assay for serological analysis for SARS-CoV-2. However, Ribes et al showed a new way to separate out alloreactivity from specific staining, which is important in reducing false positivity in serological assay. As more and more people receive their vaccination, there is a significant interest in immune-monitoring following vaccination. Given the more dynamic range of the flow-based assay, this is one good way to monitor antibody response.
My research interest focuses on the study of SARS-CoV-2 antibody responses following infection or vaccination.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary: This manuscript documents a very thorough biophysical, structural and functional dissection of interactions between the RNA-binding protein Rrm4 and the endosomal adaptor Upa1 in the filamentous fungus Ustilago maydis. It has been shown previously that the Rrm4-Upa1 interaction is critical for mRNA transport in this system as mRNAs hitchhike on motor-associated endosomes. Here, the authors reveal using modelling that Rrm4 has three MLLE domains, including a cryptic one that had not been identified previously. They then report the crystal structure of MLLE2 and analyze the distribution anf arrangement of the MLLE domains in the protein using SAXS. They then show using pulldowns and isothermal titration calorimetry that MLLE3 is critical for the Upa1 interaction (via the PAM2L domains of Upa1) and that MLLE2 contributes to Rrm4 localization in vivo when the MLLE3-Upa1 interaction is partially impaired. The study suggests that Rrm4 has a platform of MLLE domains for orchestrating Rrm4 function. Overall, this is technically a high quality study. However, a number of points (mostly minor) should be addressed.
Major comments:
__A key part of the study if the in vivo work illustrating a role for MLLE2 in regulating Rrm4 localization when the system is sensitized. Some aspects of this part of the work need clarifying.
a) The authors should show that the abberant staining is indeed microtubule-related with the benomyl experiment that they used in Jankowski et al. 2019. __
We included this important control in Figure EV5F demonstrating that the aberrant staining is no longer visible after the microtubule inhibitor benomyl treatment
b) The authors claim from these experiments that MLLE2 contributes to endosomal targeting (as there is ectopic protein on other structures (presumptive microtubules)). However, to make this claim, the authors would need to measure the intensity of the mutant Rrm4 protein on endosomes and/or the colocalization of these Rrm4 variants with endosomes, as they do in other experiments in this paper. Otherwise, it is possible that the MLLE2 deletion has another effect, e.g. increasing protein stability, and thus increasing the likelihood of binding to structures other than endosomes. If available, data on the relative abundance in the cell of the protein expressed from the wild-type control (rrm4-kat) and MLLE2 deletion constructs (e.g. rrm4-m1,2delta-kat) should be provided.
As indicated by the reviewer, a critical point is identifying a function of MLLE2. Surprisingly, the domain is conserved in evolution, but , we do not see a mutant phenotype under optimal culture conditions. Therefore, we challenged the system and observed the mislocalisation of Rrm4, if the MLLE2 domain is deleted. However, the overall amount of shuttling Rrm4-positive endosomes was not strongly affected according to our kymograph experiments. We observe aberrant staining, which is not seen with the Rrm4 wild-type protein. Thus, under challenging conditions, we do see a function of MLLE2.
To address the valid point of the reviewer, we quantified the signal intensities in kymographs of the most important Rrm4 variants. As indicated in Figure 5E, we observed that the maximum fluorescence intensity in kymograph signals was reduced when Rrm4 variants are mislocalised to microtubules while the minimum intensities were comparable in all strains. This underlines that a subset of Rrm4 molecules are no longer shuttling through the cell and most likely are attached to microtubules (to prove the involvement of microtubules, we did benomyl treatment which is now shown in Figure EV5F). We also included a Western Blot experiment (Figure EV5G) demonstrating that neither MLLE1 nor MLLE2 deletion impacts the total protein amount of Rrm4. These data support the notion that MLLE2 contributes to endosomal targeting.
c) Was the data in Figure 5D scored blind of the identity of the samples? Given that the classification has to be done manually, it is important to confirm the phenotypes are robust to blinding (at least for the key comparisons).
We agree entirely that manual evaluation of microscopic images has to be carried out with utmost care. The phenotype of aberrant microtubule staining is not easily detectable, and it needs an experienced person to quantify this. The data were analyzed by a second experimentalist with experience in evaluating microscopy images to validate the system’s robustness. Notably, the key findings were confirmed in both cases aberrant microtubule staining was only observed when the MLLE domain was mutated. However, the second person reported difficulties in differentiating a bundle of Rrm4 signals or stained microtubules. Therefore, this person quantified higher values with less experience in Rrm4 movement. In essence, we can rely on the key findings. We included the information in the section “Materials and methods” and gave the comparison in Figure EV5H.
If points b and c are addressed, it should be possible to draw an arrow between the gray question mark protein in Figure 6 and the endosome surface, which is what I assume the authors believe to be case based on their discussion.
Having addressed both points, we have also improved the model. To this end, we added a second unknown protein component (grey oval with a question mark) that interacts with MLLE2 and the endosomal surface. Thereby the hierarchical order with the accessory role of MLLE2 during endosomal attachment is stressed.
Minor comments:
Line 269: change "amount of motile Rrm4-M12delta-Kat positive signals" to "number of motile Rrm4-M12delta-Kat positive signals".
Changed as mentioned above.
Figure 3 legend: Insert "Variant" before "amino acids of the FxP and FxxP..." to indicate what is labeled in gray. Change "fond" to "font" in the same sentence.
Corrected as mentioned above.
The cartoons of the different protein variants are very helpful but I had problems spotting the Upa1-Pam2L deletions due to the similar gray to the background of the protein. This would perhaps be clearer if the gray used for the background was lighter than it currently is.
We improved the contrast by reducing the background of Upa1 to a lighter grey tone in all the corresponding figures.
The residual motility of wild-type Rrm4 when PAM2L1 and PAM2L2 are both mutated (Figure 5C) is reminiscent of what is seen in a complete Upa1 deletion in the group's previous work. It would be helpful to point this out to the reader, as well as the implication that other proteins are contributing to Rrm4's linkage to endosomes. After all, some of these other adaptors might contact MLLE2 of Rrm4.
We addressed this point by referring to our previous publication with the following sentence: “Comparable to previous reports, we observed residual motility of Rrm4-Kat on shuttling the endosomes if both PAM2L motifs are mutated or if upa1 is deleted. This indicates that additional proteins besides Upa1 are involved in the endosomal attachment of Rrm4 (Pohlmann et al., 2015).”
Some of the y-axes of the charts should be more descriptive so that the reader can understand the plots even before they consult the legends. For example, in Figure EV4A and EV5D and E, which protein is being to referred to in each 'number of signals' plot should be included. In Figure 5D, 'Hyphae [%]' would be clearer as 'Hyphae with MT staining of Rrm4 [%]'
We improved this in Figures EV4, 5D and EV5.
Figure EV5 legend title: this could be misleading as the authors are seeing ectopic MT localization rather than a deficit in microtubule association.
Corrected to “Deletion of MLLE1Rrm4 and -2 cause aberrant staining of microtubules”.
Reviewer #1 (Significance (Required)):
__The Feldbrugge group has previously mapped interactions between Upa1 and Rrm4 (Pohlmann et al., 2015) and some conclusions are corroborated in the paper by Boehm et al. The paper under review is, however, a significant advance due to the identification of the third MLLE domain, detailed biophysical characterization of the interactions, the structural insights, and evidence of a subsidiary role of MLLE2. The work would of course be stronger if the target of MLLE2 had been identified but I think this is beyond the scope of this initial work. To my knowledge, this is one of the most extensive analyses of the interactions mediated by MLLE and PAM domains and will be of interest to others working on these protein features. The work will also appeal to those interested in the links of localizing mRNAs with motor-associated membranes, which is an emerging field.
Reviewer expertise: I have a long-standing interest in molecular analysis of mRNA trafficking mechanisms. I do not have experience in fungal genetics. __
**Referee Cross-commenting**
It seems that we are in agreement that this is solid work and that biochemical and biophysical analysis of the MLLE-PAM interactions will be of significant interest to those working on those domains (or proteins containing those domains). I agree with the comments of the other reviewers and there are clearly some essential minor revisions needed to strengthen the evidence for their conclusions and some clarifications. I think it is a long shot that RNA binding to the RRMs will affect the MLLE-PAM interactions and would require quite a lot of work to show this conclusively. The study would, however, be more impactful if this was shown to be the case, or the target of MLLE2 was found. Nonetheless, I would not say these new avenues of research are necessary to find a home in one of the Review Commons journals.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Devan, Schott-Verdugo et al.
Summary
In this study the putative MLLE RNA-binding motifs of the endosomal RNA-binding protein, Rrm4, from Ustilago maydis were examined using structural and genetic analyses. MLLE motifs are conserved in polyA-binding proteins (Pab1/PABPC1) and found also in Rrm4, which was shown to reside on motile endosomes and deliver septin mRNAs for endosome-localized translation during polarized growth. Upa1 on the endosome interacts with Rrm4 via its PAM2L domain that itself interacts with the MLLE domains of proteins like Pab1. Mutations in the known MLLE domain of Rrm4 were earlier shown to affect localization to endosomes. Here, the C-terminal domain of Rrm4 was revealed to have three divergent MLLE motifs using comparative modeling; only two of which were previously predicted. Crystallization and X-ray diffraction analysis of a truncated version of bacterially produced Rrm4, showed MLLE2 is most similar to that of PABPC1 and UBR5, although MLLE1 and 2 are somewhat divergent in the key region of PAM2 binding. Small angle X-ray scattering of recombinant full-length or truncated Rrm4 revealed that the MLLE domains might form a platform that could allow for multiple contacts with different binding partners. In vitro binding studies with different N-terminal GST-tagged versions of the Rrm4 were used to examine for interactions with PAM2 sequences of Upa1 using N-terminal hexa-histidine-SUMO fusions. It was found that Pab1-MLLE interacts with the PAM2, but not PAM2L, domain of Upa1. In contrast, the complete Rrm4 MLLE region (G-Rrm4-NT4) interacted with the PAM2L domain, but not the PAM2 of Upa1. Notably, the interaction with PAM2L required the third MLLE and neither MLLE1 nor MLLE2, nor both. No significant differences in affinity were observed and were similar to that of the Pab1 MLLE. The results also show that the MLLE3 has a higher affinity for the PAM2L2 than PAM2L1 of Upa1.
To examine the biological role of the Rrm4 MLLEs, U. maydis strains bearing deletions in the domains of Rrm4 were examined for hyphal growth and endosomal transport (latter using Upa1-GFP and Rrm4-mKate2). Only the loss of the MLLE3 domain inhibited polarized growth (as seen with the full deletion of RRM4) and not the deletion of either MLLE1 or 2. Similar results were obtained regarding endosome shuttling. Thus, in line with the biochemical experiments performed the MLLE3 domain alone (of the three identified) is necessary for the biological actions of Rrm4. This suggested the MLLE1 and 2 are not necessary for function under these conditions.
To examine this further, Upa1 carrying mutations in the PAM2L 1or PAM2L2 domains were examined. It was found that the deletion of both PAM2L domains affected unipolar growth resulting in bipolar growth similar to the deletion of UPA1 alone. This phenotype was observed even upon the deletion of Rrm4 MLLE1 and 2 in the same background as the PAM2L mutants. The mutation of both PAM2L domains led to a reduction in Rrm4-labeled shuttling endosomes, which suggests that these domains help anchor Rrm4 to endosomes. When only the PAM2L1 domain is present in Upa1 there was a larger increase in hyphae with aberrant microtubule staining than upon the loss of PAM2L1. The authors suggest that this indicates PAM2L2 is more important and prescribes an accessory role for MLLE2 in endosome association.
Comments: Overall, the study seems well conducted. We cannot comment on the structural aspect of the work since this is not our field of expertise. That said, the biochemical and genetic/functional studies appear solid, well thought-out, and clearly presented. No new experiments are necessary to support the general claims of the paper, however, experiments suggested below might make it more revealing with regards to the connection between RNA binding and MLLE-PAM2L interactions (i.e. endosome localization and RNA binding functions).
Several questions regarding the specificity of PAM2 vs. PAM2L domains. What happens when you switch/replace the PAM2L1 or 2 of Upa1 with Upa1 PAM2 domains? Are they exclusive? What happens when the MLLE3 of Rrm4 is switched with that of Pab1? And if one does both - does that restore functionality to Rrm4?
These are very interesting suggestions. Previously, we have shown that a single PAM2L1 or PAM2L2 sequence of Upa1 is sufficient for unipolar growth and recruitment of Rrm4 to endosomes. Please note that Upa1 with mutated PAM2L1 and L2 still contains a PAM2 motif. Furthermore, mutating the PAM2 motif of Upa1 did not affect Rrm4 shuttling or unipolar growth. Thus, switching the domains would mostly address whether the precise location within Upa1 would be important. This is interesting but, unfortunately very labour-intensive and beyond the manuscript’s current scope.
Switching MLLE3 with MLLE of PAB1 is an interesting approach. One might expect that Rrm4 can be recruited to endosomes again. However, Rrm4 would also interact with numerous other proteins containing PAM2 motifs like deadenylase Not4. Here it would compete with the MLLE of Pab1. Thus, it would be expected that Rrm4 is on the surface, but the protein will be mistargeted to other proteins causing pleiotropic alterations. It will be difficult to judge whether Rrm4 functionality is restored or whether other processes are disturbed. In essence, these are stimulating ideas, but we believe that these experiments are beyond the scope of the current study. In the future, we might address this point by using a heterologous peptide-binding pocket or tethering approach.
Likewise, what happens if Upa1 only has PAM2L2 instead of only PAM2L1 domains? Does that alter function - perhaps now one can observe a contribution of MLLE1? If it it's there it's likely to have function. Anything known about the post-translational modification of these MLLE or PAM domains? Does it change during unipolar vs. bipolar growth? Perhaps the different MLLE domains are regulated in such a fashion?
Again also very valid points. Upa1 with two PAM2L2 motifs might interact stronger. The problem is that one PAM2L motif is sufficient for interaction, and we do not see a strong phenotype.
Currently, we do not know if post-translational modifications regulate the MLLE domains. This could alter the binding affinity or specificity, and by expressing fungal proteins in E. coli, we might have missed this type of regulation. However, we addressed the function of MLLE1 and MLLE2 in U. maydis using a genetic approach. We deleted the corresponding domains and interfered with potential regulation by posttranslational modification. Thus, we cannot exclude post-translational modification, but it appears to be not essential for function. We will address the posttranslational regulation of Rrm4 in more detail in the future.
Can the authors show whether the binding of mRNA cargo (e.g. Cdc3 mRNA) to the RRM motifs of Rrm4 affects the interaction between any of the MLLE-PAM2L pairs, or vice versa (i.e. does the MLLE-PAM2L interaction affect mRNA binding)?
In previous studies, we have investigated a version of Rrm4 carrying a mutation in the first RRM motif of Rrm4. According to RNA live imaging, the respective strains exhibit a loss of function phenotype and mRNA transport is strongly affected. However, the endosomal association of Rrm4-mR1-Gfp is not affected, indicating no direct cross-talk between RNA-binding via RRM1 and endosomal attachment via MLLE3. Also, a version of Rrm4 carrying a deletion of all three RRM domains is still shuttling on endosomes. The two functions, i.e. RNA binding and endosomal binding, appears to be carried out by two independent platforms, i.e. three RRMs and three MLLEs, respectively. The overall structure of the protein also reflects this. The RRM domains are structurally clearly separated from the flexible MLLE domains.
Discussion line 311 It is written that the three MLLE domains "collaborate for optimal functionality..." Perhaps there's a misunderstanding here, but the authors show that MLLE3 domain alone is necessary & sufficient for function, so where is the collaboration? MLLE2 may have an accessory role according to the authors, but we do not know if it is in collaboration with MLLE3 or independent thereof. Since the KD of MLLE3 is not affected by the presence or absence of MLLE1,2 in vitro at least, it may be that they have independent, and not collaborative, roles.
Correct, we rephrased this more carefully. We omitted the collaboration aspect. It now reads, ”but a sophisticated binding platform consisting of three MLLE domains with MLLE2 and MLLE3 functioning in linking the key RNA transporter to endosomes.”
Reviewer #2 (Significance (Required)):
This paper concerns functional domains found in an endosome-localized RNA binding protein, U. maydis Rrm4, which is necessary for localized translation on endosomes and subsequent unipolar growth. Here the authors show using structural, biochemical, and genetic studies that instead of one or two MLLE protein-protein interacting domain in Rrm4 there are three, although one (MLLE3) is necessary and sufficient for full function. This work is for an audience interested in those studying RNA trafficking and its role in cell physiology, which is our expertise. The work is interesting, but it could be made more so especially if a connection was established between the RNA-binding function of the RRM domains and the MLLE-PAM2L interaction(s). At this point it is solid technical work and could be published after minor revisions.
**Referee Cross-commenting**
I concur with the comments of the other reviewers in that the work is solid and necessitates minor revisions in order to be published. Clearly, establishing a connection between the RNA-binding function and the MLLE-PAM interactions of Rrm4 would be an interesting and worthy pursuit that might enhance the novelty of the work, but I agree that it could belong to future studies.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
__ Summary: Long-distance subcellular transport of mRNAs is achieved through selective and dynamic interaction with the transport machinery. Using the highly polarized hyphae of Ustilago maydis, the authors previously showed i- that mRNAs can hitchhike on actively transported endosomes for proper distribution, and ii- that the connection between mRNAs and endosomes is mediated by the interaction between a C-terminal MademoiseLLE (MLE) domain of the RNA binding protein Rrm4 and the Upa1 adapter protein. In this study, the authors aimed at more precisely characterizing the structural and molecular bases underlying the Rrm4-Upa1 interaction. Combining structural modeling and X-ray analyses, they discovered a non-canonical, and previously missed, MLE domain (MLE1) in Rrm4, and characterized the structure of the second MLE domains (MLE2) of Rrm4. Through binding assays, they showed that the three MLE domains exhibit different binding properties, and that MLE3 is the only domain capable of binding to the PAM2 domain of Upa1. Consistent with this finding, functional assays performed in U. maydis revealed that MLE3 is the main domain involved in interaction with endosomes and trafficking, MLE1 and 2 having either no or minor functions in this process.
The manuscript is very-well written, the data are of high quality and clearly presented. A wide range of complementary approaches has been used to molecularly and functionally characterize the different MLE domains of Rrm4. From an "RNA transport" perspective, this manuscript falls short of a main novel findings as the domains characterized in this study (MLE1 and 2) don't have a clear function in connecting mRNAs to the transport machinery. From an "MLE domain" perspective, this work however provides interesting information about non-canonical domains and structures, and about binding and function specificity. As described below, my major concern relates to the role played by the ML2 domain of Rrm4, a role referred to as "accessory" by the authors. __
__
Major comments: __
The authors conclude from their results that ML2 has an accessory role in promoting association with endosomes.
1- This conclusion is made based on in vivo experiments showing that a form of Rrm4 lacking the M2 domain, in contrast to wild-type Rrm4, aberrantly attached to MTs in a context where the Rrm4-Upa1 interaction mediated by MLE3Rrm4 has been weakened (Upa1-pl2m). Although the results are convincing, their interpretation is less. The authors, indeed, claim that the observed phenotype results from "the static accumulation of Rrm4" due to reduced interaction with endosomes. Why then don't they see a decrease in the motility/transport properties of Rrm4-M2Δ in this context then? Also, do the authors see a decrease in the co-localization of Rrm4-M2Δ with endosomes (which would be expected if the interaction is decreased)? Can the authors perform IP or co-sedimentation experiments to strengthen their hypothesis?
This is a fair criticism that was also raised by reviewer 1. In the improved version of the manuscript, we now include important control experiments demonstrating that (i) the aberrant localisation is microtubule-dependent (Fig. EV5F) (ii) the mutations do not cause differences in protein amounts of Rrm4 (Fig. EV5G) (iii) the key findings of the aberrant microtubule staining, which were scored manually in microscopic images were verified independently by two persons (Fig. EV5H) and (iv) most importantly, Rrm4 signal intensity is decreased in processive signals of our kymograph analysis (Fig. 5E). We firmly believe that this set of experiments strengthens our conclusion that MLLE2 plays an accessory role in the endosomal attachment (Fig. 6).
2- Whether MLE2Rrm4 mediates interaction with endosomes through association with Upa1 is unclear, as the binding assays performed in Figure 3 test for association of Rrm4 variants with single isolated domains of Upa1, not with the full-length protein. Assessing the binding of Rrm4-M2Δ variants with Upa1-PL2m would help interpreting the phenotypes described in Figure 5.
Unfortunately, it is difficult to express full-length Upa1 protein in E. coli due to the presence of extended unstructured regions. To overcome this limitation, we performed yeast two-hybrid experiments with full-length proteins of Rrm4 and Upa1. We were able to recapitulate qualitatively the results observed in vitro using the individual domains.
Notably, the Rrm4 version carrying a deletion in MLLE1 and MLLE2 interacted with Upa1 versions carrying mutations in PAM2L1 or PAM2L2 (Fig. EV3C), suggesting that both MLLE domains of Rrm4 are dispensable for interaction with Upa1. MLLE3 is sufficient to interact with a single PAM2L sequence of Upa1. This suggests the presence of additional interaction partners for MLLE1 and MLLE2 and is entirely consistent with our genetic and cell biological analysis described in Fig. 5.
__
Minor comments: __
1- The authors have previously characterized the effect of a C-terminal deletion of Rrm4 on Rrm4 motility and binding to Upa1 (Becht et al., 2006; Pohlmann et al., 2015). How their previously-described construct compares to the Rrm4-M3Δ used in this study is unclear (is it the same?).
It is the identical mutation to allele rrm4GPD from Becht et al. 2006. We indicate the information in the text “(Fig. 4B-C; mutation identical to allele rrm4GPD in Becht et al., 2006).”
2- page 6, line 141: refer to Fig. 1B rather than Fig. EV1A ?
We included the reference to Fig. 1B.
3- page 10, line 274: "Rrm4-Kat was found"
We corrected this.
4- page 11, line 286: "in strains expressing Upa1-PAM2L1", replace by "in strains expressing Upa1 with mutated PAM2L1"?
We corrected this.
5- The Figures and accompanying legends are overall very clear and detailed. In Figures EV4A and EV5D-E, it would however help if the authors would indicate on the Figure itself, left to each panel which markers/signals is being analyzed (e.g Rrm4-Kat (top) and Upa1-GFP (down) for Figure EV4).
We clarified this.
Reviewer #3 (Significance (Required)):
Active transport of mRNAs along microtubule tracks has been shown to play a key role in the spatio-temporal control of gene expression in various cell types and species. How specific mRNAs mechanistically connect to molecular motors for their transport to their subcellular destination has however for long remained largely unclear. Recent work, including work from the authors, has uncovered that RNAs can hitchhike on membranous organelles through adapter proteins linking mRNAs and RNA binding proteins with trafficking membrane-bound organelles.
This study aimed at investigating the structural and molecular bases underlying the interaction between RNA binding proteins and endosomes. While their identification and characterization of the MLE1 and MLE2 domains of Rrm4 did not provide significant new insight into the mechanisms involved in the endosome-mediated transport of mRNAs, it uncovered interesting new properties of MLE domains, including structural variations, selective binding and functional specificity. This work should thus be of interest for structural biologists and researchers interested in protein-protein interaction platforms.
**Referee Cross-commenting**
Our comments all converge to the idea that this study is solid as it is and requires only minor revision work to support the authors conclusions. Although characterizing further MLE/PAM2 binding specificity and MLE2 interactors would be of great interest and indeed provide a more complete understanding of interaction networks at play, I feel that this is beyond expected revision work.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Long-distance subcellular transport of mRNAs is achieved through selective and dynamic interaction with the transport machinery. Using the highly polarized hyphae of Ustilago maydis, the authors previously showed i- that mRNAs can hitchhike on actively transported endosomes for proper distribution, and ii- that the connection between mRNAs and endosomes is mediated by the interaction between a C-terminal MademoiseLLE (MLE) domain of the RNA binding protein Rrm4 and the Upa1 adapter protein.
In this study, the authors aimed at more precisely characterizing the structural and molecular bases underlying the Rrm4-Upa1 interaction. Combining structural modeling and X-ray analyses, they discovered a non-canonical, and previously missed, MLE domain (MLE1) in Rrm4, and characterized the structure of the second MLE domains (MLE2) of Rrm4. Through binding assays, they showed that the three MLE domains exhibit different binding properties, and that MLE3 is the only domain capable of binding to the PAM2 domain of Upa1. Consistent with this finding, functional assays performed in U. maydis revealed that MLE3 is the main domain involved in interaction with endosomes and trafficking, MLE1 and 2 having either no or minor functions in this process.
The manuscript is very-well written, the data are of high quality and clearly presented. A wide range of complementary approaches has been used to molecularly and functionally characterize the different MLE domains of Rrm4. From an "RNA transport" perspective, this manuscript falls short of a main novel findings as the domains characterized in this study (MLE1 and 2) don't have a clear function in connecting mRNAs to the transport machinery. From an "MLE domain" perspective, this work however provides interesting information about non-canonical domains and structures, and about binding and function specificity.
As described below, my major concern relates to the role played by the ML2 domain of Rrm4, a role referred to as "accessory" by the authors.
Major comments:
The authors conclude from their results that ML2 has an accessory role in promoting association with endosomes.
1- This conclusion is made based on in vivo experiments showing that a form of Rrm4 lacking the M2 domain, in contrast to wild-type Rrm4, aberrantly attached to MTs in a context where the Rrm4-Upa1 interaction mediated by MLE3Rrm4 has been weakened (Upa1-pl2m). Although the results are convincing, their interpretation is less. The authors, indeed, claim that the observed phenotype results from "the static accumulation of Rrm4" due to reduced interaction with endosomes. Why then don't they see a decrease in the motility/transport properties of Rrm4-M2Δ in this context then? Also, do the authors see a decrease in the co-localization of Rrm4-M2Δ with endosomes (which would be expected if the interaction is decreased)? Can the authors perform IP or co-sedimentation experiments to strengthen their hypothesis?
2- Whether MLE2Rrm4 mediates interaction with endosomes through association with Upa1 is unclear, as the binding assays performed in Figure 3 test for association of Rrm4 variants with single isolated domains of Upa1, not with the full-length protein. Assessing the binding of Rrm4-M2Δ variants with Upa1-PL2m would help interpreting the phenotypes described in Figure 5.
Minor comments:
1- The authors have previously characterized the effect of a C-terminal deletion of Rrm4 on Rrm4 motility and binding to Upa1 (Becht et al., 2006; Pohlmann et al., 2015). How their previously-described construct compares to the Rrm4-M3Δ used in this study is unclear (is it the same?).
2- page 6, line 141: refer to Fig. 1B rather than Fig. EV1A ?
3- page 10, line 274: "Rrm4-Kat was found"
4- page 11, line 286: "in strains expressing Upa1-PAM2L1", replace by "in strains expressing Upa1 with mutated PAM2L1"?
5- The Figures and accompanying legends are overall very clear and detailed. In Figures EV4A and EV5D-E, it would however help if the authors would indicate on the Figure itself, left to each panel which markers/signals is being analyzed (e.g Rrm4-Kat (top) and Upa1-GFP (down) for Figure EV4).
Active transport of mRNAs along microtubule tracks has been shown to play a key role in the spatio-temporal control of gene expression in various cell types and species. How specific mRNAs mechanistically connect to molecular motors for their transport to their subcellular destination has however for long remained largely unclear. Recent work, including work from the authors, has uncovered that RNAs can hitchhike on membranous organelles through adapter proteins linking mRNAs and RNA binding proteins with trafficking membrane-bound organelles.
This study aimed at investigating the structural and molecular bases underlying the interaction between RNA binding proteins and endosomes. While their identification and characterization of the MLE1 and MLE2 domains of Rrm4 did not provide significant new insight into the mechanisms involved in the endosome-mediated transport of mRNAs, it uncovered interesting new properties of MLE domains, including structural variations, selective binding and functional specificity. This work should thus be of interest for structural biologists and researchers interested in protein-protein interaction platforms.
Referee Cross-commenting
Our comments all converge to the idea that this study is solid as it is and requires only minor revision work to support the authors conclusions. Although characterizing further MLE/PAM2 binding specificity and MLE2 interactors would be of great interest and indeed provide a more complete understanding of interaction networks at play, I feel that this is beyond expected revision work.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Devan, Schott-Verdugo et al.
Summary
In this study the putative MLLE RNA-binding motifs of the endosomal RNA-binding protein, Rrm4, from Ustilago maydis were examined using structural and genetic analyses. MLLE motifs are conserved in polyA-binding proteins (Pab1/PABPC1) and found also in Rrm4, which was shown to reside on motile endosomes and deliver septin mRNAs for endosome-localized translation during polarized growth. Upa1 on the endosome interacts with Rrm4 via its PAM2L domain that itself interacts with the MLLE domains of proteins like Pab1. Mutations in the known MLLE domain of Rrm4 were earlier shown to affect localization to endosomes.
Here, the C-terminal domain of Rrm4 was revealed to have three divergent MLLE motifs using comparative modeling; only two of which were previously predicted. Crystallization and X-ray diffraction analysis of a truncated version of bacterially produced Rrm4, showed MLLE2 is most similar to that of PABPC1 and UBR5, although MLLE1 and 2 are somewhat divergent in the key region of PAM2 binding. Small angle X-ray scattering of recombinant full-length or truncated Rrm4 revealed that the MLLE domains might form a platform that could allow for multiple contacts with different binding partners. In vitro binding studies with different N-terminal GST-tagged versions of the Rrm4 were used to examine for interactions with PAM2 sequences of Upa1 using N-terminal hexa-histidine-SUMO fusions. It was found that Pab1-MLLE interacts with the PAM2, but not PAM2L, domain of Upa1. In contrast, the complete Rrm4 MLLE region (G-Rrm4-NT4) interacted with the PAM2L domain, but not the PAM2 of Upa1. Notably, the interaction with PAM2L required the third MLLE and neither MLLE1 nor MLLE2, nor both. No significant differences in affinity were observed and were similar to that of the Pab1 MLLE. The results also show that the MLLE3 has a higher affinity for the PAM2L2 than PAM2L1 of Upa1. To examine the biological role of the Rrm4 MLLEs, U. maydis strains bearing deletions in the domains of Rrm4 were examined for hyphal growth and endosomal transport (latter using Upa1-GFP and Rrm4-mKate2). Only the loss of the MLLE3 domain inhibited polarized growth (as seen with the full deletion of RRM4) and not the deletion of either MLLE1 or 2. Similar results were obtained regarding endosome shuttling. Thus, in line with the biochemical experiments performed the MLLE3 domain alone (of the three identified) is necessary for the biological actions of Rrm4. This suggested the MLLE1 and 2 are not necessary for function under these conditions.
To examine this further, Upa1 carrying mutations in the PAM2L 1or PAM2L2 domains were examined. It was found that the deletion of both PAM2L domains affected unipolar growth resulting in bipolar growth similar to the deletion of UPA1 alone. This phenotype was observed even upon the deletion of Rrm4 MLLE1 and 2 in the same background as the PAM2L mutants. The mutation of both PAM2L domains led to a reduction in Rrm4-labeled shuttling endosomes, which suggests that these domains help anchor Rrm4 to endosomes. When only the PAM2L1 domain is present in Upa1 there was a larger increase in hyphae with aberrant microtubule staining than upon the loss of PAM2L1. The authors suggest that this indicates PAM2L2 is more important and prescribes an accessory role for MLLE2 in endosome association.
Comments:
Overall, the study seems well conducted. We cannot comment on the structural aspect of the work since this is not our field of expertise. That said, the biochemical and genetic/functional studies appear solid, well thought-out, and clearly presented. No new experiments are necessary to support the general claims of the paper, however, experiments suggested below might make it more revealing with regards to the connection between RNA binding and MLLE-PAM2L interactions (i.e. endosome localization and RNA binding functions).
This paper concerns functional domains found in an endosome-localized RNA binding protein, U. maydis Rrm4, which is necessary for localized translation on endosomes and subsequent unipolar growth. Here the authors show using structural, biochemical, and genetic studies that instead of one or two MLLE protein-protein interacting domain in Rrm4 there are three, although one (MLLE3) is necessary and sufficient for full function. This work is for an audience interested in those studying RNA trafficking and its role in cell physiology, which is our expertise. The work is interesting, but it could be made more so especially if a connection was established between the RNA-binding function of the RRM domains and the MLLE-PAM2L interaction(s). At this point it is solid technical work and could be published after minor revisions.
Referee Cross-commenting
I concur with the comments of the other reviewers in that the work is solid and necessitates minor revisions in order to be published. Clearly, establishing a connection between the RNA-binding function and the MLLE-PAM interactions of Rrm4 would be an interesting and worthy pursuit that might enhance the novelty of the work, but I agree that it could belong to future studies.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
This manuscript documents a very thorough biophysical, structural and functional dissection of interactions between the RNA-binding protein Rrm4 and the endosomal adaptor Upa1 in the filamentous fungus Ustilago maydis. It has been shown previously that the Rrm4-Upa1 interaction is critical for mRNA transport in this system as mRNAs hitchhike on motor-associated endosomes. Here, the authors reveal using modelling that Rrm4 has three MLLE domains, including a cryptic one that had not been identified previously. They then report the crystal structure of MLLE2 and analyze the distribution anf arrangement of the MLLE domains in the protein using SAXS. They then show using pulldowns and isothermal titration calorimetry that MLLE3 is critical for the Upa1 interaction (via the PAM2L domains of Upa1) and that MLLE2 contributes to Rrm4 localization in vivo when the MLLE3-Upa1 interaction is partially impaired. The study suggests that Rrm4 has a platform of MLLE domains for orchestrating Rrm4 function. Overall, this is technically a high quality study. However, a number of points (mostly minor) should be addressed.
Major comments:
A key part of the study if the in vivo work illustrating a role for MLLE2 in regulating Rrm4 localization when the system is sensitized. Some aspects of this part of the work need clarifying.
a) The authors should show that the abberant staining is indeed microtubule-related with the benomyl experiment that they used in Jankowski et al. 2019.
b) The authors claim from these experiments that MLLE2 contributes to endosomal targeting (as there is ectopic protein on other structures (presumptive microtubules)). However, to make this claim, the authors would need to measure the intensity of the mutant Rrm4 protein on endosomes and/or the colocalization of these Rrm4 variants with endosomes, as they do in other experiments in this paper. Otherwise, it is possible that the MLLE2 deletion has another effect, e.g. increasing protein stability, and thus increasing the likelihood of binding to structures other than endosomes. If available, data on the relative abundance in the cell of the protein expressed from the wild-type control (rrm4-kat) and MLLE2 deletion constructs (e.g. rrm4-m1,2delta-kat) should be provided.
c) Was the data in Figure 5D scored blind of the identity of the samples? Given that the classification has to be done manually, it is important to confirm the phenotypes are robust to blinding (at least for the key comparisons).
If points b and c are addressed, it should be possible to draw an arrow between the gray question mark protein in Figure 6 and the endosome surface, which is what I assume the authors believe to be case based on their discussion.
Minor comments:
The Feldbrugge group has previously mapped interactions between Upa1 and Rrm4 (Pohlmann et al., 2015) and some conclusions are corroborated in the paper by Boehm et al. The paper under review is, however, a significant advance due to the identification of the third MLLE domain, detailed biophysical characterization of the interactions, the structural insights, and evidence of a subsidiary role of MLLE2. The work would of course be stronger if the target of MLLE2 had been identified but I think this is beyond the scope of this initial work. To my knowledge, this is one of the most extensive analyses of the interactions mediated by MLLE and PAM domains and will be of interest to others working on these protein features. The work will also appeal to those interested in the links of localizing mRNAs with motor-associated membranes, which is an emerging field.
Reviewer expertise: I have a long-standing interest in molecular analysis of mRNA trafficking mechanisms. I do not have experience in fungal genetics.
Referee Cross-commenting
It seems that we are in agreement that this is solid work and that biochemical and biophysical analysis of the MLLE-PAM interactions will be of significant interest to those working on those domains (or proteins containing those domains). I agree with the comments of the other reviewers and there are clearly some essential minor revisions needed to strengthen the evidence for their conclusions and some clarifications. I think it is a long shot that RNA binding to the RRMs will affect the MLLE-PAM interactions and would require quite a lot of work to show this conclusively. The study would, however, be more impactful if this was shown to be the case, or the target of MLLE2 was found. Nonetheless, I would not say these new avenues of research are necessary to find a home in one of the Review Commons journals.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1: General comments:
Fujimoto and collaborators use Nanopore-based cDNA sequencing for genome-wide transcriptome analysis of a collection of hepatocellular carcinomas (HCCs) and matched normal liver tissues. To improve detection of alternatively spliced isoforms and hybrid transcripts potentially deriving from genomic rearrangements, they develop a dedicated pipeline SPLICE, which they benchmark against available software used for the same analysis. Besides having dual functionality (calls both alternative transcripts and fused transcripts), SPLICE seems to outperform previous software in calling alternative/fused transcripts and accuracy. They use the SPLICE pipeline to call isoforms and gene fusions in normal liver cells and HCCs and perform basic functional validations on novel fusions identified. The manuscript is well written, and the analyses are well performed. Perhaps the benchmarking of the SPLICE pipeline could have been more extensive (i.e., performed on additional independent datasets).
Major points: 1. Line 149-150: "We compared the results of mapping to the reference genome and the reference transcriptome sequences, and removed candidates if both were inconsistent (removal of mapping errors). " Please specify what "both were inconsistent" means.
Our reply; Thank you for this comment. The accuracy of fusion gene detection is influenced by mapping errors. To remove possible mapping errors, SPLICE aligned reads to the reference genome and the reference transcriptome sequences and compared the results. If the results are inconsistent (for example, GeneA-GeneB in the reference genome and GeneA-GeneB in the transcriptome genome, or GeneA-GeneB in the reference genome and GeneA in the transcriptome genome), SPLICE considers the candidates as false positive and removes them from the analysis.
We changed the sentence “We compared the results of mapping to the reference genome and the reference transcriptome sequences, and removed candidates if both were inconsistent (removal of mapping errors).” to “we compared the results of mapping to the reference genome and the reference transcriptome sequences, and removed candidates if both results did not detect same fusion genes (removal of mapping errors).” (line 150-152).
Our reply; Thank you very much for this important comment. As the reviewer mentioned, exonization of TE may affect the splicing patterns and gene expression levels of transcripts. To determine the effect of TE on expression levels, we compared the expression levels of transcripts with TE-derived novel exons with those of known transcripts of the gene. We found that the expression levels of transcripts with TE-derived novel exon were lower than those of known transcripts (Figure 1 in the reply). Since the same results were observed in all novel transcripts (Fig. 1E,F), most TE exonization would not affect the expression level of transcripts.
We then analyzed the effects of TE in the splicing change, we compared the numbers of novel splicing junctions between transcripts with TE-derived novel exons and other transcripts in each gene. The proportions of genes with novel splicing junctions were not significantly different between the transcripts with TE-derived novel exons and others (transcripts with TE-derived novel exons; 9.1% and others; 11.9%) (Figure 2 in the reply). As observed in L1-*MET* and L2-*RHR1*, transposons can affect expression levels and structures of transcripts, however, their effect would be limited to a part of genes.
Figure 1
Comparison of expression levels of transcripts with TE-derived novel exon and known transcripts. Only transcripts derived from genes with TE-derived novel exons were compared. The total number of transcripts is shown below the plot. Transcript abundance was measured in reads per million reads (RPM), and log10 converted values for RPM were shown in the violinplot. P-values were calculated by Wilcoxon rank-sum test.
Figure 2
Comparison of the percentage of novel splicing junction in transcripts with novel TE-derived exon and other transcripts. The total number of genes are shown below the plot. Transcripts with TE-derived novel exons and other transcripts were compared. P-value was calculated by Fisher’s exact test.
Our reply; Thank you for this comment. Although NBEAL1-RPL12 fusion was detected by SPLICE, mapping results to the reference genome and the reference transcriptome were inconsistent and removed from the final result. AsNBEAL1-RPL12 was not validated by PCR (Supplemental Fig. S4B) (line 183-184), we consider that this fusion-gene is a false positive, and filtering of SPLICE successfully removed false-positive fusions.
Our reply; Thank you very much for this comment. Expression levels were calculated by log10 converted reads per million reads (log10(RPM)) for each sample. We added the following sentences to the "Expression from HBV" subsection in the Results (line 337-338); “Expression levels were estimated by log10 converted support reads per million reads (log10(RPM)) for each sample.”.
Our reply; Thank you for this comment. The values of the y-axis are row read counts. We added the following sentences to the Figure legend (line 348); “Y-axis shows the total number of support reads (raw counts).”.
Our reply; We apologize for the confusing description. All HBV-human genome fusion transcripts were selectively expressed in tumor or normal liver. We added the following sentence to the "Expression from HBV" subsection in the Results (line 365-366); “All of these HBV-human genome fusion transcripts were selectively expressed in the HCCs and the livers.”.
Our reply; Thank you for this comment. Fig. 4C shows the number of HBV-human fusion transcripts in the six categories. If this comment refers to Fig. 4H, cell lines transfected with the empty vector (pIRES2-AcGFP1-Nuc) was used as controls. This has been described in the "Gene overexpression" subsection of Methods (line 716-717).
Our reply; Thank you for this important comment. In HCCs and normal livers, only the novel MYT1L transcript was expressed from this locus, and no known transcript of MYT1L was expressed. We changed the sentence “In the MYT1Lgene, a highly-conserved novel exon was detected (Fig. 2E), and this transcript was significantly down-regulated in the HCCs” to “In the MYT1L gene, a highly-conserved novel exon was detected (Fig. 2E), and only a transcript with the novel exon was expressed.” (line 471-472).
Minor points: 1. Table S4: there is a typo, correct “secific” in “specific”
Our reply; Thank you very much for this comment. We corrected the typo of Table S4.
*
*
*Reviewer #2: General comments:
Summary: This is both a presentation of a pipeline for analysis of Nanopore RNA-seq data, as well as an analysis of a cohort of 44 hepatocellular carcinomas against matched-normal liver tissue. It presents a number of quite intriguing results from the long-read RNA analysis, and suggests potential new targets for study in HCC. It is also worth noting that the current version of guppy (6) has functionality to detect primer sequences in the middle of reads and split those reads, which may obviate one of the steps in SPLICE.*
*Major comments:
1) The work done in this study used data that was basecalled using guppy 3.0.3. Since that version, I am aware of at least two major upgrades to the base caller accuracy, which would likely also improve the accuracy of isoform resolution. Given that the data is relatively low-coverage and that you have an automated workflow for the analysis, I would recommend re-basecalling using an updated basecaller and re-running your analysis using that. This is especially important given your comments in the paper about splice site misalignment.*
Our reply; Thank you very much for this important comment. We performed basecalling of a sequence data of MCF7 using the latest guppy v6.0.6 and compared the result with that by guppy v3.0.3. We randomly extracted 1M reads from MCF-7 reads that passed qscore filtering in guppy basecaller. The same reads were extracted and basecalled by guppy v3.0.3. These two data were analyzed by SPLICE.
The average error rate was 4.6 % for v6.0.6 and 6.8 % for v3.0.3. The number of transcripts was 9,674 for v6.0.6 and 9,329 for v3.0.3. Of these, the number of novel transcripts was 446 and 410, respectively. The number of fusion genes was 2 (BCAS3-BCAS4, and BCAS3-ATXN7) by v6.0.6 and one (BCAS3-BCAS4) by v3.0.3. As the reviewer mentioned, we found that using the latest version of guppy improved the accuracy and detected a larger number of transcripts.
We added the results to Supplemental Table S12. We also changed the sentences from “Second, our analysis removed the change of splicing sites within 5 bp to remove alignment errors (Fig. 1B). We consider that this cutoff value is necessary due to currently available high-error reads (S____upplemental Data S____2). However, sequencing technologies and basecallers are improving, and in the near future, we should be able to use a smaller cutoff value and identify larger numbers of splicing changes.” to “Second, the accuracy of the analysis depends on the sequencing error rate. Although several filters are used for currently available high-error reads (Fig. 1B and ____Supplemental____ Fig. S1), sequencing errors would affect the accuracy of the result. Sequencing technologies and basecallers are improving, and in the near future, we should be able to identify larger numbers of splicing changes with high accuracy (Supplemental Table S10).” (line 538-542).
2) You have compared your software to another tool for isoform analysis on Nanopore sequencing data, TALON. But a number of other tools exist for this purpose, including stringtie2, flair and bambu. My own testing has shown that stringtie2 outperforms TALON in terms of concordance with Illumina RNA-seq. It is quite important that you perform a complete comparison of your software to the state of the art for this purpose.
Our reply; Thank you very much for this important comment. We compared our tool with four tools (TALON, FLAIR, StringTie, and bambu). For this comparison, we used sequence data of MCF-7 and HCC (RK107C). We randomly extracted 1 M reads from MCF-7 and HCC (RK107C) sequence data using Seqtk (v1.3) (params: sample -s1 1000000). Reads were mapped to the reference genome sequence (hg38) with minimap2 (v2.17) (params: -ax splice --MD), and the output SAM files were converted to BAM files and sorted with samtools (v1.7) (Li et al. 2009).
For benchmarking of TALON (v5.0), we corrected aligned reads with TranscriptClean (v2.0.3) (Wyman and Mortazavi 2018). Next, we ran the talon_label_reads module to flagging reads for internal priming (params: --ar 20). TALON database was initialized by running the talon_initialize_database module (params: --l o --5p 500 --3p 300). Then, we ran the talon module to annotate the reads (params: --cov 0.8 --identity 0.8). To output transcript abundance, we first obtained a whitelist using the talon_filter_transcripts module (params: --maxFracA 0.5 --minCount 5), and then quantified transcripts using the talon_abundance module based on the whitelist. For FLAIR (v1.5), the sorted BAM file was converted to BED12 using bin/bam2Bed12.py. We then corrected misaligned splice sites with the flair-correct module. High-confidence isoforms were defined from the corrected reads using the flair-collapse module (params: -s 3 --generate_map). For benchmarking of StringTie (v2.2.1), Stringtie was performed with input files consisting of long-read alignment and reference annotation (params: -L -c 3). For benchmarking of bambu (v2.0.0), Bambu was performed with input files consisting of long-read alignment, reference annotation and reference genome (hg38) (params: min.readCount = 3). Candidates with low expression levels (support reads As a result, SPLICE identified the third-highest number of transcripts followed by FLAIR and StringTie (Supplemental Fig. S3A). In MCF-7 the concordance rate with IsoSeq MCF-7 transcriptome data was the highest in SPLICE for known transcripts and the second highest in SPLICE for novel transcripts (Supplemental Fig. S3B). These results indicate that SPLICE has sufficient accuracy for analyzing transcript aberrations.
We added the text to the "Comparison of SPLICE method with other tools" subsection of the Results (line 165-177) and the "Benchmarking" subsection of the Methods (line 640-679). We added the results to Supplemental Fig. S3.
3) Likewise, for fusion detection, you compare to LongGF. You should also compare to (and cite) JAFFAL.
Our reply; Thank you very much for this important comment. We compared our tool with the two tools (LongGF and JAFFAL). We used 1 M reads randomly extracted from MCF-7 and HCC (RK107C) sequence data as described above.
For benchmarking of LongGF (v0.1.2), reads were mapped to the reference genome sequence (hg38) with minimap2 (v2.17) (params: -ax splice --MD), and the output SAM files were converted to BAM files and sorted with samtools (v1.7). We then ran the *longgf* module and obtained the list of fusion genes (params: min-overlap-len 100 bin_size 50 min-map-len 200 pseudogene 0 secondary_alignment 0 min_sup_read 3). For benchmarking of JAFFAL (v2.2), we ran the *JAFFAL.groovy* module with zipped fastq files.
In this comparison, close gene pairs (We added the text to the "Comparison of SPLICE method with other tools" subsection in the Results (line 178-186) and the "Benchmarking" subsection in the Methods (line 667-679). We showed the results in Supplemental Fig. 4.
4) In terms of the source code, I have questions. Why did you use BASH to run the Python code, instead of making this into a Python package? Why did you not use the functionality already available in BioPython for a number of basic sequence data handling tasks? Why is there not even a single function defined anywhere, let alone classes?
At some level, if it works, it works. But I have serious concerns about the long-term maintainability of the code in its current state.
Our reply; Thank you very much for this critical comment. As the reviewer mentioned, we think it is better to make a python package and use BioPython for maintenance and long-term maintainability of the code. We have been building our analysis pipeline by trial and error, and at this stage, the current scripts are convenient for us (our group may need to learn software development). We provided a Docker package (see the reply to comment 5)), and this would promote usability.
5) Also related to the code, it is generally the standard now to create a BioConda package or Docker container for a bioinformatics package. BioConda has the advantage that the BioContainers project automatically generate Docker and Singularity containers from it. Please provide one of these.
Our reply; Thank you very much for this critical comment. We made a Docker file and provided it from our github page. It is available from the "Installation and usage via Docker" section.
6) There is some quite nice functional validation work done on some of the DE transcripts that would have been hidden in a gene-level analysis. There is also some nice work on detecting HBV fusion genes. These both contain important results which are not mentioned at all in the abstract. I feel like the abstract as it stands is selling the paper short.
Our reply; Thank you very much for this important comment. We added the following sentences to the abstract; “Comparison of expression levels identified 9,933 differentially expressed transcripts (DETs) in 4,744 genes. Interestingly, 746 genes with DETs, including LINE1-MET transcript, were not found by the gene-level analysis. We also found that fusion transcripts of transposable elements and hepatitis B virus (HBV) were overexpressed in HCCs. In vitro experiments on DETs showed that LINE1-MET and HBV-human transposable elements promoted cell growth.”.
7) Fig 5C shows a Venn diagram of fusions detected by short-read vs long-read sequencing, in which there is quite low overlap between these. You make the statement in the paper that "a combination of short- and long-reads can detect more fusion genes". I find it more likely that the short-read ICGC data had much greater depth of coverage than the MinION data you produced, which allowed for the detection of fusions that were expressed at much lower levels. This could be easily tested by downsampling the ICGC data to the same amount of sequence data as was generated on the MinION, and re-creating the Venn diagram with the fusions detected that way.
Our reply; Thank you very much for this very important comment. We compared the amount of data between our long-reads and the previous short-reads. However, the amounts of data were not quite different (Supplemental Fig. S14A). Therefore, differences in depth are not likely to be the cause of the low overlap. We considered that two possibilities could explain the low overlap. First, most of the fusion genes missed by short-read were very low expression levels, less than 1 reads per million reads (RPM) (Supplemental Fig. S14B), therefore, there are many fusion-genes with low expression levels, and they are difficult to be detected. Second, 28.9 % of transcripts in long-reads lacked 5' region (Supplemental Fig. S5 and Supplemental Fig. S14C,D). Therefore fusion-genes whose breakpoints are located in the 5' region were difficult to detect by long-read.
We added the following sentences to the "Fusion genes" subsection in the Results (line 400-405); “We considered that two possibilities could explain the low overlap. Since the most of the fusion genes missed by short-reads had very low expression levels (Supplemental Fig. S14B), many fusion-genes with low expression levels would be missed by a single approach. In addition, 28.9 % of transcripts in long-reads lacked 5' region (Supplemental Fig. S5 and Supplemental Fig. S14C, D). Therefore fusion-genes whose breakpoints are located in the 5' region would be difficult to detect by long-read.”. We also added a figure on the amount of data to Supplemental Information (Supplemental Fig. S14A).
8) Figure 5D is very interesting. What do you conclude from that result? Please comment in the manuscript.
Our reply; Thank you very much for this important comment. We used samples that used for whole-genome sequencing in our previous study. Therefore, a list of SVs is available. We classified fusion-gene to these supported by SVs (SV detected fusion-genes) and others (no SV detected fusion-genes), and compared the expression levels of them (Figure 5D).
Whole-genome sequencing can accurately identify clonal (high frequency) SVs, however, would miss sub-clonal (low frequency) SVs. Therefore, we considered that no SV detected fusion-genes were generated by sub-clonal SVs. This result suggests that there are a lot of sub-clonal fusion genes, and their expression levels are lower than clonal fusion genes. Although the functional importance of sub-clonal fusion genes is currently unknown, deeper RNA sequencing would detect a larger number of fusion genes.
We added the following sentences to the “Fusion genes” subsection in the Results (line 410-412); “This result suggests that there are a lot of sub-clonal fusion genes, and their expression levels are lower than clonal fusion genes. Although the functional importance of sub-clonal fusion genes is currently unknown, deeper RNA sequencing would detect a larger number of fusion genes.”.
*Minor comments:
1) The manuscript has many small errors in English grammar, spelling and style. I would strongly recommend sending it for copy editing before submitting it to a journal.*
Our reply; Thank you very much for this comment. Due to the limitation of time, the current version has not been proofread by a native-English speaker. We are planning to review English grammar by a native-English speaker.
2) Neither the results section nor the methods section describing the sequencing that was performed specify whether it was done on a MinION or PromethION (or flongle). While this is implied elsewhere in the paper, it should definitely be specified in the methods at a minimum.
Our reply; Thank you for this comment. We used a MinION for sequencing. We added the following sentences to the Method section (line 579-580); “Libraries were sequenced on a SpotON FlowCell MKⅠ(R9.4) (Oxford Nanopore), using the MinION sequencer (Oxford Nanopore)”.
3) You also write in the introduction that your method, SPLICE, was developed for the MinION specifically. Please comment on its applicability to data generated on the PromethION and flongle Nanopore sequencers.
Our reply; Thank you very much for this comment. We consider that our method is applicable to data from MinION, PromethION, and flongle. We added the following sentence to the Methods section (line 592-593); “In the present study, we analyzed sequence data from MinION. We consider that our method is applicable to data from MinION, PromethION, and flongle.”.
4) The volcano plot in Fig 3A is missing its dots.
Our reply; Thank you very much for this comment. We modified the Fig. 3A.
*Reviewer #3: General comments:
Summary: In this manuscript, Kiyose et al have developed and tested a novel methodology for identifying splicing alterations, and fusions, from full-length transcript or long read sequencing data. They apply this approach to liver cancer and paired, non-cancerous liver tissue from a prior publication, and use wet-lab/experimental methods to validate their in silico findings. They conclude that their new methodology, SPLICE, outperforms one existing method, and is uniquely suitable to identifying fusion genes.*
Major Comments: 1) Figure 1B shows a schematic of common error patterns from MinION cDNA sequencing, and the text of the manuscript describes how the authors' new approach (SPLICE), overcomes several of these, e.g. sequencing errors, artificial chimeras, and mapping errors of highly homologous genes. However, there is a fundamental disconnect between the text and the graphic in Figure 1B. This should either be revised for clarity, or an additional graphic or flowchart placed in the supplementary materials to clearly show *how* SPLICE overcomes each of these limitations.
Our reply; We apologize for the insufficient explanation in Figure 1. We showed a detailed explanation of the data analysis procedure in Supplemental Fig. S1.
2) Why was TALON the only alternative approach chosen for validation of SPLICE performance? There are a number of other, more advanced pipelines such as SUPPA2, and IsoformSwitchAnalyzeR. It would strengthen the manuscript, and its conclusions, to incorporate at least one of these methods as a second comparator. This is particularly true for IsoformSwitchAnalyzeR, since Kiyose et al identify a number of differentially expressed transcripts (DETs) for genes that are not differentially expressed.
Our reply; Thank you very much for this important comment. Another reviewer also requested additional benchmarking, therefore we performed an additional performance comparison for the revised manuscript. As SUPPA2 and IsoformSwichAnalyzeR are used to analyze the annotated output GTF files, and direct comparison with SPLICE is difficult. Since IsoformSwichAnalyzeR recommends StringTie as an annotation soft, we compared using StringTie instead.
We compared the performance of SPLICE with that of four other methods (TALON, FLAIR, StringTie and Bambu) for splicing variant detection. SPLICE identified the third-highest number of transcripts followed by FLAIR and StringTie (Supplemental Fig. S3A). In MCF-7 the concordance rate with IsoSeq MCF-7 transcriptome data was the highest in SPLICE for known transcripts and the second highest in SPLICE for novel transcripts (Supplemental Fig. S3B).
We added the text to the "Comparison of SPLICE method with other tools" subsection of the Results (line 165-177) and the "Benchmarking" subsection of the Methods (line 640-665). We added the results to Supplemental Fig. 3.
3) The Venn diagram in Figure 5C appears to show that conventional short read sequencing identifies 46 fusion genes that are not also detected by long read sequencing. However, this result, and its implications are never addressed in the text.
Our reply; Thank you very much for this important comment. We apologize for the insufficient explanation. We considered that two possibilities could explain the low overlap. First, most of the fusion genes missed by short-read were very low expression levels, less than 1 reads per million reads (RPM) (Supplemental Fig. S14B), therefore these are many fusion-gene with low expression level and they are difficult to be detected. Second, 28.9 % of transcripts in long-reads lacked 5' region (Supplemental Fig. S5 and Supplemental Fig. S14C,D). Therefore fusion-genes whose breakpoints are located in the 5' region were difficult to detect by long-read.
We added the following sentences to the "Fusion genes" subsection in the Results (line 400-405); “We considered that two possibilities could explain the low overlap. The most of the fusion genes missed by short-reads had very low expression levels (Supplemental Fig. S14B). This result suggests that there are many missed fusion-genes with low expression levels. In addition, 28.9 % of transcripts in long-reads lacked 5' region (Supplemental Fig. S5 and Supplemental Fig. S14C, D). Therefore fusion-genes whose breakpoints are located in the 5' region would be difficult to detect by long-read.”. We also added a figure on the amount of data to Supplemental Information (Supplemental Fig. S14A).
Minor Comments: 1) On pages 20-21, the language used to describe the HBV and/or HCV postive vs negative materials is very confusing. Please clarify that by "HBV- and HCV-related tissues" you in fact mean "HBV-and HCV-infected samples."
Our reply; We apologize for the confusing wording. We converted "HBV and HCV-related tissues" to " HBV and HCV-infected samples" in the manuscript.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
In this manuscript, Kiyose et al have developed and tested a novel methodology for identifying splicing alterations, and fusions, from full-length transcript or long read sequencing data. They apply this approach to liver cancer and paired, non-cancerous liver tissue from a prior publication, and use wet-lab/experimental methods to validate their in silico findings. They conclude that their new methodology, SPLICE, outperforms one existing method, and is uniquely suitable to identifying fusion genes.
Major Comments:
Minor Comments:
There is somewhat strong significance to this advance. As promising as long read, full-transcript sequencing is for the field, current limitations such as its high error rate have limited applicability, and most of the current analytic pipelines require complementary short read RNA sequencing to be performed in parallel for error correction. The authors assert that SPLICE overcomes these limitations, and to some extent demonstrates this. As a predominantly wet-lab experimentalist in the area of RNA processing, I have the relevant expertise to most rigorously assess the downstream impacts of findings from pipelines such as SPLICE, e.g. the validation experiments shown in the latter portion of the manuscript. These are uniformly strong. Where I was challenged some is in the authors' explanations of how and why SPLICE's specific design, as an algorithm, overcomes the known limitations in current analytic pipelines for long-read sequencing.
Referees cross-commenting
I concur with Reviewer 2. I think the 3 of us were broadly enthusiastic, yet raised some of the same concerns. In my view, these concerns should be able to be readily addressed by the authors.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
This is both a presentation of a pipeline for analysis of Nanopore RNA-seq data, as well as an analysis of a cohort of 44 hepatocellular carcinomas against matched-normal liver tissue. It presents a number of quite intriguing results from the long-read RNA analysis, and suggests potential new targets for study in HCC. It is also worth noting that the current version of guppy (6) has functionality to detect primer sequences in the middle of reads and split those reads, which may obviate one of the steps in SPLICE.
Major comments:
At some level, if it works, it works. But I have serious concerns about the long-term maintainability of the code in its current state. 5. Also related to the code, it is generally the standard now to create a BioConda package or Docker container for a bioinformatics package. BioConda has the advantage that the BioContainers project automatically generate Docker and Singularity containers from it. Please provide one of these. 6. There is some quite nice functional validation work done on some of the DE transcripts that would have been hidden in a gene-level analysis. There is also some nice work on detecting HBV fusion genes. These both contain important results which are not mentioned at all in the abstract. I feel like the abstract as it stands is selling the paper short. 7. Fig 5C shows a Venn diagram of fusions detected by short-read vs long-read sequencing, in which there is quite low overlap between these. You make the statement in the paper that "a combination of short- and long-reads can detect more fusion genes". I find it more likely that the short-read ICGC data had much greater depth of coverage than the MinION data you produced, which allowed for the detection of fusions that were expressed at much lower levels. This could be easily tested by downsampling the ICGC data to the same amount of sequence data as was generated on the MinION, and re-creating the Venn diagram with the fusions detected that way. 8. Figure 5D is very interesting. What do you conclude from that result? Please comment in the manuscript.
Minor comments:
Nature and significance of the advance: The paper presents several exciting advances in terms of tumour biology. The authors demonstrate how alternative splicing can drive liver cancer, while being undetectable by short-read sequencing. They also show a large number of fusion transcripts that were validated by RT-PCR but were undetectable with short-read sequencing. The analysis method they present, SPLICE, contains a number of smaller advances, but raises major concerns about its capacity to act as a maintainable piece of bioinformatics software.
Comparison to existing published knowledge: The authors compare the software they present to a single tool in the same class for the two functions it performs (isoform analysis and fusion detection). A more thorough comparison to a broader range of available tools would be better.
In terms of biology, the authors extensively cite related literature to place their discoveries in context.
Audience: Cancer researchers, anyone interested in doing isoform-level differential expression analysis or gene fusion detection using Nanopore RNA-seq data.
My expertise: I am a staff scientist working on developing and testing tools for Nanopore sequencing analysis at a cancer research centre.
Referees cross-commenting
I fully agree with all of the comments by the other two reviewers.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Fujimoto and collaborators use Nanopore-based cDNA sequencing for genome-wide transcriptome analysis of a collection of hepatocellular carcinomas (HCCs) and matched normal liver tissues. To improve detection of alternatively spliced isoforms and hybrid transcripts potentially deriving from genomic rearrangements, they develop a dedicated pipeline SPLICE, which they benchmark against available software used for the same analysis. Besides having dual functionality (calls both alternative transcripts and fused transcripts), SPLICE seems to outperform previous software in calling alternative/fused transcripts and accuracy. They use the SPLICE pipeline to call isoforms and gene fusions in normal liver cells and HCCs and perform basic functional validations on novel fusions identified. The manuscript is well written, and the analyses are well performed. Perhaps the benchmarking of the SPLICE pipeline could have been more extensive (i.e., performed on additional independent datasets).
Major points:
Minor points:
The Authors show that applying long-reads sequencing to the study of the transcriptome, combined with their improved in-house analyses pipeline, leads to the identification of novel transcripts, which are alternative splicing isoforms and transcripts originating from novel gene fusions with potential oncogenic function. This provides a proof of principle study which show the advantages of long-reads sequencing and offers a solid data for further mechanistic studies on liver cancer.
Referees cross-commenting
I also agree with the other reviewers. All the concerns expressed by the reviewers seem addressable in a reasonable timeframe.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Overall we were elated to have received such positive comments on the manuscript, with requests for only minor changes. We have made all suggested changes to clarify or tone down the language as suggested.
We would like to thank each of the three reviewers for their assessment of our work. We note that all three reviewers agreed the phylogenetic analysis was interesting and convincing. Two of the three reviewers felt the study sufficiently demonstrated roles for Baramicin in the nervous system. We have responded to comments from Reviewer 2 to draw attention to some aspects of the data that they may have been overlooked, which we hope reassures them that our proposal of BaraB and BaraC involvement in the nervous system is robust, coming from different approaches that show consistent results.
Reviewer 1 and Reviewer 3 compliment the study as being very worthwhile, and for suggesting concrete routes for how an AMP evolved non-immune functions. Both compliment its comprehensiveness, and describe the study as having striking findings that should have broad appeal to audiences interested in the crosstalk between the nervous system and the innate immune system.
In the revised manuscript file, we have highlighted all text where changes were made.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
The authors provide convincing evidence for an evolutionary scenario in which duplications of an AMP gene with ancestral immune function led to paralogs specialist for neural functions. They focus on the Baramicin genes, coding for major Toll signalling targets in the context of antifungal defence. Their study uses infection experiments in several Drosophila species, a careful annotation of the Baramicin genes of D. melanogaster, the demonstration of neural expression of BaraB and BaraC, the KD analysis of Bara B revealing lethality and neurological phenotypes, a reconstruction of the evolutionary history of Baramicn genes in Drosophilids and an analysis of the sequence evolution of the IM24 domain providing the neural functions. In general the paper is well written. There are a few places in the manuscript where the language can be improved and one point, which needs clarification: - ine 297: ...,which did not present with... - line 314/315: ...to just 14% that of...to 63% that of - line 459: ..., we this motif... - line 518: What does "... genomic relatedness (by speciation and locus)..." mean? - line 527/528: ...drive behaviour or disease through interactions... - line 532: ... ancestrally encodes distinct peptides involved with either the nervous system or the immune response... line 535: ...with either the nervous system (IM24) or.... Do the data provide enough evidence suggesting that IM24 had a neural function in the ancestor? Ideally the authors should look at neural expression of the Baramicin gene in the ourgroup, S. lebanonensis. The authors later (line571) admit, that they cannot rule out that IM24 is also antimicrobial.
We thank reviewer #1 for drawing attention to these points. We have made changes to each line to be more concise, clarify our meaning, or fix typos.
Reviewer #1 (Significance (Required)):
This is a very comprehensive study, which, to my knowledge for the first time, suggests concrete routes of how an AMP evolved non-immune functions. One of the striking findings of this paper is that duplications and subsequent truncations of the ancestral Baramicin locus linked to specialisation for neural functions occurred independently in different Drosophila lineages.
We thank reviewer #1 for their very positive comments. We also agree with all suggested changes, including more careful phrasing to emphasize that we have not described a mechanism, just an involvement in the nervous system. For instance, see lines 556-568 are reworked to soften language and explicitly state the ancestral function of IM24 is unknown, and our suggestion that IM24 could underlie Dmel\BaraA interactions with the nervous system is speculation that should be tested.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Hanson and Lemaitre present a genomic and phylogenetic characterization of the Baramicin family of antimicrobial peptide genes in different species. They discover new Baramicin paralogs, united by the presence of an IM24 domain at the N-terminus. They show that among Baramicins, those that are not inducible by infection (which they improperly call non-immune since a protein can be non-inducible by infection and have very important immune functions), are truncated. They propose that an ancestor peptide with immune functions evolved into a neuronal regulator/effector via truncation.
Although the hypothesis is interesting, the data do not really support it. This manuscript is rather descriptive at this point. The demonstration that IM24 is necessary for neural function is very tenuous. For example, in the paragraphs titled Dmel\BaraB is required in the nervous system during development and Baramicin B plays an important role in the nervous system, I did not find convincing data demonstrating that BaraB is required in the nervous system. The only data that links BaraB to the nervous system is a weak locomotion defect observed in the BaraB mutant. But how many genes, when inactivated, give a locomotion defect? This remains totally unexplained at the molecular level. The authors also mentioned that BaraB is expressed in a subset of mechanosensory neuron cells in the wing. What is the link between this expression and the nubbin phenotype? The authors also mention that data in the literature indicate that BaraC is expressed in glial cells but also in other tissues. Finally, we have no idea what role, if any, these peptides have in the nervous system.
While the characterization of the Baramicin gene family and its evolution across species is convincing, the link between these AMPs and the nervous system is really too preliminary to be convincing. The manuscript would greatly benefit from being more concise.
Reviewer #2 (Significance (Required)):
see above
We thank reviewer #2 for their fair assessment. We have made edits to soften our phrasing, and to emphasize that we have not described a mechanism, just an involvement, in the nervous system.
Examples:
line 270: “integral development role” -> “important for development”
line 277: “Baramicin B plays an important role in the nervous system“ -> “Baramicin B suppression in the nervous system mimics mutant phenotypes”
line 532: “Here we demonstrate that the Baramicin antimicrobial peptide gene of Drosophila ancestrally encodes distinct peptides involved with either the nervous system or the immune response.“ -> “Here we demonstrate that the Baramicin antimicrobial peptide gene of Drosophila ancestrally encodes distinct peptides that may interact with either the nervous system (IM24) or invading pathogens (IM10-like, IM22).”
line 562 new text: “Thus while our results suggest that IM24 of different Baramicin genes might underlie Baramicin interactions with the nervous system, we cannot exclude the possibility that IM24 is also antimicrobial, or even that antimicrobial activity is IM24’s ancestral purpose. Future studies could use tagged IM24 transgenes or synthetic peptides to determine the host binding partner(s) of secreted IM24 from the immune-induced Dmel\BaraA, and/or to see if IM24 binds to microbial membranes.”
We have also changed all instances of “non-immune Baramicins” to “Baramicins lacking immune induction” or something to that effect (e.g. new Lines 25,464, 469,478-82).
We also made some small changes to be more concise (e.g. line 387, 447, cut lines 492-495 from previous version, cut lines 506-507 from previous version).
We have responded below in the reviewer-to-reviewer comments for a few of the specific points raised there, which we hope further assuage some of Reviewer 2’s concerns.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Antimicrobial peptides are main effectors in (insect) immune defenses. It is becoming more and more clear, that AMPs can have pleiotropic effects or even acquire new functions. In the present paper, the authors investigate Baramicin, an antifungal AMP that they described first in publication last year. Here they show that in Drosophila melanogaster Baramicin A, which they described before, has paralogs, that are not immune-inducible. They then show that these paralogs, named BarB and BarC, which are truncated versions of BarA, are expressed in the head and neural tissues. That they have neural functions is supported by targeted gene-silencing experiments. They go on to show, using a comparative approach across Drosophila, that Baramicin A with its antimicrobial function constitutes the ancestral state. Moreover, Baramicin is also enriched in head samples of some of the other Drosophila species they study. This manuscript, which according to the acknowledgements has already been seen by reviewers, is in a very good shape.
I have only a number of minor points, that might help to clarify the presentation.
Lines 34-36: I would delete this sentence and replace it with a statement based on the main findings of the manuscript
We now conclude the abstract with “As many AMP genes encode polypeptides, a full understanding of how immune effectors interact with the nervous system will require consideration of all their peptide products.”
Lines 56-60. May be tone down a bit. Anti-inflammatory activities of AMPs have been known for a long time. I think the next paragraph makes a very good case what is already known and is hence a nice motivation for the current study.
Toned down. This part now reads: “However AMPs and AMP-like genes in many species have recently been implicated in non-immune roles in flies, nematodes, and humans, suggesting non-immune functions might help explain AMP evolutionary patterns.”
Line 125: classical instead of classically
done
Line 200: what is a 'novel' time course? I would just describe what has been done.
Now reads: “We next measured Baramicin expression over development from egg to adult.”
Line 268: hypomorph, I guess in the literature usually hypomorphic is used.
done
Line 279: I would suggest to tone this headline down. This is not a criticism of the paper, but the actual mechanisms of the roles in the nervous system are not studied here.
Done. Now reads: “Baramicin B suppression in the nervous system mimics mutant phenotypes”
Line 505: what does not really become clear is whether IM24 plays an important role in the nervous system of fly species that only have BarA.
Edits from lines 556-568 now help highlight this question.
Line 540-549. This comparison I find a bit far-fetched, or maybe it needs clarification how doublesex expression is related to Baramicins.
Being completely honest: the doublesex discussion was requested during previous review at another journal. We agree that it is a bit of a tangent, and so we have removed these sentences.
Line 584-585. I think that this has been known for much longer from studies in frogs and beetles.
Our use of “in vivo” might have been a bit squishy here. We have edited this to reflect endogenous loss-of-function study, rather than simply “in vivo,” to clarify our intended sentiment.
Reviewer #3 (Significance (Required)):
Overall, I think that this is a very worthwhile and convincing story about the evolution AMPs and how they can acquire new functions. All the main statements are supported by careful experiments and data analysis. The paper does not go into any detail, of how the neurological role of BarB and BarC is achieved, but I think this is beyond the scope of the current manuscript. In short, this is a very worthwhile contribution to the growing literature of the role of AMPs in the nervous system. The authors provide the context of the main published papers in the area in the introduction. As opposed to most papers on this so far, the current manuscript also provides very interesting data on the evolutionary history of the Baramicin genes, both within the main study species, and within other Drosophila species. This paper should appeal to a rather broad audience of researchers interested in innate defenses, AMPs and the crosstalk between the nervous system and the innate immune system.
My background is insect immunology with a focus on AMPs and evolutionary approach.
We thank reviewer #3 for their very positive comments. We agree with all suggested changes.
**Referees cross-commenting**
This session contains the comments of all reviewers
Reviewer 3
Reviewer 2 and I share the view, that the evidence for the effects of BarB and C on the nervous system is rather limited. But I still think, that the paper provides enough new and interesting data that make it a very useful contribution. Though not a neurobiologist, I would assume that providing functional evidence for the role of BarA and B in the nervous system would justify a paper on its own. I agree though, that the relevant sections should be toned down.
Reviewer 2
As I mentioned in my review, I found the genomic and phylogenetic analysis interesting and convincing. I therefore totally agréé with reviewers 2 and 3 on that. Whether BarA and B are playing a role in the nervous system and how it does remain speculative. BaraB mutants show locomotion defects. But mutants in mitochondrial genes have locomotion defects. Can we conclude that mitochondria play a role in the nervous system? If I understand correctly, downregulating Bara in neurons only (With Elav-Gal4 driver) does not show the locomotion phenotype. it induces early lethality. How many genes when inactivated in neurons will give rise to such a phenotype? A lot. I really think that the implication of Bara in the nervous system should be seriously toned done and more presented as an hypothesis than a validated fact.
We would like to note for Reviewer 2 here that it is specifically elav> BaraB-IR that results in lethality, and in weaker gene silencing experiments, adult elav>BaraB-IR flies emerge, and they do suffer locomotor defects. Often, they got stuck in the food shortly after emerging, or would move haphazardly (which was common in flies with nubbin-like wings). We have added explicit mention that elav>BaraB-IR also results in locomotor defects (Line 288-289).
Our private speculation is that the reason flies fail to emerge from their pupae is because they are so uncoordinated that they sometimes cannot wriggle out of the pupal case before their cuticle hardens. In some instances, both using mutants and RNAi, we observed fully developed adults with mature abdominal pigmentation that died trapped inside their pupal cases.
We’d also like to emphasize here that despite testing many other Gal4 drivers, including mef2-Gal4 (muscle/myocytes), nubbin-like wings and lethality were only found using elav-Gal4. A role interacting with mitochondria would likely have been revealed using mef2-Gal4, given the importance of mitochondrial function in muscle.
For BaraC: expression in other tissues (like the rectal pad) could nevertheless be from e.g. nerves innervating the muscles controlling the sphincter. Or it could indeed be entirely unrelated to the nervous system. However we feel the nearly perfect overlap with Repo-expressing cells is a strong argument for a neural role. We also made an effort using RNAi to validate this pattern suggested by scRNAseq, which confirmed a strong knockdown of BaraC-IR with Repo-Gal4 (Fig. 3, Fig. S4).
We hope these comments clarify for Reviewer 2 why we feel confident in proposing a role for Baramicins in the nervous system, even if we do not investigate a mechanism in this study.
Reviewer 1
I agree with reviewer 3 that the main message of the paper providing a concrete scenario of how non-immune functions of AMPs may evolve is an important contribution. A deep investigation of the neural function is definitely going beyond the scope of the paper. Indeed this might be quite tricky. But it would help if the authors could clarify their idea about the ancestral condition. Is there the possibility that IM24 had ancestrally already non-immune function? They are not really clear about this point.
Reviewer 2
I agree with the other reviewers that determining the exact role of Bara peptides could be complicated. I just ask that the authors limit themselves to proposing that the peptides have lost their immune function. I stress that this argument is not very strong. It relies solely on the lack of inducibility of these peptides following infection. I still think that the demonstration of the role of Bara in the nervous system is not provided.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Antimicrobial peptides are main effectors in (insect) immune defenses. It is becoming more and more clear, that AMPs can have pleiotropic effects or even acquire new functions. In the present paper, the authors investigate Baramicin, an antifungal AMP that they described first in publication last year. Here they show that in Drosophila melanogaster Baramicin A, which they described before, has paralogs, that are not immune-inducible. They then show that these paralogs, named BarB and BarC, which are truncated versions of BarA, are expressed in the head and neural tissues. That they have neural functions is supported by targeted gene-silencing experiments. They go on to show, using a comparative approach across Drosophila, that Baramicin A with its antimicrobial function constitutes the ancestral state. Moreover, Baramicin is also enriched in head samples of some of the other Drosophila species they study. This manuscript, which according to the acknowledgements has already been seen by reviewers, is in a very good shape.
I have only a number of minor points, that might help to clarify the presentation.
Lines 34-36: I would delete this sentence and replace it with a statement based on the main findings of the manuscript
Lines 56-60. May be tone down a bit. Anti-inflammatory activities of AMPs have been known for a long time. I think the next paragraph makes a very good case what is already known and is hence a nice motivation for the current study.
Line 125: classical instead of classically
Line 200: what is a 'novel' time course? I would just describe what has been done.
Line 268: hypomorph, I guess in the literature usually hypomorphic is used.
Line 279: I would suggest to tone this headline down. This is not a criticism of the paper, but the actual mechanisms of the roles in the nervous system are not studied here.
Line 505: what does not really become clear is whether IM24 plays an important role in the nervous system of fly species that only have BarA.
Line 540-549. This comparison I find a bit far-fetched, or maybe it needs clarification how doublesex expression is related to Baramicins.
Line 584-585. I think that this has been known for much longer from studies in frogs and beetles.
Overall, I think that this is a very worthwhile and convincing story about the evolution AMPs and how they can acquire new functions. All the main statements are supported by careful experiments and data analysis. The paper does not go into any detail, of how the neurological role of BarB and BarC is achieved, but I think this is beyond the scope of the current manuscript.
In short, this is a very worthwhile contribution to the growing literature of the role of AMPs in the nervous system. The authors provide the context of the main published papers in the area in the introduction. As opposed to most papers on this so far, the current manuscript also provides very interesting data on the evolutionary history of the Baramicin genes, both within the main study species, and within other Drosophila species.
This paper should appeal to a rather broad audience of researchers interested in innate defenses, AMPs and the crosstalk between the nervous system and the innate immune system.
My background is insect immunology with a focus on AMPs and evolutionary approach.
Referees cross-commenting
This session contains the comments of all reviewers
Reviewer 3
Reviewer 2 and I share the view, that the evidence for the effects of BarB and C on the nervous system is rather limited. But I still think, that the paper provides enough new and interesting data that make it a very useful contribution. Though not a neurobiologist, I would assume that providing functional evidence for the role of BarA and B in the nervous system would justify a paper on its own. I agree though, that the relevant sections should be toned down.
Reviewer 2
As I mentioned in my review, I found the genomic and phylogenetic analysis interesting and convincing. I therefore totally agréé with reviewers 2 and 3 on that. Whether BarA and B are playing a role in the nervous system and how it does remain speculative. BaraB mutants show locomotion defects. But mutants in mitochondrial genes have locomotion defects. Can we conclude that mitochondria play a role in the nervous system? If I understand correctly, downregulating Bara in neurons only (With Elav-Gal4 driver) does not show the locomotion phenotype. it induces early lethality. How many genes when inactivated in neurons will give rise to such a phenotype? A lot. I really think that the implication of Bara in the nervous system should be seriously toned done and more presented as an hypothesis than a validated fact.
Reviewer 1
I agree with reviewer 3 that the main message of the paper providing a concrete scenario of how non-immune functions of AMPs may evolve is an important contribution. A deep investigation of the neural function is definitely going beyond the scope of the paper. Indeed this might be quite tricky. But it would help if the authors could clarify their idea about the ancestral condition. Is there the possibility that IM24 had ancestrally already non-immune function? They are not really clear about this point.
Reviewer 2
I agree with the other reviewers that determining the exact role of Bara peptides could be complicated. I just ask that the authors limit themselves to proposing that the peptides have lost their immune function. I stress that this argument is not very strong. It relies solely on the lack of inducibility of these peptides following infection. I still think that the demonstration of the role of Bara in the nervous system is not provided.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Hanson and Lemaitre present a genomic and phylogenetic characterization of the Baramicin family of antimicrobial peptide genes in different species. They discover new Baramicin paralogs, united by the presence of an IM24 domain at the N-terminus. They show that among Baramicins, those that are not inducible by infection (which they improperly call non-immune since a protein can be non-inducible by infection and have very important immune functions), are truncated. They propose that an ancestor peptide with immune functions evolved into a neuronal regulator/effector via truncation.
Although the hypothesis is interesting, the data do not really support it. This manuscript is rather descriptive at this point. The demonstration that IM24 is necessary for neural function is very tenuous. For example, in the paragraphs titled Dmel\BaraB is required in the nervous system during development and Baramicin B plays an important role in the nervous system, I did not find convincing data demonstrating that BaraB is required in the nervous system. The only data that links BaraB to the nervous system is a weak locomotion defect observed in the BaraB mutant. But how many genes, when inactivated, give a locomotion defect? This remains totally unexplained at the molecular level. The authors also mentioned that BaraB is expressed in a subset of mechanosensory neuron cells in the wing. What is the link between this expression and the nubbin phenotype?
The authors also mention that data in the literature indicate that BaraC is expressed in glial cells but also in other tissues.
Finally, we have no idea what role, if any, these peptides have in the nervous system.
While the characterization of the Baramicin gene family and its evolution across species is convincing, the link between these AMPs and the nervous system is really too preliminary to be convincing. The manuscript would greatly benefit from being more concise.
see above
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The authors provide convincing evidence for an evolutionary scenario in which duplications of an AMP gene with ancestral immune function led to paralogs specialist for neural functions. They focus on the Baramicin genes, coding for major Toll signalling targets in the context of antifungal defence. Their study uses infection experiments in several Drosophila species, a careful annotation of the Baramicin genes of D. melanogaster, the demonstration of neural expression of BaraB and BaraC, the KD analysis of Bara B revealing lethality and neurological phenotypes, a reconstruction of the evolutionary history of Baramicn genes in Drosophilids and an analysis of the sequence evolution of the IM24 domain providing the neural functions. In general the paper is well written. There are a few places in the manuscript where the language can be improved and one point, which needs clarification:
This is a very comprehensive study, which, to my knowledge for the first time, suggests concrete routes of how an AMP evolved non-immune functions.<br /> One of the striking findings of this paper is that duplications and subsequent truncations of the ancestral Baramicin locus linked to specialisation for neural functions occurred independently in different Drosophila lineages.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
We thank the reviewers for carefully reading our manuscript. We found their comments to be incredibly thoughtful and constructive and greatly appreciate their feedback. We are confident that addressing the reviewers’ concerns has strengthened our manuscript.
Reviewer #1 (Evidence, reproducibility and clarity (Required)): Camuglia, Chanet and Martin investigate the mechanisms that control cell division orientation in vivo, using the mitotic domains (MDs) in the head of the Drosophila embryo as their main model system. They find that cells in the head mitotic domains rotate and align their spindles within 30 degress of the anterior-posterior axis of the embryo. The Pins protein, implicated in spindle orientation in other systems, is planar polarized in mitotic cells. Pins polarization precedes spindle rotation and is correlated with the division angle (but cell shape is not, violating Hertwig's rule). Overexpression of myristoylated Pins results in uniform Pins distribution on the membrane and affects spindle orientation. alpha-catenin RNAi (but not canoe RNAi) disrupts Pins polarity and spindle orientation in MDs 1, 3 and 5. Low dose CytoD injections (which should disrupt force transmission) also result in defective Pins polarity and spindle orientations. Finally, mechanical isolation by laser ablation also disrupts spindle orienttion. The authors find that preventing mesoderm invagination by snail dsRNA disrupts Pins polarity and spindle orientation in the head. MAJOR 1. Is there a certain chirality in the rotation of the spindles? From Movie 1, it seems like in MDs 1 and 3 at least, a majority of spindles on the right side of the embryo rotate clockwise, while spindles on the left side rotate counter-clockwise? Is that so, and in that case, are there geometric/molecular considerations that could explain that chirality?
We thank the reviewer for pointing this out. They are correct in that there is a tilt to the spindle orientation relative to the AP axis. To illustrate this tilt, we performed our spindle analysis separately on the right and left sides of MD1 and found that spindles on the left side align with an average division angle of about 30 from the AP axis whereas spindles on the right side align with an average division angle of -30 from the AP axis. To determine whether spindles on either side rotated with a certain chirality, we found there was no preference in rotating clockwise or counterclockwise on the left and right sides (on the left side of MD1 53% of measured spindles rotated counterclockwise and 47% rotated clockwise, on the right side 46% rotated counterclockwise and 54% clockwise). We have added this data as Fig. 1I-J and discussed in the Results lines 134-145.
This was certainly a possibility, but our experimental results strongly argues that mesoderm invagination is most relevant.
1) Perturbing the ventral furrow (e.g. by Snail depletion) does not block the cephalic furrow (Vincent et al., 1997; Leptin and Grunewald, 1990), but does block mesoderm invagination. Snail depletion strikingly disrupted spindle orientation and Pins localization, which suggests mesoderm is most important.
2) In addition, depletion of -catenin blocks ventral furrow invagination but not cephalic furrow formation. We see a disruption in spindle orientation and Pins localization in -catenin RNAi, which suggests cephalic furrow itself cannot orient spindles.
3) Furthermore, light sheet imaging of the Drosophila embryo has shown that the head region of the embryo undergoes tissue movement in the direction of the cell division and that this is associated with mesoderm invagination (Streichan et al., 2018; Stern et al., 2022).
See movies here: https://www.youtube.com/watch?v=kC11Upr30JY
To further test the importance of mesoderm invagination, we will perform additional ablation experiments trying to disrupt forces transmitted to the mitotic domains from distinct directions. Once we get this experimental result we will include language in the Discussion that will summarize the experimental results and the weight of the evidence for the roles of either ventral or cephalic furrow.
We apologize that we did not clarify this in the text. Maternal overexpression of myr-Pins does not obviously disrupt mesoderm internalization/cephalic furrow formation. But, we do see that targeted disruption of mesoderm internalization via a Snail depletion affects the orientation of division. Note that our paper demonstrates the effect of force transmission on Pins polarity and division orientation, which is new and the main conclusion. The role of these divisions in morphogenesis is more complicated and is beyond the scope of this study.
In response to this comment we: 1) added language in the Results that states that gastrulation proceeds in myr-Pins expressing embryos (lines 206-208), 2) Added to the Discussion of the role of these oriented divisions to morphogenesis (lines 443-449), and 3) will add a figure showing ventral furrow and cephalic furrow formation in embryos ectopically expressing the myr-Pins.
We agree that it would be useful to look at Pins polarity in laser ablated embryos. Currently, we have been unable to analyze Pins polarity after laser ablation, because the ablation to fully isolate the mitotic domain has bleached our Pins::GFP signal. Also, we have shown that Pins polarity is disrupted by 1) alpha-catenin-RNAi, 2) low dose CytoD injection, and 3) Snail depletion, all of which are expected to disrupt force generation and transmission through tissues.
In response to the reviewer comment, we will determine if Pins::GFP can be analyzed in less aggressive (directional) laser ablations. Again, remember that myr-Pins does not affect mesoderm internalization and that Snail depletion affects Pins polarity.
MINOR 1. Figure S5: I am a bit confused about the role of Toll 2, 6, 8 in orienting spindle orientation. In Figure S5D it seems that dsRNA treatment against these genes does not disrupt spindle orientation, but Figure S5F shows quite a significant (p=0.0057) effect in triple mutants. The authors favor the idea that Toll receptors do not affect spindle orientation, but the difference with the mutant should be addressed. Furthermore, what happens in MDs 3, 5 and 14 (if the germband extension defect does not affect those divisions)? Is there a difference between dsRNA and triple mutant embryos in these other MDs?
We think this is a great point. We stated in the text that TLRs are not solely responsible (line 247) for spindle orientation as they do not recapitulate the random pattern of division seen in the myr-Pins expression condition. We acknowledge the differences between the dsRNA injection and TLR triple mutant in the manuscript (lines 242-247), but our data show a greater importance for the role of force transmission. We favor the idea that other mechanisms contribute to spindle orientation because of the small effect of mutating all three Tolls and the dramatic effects of depleting AJs, inhibiting actin (with CytoD), laser ablation, and blocking mesoderm invagination. The planned laser ablation experiments (described above) will also contribute to addressing this point.
We thank the reviewer for this point. We have added the statistical comparison.
__We agree the localization of Pins to the posterior end of cells in MDs 1, 3, and 14 and anterior end in MD 5 is of great interest. The details and further mechanism of this preferential localization are beyond the scope of this paper, but we have added an acknowledgment of the question and discuss possible models that could explain the result (lines 458-460). __TYPOS 1. Line 49: "one daughter cells" should be "one daughter cell". 2. Line 193: "rotation. (Figure 3E-F)." should be "rotation (Figure 3E-F)." 3. Lines 232-237: please review. 4. Line 238: "epithelia cells" should be "epithelial cells".
We thank the reviewers for carefully reading our manuscript. We have fixed the typos mentioned.
Reviewer #1 (Significance (Required)): This is the first study to my knowledge that demonstrates the role of mechanical forces in polarizing Pins, and provides a nice model to further investigate how mechanical forces generated in one tissue may affect cell division orientation in distant ones. The paper is clear, well written, and quantitative analysis is present for most results. I have some issues with the statistics (or lack thereof) for a couple of results, and potential alternative interpretations for some experiments that in my opinion should be addressed prior to publication. Specifically, it is not clear to me if Pins polarity is at all necessary for spindle orientation in any of the examined MDs.
Reviewer #2 (Evidence, reproducibility and clarity (Required)): Overview: In this manuscript, Camuglia et al. show Pins/LGN, which is understood to drive spindle orientation, can localize asymmetrically (with respect to the tissue plane) in the Drosophila embryo. Experimental work (including drug treatments, laser ablation, and knockdowns) lead the authors to propose that this asymmetry is driven by tissue-level tension. The findings are quite interesting and the manuscript is well-written overall. Major Comments: • The authors propose that localization is driven by tissue-level tension, but the direction of the tension isn't clear from the experimental work. For example, the laser ablation experiments cut around the entire perimeter of the mitotic domain, rather than along just one tension axis. Similarly, the finding that disruption of the ventral furrow (by Snail RNAi) interferes with spindle orientation in the head is very puzzling; the furrow is A) outside the embryonic head and B) runs in the parallel direction to the divisions considered. The authors need to address the directionality of tension experimentally.
We thank the reviewer for this comment and agree that better defining the direction of tension would strengthen our manuscript. We showed that blocking mesoderm invagination with Snail depletion disrupts spindle orientation, despite Snail not being required for cephalic furrow formation (refs). Recent light sheet data has shown that mesoderm invagination is associated with global movements throughout the embryo. Furthermore, the ventral furrow extends into the head region just past the anterior of MD5. To address the reviewer’s comments, we plan to: 1) Perform directional laser ablations to determine the directionality of the tension that orients the spindle, 2) Analyze strain rates in the mitotic domains prior to and during division, and 3) Add to our Discussion more about what is said in the literature about the movements that occur in the head during mesoderm invagination.
• As acknowledged in the text, the asymmetric enrichment of Pins in MD14 is fairly weak. Since the cells being examined here border a divot in the tissue, and might therefore be curving relative to the focal plane, it would be good to rule out the possibility that some of the asymmetry in Pins intensity is just a consequence of cell/tissue geometry. One way this could be achieved is by showing multiple focal planes.
Good point. We do not think that the asymmetric Pins enrichment in MD14 is due to tissue geometry or junction tilt. 1) MD14 divides ~10-15 minutes after mesoderm invagination is completed, so the cells do not border a divot (as seen with Gap43::mCh, Fig. 2I). The cells do round up, which can be seen as gaps between cells (Fig. 3E). 2) We compare Pins to GapCh and only see an enrichment with Pins (Fig. 2H-K). If the enrichment was due to tissue curvature or junction orientation relative to imaging axis, we would see the same enrichment in GapCh. 3) Expression of myr-Pins randomizes spindle orientation in MD14 (Fig. 3M, N).
• In Figure 3I (and 3M?), it appears that there are fewer cell divisions in the presence of myr-Pins. Is this the case? Since cell shapes change during division, and cell shapes influence tissue tension, an increase in cell divisions could lead to a change in tissue tension. This would be important to address, since tissue tension plays an important role in the proposed model.
These images are not taken at the same point of MD1 division ‘wave’, there are the same number of divisions in each condition. These mitotic domains exhibit a ‘wave’ of cell division (Di Talia and Wieschaus, 2012), and so the number of divisions in each image reflect the timing at which we captured the image. Quantifications involved divisions throughout this wave, but we have chosen images for figures which are most representative of what we see. We will add this to the text in the final version of the manuscript.
• The alpha-catenin and Canoe results are a bit confusing: - The rose plot in Figure 4D doesn't show a random distribution of spindle angles, but rather a modest change; most spindles still orient in the normal range. The p value in the figure legend (0.0012) is very different from the one in the figure (5.8284e-04). - Alpha-catenin is the strongest way to disrupt AJs, but A) the epithelium appears to be intact in the knockdown condition and B) spindle orientation is impacted but not randomized. Does this mean that the knockdown is incomplete? Or is Cadherin-mediated adhesion (in which alpha-catenin participates) only partially responsible for force transduction?
We acknowledge that perturbation using ____alpha-cat RNAi does not recapitulate the complete disruption of division orientation seen in embryos expressing myr-Pins. This is likely due to the variability in the strength of RNAi knockdown, which is observed for most RNAi lines that we use. To address the reviewer’s comment, we have added rose plots for individual embryos showing extremes in the severity of division orientation disruption (Fig. 4E and F). For the main plot (Fig. 4D), we have included all the data that we took because we obviously did not want to pick and choose which embryos were used for analysis. So Fig. 4D includes all the variability.
Minor Comments:
• It can be difficult to interpret some of the spindle orientation data since the AP axis is vertical in the diagrams but horizontal in the rose plots. Can one of these be flipped so they go together?
We thank the reviewer for this suggestion and have flipped the rose plots so they match the images. Note that because of the large size of the figures, we have had to consistently orient anterior towards the top, which we establish at the beginning of the Results.
• Figure S3 is important information for the reader and should be ideally moved into the main paper. - Protein localizations referred to in text should be annotated on images, as they can be hard to see.
We disagree that S3 should be included in the main paper. The myr-Pins reagent has been used previously so the information in S3 is not new (Chanet et al., 2017).
• There are some discrepancies between figures, legends and text. - p-values differ between figures, legends, and/or text. - Fluorescent markers are labelled differently in figures and legend (CLIP170 in Figure 1) - Graphs appear to show that MD3 polarizes on posterior side, but figure legend says anterior in Figure S1. Vice versa for MD5.
We thank the reviewer for catching these typos. We have fixed these issues.
• Ideally, multichannel image overlays should be shown along with individual channels (b/w). However, it is appreciated that the fluorescent signals are exceptionally weak in this study, presenting a challenge to presentation and to quantification.
We agree the overlays would be nice. However, the Pins::GFP signal is weak compared to the tubulin and Gap43 signals, the merge does not provide more clarity, and the figures are already quite large. Therefore, we have only included the separated the images.
• Graph axes depicting spindle orientation would be more clear if shown in degrees, instead of normalized or in radians.
We thank the reviewer for this suggestion. We have changed the graph axes to be in degrees.
Reviewer #2 (Significance (Required)): Several recent studies have demonstrated that division orientation (in the tissue plane) is governed by tissue level tension. Remarkably, it appears that diverse mechanisms link tension with spindle orientation. Here the authors provide the first in vivo evidence connecting tension to the asymmetric localization of Pins, an important and evolutionarily conserved spindle orientation factor.
Reviewer #3 (Evidence, reproducibility and clarity (Required)): This beautiful manuscript uncovers a role for planar polarized PINS/LGN in orienting the mitotic spindle in Drosophila epithelia. In response to morphogenetic forces acting on adherens junctions, PINS/LGN localises to junctions in a planar polarized fashion to orient the spindle, and de-polarization of PINS/LGN prevents planar spindle orientation. The experiments are very well performed and the findings are robust. The conclusions are well supported by the data. Reviewer #3 (Significance (Required)): These important findings mirror previous work in human cell culture, but crucially reveal that the same phenomenon occurs in vivo in the Drosophila embryo. Thus, the findings underscore the highly conserved nature and in vivo relevance of this phenomenon.
We thank this reviewer for reading the manuscript and their encouraging words.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This beautiful manuscript uncovers a role for planar polarized PINS/LGN in orienting the mitotic spindle in Drosophila epithelia. In response to morphogenetic forces acting on adherens junctions, PINS/LGN localises to junctions in a planar polarized fashion to orient the spindle, and de-polarization of PINS/LGN prevents planar spindle orientation. The experiments are very well performed and the findings are robust. The conclusions are well supported by the data.
These important findings mirror previous work in human cell culture, but crucially reveal that the same phenomenon occurs in vivo in the Drosophila embryo. Thus, the findings underscore the highly conserved nature and in vivo relevance of this phenomenon.
Referees cross-commenting
this session contains comments of all reviewers
Reviewer 2
My biggest concern was that the direction of tension isn't obvious. I was particularly puzzled over the ventral furrow experiments, since I'm not clear on how that manipulation impacts the head. I agree with Reviewer #1 that it makes more sense to disrupt the cephalic furrow, but I'm not sure how to do that.
Reviewer 1
Agreed. I guess the question is whether there are cephalic furrow mutants in which mesoderm invagination is not affected. If so, those would be ideal.
Reviewer 3
Hi both. I understand your comments, but I felt that the direction of tension was apparent from the spindle orientation and the cell division axis itself. So, I wasn't concerned about using the snail mutant to prevent gastrulation and thus abolish forces generally.
Reviewer 2
I see. Well I certainly suspect that you and the authors are correct - and I'm enthusiastic about that! - but I'm concerned that using the direction of division to define the direction of tension is getting a little bit circular with the argument. I noticed that their ablation experiments aren't directional; instead they isolate the entire MD. Reviewer 1, as an expert in ablations, do you think it would make sense to make cuts that are only AP or DV?
Reviewer 1
I agree with Reviewer 2 about the circularity of the argument. I was going to propose AP vs DV cuts in sna mutants,with the idea that the wound healing response to those would pull in specific directions. My concern is that It won't be an effect of the same magnitude as the entire mesodermal placode going in, but maybe worth trying?
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Overview:
In this manuscript, Camuglia et al. show Pins/LGN, which is understood to drive spindle orientation, can localize asymmetrically (with respect to the tissue plane) in the Drosophila embryo. Experimental work (including drug treatments, laser ablation, and knockdowns) lead the authors to propose that this asymmetry is driven by tissue-level tension. The findings are quite interesting and the manuscript is well-written overall.
Major Comments:
Minor Comments:
Several recent studies have demonstrated that division orientation (in the tissue plane) is governed by tissue level tension. Remarkably, it appears that diverse mechanisms link tension with spindle orientation. Here the authors provide the first in vivo evidence connecting tension to the asymmetric localization of Pins, an important and evolutionarily conserved spindle orientation factor.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Camuglia, Chanet and Martin investigate the mechanisms that control cell division orientation in vivo, using the mitotic domains (MDs) in the head of the Drosophila embryo as their main model system. They find that cells in the head mitotic domains rotate and align their spindles within 30 degress of the anterior-posterior axis of the embryo. The Pins protein, implicated in spindle orientation in other systems, is planar polarized in mitotic cells. Pins polarization precedes spindle rotation and is correlated with the division angle (but cell shape is not, violating Hertwig's rule). Overexpression of myristoylated Pins results in uniform Pins distribution on the membrane and affects spindle orientation. alpha-catenin RNAi (but not canoe RNAi) disrupts Pins polarity and spindle orientation in MDs 1, 3 and 5. Low dose CytoD injections (which should disrupt force transmission) also result in defective Pins polarity and spindle orientations. Finally, mechanical isolation by laser ablation also disrupts spindle orienttion. The authors find that preventing mesoderm invagination by snail dsRNA disrupts Pins polarity and spindle orientation in the head.
Major
Minor
Typos
This is the first study to my knowledge that demonstrates the role of mechanical forces in polarizing Pins, and provides a nice model to further investigate how mechanical forces generated in one tissue may affect cell division orientation in distant ones. The paper is clear, well written, and quantitative analysis is present for most results. I have some issues with the statistics (or lack thereof) for a couple of results, and potential alternative interpretations for some experiments that in my opinion should be addressed prior to publication. Specifically, it is not clear to me if Pins polarity is at all necessary for spindle orientation in any of the examined MDs.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
'The authors do not wish to provide a response at this time.'
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Hattori et al. assessed the role of astrocytic CD38 by generating astrocyte-specific conditional CD38 knockout mice and discovered defects in social memory, synapse, and spine density in the mPFC. They further showed that conditioned media from CD38-deficient astrocytes are defective in promoting synapse formation. A known astrocyte-derived synapse promoting protein, Sparcl1, is reduced in the conditioned medium from CD38 KO astrocytes and pharmacological experiments suggest that CD38 and calcium signaling regulates Sparcl1 secretion by astrocytes.
The discoveries are novel and important and will be of broad interest to readers. However, the following concerns need to be addressed to improve the manuscript.
Major comments:
Minor comments:
Astrocytic contribution to social memory has not been reported. This study is thus the first report on the role of astrocytes in social memory. Their discovery of CD38-regulation of Sparcl1 release is also novel and important for synapse formation, although more evidence is needed to support this point (see major comments above). This study will be of broad interest to neuroscientists. I have expertise in cellular and molecular neurobiology and can evaluate all parts of the paper.
Referees cross-commenting
I agree with the issues that the other reviewers pointed out, especially the need for improving data reporting and consistency/accuracy. Overall, I think this manuscript has potential and the issues are addressable.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary
In their manuscript, Hattori et al., put forward evidence that the knock-out of CD38 expression in astrocytes at approximately post-natal day 10 (referred to as CD38 AS-cKO P10) leads to a specific deficit in social memory in adult mice, while other types of memory remain unaltered. Using immunohistochemistry (IHC), the authors found a reduced number of excitatory synapses in the medial prefrontal cortex (mPFC) of CD38 AS-cKO P10 mice. Switching to in vitro primary cell culture models, the authors identify the astrocyte secreted protein SPARCL1 as a relevant synaptogenic factor. Using pharmacological dissection of relevant signaling pathways, Hattori et al., propose that cADPR formation and calcium released from intracellular stores, is essential for SPARCL1 secretion from astrocytes. Finally, the authors analyzed the transcriptome of primary CD38 KO astrocytes using bulk mRNA sequencing, and found that genes related to calcium signaling were downregulated in these cells.
Major commments:
The authors should also be more consistent in the way they indicate which statistical tests were performed. This should also be indicated either at the appropriate point in the main text or in the figure legend. Furthermore, care should be taken to ensure statistics are presented in an appropriate manner: at the end of legend for Figure 4, it is indicated #p < 0.05 vs. CD38 KO ACM. This hashtag symbol is completely absent from the figure. In Figure 4F-G, the lack of statistical symbols seems to indicate no statistical tests were performed on these data, when the legend covering these panels states "*p < 0.05 versus P70", indicating some tests were done. We cannot interpret this panel without knowing which comparisons were done exactly and which were significant.
In the "Materials and Methods", the authors give no indication that the assumptions of the statistical test they used were met (normality of data distribution for t-tests, homogeneity of variances for ANOVA...). This needs to be checked, and if not met, appropriate non-parametric tests should be used instead.
Minor commments:
NATURE AND SIGNIFICANCE OF THE ADVANCE: I think that despite the issues described above, this manuscript, once revised, could have a strong impact in the field. It would fuel the current paradigm shift which puts astrocytes at the forefront of neuronal circuit wiring during development with links to adult behavior. By identifying clear molecular targets involved in astrocyte-driven synaptogenesis, this article could help the clinical field to find new druggable targets, which may help reverse aging-related cognitive decline.
COMPARISON TO EXISTING PUBLISHED KNOWLEGDE: This work adds new data in the specific and growing line of research that study how astrocytes control synaptogenesis. Recent reviews have summarized advances in this field (Shan et al., 2021, 10.3389/fcell.2021.680301; Baldwin et al., 2021, 10.1016/j.conb.2017.05.006).
AUDIENCE: Neuroscientists in general, clinicians interested in cellular and molecular causes of neurodevelopmental disorders leading to social dysfunctions.
REVIEWER EXPERTISE: Astrocyte biology; Astrocyte-neuron interactions and synapse assembly; Neuronal circuit formation and plasticity
Referees cross-commenting
After careful reading of the other comments, I feel that there is considerable agreement/overlap between the reviewers on the main issues with this manuscript. Perhaps the major difference relates to the amount of further work necessary for the manuscript to be publication ready.
As Reviewer 3 rightly points out, this is always a moot point: how much is it reasonable for reviewers to ask authors to do? While I agree with all of Reviewer 1's comments regarding the rigour of the mass-spec/western blot analysis, it seems to me that from a molecular/cell biological point of view, the key issue is whether Sparcl1 is a synaptogenic factor released from astrocytes following CD38/cADPR/calcium signaling (irrespective of whether other factors may be in play); and whether raising Sparcl1 levels is sufficient to recover spine morphology and synapse numbers. Of course, if these experiments were performed in vivo using AAV-mediated overexpression of Sparcl1, it is also reasonable to think that the deficit in social memory may be reversed on testing.
The issues of whether there is a difference in observable behavioral phenotypes between the astrocyte-specific and constitutive CD38 knock-outs is an interesting one, as is why there is only a deficit in social memory seen following astrocyte-specific CD38 ablation. These issues should at least be discussed.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary
In their work submitted for review, Hattori et al. identify an astrocyte enriched protein (CD38) as important for social memory tasks in mice. The authors developed a conditional KO model to remove CD38 specifically in astrocytes using the GLAST-CreERT2 line crossed to a CD38 floxed line. The investigators use a three-chamber social approach test to show that loss of CD38 leads to reduced interaction time with a novel social stimulus only when the animal is given a break between test periods. The authors test whether changes in neuronal morphology or synapses in the medial prefrontal cortex (mPFC), a region important for social memory, can account for their behavioral phenotype. The researchers found that mPFC neurons in their conditional CD38 KO (cKO) animals have significantly less mature spines than wild-type (WT) controls. The authors then claim that this reduction in mature spines correlates with a reduction in VGluT1 positive excitatory synapse density in mPFC of cKO vs. WT. Next, the investigators use mass spectrometry of astrocyte conditioned media and neuronal cultures treated with astrocyte conditioned media to test whether a known astrocyte secreted synaptogenic factor, Sparcl1/Hevin, could underlie their reported changes in synapse density in their cKO animals. Finally, the authors use pharmacological inhibitors against different components of the CD38 signaling pathway to test whether CD38 regulates Hevin secretion by astrocytes. While the reported behavioral phenotype is interesting, this reviewer has several major concerns with the data claiming that reduction in Sparcl1/Hevin is underlying synaptic phenotypes in the CD38 cKO. Therefore, the paper is not suitable for publication without addressing the concerns listed below.
Major Concerns:
Synapse analysis in vivo: For the analysis of VGluT1 excitatory synapses in mPFC, it is not clear how the statistical analysis was performed. From the plotted error bars, it seems that the investigators used individual z-projections as the n for a t-test. This is inappropriate for this analysis as it would overinflate the N and down the p-value. It would be more appropriate to plot and compare animal averages between conditions or use a test that can account for the fact that there are repeated measures taken from the same animal. Additionally, the authors note a decrease in VGlut1+ puncta in the global CD38 KO but no change in the protein levels in both the global and cKO.
Synapse analysis in vitro: The authors are missing key experimental controls for their analysis of synapse induction by astrocyte conditioned media. Firstly, the authors do not include a condition of neurons cultured alone without astrocytes or astrocyte conditioned media treatments. This is critical to this experiment because, without this control, it is impossible to assess the effectiveness of the astrocyte conditioned media or any recombinant protein treatments on synapse formation. Secondly, the authors give very few details and no supporting data about the purity of their neuronal cultures. This is critical to this experiment because any contaminating astrocytes in their cultures could severely skew the data for any given condition. Finally, the authors do not specify how they determined the doses for astrocyte conditioned media and Hevin treatments. The researchers give no details on how the astrocyte conditioned media was collected or treated before adding onto neurons. For this experiment to be viable, the researchers must collect the conditioned media in serum-free media, determine the protein concentration of their samples, and the dose-response to the astrocyte conditioned media must be performed to determine the optimal dose for each batch. When comparing between genotypes, this type of quality control is critical to assess whether there is, in fact, a difference in their synaptogenic capacity.
Western blots: All western blot quantification of astrocyte conditioned media should include total protein normalization. The authors do not describe how they normalize the astrocyte conditioned media blots, but without a total protein stain to normalize, it is impossible to be sure the same amount of protein was loaded into the gel for each lane. In Figure 3L, the western blot data showing the expression of VGluT1 and PSD95 should be improved, and a better representation is recommended. It is also strange that the CD38 cKO has no expression because CD38 is also expressed in endothelial cells. Why not isolate astrocytes from CD38 KO? Also, for VGluT1 and PSD95 western blots, it would be better to test mPFC lysates rather than whole cortical lysates. Astrocyte morphogenesis: Since the astrocyte-specific deletion of CD38 from P10 impairs postnatal development of astrocytes, the authors should investigate if the impaired synaptogenesis seen in later stages is due to impaired astrocyte morphogenesis or the defect in the secretion of synaptogenic proteins like Sparcl1/Hevin or thrombospondins.
Mass spectrometry: There is no information about how many samples were used for mass spectrometry. This reviewer is concerned that this experiment may be underpowered given that other published datasets have identified significantly more proteins in wild-type ACM (about double than what was identified here). There needs to be a quality assessment of the ACM to help ensure the production protocol can capture the full extent of proteins secreted by cultured astrocytes.
RNA sequencing: RNA sequencing results seem underpowered, and an accurate description of their collection methods is missing. It also seems to this reviewer that any prolonged culturing of the astrocytes would lead to additional transcriptional changes independent of their genetic manipulation. To avoid confounds due to culture artifacts, it might be cleaner to FACS sort astrocytes using a fluorescent reporter such as the Aldh1l1-eGFP line or RTM in their GLAST-creERT2 model. In the latter case, this could also provide data on the specificity of their recombination, which is lacking elsewhere in the manuscript.
Comparison between astrocyte-specific cKO and global KO: Considering the abundant expression of CD38 in astrocytes compared to other cell types in the brain, I am wondering whether the comparison between the current astrocyte-specific CD38 cKO and the previous constitutive CD38 KO mice would provide a different phenotype with respect to its importance in synaptic function in neural circuits that mediate social behaviors in various brain regions. The authors note the importance of CA1, CA2, and NAC in social memory, but they only assessed synapses in mPFC. Multiple studies, including one from the authors, have reported that constitutive CD38 KO mice exhibit impaired social behaviors. Expanding beyond what is already known would require better spatial and temporal regulation of CD38 expression than presented here.
Rescue experiments: The authors claim that reduced levels of Hevin secretion are responsible for reducing intracortical synapses in mPFC and the inability of their CD38 KO ACM to stimulate synapse formation. However, Hevin has primarily been linked to the formation of VGluT2+ synapses with only a transient effect on VGluT1+ synapses. Furthermore, Hevin's synaptogenic effect in astrocyte conditioned media is masked by its homolog Sparc. To claim that Hevin is responsible for reducing VGluT1+ synapses in mPFC the authors need to do a rescue experiment by expressing hevin in CD38 KO through AAVs brains or intracortical injections of recombinant Hevin.
Other synaptogenic factors: The authors focus on Sparcl1/Hevin; however, other synaptogenic factors have been reported to affect VGluT1+ excitatory synapse formation and development directly. Notably, thrombospondins have been shown to regulate the formation of this specific synapse type through their receptor a2d1. The authors do not report any investigation into this family of factors despite their clear link to VGluT1+ synapse development.
Effect of CD38 cKO on astrocyte numbers: The authors note that CD38 cKO alters GFAP expression; however, they also report a decrease in the number of GFAP+ and S100ꞵ+ cells without a change in NDRG2+ cells. The authors should address this discrepancy in astrocyte numbers with additional known markers such as Sox9.
MBP quantification: The authors previously reported changes in MBP expression and oligodendrocyte maturation in the global CD38 KO animals. However, there is no quantification of the MBP staining in the cKO in supplementary figure 1. It would be important to verify that white matter structures developed properly in their cKO model, especially in mPFC.
Minor Concerns:
Understanding the mechanisms underlying control of behaviors is important and linking non-neuronal cell types to behavioral processes is novel and timely. However, the study at its current state lacks important controls, and interpretations are overstated and often too targetted to a favorite mechanism. These concerns limit the impact of the study and reduces its significance.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
RC-2022-01245 Willemsen et al., 2022
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary:
Willemsen et al studied the contribution of PSMB4 and PSMB8 on proteasomal activity in adipocyte tissue/cells. Mutations in PSMB4/8 have been associated with metabolic diseases that lead to inflammation and proteotoxicity. They used mice and murine cell lines to assess the abundance and activity of the proteasome as well as the stress response upon depletion of psmb4 and regulatory factors. The study is interesting and could provide new insight into the role of specific proteasomal subunits of the immunoproteasome on the metabolism and associated diseases. However, there are a number of issues on the presented data that should be addressed. See below.
RESPONSE: We thank the reviewer for her/his positive remarks.
Major comments:
The authors should introduce all tested marker genes e.g. the genes that were analyzed in figures 2H/I, 3D-F, 4A/D. What was the hypothesis and do they represent all or a selected set of genes of the integrated stress response?
RESPONSE: We apologize if the relevance of these markers was left unclear. We have now introduced the marker genes in the text.
Figure 1A: RNA levels were analyzed yet not protein levels. Why not?
RESPONSE: As we performed loss of function experiments later anyway, we decided not to venture into more descriptive analyses. The fact that Psmb4 and Psmb8 are robustly expressed in adipocytes was enough for us to justify studying their function further.
Figure 2C: This figure is problematic. Apart from the smear on the right side, a loading control is missing. This is essential to quantify signal intensities. Moreover, on the left side, the intensities of lanes 1 and 2 are very different, yet are both controls and were used for the conclusion that proteasomal activity is reduced upon siPsmb4 (lanes 3 and 4 - that do not differ from lane 2). In addition: from which day were the data collected? This information is missing, but important as Figure 2E shows opposing proteasomal activity on day 3 and day 5.
RESPONSE: We agree with the reviewer that the duplicate of the scrambled control cells showed variation. Therefore, we have now repeated the experiment and replaced the figure (now figure 2A). The outcome is not affected, as knockdown reduces proteasomal activity and leads to abnormal proteasome formation in the native PAGE. Regarding the internal loading, it is common practice to display both in-gel activity and immunoblot on the membrane as is. For recent examples in the literature please see VerPlank et al., PNAS 2019 (10.1073/pnas.1809254116) or Yazgili et al., Cell Press STAR Protocols 2021 (10.1016/j.xpro.2021.100526). Obviously, the same amount of protein was loaded, and this is also seen in the immunoblot. As this is a native PAGE, there is no beta-tubulin or other commonly used loading controls for immunoblots. Furthermore, we apologize for the missing information, this experiment was performed using day 5 mature cells. This information is now included in the figure legend.
Figure 2D: tubulin was used as loading control, yet the signal of tubulin in lane 1 is by far weaker compared to the other lanes. How does that affect the quantification (missing) of Nfe2I1?
RESPONSE: We have now included the quantifications, which do not affect the outcome of the experiments and the conclusions drawn.
Figure 3C and Fig 2E (control vs siPsmb4) contradict each other. Please clarify.
RESPONSE: We respectfully point out that the reviewer might have overlooked that 2E shows the time course and 3C only shows day 5 data – both in 2E and 3C, day 5 total proteasomal activity is (insignificantly) increased. Hence, the panels do not contradict each other.
Figure 3B: Issues with the loading control: tubulin signals are in first 3 lanes much weaker. Where is the quantification for that data set that takes the fluctuations of the tubulin signals into account?
RESPONSE: We have now included the quantification, which does not affect the outcome of the experiments and the conclusions drawn. The quantifications can be found in figure S3.
Minor comments:
Why did the authors not use human adipocyte cells and performed all experiments in murine cells?
RESPONSE: The advantage of the cell lines used lies in the ability to study both brown and white features as well studying aspects of adipogenesis and thermogenesis simultaneously. Based on this comment and the comment of reviewer #2, we have reproduced our findings in 3T3-L1 adipocytes, in the hope of strengthening our study. These data are shown in the new Supplementary figure 4.
In which cell/tissue is Psmb4 expressed?
RESPONSE: Thank you for this question, we have now measured Psmb4 expression in a panel of mouse tissues. As shown in figure S1, Psmb4 is ubiquitously expressed in all tissues measured with the highest levels in kidney and liver, followed by brown fat.
Figure 4G: information on the different colors is missing.
RESPONSE: Thank you for bringing this to our attention. We have now included a legend.
The result section appears to have been restructured as sections do not build up on each other well. This should be corrected.
RESPONSE: We appreciate this critical feedback. We have now improved the flow for an enhanced reading experience.
There are a number of grammatical errors or doubling of words/phrases e.g. bottom of page 1: "In addition, PRAAS patients display suffer from..." or on page 2: "Adapting proteasomal activity to the needs of the UPS..." This statement does not make sense. Maybe the authors mean "proteolytic demands"?
RESPONSE: Thank you, we have fixed the remaining typos.
Although, the UPS is a proteostasis node, the authors should avoid statements such as "We show that proteostasis and lipid metabolism are intricately linked..." Better is "UPS activity and lipid metabolism..." Or the authors should expand their analysis to protein synthesis, folding and additional clearance pathways.
RESPONSE: Thank you, we have specified our statement regarding proteostasis and UPS.
Reviewer #1 (Significance (Required)):
This study links clinical research with basic science and if the authors address the above mentioned issues this work will provide new insight into the role of the UPS in the lipid metabolism.
target audience: clinical scientist on lipid metabolism and basic researchers on the UPS and associated pathologies
my expertise: UPS
RESPONSE: We are very thankful for these positive concluding remarks.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The molecular mechanism by which proteasome mutations cause lipodystrophy in PRAAS, which is caused by proteasome dysfunctions, has not been well understood. However, it was shown that Psmb4 (β4), a component without enzymatic activity, is required for the formation and maintenance of adipocyte function. In the proteasome dysfunction state of Psmb4 deficiency, the expression of Nfe2l1 was enhanced for proteostasis, but it could not complement the adipocyte formation defect. We showed that repression of Arf3, which is associated with stress response and is markedly expressed in this situation, resulted in the recovery of inflammation and adipogenesis.
Major comments
Fig. 2 shows the rise of Nfe2l1 and the restoration of proteasomal capacity on Day 5 (Fig. 2E). [Nfe2l1 is cleaved, and initiates the transcription of proteasome subunits, which results in restoration or heightening of proteasomal capacity (16,17).] It is known that the brown adipocyte mount an adaptive response to overcome UPS dysfunction, and the transcription of proteasome subunits was increased in this experimental system. However, there are no results showing that the transcription of proteasome subunits is actually increased in this experimental system.
RESPONSE: Thank you for pointing this out. In Psmb4 KD cells, we see an increase in Psmd2 protein levels (Fig. 3B). In addition, we see a small increase in expression levels of various proteasome subunits. We have now included a graph showing these expression levels (Fig 3C).
Are Psmb4KO mice available? If yes, are there any symptoms? Is there any change in proteasome activity, etc.?
RESPONSE: We do not have a Psmb4 KO mouse model, yet, and to the best of our knowledge, none is available. We agree with the reviewer that it would be insightful to study Psmb4 in an in vivo model, but in this project, we have used a cell model to study the cell intrinsic mechanisms of Psmb4.
4A. In PRAAS patients, most of the lipodystrophy occurs in white adipocytes, but if Psmb4 deficiency is induced in white adipocytes, do they show the same dynamics?
RESPONSE: Thank you for your stimulating question. We have repeated our Psmb4 KD experiments in 3T3-L1 cells, to study the dynamics in a white adipocyte model. We found that also in 3T3-L1 cells, Psmb4 knockdown disrupts adipogenesis. The results can be found in Supplemental figure 4.
4B. The first mention of heat production was made, but it was not clear how much the patient's cyclic fever symptoms were related to changes in brown adipocyte function.
RESPONSE: Our data suggest that aberrant brown adipose tissue does not contribute to cyclic fevers in PRAAS patients. We elaborate on this in the Discussion.
minor points
fig2; The numbering of the figure is not correct.
RESPONSE: Thank you, we have corrected the error.
Fig. 2: (day 5) in the figure legend of (E) is unnecessary.
RESPONSE: Thank you but based on the other reviewers’ questions we think it is important to indicate the stage of the differentiation.
Fig. 4 The figure legend in (A) and (B) are switched.
RESPONSE: Thank you, we have corrected the error.
In Fig. 4 (G), there are n = 8 and n = 6 in the figure legend, which is difficult to understand.
RESPONSE: Thank you, we have corrected the error.
Reviewer #2 (Significance (Required)):
It has been thought that the accumulation of defective proteins caused by proteasome dysfunction stresses cell metabolism and leads to lipodystrophy, but the detailed mechanism has not been understood. In this paper, we have clarified a part of the mechanism that links the accumulation of ubiquitinated proteins caused by proteasome dysfunction to the disruption of proteostasis, inflammation and adipogenesis. The results of the study, which showed the relationship between intracellular proteostasis, inflammation and lipid metabolism, will help us understand not only PRAAS patients but also abnormal lipid metabolism, obesity, induction of inflammation, and chronic inflammation with persistent inflammation.
RESPONSE: We are very thankful for these positive concluding remarks.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
In this study Willemsen et al. investigated the role of proteasome subunit beta 4 and 8 (PSMB4/8) in immortalized brown (pre)adipocytes regarding adipogenesis ability, inflammation, function, and proteostasis. The group showed that Psmb4/8 are expressed in brown adipose tissue and adipocytes but that they are differently regulated. The loss of PSMB8 had no effect on brown adipose tissue/adipocyte function. In contrast, knock-down of PSMB4 altered proteostasis, which was partially compensated by NFE2L1, as well as reduced adipocyte differentiation, lipid accumulation, and beta adrenergic-stimulated glycerol release in immortalized brown adipocytes. The group further demonstrated that the effect of PSMB4 knock-down on impaired adipogenesis was mediated via Atf3 activation.
The manuscript is well-written with clearly structured text and figures. The data and methods are presented in a way that makes it easy to reproduce the experiments. The statistical analysis is adequate.
Some suggestions:
Please normalize the glycerol release to protein content (Fig 2J, 4F). It would be also interesting to show whether the reduced glycerol release is due to reduced TG content and/or lipolytic activity. Therefore, you should determine the expression of lipases (e.g. Atgl, Hsl) in adipocytes.
RESPONSE: We thank the reviewer for this interesting suggestion. We have looked at the expression of lipases. Psmb4 knockdown did not alter the expression of lipases, which indicates that the reduced glycerol release is rather due to reduced TG content than due to the absence of lipases. The comparison is now included as Figure 4G. For the glycerol assays, we have normalized glycerol release to protein content. Comparing an undifferentiated (in this case the cells with silencing of Psmb4) vs differentiated cells (in this case the scrambled siRNA control cells) will result in many fundamental differences. Specifically, the lipid to protein ratio is very different, much higher in mature adipocytes, obviously. This obscures some if the differences in lipolysis when glycerol release is normalized to protein levels. Therefore, we have included a figure, in which we show the fold change. Interestingly, this way in the Psmb4 knockdown cells, it is evident that they become refractory to norepinephrine stimulation, and this is rescued when Atf3 is silencing, too.
Please define early/late transfection - on which day of differentiation was Psmb8 silenced? (Fig S2)
RESPONSE: Psmb8 was silenced on day(-1). We have now added this information.
Reviewer #3 (Significance (Required)):
This study clearly demonstrated that proteasome dysfunction via impaired PSMB4 action modulates brown adipocytes differentiation, function, and health. In this study a novel link between dysfunctional proteostasis and impaired lipid metabolism was identified.
RESPONSE: We are very thankful for these positive concluding remarks.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this study Willemsen et al. investigated the role of proteasome subunit beta 4 and 8 (PSMB4/8) in immortalized brown (pre)adipocytes regarding adipogenesis ability, inflammation, function, and proteostasis. The group showed that Psmb4/8 are expressed in brown adipose tissue and adipocytes but that they are differently regulated. The loss of PSMB8 had no effect on brown adipose tissue/adipocyte function. In contrast, knock-down of PSMB4 altered proteostasis, which was partially compensated by NFE2L1, as well as reduced adipocyte differentiation, lipid accumulation, and beta adrenergic-stimulated glycerol release in immortalized brown adipocytes. The group further demonstrated that the effect of PSMB4 knock-down on impaired adipogenesis was mediated via Atf3 activation.
The manuscript is well-written with clearly structured text and figures. The data and methods are presented in a way that makes it easy to reproduce the experiments. The statistical analysis is adequate.
Some suggestions:
Since you stated in 3.1. Result section that Psmb4/8 are robustly expressed in BAT, it would be interesting to directly compare the expression of Psmb4/8 in BAT. Please normalize the glycerol release to protein content (Fig 2J, 4F). It would be also interesting to show whether the reduced glycerol release is due to reduced TG content and/or lipolytic activity. Therefore, you should determine the expression of lipases (e.g. Atgl, Hsl) in adipocytes.
Please define early/late transfection - on which day of differentiation was Psmb8 silenced? (Fig S2)
This study clearly demonstrated that proteasome dysfunction via impaired PSMB4 action modulates brown adipocytes differentiation, function, and health. In this study a novel link between dysfunctional proteostasis and impaired lipid metabolism was identified.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The molecular mechanism by which proteasome mutations cause lipodystrophy in PRAAS, which is caused by proteasome dysfunctions, has not been well understood. However, it was shown that Psmb4 (β4), a component without enzymatic activity, is required for the formation and maintenance of adipocyte function. In the proteasome dysfunction state of Psmb4 deficiency, the expression of Nfe2l1 was enhanced for proteostasis, but it could not complement the adipocyte formation defect. We showed that repression of Arf3, which is associated with stress response and is markedly expressed in this situation, resulted in the recovery of inflammation and adipogenesis.
Major comments
Minor points
fig2; The numbering of the figure is not correct.
Fig. 2: (day 5) in the figure legend of (E) is unnecessary.
Fig. 4 The figure legend in (A) and (B) are switched.
In Fig. 4 (G), there are n = 8 and n = 6 in the figure legend, which is difficult to understand.
It has been thought that the accumulation of defective proteins caused by proteasome dysfunction stresses cell metabolism and leads to lipodystrophy, but the detailed mechanism has not been understood. In this paper, we have clarified a part of the mechanism that links the accumulation of ubiquitinated proteins caused by proteasome dysfunction to the disruption of proteostasis, inflammation and adipogenesis. The results of the study, which showed the relationship between intracellular proteostasis, inflammation and lipid metabolism, will help us understand not only PRAAS patients but also abnormal lipid metabolism, obesity, induction of inflammation, and chronic inflammation with persistent inflammation.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Willemsen et al studied the contribution of PSMB4 and PSMB8 on proteasomal activity in adipocyte tissue/cells. Mutations in PSMB4/8 have been associated with metabolic diseases that lead to inflammation and proteotoxicity. They used mice and murine cell lines to assess the abundance and activity of the proteasome as well as the stress response upon depletion of psmb4 and regulatory factors. The study is interesting and could provide new insight into the role of specific proteasomal subunits of the immunoproteasome on the metabolism and associated diseases. However, there are a number of issues on the presented data that should be addressed. See below.
Major comments:
Minor comments:
This study links clinical research with basic science and if the authors address the above mentioned issues this work will provide new insight into the role of the UPS in the lipid metabolism.
target audience: clinical scientist on lipid metabolism and basic researchers on the UPS and associated pathologies
my expertise: UPS
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Manuscript number: RC- 2021-01102
Corresponding author(s): Rita Tewari; Mohammad Zeeshan
We wish to thank the reviewers and the Editor for their constructive comments and valuable suggestions to improve our manuscript. We have addressed as far as possible all comments and concerns and we hope that this revised manuscript, with additional new data, will be acceptable for publication. Please find below detailed responses (in italicized red text) to all specific points raised by the reviewers.
This section is mandatory. Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
The study led by Dr. Zeeshan analyzes nine mouse Plasmodium parasites kinesin by determining their expression pattern and subcellular location in various stages of the parasites in the mammalian and mosquito host. The genetic and phenotypic analyses of all nine kinesins indicate that most are critical for parasite development in the mosquito host, except for Kinesin 13 being the only kinesin essential during the intraerythrocytic development cycle. The authors presented an in-depth analysis on kinesin 13 and 20, using an impressive pallet of molecular techniques such as promotor swapping, chromatin immunoprecipitation, and global transcriptomic analysis using RNAseq, as well as numerous microscopy techniques such as live fluorescence imaging, expansion microscopy, and electron microscopy. This comprehensive study provides an outstanding amount of data on Kinesins in Plasmodium parasites that would be best showcased with a rethinking of the manuscript structure and a more insightful discussion section that directed most of my comments in the review the manuscript. I believe no additional experiments are needed assuming that the authors will link Kinesin 13 and or 20 to the IMC formation in future work.
Authors’ response: We are pleased that the reviewer likes this comprehensive study and believes that no additional data are required. We have now reorganized the manuscript with more focus on kinesin 13 and kinesin 20.
**Major Comments:**
•The current manuscript shows the " Location and function of Plasmodium kinesins" as the title suggests; however, I strongly recommend the authors consider alternative storytelling focusing on Kinesin 13 and 20.
Authors’ response: We thank the reviewer for this recommendation. We have changed both the organization of the text and the title of the manuscript to focus on kinesin-13 and -20. The new title of the manuscript is “Key roles for kinesin-13 and kinesin-20 in malaria parasite proliferation, polarity, and transmission revealed by genome-wide functional analysis”.
The author provides in-depth phenotypical analysis resulting in the most innovating and exciting data. In addition, the discussion section from lines 592 to 634 was fascinating compared to the following section (see details comments for Discussion section below). Authors’ response: We are very pleased that the reviewer considers the phenotypic analysis to be the most innovative and exciting data, and that they appreciated the discussion section of lines 592 to 634.
The following significant comments are related to figures where I believe a restructuration is most needed to bring clarity to the paper.”
•Figure 1. I suggest the authors move Figure 4A to figure 1; Figure1C should move to supplementary information
Authors’ response: As suggested by the reviewer, old Figure 4A is now moved to Figure 1(as Figure 1D) and old Figure 1C is moved to supplementary information (as S3 Fig)
except for Kinesin 13 and 20 data to center the paper's focus on these two proteins
Authors’ response: The kinesin-13 and -20 data are now given prominence, as Figures 3 and 4 (kinesin-20) and Figures 5, 6, and 7 (kinesin-13).
I would also present the kinesin data in the current Figure4A not by numeric order but by biological relevance. All the "normal" together and so on
Authors’ response: We thank the reviewer for this suggestion; in Figure 1D (previously 4A) the data are now presented in the order of biological relevance.
•Figure 2: Kinesin 5 and 8X have the same results. I suggest the authors present only one in the same manuscript and place the other one in Supplementary information.
Authors’ response: kinesin-5 data are now part of S6 Fig in supplementary information and only kinesin-8X data are retained as part of Figure 2.
I would recommend adding the little schematic used in Figure1C to help the reader quickly identify the parasite stages presented in the figures
Authors’ response: A schematic is included in Figure 2C for clarification, as suggested.
•Figure4: Panels B to E should be a supplementary information
Authors’ response: These panels have now been moved to supplementary information as S5 Fig.
•Figure 5: Panels H to J should be supplementary information
Authors’ response: Panels H to J have been moved to supplementary information as part of S8 Fig.
and I strongly recommend the authors to present data by stages; therefore, I would remove panels F and G and replace them with Figure 6A, the expansion microscopy represents the data in Figure 4B, C, D, and E beautifully
Authors’ response: we thank the reviewer for this suggestion; expansion microscopy data are now incorporated into the new Figure 3, and the old panels F and G are now part of S8 Fig in the supplementary information.
•Figure 6B: It is challenging to identify the layout between WT and delta-kinesin 20. All annotations on the EM data cover the data itself. I recommend drawing a representative schematic to guide the reader for identification of ultrastructure
Authors’ response: we have now included a schematic diagram as Figure 4B, to highlight the key ultrastructural features and facilitate their identification by the reader.
•Figure 8: Panel C and D should be supplementary information and replaced by the accurate colocalization data of Kinesin 13 presented in Supp figure 5
Authors’ response: the kinesin-13 colocalization data are now in Figure 5, and the previous Figure 8 Panels C and D have been moved to supplementary information.
In addition, comment line 442 is also actual for the ookinete. The true colocalization is with tubulin in male gamete and gametocytes in figure 5A/B
Authors’ response: We agree with the reviewer; the colocalization data with tubulin in male gamete and gametocytes are now presented in Figures 6A and B.
Figure 9: Panel F to J go to supplementary information and replace with the data in figure 10
Authors’ response: We understand the reviewer’s concerns, however, we would like to include these data in the main figure because they provide important information on the differential regulation of transcripts involved in axoneme biogenesis and chromosome dynamics.
Figure 10: Could be a great abstract figure in the current state. As a model figure, I would recommend incorporating more details
Authors’ response: We have removed this figure (and therefore there are now seven rather than ten figures in the revised manuscript). We would, of course, be happy to use it as part of an abstract if required.
**Minor Comments:**
I will address my following minor comment by Line number rather than section:
Figure 1C: It is unclear if the black square is an actual picture or a black square. I would suggest the authors present the absence of data by a white square or a bar
Authors’ response: For this figure (now S3 Fig, previously Figure 1C), we have added the scale bars on the dark squares to indicate that these are actual pictures that show the absence of signal.
Line 96: " a final synchronized round of S-phase" The classical mitotic terminology is poorly used in the field of Plasmodium mitosis due to the absence of canonical cell cycle checkpoint. I would recommend the authors rephrase as " a final synchronized round of DNA replication."
Authors’ response: We thank the reviewer for this suggestion. We have now deleted this sentence as part of an effort to make the introduction more concise.* *
Line 149-151: Could the authors indicate what stage of the life cycle the work was done?
Authors’ response: We now indicate the stages in line number 127.
Line 161: Missing space between the word "parasite and cell"
Authors’ response: We have deleted this sentence while revising the introduction to make it more concise.
Line 163: " These findings will inform a strategy ..." Could the authors explain in greater detail how the study is informative for targeting MT motors for therapeutic. I would argue with the authors that it is an overstatement since the paper did not provide structural data on kinesin as a foundation for drug discovery.
Authors’ response: The sentence is now modified to remove this overstatement, in lines number 134-136.
Line 368: What was the reasoning for examining whether other kinesin genes' expression is misregulated in delta Kinesin 20?
Authors’ response: The main reason was the expression of other kinesins expressed in the cytoplasmic compartment of ookinete stages, such as kinesin-X3 and kinesin-13; and kinesin-13 that has a key role in MT organization during ookinete development. Therefore, we expected that the expression of other kinesins including kinesin-13 may be coordinated with that of kinesin-20 and modulated in the kinesin-20 knockout. We have added a sentence for clarification, lines 332-336.
Line 515: Could the authors define what is a nuclear pole?
Authors’ response: Nuclear pole is a synonym for spindle pole, which is in general usage with reference to electron micrographs. It serves as a microtubule-organizing center (MTOC) for mitotic spindles.* *
Line: 576 - 579: The authors mention the absence of the IFT component for flagellum assembly due to the assembly of the axoneme in the cytoplasm. It is known that kinesin-2 is required for the anterograde transport in organism building cilia and flagella using IFT. In the current study, kinesin 2 is not part of the nine kinesins; therefore, it is unclear why the authors made these comments and did not reflect on them. I would suggest removing it or comment it.
Authors’ response: it is well-established that axoneme assembly in Plasmodium gametocytes occurs in the cytoplasm, which does not require IFT, and the absence of a kinesin-2 gene is consistent with that process. In contrast, the location of kinesin-8B, kinesin-X4, and kinesin-13 suggests that they are involved in this non-canonical axoneme assembly. For clarification, we have added a sentence at line numbers 521-522.
Line 546-560: this entire section of discussion would be best in a review paper. It is a well-written summary of the current literature with no discussion related to the data on the present study; therefore, I suggest the authors remove it from the discussion.
Authors’ response: This section is now largely removed from the discussion except for a few relevant sentences at lines 509-515.
Line 561 – 571: Great summary of the Kinesin-13 work without discussion.
Authors’ response: This part (now at line numbers 595-602) has now been modified so that it is more relevant to the discussion.
Line 572: What do the authors mean by " these findings"?
Authors’ response: We have explained the meaning of “these findings” (line number 603).
Line 573 – 589 (assuming 673-689): The authors miss the opportunity to elaborate on how the depletion of kinesin protein could impact the global transcriptome. Are we looking at downstream effects? I strongly recommend the authors resolve the lack of discussion related to the RNAseq data in the study.
Authors’ response: we have now improved the discussion of the transcriptome data (line numbers 610-613).
Reviewer #1 (Significance (Required)):
This study is a tremendous amount of work done rigorously and will advance our knowledge in the biology of Plasmodium parasites. We are in urgent need to develop innovative ways to block the replication and transmission of Plasmodium spp. and it can happen only through advancing our knowledge in the basic biology of the parasite.
Authors’ response: We thank the reviewer for their positive and encouraging comments.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
**Summary:** In this study, Zeeshan et al used live-cell imaging, ultrastructure expansion microscopy, and electron microscopy, gene deletion, genetic knockdown, RNA-seq, ChIP-seq analyses, and matrigel substrate to examine the subcellular localization and the function of Plasmodium kinesins throughout the P. berghei life cycle. They find that Kinesin-13 is the only kinesin essential for both asexual blood stages and sexual stages.
This manuscript represents a lot of work by the authors. The data appear rigorous and well-executed. The data are clearly presented and the writing is clear. I have only minor comments that may improve the reader's comprehension.
Authors’ response: We thanks the reviewer for their positive appreciation of our work.
**Major comments:**
Figure 2C:
The ChIP-seq experiments examined the kinesin-5 and -8x binding site at the chromosome at 6 mpa. Did the authors do any tests at other time points post-activation?
Authors’ response: We sampled only at 6 mpa because at this time point the expression of kinesin-5 and -8X is high, facilitating the ChIP-seq analysis using anti-GFP antibodies. We now include additional ChIP-seq data in S6 Fig.* *
Figure 4:
The authors conclude that kinesin-x3 and kinesin-x4 are non-essential for the P.berghei life cycle. Does deletion of kinesin-x4 affect the length of the flagella?
Authors’ response: We observed no obvious change in the length of flagella after these deletions.
Oocyte size: To the non-specialist, it is difficult to reconcile the images in panel E with the conclusions in panel A. Based on the images, it looks like only knocking out of kinesin-8x seems to affect oocyst size. Can the authors clarify and provide graphs of the quantification of oocyte size?
Authors’ response: We agree with the reviewer that only the knockout of kinesin-8X affects oocyst size. Similar data, obtained using live-cell fluorescence imaging and electron microscopy, have been described and discussed earlier in Zeeshan et al, 2019 PLOS Pathogens (PMID: 31600347).
**Minor comments:**
line 190: typo, kinesin-x4
Authors’ response: This typo has now been corrected (line 162).
Figure 3: what do the arrows mean?
Authors’ response: Arrows indicate the pellicle and axonemes that are mentioned in the figure legend (current Figures 2A and B).
Figure 4F:
- Typo, scale bar, um.
Authors’ response: We have corrected this (please see the legend for current S5D Fig).* *
- Does deletion of kinesin-5 show a significant difference?
Authors’ response: Yes, the number of infective sporozoites in salivary glands is significantly reduced following kinesin-5 deletion (as published previously in the manuscript of Zeeshan et al 2020 [PMID: 33154955]).
Reviewer #2 (Significance (Required)):
The study provides comprehensive information on the diverse subcellular location and functions of P. berghei kinesins throughout the P. berghei life cycle. That is useful to exploit the therapeutic targets against malaria.
The main findings are that kinesin-13 genetic knockdown affected MT dynamics during spindle formation and axoneme assembly in male gametocytes and subpellicular MT organization in ookinetes. In addition, Kinesin-13 shows different binding to kinetochores during the gametogenesis and ookinete development, suggesting other proteins may regulate kinesin-13 binding to kinetochores at various stages. The underlying mechanism will help to better understand the role of kinesin-13 in the parasite life cycle.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
In this manuscript the authors show a huge ambition to catalog biological functions of Plasmodium kinesins. This was done by generating transgenic cell lines where kinesins were deleted and/or tagged with GFP that served as a tool to gather as much biological information on each kinesin isoform. On one side I find this manuscript highly impressive in terms of the amounts of data and information. In particular, the cell biology and microscopy results are of high quality and certainly provide useful information to the research community. I am fairly convinced that most results genuinely represents the individual biological aspects of the kinesins in the best possible way. Unfortunately, I have major reservations about the presentation of these results in the compiled manuscript. In my view the authors were overambitious about the volume and diversity of data that they wished to present, which opened a lot of questions about the depth and quality of each of the experimental effort. There is 10 figures which is highly nonstandard for a scientific publication to start with and yet there is, in my view, major gaps in some results descriptions, data presentations e.t.c. Perhaps, because of this huge ambition the data are presented in a highly superficial manner often lacking negative and positive controls. Unfortunately that creates many doubts about the overall quality of the results and as such the interpretations. In my view the authors might be well advised to separate this large body of work into several publications each focusing on more tangible biological problem in the more in-depth manner. This would give the reader (me) better confidence about the validity of the statements made in this manuscript.
I can give few examples of such discrepancies but cannot account for all.
1.The authors created GFP-tagged transgenic cell lines for each of the 9 kinesins and generated life cell images for each of the line across multiple stages of the entire plasmodium life cycle. This is an impressive amount of work and data. It is certainly useful to see that in life cell imaging the different kinesins isoforms can be detected in different sets of developmental stages some diffused in the cytoplasm and some associated with the nucleus. Even though these results are impressive, there are based solely on life cell imaging that rely on a certain level of detection limit and GFP visibility. One can imagine that a kinesin may still be expressed in a developmental stage and not detected by life cell imaging.
Authors’ response: We agree with the reviewer that live-cell imaging has a detection limit for the signal and we cannot rule out the possibility of expression below this limit. We also used immunofluorescence assays (IFAs) to confirm the presence or absence of the proteins at least in the asexual blood- and gametocyte stages. However, our focus was to examine expression by live-cell imaging during the transmission stages, and hence only those data were given in the manuscript.
I believe that some other detection methods such a western blot, immunoprecipitation e.t.c. should be provided to truly demonstrate that an individual isoform of a kinesin IS of ISNOT expressed. Without that the Figure 1B is overstated.
Authors’ response: Some western blots to confirm expression of the intact kinesin-GFP fusion protein has been published previously: for kinesin-8X (PMID: 31600347), kinesin-5 (PMID: 33154955), and kinesin-8B (PMID: 31600347). We now provide immunoprecipitation data for six kinesin-GFP fusion proteins, performed using GFP-trap antibody and with identification by mass spectrometry. These results (S2 Fig) clearly show the presence of the respective kinesins fused to GFP in the immunoprecipitates (S2 fig).
Moreover, the authors claim that the punctuate signal in the nucleus corresponds to spindle. I do not see any supporting evidence for this in this figure.
Authors’ response: We have previously provided IFA data using anti-tubulin antibodies (for detection of spindle MT) that clearly show co-localization with nuclear kinesins (kinesin-5 and kinesin-8X). For more detailed information please see Zeeshan et al., 2019, PLOS Pathogen (kinesin-8X; PMID: 31600347) and Zeeshan et al., 2020 Front. Cell. Infect. Microbiol (kinesin-5; PMID: 33154955).
2.For the analysis of kinesin 5 and 8x the authors note two types of experiments. First they created a "cross" between the two cells lines. Second, the authors carry out ChIP-Seq to show that the proteins localize to the centromere. This could be an impressive result unfortunately there is very little if any information about it. Genetic crosses in Plasmodium are not standard techniques that one can assume works all the time. I believe there should be more evidence that the presented images come from a true genetic cross.
Authors’ response: We now provide images obtained using both single and dual fluorescence in in the same panel, which show the signal of individual kinesins in different cells as well as both signals in one cell (please see S6A Fig). The two lines, one expressing a GFP-tagged protein and the other a mCherry-tagged protein are crossed by feeding gametocytes together to the mosquito where fertilization and genetic recombination takes place. This genetic cross follows Mendelian rules, producing parental single and two recombinant lines (1:2:1 ratio). The lines are not pure clones but contain parasites that express either both or single fluorescence signals.
The least the authors could show that the florescence signal for both channels come from genuine integrations of the GFP proteins to their target kinesins by PCR or genome sequencing.
Authors’ response: We have also confirmed the presence of genes for each tagged protein by integration PCR in these crossed lines, and by live-cell imaging, as shown in S6A Fig.
Similarly for the chip-seq, there is a need to provide much detailed information about the entire results with a particular clarity about the position of the peaks in respect to projected centromeres. In addition the ChIP-Seq analysis should be supported by data along with positive and negative controls to truly show the kinesins associations with the centromeres.
Authors’ response: We provide the positive and negative controls for the ChIP-seq data (please see S7 Fig). The raw data and further details are deposited in the NCBI Sequence Read Archive with accession number: PRJNA731497.
- In the middle part, the author present rater impressive analyses of several kinesin deletion trains and their effect on the development of the mosquito stages. In particular, they demonstrate the effect of kinesin 20 on ookinete development. Yet in the next paragraph they present RNA seq analysis of the kinesin 20 deletion on gametocyte induction, in which kinesis 20 should not have any effect; judging from the presented phenotypic assay. This experiment seems out of context as it is unclear why this assay was done and what is the outcome. The authors identified a small group of differentially expressed genes seemingly unrelated to neither kinesin function nor gametocyte induction. This experiment does not make sense to me in the context of the rest of the paper.
Authors’ response: We agree with the reviewer about the effect of kinesin-20 deletion on ookinete development and the RNAseq analysis of the gametocyte stage. This is because kinesin-20 expression starts in female gametocytes and continues into later stages including ookinetes. We know that in Plasmodium there is translational repression in female gametocytes, which de-repress only in the zygote after fertilization, leading to translation of many proteins in the zygote. We wished to see whether there was a role of kinesin-20 in translational de-repression. Our transcriptomic data showed no role of kinesin-20 in this process. We have added a sentence for clarification in lines 338 -342.
Reviewer #3 (Significance (Required)):
As mentioned above, these three examples represent some of the discrepancies not necessarily about the data quality and fidelity but rather a confusing character of the entire study. From this perspective I have two types of problems with this manuscript. First, while reading this manuscript, lacking key controls and detailed description of some of the analyses, made me loose interest as well as confidence in other parts of the studies which may or may not be solid. Second, I struggle to see the key purpose of the presentation. Instead the manuscript seems to be a compilation of very diverse data some of which are interesting but other out of context, confusing and not connected to the rest of the study.
Authors’ response: We are sorry for the confusion, but we have now streamlined the data presented, to focus in the manuscript mainly on two kinesins, kinesin-13 and kinesin-20. We provide the relevant controls and a detailed description of the analyses. All experiments were repeated at least three times, and, where appropriate, figure legends provide information on the number of samples and repeats. We hope the reviewer finds the manuscript clearer now.
Overall I wish to reiterate that I believe that there are a lot of very good experimental results in this study but unfortunately many of these get lost in the overall presentation that is often superficial or out of context. My general impression is that the authors are trying to show too much, "too fast" and as such many of the presented results remain questionable. The author are likely able to correct all these discrepancies but this might not be possible to do in the manuscript.
Authors’ response: We are thankful to the reviewer for finding a lot of very good experimental data and hope that the revised manuscript, with more focus on two kinesins, will give more confidence in our work to the reviewer.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this manuscript the authors show a huge ambition to catalog biological functions of Plasmodium kinesins. This was done by generating transgenic cell lines where kinesins were deleted and/or tagged with GFP that served as a tool to gather as much biological information on each kinesin isoform. On one side I find this manuscript highly impressive in terms of the amounts of data and information. In particular, the cell biology and microscopy results are of high quality and certainly provide useful information to the research community. I am fairly convinced that most results genuinely represents the individual biological aspects of the kinesins in the best possible way. Unfortunately, I have major reservations about the presentation of these results in the compiled manuscript. In my view the authors were overambitious about the volume and diversity of data that they wished to present, which opened a lot of questions about the depth and quality of each of the experimental effort. There is 10 figures which is highly nonstandard for a scientific publication to start with and yet there is, in my view, major gaps in some results descriptions, data presentations e.t.c. Perhaps, because of this huge ambition the data are presented in a highly superficial manner often lacking negative and positive controls. Unfortunately that creates many doubts about the overall quality of the results and as such the interpretations. In my view the authors might be well advised to separate this large body of work into several publications each focusing on more tangible biological problem in the more in-depth manner. This would give the reader (me) better confidence about the validity of the statements made in this manuscript.
I can give few examples of such discrepancies but cannot account for all.
1.The authors created GFP-tagged transgenic cell lines for each of the 9 kinesins and generated life cell images for each of the line across multiple stages of the entire plasmodium life cycle. This is an impressive amount of work and data. It is certainly useful to see that in life cell imaging the different kinesins isoforms can be detected in different sets of developmental stages some diffused in the cytoplasm and some associated with the nucleus. Even though these results are impressive, there are based solely on life cell imaging that rely on a certain level of detection limit and GFP visibility. One can imagine that a kinesin may still be expressed in a developmental stage and not detected by life cell imaging. I believe that some other detection methods such a western blot, immunoprecipitation e.t.c. should be provided to truly demonstrate that an individual isoform of a kinesin IS of ISNOT expressed. Without that the Figure 1B is overstated. Moreover, the authors claim that the punctuate signal in the nucleus corresponds to spindle. I do not see any supporting evidence for this in this figure.
2.For the analysis of kinesin 5 and 8x the authors note two types of experiments. First they created a "cross" between the two cells lines. Second, the authors carry out ChIP-Seq to show that the proteins localize to the centromere. This could be an impressive result unfortunately there is very little if any information about it. Genetic crosses in Plasmodium are not standard techniques that one can assume works all the time. I believe there should be more evidence that the presented images come from a true genetic cross. The least the authors could show that the florescence signal for both channels come from genuine integrations of the GFP proteins to their target kinesins by PCR or genome sequencing. Similarly for the chip-seq, there is a need to provide much detailed information about the entire results with a particular clarity about the position of the peaks in respect to projected centromeres. In addition the ChIP-Seq analysis should be supported by data along with positive and negative controls to truly show the kinesins associations with the centromeres.
3.In the middle part, the author present rater impressive analyses of several kinesin deletion trains and their effect on the development of the mosquito stages. In particular, they demonstrate the effect of kinesin 20 on ookinete development. Yet in the next paragraph they present RNA seq analysis of the kinesin 20 deletion on gametocyte induction, in which kinesis 20 should not have any effect; judging from the presented phenotypic assay. This experiment seems out of context as it is unclear why this assay was done and what is the outcome. The authors identified a small group of differentially expressed genes seemingly unrelated to neither kinesin function nor gametocyte induction. This experiment does not make sense to me in the context of the rest of the paper.
As mentioned above, these three examples represent some of the discrepancies not necessarily about the data quality and fidelity but rather a confusing character of the entire study. From this perspective I have two types of problems with this manuscript. First, while reading this manuscript, lacking key controls and detailed description of some of the analyses, made me loose interest as well as confidence in other parts of the studies which may or may not be solid. Second, I struggle to see the key purpose of the presentation. Instead the manuscript seems to be a compilation of very diverse data some of which are interesting but other out of context, confusing and not connected to the rest of the study.
Overall I wish to reiterate that I believe that there are a lot of very good experimental results in this study but unfortunately many of these get lost in the overall presentation that is often superficial or out of context. My general impression is that the authors are trying to show too much, "too fast" and as such many of the presented results remain questionable. The author are likely able to correct all these discrepancies but this might not be possible to do in ne manuscript.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary: In this study, Zeeshan et al used live-cell imaging, ultrastructure expansion microscopy, and electron microscopy, gene deletion, genetic knockdown, RNA-seq, ChIP-seq analyses, and matrigel substrate to examine the subcellular localization and the function of Plasmodium kinesins throughout the P. berghei life cycle. They find that Kinesin-13 is the only kinesin essential for both asexual blood stages and sexual stages.
This manuscript represents a lot of work by the authors. The data appear rigorous and well-executed. The data are clearly presented and the writing is clear. I have only minor comments that may improve the reader's comprehension.
Major comments:
Figure 2C:
The ChIP-seq experiments examined the kinesin-5 and -8x binding site at the chromosome at 6 mpa. Did the authors do any tests at other time points post-activation?
Figure 4:
The authors conclude that kinesin-x3 and kinesin-x4 are non-essential for the P.berghei life cycle. Does deletion of kinesin-x4 affect the length of the flagella?
Oocyte size: To the non-specialist, it is difficult to reconcile the images in panel E with the conclusions in panel A. Based on the images, it looks like only knocking out of kinesin-8x seems to affect oocyst size. Can the authors clarify and provide graphs of the quantification of oocyte size?
Minor comments:
line 190: typo, kinesin-x4
Figure 3: what do the arrows mean?
Figure 4F:
typo, scale bar, um.
Does deletion of kinesin-5 show a significant difference?
The study provides comprehensive information on the diverse subcellular location and functions of P. berghei kinesins throughout the P. berghei life cycle. That is useful to exploit the therapeutic targets against malaria.
The main findings are that kinesin-13 genetic knockdown affected MT dynamics during spindle formation and axoneme assembly in male gametocytes and subpellicular MT organization in ookinetes. In addition, Kinesin-13 shows different binding to kinetochores during the gametogenesis and ookinete development, suggesting other proteins may regulate kinesin-13 binding to kinetochores at various stages. The underlying mechanism will help to better understand the role of kinesin-13 in the parasite life cycle.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The study led by Dr. Zeeshan analyzes nine mouse Plasmodium parasites kinesin by determining their expression pattern and subcellular location in various stages of the parasites in the mammalian and mosquito host. The genetic and phenotypic analyses of all nine kinesins indicate that most are critical for parasite development in the mosquito host, except for Kinesin 13 being the only kinesin essential during the intraerythrocytic development cycle. The authors presented an in-depth analysis on kinesin 13 and 20, using an impressive pallet of molecular techniques such as promotor swapping, chromatin immunoprecipitation, and global transcriptomic analysis using RNAseq, as well as numerous microscopy techniques such as live fluorescence imaging, expansion microscopy, and electron microscopy. This comprehensive study provides an outstanding amount of data on Kinesins in Plasmodium parasites that would be best showcased with a rethinking of the manuscript structure and a more insightful discussion section that directed most of my comments in the review the manuscript. I believe no additional experiments are needed assuming that the authors will link Kinesin 13 and or 20 to the IMC formation in future work.
Major Comments:
•The current manuscript shows the " Location and function of Plasmodium kinesins" as the title suggests; however, I strongly recommend the authors consider alternative storytelling focusing on Kinesin 13 and 20. The author provides in-depth phenotypical analysis resulting in the most innovating and exciting data. In addition, the discussion section from lines 592 to 634 was fascinating compared to the following section (see details comments for Discussion section below).
•The following significant comments are related to figures where I believe a restructuration is most needed to bring clarity to the paper."
•Figure 1. I suggest the authors move Figure 4A to figure 1; Figure1C should move to supplementary information except for Kinesin 13 and 20 data to center the paper's focus on these two proteins. I would also present the kinesin data in the current Figure4A not by numeric order but by biological relevance. All the "normal" together and so on
•Figure 2: Kinesin 5 and 8X have the same results. I suggest the authors present only one in the same manuscript and place the other one in Supplementary information. I would recommend adding the little schematic used in Figure1C to help the reader quickly identify the parasite stages presented in the figures.
•Figure4: Panels B to E should be a supplementary information
•Figure 5: Panels H to J should be supplementary information, and I strongly recommend the authors to present data by stages; therefore, I would remove panels F and G and replace them with Figure 6A, the expansion microscopy represents the data in Figure 4B, C, D, and E beautifully.
•Figure 6B: It is challenging to identify the layout between WT and delta-kinesin 20. All annotations on the EM data cover the data itself. I recommend drawing a representative schematic to guide the reader for identification of ultrastructure.
•Figure 8: Panel C and D should be supplementary information and replaced by the accurate colocalization data of Kinesin 13 presented in Supp figure 5. In addition, comment line 442 is also actual for the ookinete. The true colocalization is with tubulin in male gamete and gametocytes in figure 5A/B.
•Figure 9: Panel F to J go to supplementary information and replace with the data in figure 10.
•Figure 10: Could be a great abstract figure in the current state. As a model figure, I would recommend incorporating more details
Minor Comments:
I will address my following minor comment by Line number rather than section:
Figure 1C: It is unclear if the black square is an actual picture or a black square. I would suggest the authors present the absence of data by a white square or a bar.
Line 96: " a final synchronized round of S-phase" The classical mitotic terminology is poorly used in the field of Plasmodium mitosis due to the absence of canonical cell cycle checkpoint. I would recommend the authors rephrase as " a final synchronized round of DNA replication."
Line 149-151: Could the authors indicate what stage of the life cycle the work was done?
Line 161: Missing space between the word "parasite and cell"
Line 163: " These findings will inform a strategy ..." Could the authors explain in greater detail how the study is informative for targeting MT motors for therapeutic. I would argue with the authors that it is an overstatement since the paper did not provide structural data on kinesin as a foundation for drug discovery.
Line 368: What was the reasoning for examining whether other kinesin genes' expression is misregulated in deltaKinesin 20?
Line 515: Could the authors define what is a nuclear pole?
Line: 576 - 579: The authors mention the absence of the IFT component for flagellum assembly due to the assembly of the axoneme in the cytoplasm. It is known that kinesin-2 is required for the anterograde transport in organism building cilia and flagella using IFT. In the current study, kinesin 2 is not part of the nine kinesins; therefore, it is unclear why the authors made these comments and did not reflect on them. I would suggest removing it or comment it.
Line 546-560: this entire section of discussion would be best in a review paper. It is a well-written summary of the current literature with no discussion related to the data on the present study; therefore, I suggest the authors remove it from the discussion.
Line 561 - 571: Great summary of the Kinesin-13 work without discussion.
Line 572: What do the authors mean by " these findings"?
Line 573 - 589: The authors miss the opportunity to elaborate on how the depletion of kinesin protein could impact the global transcriptome. Are we looking at downstream effects? I strongly recommend the authors resolve the lack of discussion related to the RNAseq data in the study.
This study is a tremendous amount of work done rigorously and will advance our knowledge in the biology of Plasmodium parasites. We are in urgent need to develop innovative ways to block the replication and transmission of Plasmodium spp. and it can happen only through advancing our knowledge in the basic biology of the parasite.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Manuscript number: RC-2021-01015
Corresponding author(s): Jordan, Raff
We thank the reviewers for their thoughtful and constructive comments and have now revised our manuscript accordingly. We apologise that it has taken so long to send in these revisions, but this is in part because both first authors have now left the lab.
Reviewer #1
This reviewer was generally supportive. They note that it is unfortunate that our data suggests the CP110/Cep97 complex does not play a major part in controlling daughter centriole growth—although we believe that this is an important negative result—but feel that other aspects of our data are interesting. They requested no further experiments, but did comment that it would be interesting to determine when g-tubulin is incorporated into growing centrioles. Unfortunately, we cannot test this as the centrioles in these embryos recruit large amounts of g-tubulin to their PCM, so we cannot specifically assay the small amount of protein in the centriolar fraction.
Reviewer #2
Major Points:
__Figure 1: The reviewer notes that Sas-4 and CP110 have antagonistic roles in promoting/repressing centriole growth and asks if Sas-4 is involved in promoting centriole elongation and whether it also oscillates. __It is unclear if Sas-4 directly promotes centriole elongation in flies. We have previously shown that centriolar Sas-4 levels do oscillate during S-phase, but with a timing that is distinct from CP110/Cep97 (Novak et al., Curr. Biol., 2014). These observations do not shed much light on the potential antagonistic relationship between CP110/Cep97 and Sas-4, so we do not comment on this here.
Figure S1B: The reviewer requests that we image the centrioles with greater laser intensity to test whether some residual CP110 or Cep97 protein can be recruited in the absence of the other protein. The quantification of this data suggests that some residual CP110 or Cep97 can still be recruited to centrioles in the absence of the other (Graphs, Figure S1B,C), so we do not think it necessary to repeat this experiment at higher laser intensity to further test this point. We now state that the centriolar recruitment of one protein may not be completely dependent of the other (p6, para.2).
Figure 3: The reviewer questions whether the reduction in CP110/Cep97 levels at the mother centriole that we observe during S-phase could be due to photobleaching. This is an interesting point that we now analyse in more detail (p8, para.2). We do not think the decrease in mother centriolar CP110/Cep97 levels is due to photobleaching as our new analysis (which includes more data points during mitosis) strongly suggests that centriolar levels on the mother rise again at the start of the next cycle (New Figure 3C,D).
The reviewer asks whether the CP110/Cep97 oscillations occur at the tip of the growing centriole, and whether we can use super-resolution imaging to address this. A large body of evidence indicates that CP110/Cep97 are highly concentrated at centriole distal tips, and all our experiments suggest that it is this fraction that is oscillating. In Figure 3, for example, we use Airy-scan super-resolution imaging to follow the oscillation on Mother and Daughter centrioles in living embryos. Although the resolution in these experiments is not as high as we can achieve using 3D-SIM in fixed cells, it seems reasonable to assume that the dots of fluorescence we observe oscillating on these centrioles (Fig. 3) are the same fluorescent dots we observe localised at the distal tips of the mother and daughter using 3D-SIM in fixed cells (Fig. 1A).
The reviewer requests additional quantification of the western blots shown in Figure S1 that we use to judge relative expression levels. As we now describe in more detail in the M&M, these ECL blots are very sensitive, but highly non-linear, so we usually estimate relative expression levels by comparing serial dilutions of the different fractions (see, for example, Figure 1B, Franz et al., JCB, 2013). As we now clarify, the key point is not precisely by how much these proteins are over- or under-expressed, but that we observe a similar oscillatory behaviour when they are either over- or under-expressed.
__The reviewer points out that our statement that the CP110/Cep97 oscillation is entrained by the Cdk/Cyclin oscillator (CCO) is too strong as it is based only on a correlation. __We agree and apologise for this overstatement. To address this, we have now perturbed the CCO by halving the dose of Cyclin B (New Figure 5E—H). This extends S-phase length and we now show that the period of the CP110/Cep97 oscillation is also extended. This suggests that the CCO directly influences the period of the CP110/Cep97 oscillation.
The reviewer notes that our conclusion that the centriole cartwheels are longer or shorter when CP110 or Cep97 are absent or overexpressed, respectively, is based only on Sas-6-GFP fluorescence intensity. They ask if this fluorescence intensity perfectly reflects cartwheel length, and if we can confirm these conclusions using EM. Sas-6 is the main structural component of the cartwheel, so the amount of Sas-6 at the centriole should be proportional to cartwheel length, and we have published two papers that support this conclusion and that use the incorporation of Sas-6 as a proxy to measure cartwheel length (Aydogan et al., JCB, 2018; Aydogan et al., Cell, 2020). Importantly, our previous EM studies support our conclusions about the relationship between cartwheel length and CP110/Cep97 levels: the centrioles in wing-disc cells are slightly longer in the absence of CP110 and slightly shorter when CP110 is overexpressed (Franz et al., JCB, 2013). The new findings reported here provide a potential explanation for this EM data, which was puzzling at the time.
Minor Points:
Figure 1C: The reviewer noted that our schematic illustrations in this Figure could be misleading____. We agree and have now redrawn them.
Reviewer #3
Major points:
The reviewer requested that we clarify our use of the term oscillation, pointing out that oscillations are repetitive variations in levels/activity over time, whereas the “oscillations” we describe here occur during each round of centriole assembly. This is a fair point, and one that is often debated in the oscillation field, with many believing that too many biological processes are termed “oscillations”, when they are not truly driven by the passage of time. To avoid any ambiguity, we now no longer describe the behaviour of CP110/Cep97 as an oscillation (although, for ease of discussion, we still use the term in this letter).
The reviewer thought that the data we show in Figure 1 was not relevant as we largely analyse centrioles in living embryos whereas the data in Figure 1 is derived from fixed wing-disc cells—and similar fixed-cell data has been shown in previous studies. The reviewer suggests we use super-resolution methods to analyse Cp110/Cep97 dynamics in the syncytial embryo, and show this relative to Sas-6 and Plk4. They ask if Plk4 and CP110/Cep97 colocalise at any time. While CP110/Cep97 localisation has been analysed by super-resolution microscopy previously (e.g. Yang et al., Nat. Comm., 2018; LeGuennec et al., Sci. Adv., 2020), CP110/Cep97 was a minor part of these studies and our data is the first to show that this complex sits as a ring on top of the centriole MTs in fly centrioles (that lack the complex distal and sub-distal appendages present in the previously analysed systems). As this localisation is important in thinking about how CP110/Cep97 might influence centriole MT growth, we would like to include it. We cannot show this detail in living embryos as the movement of the centrioles reduces resolution and we cannot observe the ring structure.
Although we do use Airy-scan super-resolution microscopy to study CP110/Cep97 dynamics in living embryos (Figure 3), we cannot do this in two colours (to compare these dynamics to Sas-6 or Plk4 dynamics) as red-fluorescent proteins bleach too quickly. We now show the relative dynamics of CP110/Cep97 and Plk4 recruitment using standard resolution microscopy (New Figure S2). While it is well established that Plk4 and CP110/Cep97 are concentrated at opposite ends of centrioles, they are all recruited to the nascent site of daughter centriole assembly, effectively “colocalising” at this timepoint. This could provide an opportunity for the crosstalk we observe here, and we now mention this possibility (p17, para.1).
The Reviewer questioned whether the loading of Sas-6-GFP onto centrioles can be used as a proxy for cartwheel length, pointing out that Sas-6 could load into centrioles in a way that does not change the cartwheel structure, and that EM is required to test this. As described in our response to Reviewer #2, Sas-6 is the main structural component of the cartwheel, and we have published two papers that use the incorporation of Sas-6 into the cartwheel as a proxy to measure cartwheel length (Aydogan et al., JCB, 2018; Aydogan et al., Cell, 2020). While we cannot exclude that Sas-6 might also associate with the cartwheel in a way that does not involve its incorporation into the cartwheel, it is not clear how EM might address this question. Moreover, even if such a fraction existed, it should not affect our conclusions—as long as Sas-6 is binding to the cartwheel in some way, then the amount bound should remain proportional to the length of the cartwheel. Perhaps the reviewer is suggesting that we perform an EM time course of cartwheel growth to back up our conclusions from the Sas-6 incorporation assay? If so, we think this impractical. The changes in cartwheel length shown in Figure 6 are revealed from analysing several thousand images of centrioles compared at precise relative time points. Such an analysis cannot be done in fixed embryos by EM.
Similar to the point above, the reviewer notes that we use the length of the cartwheel to infer centriole MT length, but we never directly measure MT length. They suggest we perform either an EM analysis or use MT markers to directly measure the kinetics of centriole MT growth. In flies (and many other organisms), the centriole MTs grow to the same length as the centriole cartwheel (Gonzalez, JCS, 1998), so we can be confident that the final length of the cartwheel reflects the final length of the centriole MTs. Moreover, we previously measured the distance between the mother centriole and the GFP-Cep97 cap that sits at the distal tip of the centriole MTs as a proxy for centriole MT length, and found that the inferred kinetics of MT growth were similar to the kinetics of cartwheel growth (inferred from Sas-6 incorporation) (Aydogan et al., 2018). This manual analysis was very time consuming, and we have tried to implement computational analysis methods, but so far without success. For similar reasons to those described in the point above, it is not feasible to accurately measure centriole MT growth kinetics by EM (nobody has been able to do this). Moreover, the centrosomes in these embryos are associated with too much tubulin and the centriole MTs are not yet modified (e.g. by acetylation) as the cycles are so fast—so we cannot directly stain the centriole MTs in fixed embryos. We have now toned down our conclusions about MT length throughout the paper, and we make it clear that we cannot directly measure this.
All of the experiments shown here are performed in the presence of endogenous untagged proteins, and the reviewer wonders if recruitment dynamics might be influenced by competition for binding from the endogenous protein. We have compared the behaviour of many centriole and centrosome proteins in the presence and absence of the untagged WT protein. In all cases, less tagged-protein binds to centrioles/centrosomes in the presence of untagged protein, presumably due to competition. Apart from this, however, we usually observe no real difference in overall dynamics and in Reviewer Figure 1 (see below) we show that CP110-GFP and GFP-Cep97 both oscillate even in the absence of any endogenous protein. As we feel this result is not very surprising, we do not show it in the manuscript.
The reviewer correctly noted that our data was not strong enough to conclude that the CP110/Cep97 oscillation is influenced by the CCO. This was also raised by Reviewer #2 and, as described above (p2, para.3 above), we have now performed additional experiments to more directly demonstrate this point (new Figure 5G—H).
The reviewer requests more discussion of why our conclusion that CP110/Cep97 levels oscillate on the growing daughter centrioles during S-phase is different to that reached by Dobbelaere et al, (Curr. Biol., 2020), who conclude that Cep97-GFP only starts to incorporate into the new daughter centrioles late in S-phase when the daughters are fully grown. We have discussed this discrepancy with these authors and they kindly shared their reagents with us (so our endogenous Cep97-GFP oscillation data comes from the same line they used in their experiments), but we have not come to a clear conclusion on this point. We have shown robust oscillations for CP110 and Cep97 by quantifying many hundreds of centrioles using multiple transgenes (both over- and under-expressed) in multiple backgrounds. Cep97 dynamics were a very minor part of the Dobbelaere et al., study, and they analysed a much smaller number of centrioles. We now briefly mention this discrepancy (p9, para.1), but do not discuss it in detail as we have no definitive explanation for it.
The reviewer requests more experiments or more discussion to address the mechanism(s) of crosstalk between CP110/Cep97 and Plk4, and they suggest several avenues for further investigations. These are excellent ideas, and we are working hard on these approaches. These are all long-term experiments, however, and we feel it is important that the field be made aware of these surprising findings as soon as possible, as others may be better-placed to provide mechanistic insight into how this system ultimately works. We now briefly mention some of the future directions the reviewer highlights in the Discussion.
The reviewer thought we should highlight the previous publications showing that Plk4-induced centriole amplification requires CP110 and that Plk4 can phosphorylate CP110. These studies (Kleylein-Sohn et al, Dev. Cell, 2007; Lee et al., Cell Cycle, 2017) were mentioned, but we now discuss them more prominently (p17, para.2).
Minor Points:
The reviewer raised a number of minor concerns that we have now addressed: (1) We discuss the model the reviewer suggests; (2) we no longer state that the crosstalk between CP110/Cep97 and Plk4 is unexpected; (3) We have clarified our description of the shift in timing of the peak levels of CP110/Cep97, which we no longer refer to as an oscillation; (4) We define mNG as monomeric Neon Green; (5) We have changed our schematics in Figure 1 as suggested by the reviewer; (6) We have corrected the mistake in the legend to Figure 8.
Reviewer #4
Major points:
The reviewer also suggests that we show the data with the endogenous promoter before we show the data with the ubiquitin promoter. As we now explain better (and show in Figure 4), this seems unnecessary as the proteins expressed from the ubiquitin promotor are probably actually expressed at levels that are more similar to the endogenous protein.
The reviewer questions whether the oscillations we observe might be due to the centrioles simply moving up and down in the embryo during the cell cycle, and they suggest we monitor Asl behaviour to rule this out. We have previously shown that Asl-GFP levels do not oscillate; they remain constant throughout the cell cycle on old-mother centrioles, and grow approximately linearly throughout S-phase on new-mother centrioles (see Figure 1D in Novak et al., Curr. Biol., 2014).
We were not sure we understood this point properly, so we copy the reviewers comment in full here: ____The authors mention (for instance on p. 3) that the inner cartwheel and the surrounding microtubules assemble at opposite ends of the daughter centriole. However, my understanding is that the short centrioles present in the fly embryo have an inner cartwheel that extends throughout the organelle, such that it might be moot to make a distinction between the two ends in this case. Moreover, it is also my understanding that this inner cartwheel is itself surrounded by microtubules, so that microtubule assembly might not be expected to occur strictly at the distal end no matter what. The reviewer is correct that Drosophila centrioles are short (~150nm) and that the cartwheel extends throughout the centriole. We think the reviewer is suggesting that it may not be relevant therefore whether the cartwheel and centriole MTs grow from opposite ends—as the activities that govern their growth may not be spatially separated? However, because cartwheels grow preferentially from the proximal-end (Aydogan et al., JCB 2018) while centriole MTs are assumed to grow preferentially from the distal (plus) end, there is an intrinsic problem in ensuring they grow to the same size—no matter how short or long the centrioles are. The reviewer is correct that one possible solution to this problem is that the centriole MTs actually grow from their minus ends, but this is not widely accepted (or even proposed). We have tried to explain this issue more clearly throughout the revised manuscript.
The reviewer points out that the schematic illustrations in Figure 1A and 1C are inaccurate and unhelpful. We agree and have now redrawn these.
The reviewer asks that we provide information about the eccentricities of the centrioles in the different datasets used to calculate the protein distributions shown in Figure 1, particularly as the data for Sas-4-GFP and Sas-6-GFP were obtained previously using a different microscope modality, making comparisons complicated. The point that comparing distance measurements across different datasets is difficult is an important one, and we now state that such comparisons should be treated with caution. However, we have not provided information on the distribution of centriole eccentricities in the different experiments as it wasn’t clear to us how this information could be used to make such comparisons more accurate (presumably the reviewer is suggesting we could apply a correction factor to each dataset?). The very tight overlap in the positioning of CP110/Cep97 fusions (Figure 1C) strongly suggests that any difference in the average centriole eccentricities of the different populations of centrioles analysed, which are already tightly selected for their en-face orientation (i.e. eccentricity
The reviewer requested that we show the “noisy data” we obtained during mitosis that we excluded from our analysis in Figure 3. As we now explain in more detail (p8, para.2), there are two reasons why the data for mitosis in this experiment is “noisy”: (1) The protein levels on the centrioles are low in mitosis and the centrioles are more mobile, so they are hard to track; (2) The Asl-mCherry marker used to identify the mother centriole starts to incorporate into the daughter (now new mother) centriole during mitosis, making it difficult to unambiguously distinguish mothers and daughters. As a result, we cannot track and assign mother/daughter identity to very many centrioles during mitosis—although we now include some extra data-points during mitosis for the centrioles where we could do this (revised Figure 3C,D). Importantly, it is clear that this “noisy” data hides no surprises: one can see (Figure 3C,D) that the signal on the centrioles is simply low during mitosis and then starts to rise again as the embryos enter the next cycle. This is confirmed in the normal resolution data (Figure 2B,C; Movies S1 and S2) where we can track many more centrioles due to the wider field of view and because we do not have to discard centrioles in mitosis that we cannot unambiguously assign as mothers or daughters.
The reviewer requests that we conduct a super-resolution Airy-scan analysis of CP110/Cep97 driven from their endogenous promoters (eCP110 or eCep97) to ensure that the oscillations we see with these lines (shown in Figure 4C,D) are also occurring at the daughter centriole—as we already show for the oscillations observed with the uCP110 and uCep97 lines (shown in Figure 4C,D, and analysed at super-resolution on the Airy-scan in Figure 3). This is technically very challenging as super-resolution techniques require a lot of light and the centriole signal in the eCP110/Cep97 embryos is very dim compared to uCP110/Cep97 embryos (Figure 4C,D). We have managed to do this for eCep97-GFP and confirmed that—even in these embryos that express Cep97-GFP at much lower levels than the endogenous protein (Figure 4A)—the “oscillation” is primarily on the daughter (Reviewer Figure 2). As this data is very noisy, and as the ubiquitin uCP110/Cep97 lines express these fusions at levels that are closer to endogenous levels (Figure 4A,B), we do not show this data in the main text.
The reviewer also asks for clarification as to why we use the Airy-scan for some experiments and 3D-SIM for others. As we now explain (p8, para.1), 3D-SIM has better resolution than the Airy-scan, but it takes more time and requires more light—so we cannot use it to follow these proteins in living embryos. Thus, for tracking CP110/Cep97 throughout S-phase in living embryos we had to use the Airy-scan.
The reviewer questions why in some experiments we analyse the behaviour of 100s of centrioles, whereas in others the numbers are much smaller (1-14 in Figure 3—note, the reviewer quoted this number as coming from Figure 4, but it actually comes from Figure 3, so we have assumed they mean Figure 3). We apologise for not explaining this properly. The super-resolution experiments in Figure 3 are performed on a Zeiss Airy-scan system, which has a much smaller field of view than the conventional systems we use in other experiments. Thus, we inherently analyse a much smaller number of centrioles in these experiments. In addition, as explained in point 6 above, in these experiments we need to analyse mother and daughter centrioles independently, and in many cases we cannot unambiguously make this assignment, so these centrioles have to be excluded from our analysis.
The reviewer questions why we selected the 10 brightest centrioles for the analysis shown in Figure S1B,C (note, the reviewer states Figure S2 here, but it is the data shown in Figure S1B,C that is selected from the 10 brightest centrioles, so we assume this is the relevant Figure). We apologise for not explaining this properly. In these mutant embryos very little CP110-GFP localises to centrioles in the absence of Cep97, and vice versa, so we cannot track centrioles using our usual pipeline and instead have to select centrioles using the Asl-mCherry signal. As the difference between the WT and mutant embryos is so striking, we simply selected the brightest 10 centrioles (based on Asl-mCherry levels) in both the WT and mutant embryos for quantification. We could select more centrioles, or select centrioles based on different criteria, but our main conclusion—that the centriolar localisation of one protein is largely dependent on the other—would not change.
The reviewer also questioned why we performed the analysis shown in Figure S2 (new Figure S3) during S-phase of nuclear cycle 14, when the rest of the manuscript focuses on nuclear cycles 11-13. We apologise for not explaining this properly. In cycles 11-13 centriolar CP110/Cep97 levels rise and fall during S-phase, whereas both proteins reach a sustained plateau during the extended S-phase (~1hr) of nuclear cycle 14—making it easier to analyse CP110/Cep97 levels in embryos when their centriole levels are maximal. We now explain this.
The reviewer requests that we quantify the western blots shown in Figure 4 in the same way we do in figure 8. To do this we would need to perform multiple repeats of these blots and we did not perform these because the blots shown in Figure 4 largely recapitulate already published data (Franz et al., JCB, 2013; Dobbelaere et al., Curr. Biol., 2020). Moreover, as described in our response to Reviewer #2, these ECL blots are very sensitive, but highly non-linear, so we always compare multiple serial dilutions of the different extracts to try to estimate relative levels of protein expression. We now explain this in the M&M.
The reviewer suggests the data shown in Figure 8 is a “straw man”: we really want to test whether modulating CP110/Cep97 levels modulates centriolar Plk4 levels, but instead we test how they modulate cytoplasmic Plk4 levels. The language here is harsh, as it suggests that our intention was to mislead readers into thinking that we have addressed a relevant question by addressing a different, irrelevant, one. We apologise if we have missed something, but we believe we do perform exactly the experiment that the reviewer thinks we should be doing—quantifying how centriolar Plk4 levels change when we modulate the levels of CP110 or Cep97 (Figure 7). It is clear from this data that modulating the levels of CP110/Cep97 does indeed modulate the centriolar levels of Plk4. In Figure 8 we seek to address whether this change in centriolar Plk4 levels occurs because global Plk4 levels in the embryo are affected—a very reasonable hypothesis, which this experiment addresses quite convincingly (although negatively).
Minor Points:
The reviewer highlights a small number of mistakes and omissions, all of which have been corrected.
Finally, we would like to thank the reviewers again for their detailed comments and suggestions. We hope that you and they will agree that the changes we have made in response to these comments have substantially improved that manuscript and that it is suitable for publication in The Journal of Cell Science.
Sincerely,
Jordan Raff
__Reviewer Figure 1. CP110/Cep97 dynamics remain cyclical even when Cep97-GFP and CP110-GFP are expressed from their endogenous promotors in the absence of any endogenous protein. __Graphs show how the levels (Mean±SEM) of centriolar CP110/Cep97-GFP change during nuclear cycle 12 in (A) Cep97-/- embryos expressing eCep97-GFP or (B) CP110-/- embryos expressing eCP110-GFP. CS=Centrosome Separation, NEB=Nuclear Envelope Breakdown. N≥11 embryos per group, average of n≥15 centrioles per embryo.
__Reviewer Figure 2. ____The cyclical recruitment of Cep97-GFP expressed from its endogenous promoter occurs largely at the growing daughter centriole. __The graph quantifies the fluorescence intensity (Mean±SD) acquired using Airy-scan microscopy of eCep97-GFP on mother (dark green) and daughter (light green) centrioles in individual embryos over Cycle 12. CS = Centrosome Separation, NEB = Nuclear Envelope Breakdown. Data was averaged from 3 embryos as the number of centriole pairs that could be measured was relatively low (total of 2-8 daughter and mother centrioles per time point; in part due to the much dimmer signal of eCep97-GFP in comparison to uGFP-Cep97).
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The authors report that CP110 and Cep97 localize near the distal end of centrioles in Drosophila embryos. CP110 and Cep97 tagged with GFP exhibit an oscillatory distribution, with levels on the daughter centriole being maximal in mid S-phase. These oscillations correlate with cell cycle progression. The authors also show that modulating CP110 or Cep97 levels changes the rate at which Sas6-GFP incorporates in the daughter centriole, as well as aspects of the previously reported oscillatory behavior of Plk4.
These results could be of potential interest if the stated conclusions were backed up by more convincing data than that which is provided at present. The issues delineated hereafter must be addressed in full before further consideration of the manuscript.
Major points
1) The oscillatory amplitude of CP110/Cep97 tagged with GFP is much smaller when expression is driven by the endogenous promoters than upon overexpression (see Figure 4), raising the possibility that oscillation might not reflect, or only reflect in part, the behavior of the endogenous proteins. To address this issue, the authors could GFP tag the endogenous loci using CRISPR/Cas9. If this is too demanding, they should at the minimum conduct experiments with the extant lines driven by the endogenous promoters, but in the background of the available CP110 or Cep97 null mutants. Moreover, the authors should stain staged wild-type embryos with antibodies against CP110 and Cep97 to ensure that the mild oscillations reported in Figure 4 do not merely reflect the behavior of the tagged proteins, for example due to the presence of GFP. Related to this point, the authors should considering showing first the data with CP110-GFP GFP-Cep97 driven from the endogenous promoters (current Figure 4), perhaps relegating the results upon overexpression (current Figure 2) to a Supplementary Figure.
2) In repeating the above experiments, the authors must ensure that potential mild oscillations do not simply reflect the fact that centrioles are located at a slightly different distance from the coverslip as a function of cell cycle stage. This could be addressed for example by simultaneously imaging a mother centriole marker such as Asl-mCherry.
Other important points
3) The authors mention (for instance on p. 3) that the inner cartwheel and the surrounding microtubules assemble at opposite ends of the daughter centriole. However, my understanding is that the short centrioles present in the fly embryo have an inner cartwheel that extends throughout the organelle, such that it might be moot to make a distinction between the two ends in this case. Moreover, it is also my understanding that this inner cartwheel is itself surrounded by microtubules, so that microtubule assembly might not be expected to occur strictly at the distal end no matter what.
4) Partially related to the point above, the schematic representations in Figure 1 are somewhat confusing. The schematic in Figure 1A represents CP110/Cep97 strictly at the distal end of the centriole, yet the actual immunofluorescence data on the left suggests that CP110/Cep97 are in fact present very close to Asl-mCherry. This apparent difference must be resolved. Moreover, Figure 1C seems to indicate that all the depicted proteins are present throughout the centriole, which I guess is not what the authors wanted to convey.
5) For the quantification of the data reported in Figure 1, the authors considered only centrioles for which CP110/Cep97 ring eccentricity was less than 1.2, to ensure that only near top views are considered (see p. 23). This is entirely reasonable, but the authors should report the distribution of eccentricities in the data set for the two proteins, and compare them to those of the Sas6-GFP and Sas4-GFP data set, all the more since the latter two were obtained previously with a different microscope modality, potentially complicating thorough comparisons. A slight difference in the fraction of centrioles with a slight tilt could easily skew the data when dealing with such small dimensions.
6) In Figure 3, the authors chose not to report the "Noisy data" observed during mitosis. While it is understandable that the data is noisier at this stage, it must nevertheless be reported, as this may have bearing on assessing oscillations between cycles 12 and 13.
7) The authors should conduct Airy-scan analyses of CP110/Cep97 oscillations driven from the endogenous promoters, to ensure that the variations across the cell cycle reported in Figure 4 reflect changes in the daughter centriole. Moreover, it was not clear why the authors used the Airy-scan for some super-resolution experiments and 3D-SIM for others.
8) Why are solely 1-14 centrioles per embryo considered in the experiments reported in Figure 4 as compared to over 100 per embryo in Figure 2? And how were these centrioles chosen? This needs to be explained, justified and, potentially, rectified.
9) Likewise, why are only the 10 brightest centriole pairs in each embryo retained for the analysis reported in Figure S2? And would the conclusion differ if more centrioles than that were included? Moreover, S phase of cycle 14 is analyzed in Figure S2 for Sas6-GFP, whereas the remainder of the manuscript analyzes CP110/Cep97 during cycles 11 through 13 (with an emphasis on cycle 12). This must be resolved.
10) The Western blots in Figure 4A, 4B, as well as in Figure S1A, should be quantified in the same manner as those in Figure 8C, to achieve a better assessment of the differences in protein levels between conditions.
11) The set up for the experiment reported in Figure 8 comes across as a straw man. What one would really like to find out is whether levels of Plk4 at centrioles are modulated by CP110/Cep97 levels, as the authors themselves acknowledge. Since this does not appear to be feasible, the authors set out to test whether cytoplasmic levels of Plk4 differ, finding that this is not the case. Since this experiment does not address what should be tested, it could be reported as a Supplementary Figure, not as the last main figure of the manuscript.
Minor points
These results could be of potential interest if the stated conclusions were backed up by more convincing data than that which is provided at present.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
SUMMARY
This study uses nuclear cycles 11-13 of Drosophila embryos to show the dynamics of the distal centriole localizing CP110/Cep97 complex during the predicted time of MT assembly during new centriole assembly. Continuing from prior work from this group, the authors find that the increase and decrease in CP110/Cep97 at new centrioles correlates with the timing of Cdk/Cyclin oscillations (CCO). The authors find that increased or decreased levels of CP110/Cep97 changes the dynamics of SAS6 and Plk4 levels. The authors suggest that there is crosstalk between the distal localizing CP110/Cep97 complex and the proximal localizing Plk4 and SAS6 proteins required for early centriole assembly.
MAJOR
Overall, the results are potentially interesting but I believe that there a number of instances in this manuscript where the conclusions need to either be strengthened with further experiments or toned down to reveal exactly what is shown in the manuscript.
CP110/Cep97 OSCILLATIONS
Because oscillations are repetitive variation in levels/activity with time, I think the manuscript needs to either use other terms that accurately describe what is measuring here or it should be defined what the authors are calling an oscillation. CP110/Cep97 only increases and then decreases during a single new centriole assembly and maturation event and I think that this should be clearly describe it this way.
LOCALIZATION OF CP110/Cep97 TO DISTAL END OF CENTRIOLES
Based on the existing published studies, it is clear that CP110/Cep97 localizes to the distal end of centrioles. Figure 1 does not show distal centriole localization in daughter centrioles of the syncytium that are the subject of this manuscript though. Its shows radial localization in the mother centriole of the fly wing. Figure 1 therefore has not relevance to the rest of the manuscript and has already been shown in prior studies.
My suggestion would be that this figure should study the dynamic localization of CP110/Cep97 at daughter centrioles during new centriole assembly in the syncytium. Moreover, this should localize these proteins relative to SAS6 and Plk4 that are the subject of the manuscript. Are there localization dynamic changes during the oscillation? Are there times when these proteins do co-localize?
SAS6 AND CW CONCLUSIONS
The current manuscript routinely equates SAS6 levels to cartwheel growth. This is overstated and EM is required to understand whether this is truly impacting the actual cartwheel structure. Loading more sas6 protein doesn't necessarily mean the cartwheel structure changed.
CONNECTION BETWEEN OSCILLATIONS AND MT GROWTH?
Much as above, the manuscript infers MT growth without ever showing it. How does all of this relate to centriole length and growth dynamics.? Page 8 refers to prior work but it seems like this is necessary with EM or MT markers. Having this comparison seems important to the conclusion that MTs do not stop growing when CP110/Cep97 levels reach a threshold level at the distal end.
The following statement is overstated when the data for MT growth are not even presented in this study. "...our findings essentially rule out the possibility that centriole MTs stop growing when a threshold level of CP110/Cep97 accumulates at the centriole distal end." To make such arguments in this study the manuscript would need to include EM and / or MT staining.
ENDOGENOUS UNTAGGED PROTEIN AFFECTING DYNAMICS?
The manuscript shows protein dynamics under conditions of both overexpressed and expression under the endogenous promoter. However, I believe that both of these conditions are also in the presence of untagged protein expression.(?). If so, is it possible that the dynamics represent competition for binding relative to the endogenous, untagged protein? I think this point should at least be discussed.
CP110/Cep97 "INFLUENCED" BY CCO
While I agree that it is likely to be the case that CP110/Cep97 rise and fall at the daughter centriole correlates with CCO, this study does not directly test if CCO changes impact CP110/Cep97 dynamics. Stating that "CP110/Cep97 oscillation is strongly influenced by the activity of the core Cdk/Cyclin cell cycle oscillator (CCO)" is overstated. Is does correlate though.
DISTINCTION FROM PRIOR STUDIES
Dobbelaere 2020 argue that CP110/Cep97 gets to the centriole distal end in late S phase. How could this be considering the data presented in this study? Need discussion of this point. Could Dobbelaere be following the dynamics of the core / basal levels and missed the dynamics that are found in this study? I think a discussion of the Cep97 functions needs to be provided.
MECHANISM OF CROSS TALK
How two apparently spatially separated complexes influence each other should be more mechanistically addressed through either or both experimentation and / or discussion. Obviously the impact of this study would greatly benefit by showing how they are associated and influence each other. CP110 is a phospho target of Plk4. Does this occur in the fly syncytium? Do these interact? What is the timing of the interaction and phosphorylation? Are the changes to SAS6 levels actually the result of Plk4 changes? At this point, these concepts are not tested.
BACKGROUND
In its current form the prior results that 1) Plk4-induced centriole amplification requires CP110 and 2) Plk4 phosphorylates CP110 is important for centriole assembly in some systems is not highlighted in this manuscript as further support for the model of interplay between CP110/Cep97, Plk4 and SAS6.
REPRODUCTION OF DATA
I believe that the data and methods are of high quality and described in such a way that they can be reproduced.
MINOR
ALTERNATIVE MODEL
Because CP110 is a target of Plk4, I wonder if the elevated expression of CP110 sequesters Plk4 away from its cartwheel functions (Ana2/STIL/SAS5 phosphorylation) and this is therefore affecting SAS6 levels?
OVERSTATED CROSSTALK
The text states a "...reveals an unexpected crosstalk between proteins that are usually thought to influence the proximal end of the CW and the distal end of centriole MTs." This is true but there are enough data in the literature to suggest that CP110/Cep97 influence centriole assembly that would indicate that this is not "unexpected".
PAGE 11 - SHIFT IN PEAK
I could not find the data clearly showing that there was a shift in "the Plk4 oscillation to later in S-phase". Are the authors referring to the plateau in levels? Please explain further.
WHAT IS "Plk4-NG"?
I assume Neon Green but I don't see the definition.
FIGURE 2
A schematic of the system used for image averaging would help the reader to understand that these "oscillations" represent the mother and daughter centriole together and that each "oscillation" represents one event of the daughter centriole only increasing in CP110/CEP97 levels and then decreasing after peak intensity.
FIGURE 5 and 8
I think these could be supplemental images. I was unable to figure this out but something is wrong with the legend in Figure 8. (A) is referencing items that I cannot find in the figure.
This study's advance is an expansion of the authors' prior work showing that during the fly nuclear cycles centriole assembly proteins increase and then reduce in what the authors call an oscillation. Here they show that the CP110/Cep97 complex also oscillates and somehow influences the levels of Plk4 and SAS4 that typically reside at the proximal end of the centriole. This is consistent with prior work indicating that, in some systems, CP110/Cep97 influence centriole duplication and assembly.
I believe that with additional experiments to strengthen the conclusions and toned down concluding statements this will be of interest to the centriole, centrosome, and cilia community. My research expertise is also in this community but I am not a Drosophila researcher. I do appreciate the beauty of this system that the authors use.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this study, Aydogan, Hankins, and colleagues, present an interesting work that follows up on their article "An Autonomous Oscillation Times and Executes Centriole Biogenesis" published last year in Cell. In this new study, they analyzed the distal complex consisting of CP110/Cep97 in the centriole of Drosophila embryos. They first demonstrated their oscillatory recruitment at the distal tip of the daughter centriole and they proposed that this protein complex is implicated in the control of centriole growth timing. They also demonstrated the importance of the crosstalk between CP110/Cep97 and Plk4 and its impact on cartwheel growth. This paper proposes a compelling model explaining how centriole growth is regulated. This manuscript is very well written and the data is of high quality. However, some point needs to be clarified before publication:
Major points:
Minor points:
The results presented are new and quite unexpected. This work allows a better understanding of phenotypes previously observed. I believe that this work will have an important impact in the field as it brings a whole new vision on the regulation of centriole growth. This article is primarily aimed at centriole/centrosome/cilia fields but may be of interest to a broader cell biology audience.
My field of expertise is centriole/cilia biology
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This manuscript is a continuation of the previous articles of the authors (Aydogan et al., JCB 217:1233, 2018; Aydogan et al., Cell 181:1566, 2020). They reported that Plk4 initiates and times the growth of the cartwheel at the proximal end during early divisions of the Drosophila embryos. In this manuscript, they investigated roles of the CP110/Cep97 complex in the centriole growth control at the distal end of the centriole. The daughter centriole levels of the CP110/Cep97 complex oscillate in S phase in a similar manner to those of Plk4. The CP110/Cep97 oscillation is entrained by the core Cdk/Cyclin cell cycle oscillator but not by Plk4. Rather, the centriolar levels of Plk4 increased in the CP110 and Cep97 deletion embryos. The experiments seem to be carefully carried out, data are nicely presented, and manuscript is clearly written.
I agree with their interpretation that the CP110/Cep97 oscillation does not appear to play a major part in determining the period of daughter centriole growth during early divisions of the Drosophila embryos. The CP110/Cep97 complex seems to have a limited role in the centriole length control. The CP110/Cep97 complex may be important to prevent centrioles from over-elongating after the initial growth of centrioles.
As suggested in the manuscript, phosphorylation may be a regulatory mechanism for CP110 behaviors at the centrioles. It was previously reported that CP110 is a substrate of the cell cycle kinases, such as Cdk2 (Chen et al., Dev Cell 3:339, 2002) and Plk4 (Lee et al., Cell Cycle 16:1225, 2017). Phosphorylation may be required for recruitment or removal of CP110 at the centrioles. Nonetheless, it is hard to interpret the functional significance of the S phase oscillation of the CP110/Cep97 complex with the data in the manuscript.
It is unfortunate to conclude that the CP110/Cep97 complex may not be a major player for controlling the centriole growth. However, the manuscript includes other interesting observations. For example, they presented data supporting that the SAS6 protein is added at the proximal side of the centrioles, which is opposite to the microtubule growth. Microtubules in the daughter centrioles may assemble at the minus end rather than the plus end. It would be interesting to determine when γ-tubulins are recruited to the growing centrioles.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This manuscript was evaluated at Review Commons by four individual reviewers. There was a consensus amongst reviewers that the localization behavior of altORF peptide to the Golgi is a compelling observation and that, with some additional characterization, would provide an effective cell biological tool for use in labeling and studying the Golgi. Our primary goal for this paper was to explore this surprising alternative protein hidden within the sequence of a centromere component and to establish this peptide as a cell biological tool that can be used to study the Golgi. However, the reviewers also highlighted some interesting open questions regarding the nature of this peptide. Below we summarize these core comments our current changes and plans
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The manuscript reports the characterisation of a 37 amino acid alternative open reading frame (altORF) within the RNA of the centromere protein, CENP-R. The resulting peptide, when expressed in different cell lines fused to GFP, localises on the Golgi complex, exposed on the cytosolic face of Golgi membranes. It remains associated with the Golgi complex under conditions inducing fragmentation or dispersal of the Golgi complex such as mitosis and BFA. The authors identify in aa 5-14 the minimal Golgi targeting motif and in cysteine 11 a key aa for the targeting. They suppose that palmitoylation may be involved in Golgi targeting as palmitoylation inhibitors prevent its Golgi targeting. The data are clearly presented and sustain the conclusions.
Though the identification of a Golgi targeting motif is of potential interest, the manuscript appears to be at a preliminary stage as it fails to provide any data on the possible function of the altORF of CENP-R palmitoylation or even evidence for its existence in the cells used in the manuscript. The authors appear to be aware of the limits of their study as they conclude their study led to the identification of an "easy-to-use Golgi labeling construct". Also in this scenario, however, some key information are missing: the actual sub-Golgi localisation of the probe, its possible impact on Golgi structure and function, and the formal proof that it is palmitoylated.
Referess cross-commenting
I see all the reviewers agree that the manuscript has major limits. Overcoming these limits wold require years if one had to provide proofs for the existence and for the physiological relevance of this alternative ORF, and months to provide the missing information that have been highlighted by the reviewers to consider "just" the technical aspect of this altORF as a possible Golgi reporter/targeting sequence.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
In this study, the authors characterized a potential alternative open reading frame close to the CENP-R open reading frame that had previously been found by ribosome profiling. Its 37 amino acid peptide sequence was included in a proteomic database and is conserved in primates. Transfection of different cell lines with the GFP-tagged peptide was used for immunofluorescence and proteolytic cleavage by a cytosolic protease was used to show that it localizes to the cytoplasmic face of Golgi membranes throughout the cell cycle and Brefeldin treatment had no influence on fragmentation or reformation of the Golgi stacks. The specific localization could be confirmed using different cell lines. The use of numerous truncation mutants allowed to narrow down the minimal Golgi recognition sequence to a 10 amino acid stretch including a species-specific conserved cysteine that required palmitoylation. From these data and comparison with similar sequences in other species the authors determined a consensus sequence for this Golgi targeting sequence in primates.
Major comments:
Minor comments:
There are a couple of typos and smaller issues - In the Introduction line 2 the citation is missing and skip the "a" in line 7. - In the Results and Discussion section page 5, line 5 "In our ongoing work, we..." - In the same section close to the end in the second from the last paragraphs Figure 5B should be Figure 5C - In the Methods section check the temperature specifications: 4{degree sign}C or 37{degree sign}C, not 4C or 37C - Also in the Methods: there are no secondary antibodies recognizing complete animals (antiMouse or antiRabbit)! The antibodies are directed either against IgG or IgM (e.g. anti-Mouse IgG) - Some subscripts are missing: MgCl2 not MgCl2, NaN3 not NaN3 - Also on the last page of the Methods section the antibody is specific for TGN46, not TGN146 - Last paragraph: for concentrations use μM not uM (also in the Fig.4 legend) - The end of the second from the last sentence is missing. - In the References, is the citation for the Samandi et al. manuscript correct, just one number? - Legend to Suppl. Fig 3: Golgi (capital letter), (~) is missing in figure - Suppl. Fig1B use Courier also for peptide sequence, this will omit alignment problems
Overall, this study is interesting and may provide a helpful tool for cell biologists working on trafficking projects (like myself) in particular because a general Golgi targeting sequence is missing. For techniques like RUSH (Retention using specific hooks) which can be used to synchronize secretory protein traffic reliable and highly specific targeting sequences are required. I am supportive of this study, however, to be useful for the audience the authors need to provide more examples demonstrating the targeting efficiency.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The authors have identified a alternately translated region with in the mRNA of CENP-R that encodes a small 37 aa peptide that localizes to the perinuclear Golgi region. The main premise here is the this peptide can be used as a novel Golgi marker. The peptide seems to localize peripherally to membranes and interacts with cis and TGN elements based on light microscopy. Mutational analysis indicates that a cysteine residue within a 10 aa region is critical and defines a minimal consensus sequence required for Golgi localization. Evidence is presented based on inhibition by 2-bromopalmitate that C11 is palmitoylated.
If this peptide probe is to be used as a Golgi-specific marker, there are several major issues that have not been addressed. The first is whether it actually binds to Golgi elements and if so, what are the specific elements? The light microscopy images are not of high enough resolution to determine if the peptide interacts with cis or TGN Golgi. The BFA experiments suggest it interacts with the TGN or some other associated vesicular compartment since staining fragments into vesicles and does not get integrated into the ER (Fig. 2B). The authors would have to use higher resolution confocal imaging or, more preferably, immuno-EM to identify exactly where the peptide is located.
The second issue is the conclusion that the peptide is palmitoylated, which is only based on partial loss of 'Golgi' staining after 2-BP treatment (Fig. 4D). More conclusive evidence is required such as incorporation of radiolabelled or click-palmitate probes into peptide, or band shift after hydroxylamine treatment. In regard to the last point, the protein seems to migrate as a doublet on SDS-PAGE (Fig. 2D) suggesting some type of modification or cleavage that is not commented on.
Lastly, I would be unlikely to use this as a Golgi probe for the reasons described above, as well as the fact that there is nothing known about the biological function of the peptide (this is potentially the most interesting aspect that is seemingly ignored). If you express the peptide what impact does it have on Golgi structure and function? I could envision that its binding to a Golgi element(s) could affect one of myriad functions that rely on Golgi activity.
Referees cross-commenting
This is more of a technical report that does not address the function of the peptide within the Golgi complex. Without this information, and identification of the compartments involved, I don't see the advantage of the probe compared to other methods. As one reviewer mentioned, this seems to be a preliminary study that is difficult to assess given the limited and ambiguous results.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The authors note that we currently lack a robust targeting signal to direct proteins to the cytoplasmic face of Golgi membranes. The presented work clearly identifies a novel Golgi targeting sequence rich in aromatic/hydrophobic/basic residues and with a key critical cysteine (C11). One can imagine a situation where the non-cysteine residues provide an underlying affinity for cell membranes and thereby allow access to membrane-associated zDHHC S-acyltransferases. I guess the unknown question is whether Golgi specificity comes from the amino acid sequence per se (mediating specific interaction with components of Golgi membranes) or instead by specific recognition of the cysteine by Golgi-localised zDHHC enzymes. It might be worth discussing this in the paper although this should not detract from the main focus/message of the paper- the identification of a Golgi targeting peptide. Data is compelling and support the conclusions of the paper. Although much of the data is not quantified, the data provided is convincing.
Interesting advance for researchers in the general membrane trafficking area and S-acylation field. Provides new information that can be used to target proteins of interest to the Golgi. I note that restriction of an S-acylated peptide at the Golgi is unusual as S-acylation is usually followed by trafficking to the plasma membrane. My expertise is in S-acylation and protein trafficking
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
*The reviewers are enthusiastic. They agree with the claims made and comment favorably with regard to the impact as well on the short- and long-term potential for translation. All three go out of their way to emphasize positive aspects. A variety of questions were raised and we submit a complete revision with point-by-point replies that addresses all of these. This includes addressing tumor organoid (tumoroid) plasticity (reviewer #1) and composition/heterogeneity (reviewer #3) by incorporating single cell data as well as other analyses. We thank the reviewers for the thorough feedback. The additional data, analyses and clarifications strengthen the study. *
To keep the rebuttal as short as possible we have only copied the reviewers’ concerns/questions, not the favorable comments. The copied remarks are in highlighted. Our replies are in italics. Each question is accompanied by a reply and a brief description of changes made in response.
__Reviewer #1, Major Comment #1: “__The authors provided a foundational validation of their organoids through various methods, and their protocol stands to impact the field of RMS biology. To validate the organoids as recapitulating the primary human tumors, the authors perform analysis on the bulk organoid and bulk human primary tumors. The authors showed through sequencing efforts that the bulk mutational profile and transcriptional profiles do not dramatically change between the parent tumor and organoids. This analysis was done well; however, the authors fail to rigorously illustrate that the organoids maintain tumor cell heterogeneity of the primary human tumors. To rigorously validate the organoid system, the authors should illustrate the organoid culture conditions do not alter the heterogeneity of cells (cell plasticity) compared to that of the primary tumor. A formal assessment of the cellular plasticity in the organoids to the primary tumor would determine how the organoid system either maintains or shifts the cancer cell plasticity because of changes in microenvironment (Oncogene, 2020, 39: 2055-2068). The addition scRNA-seq would illustrate whether the organoids maintain the same populations as the primary tumor or bias for the propagation of specific cell populations at a single cell level and provide more rigorous information about every cell type present.”
Reply: The reviewer’s question is whether the tumor cells in the tumoroid culture have the same degree of plasticity and are therefore as heterogeneous in culture as they are in the tumors that they are derived from. We agree that evaluating the heterogeneity of tumor cells in the tumoroid culture is desirable. This would ensure that the procedure has not simply selected for a single type of tumor cell. We have therefore generated single-cell RNA sequencing (scRNA-seq) data of tumoroid cells as suggested. It is important to point out that a complete inventory of RMS tumor cell heterogeneity by scRNA-seq has not been published as yet. Such an undertaking, i.e., scRNA-seq of a large cohort of RMS tumors, is an entire study in itself and lies outside the scope of this study. It would also not be feasible due to limited sample material for many of the tumors used here. Nevertheless, as is being alluded to by the reviewer, there is ample evidence of tumor cell heterogeneity in primary RMS tumors based on previous studies using immunohistochemistry (for example the well-known heterogeneity in expression of RMS marker proteins such as Myogenin, MyoD1 and Desmin). As shown in new Fig. 2D, when cultured as tumoroid models, examples from both of the main tumor types (FP-RMS sample RMS127 and FN-RMS sample RMS444) show a large degree of heterogeneity in expression of the known, heterogeneously expressed tumor cell markers Myogenin (MYOG gene), MyoD1 (MYOD1 gene) and Desmin (DES gene). Comparison with the cell cycle marker Ki-67 (MKI67 gene) shows that this heterogeneity is not due the cells being present in different cell cycle phases. Tumor cell heterogeneity in the tumoroid culture is further indicated by the heterogeneous CNV patterns derived from the tumoroid scRNA-seq data (new Suppl. Fig. 1B).
Both the CNV analysis and the scRNA-seq marker gene expression indicate that the tumoroid culture conditions neither stringently select for a single type of tumor cell, nor drive the tumor cells into a uniform expression pattern phenotype, consistent with maintaining plasticity, even after the 7 (RMS127) and 5 (RMS444) passages. These are good indications of retained plasticity/heterogeneity. Additionally, we make it clear in the revised version that a more exhaustive answer would benefit from having a complete cohort of tumor scRNA-seq data to first determine the degree of heterogeneity exhibited by RMS tumors for all genes.
The related question of tumoroid cellular composition, with regard to the presence of non-tumor cells, is addressed in response to reviewer #3, major comment #1.
Changes: Addition of a new Fig. 2D and a new Suppl. Fig. 1B with figure captions. Additional text in the Results and the Discussion sections. Additions to the Methods for the generation and analysis of the scRNA-seq data.
Reviewer #1, Major Comment #2: “The authors took great strides to show that the organoids respond to therapeutics similarly to primary tumors. However, Figure 5A could be more transparent with more data labelled in the graph instead of just in the app and the implications of the variable responses could have been explored in the discussion section. Furthermore, for this model to be clinically relevant for pharmacokinetic studies, propagation in mice needs to be shown.”
Reply:
Reviewer #1, Major Comment #3: “Figure 1 is well put together to graphically demonstrate the process by which organoids were obtained and manipulated. Figure 1B, however, as a graphical summary is a little confusing, and the information would be greatly enhanced by the addition of a comprehensive table. Furthermore, additional information could be added to the table to make it a more inclusive and impactful addition to the paper.”
Reply: We agree.
Changes: A new Table 1 has been added as a separate file with a corresponding revised legend in the main document.
Reviewer #1, Major Comment #4: “It is quite impactful that the authors were able to actively engineer the organoids with CRISPR/Cas9 and accurately delete TRP53, but controls were not represented in the figure. The experiment should have included a sgRNA targeting a pan-essential gene as a positive control and a non-targeting sgRNA as a negative control. We recommend addition of both controls to the experiment outlined in Figure 6 to increase the validity and rigor of the data presented.”
Reply:* We respectfully note that all appropriate controls were done. This included a non-targeting sgRNA as negative control (see Methods lines 1137 to 1140). As also explained in Fig. 6A, the strategy for generating a P53 knock-out involved selection through nutlin-3 exposure, whereby cells wildtype for P53 are selected against. As described (Methods lines 1144 to 1146), cells transfected with the non-targeting sgRNA plasmid indeed died upon nutlin-3 exposure. A sgRNA against a pan-essential gene was not included in this strategy since the nutlin-3 already kills all cells with a wildtype P53. Finally, we draw attention to the fact that the success of the approach was assessed by Western Blotting (Fig. 6B) and Sanger sequencing (Suppl. Fig. 6A). *
Changes: None.
Reviewer #1, Major Comment #5: “Although the authors provide an insight into a useful preclinical RMS model, the paper lacks mechanistic insight besides cursory description of the model.”
Reply: Insight into a wide variety of different molecular and cellular mechanisms will be exciting to explore in future studies. This publication is indeed focused on describing an approach that works for RMS, and therefore showing for the first time that this works systematically for mesenchymal-derived tumors. In addition, the study describes key characteristics of the tumoroid models that are important to establish their validity as models and that are essential to demonstrate before making the tumoroid models available to the wider scientific community in order to perform the further mechanistic analyses. The word cursory is in contrast to the many positive comments made by this reviewer and the other two reviewers with regard to the extensive characterization.
Changes: None.
Reviewer #1, Minor Comment #1: “Figure 3C and 4B are not transparent in their labels and could be altered so that every line has an associated gene in the publication. Furthermore, there are sample specific differences that could be explored in the discussion.”
Reply: We agree.
Changes: Gene names have been added for every row in both figures. The Discussion now incorporates the observed differences.
Reviewer #1, Minor Comment #2: “In Supplementary Figure 1, higher magnification inserts are needed to get a closer look at the IHC. Furthermore, the white balance is not the same in all the images and needs to be corrected prior to publication. The difference in white balance can clearly be seen in the last panels depicting IHC for RMS335, where the MYOD1 staining has a yellow background whereas the H&E staining has a white background.”
Reply: We agree.
Changes: Higher magnification inserts have now been provided throughout Suppl. Fig. 1A. The white balance has been corrected.
Reviewer #1, Minor Comment #3____: “The authors mentioned in line 202 that some of their organoids contain the novel fusion of PAX3 and WWTR1, but this fusion is not indeed novel as it has previously been seen in biphenotypic sinonasal sarcoma (Am J Surg Pathol 2019, 43:747-754).”
Reply: We rephrased this to clarify that this is the first report of such a fusion in RMS, rather than in general.
Changes: The corresponding sentence has been rephrased.
Reviewer #1, Comment within the Significance Statement: “The authors state that this is the first system to use organoids but should recognize the advances demonstrated by Manzella et al. (Nat Commun, 2020, 11:4629). Additionally, the authors state that this is the first demonstration of pre-clinical models harboring FGFR4V550L mutations; this fails to recognize the prior reported work by several groups (Chen et al., Cancer Cell, 2013, 24:710-24; Manzella et al., Nat Commun, 2020, 11:4629; McKinnon et al., Oncogene, 2018, 37:2630-2644).”
Reply:* We had in fact already recognized the advances described by Manzella et al. which was referenced in two places in the original submission (current lines 100 and 388). We thank the reviewer for pointing out the previous work done on an RMS cell line that harbored an FGFR4 p.V550L mutation. *
Changes: We rephrased the corresponding passages concerning the FGFR4 mutation.
We thank reviewer #1 for all the comments. This has resulted in many improvements.
Reviewer #2: W____e thank reviewer #2 for the positive comments. There are no major/minor queries to address.
Reviewer #3, Major Comment #1: “The authors describe the models derived as organoids/tumoroids implying that multiple cell types are represented potentially recreating the tumor microenvironment. Can the authors comment more specifically and demonstrate the extent to which cell types in addition to the tumor cells are represented, viable and are organized through analyses of the original and tumoroid sections (extend fig 2C/supplementary fig) and via analyses of the RNAseq data?”
Reply: We use the term tumor organoid or tumoroids as coined by the field in general. This indeed indicates a degree of self-organization such as the three-dimensional growth in spheres and the propagation of a heterogeneous population of tumor cells (see comment #1, reviewer 1) for example. In general, however, tumoroids do not include growth of a non-tumor cell microenvironment inter-woven with the (different types of) tumor cells. Exceptions to this are very early passage tumoroids that are not yet stable and which may still contain non-tumor cells, or specialized co-culture conditions that are currently being actively sought to allow for co-culture of tumor cells within a non tumor cell microenvironment. It is therefore not anticipated that late passage tumoroid models will have non-tumor cells. The basis of the technology is that the defined set of growth factors in the medium mimics the tumor stimulating conditions of the non-tumor cell microenvironment. Since the mixed presence of tumor and non-tumor cells generally gives rise to one (frequently the non-tumour cell) outgrowing the other, it is often considered the hallmark of an unsuccessful tumoroid.
The reviewer therefore raises an important point that we have failed to make clear. We have addressed this in two ways. We emphasize that the scRNA-seq data that are now included in response to reviewer #1, comment #1 do not indicate the presence of any non-tumor cells (as expected). In addition, this aspect of tumor organoid technology is explained better in the Introduction.
Changes: The results section has been expanded with the description of the scRNA-seq data emphasizing the expected lack of non-tumor cells and the introductory section on tumor organoid technology has been improved to make it clear that currently this generally involves growth of different types of tumor cells only.
Reviewer #3, Major Comment #2: “Does the quantification from the RT-qPCR analyses for the MYOD1, MYOG and Desmin of the models match that in the samples from which they were derived? Does the RNAseq that was performed on tumor and the culture at the time of the drug screen tie in with this?”
Reply: The answer is yes. The figure below shows tumor and tumoroid bulk RNA seq of those genes also analyzed by RT-qPCR (i.e., DES, MYOG, and MYOD1). Note that this is also the same stage as for the drug screening. As can be appreciated, the expression of these markers is generally very comparable between tumors and the derived tumoroid models. Note that this also constitutes a nice independent (albeit indirect) verification of the similar degree of heterogeneity issue raised by Reviewer #1 (comment #1). Expression of the markers was lower in the tumoroid models of RMS000HQC and RMS000ETY compared to the primary tumor. In line with this, expression of these genes was also already lower in the early passages of the culture as determined by RT-qPCR (Fig. 2A). Nevertheless, copy-number analysis inferred from whole-genome sequencing showed that the resulting tumoroid models are indeed tumor cells (Suppl. Fig. 2A top panel and Suppl. Fig. 2B lower panel).
We therefore conclude that the expression of probed marker genes is generally comparable between tumor and tumoroid and that early passage RT-qPCR based expression analysis of these markers can be reflective of the expression in the fully established model.
*- Rebuttal letter includes corresponding figure here - *
Changes: None. The expression data are already available within the interactive browser-based Shiny App.
Reviewer #3, Major Comment #3: “How do the frequencies of SNVs compare with recent studies? Or are the numbers in the risk groups not appropriately represented?”
Reply: The SNV frequencies are quite comparable to recent studies, with similar differences between risk groups, all as depicted in the new Suppl. Fig 2E. The SNV frequency was calculated from our WGS data following the procedure from the most recent report in pediatric cancer (https://www.biorxiv.org/content/10.1101/2021.09.28.462210v1). Across tumor and tumoroid models we found a somatic mutation frequency of SNVs with a VAF of >0.3 ranging from 0.03 to 1.92 mut/MB (median 0.70 mut/MB) which is comparable to the reported somatic mutation frequency in the afore-mentioned study (median 0.9 mut/MB in RMS). Concerning the risk groups, a recent study (https://pubmed.ncbi.nlm.nih.gov/31699828/) found a significant difference in the tumor mutational burden between fusion-negative (FN) and fusion-positive (FP) RMS (2.6 mut/MB vs. 1.0 mut/MB, respectively) with a higher mutational burden associated with poorer outcome. In our study, the FN-RMS tumoroid models also show a higher mutation frequency compared to the FP-RMS tumoroid models (FN 4 vs. FP 15, p = 0.02, Wilcoxon). Such a difference is also found between the original tumors but without statistical difference (FN 4 vs. FP 15, p = 0.15, Wilcoxon) likely related to the small sample sizes. This underscores the representative nature of the tumoroid models and is of obvious interest to include. We have made the appropriate changes.
Changes: To include these analyses in the manuscript, we added a new Suppl. Fig. 2E with corresponding Suppl. Fig. legend and a new paragraph in the main text.
Reviewer #3, Minor Comment #1: “The number of models and success rates would be useful to indicate in the abstract.”
Reply: We agree.
Changes: We added this information to the abstract.
Reviewer #3, Minor Comment #2: “It would be helpful to define the SBS1, 5,and 18 in the figure legends. Do the age related signatures in any way correlate with patient age or aggressivness of tumors?”
Reply:
Reviewer #3, Minor Comment #3: “Page 13 line 300 just because the RH30 cell line has TP53 mutation doesn't mean that it was acquired in culture - unless there is specific evidence that supports this.”
Reply:* We thank the reviewer for this rectification. To our knowledge, there is indeed no specific evidence that this cell line acquired the TP53 mutation during culturing or whether the mutation was already present in the primary tumor the cell line was derived from. *
Changes: The corresponding statement has been removed.
We thank reviewer #3 for all the comments. This has resulted in many improvements.
Besides the changes described above, additional minor changes were made:
*We have moved the interactive, browser-based Shiny app to a server that is managed by our institute instead of having it hosted on shinyapps.io. We include the new URL in line 556. *
The data upload to the European Genome-Phenome Archive (EGA) of the data from the initial submission has been completed and the raw sequencing data can now be accessed. The data upload of the scRNA-seq data generated for the revision is currently ongoing. We have therefore adapted and renamed the “Bulk sequencing data availability” section in the Methods in the manuscript (lines 1043 to 1050).
We updated the code available at https://github.com/teresouza/rms2018-009* following the additional analyses performed for the revision. *
Supplementary Table 1: The values for row “RMS000FLV” for columns “sample_body_site” and “primary_site_specific” were corrected as this tumor was located in the upper leg and not the upper arm of the patient. Furthermore, we added patient numbers as in the new Table 1 and corrected spelling errors. This does not change any of the conclusions in the manuscript.
Figure 6A: The protein “P53” was spelled without capital “P” in the initial version. We corrected this.
We included the recently described Zebrafish RMS PDX models (https://pubmed.ncbi.nlm.nih.gov/31031007/) in the Discussion of RMS models. See lines 507 to 510.
With the addition of Fig. 2D, the figure legends of Fig. 2A and 2B were moved to the side (Fig. 2A) or below (Fig. 2B) the figure. With the addition of the single-cell copy-number plots, Suppl. Fig. 1 was divided in Suppl. Fig. 1A and 1B.
Some of the original scale bars in Fig. 2C and Suppl. Fig. 1A were incorrectly labelled and this has now been corrected. This does not change any of the conclusions.
Minor corrections in the sections Affiliations, Financial support, Author contributions and Conflict of Interests.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Meister et al., describe their methodology in establishing what they term organoid or tumoroid 2D/3D cultures derived from samples of rhabdomyosarcoma (RMS) patient tumours. They have success to varying degrees across the subtypes with greater success in those more clinically aggressive. Their analyses of markers, the somatic genetics and gene expression profiles suggest that they are largely representative of RMS and the tumor samples from which they were derived. Their utility in drug screening and manipulation by knocking out TP53 by CRISP/Cas9 is also demonstrated. The conclusion is that this represents a useful approach for generating patient derived models and a unique resource for preclinical analyses and other research into RMS.
This is a major piece of work that is well written and presented. The link to interrogate the data worked. I have only a few comments.
Major comments
The authors describe the models derived as organoids/tumoroids implying that multiple cell types are represented potentially recreating the tumor microenvironment. Can the authors comment more specifically and demonstrate the extent to which cell types in addition to the tumor cells are represented, viable and are organized through analyses of the original and tumoroid sections (extend fig 2C/supplementary fig) and via analyses of the RNAseq data?
Does the quantification from the RT-qPCR analyses for the MYOD1, MYOG and Desmin of the models match that in the samples from which they were derived? Does the RNAseq that was performed on tumour and the culture at the time of the drug screen tie in with this?
How do the frequencies of SNVs compare with recent studies? Or are the numbers in the risk groups not appropriately represented?
Minor comments
The number of models and success rates would be useful to indicate in the abstract.
It would be helpful to define the SBS1, 5,and 18 in the figure legends. Do the age related signatures in any way correlate with patient age or aggressivness of tumors?
Page 13 line 300 just because the RH30 cell line has TP53 mutation doesn't mean that it was acquired in culture - unless there is specific evidence that supports this.
The significance of this study is in describing how a relatively large number of models of RMS were established plus increasing awareness of the biobank resource and associated data that has been created. The approach, although used in more ad hoc reports of smaller numbers of RMS, represents a useful development for mesenchymal tumors versus the more established development of such models in epithelial cancers. Although a lower success rate than xenografts, it is a useful and practical cost-effective alternative for preclinical testing and research. Likely interest to a speciaclist audience for those involved in the RMS, sarcoma and pediatric cancer field.
Referees cross-commenting
OK with the balance of comments for the authors to address. I think the extent to which they are prepared to address the heterogeneity issue, and the results of this for the models, is likely to affect the impact of their study.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This manuscript describes the possibility to generate a collection of pediatric rhabdomyosarcoma (RMS) tumor organoid models comprising broad spectrum subtypes from highly aggressive to extremely rare. The authors were able very successfully establish 19 RMS models from 46 pediatric RMS patient samples with 41 % efficiency. All RMS tumoroid models were thoroughly characterized and retained the molecular characteristics of the tumor they are derived from as well as they displayed genetic stability over time. Most of the tested tumors showed long-term propagation potential, reaching passage 40 and remaining stable. Though, establishing time for RMS tumoroid models varied with a median time from acquisition of the tumor sample to successful drug screening being 81 days, highly aggressive tumors were established in as little as 27 days. Also, authors shown us in elegant manner the suitability of RMS tumoroid models for research in two specific ways: via drug screening and CRISPER/Cas9 genome editing.
In summary, the author's work made significant progress in 3D culture and tumor organoid models of mesenchymal origin, being the first collection of tumoroid models from mesenchymal malignant tumors and the second thoroughly characterized tumoroid collection specific for pediatric cancers. Without doubt, biobanked collection of RMS tumoroids will be useful for drug screening as well as molecular editing. Also, these models will be a useful resource for future research and in preclinical and clinical testing therapeutics for RMS. In the future, organoids generated from patients with RMS may lead to precise and personalized treatment.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Meister et al. set out to develop a new organoid preclinical model of rhabdomyosarcoma (RMS). The authors comment that this system would be beneficial for preclinical modeling because it has the ability to maintain the tumor's molecular characteristics. The authors then proved that organoids derived from multiple RMS subtypes resembled their parent tumors using RT-qPCR for characteristic markers, histopathology, copy number profiles, mutational signature analyses, and transcriptional profiling. Importantly, the authors performed long term studies to show that the organoids remain stable over multiple passages and do not change their mutational landscape dramatically. Finally, the authors tested their organoids with known RMS therapeutics and for their ability to be engineered with the CRISPR/Cas9 system. Not surprisingly, the authors found their organoids sensitive to known RMS therapeutics and were successfully able to generate TP53-/- organoids with CRISPR/Cas9, underscoring this organoid system in translatable use. This report nicely describes a method for the establishment of human RMS organoid culture systems that can be leveraged for preclinical testing.
Major Comments:
Minor Comments
As has been mentioned previously, this research is impactful to the field of RMS biology because the authors were successfully able to use organoid technology, which has not previously been reported. The authors do a great job of listing current RMS modelling techniques and explaining how their system addresses the pitfalls of the others. Furthermore, this protocol could be expanded to the development of other organoid systems for other sarcomas. The rhabdomyosarcoma field and larger sarcoma community would be keenly interested in this work. It is clear that this system has the potential for use in pre-clinical settings as well as in high-throughput screens, but further validation and increased rigor is required on both fronts.
It is astounding and the authors should be complimented that they were able to show a median time from patient to drug screen was 81 days! This has enormous potential such as rapid translation of therapies and personalized medicine. That said, the authors must first refine the heterogeneity of the organoids and demonstrate how the organoids reflect the phenotypic and cellular plasticity of the parent tumors. Furthermore, the authors ought to be careful when making priority claims. The authors state that this is the first system to use organoids but should recognize the advances demonstrated by Manzella et al. (Nat Commun, 2020, 11:4629). Additionally, the authors state that this is the first demonstration of pre-clinical models harboring FGFR4V550L mutations; this fails to recognize the prior reported work by several groups (Chen et al., Cancer Cell, 2013, 24:710-24; Manzella et al., Nat Commun, 2020, 11:4629; McKinnon et al., Oncogene, 2018, 37:2630-2644).
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity (Required)): *
In this manuscript by Wang and colleagues, the authors analyse single-cell RNA-seq (scRNAseq) data by applying transition path theory to infer gene regulatory network (GRN) changes along the transition (reaction coordinate, trajectory) between free energy stable states (i.e. cell types). The work aims to understand how stable cell types, and their regulatory programs (combination of active and repressed genes) switches during differentiation/reprogramming/response (i.e. cell phenotypic transition/CPT). The premise of the work is to assess whether genes within GRNs undergo step-wise repression, state-change and activation (& vice-versa; analogous to SN1) or concurrently regulate gene expression (analogous to SN2). The GRNs are inferred based on highly variable genes and their expression dynamics from RNA velocity over CPT, across 3 scRNA-seq datasets.
The authors first analyse public scRNA-seq dataset of 3003 human A549 adenocarcinomic basal epithelial cells treated with TGF-b for 0hrs, 8hrs, 1 day and 3 days (4 timepoints). The authors select two stable states (Day0-untreated; Epithelial and Day 3-treatment; Mesenchymal) using local kernel densities and set transition paths using Dijkstra shortest path, dividing state space into Voronoi cells (i.e. reaction coordinate value), and constructed single-cell GRNs based on RNA velocity differences (n=500 genes) and a linear model (from Qiu et al). This GRN is based on expression and velocity estimates, and does not distinguish direct from indirect regulation. Calculating interaction frequency (edges) across two stable states over 4 louvain clusters, the authors find global increase in effective edges that correlates with increased active genes; but with variable trend within inter-cluster edges. To quantify the concerted GRN changes between clusters, the authors utilise a "frustration" score (from Tripathi et al 2020). The average frustration score increases and peaks at day 1 treatment, followed by a decline over terminal stable state (day 3-treatment); similar to interaction frequency trends. The author also separately measure network heterogeneity and repeat analysis using alternative transition matrix. The authors conclude that EMT proceeds through concerted regulation of multiple genes first with an increase in inter-cluster edges, frustration and heterogeneity followed by a decrease into final stable state. The authors apply the analysis to scRNA-seq data from (i) pancreatic endocrine differentiation where Ngn3-low progenitors give rise to Ngn3-high, then Fev-high and into glucagon producing a-endocrine cells; (ii) dendate gyrus; radial glial cell differentiation into nIPCs, neuroblast, immature granule and mature granule cells. In both cases, the authors observe concerted regulation with initial increase in inter-community edges, heterogeneity during differentiation followed by decrease towards final stable state. **
The study and ideas in the manuscript are interesting and the methods would be potentially be useful. However, there are a few specific and general comments stated below, which the authors should try to address.
1 • P4: "RC increases first and reaches a peak when cells were treated with TGF-β for about one day, then decreases (Fig. 1G)". It would be better to label the figure with the treatment information. *
Reply: Thanks for your advice. In the revised manuscript, we analyzed two additional datasets, and moved the EMT result in the supplemental Fig. EV8. In the new Fig. 1d, we marked the cell types along the reaction coordinate.
*2 • Fig. 1G and EV1D: Why are the trends different? *
Reply: In the original figures, ____Fig____.1g is the frustration score and EV1D shows the variation of pseudo-Hamiltonian along the reaction coordinate. The frustration score is the focus of this work. We also calculated the pseudo-Hamiltonian since it has been used in the literature. However, we realized that showing both of the results might lead to confusion, so we deleted all pseudo-Hamiltonian results in the revised manuscript.
* 3 • How is the appropriate community/cluster/Louvain resolution selected? This can have a major impact on number of cell states, types and transition path from initial to final state. *
Reply: The number of cell states, types and transition path from initial to final state____ are not determined from the community/cluster/Louvain analyses. For the EMT data, we assume most cells in the initial treatment time are epithelial cells, and those in the final time point are mesenchymal cells. For other datasets, we followed the original publications to assign cell types based on known marker expression.
The Louvain method was applied to coarse grain the gene regulation network, and it does not affect the number of cell states, types and transition path, which were determined separately. To address the reviewer’s question, we also use the Leiden method to adjust the resolution ____(1)____. The resolution does not affect the result. The results are added to Fig. EV12. We tried three different resolution values 0.8,1.0 and 1.2. The number of inter-community edges consistently shows the trend that it increases first then decreases.
Figure EV12 Cell-specific variation of the number of effective inter-community edges between communities calculated with different resolution parameter values for dentate gyrus neurogenesis (a), pancreatic endocrinogenesis (b), and bone marrow marrow hematopoiesis (c). Each dot represents a cell and the color represents the number of inter-community edges____.
* What effect does the Louvain resolution have on e.g. frustration scores? * Reply: The resolution of community division algorithm doesn’t affect the frustration scores, since the frustration score is based on the gene-gene interactions instead of community assignment.
* The authors match resolution to samples/timepoints/known prior cell types i.e. 3-4 communities. However it is unclear whether this is enough to describe entire differentiation/transition process. * Reply: This is a good question. In one above reply we have explained how the cell types were determined____. We also agree with the reviewer that these coarse-grained communities cannot reflect the overall heterogeneity and dynamics of the whole process. Notice in most of our analyses (e.g., reaction coordinate and transition paths), we treated the transition as continuous and the distribution of single cell data points in all datasets cover the whole space that involved in cell phenotype transition. The coarse-grained analyses are for further mechanistic insights on how gene regulatory networks are reorganized during the transition process.
* Gene selection: The selection based on minimum 20 counts as highly expressed genes is arbitrary and dependent on sequencing depth. Perhaps the authors could show distribution of gene counts for the datasets and have a data-driven filtering criteria * Reply: Thanks for the advice. The number 20 is a default value suggested in the package (scVelo) we use, and in another package dynamo the default number is 30. Following the reviewer’s suggestion (together with the next question on the influence of all highly variable genes), we looked for a data-drive filtering criterion. The method has been described in different tools ____(2-4)____. We first grouped the genes into 20 bins by their mean expression values, and____ scaled their dispersions by subtracting the mean of dispersions and dividing standard deviation of dispersions____. Figure EV9 shows the distribution of the minimum shared counts. ____As one can see, most genes counts are larger than 10, and using a smaller value causes error in the following velocity analysis. Therefore we set the minimum shared counts as 10 in the new results.
Figure EV9 Shared counts distribution of the datasets. (a) Dentate gyrus neurogenesis; (b) Pancreatic endocrinogenesis; (c) Bone marrow hematopoiesis.
* The choice of 500 variable genes (for human A549 cells) is also quite arbitrary. Perhaps, the authors could compare how additional genes (all highly variable genes) affects their analysis and interpretation. * Reply: ____Thanks. Following previous question on shared counts and ____data-driven filtering criteria____,____ we take all the highly variable genes into consideration. The details of gene selection and binarization are given in the Materialss and Methods (Materials and Methods 2) section.
* How are other factors (sequencing depth, genes detected, #of cell types, multiple branches) affects the connectivity between communities at different phases of transition/development? * Reply: This is a good question. The A549 EMT dataset has a sequence depth of 40000-50000. The ____dentate gyrus neurogenesis dataset____ has a sequence depth of 56,700 reads. A saturation depth would be close to 1,000,000, but there is a compromise between cell number and depth. There are genes that are not detected even under the saturation reads setting. That is why the preprocessing is needed. On the other hand, the network we inferred include both direct and indirect interaction, so the influence of sequence depth and gene number detected can be reduced to a certain extent. We used a random subset of the selected gene and performed the same analyses. The results are consistent with what we obtained using all the genes (Fig. EV11b). With the new gene selection criteria (Materials and Method 2), our analyses are not related with the number of cell types.
We did analysis on another beta branch of pancreatic endocrinogenesis data. The other branches show the same results (Fig. EV4). There are two additional branches in the pancreatic endocrinogenesis dataset. It has been reported that the RNA velocity estimation for the epsilon branch is incorrect ____(3)____. There are too few cells in the delta branch for reliable analyses. Therefore we didn’t present results for these two branches.
Figure EV4 Analyses on the branch of glucagon producing β-cells in pancreatic endocrinogenesis.
(a) Transition graph based on RNA velocity.
(b) The RCs and corresponding Voronoi cells. The large colored dots represent the RC points (start from blue and ends in red). The small dots represent cells with color as cell type.
(c) Frustration score along the RCs.
(d) Cell-specific variation of effective intercommunity regulation. Each dot represents a cell. Color represents the number of effective intercommunity edges within each cell in the GRN.
(b) number of PCs is 20. (c) number of PCs is 30
* - The figure legends and labels were hard to read. These should be improved for better readability. *
Reply: Thanks. We modified the figure legends and labels.
* - A suggestion would be move the initial results section to methods and highlight the biological interpretation. *
Reply: Thanks for your advice. We moved large part of this section to the Materials and Methods.
*The authors could highly which GRN and representative genes/edge pairs are highest ranked within inter-community and to overall final stable states. *
Reply: Thanks. We list some representative gene pairs in the Table. EV 2&EV 3 &EV 4 for different datasets. And we performed gene enrichment analysis for each community.
* - How does the GRN inference compare to current state-of-the-art GRN inference scRNA-seq methods? *
Reply: we used the method GRISLI to perform the same analysis ____(5)____. The results are similar to what obtained with our current method (Figure EV6). We want to emphasize that the focus of this work is not on another GRN inference method, but discussing some general principles of GRN reorganization during a cell phenotypic transition process.
Figure EV6 Analyses of datasets of dentate gyrus neurogenesis (a), pancreatic endocrinogenesis (b), and hematopoiesis (c) based on GRN inferred with GRISLI.
(a) Frustration score along the RCs of dentate gyrus neurogenesis (left) and cell-specific variation of the number of inter-community edges (right). Each dot represents a cell and color represents the number of inter-community edges in GRN within each cell.
(b) Same as in panel (a), except for pancreatic endocrinogenesis.
(c) Same as in panel (a), except for hematopoiesis.
* - How do extremely noisy/stochastic genes vary in metrics between final stable states? How are the metrics affected by number of cells and stochasticity of expression within a given cluster/community. *
Reply: To address this question, we selected two genes, Id2 and Cdkn1c, with high variance and compare their distributions in the initial and final states. ____The gene distributions show significant shift between the Ngn3 low EP cells and Alpha cells (Fig. R2 a &b left).____ Then we randomly selected a subset (half) of cells and compared the distributions of these high-variance genes in the sub-population (Fig. R2 a&b right). The results are similar to the full-set results.
Fig. R2 Comparison of gene distribution in the initial and final states in pancreatic endocrinogenesis. (a) Comparison of the distribution of gene Id2 at the initial and final states (left), and in the randomly selected sub-population at the initial and final states (right). (b) Comparison of the distribution of Cdkn1c at the initial and final states (left), and in the randomly selected sub-population at the initial and final states (right).
* - Given that the author's approach includes both direct and indirect genes effects, the authors could further prune genes based on existing TF databases or protein-protein validated networks. *Reply: This is a good suggestion. We will work on this idea in future work. As we mentioned, due to constrains of data quality, only tens of transcription factors can be analyzed in these dataset. We list some regulations of transcription factors inferred with current method in Table EV1.
* - It would be good for authors to comment when there are multiple bifurcations instead of A-B transitions. Particularly in datasets with multiple discrete stable states. *Reply: This is a good question.____ In our analysis, we focus on the transition from one stable state to another stable state. For transition process with multiple bifurcations like____ the pancreatic endocrinogenesis, the results are similar across different branches. For the transition that goes through multiple discrete stable states, for example, a transition from state A____à____B____à____C, we expect to observe two peaks in the frustration score and the number of inter-community edges. We added some discussions in the Discussion section.
Figure EV10 ____Typical trajectories of high variance genes versus RCs of dentate gyrus neurogenesis (a), pancreatic endocrinogenesis (b) and bone marrow ____hematopoiesis ____(c).
* - If possible, a proof of principle could be re-analysis of a perturbation scRNA-seq dataset (e.g. where one path/transition path is stalled) *
Reply: Thanks. This is a really a good suggestion. We will perform more systematic studies in future work.
* Reviewer #1 (Significance (Required)): Nature and significance of advance: The study and ideas in the manuscript are interesting and the methods would be potentially be useful to community. Compare to existing published knowledge: *
*Audience: Predominantly computational audience *
*Your Expertise: PI with background in experimental, computational biology and expertise in single-cell genomic tools and developmental biology *
*
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Understanding the cellular and molecular basis of cell type or cell state transitions occurring during development or reprogramming is a fundamental challenge. scRNA-seq has provided a window into gene expression programs across thousands of cells undergoing such transitions. Wang and colleagues leverage scRNA-seq and develop an approach to reverse engineer gene regulatory network underlying cells along a path from one cell type/state to another, and characterize community-level properties of this network associated with various stages of the cell phenotype transition. The study is innovative and rigorous, and their results point to how intercommunity interactions increase and then decrease, indicating a concerted regulatory rewiring that orchestrates transitions. Application of their approach to three different datasets also shows that this trend is consistent across three different transitions and maybe a general trend. However, there are some major and minor concerns that need to be addressed.
**Major comments and questions**
* 2.1. Provide references to previous experimental and computational studies that have investigated developmental and reprogramming gene expression programs. *
Reply: Thanks. We added a paragraph in the Introduction.
*
2.2. Describe specific examples of findings that support the two possible transitions highlighted here. Why couldn't transitions happen through an entirely gradual process involving changes to overlapping subsets of genes. *
Reply: Thanks. In the review paper of Naomi Moris et. al., they proposed the hypothesis that cell phenotype transition is similar to a chemical reaction ____(6)____. Thus we extrapolate this hypothesis and test it in our study. For the example of SN1 mechanism, ____Kalkan et al. showed that mouse embryonic stem cells can exit from ____naïve pluripotency____ but remain uncommitted ____(7)____.
Just like the SN1 and SN2 mechanisms are two extremes in chemical reactions and there are cases lie in between, for cell phenotypic transitions we agree with the reviewer that such gradual process may exist. Actually the result in Fig. EV4d shows that the frustration score remains flat for the Fev+ ____à____ Beta transition, suggesting a possible gradual process. With the analyses provided in this work, such as the reaction coordinate, frustration score, heterogeneity, and inter-/intra- community edges, one may perform more systematic studies on a larger number of datasets and enumerate/classify possible patterns of transitions.
Reply: We plotted the corresponding intra-community active genes and calculated its correlation coefficient with the number of effective intra-community edges in dentate gyrus neurogenesis (Fig. EV1d). ____The correlation coefficients are 0.91,0.96, 0.99 and 0.96 for community 0, 1, 2 and 3 separately.
* A bunch of notations are not clear:
4.1. What is the "r" in "strongest intercommunity interactions at r = 10 (Fig. 1F)"? Is it the same as the "r" mentioned in the Methods section? *
Reply: r____ is the index number of the discretized reaction coordinate. We added it when we define the reaction coordinate. We modified the conflict usage of r in Materials and Method 4.
4.2. What is "s_i" in "cell-specific effective matrix, Fbar_ij = (2*s_i - 1)*F_ij"? Also, that description of F_ij, f_ij, and H should be moved to the Methods section, and a more high-level, intuitive description should instead be included in this Results paragraph. Reply: represent the binarized gene expression state. is 0 for when gene is in low expression level (silence) and is 1 when gene is in high express level (active). We modified this part following your advice.
* How were the h_f and h_m thresholds chosen? *
Reply: and are based on the distribution of each dataset. Following suggestions from another reviewer, we modified this part. All the highly variable genes were selected and the genes were binarized with the Silverman’s bandwidth method and ____K____means (Materials and Methods 2).
* What is the "density of each single cell" ("⍴_t")? The formulation of the penalty of the distance between cells i and j (the expression with -logP_ij...) is unclear. What is the intuition behind it? What is r? How were the values of r (0.5 and 0.8) chosen? *
Reply: The probability density of cells in the expression space is based on the kernel density estimation. Intuitively, a region in the expression space with more cells is more likely passed by more cell trajectories. The values are based on the distribution of kernel density estimation in different datasets.
In the modified manuscript, we used trajectory simulation and deleted this assumption for simplification.
* One of the reasons the authors state to justify the choice of PLSR is "In the scRNA dataset, the number of genes is often comparable to or larger than the number of cells." This is not true most of the time. In nearly all recent studies, the number of cells is way larger than the number of genes measured. *
Reply: The PLSR method definitely can be used for the data whose number of cells is larger than the number of genes. Also the PLSR method was applied on cells that are the k nearest neighbors of each reaction coordinate, which are a subset of the whole dataset (Materials and Methods 5). While we mainly presented results with the PLSR method, in this revised manuscript we also added results with another method of GRISLI (Materials and Methods 9). The results are similar with what we obtained with PLSR.
* There is a fleeting reference to a nice previous finding that supports their observations: "several lines of evidence support that EMT proceeds through a concerted mechanism. Indeed, both in vivo and in vitro studies have identified intermediate states of EMT that have co-expressed epithelial and mesenchymal genes (Pastushenko et al, 2018; Zhang et al, 2014)". The authors should thoroughly survey the literature related to EMT transition, development of pancreatic endocrine cells, and development of the granule cell lineage in dentate gyrus, to find more previously identified molecular/cellular features relevant to cell state/type transitions, compared and contrasted with findings from this study. *
Reply: Thanks. We added references on these cell phenotype transitions and modified the corresponding part. We do want to point out that the main focus of this work is that all these processes share a common feature of transient increase of intercommunity interactions.
* What is the "dynamo" package, which is supposed to contain a Python notebook? As of now, the code and data have not been made available. Both need to be released along with thorough documentation on how to run the code to reproduce the analyses described here. *Reply: Thanks. Dynamo is a python package accompanying our recent publication ____(8)____. We uploaded the code on Github and added the link of Dynamo.
* **Minor comments and questions**
Reply: Thanks. We modified them.
* Paragraph two of the Introduction (beginning with "Another example of transitions ...") is missing multiple references, esp. for the last four sentences. *
Reply: Thanks. We added references.
* There are direct quotes from previous papers like "predicts the future state of individual cells on a timescale of hours". The authors are highly encouraged to check for usage of exact phrasing using available text software such as iThenticate. *
Reply____: ____Thanks a lot for pointing out this severe mistake. We re-edited the manuscript and checked with iThenticate. *
*
Reply: The E (M) genes are defined as those genes that are active or have high expression levels in epithelial (mesenchymal) state or sample. As we reorganized the manuscript, we add this explanation for all datasets in the caption of Fig.1i.*
*
Reply: We added it in the Methods.
* Fix: "transition between the cells that their sample time points are successive" in Methods. *
Reply: Thanks. ____We modified it.
* In Methods, under "Network inference", it is "partial least square regression" (not *least* s square). *
Reply: Thanks. We modified it.
* Figure 1: The cyan, magenta, and lime in 1C are very hard to see and, perhaps, the grey of the points can be made lighter. Also, change the red and green colors for the arrows in 1I to something else. These colors are not colorblind-friendly. *
Reply: Thanks. We re-plotted the figures and changed the colormap.*
*
Reviewer #2 (Significance (Required)):
The study uses RNA-velocity calculated from scRNA-seq data in an inventive way to characterize paths that reflect cell phenotype transitions. Then, a sparse gene regulatory network is reverse engineered from the data and the community structure within this network is examined at various stages along the transition to make observations about inter- and intra-community regulation and network "frustration". However, the study lacks the context of existing literature in terms of previous work studying cell transitions both experimentally and computationally. Adding this context (as suggested in the comments) will considerably improve the utility and significance of the findings. Overall, this study will be of broad interest to researchers interested in development and reprogramming as well as computational scientists developing and applying methods for scRNA-seq data analysis, trajectory inference, and network reconstruction. All the comments and questions raised here are based on my background and expertise in omics data (including scRNA-seq) analysis and network biology.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
The authors analyze three datasets of Single cell RNA velocity measured during phenotypic transition. They infer the gene regulatory network in each case and characterize the transition between the initial and final expression states (in which different sets of genes are expressed). Their motivating question was to find whether during such transitions first genes characterizing the initial state are no longer expressed and only then the genes associated with the final state start expressing or alternatively there is gradual transition through an intermediate state in which subsets of both initial and final state genes are transiently expressed.
They define a measure of regulatory frustration representing the mismatch between regulatory signals a gene receives and its current expression state. They conclude that phenotypic transitions involve transient interactions between otherwise non-interacting gene modules and a temporary increase of gene frustration, which is relaxed once the final expression state is reached.
The study uses of advanced inference and machine learning methods.
I find the question studied in this manuscript interesting, opening avenue to further questions and studies and relevant to different scientific communities. Personally I think that the focus of the paper should be the exposition of the methods used this manuscript would benefit from a longer format, but that depends of course on the journal they are aiming at. *
*
Statistical analysis is missing. Especially since the authors mention the potential of over-fitting due to large number of genes (on the order of the number of cells) - I think the authors should provide a sensitivity analysis testing how sensitive are the conclusions to the choice of cells or genes by applying the methods to subsets of the cells / genes. *
Reply: Thanks. For the subset of cells, we randomly selected cells from the dataset and performed the analyses (Fig. EV11a). For the subset of genes, we selected a subset of genes randomly and performed the analyses (Fig. EV 11b). We found the results are not affected. We also perform another statistical analysis by varying the value of resolution in community detection algorithm. And we found that the conclusion on variation of inter-community edges is not affected (Fig. EV12).
Figure EV11 Statistical analyses of dentate gyrus neurogenesis. Each dot represents a cell and color represents the number of inter-community edges.
(a) Frustration score along the RCs (left) and cell-specific variation of the number of inter-community edges (right) of a randomly selected sub-population of 2000 cells (from a total of 3184 cells);
(b) Frustration score along the RCs (left) and cell-specific variation of the number of inter-community edges) (right) of cells on the space of 400 randomly selected genes (from a total of 678 genes).
*What is the meaning of the distribution in the frustration plots? *
Reply: For each cell we calculated a frustration score. Therefore for cells in each Voronoi cell (which is a geometric cell, don’t be confused with the biological “cells”) along the reaction coordinate (Fig.1d, Fig. 2b &2g), we obtained a distribution of the frustration scores.*
In general, the conclusions are well-justified, but I think some statements in the discussion are inaccurate: "intercommunity interactions of a GRN are indeed minimized' - are they minimal or are they only lower at the stable states? There are two stable states - for which of them is intercommunity interaction lower? *
Reply: Thank. We agree with the reviewer and modified the writing. Comparing with the transition state, the number of intercommunity interactions is less for the stable states. ____The datasets' quality are not high enough for us to investigate whether ____"intercommunity interactions of a GRN are indeed minimized”.*
It is written in the discussion that 'for all three datasets frustration decreases with differentiation', but then Fig. 1g shows the opposite (final state is more frustrated than initial state). It is interesting to discuss the differences between the datasets analyzed in that respect and what could cause transition to a more frustrated state. I suggest that the authors also refer in the discussion to related questions and possible follow-up studies, such as: what determines the duration of the phenotypic transition? A relevant number is the switching time of a single gene. *
Reply: Good suggestion. Compared to other datasets, we found that the result of EMT shows larger variances. The relative difference of the frustration score is also affected by the GRN inference algorithm. For example, the difference between initial and final frustration scores of the pancreatic endocrinogenesis is more significant when using the GRISLI method (Figure EV6b). Given these, the trend that the frustration scores in the transition states transiently increase keep consistent.
Our conclusion is limited by the quality of the data. So we delete this part of discussion in the manuscript.
Qiu et al. have shown that splicing-based ____RNA velocities are relative, while metabolic-labeling-based RNA velocities are more quantitative and accurate____(8)____. We will re-analyze this problem if data with metabolic labeling becomes available.
* The authors mention at the end that the networks can often reach multiple final states from a common initial states. Do such transitions share some of their path (and in particular the intermediate frustrated state)? Given the intermediate connected state, it would be interesting to characterize the network stability to perturbations. *
Reply: This is a very important question. To reliably address these questions, we need higher quality data. We plan to characterize the network stability to perturbations in future studies, while in our recent paper using a full nonlinear modeling framework____(8)____, we performed in silico perturbations.
* While interesting, the manuscript itself is unfortunately hard to read and would benefit from major editing, including better exposition of the science and language editing. *
Reply: Thanks. We revised the manuscript extensively.*
Methods: Description of PCA and 'revised finite temperature string method' are missing in the Methods section. *
Reply:____ Thanks. PCA is used in RNA velocity analysis for dimension reduction. We added this in Materials and Methods 3. The revised string method is in Materials and Methods ____4.
*
Some examples:
Figure captions are very short and often non-informative. Some variables are not defined (or only defined later on) and the reader then needs to guess their meaning: it took me a while to understand what is 'r' in Fig. 1f and what 'r=10' (p. 4) means. *
Reply: Thanks. ____r____ represents the index number of reaction coordinates. We added this in the manuscript where we define reaction coordinates.*
p. 4: what are 'f' (as opposed to F) and 's_ij' and 's_j' (expression states?) Or is fs_ij one variable? What does a Hamiltonian of a cell mean (p. 4, bottom)? *
Reply: is the regulation of gene ____j on gene i, and is the expression state of gene i (0 for silence, and 1 for active expression). is the frustration value of regulation from gene j to gene i.
The pseudo Hamiltonian value is proposed in the literature as an analogy of ____the magnetic systems following the work of Boolean model in EMT ____(9)____. A high Hamiltonian value indicates that the cell is in an unstable state. In the original manuscript we included this quantity since it has been discussed in the literature. However we found it causes confusion and is not necessary for our discussions, so we removed the pseudo-Hamiltonian results in the revised manuscript. * P. 4: how are 'E and M genes' defined? *
Reply: The E (M) genes are defined as those genes that are active or have high expression levels at the epithelial (mesenchymal) state or sample. We explained our general strategy in the caption of Fig.1i . * What does 'network heterogeneity' (p. 5) mean? *
Reply: Network heterogeneity measures how homogenously the connections are distributed among the genes____(10)____. A high heterogeneity ____means that some genes have high degree of connectivity (the so-called hubs), while some have low degree of connectivity.
*
Fig. 1 is too tiny and hard to read and details are missing. *
Reply: Thanks. We modified this figure and caption.*
A glossary for all the acronyms used would be very helpful. *
Reply: Thanks. We added glossary in the manuscript.*
Language (some examples):
p. 5 bottom: Another system is on development... invitro -> in vitro
p. 6: 'measure on developmental potential' -> measure of... *
Reply: Thanks. We modified these and re-edited the whole manuscript.*
Reviewer #3 (Significance (Required)):
This study presents a methodological advance in demonstrating the application of data analysis methods to study developmental phenotypic transitions. High throughput measurements and computation power available today enable putting to test theoretical conjectures, as made by Waddington. I think this is a promising line of research, which could be used to further develop the computational methods as well as to further our understanding of developmental transitions and potentially develop associated mathematical modeling frameworks.
This study should be of interest to a diverse readership composed of developmental biologists as well as to quantitative biologists and CS researchers applying optimization techniques and data analysis methods to high-throughput biological data.
I am not an expert on the computational methods applied in this manuscript and hence cannot assess their correct use and statistical analysis.
*
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The authors analyze three datasets of Single cell RNA velocity measured during phenotypic transition. They infer the gene regulatory network in each case and characterize the transition between the initial and final expression states (in which different sets of genes are expressed). Their motivating question was to find whether during such transitions first genes characterizing the initial state are no longer expressed and only then the genes associated with the final state start expressing or alternatively there is gradual transition through an intermediate state in which subsets of both initial and final state genes are transiently expressed.
They define a measure of regulatory frustration representing the mismatch between regulatory signals a gene receives and its current expression state. They conclude that phenotypic transitions involve transient interactions between otherwise non-interacting gene modules and a temporary increase of gene frustration, which is relaxed once the final expression state is reached.
The study uses of advanced inference and machine learning methods.
I find the question studied in this manuscript interesting, opening avenue to further questions and studies and relevant to different scientific communities. Personally I think that the focus of the paper should be the exposition of the methods used this manuscript would benefit from a longer format, but that depends of course on the journal they are aiming at.
Statistical analysis is missing. Especially since the authors mention the potential of over-fitting due to large number of genes (on the order of the number of cells) - I think the authors should provide a sensitivity analysis testing how sensitive are the conclusions to the choice of cells or genes by applying the methods to subsets of the cells / genes.
What is the meaning of the distribution in the frustration plots?
In general, the conclusions are well-justified, but I think some statements in the discussion are inaccurate: "intercommunity interactions of a GRN are indeed minimized' - are they minimal or are they only lower at the stable states? There are two stable states - for which of them is intercommunity interaction lower?
It is written in the discussion that 'for all three datasets frustration decreases with differentiation', but then Fig. 1g shows the opposite (final state is more frustrated than initial state). It is interesting to discuss the differences between the datasets analyzed in that respect and what could cause transition to a more frustrated state. I suggest that the authors also refer in the discussion to related questions and possible follow-up studies, such as: what determines the duration of the phenotypic transition? A relevant number is the switching time of a single gene.
The authors mention at the end that the networks can often reach multiple final states from a common initial states. Do such transitions share some of their path (and in particular the intermediate frustrated state)? Given the intermediate connected state, it would be interesting to characterize the network stability to perturbations. While interesting, the manuscript itself is unfortunately hard to read and would benefit from major editing, including better exposition of the science and language editing.
Methods: Description of PCA and 'revised finite temperature string method' are missing in the Methods section.
Some examples:
Figure captions are very short and often non-informative. Some variables are not defined (or only defined later on) and the reader then needs to guess their meaning: it took me a while to understand what is 'r' in Fig. 1f and what 'r=10' (p. 4) means.
p. 4: what are 'f' (as opposed to F) and 's_ij' and 's_j' (expression states?) Or is fs_ij one variable? What does a Hamiltonian of a cell mean (p. 4, bottom)?
P. 4: how are 'E and M genes' defined?
What does 'network heterogeneity' (p. 5) mean?
Fig. 1 is too tiny and hard to read and details are missing.
A glossary for all the acronyms used would be very helpful.
Language (some examples):
p. 5 bottom: Another system is on development... invitro -> in vitro
p. 6: 'measure on developmental potential' -> measure of...
This study presents a methodological advance in demonstrating the application of data analysis methods to study developmental phenotypic transitions. High throughput measurements and computation power available today enable putting to test theoretical conjectures, as made by Waddington. I think this is a promising line of research, which could be used to further develop the computational methods as well as to further our understanding of developmental transitions and potentially develop associated mathematical modeling frameworks.
This study should be of interest to a diverse readership composed of developmental biologists as well as to quantitative biologists and CS researchers applying optimization techniques and data analysis methods to high-throughput biological data.
I am not an expert on the computational methods applied in this manuscript and hence cannot assess their correct use and statistical analysis.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Understanding the cellular and molecular basis of cell type or cell state transitions occurring during development or reprogramming is a fundamental challenge. scRNA-seq has provided a window into gene expression programs across thousands of cells undergoing such transitions. Wang and colleagues leverage scRNA-seq and develop an approach to reverse engineer gene regulatory network underlying cells along a path from one cell type/state to another, and characterize community-level properties of this network associated with various stages of the cell phenotype transition. The study is innovative and rigorous, and their results point to how intercommunity interactions increase and then decrease, indicating a concerted regulatory rewiring that orchestrates transitions. Application of their approach to three different datasets also shows that this trend is consistent across three different transitions and maybe a general trend. However, there are some major and minor concerns that need to be addressed.
Major comments and questions
2.1. Provide references to previous experimental and computational studies that have investigated developmental and reprogramming gene expression programs.
2.2. Describe specific examples of findings that support the two possible transitions highlighted here. Why couldn't transitions happen through an entirely gradual process involving changes to overlapping subsets of genes.
4.1. What is the "r" in "strongest intercommunity interactions at r = 10 (Fig. 1F)"? Is it the same as the "r" mentioned in the Methods section?
4.2. What is "s_i" in "cell-specific effective matrix, Fbar_ij = (2s_i - 1)F_ij"? Also, that description of F_ij, f_ij, and H should be moved to the Methods section, and a more high-level, intuitive description should instead be included in this Results paragraph.
Minor comments and questions
The study uses RNA-velocity calculated from scRNA-seq data in an inventive way to characterize paths that reflect cell phenotype transitions. Then, a sparse gene regulatory network is reverse engineered from the data and the community structure within this network is examined at various stages along the transition to make observations about inter- and intra-community regulation and network "frustration". However, the study lacks the context of existing literature in terms of previous work studying cell transitions both experimentally and computationally. Adding this context (as suggested in the comments) will considerably improve the utility and significance of the findings. Overall, this study will be of broad interest to researchers interested in development and reprogramming as well as computational scientists developing and applying methods for scRNA-seq data analysis, trajectory inference, and network reconstruction. All the comments and questions raised here are based on my background and expertise in omics data (including scRNA-seq) analysis and network biology.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this manuscript by Wang and colleagues, the authors analyse single-cell RNA-seq (scRNAseq) data by applying transition path theory to infer gene regulatory network (GRN) changes along the transition (reaction coordinate, trajectory) between free energy stable states (i.e. cell types). The work aims to understand how stable cell types, and their regulatory programs (combination of active and repressed genes) switches during differentiation/reprogramming/response (i.e. cell phenotypic transition/CPT). The premise of the work is to assess whether genes within GRNs undergo step-wise repression, state-change and activation (& vice-versa; analogous to SN1) or concurrently regulate gene expression (analogous to SN2). The GRNs are inferred based on highly variable genes and their expression dynamics from RNA velocity over CPT, across 3 scRNA-seq datasets.
The authors first analyse public scRNA-seq dataset of 3003 human A549 adenocarcinomic basal epithelial cells treated with TGF- for 0hrs, 8hrs, 1 day and 3 days (4 timepoints). The authors select two stable states (Day0-untreated; Epithelial and Day 3-treatment; Mesenchymal) using local kernel densities and set transition paths using Dijkstra shortest path, dividing state space into Voronoi cells (i.e. reaction coordinate value), and constructed single-cell GRNs based on RNA velocity differences (n=500 genes) and a linear model (from Qiu et al). This GRN is based on expression and velocity estimates, and does not distinguish direct from indirect regulation. Calculating interaction frequency (edges) across two stable states over 4 louvain clusters, the authors find global increase in effective edges that correlates with increased active genes; but with variable trend within inter-cluster edges. To quantify the concerted GRN changes between clusters, the authors utilise a "frustration" score (from Tripathi et al 2020). The average frustration score increases and peaks at day 1 treatment, followed by a decline over terminal stable state (day 3-treatment); similar to interaction frequency trends. The author also separately measure network heterogeneity and repeat analysis using alternative transition matrix. The authors conclude that EMT proceeds through concerted regulation of multiple genes first with an increase in inter-cluster edges, frustration and heterogeneity followed by a decrease into final stable state. The authors apply the analysis to scRNA-seq data from (i) pancreatic endocrine differentiation where Ngn3-low progenitors give rise to Ngn3-high, then Fev-high and into glucagon producing -endocrine cells; (ii) dendate gyrus; radial glial cell differentiation into nIPCs, neuroblast, immature granule and mature granule cells. In both cases, the authors observe concerted regulation with initial increase in inter-community edges, heterogeneity during differentiation followed by decrease towards final stable state.
The study and ideas in the manuscript are interesting and the methods would be potentially be useful. However, there are a few specific and general comments stated below, which the authors should try to address.
• P4: "RC increases first and reaches a peak when cells were treated with TGF-β for about one day, then decreases (Fig. 1G)". It would be better to label the figure with the treatment information. • Fig. 1G and EV1D: Why are the trends different? • How is the appropriate community/cluster/Louvain resolution selected? This can have a major impact on number of cell states, types and transition path from initial to final state. • What effect does the Louvain resolution have on e.g. frustration scores? • The authors match resolution to samples/timepoints/known prior cell types i.e. 3-4 communities. However it is unclear whether this is enough to describe entire differentiation/transition process. • Gene selection: The selection based on minimum 20 counts as highly expressed genes is arbitrary and dependent on sequencing depth. Perhaps the authors could show distribution of gene counts for the datasets and have a data-driven filtering criteria • The choice of 500 variable genes (for human A549 cells) is also quite arbitrary. Perhaps, the authors could compare how additional genes (all highly variable genes) affects their analysis and interpretation. • How are other factors (sequencing depth, genes detected, #of cell types, multiple branches) affects the connectivity between communities at different phases of transition/development? • Are the velocity graph, transition matrix and further shortest path estimation derived in a reduced latent space, and if so, how much (nPCs) and what impact does it have. Presumably, the density estimation is not performed in expression space.
Nature and significance of advance: The study and ideas in the manuscript are interesting and the methods would be potentially be useful to community.
Compare to existing published knowledge: -
Audience: Predominantly computational audience
Your Expertise: PI with background in experimental, computational biology and expertise in single-cell genomic tools and developmental biology
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
We are very grateful to the three referees for their constructive comments and suggestions which have helped improve the quality of our manuscript.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
In the publication HAT-field: a very cheap, robust and quantitative point-of-care serological test for Covid-19 by Joly and Ribes the authors describe an adaption and an improved protocol to their previously published haemagglutination based test to detect antibodies to SARS-CoV-2 in patient blood (Towsend et al., 2021). In detail, they analyzed the effect of several adaptions including buffer optimization, plate coating, usage of patient whole blood instead of washed RBCs and plasma. Additionally they tested different temperatures and stability of the reagents, namely the nanobody-RBD construct IH4-RBD. For validation they compared their optimized HAT-field assay with Jurkat-S&R as a FACS-based assay.
Major comments:
Introduction: This section is rather short and could benefit from a broader overview of currently established methods and assays to detect appropriate immune responses against SARS-CoV-2. The author are advised to summarize the current literature in the field more comprehensively and not only focus on their own work.
Response: Hundreds of different tests to monitor immune responses against SARS-CoV-2 have been described to date, and the literature on these various tests is vast, with new articles coming out almost on a daily basis. We would not feel either that the introduction of our rather technical paper would benefit from being lengthened by such a review of the current literature, or even competent to carry out such a summary. Following the referee’s suggestion, we have, however, introduced a new sentence and given three references providing relatively recent overviews on the subject of immune-monitoring.
Cross-reactivity with IH4-RBD. In Figure 6, the authors highlight the samples in red and orange that showed cross-reactivity with IH4-RBD. In their discussion, however, the authors state that only 2 of 60 (3%) were cross-reactive. In making this statement, they ignore the proportion of cross-reactive samples that were also positive in the Jurkat S&R assay. Therefore, the authors should acknowledge in the discussion that the actual number of cross-reactive samples was higher.
Response*: The statement in the discussion about 2 cross reactive samples out of 60 concerns the results obtained after an incubation of one hour under normal gravity, and not the two red dots in each of the three graphs of figure 6, which correspond to the two negative samples which gave false-positive results in HAT plasma titrations after spinning (Figure 6C), for which we correctly state in the discussion that 12 samples showed cross-reactivity on IH4 alone. The data presented in Figure 6B corresponds to HAT-field after spinning, for which we correctly state in the discussion that 5 out of 60 showed cross-reactivity (4 orange dots + 1 red dot, the second red dot having a score of 0, in accordance with the fact that this sample showed no cross reaction on IH4 alone in HAT-field after spinning). *
*To try to prevent this possible confusion, we have now clarified what data we are referring to at the start of that paragraph in the discussion. *
Quantitative Assay. Since the HAT assay does not allow determination of the absolute number of antibodies reactive to SARS-CoV-2 in the blood samples, the authors should refrain from claiming that the HAT-field is a quantitative assay.
Response*: Since immune sera are inherently polyclonal, they contain a multitude of different types of antibodies of different affinities and avidities, and we are not aware of any technique that allows to determine the “absolute number” of antibodies directed against a given antigen in such samples. *
*For many serological tests, including ELISA and the initial protocol of HAT, serum or plasma titrations are used as a means to obtain what is widely considered as a quantitative evaluation of the amounts of antibodies in blood samples. Even FACS-based assays such as the Jurkat-S&R-flow test we have used, are commonly considered as quantitative but those only provide relative results and not absolute numbers. *
We perceive that the close correlations we find between the results of the HAT-field protocol and those of the Jurkat-S&R-flow test as well as with serum titrations using the standard HAT protocol warrants considering the results of HAT-field as being as quantitative as those obtained with all those other tests.
Morphological read out For field application, the morphological description of the observed deposits ("teardrop" vs. "button") could be problematic and might lead to bias depending on the user. Thus, the authors should provide a clearer description for phenotype classification.
Response: We have now introduced a specific paragraph detailing how to score HAT assays in the Methods section, as well as a new figure providing a graphic description of positive, partial and negative RBCs deposits.
Minor comments: Title: the authors should remove "very"
Response*: We have now removed the word ‘very’ from the title, and thank the referee for this helpful suggestion. *
By the way: What are the costs of IH4-RBD for a 96 well plate? Who will produce this reagent? Is the sequence of the IH4 fully disclosed?
Response*: As specified in our original paper (see Townsend et al. 2021), the plasmid coding for the IH4-RBD is available upon request from Alain Townsend (Oxford, UK). Furthermore, his laboratory funded the production of 1 gram of the IH4-RBD reagent by a commercial company, and professor Townsend has been graciously sending aliquots of 1 mg of this reagent, which suffice for several thousand tests, to all the laboratories that have requested it from him. *
*In its initial format, HAT only required 100 ng of IH4-RBD per well, corresponding to a cost of 0.0027 £ per well. For the HAT-field protocol, 5 times more reagent is needed, thus bringing the cost of the reagent to 1.5 cts per test, to which one would have to add a similar cost for the IH4-reagent alone. This would thus bring the cost of the two reagents to approximately 3 cts, which is still lower than the price of any of the cheap disposable plasticware necessary for the test (lancet, pipet, plastic tube and portion of a plate). *
The sequence of the IH4 nanobody is indeed fully disclosed (see figure 1 of Townsend et al. 2021), and has actually been protected by a patent ( US9879090B2 ). Whilst IH4 can be used freely for research purposes, licensing rights would have to be taken into consideration by any health authority wishing to use the technique broadly, or for any commercial distribution.
The usage of the CR3022 as positive control for neutralizing antibodies should be reconsidered since this antibody does not confer viral neutralization. Other well describe antibodies blocking the ACE2:RBD interface might be better suited.
Response*: CR3022 was the one that we had at our disposal, but other mAbs can certainly be used instead of as positive controls, and this is actually indicated in the detailed HAT-field protocol provided. Since the use of a positive control is only to ensure that the IH4-RBD has not been degraded and works as well as expected, and that any negative samples are not due to a very rare glycophorin mutation that could prevent IH4 from binding to it at the surface of RBCs, we are not sure why using a mAb with neutralizing activity would necessarily be better than the CR3022 mAb. *
Figure 2: Please state the concentration of IH4-RBD used. As stated in the figure legends for Figure 2 B, the authors should show the result all 4 replicates (incl. SD)
Response: The concentration of IH4-RBD was 1 m*g/ml, i.e. the normal concentration for standard HAT tests. This was already indicated in the Methods section, but has now been added to the legend of Figure 2. *
Whilst 4 experiments were indeed carried out, which all gave similar results, i.e. showed that using PBS-N3 or PBN did not hinder HAT performance, but could instead result in a slight increase in HAT sensitivity, those various experiments were not all exact replicates of the experiment shown on figure 2. Furthermore, performing of those various experiments was spread over a period of over a year, using different reagents, thus precluding numerical comparisons between the various results. We have clarified this issue by rewording the final statement to “Comparable results were obtained in four similar experiments.”
Figure 3: Although the authors showed stability of IH4-RBD at 2 µg/ml they do not provide data for the stabilities at higher dilutions. As the authors suggest to predistribute the IH4-RBD in plates they should at least discuss this issue.
We thank the referee for raising this valid point, which has now been discussed in the paragraph entitled “Practical considerations for performing HAT assays” in the Methods section: “One aspect that will have to be considered for the design and use of such individual strips of wells will be to ensure that, upon storage, the various dilutions of IH4-RBD are as stable in such strips as the working stocks of IH4-RBD (2 mg/ml) tested in Figure 3.”
Figure 6/Supplementary Figure 1 and 3 The presentation of the data is not accurate, as many of the points (samples) are obviously identically positioned in the graph. The authors should choose a different representation of their data. E.g. they could adjust the size of the points to the number of overlapping samples.
Response: We thank the referee for raising this issue, which was also pointed to by referee #2. This apparent inaccuracy is due to the fact that, on these plots, the scales for both x and Y axes used discrete values, which indeed results in multiple points overlapping on top of one another. This was resolved by adding numbers next to the positions where several dots overlapped
Wording / text length In the current manuscript the text is very long. Thus, the authors should shorten it to report the essential findings more appropriately. Additionally they should check for correct English wording.
Response*: We thank the referee for this remark, which helped us realize that the excessive length of the manuscript was mostly due to an extensive discussion of highly technical and practical points. The corresponding paragraphs were indeed out of place in the general discussion, and have not been deleted but have been moved to the Methods section since we feel that they contain very important information for people who would actually start to performing HAT assays. *
Reviewer #1 (Significance (Required)):
In summary, the authors describe the HAT-field test as a simple PoC test for the detection of SARS-CoV-2 antibodies in patients. Because of its ease of use and robustness, the test appears to be particularly well suited for use in countries with underdeveloped health care or limited testing facilities, as also reported previously. The value of this manuscript lies mainly in the detailed description of the protocol and its validation. In this context, the adaptations described are certainly useful and helpful from a practical point of view, but do not provide significant new scientific insights. In light of these considerations, we recommend that this work be submitted to an appropriate journal specializing in the publication of such methods
Expertise The reviewers have established and published different serological assays to monitor immune responses against SARS-CoV-2
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
In this paper, the authors developed a feasible protocol for an affordable point-of-care serological test for SARS-CoV-2. This method was adapted from the HAT plasma titration test that the authors previously published. Specifically, the test utilizes a 96-well plate pre-coated with the RBD of SARS-CoV-2 spike glycoprotein fusing to a red blood cell targeting nanobody (IH4). By adding microliters amount of the blood or plasma samples to the plate, it allows the detection of antibodies against RBD by measuring the level of hemagglutination. In the current upgraded protocol (so called HAT-field), the authors made major modifications including optimizations of buffer and experimental protocol and the use of pre-titrated IH4-RBD on the plate, which collectively helped to lower the sample consumptions, improved the stability and the sensitivity of detection, and made the test more user-friendly under non-clinical settings.
Major comments: My major concerns are related to the robustness and quantitative capability of this approach. Specifically: It seems that multiple variables may impact the results. These include volume of droplets, the presence/absence of serum IH4 or BSA cross-reactive antibodies, and the amount (%) of red blood cells which may vary substantially among samples. Could you find a way to normalize the results (e.g., the discrepancy shown in Figure 6) instead of only leaving them as false-positives or false-negative?
Response*: Regarding the volume of the droplets, in other words, the amount of blood collected and used in an assay, two sentences in the manuscript underline the fact that this is not a critical variable: *
In the Results section “the precise volume of blood collected is not critical; it may vary by as much as 30% with no detectable influence on the results.”
In the discussion: “On this subject, we have found that increasing the amount of whole blood per well (in other words using blood that is less dilute) has very little influence over the HAT-field results, and, if anything, adding more blood can sometimes reduce the sensitivity, albeit never by more than 1 dilution.”
Consequently the % of RBCs in samples seem unlikely to influence the HAT-field scores significantly. This is supported by the fact that, although men tend to have higher hematocrits than women, we have not noticed any detectable difference between men and women in the correlation of the HAT-field scores with those of the Jurkat-S&R-flow test.
We are not sure that we fully understand what discrepancy shown in Figure 6 the referee is pointing to, but if it is about the increase in the number of samples found to be cross reacting on IH4 alone when the sensitivity increases, in the discussion, we propose to perform tests using titrations of the IH4 nanobody alone simultaneously to using the IH4-RBD reagent, so as to minimize the number of samples that would be identified as false positives if only one concentration of IH4 alone was used as negative control. Comparing the titers obtained with IH4-RBD and IH4 alone will then provide some level of normalization for the samples cross reacting on IH4. As for the hypothetical presence of antibodies cross reacting on BSA alluded to by the referee, since such antibodies would not bind to RBCs, we do not think they would affect the HAT results.
Second, the score of the HAT-field ranges from 0 - 8. However, based on the current manuscript, it is not clear how the scoring and scaling works. How is the noise (non-specific antibody signal) defined here?
Response: We have now introduced a specific paragraph and a new figure detailing how to score HAT assays in the Methods section.
In addition, it is unclear how to translate the HAT-field score into a meaningful measure of protection by serum antibodies.
Response*: Documenting the correlation between HAT-field scores and levels of protection against SARS-CoV-2 infections and/or Covid-19 severity would indeed be extremely interesting. This would, however, require setting up a large scale clinical trial carried out over several months. This type of work could only be carried out by a large consortium including clinicians or even preferably a national health agency. This was, however, far beyond the reach of this initial project, which was based on the work of a single person on a shoestring budget. *
Can you provide more evidence to demonstrate that the test is quantitative? For example, performing additional orthogonal experiments to better validate the scoring and generate a correlation function?
Response*: Inasmuch as it would have been very interesting to perform additional serological tests from commercial sources on the samples of our cohort, such tests are all very expensive (e.g. ca. 500 € for one ELISA plate). This was in fact the main reason for developing the Jurkat-S&R-flow test in the first place, since it is much cheaper, more modular, and at least as sensitive as ELISA (see Maurel Ribes et al. 2021). The funds for this whole project came from a single 15 k€ grant obtained from the ANR, and we simply did not have access to the funds, or to the human resources to carry out such experiments based on commercial serological tests. *
Minor comments: Figure 6: are all results included? To me, it does not seem that all 60 samples data were included in the plot.
Response: We thank the referee for raising this issue, which was also pointed to by referee #1. This apparent inaccuracy is due to the fact that the scales for both x and Y axes used discrete values, which results in multiple points overlapping on top of one another. This was resolved by adding numbers next to the positions where several dots overlapped.
There are several redundant statements in the discussion and results section. Please make the text more concise.
Response: The discussion has now been shortened considerably, mostly by moving the paragraphs pertaining to technical considerations to the Methods section.
Reviewer #2 (Significance (Required)):
The current paper is built upon the improvement of previous published work. In addition, there are similar approaches that have been published. It was unclear if the current method is superior to other works.
Response: Whilst we have made no statement regarding whether the method we describe is superior to other methods, we are pretty confident that very few alternatives will be as frugal and simple as the HAT-field protocol described here. As alluded to in the final paragraph of the discussion, two recent reports have described that HAT could be performed on cards rather than in V-shaped wells, with semi-quantitative results being obtained in minutes. If such card-based approaches turn out to provide sensitivity and reliability comparable to those of the HAT-field protocol, they will certainly represent very interesting alternatives. As stated in our manuscript, we would be very interested if the comparative evaluation of the two approaches could be carried out by one or several independent third party.
My research involves the development of antiviral antibody therapeutics. This method may be used as a point-of-care tool for the measurement of serologic response to RBD in less developed countries. However, due to the high vaccination rate and large infected populations, the overall needs for such detection drastically decrease. The significance of the work and utilities of the test may expand with more experiments related to the variants.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
This paper describes a low-cost robust and quantitative serological test based on haemgglutination, which could be used in resource limited settings for evaluating population-based and vaccine induced immunity. Neutralising antibodies to the receptor binding domain (RBD) on the SARS CoV-2 spike protein are an immunological correlate of protection. The HAT has a single reagent the RBD domain of SARS CoV-2 linked to a monomeric anti-erythrocyte single domain nanobody. When human polyclonal serum antibodies bind to the RBD they cross-link and agglutinate human red blood cells, resulting in haemagglutination which can be read visually.
This paper thoroughly evaluate the stability of the HAT reagents used to measure human and monoclonal antibodies examining the robustness of the HAT reagent. It provides a comprehensive protocol for conducting field based HAT with limited reagents. The test can evaluate is subjects have been infected using a simple finger prick to detect RBD specific antibodies. The field HAT can also be used to define people that can be susceptible to reinfection or in need of vaccination, With the use of RBDs from the variants of concern the test can be rapidly adapted to evaluate antibodies as new variants arise to evaluate surrogate correlates of protection to allow timely evaluation of vaccine effectiveness and predict the need for vaccine booster doses. The data are very comprehensively presented with good figures demonstrating the most appropriate buffer to store the IH4-RBD reagent and the robustness of the HAT over time at different temperatures. No additional experiments are needed and suitable numbers of replicates are included. All data, methods and reagents are comprehensively described.
Minor comments: The paper is well written but rather long in places and may have benefited from being more succinct.
Response: The excessive length of the manuscript was mostly due to an extensive discussion of highly technical and practical points. The discussion has now been shortened considerably, mostly by moving the paragraphs pertaining to technical considerations to the Methods section.
Panels in figures could be labelled as A, B, C etc to help in identifying the correct panel..
Response: We thank the referee for this helpful suggestion, which we have followed.
I would avoid the use of experiment and project and refer to next we confirmed... or in this paper or our results show Please make sure all abbreviation are defined upon first use. Perhaps include early in the paper that most of the work was conducted with the Wuhan RBD
Response: We thank the referee for these helpful suggestions, which we have followed to the best of our abilities. The abstract now contains a mention of the fact the work on optimizing the protocol was carried out with the IH4-RBD carrying the Wuhan version.
Figure 2: I would suggest placing either a solid line between the two halves of the plates to make it easier for the reader to differentiate between the two antibodies. It also would have been easier to read if the bottom PBS, PBS-N3 and PBN were at 45 degree angle. In B include the serum name (e.g. serum 197).
Response: We thank the referee for these helpful suggestions, which we have followed.
Legend to figure 4: please include the serum numbers after covid-19 patients. Perhaps include arrows to demonstrate the dilutions of serum and IH4-RBD in the figure.
Page 6 it might be easiest to use the same times as in figure 6 and use for example more than one year in the discussion
Response: We thank the referee for these helpful suggestions, which we have all followed.
Legend figure 6 perhaps replace dots with circles page 10 include the R values from figure 6 in the description of results.
Response: We are grateful to the referee for these helpful suggestions, but have not followed them since we do not feel that these changes would be real improvements.
Page 12 of note perhaps this can be moved to the methods ?
Response: This, and several other paragraphs of the Discussion, have now been moved to the Methods section.
Supplementary figure 2 A can be seen, is something missing here?
Response: An s was indeed missing : “A can be seen” corrected to “As can be seen “
*
Reviewer #3 (Significance (Required)):
This paper describes a simple rapid field test for evaluating antibodies to the receptor binding domain of the spike of SARS CoV-2 using the Wuhan and delta variant. Whilst high income countries can provide booster doses and extensive testing (either lateral flow or RT-PCR based) and contact racing to control the waves of the pandemic, low income countries have had limited access to Covid vaccine and the extent of previous waves of the pandemic in the populations are unknown.
This paper describes a robust and simple test for investigating human antibodies to SARS-CoV-2 which could be performed in resource limited settings providing a very useful tool for monitoring infection in the community and potentially for prioritising this scarce COVID-19 vaccines available.
This study builds upon the work conducted on the HAT and has extensively studied and optimised the test so that it could be used globally. This paper provides a comprehensive protocol and has simplified the test to ensure it could be used in LMICs.
This paper would be of great interest to a wide scientific audience who are interested in a rapid low-cost test to evaluate population based and vaccine induced immunity.
Reviewer: serological assays for use in virology and vaccinology. Suitable competence to review the whole paper *
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This paper describes a low-cost robust and quantitative serological test based on haemgglutination, which could be used in resource limited settings for evaluating population-based and vaccine induced immunity. Neutralising antibodies to the receptor binding domain (RBD) on the SARS CoV-2 spike protein are an immunological correlate of protection. The HAT has a single reagent the RBD domain of SARS CoV-2 linked to a monomeric anti-erythrocyte single domain nanobody. When human polyclonal serum antibodies bind to the RBD they cross-link and agglutinate human red blood cells, resulting in haemagglutination which can be read visually.
This paper thoroughly evaluate the stability of the HAT reagents used to measure human and monoclonal antibodies examining the robustness of the HAT reagent. It provides a comprehensive protocol for conducting field based HAT with limited reagents. The test can evaluate is subjects have been infected using a simple finger prick to detect RBD specific antibodies. The field HAT can also be used to define people that can be susceptible to reinfection or in need of vaccination, With the use of RBDsfrom the variants of concern the test can be rapidly adapted to evaluate antibodies as new variants arise to evaluate surrogate correlates of protection to allow timely evaluation of vaccine effectiveness and predict the need for vaccine booster doses. The data are very comprehensively presented with good figures demonstrating the most appropriate buffer to store the IH4-RBD reagent and the robustness of the HAT over time at different temperatures. No additional experiments are needed and suitable numbers of replicates are included. All data, methods and reagents are comprehensively described.
Minor comments:
The paper is well written but rather long in places and may have benefited from being more succinct.
Panels in figures could be labelled as A, B, C etc to help in identifying the correct panel..
I would avoid the use of experiment and project and refer to next we confirmed... or in this paper or our results show
Please make sure all abbreviation are defined upon first use.
Perhaps include early in the paper that most of the work was conducted with the Wuhan RBD
Figure 2: I would suggest placing either a solid line between the two halves of the plates to make it easier for the reader to differentiate between the two antibodies. It also would have been easier to read if the bottom PBS, PBS-N3 and PBN were at 45 degree angle. In B include the serum name (e.g. serum 197).
Legend to figure 4: please include the serum numbers after covid-19 patients. Perhaps include arrows to demonstrate the dilutions of serum and IH4-RBD in the figure.
Page 6 it might be easiest to use the same times as in figure 6 and use for example more than one year in the discussion Legend figure 6 perhaps replace dots with circles page 10 include the R values from figure 6 in the description of results.
Page 12 of note preps this can be moved to the methods Supplementary figure 2 A can be seen, is something missing here?
This paper describes a simple rapid field test for evaluating antibodies to the receptor binding domain of the spike of SARS CoV-2 using the Wuhan and delta variant. Whilst high income countries can provide booster doses and extensive testing (either lateral flow or RT-PCR based) and contact racing to control the waves of the pandemic, low income countries have had limited access to Covid vaccine and the extent of previous waves of the pandemic in the populations are unknown.
This paper describes a robust and simple test for investigating human antibodies to SARS-CoV-2 which could be performed in resource limited settings providing a very useful tool for monitoring infection in the community and potentially for prioritising this scarce COVID-19 vaccines available.
This study builds upon the work conducted on the HAT and has extensively studied and optimised the test so that it could be used globally. This paper provides a comprehensive protocol and has simplified the test to ensure it could be used in LMICs.
This paper would be of great interest to a wide scientific audience who are interested in a rapid low-cost test to evaluate population based and vaccine induced immunity.
Reviewer: serological assays for use in virology and vaccinology. Suitable competence to review the whole paper
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this paper, the authors developed a feasible protocol for an affordable point-of-care serological test for SARS-CoV-2. This method was adapted from the HAT plasma titration test that the authors previously published. Specifically, the test utilizes a 96-well plate pre-coated with the RBD of SARS-CoV-2 spike glycoprotein fusing to a red blood cell targeting nanobody (IH4). By adding microliters amount of the blood or plasma samples to the plate, it allows the detection of antibodies against RBD by measuring the level of hemagglutination. In the current upgraded protocol (so called HAT-field), the authors made major modifications including optimizations of buffer and experimental protocol and the use of pre-titrated IH4-RBD on the plate, which collectively helped to lower the sample consumptions, improved the stability and the sensitivity of detection, and made the test more user-friendly under non-clinical settings.
Major comments:
My major concerns are related to the robustness and quantitative capability of this approach.
Specifically:
It seems that multiple variables may impact the results. These include volume of droplets, the presence/absence of serum IH4 or BSA cross-reactive antibodies, and the amount (%) of red blood cells which may vary substantially among samples. Could you find a way to normalize the results (e.g., the discrepancy shown in Figure 6) instead of only leaving them as false-positives or false-negative? Second, the score of the HAT-field ranges from 0 - 8. However, based on the current manuscript, it is not clear how the scoring and scaling works. How is the noise (non-specific antibody singal) defined here? In addition, it is unclear how to translate the HAT-field score into a meaningful measure of protection by serum antibodies. Can you provide more evidence to demonstrate that the test is quantitative? For example, performing additional orthogonal experiments to better validate the scoring and generate a correlation function?
Minor comments:
Figure 6: are all results included? To me, it does not seem that all 60 samples data were included in the plot.
There are several redundant statements in the discussion and results section. Please make the text more concise.
The current paper is built upon the improvement of previous published work. In addition, there are similar approaches that have been published. It was unclear if the current method is superior to other works. My research involves the development of antiviral antibody therapeutics. This method may be used as a point-of-care tool for the measurement of serologic response to RBD in less developed countries. However, due to the high vaccination rate and large infected populations, the overall needs for such detection drastically decrease. The significance of the work and utilities of the test may expand with more experiments related to the variants.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In the publication HAT-field: a very cheap, robust and quantitative point-of-care serological test for Covid-19 by Joly and Ribes the authors describe an adaption and an improved protocol to their previously published haemagglutination based test to detect antibodies to SARS-CoV-2 in patient blood (Towsend et al., 2021). In detail, they analyzed the effect of several adaptions including buffer optimization, plate coating, usage of patient whole blood instead of washed RBCs and plasma. Additionally they tested different temperatures and stability of the reagents, namely the nanobody-RBD construct IH4-RBD. For validation they compared their optimized HAT-field assay with Jurkat-S&R as a FACS-based assay.
Major comments:
Introduction: This section is rather short and could benefit from a broader overview of currently established methods and assays to detect appropriate immune responses against SARS-CoV-2. The author are advised to summarize the current literature in the field more comprehensively and not only focus on their own work.
Cross-reactivity with IH4-RBD. In Figure 6, the authors highlight the samples in red and orange that showed cross-reactivity with IH4-RBD. In their discussion, however, the authors state that only 2 of 60 (3%) were cross-reactive. In making this statement, they ignore the proportion of cross-reactive samples that were also positive in the Jurkat S&R assay. Therefore, the authors should acknowledge in the discussion that the actual number of cross-reactive samples was higher.
Quantitative Assay. Since the HAT assay does not allow determination of the absolute number of antibodies reactive to SARS-CoV-2 in the blood samples, the authors should refrain from claiming that the HAT-field is a quantitative assay.
Morphological read out For field application, the morphological description of the observed deposits ("teardrop" vs. "button") could be problematic and might lead to bias depending on the user. Thus, the authors should provide a clearer description for phenotype classification.
Minor comments:
Title: the authors should remove "very" By the way: What are the costs of IH4-RBD for a 96 well plate? Who will produce this reagent? Is the sequence of the IH4 fully disclosed?
The usage of the CR3022 as positive control for neutralizing antibodies should be reconsidered since this antibody does not confer viral neutralization. Other well describe antibodies blocking the ACE2:RBD interface might be better suited.
Figure 2: Please state the concentration of IH4-RBD used. As stated in the figure legends for Figure 2 B, the authors should show the result all 4 replicates (incl. SD)
Figure 3: Although the authors showed stability of IH4-RBD at 2 µg/ml they do not provide data for the stabilities at higher dilutions. As the authors suggest to predistribute the IH4-RBD in plates they should at discuss this issue.
Figure 6/Supplementary Figure 1 and 3 The presentation of the data is not accurate, as many of the points (samples) are obviously identically positioned in the graph. The authors should choose a different representation of their data. E.g. they could adjust the size of the points to the number of overlapping samples.
Wording / text length In the current manuscript the text is very long. Thus, the authors should shorten it to report the essential findings more appropriately. Additionally they should check for correct English wording.
In summary, the authors describe the HAT-field test as a simple PoC test for the detection of SARS-CoV-2 antibodies in patients. Because of its ease of use and robustness, the test appears to be particularly well suited for use in countries with underdeveloped health care or limited testing facilities, as also reported previously. The value of this manuscript lies mainly in the detailed description of the protocol and its validation. In this context, the adaptations described are certainly useful and helpful from a practical point of view, but do not provide significant new scientific insights. In light of these considerations, we recommend that this work be submitted to an appropriate journal specializing in the publication of such methods
Expertise The reviewers have established and published different serological assays to monitor immune responses against SARS-CoV-2
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The authors do not wish to provide a response at this time
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Estrach and colleagues seek to identify the ECM components that are key to regulating hair follicle stem cell (HFSC) activation using the highly-characterized mouse hair follicle as a model. They first use a targeted approach to examine key ECM components expressed by HFSC and find that Fibronectin (FN) is highly expressed. Further, wholemount analysis of the hair follicle reveals a meshwork of FN enveloping the hair follicle. They hypothesize that FN is a fundamental regulator of hair follicle (HF) cycling and then proceed to carry out longterm studies required to examine hair follicle cycling and knockout FN with two different HFSC Cre lines (Lrig1 and Krt19), as well as integrin coreceptor SLC3A2. They clearly show that absence of Fibronectin (FN) and SLC3A2 is detrimental to hair follicle stem cell activation and cycling (FN) and hair follicle identity (SLC3A2).
Overall comments:
The authors use the tail hair follicles as a model similarly to the highly-characterized, synchronous back skin hair follicles. However, the tail hair follicles are asynchronous (Braun et al. 2003, PMID: 12954714), thus reporting the age of the mouse from which the tail whole mounts came from is not sufficient to claim a HF cycle disorder - HF should be imaged in an unbiased manner and subsequently quantified for phase. The manuscript would greatly benefit from including more information in the figure legends, such as age of mice, number of mice and HF quantified, as well as what the error bars represent. Further, in samples where many HF were counted per mouse, these should be averaged and then the average per mouse displayed; super plots would be great to use here.
Major comments:
Minor comments:
The authors show for the first time that fibronectin is expressed during cutaneous homeostasis and that it is required for normal function of the hair follicle stem cells. This is significant conceptual advance for the field of skin biology because fibronectin is thought to only be present in wounds: derived first from infiltrating serum and second from fibroblasts to act as provisional dermal ECM to support epithelialization during wound-response, which is ultimately resolved upon the conclusion of wound healing (reviewed in: Singer and Clark, PMID: 10471461). Further, FN has also been characterized as an EMT marker during cancerous progression (Lamouille et al, PMID: 24556840). Estrach and colleagues show that fibronectin is actually expressed by hair follicle stem cell keratinocytes and then is assembled into a meshwork that envelops the hair follicle and is in fact necessary for hair follicle stem cell homeostasis. This work would be broadly interesting to the field of stem cell biology as well as those working on extra cellular matrix signaling. My field is epithelial stem cells and more specifically hair follicle development and cycling.
Referee Cross-commenting
I have no disagreement with any of the points raised by the other reviewers. In fact, we seem to agree on the majority of the concerns. This includes the use of the tail wholemount model, the use of Lrig1-cre, selection of timepoint vs phase of the hair cycle, the appropriateness of the link between Fibronectin and SLC3A2, and further significant issues related to display of data and their reproducibility. Further, all of the major comments raised need to be addressed in order to properly evaluate the conclusions that the authors make. In my opinion, none of the comments raised here are unreasonable.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this manuscript, Estrach et al., investigated whether extracellular matrix component fibronectin function in hair follicle regeneration, using a range of approaches including FACS, RT-qPCR, immunofluorescent staining, and mouse genetics. They proposed that fibronectin in Lrig1+ cells was necessary for hair follicle stem cell maintenance and activation, and the fibronectin expression and assembly relayed on the integrin co-receptor SLC3A2.
Major points:
Mini Points:
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary
In the manuscript, Estrach et al addressed the role of skin epithelial stem cell-derived extracellular matrix in hair follicle regeneration. They found that Lrig1+ epithelial stem cells highly express fibronectin gene compared to other basal epithelial cells. Conditional deletion of fibronectin gene using Lrig1CreERt2-GFP or K19CreER (the latter is expressed in the bulge stem cells) resulted in hair follicle regeneration blockade, change in the expression pattern of Lrig1-GFP. Injection of fibronectin protein into the dermis of the conditional fibronectin mutants (Lrig1CreERt2-GFP) rescued the hair regeneration blockade phenotype. The authors also conditionally deleted SLC3A2, an integrin coreceptor, using the same CreER lines and found a decrease in fibronectin deposition and CD34+ bulge stem cell number. With the results from these mouse genetics and phenotype analysis, they conclude that fibronectin-SLC3A2 cascade finely tunes hair follicle stem cell fate and their tissue regenerative capacity.
Major comments
1 Immunostaining results of fibronectin in the tail epidermal wholemounts are not convincing enough and would require improvements. First, the tail epidermal wholemounts lack the mesenchymal matrix and the basement membrane (Fig. 1b, c, f-h; Fig. 2b, c; Fig. 5d-j; Fig. S1b, c) (Braun et al., 2003 Development (PMID: 12954714)). Fibronectin is localized mainly in the mesenchymal matrix and the basement membrane in the skin and other organs (Stenman and Vaheri, 1978 JEM (PMID: 650151); Couchman et al., 1979 Archives of Dermatological Research (PMID: 393184); Jahoda et al., 1992 J. Anat (PMID: 1294570)), thus this sample preparation method is not appropriate to assess fibronectin tissue distribution. The authors use thick back skin sections, which contain entire skin tissues, thus I would recommend this method. Furthermore, fibronectin antibody signals in the tail epidermal wholemounts are detected in the inner part of the hair follicle epithelium, where there is no expected ECM structure (see Couchman et al. and Jahoda et al. above). Consistently, fibronectin signals are localized inside the Lrig1-GFP+ epithelial basal cells (Fig. 1f-h). Thus the specificity of the fibronectin staining needs to be confirmed. The reviewer understands that the authors provide an image showing the great reduction of fibronectin staining in a D30 tail epidermal wholemount of 4-OHT-treated Lrig1CreERt2GFP,FNfl/fl mice (Fig. 2c). However, as the D65 tail epidermal wholemount from wildtype mice also show many hair follicles without fibronectin signals (Fig. 1c), rigorous assessments would be required.
2 Lrig1+ stem cells have been reported to maintain the upper pilosebaceuos unit, containing the infundibulum and sebaceous gland, but contribute to neither the hair follicle nor the interfollicular epidermis under normal homeostatic condition (Page et al., 2013 Cell Stem Cell (PMID: 23954751)). However, only 11 days after the first 4-OHT treatment on Lrig1CreERt2GFP;FNfl/fl mice, Estrach et al found the defects in hair cycle blockade, reduced cell proliferation in the hair bulb, and significant reduction in fibronectin deposition in entire hair follicle structure. Please explain how the deletion of fibronectin gene in Lrig1+ stem cells, which do not contribute to hair follicle lineages, lead to significant hair regeneration defects in a short period of time. Current data do not well explain a causal relationship between the genetic perturbation and the observed phenotypes.
3 In some experiments (listed below), description about the methods, replication and statistics is not adequate, raising concerns about reproducibility. 3.1 Fig. 1a: data variation for basal cells should be presented. Biological replicate number should also be indicated in the figure legend. 3.2 Fig. 2g, h: hair follicle thinning is described here, but only one HE staining image with only one hair follicle is not enough to support this important claim. 3.3 Fig. 2r, 3i: flow cytometric data should be presented. 3.4 Fig. 4: No biological replicate and reproducibility information are provided. 3.5 Fig. 5j: how many biological replicates and hair follicles were analysed? The authors should also perform statistical tests. 3.6 Fig. S3g, h: information for biological replicates should be described. Statistical tests should be applied to Fig. S3h. 3.7 Fig. 5k-n: only one HE staining panel from each mouse line cannot provide rigorous evidence of the defects, which are not obvious from the HE staining.
4 In Fig. 3j, k, n, hair follicles in the control and 4-OHT treated skin are in different hair cycle phases. Therefore there is a possibility that the difference in their PCNA pattern simply reflects the difference in the cell proliferative activity between different hair cycle phases, but not indicates direct effects from the deletion of fibronectin gene in Lrig1+ cells.
5 To assess the expression levels of signaling-related genes (Fig. 3p, S2), the authors used mRNA extracted from whole skin tissues, which contain all epithelial and mesenchymal cell populations in different hair cycle phases. Thus, the time and spatial resolution of the analysis is low and it also cannot eliminate confounding factors derived from the difference in hair cycle phases between control and cKO.
6 In order to provide the characteristics and purity of the FACS isolated cell populations at D28 (Fig. 1a), their flow cytometry data and some marker gene expression data should be presented (see Page et al., 2013 Cell Stem Cell). This assessment is particularly important for the skin compared to other static organs, as it exhibits dynamic gene expression and tissue structural changes during the hair cycle. It is also important to check whether fibronectin protein accumulates around Lrig1+ stem cells in D28 dorsal skin, where upregulation of fibronectin gene expression was detected. The authors should not use tail epidermal wholemounts for the reason described above.
Minor comments
7 The increase in stem cell marker expressions shown in Fig. 3p contradicts to the reduction in the number of bulge stem cells shown in Fig. 2r and 3i. Please provide an explanation for this apparent discrepancy.
8 Although Fig. 5s-v show reduction of a6+CD34+ bulge cell population, the bulge tissue structure can be observed in Fig. 5p. Please explain how to interpret this apparent discrepancy. They just lost the expression of CD34?
9 Connectivity of the data in the fibronectin cKO with that of SLC3A2 cKO is weak. For example, it could be strengthened if the authors show colocalization of fibronectin and SLC3A2 in vivo.
10 Although the format of the manuscript is free in Review Commons, the Introduction and Discussion of this manuscript are too brief for us to understand the background and significance of this study. So I would recommend the authors to provide more detailed background information and discussion.
11 The authors use the term 'HFSC', but it is unclear which stem cell populations they mention; bulge, Lrig1+ or other stem cell populations?
12 Please provide details of fibronectin protein and antibody used in this study.
13 Due to the short for experimental information for Fig S3a, b, d, e, I cannot evaluate the data, thus several questions are raised. As the SLC3A2 level was significantly reduced in most cells in the plot, I assumed that Lrig1-GFP+ cells were gated before examining the expression level of SLC3A2. However, no information on the procedures for 4OHT treatment, isolation of cells and flow gating strategy is described. In the case of K19CreER mice (Fig. S3d, e), if the authors gated GFP+ cells before analysis, what GFP means in this case?
14 The manuscript wants to be checked for copyediting.
These findings might provide a conceptual advance into the role of epithelial stem cell-derived extracellular matrix in regulating stem cell behaviour and tissue regeneration. As fibronectin is upregulated in development, wound healing and cancers in many other organs, their findings may point to the importance of fibronectin in activating tissue progenitors and stem cells in these processes. Thus, this manuscript is likely to be of interest to a wide range of readers, not only in skin biology, but also in stem cell, regenerative and matrix biology. The contributions of this paper could be enhanced if the documentation were to be made stronger and more rigorous in a revised manuscript.
Referee Cross-commenting
I totally agree with Reviewer #3's comments in this consultation session. I have no disagreement with any of the points raised by other reviewers.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.
We are grateful to the reviewers for their honest opinion regarding this work and plan to address the majority of the comments in a revised version either through new analysis or revision to the text, as we believe these will improve the manuscript by making some of the details clearer. There were few suggestions that will lead to substantiative changes to the findings. Here, we address the most salient critiques, the primary one being related to novelty.
We respectfully disagree, as our detailed analysis of the DNA methylome in Octopus bimaculoides represents a significant advance to understanding how the epigenome is patterned in non-model invertebrates in general, and cephalopods in particular. We acknowledge that the previous report that the octopus methylome resembles the few other invertebrates where low DNA methylation has been found, the finding was part of a multi-organism study last year (de Mendoza et al., 2021), which lacked any detailed investigation. Our study provides the first in depth analysis on methylation patterning, the relationship with transposons and gene expression, and reports the finding of other key epigenetic marks in O. bimaculoides, and in other cephalopods.
In short, we believe our study to be highly novel and that it represent the first analysis of this kind in cephalopods and one of the few existing in non-model invertebrate organisms. In addition, we identify the conservation of the histone code in cephalopods. While this may be expected, this is the first experimental evidence in this class and represents an important step forward to understand the epigenetic regulation of genes and transposons in invertebrates. Finally, we plan to provide an updated transcriptome annotation for O. bimaculoides that will be available for the scientific community as a new valuable resource. We believe these features will make this study highly cited.
We believe that findings like ours will complement several recent studies that extend the epigenetics field out of the current narrow focus on model organisms to understand how epigenetic mechanisms function in diverse animals. This provides new insights regarding the epigenetic mechanism of gene regulation in an emerging invertebrate model.
Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.
Reviewer 1 raised the following points that we are planning to address:
*- It is unclear why the authors did not use the original gene models of O. bimaculoides or tried to improve them. By only relying on adult tissue (but the relatively late hatchling stage), they would have omitted most developmentally expressed genes, that are incidentally also the ones that are subjected to extensive spatiotemporal gene regulation (which is also a problem to assess the role of methylation). I think more comparisons with existing gene models and how the newly generated stringtie models should be provided. *
We agree that using as many tissues and developmental stages as possible will expand the octopus transcriptome.
We plan to:
*- It is not exactly clear to me why the authors look for expression clusters in the first part of the manuscript? This information, while interesting, does not seem to be used in the methylation analysis. It is also somewhat contradictory because the authors first claim that, based on their GO-term enrichment analysis, that different expression clusters are associated with "complex regulatory mechanisms, potentially based in the epigenome". Yet at the end they conclude that, due to the global and tissue-overarching nature of methylation, this "argues against this epigenetic modification as a player in the dynamic regulation of gene expression". *
We thank the reviewer for pointing out this issue and we plan to clarify the point through changing the text and additional analysis. Since we found that the methylation pattern was stable across tissues, and that it corresponded to gene expression levels regardless of tissues, we concluded that the methylation pattern is not likely relevant for the tissue-specific gene expression pattern reported in Figure 1.
We plan to:
We thank the reviewer for this request.
We plan to:
*- It would be great to see more data on cephalopod TET and MBD structure. For example, it would be interesting to know whether octopus TETs have a CxxC domain or whether MBD proteins harbor functional 5mC - binding domains. *
We agree that it would be of interest to examine the conservation of TET genes to expand upon the initial analysis by Planques et al 2021 showing that O. bimaculoides have one TET homolog, one MBD4 homolog and one MBD1/2/3 homolog. Detailed analysis of MBD4 protein has been already performed in de Mendoza et al. 2021 by using the protein sequence of O. vulgaris, as the MBD4 gene in the O. bimaculoides genome appears truncated.
We plan to:
We think this is a really interesting point. This has been partially addressed in a previous work (de Mendoza et al., 2021) which found limited to no partially methylated reads in whole-genome bisulfite sequencing from O. bimaculoides brain.
We plan to:
Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.
Reviewer 1 raised the following points that we have already addressed:
We addressed all the comments raised by this Reviewer by revising the text, fixing references, typos and improving clarity.
Reviewer 2 raised the following points that we have already addressed:
We addressed all the minor Comments raised by this Reviewer regarding spelling errors and Supplementary Figures.
- The finding that less than 10% of all possible sites are methylated is surprising. I could not (easily) find statistics of RRBS experiment read mapping to the genome.
We have now provided this data and new Supplemental Table 1 (refereed in the text as Table S1).
*- It is very exciting to see methylation of gene bodies and some correlation to their expression levels, but the authors may need to include a disclaimer that the methylation of TEs may go undetected due to the gapness of the genome. In fact, the authors may try to map their data onto a somewhat closely related Octopus sinensis genome sequenced with long reads available at NCBI to confirm overall pattern. It is likely though that due the evolutionary distance only gene bodies will have mapping. *
The thank the reviewer for this suggestion and we included a sentence in the Result session indicating that methylation of TEs may go undetected due to the poor annotation of the octopus genome.
*- The statistical reasoning (and methodology) behind how clusters in Figures 1 and 4 were defined is unclear. In particular, in Figure 4, it seems that the authors had asked the program to give four clusters in total - why was this number chosen? It seems that using the same generic clustering approach as in Figure 1 may benefit or confirm the results in Figure 4. *
We clarified the rationale in the Material and Methods session to describe the bioinformatic analysis. We will put the full code used in the manuscript in our GitHub page (https://github.com/SadlerEdepli-NYUAD/) to have a more comprehensive understanding of the Method used.
Reviewer 3 raised the following points that we have already addressed:
We addressed all the minor comments in the text and figures raised by this reviewer regarding typos and clarity.
*- There is little info on the generated 5mC data. To bolster its value as a resource, the manuscript should have a link to the table describing RRBS metrics. This should include: non-conversion rates, numbers of sequenced and mapped reads, read length and other info that the authors deem useful. *
We have now provided this data in a new Supplemental Table 1 (refereed in the text as Table S1).
Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.
Reviewer 1 raised the following points that we are not planning to address:
*- The newly sequence RNA-seq samples are using a ribodepletion protocol (RiboZero) while the other ones are using a polyA selection. This might be a slight problem to compare them quantitatively. Actually in the Figure 1, all 4 newly generated samples group together in the hierarchical clustering. *
We acknowledge the reviewer’s point here and agree that heterogeneity in library prep and batch is a common issue when comparing public available with newly generated datasets. This could account for the clustering of the Ribosomal RNA depleted (i.e. RiboZero) from polyA selected RNA libraries. While this could potentially introduce bias, we do not believe that it substantially alters any of the main findings or the interpretations of this data. Our purpose for carrying out the cluster analysis of transcriptomic data from multiple tissues was to identify distinct gene patterns that defined different tissue types. This was accomplished regardless of the potential confounding variable introduced by different library preparations. In addition, we used TMP which seems to help in the comparison across different samples when used for qualitative analysis such as PCA and cluster analysis (Zhao et al. 2020; DOI: http://www.rnajournal.org/cgi/doi/10.1261/rna.074922.120). Therefore, even if not ideal we think that this approach is still valuable.
*- I am not so sure about the way the authors used z-score normalized logTPMs and applied hierarchical clusters, this most likely would not fully alleviate the impact of expression level on the outcome compared to more advanced form of normalization and clustering. *
We agree with the reviewer that applying z-score or a logTPMs normalization would not fully resolve the technical variance in the direct comparison of libraries generataed with different RNA selection methods. We did not apply z-score on logTPMs but these 2 methods were applied separately: z-score on TPMs in Figure 1B to define the gene clusters and log2(TPM+1) in Figure 4E. We have clarified the text to reflect this.
*- I am not convinced that differences in western blot for histone modification could really provide a clear insight into their regulatory role. *
We agree with the reviewer that Western blotting for histone modifications does not provide deep insight into their regulatory role. However, this is the first description of these marks in any cephalopod, and we believe that reporting a finding from experimental evidence is important, even if the result is aligned with the existing paradigm. Moreover, the marked difference in levels of distinct histone marks across tissues supports the hypothesis that they play a regulatory role. We observed this in mice where difference abundance in western blot correspond to different abundance and enrichment also by ChIP-seq (Zhang et al., 2021 DOI: https://doi.org/10.1038/s41467-021-24466-1). Considering the limited tools available in this species, we still consider this an important finding.
Reviewer 2 raised the following points that we are not planning to address:
*- The finding that less than 10% of all possible sites are methylated is surprising. I could not (easily) find statistics of RRBS experiment read mapping to the genome. I also wonder how much the gap-richness of the genome may affect the overall methylation estimate. If assembly permits, would it make sense to limit the sampled sites to areas where no flanking gaps are present (and sufficient scaffold length is available, maybe excluding very short scaffolds)? *
We added all the statistical values regarding the RRBS in a NEW Supplemental Table 1. We used a single base pair analysis approach (not tiling windows), so the data we extracted is not biased by the length of the scaffolds. This is confirmed by the fact that the DNA methylation value obtained in our RRBS data matches the findings observed in Whole Genome Bisulfite Sequencing (WGBS). Moreover, global DNA methylation values assessed by Slot blot analysis as a technique independent from genome assembly confirmed what observed with RRBS.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The manuscript by Macchi et al describes the epigenome and the transcriptome of Octopus bimaculoides. While the manuscript itself is well written and the data are properly analyzed, it is fair to say that the work itself offers little biological novelty. Nevertheless, I still believe that the datasets and some of the analyses could be useful to researchers studying invertebrate epigenomes and gene regulation.
Minor comments:
There are a few spelling errors throughout the manuscript. Please check for those: Figure 4F ("Trascrips" instead of transcripts), Schmedtea instead of Schmidtea. There are likely other errors as well.
Page 3 - "intergenome"sounds a bit weird.
The authors might consider citing Planques et al, 2021 (BMC Biol) alongside Mendoza et al when discussing unusually high 5mC levels in the sponge.
The main points of the paper are: i) a somewhat improved transcriptome, ii) DNA methylation data generated by RRBS that follows a canonical invertebrate pattern (low 5mCG levels present in GBs and absent from repeats), and iii) evolutionary analyses of epigenetic machinery components. While lacking biological novelty, the presented data have a resource value and could likely serve as a decent starting point for further exploration of cephalopod gene regulation. I therefore believe that with some revision the manuscript will merit publication in one of the Review Commons - associated journals.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The paper by Macchi et al studies DNA methylation patterns in Octopus bimaculoides, describing overall conservation of DNA methylation machinery and genome-wide methylation patterns and their effect on gene expression across broad tissue sampling. As such, the paper comrpises a key advancement in the emerging field of cephalopod (epi)genomics and gene regulation. Despite the difficulties relating to the genome assembly of O. bimaculoides, the authors have done a solid analysis of methylation patterns and the results look generally sound. I have a few points that may help the authors improve their manuscript:
This manuscript is an important step towards understanding the workings of gene regulation at the epi-genomic level in octopus and cephalopods in general
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This manuscript focuses on the role of DNA methylation and histone modification in the gene regulation of cephalopods. It complements recently published RNA-seq and MethylSeq datasets with a few extra samples and generally confirms previous findings that DNA methylation does not play an active role in tissue or stage-specific regulation of gene expression in cephalopods (which is the general rule for most non-vertebrates). I don't see any methodological issue serious enough to preclude publication but some details should be strengthened.
This manuscript reports confirmatory results, partly reanalysing and confirming previous work. I would also like to stress that the methylation results have already been reported and discussed in a previous paper (de Mendoza et al. 2021). I don't have a fundamental problem with this but I also find the paper slightly overambitious and unspecific in its goals. I think it should benefit from being made slightly more concise. I find the part of histone marks is quite overstated. These marks are quite universal in eukaryotes and generally demonstrated to play a regulatory role, the fact that they can be detected in cephalopods by western blot is therefore not really a result.
Comments on the text (difficult without line numbers):
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The authors do not wish to provide a response at this time
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
The manuscript entitled "Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis" by Li et al is a very interesting study in which the importance of Lhx2 is studied in conditional knock-out background to decipher the importance during retinal neurogenesis of developing embryo. The study reveal importance of co-receptors essential to Shh signalling. Data presented are clean and would add depth of knowledge to the literature. The study/manuscript do have some lacunae which are listed below which would be good to address before it is published
Major comments
Minor comments
Study is significant, and adds more depth to existing knowledge in this science field. Developmental and cell biologists would benefit from this study.
Retina regeneration, Cellular signalling, Epigenetics, One knock outs/knockdowns, transgenics, RNAseq, Microarray, ChIPseq, Cell sorting
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The manuscript by Li et al., entitled: "Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis," focuses on an important topic in developmental biology-the regulatory interaction between transcription factors (TFs) and signaling pathways, namely how the TF confers cells' competence to respond to extrinsic cues. The study focuses specifically on Lhx2 regulation of Sonic Hedgehog (HH)-pathway genes in retinal development. The authors approach this complex topic through global transcriptomic analyses combined with elegant functional in-vivo studies, including a systematic examination of the pathway genes through the use of inhibitors and ligand on cKO retinal explants. The results reveal complex regulation by Lhx2 of several HH-pathway genes in the developing mouse retina, including Ptch, Gli1 and the co receptors Cdon and Gas1. The finding that a single TF controls several components of the signaling pathway is interesting. Nevertheless, probably due to the complex activity of Lhx2, which functions on additional targets, it remains unclear how regulation of HH-pathway genes by Lhx2 impacts the eventual phenotype of the Lhx2 cKO retinal progenitor cells (RPCs). In the following, I list the main findings and several comments that need to be addressed:
Fig. 1 presents the experimental system using inducible Hes1-CreERT to mutate Lhx2 on E11.5 and examine the expression of Gli1 and Sonic Hedgehog in the control and mutant.
• The authors should present the distribution of the Lhx2 protein in the control vs. mutant. Considering that the deletion is of only part of the gene (as shown in Fig. 2), it is important to present the loss of the protein as well as the efficiency of Cre activity. • On the figure, add a characterization of the cellular phenotype of the cKO retinas on E15.5 by presenting the expression of markers for ganglion cells and RPCs. Figs. 2 & 3 present the bulk RNA-seq analysis of the Lhx2 cKO retinas, including experimental design, validation and results. The integration of previously published ATAC-seq and ChIP-seq data for Lhx2 point to the direct targets and bound regulatory regions.<br /> • "4 biological repeats per genotype" - Specify if four eyes were sampled from two embryos or from four different embryos. Were the embryos from different litters? • Add GSEA analysis for the HH-pathway genes. Fig. 4 presents a published approach to quantifying the response to HH using a cellular reporter assay (Li et al., 2018), whereas in Fig. 5, availability of HH ligand is evaluated by elegantly implementing the cellular reporter assay. The results suggest that Lhx2 does not regulate ligand availability. • Fig. 4 presents a published approach and thus can be included in Fig. 5.<br /> Fig. 6 presents evidence that in the Lhx2 cKO, the Shh pathway is functional downstream of Smo, because the expression of Gli1 increases in cKO cells following Smo activation (with purmorphamine). Furthermore, the response to Shh-N is shown to be partly attenuated in the Lhx2 cKO retina. <br /> Figure 7 examines whether Ptch deletion can rescue aspects of the Lhx2 phenotype. This was done by comparing the phenotypes of cKOs of Lhx2, Ptch, or both Ptch and Lhx2. The results revealed partial rescue, in the Ptch and Lhx2 cKO, of the expression of Ptch1 and Gli1, but not of the proliferation and premature differentiation phenotypes based on expression of Cyclin D1, EDU, PCNA and Hes1. • Add images of the control to Fig. 7B,C. • Explain how the deletion of Ptch1 was examined. They next investigated regulation of the Ptch co - receptors Cdon and Gas1 by Lhx2 (Figs. 8, 9). Fig. 8 presents the developmental expression pattern of Cdon and Gas1 in the control, and their downregulation in the Lhx2 cKO (although Cdon is maintained in the dorsal optic cup). The results show that Cdon is the co-receptor that is normally expressed in RPCs. GAS1 seems to play a role in the peripheral progenitors destined to ciliary body and iris.<br /> Electroporation of both receptors into the Lhx2 cKO retinas resulted in increased pathway activity (based on Gli1 reporter). • Both Cdon and Gas1 were electroporated into the Lhx2 cKO retina, although Gas1 is not expressed in control RPCs (based on the analysis in previous panels). Explain why both were co-electroporated and the outcome of electroporating only Cdon. • The outcome of electroporation of the co-receptors into control retina should be presented. • It is important to include staining for Lhx2; it is possible that the cells that respond to the co-receptors are those that were not mutated (escapers). Presenting the loss of Lhx2 (or Cre activity through the use of a reporter) and comparing it to the outcome of electroporation into the control retina are therefore required.
Finally, the authors present evidence that Lhx2 cKO, on E13.5 when Cdon is no longer expressed in the RPCs, continues to compromise the HH - pathway genes. This further supports continued regulation of several HH-pathway genes in early and late RPCs.
• The finding that a Lhx2 controls several components of HH pathway could be relevant to Lhx2 activity in patterning of the cortex - I suggest to discuss the possible relevance of the findings to other organs.
Additional comments:
• Fig. 4E: Add explanation of the quantitative analysis. • Fig. 5: Explain how results were normalized based on retinal size (which is significantly smaller in cKO retinas). How many independent experiments were run here? How many different retinas were tested? Were retinas taken from the same mouse considered 'independent'?<br /> • Fig. 8B: Indicate the genotype of the presented tissue. • Fig. 8 A,B should be presented in one panel, in the same orientation. • Fig. 8D: Present the different channels, in addition to the merge image.
The study focuses on an important topic in developmental biology-the regulatory interaction between transcription factors (TFs) and signaling pathways, namely how the TF confers cells' competence to respond to extrinsic cues. The study focuses specifically on Lhx2 regulation of Sonic Hedgehog (HH)-pathway genes in retinal development. The results reveal complex regulation by Lhx2 of several HH-pathway genes in the developing mouse retina, including Ptch, Gli1 and the co receptors Cdon and Gas1. The finding that a single TF controls several components of the signaling pathway is interesting. Nevertheless, probably due to the complex activity of Lhx2, which functions on additional targets, it remains unclear how regulation of HH-pathway genes by Lhx2 impacts the eventual phenotype of the Lhx2 cKO retinal progenitor cells (RPCs).
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
We plan to address the minor comments from both reviewers as here described:
Reviewer 1 – comments____:
Figure 1: Given that the data in this paper is mostly from NCCIT cells it would be advisable for conclusions in hiPSCs to be tempered accordingly.
We will temper the conclusions as recommended.
Figure 1c: Which SVAs have neither H3K9me3 nor H3K27ac, what might these represent? Do they have any other notable features, or are they of a specific age?
The (very few) SVAs that have neither of those markers are almost certainly an artifact of mappability issues. We will point this out in the manuscript, including both the text and the figure legend.
Line 128-129: Is the assumption that SVAs are enriched in these region as opposed to dictating the epigenetic landscape as a consequence of their own sequence, is this correct?
This is correct, and we will clarify this in the text.
Figure 2c: Are there any enriched motifs in the repressed SVAs?
We performed this analysis, and several motifs are enriched in the repressed SVAs. We will add this data in the revised manuscript and in Fig. 2C.
Figure 2c: How many of the de-repressed SVAs contain this motif? It would be interesting to know if the YY1/OCT4 binding sites exist within any of the repressed SVAs and then, later, whether they accordingly lack actual binding of the TFs due to the presence of H3K9me3.
We will perform this straightforward analysis using the MEME-suit or HOMER, and include it in the revised version.
Figure 3d: It would be interesting to assess how close the differentially expressed genes are to an LTR5H element, or however many of the SVA-proximal and differentially expressed genes are also LTR5H-proximal?
We will perform this straightforward analysis and include it in the revised version.
Figure 3e: Are genes close only to de-repressed SVAs considered here? Worth specifying in the text. Also, what are the 20% of genes which are upregulated?
Yes, the reviewer is correct, only genes close to de-repressed SVAs are considered. We will specify that in the manuscript, and also add a results paragraph on the 20% of genes that are upregulated.
Figure 4a: Are the binding motifs for YY1 present at both binding sites? Are they the same, is the surrounding sequence the same? Are either of the binding sites present in repressed SVAs/is there any detectable binding of SVA/OCT4 in repressed SVAs? Are the YY1/OCT4 bound SVAs also those marked with H3K27ac in the Wysocka Lab dataset?
The YY1-OCT4 motif is present only where both of the factors bind together. We will specify this in the manuscript (results section). As for the second question: yes these correspond to the regions marked by H3K27ac in the Wysocka dataset. We will clarify this in the manuscript.
Figure 4c: Example used is a SVA-D element, are the YY1/OCT4-bound SVAs within the de-repressed group of a specific age?
No, they are found in all SVA groups (SVA through F). We will specify this in the manuscript (results section).
Figure 4d: are there GO enrichment terms for the genes bound by either YY1 and / or OCT4 different?
We will perform this straightforward analysis using the Ingenuity Pathway Analysis toolkit, and include it in the revised version in the results section.
Figure 5: Concluding figure should address how the SVAs subset in terms of binding, H3K9me3, gene expression changes and TFBS/TF binding - there are a lot of parameters which are assessed within the de-repressed subclass and it would be useful to show somewhere graphically where and when they co-occur or not.
We will edit the model figure to show the mechanism highlighted by the reviewer, as requested.
Finally, it would be helpful to see a discussion about what dictates the absence of H3K9me3 / presence of H3K27ac? Is this due to the TFBS sequence within the element? Further, a discussion on how the TFBS is gained in newer elements / lost in older elements is lacking. While the authors begin by stating that they are going to address what dictates whether an element is co-opted and conclude that it is due to sequence and location, I would suggest that as no conclusion is drawn on how the sequence changes to permit co-option and how the location dictates co-option, it may be worth tempering down the introduction on this point.
We will edit the introduction and discussion, as requested.
Reviewer 2 – comments____:
1) Given the CRISPR sgRNAs also target LTR5Hs, which are also bound by OCT4 in NCCIT cells (PMID: 25896322), it would be helpful to rule out more specifically that the observed effects on gene regulation associated with SVAs are actually due to nearby LTR5Hs copies being similarly repressed by CRISPRi. Depending on those results, it may also be fair to further note in the Discussion that this aspect of sgRNA selection is a potential caveat.
We will edit the discussion as recommended by the Reviewer.
2) The approaches taken here provide surprisingly good locus-specific resolution of histone modifications and TF binding to SVAs using only uniquely mapping reads. An example of this, SVA_D_r153 (a heavily 5' truncated SVA) is provided. It could be really useful to convey the central theme of the study by providing in a main figure another SVA example. Except, show a longer SVA (to demonstrate mappability and perhaps enrichment of reads on specific SVA features) near a protein-coding gene, where the SVA becomes repressed in the CRISPRi approach and the gene is differentially expressed as a result. An IGV-style figure perhaps demonstrating each key component of the work in one figure.
As recommended, we will update figure 4 by adding a full length SVA.
3) Literature. Line 58 - would suggest adding PMID: 27197217 and PMID: 33186547. Line 60 - would add PMID: 33722937. Line 67 - would add PMID: 22053090.
We will add these citations in the manuscript as recommended by the Reviewer.
4) Clarifications: Line 108 - the same 751 SVAs came up in both iPSCs and NCCITs? Line 117 - how many (if any) of the SVAs called as repressed by H3K9me3 were also called as de-repressed by H3K27ac? i.e. are the two histone marks giving completely concordant results for calling SVAs as repressed / de-repressed. Line 215 - no evidence for OCT4 or YY1 binding to any SVAs after CRISPRi at all? We will provide the exact numbers in the manuscript to answer these questions.
5) Finally, a point perhaps best left to the Discussion. Was there any cellular phenotype identified subsequent to the CRISPRi?
We did not identify any obvious cellular phenotype and we will mention this in the discussion, as recommended.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Barnada et al. explore the regulatory impact of SVA retrotransposons on gene regulation, focusing on NCCIT cells as a workhorse model of pluripotency. They use published and new H3K9me3 and H3K27ac ChIP-seq datasets to identify repressed and de-repressed SVAs, noting that many are in close proximity to protein coding genes. De-repressed SVAs are enriched for YY1/OCT4 binding sites. The authors then use RNA-seq and ChIP-seq to demonstrate YY1 and OCT4 binding are abrogated by SVA CRISPRi, disrupting gene regulation enacted by the SVAs. These findings highlight an important mechanism by which SVA retrotransposons can regulate genes in pluripotent cells.
This work is well executed. I appreciated the consideration paid to ChIP-seq read mappability and the implementation of CRISPRi followed by additional ChIP-seq. The following comments are intended to clarify the findings, which appear to have been obtained from robust experimental approaches.
Minor issues:
This interesting study systematically demonstrates the importance of SVA-mediated gene regulation, mediated by YY1 and OCT4, in a cellular model of pluripotency. It would be of broad interest, particularly to those interested in gene regulation, pluripotency and retrotransposons. I would say most of the findings are new to the literature and that the closest publications I can think of in terms of scope either deal differently with SVA regulation (e.g. PMID: 33722937) or upon different retrotransposons (e.g. PMID: 30070637). The significant advance is therefore both technical and conceptual.
Geoff Faulkner (University of Queensland)
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Genomic features underlie the co-option of SVA transposons as cis-regulatory elements in human pluripotent stem cells Barnada et al.
Barnada et al., set out to address the question of which factors dictate when and how certain TEs become co-opted to regulate host cellular functions while others do not, citing a lack of global understanding of the mechanisms underpinning this widely occurring phenomenon. To do so they use human SVA elements as a study, interrogating the epigenetic regulation of these elements in NCCITs as a proxy for pluripotent cells to reveal that a subset of younger, human-specific SVAs lack canonical H3K9me3 repressive marks while being enriched for H3K27ac active enhancer marks. The authors show that these SVAs, termed de-repressed SVAs, contain adjacent YY1 and OCT4 binding motifs, are closer to genes and TFBSs than the repressed SVAs and as such propose that they may function as active enhancers. To demonstrate this they generate a CRISPRi NCCIT cell line to epigenetically silence de-repressed SVAs using two gRNAs targeting SVAs genome-wide. Upon activation of dCas9 in this system differential expression of >3000 genes occurs, notably the broad repression of de-repressed SVA-proximal genes which are enriched for GO terms and TFBSs related to gametogenesis. The authors then demonstrate that silencing of naturally de-repressed SVAs disrupts YY1/OCT4 binding which is seen in wildtype NCCITs to occur adjacently at one site in the SVA element with solo-YY1 binding also occurring in a subset of SVAs at a second site. Disruption of YY1/OCT4 binding by targeting H3K9me3 to derepressed SVAs leads to dysregulation of proximal genes providing further evidence that SVAs act as enhancers via YY1/OCT4 binding to regulate nearby cellular genes.
Overall, the manuscript is clearly written and the computational and experimental approaches thorough; the findings are compelling and novel and make a helpful contribution to our current understanding of transposon co-option by host genomes. The demonstration of TFBS located within a subset of newer SVA elements is particularly interesting, with binding disrupted upon epigenetic silencing of these elements by CRISPRi. I have some minor comments and queries about further discussion points:
Minor comments:
This work represents a novel, comprehensive and significant contribution to the understanding of co-option of transposons into host gene networks and factors underlying these processes.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The authors do not wish to provide a response at this time.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The article by Skokan and coworkers studies the regulation of macropinocytosis in the Hydra. They design a clever assay to image the formation of macropinosomes in the ectodermal cells of the Hydra body, by amputating the head and the foot of the animal and then helving it onto a thin glass rod, allowing them to study the dynamics of actin rings formation, associated with uptake of external fluid phase. They also observe the cyclic formation of macropinosomes during the oscillatory contractions of spheroids formed from amputated animals during regeneration. By using agonist and antagonist drugs targeting mechano-sensitive calcium channels, they show that the formation of macropinosomes correlates with the reduction of cell tension. Overall, the article is succint, but clear and convincing. However, in my opinion, two major points should be clarified, if not solved before considering publication.
Major points:
Minor points:
Overall, the work is of interest for several research communities. The significance could be increase by providing a few more experiments about the physiological role of macropinocytosis in the Hydra.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
In this manuscript, Skokan et al. develop a platform of cnidarian Hydra vulgaris, a powerful model for cellular self-assembly and organismal regeneration, to enable visualization of macropinocytosis in living tissue. Utilizing this system and small molecule perturbation, authors discover that macropinocytosis occurs constitutively at the ectoderm across the entire body axis of Hydra, and is constrained by membrane tension through stretch-activated channels and the downstream calcium influx.
Major Comments:
The manuscript is clearly written and logically organized, and the imaging results are properly quantified. With the logical interpretation, adequate biological repeats and statistical analysis, the method and data in this manuscript are clear and compelling. The major concern is the missing physiological significance of macropinocytosis induced by membrane relaxation in Hydra, if any.
Suggested experiments:
Minor points:
Macropinocytosis is an evolutionary conserved, from amoeba to human, and versatile endocytic route critical for mammalian immune and cancer cells for antigen surveillance and nutrient uptake. Despite ample understanding of macropinocytosis in cultured cells has been made, the function and mechanism of macropinocytosis at the organ or organismal level remains poorly studied. Therefore, this work is intriguing and timely to support the physiological occurence of macropinocytosis from the tissue and evolutionary aspects.
Macropinocytosis is critical process for membrane trafficking, cell signaling, immune surveliance and cancer cell growth, and Hydra vulgaris is a powerful model organism for regeneration biology, neuro biology and marine biology. Therefore, audiences from these fields will be interested and influenced by this report studying developing a new method for visualizing macropinocytosis in living Hydra.
I am a cell biologist studying the regulation of membrane remodeling and trafficking upon mechanical or biochemical stimuli. Due to my unfamiliar with Hydra as a model organism, the details of suggested experiments may need to be adjusted.
Referees cross-commenting
I agree with other reviewers and think their comments important and valid. This manuscript will be more clear and compelling after addressing these questions.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In the manuscript by Skokan et al, the authors demonstrate a constitutive and robust program of macropinocytosis in the outer epithelial layer of the cnidarian Hydra vulgaris. While the model system is less tractable than others including mammalian cell types from a genetic stand-point, the authors have devised a neat approach to visualizing the planar epithelium in live organisms and provide clear evidence for macropinocytosis by a tissue monolayer in vivo. This model also supports the ancient conservation of macropinocytosis, supporting the studies in Dictyostelium, and may represent early modes of nutrient acquisition in complex fluid environments. Using probes for the cytoskeleton, fluid phase indicators, and mechanical and pharmacological interventions, the authors describe how stretch-activated calcium channels inhibit micropinocytosis. In general, while the manuscript is concisely written, and the available data are compelling, much more rigorous experimentation is required to make such a conclusion. In addition, the physiological importance for mechanical stretch in orchestrating the arrest of macropinocytosis remains unclear. Conceivably, this may be involved in the regulation of membrane tension since macropinocytosis (high membrane turnover) would demand that cells have a high rate of membrane recycling to compensate. Below, I have outlined some approaches that the authors could take to improve the study without demanding them to utilize additional model systems, which I think would be outside the scope of the work.
Major comments:
Most importantly, the role of Ca2+ entry via stretch-activated channels and how this would inhibit macropinocytosis remains unclear. In fact, the findings are somewhat counterintuitive since stretch applied to the monolayer would increase membrane tension while Ca2+ influx would support membrane delivery and exocytosis, thereby restoring tensional homeostasis.
In Fig 3, the authors demonstrate that applied stretch to the epithelium increases cytosolic Ca2+ and decreases membrane tension as expected. But whether the Ca2+ influx is required for the loss of macropinocytosis is not clear. This can be tested by either chelating Ca2+ transients in the cytosol or depleting the cells of Ca2+ by inhibiting ER-resident Ca2+ pumps and removing Ca2+ from the medium. In fact, if the authors think that extracellular Ca2+ is the only issue to arresting macropinocytosis, substituting Ca2+ for another divalent cation (or removing all divalent cations from the medium, should the epithelium be amenable to it for short periods of time) could be employed.
The connection between [Ca2+]cyto and macropinocytosis is established by Jedi and ionomycin. In the case of ionomycin, the large and sustained increase [Ca2+]cyto, well beyond what could be expected in physiological conditions, leads to the loss of plasma membrane PIP2, PIP3, and membrane associated F-actin. Jedi1/2 are certainly more targeted, but it is difficult to attribute their effects to Piezo in this system. More worryingly, the Ca2+ influx in response to Jedi2 and especially Jedi1 occurs maximally after 10 min of exposure. Yet, the authors show the complete loss of macropinocytic cups after 10 min (Fig 2E). It's difficult to reconcile that the Ca2+ is the issue.
The authors do not quantify macropinocytosis beyond Figure 1. Instead, they use "macropinocytic cups" as their surrogate for bona fide, sealed macropinosomes. Macropinocytosis can occur at different scales and different rates, so the authors should instead use the 70 kDa dextran as the gold standard in Figure 2. And as part of gold standard approaches, the authors would appease the macropinocytosis field if they tested the requirement for PI3K and Na H+ exchangers in Figure 1.
The appearance of the GCAMP6s in Figure 2F before given Jedi2 is interesting. Aside from the Ca2+ signal that appears where the Hydra has been severed, the Ca2+ through the epithelium appears very heterogeneous. Does this Ca2+ signal oscillate in the cells and/or across the epithelium? Since the authors are able to image the cytoskeleton and Ca2+ in this system, it would be interesting to determine any correlations in their kinetics.
Minor comments:
At this point, minor comments may be less useful to the authors since some of the more major suggestions are likely to impact the overall breadth of the work.
The work represents a technical advance and new system to consider macropinocytosis, albeit with limited mechanistic insights owed to some intrinsic challenges and remaining experimentation.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
We would like to thank all the reviewers for their time and for their positive and constructive review of our study. We are happy that they all regard this as a highly significant piece of work. We have addressed some of their suggestions in our updated preprint and indicate below where we are planning further revisions.
Reply to Reviewer 1 Point 1
The reviewer pointed out a possibility that the Golgi polarisation leads to local/centre-most regional E-cadherin junction “maturation”, then contribute to AMIS seeding. To address this suggestion, we did fluorescence recovery after photobleaching (FRAP) using a mESC line that expresses E-cadherin-GFP in the updated manuscript. We compared the recovery speed and rate in the centre-most region and side regions to discuss whether E-cadherin junctions have different stability at these regions. What we found is that though the E-cadherin and E-cadherin-GFP protein level is at the same level at the two regions in mESC doublets (Figure S3), the mobile fraction of E-cadherin-GFP is lower in the centre-most region than the side regions (Figure 3 I, J). This implies that E-cadherin junctions in the centre-most region are more stable. We have included corresponding description of this data in Results, Methods and Discussion. We will also include equivalent data from non-mitomycin c treated control cells in the final manuscript.
Still, we do not know whether the more stable E-cadherin junctions were due to the Golgi polarization, but we have included the possibility of Golgi polarisation leads to local E-cadherin maturation in our Discussion in the transferred manuscript as follows:
“In addition, a recent study of chick neural tube polarisation (where N-Cadherin is the dominant Cadherin) has demonstrated that the interaction of β-catenin with pro-N-cadherin in the Golgi apparatus is necessary for the maturation of N-Cadherin, which is in turn important for apicobasal polarity establishment (Herrera et al, 2021). This provides the possibility that the polarised Golgi apparatus that we observe in the mESC clusters might be directionally delivering mature E-cadherin to the central-most region of cell-cell contact.”
Reply to Reviewer 1 Point 2
The reviewer suggests it would be interesting to know whether there is a role for the proteins JAM-1 or Nectin in AMIS formation and in polarising the Golgi and centrosomes towards the cell-cell contact. Like E-Cadherin, these are transmembrane junctional proteins that are present at the initiation of spot adhesions in epithelial 2D monolayers and are known to be part of a complex network of interactions between PAR-complex, junctional molecules, MAGUK scaffolding proteins and the actin cytoskeleton. Whilst we don’t propose to untangle this network here, we agree that it would be interesting to know more about the potential role of JAM-1 and Nectin in initiating polarity in mESC 3D cultures. However, it is important to note that, regardless of whether JAM-1 and Nectin also play a role in polarisation and AMIS formation, our results already demonstrate that E-cadherin-based adhesions are sufficient to initiate AMIS localisation. For example, our results from figure 4C-E demonstrate that, in a reductionist system of a single cell plated on E-Cadherin covered glass, a centrally located AMIS still forms. Precisely unravelling the mechanisms by which this happens would be better for a future study (which we have now stated in the Discussion).
Nevertheless, we now have new FRAP data (Figure 3I and J), which demonstrates that E-Cadherin is relatively more stable at the central-most point of contact between two adhering cells. This suggests that E-Cadherin is more stably bound via its downstream partners to the internal actin cytoskeleton at this point and may provide at least a partial explanation for why AMIS localisation occurs precisely at this region. We therefore suggest that the most relevant information to our study would be to determine whether either JAM or Nectin proteins are specifically localised at the AMIS, alongside PAR-3 and ZO-1, and might therefore be somehow enabling this stabilisation of E-Cadherin. We therefore plan to carry out IHC stains for JAM-A (new name for JAM-1), which has been found to be present in the mouse inner cell mass, to determine where it is localised within the mESC cell clusters with/without cell division and in WT/Cdh1 KO cells. We will update the supplementary results and discussion accordingly in the final manuscript.
Depending on these results, we might also try to knock down the function of JAM-A, using siRNA. If successful knock down were achieved, we would carry out FRAP to determine whether E-cadherin junctional stability had been altered and would also stain for AMIS markers such as PAR-3 and determine whether Golgi and centrosomes were polarised. However, it is important to note that, although we were able to achieve E-cadherin RNAi to a certain degree, it is not always possible to achieve sufficient knock down of protein by the 24-hour AMIS timepoint. Since the results of these experiments would not alter the impact of our pre-existing data, we do not propose to create new knock out cell lines in the current study. Also, possible redundancy between different paralogs may affect the interpretation of this experiment so we would only include these results if they allowed for clear interpretation.
A previous study (Gao L ,et al. Development. 2017) has already shown that knocking out Afadin (which would therefore disable Nectin junctions) in MDCK cell 3D cultures did not affect initial AMIS formation or localisation, although later cell division orientation and therefore lumen positioning was affected. Afadin was also not localised to the AMIS. Therefore, it is less likely that Nectin is involved in AMIS localisation and while we will stain for its localisation by IHC, we don’t propose to try to knock down its function.
Reply to Reviewer 2 Point 1
The reviewer pointed out using a different mitosis blocker beside Mitomycin C. a) In the updated manuscript, we included one additional drug treatment: Aphidicolin. The results showed the AMIS could form in the centre of cell-cell contacts in Aphidicolin treated, division-blocked cells. AMIS (PAR3, ZO1) and the Golgi network was also polarised towards this point (Figure S1 G-I). In the final manuscript, we will include a full data set with N=3 independent experiments. Though the same as Mitomycin C, Aphidicolin is a DNA replication blocker, it confirmed that the AMIS formation upon treatments is not a Mitomycin-only artefact. b) As the reviewer suggested to block mitosis at the M phase, we are testing using microtubule polymerization inhibitors, Nocodazole and Taxol and will include these results if appropriate. However, these treatments will also affect the cytoskeleton, significantly affecting the cell shape and potentially interrupting the cell-cell contact interface. Therefore, it may not be possible to include these experiments.
Reply to Reviewer 2 Point 2
The reviewer suggested to include more examples of movies showing 2 and 4 cell cluster formation in division blocked conditions. We will be happy to provide more examples of the movies included in Figure 2 and Movie 2 in the final submission. The puncta in submitted Movie 2 was not as clear as the in Figure 2D as the reviewer pointed out. This was largely due to the reduce-sized movie in the original submission. We will provide full-resolution movies in the final submission. We do often see the ‘perfect’ 4-cell shape in division-blocked cells (e.g. the last frame of movie 2, shown at timepoint 19:00 in figure 2D). The shape of the clusters appears largely dependent on how many cells fuse together.
Reply to Reviewer 2 Points 3 & 5 and Reviewer 3 Point 2
We appreciate the comments from the reviewers regarding qualifying some of the discussion of our results.
Reviewer 2 points out that E-cadherin is not providing a ‘Symmetry breaking’ step, since cells are eventually able to polarise in the absence of E-cadherin (even though they can’t make an AMIS). We have therefore modified our discussion of this point to read: “Our results therefore suggest that Cadherin-mediated cell-cell adhesion may provide the spatial cue required for AMIS localisation during de novo polarisation.”. The last paragraph of the manuscript now reads: “In summary, our work suggests that Cadherin-mediated cell-cell adhesion is necessary for localising the AMIS during de novo polarisation of epithelial tubes and cavities.”
Reviewer 3 points out that the E-Cadherin molecule by itself is not sufficient to recruit the AMIS proteins to the centre-most region of the cell-cell contacts since E-cadherin is localised all along the cell-cell contact. We have now included a FRAP analysis demonstrating that E-cadherin is more stable in the centre-most region of cell-cell contacts (Figure 3I,J), which supports the role of E-Cadherin in directing AMIS localisation to this centre-most region. Nevertheless, we accept the reviewer’s point that we still do not know the downstream mechanism by which the AMIS is precisely localised to the central region of cell-cell contacts, and we have extended our discussion of this point in the updated manuscript. To clarity the language, we have also altered our results heading and other references to this point to read: “E-Cadherin adhesions are sufficient to initiate AMIS localisation, independent of ECM signalling and cell division”. We believe our experiments with two methods support this claim that the formation of E-cadherin-based adhesions without cell divisions and ECM signals are sufficient to initiate AMIS localisation; in particular Figure 4C-E, in which a centrally located AMIS formed even in a reductionist system of only 1 cell plated on E-cadherin covered glass.
Reply to Reviewer 2 Point 4
The reviewer reasoned that the WT and Cdh1 KO mESC were from different genetic backgrounds. The WT (ES-E14) mESCs were generated from 129P2/Ola mice and the Cdh1 KO mESCs were generated from 129S6/SvEvTacArc mice. To confirm the results acquired based on the two cells lines, we are doing two approaches: 1) As the reviewer suggested, we are using siRNA knock-down of E-cadherin in the Wild-type mESCs (ES-E14) to confirm the results we had of the AMIS absence in the E-cadherin knock-out mESC cultures. As Figure S2C,D now shows, the concentrated PAR3 between two mESCs was largely reduced after E-cadherin knock-down. We will also include Mitomycin-treated conditions in this experiment for the final publication. 2) As an alternative approach, not dependent on RNAi functionality, we have acquired a 129S6/SvEvTacArc background mESC (the W4 line) as the wild-type mESC line that has the same background as the Cdh1 KO mESC line. We are using this line to perform the control experiments of Figure 3A-C to confirm the previous results, which so far are comparable in both the ES-14 and W4 mESC cell lines. Our preliminary data below show the same results as we had with the ES-E14 cells in the current Figure 3A. We will finish the full data set of N = 3 experiments and replace the current Figure 3A-C, S2A data with that from the W4 mESC cell line. In the meanwhile, we have labelled the type of wide type mESC used for each experiment in the manuscript.
Reply to Reviewer 3 Point 1
The reviewer pointed out we should include three independent experiments for our data in Figure 4E. We agree with the reviewer. We are very happy to do the suggested experiments and data analysis and will be able to provide the data of N=3 independent experiments in the final manuscript.
Reply to Review 3 Point 3
We agree with the reviewer. Our current data set of live imaging at day 3 are used to confirm the idea from the fixed images that a wrapping process does happen for lumenogenesis during the Cdh1 KO cyst formation. The current dataset could not exclude the possibility that the hollowing might co-exist. The reviewer therefore suggests including a live movie depicting early stages (before 78:00) of E-Cadherin knock-out cluster development. We did try to collect this data before we first submitted the manuscript but encountered significant technical problems due to the high sensitivity of early stage Cdh1 KO cells to phototoxicity. This meant that we could not image with less than one hour interval nor over longer than 24 hour and were therefore unable to analyse how the cell clusters behave before forming the cup-shaped cavity. We will attempt these experiments again (e.g. imaging from 12-24 hours and 24-36 hours). However, there is a high likelihood that the experiments will not be technically possible, which is why we list them in section 4 of our review plan. Instead, we include the following sentence in our discussion: “We were unable to live-image earlier stages of Cdh1 KO cluster development due to the sensitivity of these cells to phototoxicity so we can’t exclude the possibility that hollowing lumenogenesis occurs in parallel, although our IHC analysis does not indicate that this is the case.”
Reply to reviewers’ minor points
We have revised our texts, made the nomenclature of protein PAR3 consistent, and included the information of antibody suppliers, as the reviewers pointed out. Specific response to Reviewer 2; in p2 and p7, the texts were referring to zebrafish studies, where PAR3 is referred to as Pard3. We have marked it with “Pard3 (PAR-3)” now. We have increased the size of images in figure 5B and inverted the colour to make it more visible. Since this made the figure too big, we moved the ZO1 images to Figure S5A. We will provide a co-staining of mCherry (to label mCherry-PAR6B), Phalloidin and PAR-3 in a more updated manuscript to replace Figure 2A.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this manuscript, Xuan Liang and collaborators shed light on how the precise localisation of the apical membrane initiation site (AMIS), necessary for organised lumen formation, is directed at the single-cell level. By characterising de novo polarising mouse embryonic stem cells (mESCs) cultured in 3D, the authors have uncovered a division-independent mechanism of de novo polarisation and AMIS localisation based on adhesion molecules. More precisely, they suggest that E-CADHERIN-mediated cell-cell adhesion may provide the symmetry-breaking step required for AMIS localisation during de novo polarisation since this molecule alone is sufficient and necessary to drive correct AMIS localisation. Interestingly, a high proportion of E-Cadherin knock-out (Cdh1 KO) mESC cell clusters do not hollow but instead generate lumen-like cavities via a closure mechanism. Despite not knowing the mechanism involved in the closure of these lumen-like cavities, the role of E-CADHERIN in de novo polarisation would be associated with initial steps in lumen formation (AMIS formation and localisation) but not in later steps where E-Cadherin knock-out mESC cell clusters can still make an apical membrane but do so more slowly than in WT cells and without going through a centralised AMIS stage.
Altogether, this study supports their previously published zebrafish neuroepithelial cell in vivo analysis, which demonstrated the division-independent localisation of Pard3 and ZO-1 at the neural rod primordial midline (Buckley et al., 2013). The authors have provided a novel mechanism of de novo polarisation and AMIS formation that occurs in vivo and in vitro. For this reason, this is a work with great significance that will undoubtedly be of general interest to the readers of Review commons. Nonetheless, several issues should be addressed before the publication of this manuscript.
Minor points
Altogether, this study supports their previously published zebrafish neuroepithelial cell in vivo analysis, which demonstrated the division-independent localisation of Pard3 and ZO-1 at the neural rod primordial midline (Buckley et al., 2013). The authors have provided a novel mechanism of de novo polarisation and AMIS formation that occurs in vivo and in vitro. For this reason, this is a work with great significance that will undoubtedly be of general interest to the readers of Review commons. Nonetheless, several issues should be addressed before the publication of this manuscript. My lab work in lumen formation in 3D organotypic cultures and organoids
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
The importance of cell division and the post-mitotic midbody in the establishment of the apical membrane initiation site (AMIS) is quite well established. However, there are observations hinting to a cell division-independent mechanism of the AMIS formation. The authors hypothesized that cell adhesion involving E-cadherin could direct the site for AMIS localisation during de novo polarisation. As model system the authors used mouse embryo stem cell (mESC) culture in Matrigel, which has been used as an in vitro model for the de novo polarisation of the mouse epiblast. The slow lumen formation in culture allows for a relatively clear separation of the stages of de novo polarisation. This enables to study the initiation of apico-basal polarity of embryonic cells alongside the first cell-cell contacts between isolated cells and small cell clusters. Here, the goal was to determine the role of cell adhesion, and in particular E-cadherin, in mESC AMIS localisation.
Major comments:
Minor comments:
The work describes the conceptual novelty of cell adhesion as alternative mechanism to cell division for AMIS localization, and in particular E-Cadherin as being required for AMIS positioning. It is still unclear why the AMIS is centered and the localization of cadherin is equal along cell-cell contacts (Fig 2C, S1E). How do Cadherin localization dynamics look like during the clustering of two cells? During cell division in a MDCK cyst (which is where my expertise lies), cell adhesion has to be partially removed during cytokinesis and abscission, and then be installed again, basically like a new cell-cell contact. Thus, could E-cadherin focus ("trap") the "AMIS initiation seed", rather than direct binding of PAR3 /PAR6 to cadherin as discussed by the authors, since E-cadherin is localized along the whole contact site and not centred? Could the unknown "apical seed" (which in cell division is the midbody) be trapped by cell adhesion? Could this be a common mechanism between cell division- and cell adhesion-driven AMIS localization? This finding could therefore have an even broader impact. What are the author's thoughts? While my speculation might be wrong, it might be worth hypothesizing on the connection between the role of E-cadherin in the two ways of AMIS localization.
Another novelty is the observation that polarity and cavities form later on in development independently of E-cadherin and an AMIS. This type of mechanism should be discussed further and put more into perspective with the literature.
The work describes a new mechanism which could be of broad importance in developmental biology. I therefore think that this work is highly significant.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Formation of tubes in a developing organism may arise from the closure of a pre-existing polarized epithelium or from de novo polarization and cavity formation in group of dividing cells. The concept of apical membrane initiation site (AMIS) refers to the fact that polarity proteins as PAR3 accumulate at a point where the apical membrane will be created. This accumulation occurs as early as the two cell stage. Previous reports have demonstrated the importance of the division process in defining this AMIS, however, in the present work the authors in vitro 3D cultures of mESC to report a mitosis independent mechanism that creates an AMIS, induces the polarization of groups of two or more cells, and permits the formation of a central cavity. The report shows that the mechanism is fully dependent on the polarized accumulation of E-cadherin at the cell membrane in contact with the other cells. Moreover, the mechanism does not require mitosis or interaction with the extracellular matrix.
Major comments:
The main objective of the work is to demonstrate that AMIS creation and cavity formation can be mitosis independent and that it is dependent on the accumulation of E-cadherin at the midline between two cells in contact. To demonstrate these objectives, the authors perform 3D cultures of mESC. To rule out the requirement of mitosis the authors perform cultures that are treated with mitomycin C and the purify single cells that are cultured again. The authors show time-laps experiments demonstrating that individual cells that do not dived create an AMIS when they contact one to each other. With this cultures they demonstrate that the process does not require an interaction with ECM (provided by the matrigel) but requires E-cadherin, to demonstrate, that they use E-cadherin KO cells (the same line where E-cadherin has been deleted). The work is well written and the objectives very clear. The technology used and the experiments done are adequate and sufficient to accomplish the proposed objectives and the results obtained clearly support the conclusions reached. The methods are well explained and transparent to be reproduced elsewhere and the number of replicas and the statistical methods applied seem corrects to me, although I am just a biologist, not a mathematician. Although the objectives of the work, that are: to demonstrate that AMIS formation can be independent of mitosis and that AMIS requires E-cadherin, there are parts of the results that could be farther studied or at least discussed more thoroughly. Firstly, the authors show that in non-dividing cells an AMIS is formed at the first contact site between the two cells, they also show that in the absence of E-cadherin the cell maintains the polarization of centrioles and Golgi apparatus, in spite that no AMIS is formed, this indicates that the deposition of E-cadherin at the midline membrane is part of a more global polarization event that most likely is initiated by the a directional activity of the Golgi apparatus that may direct the delivery of mature E-cadherin in that particular direction, initiating or maintaining the basis for an AMIS, since recent work (already cited in the manuscript) has demonstrated the importance of cadherin maturation for polarity establishment and maintenance (Herrera et al, 2021), the actual results should be farther discussed in this context. Secondly, it was previously shown that in different epithelia, upon cell-cell contact, the aPKC complex (that includes Par3 and Par6) is recruited early to the contact site where with the participation of Cdc42, aPKC is activated generating an initial spot-like adherent junction (AJs) (Suzuki et al., 2002). In that case it is thought to be mediated by a direct interaction between the first PDZ domain of PAR-3 and the C-terminal PDZdomain-binding sequences of immunoglobulin-like cell adhesion molecules: JAM-1 and nectin-1/3 (Fig. 3) (Ebnet et al., 2001; Itoh et al., 2001; Takekuni et al., 2003). Thus it wold be interesting to know if AMIS formation in absence of cell division depends on JAM-1 or nectin and whether JAM-/Nectin signalling is sufficient to initiate the Golgi and centriole polarization and which is the mechanism governing it.
Minor comments:
As I mentioned before, the paper is well presented and very clear, yes it is simple, but simple is always better, no complicated graphics or letterings, thank you. Although in my opinion the work is very well written, I have to admit that I am not qualified to evaluate the literary style of the work since English is not my mother tongue, also I have not reviewed typographical errors since I think that is the work of the editorial, not of scientific reviewers. Please include the full reference of all the antibodies used, including the company and not just the catalog number
Quoted references:
Ebnet, K., Suzuki, A., Horikoshi, Y., Hirose, T., Meyer Zu Brickwedde, M. K., Ohno, S. and Vestweber, D. (2001). The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20, 3738-3748.
Itoh, M., Sasaki, H., Furuse, M., Ozaki, H., Kita, T. and Tsukita, S. (2001). Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol. 154, 491-497.
Takekuni, K., Ikeda, W., Fujito, T., Morimoto, K., Takeuchi, M., Monden, M. and Takai, Y. (2003). Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J. Biol. Chem. 278, 5497-5500
Suzuki, A., Ishiyama, C., Hashiba, K., Shimizu, M., Ebnet, K. and Ohno, S. (2002). aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J. Cell Sci. 115, 3565-3573.
The paper describes for the first time that contrary to what was previously believed an AMIS can be generated without a cell division. This is very important because it opens the possibility that the mechanisms that originate the biologic cavities are in fact not really how we believed. The work is of interest of all cell biology scientists, specially working in developmental biology, cancer research.
My particular field of expertise is cell biology and signaling, always applied to particular events as nervous system development or cancer, in particular I am interested in Wnt/b-catenin and Sonic Hedgehog pathways.
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Here, authors confirm that glycolysis is important macrophage defense against mycobacterial infection and describe a central role of pyruvate in linking glycolysis and antimycobacterial mtROS production to control the intracellular burden. Alike previous authors who have demonstrated that the non-pathogenic Bacillus Calmette-Guerin and heat-killed M. tb increase glycolysis, they show that human primary macrophages infected with M. avium increase glycolysis to facilitate mycobacterial control. Rost and coll. show evidence that the killing mechanism act through the production of mtROS by the complex I of the electron transport chain via the engagement of RET. This mechanism acts in parallel to other immunometabolic defense pathways activated in M. avium infected macrophages, such as the production/induction of itaconate via the IRF-IRG1 pathways (Alexandre Gidon 2021). * They give evidence that IL-6 and TNFa are not involved in regulating the pyruvate-mtROS and show chemical evidence that mitochondrial import of pyruvate through MPC activity is necessary to generate a high membrane potential and the subsequent production mtROS. However, the data presented here don’t explain how pyruvate is driving RET and mtROS; if pyruvate targets the electron transport chain directly or is converted (via TCA) to another metabolite that initiates RET and mtROS. Above all, this work brings attention to the possibility of using compounds that specifically engage mtROS production for therapeutic perspectives*
Reviewer #1 (Significance (Required)):
While the data presented here don t explain how pyruvate is driving RET and mtROS; if pyruvate targets the electron transport chain directly or is converted (via TCA) to another metabolite that initiates RET and mtROS, this work merits to be deeply evaluated for potential publication in a RC journal. However, the language must be improved and polished before submission.
We thank the reviewer for appreciating the importance of our findings. We are sorry for any inconveniences the language may have caused and have carefully revised the manuscript with the intention of improving it.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Overall evaluation
This study addresses an interesting aspect of host-pathogen relationship, namely how the metabolism of the host impacts directly or indirectly on the metabolism and/or fitness of the pathogen. For example, the generation of ROS in a way independent of NADPH-oxidases has been suggested to play a role in a number of infections. In particular, whether and how such ROS might be part of the cell-autonomous defence against an intracellular bacterial pathogen, in the present case M. avium, is of relevance. Despite these positive points, the study and manuscript suffer from a high number of serious problems both in form and content. The authors are strongly advised to revise the experimental evidence presented, including by performing additional experiments and re-interpreting some of the ones documented, as well as extensively rewrite/reformat the manuscript.
Major comments:
1- Normally, I would list the following criticisms in minor comments, but their accumulation makes them a major point:
In addition, the authors almost systematically introduce each of the articles cited with a sentence such as "Mills and colleagues did this and that ...". This is sometimes used in articles, but should not be the norm. Usually, this is used to emphasise that a given group has contributed not only substantially, but also on a regular basis to a field for years. One would write Palade and colleagues ..., or Rothman and colleagues ... . But in the present manuscript, this is mentioning first authors and their colleagues. Mills et al is a contribution from the O'Neils laboratory, which speaks to me.
We see the point and have changed some of these sentences accordingly to either write “O’Neill and colleagues …(ref)”, “First-author et al. showed that…. (ref)”, or “Others have shown …(ref)”. Editing was made page 3, lines 49, 51 and 54-56; page 4, lines 74; page 6, line 111; page 9, lines 178, 182, 193 and 197.
2- Page 4, the authors report that the positive control used to shift macrophage metabolism towards glycolysis did not work. This places doubt on the other experiments and conditions.
We thank the reviewer for bringing this point of confusion to our attention. In an Agilent Seahorse assay, which is commonly used to report glycolytic flux in scientific publications, the extracellular acidification rate (ECAR) is used as an indicator of glycolysis. Extracellular acidification occurs as protons are exported from the cell alongside lactate. In figure 1B we show quantitatively (ng/cell/24h) that lactate export is significantly increased in MDMs after LPS challenge, which translates to an increased ECAR on the traditional Seahorse assay. We also show further evidence that LPS treatment does switch the metabolism to glycolysis: the two first intermediates of glycolysis, G6P and F6P, are consumed (Fig. 1D), though between-donor variation leaves the LPS-induced increase in glucose consumption not significant. Overall, we are confident that our NMR and mass spectrometric metabolic profilings, which have been tested in several publications listed in the methods section are reliable and recapitulate previous knowledge. We have rephrased the paragraph on page 4 line 76 to clarify this point.
*3- Page 5. I am not sure to really understand the reasoning behind : "Quantification by targeted mass spectrometry did not reveal a significant accumulation in the intracellular level of pyruvate in macrophages infected with M. avium or treated with LPS when compared to untreated controls (Fig. 2A), suggesting that pyruvate is rapidly metabolized." *
The rationale for performing mass spectrometric quantification of pyruvate was to confirm experimentally that pyruvate is consumed - which we already know indirectly as its reduced product, lactate, is produced and excreted by the infected cells (Figure 1B). The hypothesis is that a proportion of the pyruvate could also enter the mitochondria and TCA cycle as shown by Mills et al.
We have tried clarifying this in the revised manuscript by replacing the original text by “Quantification by targeted mass spectrometry did not reveal a significant accumulation in the intracellular level of pyruvate in macrophages infected with M. avium or treated with LPS when compared to untreated controls (Fig. 2A), confirming that pyruvate is metabolized. Mills et al have demonstrated that during LPS activation, mouse macrophages switch to aerobic glycolysis while repurposing the TCA cycle activity to generate specific immunomodulatory metabolites (Mills EL 2016), which implies that a fraction of the pyruvate formed by glycolysis enters mitochondria.”(page 5 line 90).
4- The metabolomics experiments seem to be performed on a global population of infected and uninfected cells, without any clear mention of the fraction of infected cells, which is potentially low (Fig 1 appears to indicate less than 50%), and very likely variable between experiments. This is a serious confounding factor and likely precludes interpretation of the results?! The percentage of infected cells, at time "zero" and at each time point post-infection has to be quantified in each experiment.
The reviewer is right that the analysis was carried out on a mixed population. However, even with an infection level of 50% this should be sufficient to pick up significant changes in metabolite levels resulting from infection, which is also not seen with LPS treatment that you would assume activates all cells. We have tested another protocol of infection (MOI 10 for 120 min) that yields almost 100% infection with similar results. These data are included as supplementary figure 1 in the revised manuscript (page 6, line 124).
It would also be useful to analyse and graph the total fluorescence (coming from M. avium) per cell and the average fluorescence per cell.
Intracellular growth was quantified by measuring M. avium fluorescence intensity per cell (n>500 cells per donor and per condition) as mentioned in the figure legends. The bar charts represent the average intensity obtained from at least 500 cells per donor and conditions, each point representing an individual donor. We have successfully used this method to analyze and quantify M. avium growth in human primary macrophages (Gidon et al, PLoS Pathogens, 2017; Gidon et al, mBio 2021).
5- Page 6. How can the authors conclude "Overall, this set of data reveals that no major perturbations of the TCA cycle are induced by the infection, excluding a potential antimicrobial property of these TCA intermediates" from their data? Their experiment do not test the potential antimicrobial activity of the metabolites!
We agree with the reviewer that our data cannot preclude any anti-microbial effects of TCA intermediates. We agree that the phrasing is confusing and not as intended and have replaced it with the following sentence “Since we and others have previously found that altered intracellular levels of the TCA cycle-derived metabolite itaconate following an infection was indicative of an anti-microbial function (Gidon et al, mBio 2021; Chen et al, Science, 2020), we conclude that none of the TCA cycle intermediates warranted further investigation to explain the anti-microbial effect of glycolysis.”. (page 6, line 115).
*6- The effect of the chemical inhibitors used has to be evaluated on the growth of bacteria in broth to exclude the possibility that they directly impact them. *
We agree with the reviewer that this is important to control for. We have performed the suggested experiments and the results, showing that none of the different drugs influence M. avium in vitro growth, are included in a supplementary figure 2 in the revised manuscript (page 8, line 158).
*7- Figures. None of the graphs present error bars. In addition, for example for Fig 1A, the number of points correspond each to one donor. But there is mention neither of the number of biological replicates nor of technical replicates. This is absolutely required. *
The number of donors used for each experiment are included in the figure legend. All the experiments were done independently and are therefore biological replicates. Each point represents the value obtained for one independent donor with no technical replicates. Since we show all individual measurements (donors) an error-bar, to our opinion, is not needed. We have now changed the text in the legend to better reflect this information (page 17, lines 353, 357; page 18, line 361; page 20, lines 371, 375, 378, 383, 383; page 23, lines 410, 413, 417, 422).
8- It is unclear whether the effects documented have been measured in the whole population or only in the infected cells. And when they are measured in infected cells and uninfected cells, are these cells from a population in the same well, or from a well containing only uninfected cells?
By nature, antimicrobial effects can only be detected in infected cells therefore all the experiments measuring the effect on intracellular growth, the mitochondrial potential and the production of mitochondrial ROS were measured on infected cells. Control refers to a well containing only uninfected cells.
*9- In Figure 3A, the localisation of M. avium has to be shown. *
We have edited the Figure 3 that now includes images from the M. avium-CFP channel to help identify the infected cells.
*10- The mechanism proposed at the end of the abstract "...this work stresses out that compounds specifically inducing mitochondrial reactive oxygen species could present themself as valuable adjunct treatments." should be tested to close the loop and validate the data and hypothesis. *
We agree with the reviewer, and we are currently finalizing another manuscript on metformin, which is known to induce mitoROS, as a possible Host Directed Therapeutic agent in a mouse model of M. avium infection.
Minor comments:
1- The manuscript does not show any numbering, neither of pages nor of lines, which renders the writing of the review difficult.
We are sorry for the inconvenience. This is now included in the revised manuscript.
*2- The authors write "undirect" instead of indirect. *
We have corrected the mistake in the revised manuscript.
*3- They also use "if" instead of whether quite frequently. *
We thank the reviewer for bringing that detail to our attention. We have changed the manuscript according to the comment.
*4- Page 5, second line "... a 40% increase in cells treated ..." An increase of what? *
Treatment of infected cells with 2-DG increases the fluorescence coming from M. avium, reflecting the increase of the intracellular burden. We have changed the manuscript to make this point clearer (page 4, line 82).
*5- Page 5. The second paragraph belongs to the introduction or the discussion. *
We don’t agree on this point. We feel that it is important to inform the reader on how pyruvate can be used within the cell before showing the results, but we feel it does not fit with the broader introduction on glycolysis. However, if the editor/reviewers disagree with us, we will move this paragraph in introduction.
*6- Page 6. The authors mention that AMP, ADP etc... are nucleosides. But they are nucleotides. *
We changed the manuscript according to the suggestion (page 6, line 120; page 13, line 279; page 20 line 381).
Reviewer #2 (Significance (Required)):
The study explores an interesting question, but in its present state, the conclusions are not sustained by the evidence.
We thank the reviewer for acknowledging the importance of our work. We believe that we have addressed the concerns expressed in the comments.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
*This manuscript reported that macrophages rely on glycolysis and RET to control M. avium infection and provide molecular evidence linking pyruvate, the end-product of glycolysis, to anti-mycobacterial mtROS production. The advantages of this paper are the clear thinking, from phenomenon to molecular mechanism, strong logic. However, there are also many shortcomings: *
Major comments:
*1.The main shortcoming of this paper is that authors only found macrophages control M. avium infection through glycolysis and RET in vitro. Although they use primary macrophages from healthy donners, not the cells lines, is it consistent in vivo? Authors should use mouse model that challenged with M. avium. Moreover, authors can isolate primary macrophages from patients that infected with M. avium, and compared it with primary macrophages from healthy donners. *
We agree with the reviewer opinion, and we are finalizing another manuscript using Metformin, a drug known to induce mitochondrial ROS, as a Host Directed Therapy in a mouse model. However, dissection of mechanisms involved such as pyruvate import to mitochondria and RET is not possible in vivo. We are not sure of the meaning of the suggested experiment: comparing primary macrophages from mav-infected patients vs healthy donors.
*2.This paper found that macrophages control M. avium infection by producing mitochondrial reactive oxygen species. This is a very interesting observation. How does mitochondrial reactive oxygen species resist mycobacterial infection? *
We thank the reviewer for appreciating our work. Yet, we are not sure what does the reviewer mean by “How does mitochondrial reactive oxygen species resist mycobacterial infection?”. It has been shown in many studies that cellular ROS causes oxidative damage and can be toxic to pathogens (and cells), including mycobacteria (Fang FC, Nature Reviews in Microbiology, 2004; Dryden M, Int. J. Antimicrob. Agents, 2018; Kim et al, J. Microbiology, 2019; Herb and Schramm, Antioxidants, 2021). However, the role of RET-induced mitochondrial ROS is a relatively new concept, that, to the best of our knowledge, has never been demonstrated to be involved in the control of mycobacterial infection nor in human primary macrophages. Conversely, bacteria have evolved defense mechanisms to protect and counteract the production of antimicrobial ROS (Kim et al, J. Microbiology, 2019).
*3.To make this data solid, whether giving pyruvate supplements to patients with mycobacterium infection can alleviate their disease? or it can be tested in mouse model. *
Initiating a clinical study is beyond the scope of this study. Furthermore, even if we could supplement infected mice with pyruvate, there is no guarantee it will get into the cells and further imported into mitochondria to induce the anti-mycobacterial effects shown in the present study. We rather believe that the key for future treatment would be to induce mitochondrial ROS through the use of other, known agonists to strengthen this cell-intrinsic defense mechanism. As stated above, we are finalizing another manuscript using a compound known to induce mitochondrial ROS as Host Directed Therapy in a mouse model.
*4.This work demonstrated that IL-6 and TNF-α could control the intracellular burden of M. avium. Many cytokines are produced by macrophage during infection. Are there other pro-inflammatory cytokines that play a role? *
We agree with the reviewer view that many cytokines influence host defenses to mycobacterial infections in addition to TNF-a and IL-6, e.g., IL-1, IL-10 and interferons. However, some of these are not induced in Mav infected macrophages (IL-1, interferons), and our previous works have shown that TNF-a and IL-6 are consistently induced by the infection (Gidon et al, PLoS Pathogens, 2017) and that they are involved in the control of the intracellular burden (Gidon et al, mBio, 2021). We therefore chose to focus on these.
*5.In Figure 1C, authors did not observe an increase of glutamine consumption in LPS-activated human macrophage which is in contrary to previous published study. How author explain this contrary result? *
We thank the reviewer for bringing this point to our attention. We have previously published the glutamine consumption of multiple myeloma cell lines quantified by the NMR based method described herein, proving it is sensitive enough to detect differences between cell lines at cell densities comparable to those of the seeded MDMs (Abdollahi et al, The FASEB journal, 2021). Hence, we are confident that the applied methodology would detect significant differences in glutamine consumption, given that the cells in question rely on glutamine. Previous observations of glutamine uptake were made using mouse macrophages and it is referenced that human and mouse macrophages do not share the exact same metabolism (Thomas et al, Frontiers in Immunology, 2014; Vijayan et al, Redox Biology, 2019). It’s worth noting that the species-specificity also extend to how macrophages respond to TLRs ligands (Sun et al, Science Signaling, 2016). As this result does not contribute significantly to the mechanism described in our paper, we do not feel the need to discuss it extensively.
Minor comment:
The authors do not provide sufficient information in the Materials and Methods, and figure legends, such as how many times the experiments were repeated? How to measure the concentration of citrate, isocitrate, succinate......
The number of donors used for each experiment are included in the figure legends. All the experiments were done independently and are therefore biological replicates. Each point represents the value obtained for one independent donor with no technical replicates. The concentrations of citrate, isocitrate, succinate and the other TCA cycle intermediates were measured by capillary ion chromatography tandem mass spectrometry, as described in the legend of Figure 2 and in detail in the Materials and Methods section on page 13-14. All metabolite measurements by targeted mass spectrometry are based on validated and published methods from our laboratory (Kvitvang et al, 2014; Stafnes et al, 2018; Røst et al, 2020). We have included more details to the methods section describing mass spectrometric metabolic profiling (page 13-14).
Reviewer #3 (Significance (Required)):
Mycobacteria avium infection is a common and serious kind of inflammation, in which macrophages has been reported to play an important role. Recently metabolic reprogramming of macrophages is proved in many diseases. By using LPS stimulation, the metabolic reprogramming of macrophages has been reported and have been confirmed to play a role during infection. Therefore, it is not so exciting to see this role of metabolic reprogramming in controlling M. avium infection.
We are sorry that our findings did not excite the reviewer, but we strongly disagree that our study does not report any novel findings. Both the significance of mitochondrial ROS in mycobacterial defense and the discovery that pyruvate can induce mitochondrial ROS via RET, are novel findings not shown before to our knowledge. And – as a note – a phenomenon described for LPS and/or in mouse macrophages does not necessarily reflect what happens during any bacterial or viral infections, nor in humans.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This manuscript reported that macrophages rely on glycolysis and RET to control M. avium infection and provide molecular evidence linking pyruvate, the end-product of glycolysis, to anti-mycobacterial mtROS production. The advantages of this paper are the clear thinking, from phenomenon to molecular mechanism, strong logic. However, there are also many shortcomings:
Major comments:
Minor comment:
The authors do not provide sufficient information in the Materials and Methods, and figure legends, such as how many times the experiments were repeated? How to measure the concentration of citrate, isocitrate, succinate......
Mycobacteria avium infection is a common and serious kind of inflammation, in which macrophages has been reported to play an important role. Recently metabolic reprogramming of macrophages is proved in many diseases. By using LPS stimulation, the metabolic reprogramming of macrophages has been reported and have been confirmed to play a role during infection. Therefore, it is not so exciting to see this role of metabolic reprogramming in controlling M. avium infection.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Overall evaluation
This study addresses an interesting aspect of host-pathogen relationship, namely how the metabolism of the host impacts directly or indirectly on the metabolism and/or fitness of the pathogen. For example, the generation of ROS in a way independent of NADPH-oxidases has been suggested to play a role in a number of infections. In particular, whether and how such ROS might be part of the cell-autonomous defence against an intracellular bacterial pathogen, in the present case M. avium, is of relevance. Despite these positive points, the study and manuscript suffer from a high number of serious problems both in form and content. The authors are strongly advised to revise the experimental evidence presented, including by performing additional experiments and re-interpreting some of the ones documented, as well as extensively rewrite/reformat the manuscript.
Major comments:
Minor comments:
The study explores an interesting question, but in its present state, the conclusions are not sustained by the evidence.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Here, authors confirm that glycolysis is important macrophage defense against mycobacterial infection and describe a central role of pyruvate in linking glycolysis and antimycobacterial mtROS production to control the intracellular burden. Alike previous authors who have demonstrated that the non-pathogenic Bacillus Calmette-Guerin and heat-killed M. tb increase glycolysis, they show that human primary macrophages infected with M. avium increase glycolysis to facilitate mycobacterial control. Rost and coll. show evidence that the killing mechanism act through the production of mtROS by the complex I of the electron transport chain via the engagement of RET. This mechanism acts in parallel to other immunometabolic defense pathways activated in M. avium infected macrophages, such as the production/induction of itaconate via the IRF-IRG1 pathways (Alexandre Gidon 2021).
They give evidence that IL-6 and TNFa are not involved in regulating the pyruvate-mtROS and show chemical evidence that mitochondrial import of pyruvate through MPC activity is necessary to generate a high membrane potential and the subsequent production mtROS.
However, the data presented here don t explain how pyruvate is driving RET and mtROS; if pyruvate targets the electron transport chain directly or is converted (via TCA) to another metabolite that initiates RET and mtROS. Above all, this work brings attention to the possibility of using compounds that specifically engage mtROS production for therapeutic perspectives
While the data presented here don t explain how pyruvate is driving RET and mtROS; if pyruvate targets the electron transport chain directly or is converted (via TCA) to another metabolite that initiates RET and mtROS, this work merits to be deeply evaluated for potential publication in a RC journal. However, the language must be improved and polished before submission.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
The paper tackles an important problem regarding the effect of demographic dependent vaccination protocols on the reduction in the number of deaths with respect to the situation of no vaccination (say J). A compartmental SIRD model with reinfection Y is proposed, stratified in two (age dependent) groups, based on a binary reduction of a given contact map, and given infection fatality risk (IFR). Several countries are then analyzed.
As far as I understand we have a control variable v, parameters of the stratified model (i=1,2) tuned to match IFRi, and a control objective, i.e. minimization of J over one year.
The paper is well written. The final message and some theoretical passages are not completely clear, at least to me. I have the following observations that the authors may want to consider.
We thank the referee for the revision and are very glad that the overall evaluation is positive. Comments and suggestions have been thoroughly addressed, as we discuss in the following.
1) The study of stability of infection free and endemic equilibria should be better developed. The 5 equations can be reduced to 4 (neglecting D) and the characteristic of the reduced Jacobian used to characterize the local asymptotic stability of equilibria, instability, bifurcation points etc... Alternatively, one can use a co-positive Lyapunov function (LF). For instance, if we take the LF V=S+I+Y+R, we get $\dot V=-\mu_I I-\mu_Y Y \le 0$. If $\mu_I$ and $\mu_y$ are strictly positive all equilibria are characterized by (S*,0 0,R*) and D=1-S*-R*. So, I don't understand the phrase after (7,8), notice that Y cannot be zero in finite time. For $\mu_y=0$ then Y* can be nonzero. I guess that closed-form computation of S* and R* is possible as function of the parameters at least in the case v=0. The stability result should be cast in function of the current reproduction number (not explicitated) wrt to S and R.
The authors are invited to have a look at
1.1) Pagliara et al, "Bistability and Resurgent Epidemics in Reinfection Models", IEEE CSLetters, 2018,
for a theoretical analysis of stability on a similar (just a little bit simpler) model.
We appreciate the suggestions of the referee for improvement of this material. We have carried out an in-depth revision of the stability analysis and significantly extended it. The major addition has been, as suggested, a section relating the current reproductive number at equilibrium (we call it the asymptotic reproductive number in the text) to the fixed points of the dynamics for three different scenarios: general model, no vaccination, and zero mortality of reinfected individuals. As Pagliara et al. show in their paper, the connection between the fixed points and the reproductive number is not trivial, but it is possible to derive it through the next-generation matrix technique, as we now do. Additional references regarding this technique have been added. We have included a Table summarizing the stability analysis (page 2 in SI 3) at the end of this new section.
Other modifications include the reduction of 5 equations to 4 for the stability analysis and a clarification of possible equilibria (page 1 of SI 3), rephrasing and correcting our sentence after eqs. (7) and (8). We also attempted to obtain a closed-form computation of S* and R* but, to the best of our knowledge, concluded that it is not possible. We would be happy to pursue any insight in this respect the referee may have.
What said before should be also extended to the stratified model, where a "network" Rt could be defined, see for instance
1.2) L. Stella et al, "The Role of Asymptomatic Infections in the COVID-19 Epidemic via Complex Networks and Stability Analysis", SIAM J Cont. Opt., 2021, (arxiv.org/pdf/2009.03649.pdf)
We thank the referee for pointing out this reference. Following the analysis in Stella et al., we have carried out a stability analysis for the stratified model as well. The results are included in a new section (pages 7-10 in the SI 3).
2) It is not clear whether the free contagion parameters of the model have been fitted on real data (identification from infection and reinfection data). Notice that the interplay between vaccination strategies and NPI is important, see e.g.
*2.1) Giordano et al, Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy", Nature Medicine 2021, *
where progressive vaccination in reverse age order is considered together with different enforced NPI countermeasures.
In the first part of our study, parameters are intendedly left free because we aim at describing the generic behavior of the model. Still, we derive several inequalities and relationships between parameter ratios that seem to be sensible attending to what the different classes in the model stand for. This is as described in sections regarding model parameters when the two generic models (SIYRD and S2IYRD) are introduced. The aim is to represent both the generic dependence with some variables and a broad class of contagious diseases, so parameters are mostly free. In agreement with this approach, parameters can be also freely varied in the companion webpage.
In the second part of our study, the model is applied to COVID-19. In that case, we have used parameter values in agreement with observations, as (admittedly poorly) explained in pages 9-10 of the main text. Indeed, not enough information on parameter estimation was provided in the main text, and the SI 2 also needed some additional information. This has been amended. Let us explicitly mention that we have not fitted the dynamics of the model to any actual data set to fix specific values, as Giordano et al. do. In our case, we have first used different demographic data sets to evaluate contact rates and IFRs of the two population groups (these are parameters Mij and Ni in eqs. (7-10)). Secondly, recovery and death rates are estimated through the IFRi values for each age group i and the infectious period of COVID-19, that we fix at dI=13 days. Third, infection rate βSI=R0/dI has been estimated fixing R0=1, since the reproductive number of COVID-19 all over the world fluctuates around this value (Arroyo-Marioli et al. (2020) Tracking R of COVID-19: A new real-time estimation using the Kalman filter, PLoS ONE 16(1):e0244474). The reinfection rate is defined through its relationship with the infection rate, βRI= α1 βSI, where α1 was in the range 0-0.011 at early COVID-19 stages (Murchu et al. (2022), Quantifying the risk of SARS‐CoV‐2 reinfection over time, Rev Med Virol 32:e2260) and seems to be about 3-4 fold larger for the omicron variant (Pulliam et al., Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa, www.medrxiv.org/content/10.1101/2021.11.11.21266068v2). Given the relationships derived among parameters, our only free parameter was α2RY= α2 βRI, and we fixed it to α2=0.5 (i.e., reinfected individuals recover twice as fast as individuals infected for the first time).
Once more, it was not our goal to precisely recover specific trajectories of COVID-19 or to point at possible future scenarios, but to illustrate the dependence of major trends with model parameters. Also, the appearance of new variants requires the reevaluation of parameters. For example, omicron has different IFR (therefore different mortality and recovery rates), a different infectious period, and higher infection and reinfection rates. In this context, the interactive webpage (where we will update demographic profiles and IFR data as they become available) is a useful resource to simulate any situation different from current or past ones.
3) In the model the immunity waning is not explicitly considered (flux from R to S or better from a vaccinated compartment to S). It is clear that this complicates the model. Please discuss why the indirect way the waning is considered here is justified.
3.1) Batistela et al, "SIRSi compartmental model for COVID-19 pandemic with immunity loss", Chaos Soliton and fractals, 2021.
3.2) McMahon et al, "Reinfection with SARS-CoV-2: Discrete SIR (Susceptible, Infected,Recovered) Modeling Using Empirical Infection Data", JMIR Public health and surveillance, 2020.
Though the model does not consider an incoming flux of individuals to compartment S, the existence of a "backward" flux from R to Y yields a transient phenomenology analogous to models with increases in the S class. Indeed, it is these fluxes that cause persistent endemic states; otherwise, the S class is monotonously depleted until infection extinction.
In Batistela's et al. work, the possibility that individuals become reinfected is effectively implemented through a flux between the R and S classes, since only one class of infected individuals is considered and recovered individuals cannot be infected again. In our case, feeding back to S would mean that previous immunity is completely lost or that vaccines are not effective at all for some individuals. This is neither what McMahon et al. conclude when evaluating real data nor what more recent surveys indicate (see for instance the Science Brief published in October 2021 by the CDC, SARS-CoV-2 Infection-induced and Vaccine-induced Immunity, https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/vaccine-induced-immunity.html).
This nonetheless, complete immunity waning (feedback to the S class) and reinfections (feedback to a partly immune class experiencing overall lower severity of the disease) are equivalent to a large extent: the trend of COVID-19 seems to indicate that our Y class will be the "new S", and that fully naive individuals would arrive mostly due to demographic dynamics (birth and death processes, as also implemented by Batistela et al.). Summarizing, complete immunity waning is rare in the time scales considered in our simulations, while partial immunity that decreases the severity of the disease (after infection or vaccination) is the rule, in agreement with our choices.
4) Reduction of deaths wrt no vaccination is of course important, but also reduction of stress in hospitals. This is particularly important now with the advent in Europe of the omicron variant. Please discuss on the real message you want to convey to policy makers in the actual scenario of the pandemic.
The model in this work is deliberately simple. Our main goal was to explore the qualitative effects of demographic structure and disease parameters in protocols for vaccine administration. This was the reason to consider a mean-field model in a population structured into two groups. The main conclusion is that optimal vaccination protocols are demography- and disease-dependent. If this is so in our streamlined model, the more it will be in more realistic models, where one should include a finer stratification and, in all likelihood, heterogeneity in contagions. Our main message, therefore, is that there is no unique protocol for vaccine roll-out, valid for all populations and diseases. The abstract has been modified to highlight this conclusion.
Some qualitative considerations also allow us to draw preliminary conclusions on the reduction of stress in hospitals. Since the number of hospital admissions is proportional to the incidence of the disease, the number H of hospitalized individuals can be represented as H=a I + b Y, with a>>b due to the partial immunity of vaccinated or recovered individuals (which belong to class Y upon (secondary) contagion). Therefore, minimizing the burden on the healthcare system amounts to minimizing the number of individuals in the I class. Beyond non-pharmaceutical measures, I is minimized when individuals are transferred as fast as possible to the Y class, that is, maximizing vaccine supply and acceptance. In terms of our model parameters, this entails maximizing v and also θ (the maximum fraction of individuals eventually vaccinated), for instace through devoted awareness campaigns. These ideas have been included in the Discussion section.
Reviewer #1 (Significance (Required)):
The final message and some theoretical passages are not completely clear, at least to me.
Please discuss on the real message you want to convey to policy makers in the actual scenario of the pandemic.
As discussed above, we have modified the manuscript following the advice given by the Reviewer. We think that both the presentation and the theory are clearer now.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
In this paper, a compartmental model of the propagation of an infection with vaccination and reinfection is studied. The impact that changes in the rates of these two processes have on disease progression and on the number of deaths is analyzed. In order to highlight the overall effect of the demographic structure of populations and the propagation of a given disease among different groups, the population is divided into two subpopulations and the model is extended to the two-dimensional case. In addition to the study of equilibria and their relative stability, the model is then applied in the case of COVID-19. Different vaccination strategies are studied using real demographic data and with a population split between under 80 and over 80 individuals. It is observed that for low vaccination rates, the advisable strategy is to vaccinate the most vulnerable group first, in contrast to the case of sufficiently high rates, where it is appropriate to vaccinate the most connected group first. The simulations show also that with a low fatality ratio, the strategy that yields the greatest reduction in deaths is vaccination of the group with the most contacts, while the situation is reversed for higher fatality ratio.
The model and simulations presented are interesting and valuable. The comparison of the behavior of the model in the 4 different countries is very interesting, as well as the webpage created by the authors.
We thank the referee for the very positive evaluation and are very glad that the study is found interesting and valuable.
As minor comment, I think that the introduction of the model needs a more extensive literature review. For example, there is no mention of the classic SIR model of Kermack and McKendrick (1927) and other works on the introduction to epidemic models, which form the basis of the model presented by the authors.
The referee is right. There is a long history of extensions and applications since Kermack & McKendrick introduced the SIR model that we obviated. This has been amended by adding an introductory paragraph with several new references at the beginning of the Models section, page 3 in the main text.
Reviewer #2 (Significance (Required)):
The model presented by the authors is quite original and simple enough to be suitable to different contexts and scenarios.
Compared to previous work, this paper makes a twofold contribution, as explained by the authors. First, the introduction of reinfections shows the existence of long transients (or quasi-endemic states) that may precede the transition to a truly endemic state predicted for COVID-19. Second, the simplicity of model allows the characterization of systematic effects due to, at least, group size, demographic composition, and IFRs.
I am involved in the study and analysis of epidemic models accompanied by network effects. I think this paper is a good contribution, although preliminary, in the analysis of the vaccination process and in the search for the optimal strategy.
We thank the Reviewer and are glad that our goal, offering a model as simple as possible to obtain meaningful conclusions, is appreciated.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this paper, a compartmental model of the propagation of an infection with vaccination and reinfection is studied. The impact that changes in the rates of these two processes have on disease progression and on the number of deaths is analyzed. In order to highlight the overall effect of the demographic structure of populations and the propagation of a given disease among different groups, the population is divided into two subpopulations and the model is extended to the two-dimensional case. In addition to the study of equilibria and their relative stability, the model is then applied in the case of COVID-19. Different vaccination strategies are studied using real demographic data and with a population split between under 80 and over 80 individuals. It is observed that for low vaccination rates, the advisable strategy is to vaccinate the most vulnerable group first, in contrast to the case of sufficiently high rates, where it is appropriate to vaccinate the most connected group first. The simulations show also that with a low fatality ratio, the strategy that yields the greatest reduction in deaths is vaccination of the group with the most contacts, while the situation is reversed for higher fatality ratio.
The model and simulations presented are interesting and valuable. The comparison of the behavior of the model in the 4 different countries is very interesting, as well as the webpage created by the authors.
As minor comment, I think that the introduction of the model needs a more extensive literature review. For example, there is no mention of the classic SIR model of Kermack and McKendrick (1927) and other works on the introduction to epidemic models, which form the basis of the model presented by the authors.
The model presented by the authors is quite original and simple enough to be suitable to different contexts and scenarios.
Compared to previous work, this paper makes a twofold contribution, as explained by the authors. First, the introduction of reinfections shows the existence of long transients (or quasi-endemic states) that may precede the transition to a truly endemic state predicted for COVID-19. Second, the simplicity of model allows the characterization of systematic effects due to, at least, group size, demographic composition, and IFRs.
I am involved in the study and analysis of epidemic models accompanied by network effects. I think this paper is a good contribution, although preliminary, in the analysis of the vaccination process and in the search for the optimal strategy.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The paper tackles an important problem regarding the effect of demographic dependent vaccination protocols on the reduction in the number of deaths with respect to the situation of no vaccination (say J). A compartmental SIRD model with reinfection Y is proposed, stratified in two (age dependent) groups, based on a binary reduction of a given contact map, and given infection fatality risk (IFR). Several countries are then analized.
As far as I understand we have a control variable v, parameters of the stratified model (i=1,2) tuned to match IFRi, and a control objective, i.e. minimization of J over one year.
The paper is well written. The final message and some theoretical passages are not completely clear, at least to me. I have the following observations that the authors may want to consider.
1)The study of stability of infection free and endemic equlibria should be better developed. The 5 equations can be reduced to 4 (neglecting D) and the characteristic of the reduced Jacobian used to characterize the local asymptotic stability of equlibria, instability, biforcation points etc... Alternatively, one can use a co-positive Lyapunov function (LF). For instance, if we take the LF V=S+I+Y+R, we get \dot V=-\mu_I I-\mu_Y Y \le 0. If \mu_I and \mu_y are strictly positive all equilibria are characterized by (S,0 0,R) and D=1-S-R. So, I don't understand the phrase after (7,8), notice that Y cannot be zero in finite time. For \mu_y=0 then Y can be nonzero. I guess that closed-form computation of S and R* is possible as function of the parameters at least in the case v=0. The stability result should be cast in function of the current reproduction number (not explicitated) wrt to S and R. The authors are invited to have a look at
1.1)Pagliara et al, "Bistability and Resurgent Epidemics in Reinfection Models", IEEE CSLetters, 2018,
for a theoretical analysis of stability on a similar (just a little bit simpler) model. What said before should be also extended to the stratified model, where a "network" Rt could be defined, see for instance
1.2)L. Stella et al, "The Role of Asymptomatic Infections in the COVID-19 Epidemic via Complex Networks and Stability Analysis", SIAM J Cont. Opt., 2021, (arxiv.org/pdf/2009.03649.pdf)
2)It is not clear whether the free contagion parameters of the model have been fitted on real data (identification from infection and reinfection data). Notice that the interplay between vaccination strategies and NPI is important, see e.g. 2.1) Giordano et al, Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy", Nature Medicine 2021, where progressive vaccination in reverse age order is considered together with different enforced NPI countermeasures.
3)In the model the immunity waning is not explicitly considered (flux from R to S or better from a vaccinated compartment to S). It is clear that this complicates the model. Please discuss why the indirect way the waning is considered here is justified.
3.1)Batistela et al, "SIRSi compartmental model for COVID-19 pandemic with immunity loss", Chaos Soliton and fractals, 2021.
3.2)McMahon et al, "Reinfection with SARS-CoV-2: Discrete SIR (Susceptible, Infected,Recovered) Modeling Using Empirical Infection Data", JMIR Public health and surveillance, 2020.
4)Reduction of deaths wrt no vaccination is of course important, but also reduction of stress in hospitals. This is particularly important now with the advent in Europe of the omicron variant. Please discuss on the real message you want to convey to policy makers in the actual scenario of the pandemic.
The final message and some theoretical passages are not completely clear, at least to me. Please discuss on the real message you want to convey to policy makers in the actual scenario of the pandemic.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
This article focuses on one possible outcome of protein sequence evolution after duplication, in which the residue distribution at specific positions of a multiple sequence alignment becomes uncoupled from the distribution expected from the phylogeny of the protein family. The authors call these events "residue inversions" and interpret them as the result of functional pressures on family members with diverging cellular roles. Based on a theoretical model of residue evolution after duplication of the coding gene, the authors describe the criteria for categorizing a particular position in a protein as a "residue inversion" and develop an algorithm to identify such events in a multiple alignment. They then apply their approach to the family of Epidermal Growth Factor Receptors in Teleost fishes and identify 19 EGFR positions in a dataset of 88 fish genomes, which satisfy the criteria of "residues inversions". They provide support to the scoring scheme used in their approach through a simulated evolution run and conclude from a comparison of their positions to the ones predicted by SPEER to represent Specificity Determining Sites that the two are largely orthogonal and may therefore complement each other in sequence-based function prediction.
Major comments: 1. Throughout the paper, the functional involvement of positions subject to "residue inversions" is indirect, inferred from the literature, and in parts sparse and tenuous. It therefore remains unclear to what extent the interpretation that "residue inversions" represent functional adaptations is correct. The authors acknowledge this uncertainty in several places, including the Conclusions.
We agree with the reviewer that without experimental validation an uncertainty about the data interpretation remains, however testing protein function on a large scale and in non-model organisms is extremely challenging. Since we were aware of this obstacle, we validate our conclusions in different ways: 1. the theoretical model and the simulated MSA both show a lower chance of observing residue inversions than what we detected in the teleost fish EGFR example. 2. previous literature highlighted an identified inverted residue as the possible cause of sub-functionalization of teleost fish EGFR. 3 We generated the alpha fold models of teleost fish EGFR and performed molecular dynamic simulation of the two copies, in complex with the ligand. In our simulations, we see the same trend that we observe with the inter-paralog inversions at the functional level. The new results have been integrated in line 692-706.
"Residue inversion" is a very unintuitive term, which took me several readings to penetrate and made reading the article difficult. The authors may wish to reconsider this term. Naively, a residue inversion would be the swapping of residues between two positions, such that a residue expected in position A is found in position B, while the residue expected in B is found in A. That is what I suspect most readers will think.
We acknowledged that the terminology might be confusing. We therefore decided to define it as inter-paralog inversion of amino acids throughout all the text.
Is the phenomenon described here just a curiosity, or an important aspect of divergent evolution after duplication? The authors seem to be of two minds about it, calling the phenomenon "rare" in the Abstract, but an "important and understudied outcome of gene duplication" in the Introduction, then hedging again that it "might be rare" in the Conclusions. The benefits of recognizing such positions are also formulated with great caution, for example in lines 309-311: "In summary, the identification of residue inversion event has the potential to improve functional residue predictions".
We agree with the reviewer that we did not yet test the recurrence of this event on a large scale, however this does not exclude that this event is frequent. This work is focused on the observation, characterization, and implications of this event. Considering this comment and the one below we decided to perform a further analysis (see below for more details).
Additionally, the analysis of the frequency of this event at the whole-organism scale on multiple organisms, while interesting, would be out of the scope of this paper, if not just because it requires a totally different (large-scale) approach compared to the one used in here. This type of analysis is also limited by the absence of a database collecting intermediate knowledge that would speed up the initial part of ortholog classification at a broad range.
Finally, by rarity we mean the statistical chance of the event, not considering the effective chance of observing it from the real data. In fact, we rectified in the text using the reviewer’s observation.
OLD VERSION (ppXX):
Our work uncovers a rare event of protein divergence that has direct implications in protein functional annotation and sequence evolution as a whole.
NEW VERSION:
Our analysis shows a new way to investigate an important and understudied outcome of gene duplication.
It would probably strengthen the article substantially if the authors would (I) use their program to scan a large number of multiple alignments in order to establish more reliably how frequent this phenomenon actually is, and whether it is universal or a specifc aspect of eukaryotic, maybe even only vertebrate evolution; and then (II) mapped the positions identified on structural models for the proteins, obtained by homology modeling or AlfaFold prediction, in order to substantiate their potential origin as functional adaptations.
We thank the reviewer for the thoughtful suggestions. (I) we tested the inter-paralog inversion score at the proteome level using a reduced dataset (70) of reference teleost fish proteomes from Uniprot. We obtained 54 proteins that duplicated in the teleost specific whole genome duplication, then we run our pipeline on it. We found that the overall distribution of scores is more similar to the simulated evolution experiment rather than to the EGFR test case. We integrated the new results and discussion in a new paragraph and new figure in line 708-716.
(II) We considered also the analysis requested in the second point. Unfortunately, we could not extract any meaningful data from the AlphaFold models.
Reviewer #1 (Significance (Required)):
A method to improve the functional annotation of proteins in a paralogous family would be very useful, given the abundance of sequence data.
We thank the reviewer for acknowledging the importance of the question that we have addressed.
I am knowledgeable in varios aspects of molecular evolution and functional annotation. I am neither a mathematician, nor a developer of phylogenetic methods, so I cannot judge these aspects of the paper.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Review of Pascarelli and Laurino titled “Identification of residue inversions in large phylogenies of duplicated proteins”
I find the topic of the paper very exciting and long overdue. Indeed, I was under the impression that the question of parallel evolution in paralogous copies must have been addressed long ago: to my surprise, having looked in depth at the literature, that is only partially so. The manuscript, therefore, addresses a relatively novel and fundamental question of broad interest.
We thank the reviewer for his positive comment.
Having said this, I also found the manuscript to suffer from an identity problem, which in many places encroaches on the underlying quality of the science. I will structure my review into three concerns: the identity issues, the novelty issue and the emergent quality issues from the two.
Identity issues:
The manuscript is primarily dealing with an evolutionary issue – or I am biased to see it this way as an evolutionary researcher myself. Nevertheless, much of the language and terminology of the paper either misuses evolutionary terms or invents new ones in its place with a bias towards a protein chemistry perspective. Specifically, what the authors call “residue inversions” is called “parallel evolution” or “convergent evolution” in the literature. Also, "residues" are typically used for physical amino acids in a structure. If we are talking about sequence level “amon acid” would be a better term. The issue is further confounded by the meaning of “inversion” in genetics as a single mutation that inverts the position of nucleotides (i.e. an “AT” becomes “TA”).
I strongly recommend for the authors to become familiarized with the common usage of existing and widely used terms in evolutionary biology that describe the phylogenetic patterns they see: parallel evolution, convergent evolution, homoplasy, etc, and to use them consistently throughout the manuscript.
The same goes for "mutation", which the authors confuse on two levels: evolutionary and biochemical. Sometimes the authors refer to “mutation” of amino acids (which can be entertained at some level, but from a genetic perspective only nucleotides mutate – in the protein biochemistry field this term is frequently applied to amino acid residues, which is the basis of the identity issue). However, since the authors also use “mutation” to refer to a “substitution” (which is what we call a mutation that has become fixed in evolution) this creates another level of confusion. I urge the authors to change this aspect of the language of the manuscript to better reflect evolutionary concepts.
As part of the language issues I am not sure how meta-functionalization in the author’s view differs either from neofunctionalization or specialization of duplicated genes.
We thank the reviewer to point out the terminology issue, this will also help reaching a broader audience. We clarify the confusion surrounding the terms “mutation” and “residue inversion” by changing the former to “substitution”, while the latter to “inter-paralog inversions” (see also other reviewer comments).
We understand the importance of the usage of the correct term to talk about this event of protein sequences evolution. Therefore, we used convergent and parallel evolution accordingly when we discussed the nuances between Metafunctionalization and parallel evolution in the text, in lines 188 and 399.
Novelty issues:
As I mentioned, the issue of parallel evolution of gene duplications is an extremely interesting topic. I was sure that the people who studied parallel evolution, or those interested in gene duplications, must have published extensively on this. However, my search of the literature revealed only a modest pre-existing effort. Nevertheless, previous efforts are not entirely non-existent and should be cited and discussed in this paper too. The most pertinent example is
https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-020-01660-1
which has an identical setup from what I can tell (compare Figure 1 in each paper).
This paper was not hard to find using "parallel evolution", thus my focus on the language issues in the previous section.
We thank the reviewer for his suggestion, we included the relevant papers in the text in lines 520-523. Interestingly, the cited paper shows that a comprehensive analysis of the fate of duplicated genes at the sequence level was done. However, in this paper, the ‘fate’ of a paralog is determined by counting the number of sites that support one or the other fate, independently of the orthologous relationship. In our study, we start from the orthologous relationship to pre-determine the fate of the paralogous protein, then we identify the sites that break this assumption. Our type of analysis is deemed to work only where the orthologous relationship is unequivocal. That is the reason why we chose an example with relatively short branch lengths after duplication (the teleost specific duplication). Our rationale is that with a higher genome coverage across organisms, resolving the orthologous relationship will get easier in time. However, our study focuses on a distinct case (asymmetric divergence) where the diverging paralogs converge to the same phenotype. In such a case, neutral substitutions related to the ancestral relationship of a protein can be filtered out to better search for functional adaptations.
Content issues:
The lack of attention to evolutionary concepts, in my opinion, provided some missed opportunities for the authors to attack the problem in a more convincing fashion. Specifically, in the setup to distinguish between parallel evolution of paralogues versus orthologues ("inversion" versus "species-specific adaptation" in the author's text) one must be able to distinguish between the two copies and assign true evolutionary relationship. In practice, that is not always possible based on tree lengths or topologies alone because of confounding factors such as independent duplications or gene conversion events.
I would feel better about the results of this study if the following two things were integrated.
The use of synteny to better determine homologous relationships (declare copies to be true paralogues if they occupy the same syntenic region). To compare the frequency or parallel evolution of paralogues versus orthologues as a null model of the expected number of parallel events in paralogous copies.
We agree that a synteny analysis has to be included. We tested it for the EGFR proteins in fish and the results support the orthologous relationship of EGFRa and EGFRb in the two groups compared (Cypriniformes versus other teleosts). The results were included in the text and in the Supplementary figure in lines 303-305.
The second point targets the way the model derives the expectations: at the author's own admission the model makes a number of unrealistic assumptions, ") equal branch length between the two paralogs; 2) only zero to one mutation can occur in each of the six branches; 3) after a mutation, each residue is equiprobable; 4) no selective pressure; 5) the probability of a mutation on a branch solely depends on the branch length (mutation rate). The authors do not really test the resulting tree on deviation from these assumptions (I am sure that it does not conform) but essentially comparing the occurrence of parallel events in paralogues versus orthologues may solve the problem with a less restrictive set of assumptions (that one expects an equal number of parallel events in paralogues and orthologues unless there is some paralogue-specific selection pressure, which is what the authors are looking for.
We compared the occurrence of the two outcomes in both the simulation and in the real data. In all cases, the two score distributions have a very similar shape, with a 99th percentile score of respectively 0.062 and 0.113. Most sites in an alignment (>99%) are not expected to be inverted and will have scores very close to 0, making the identification of inversions a quest for outliers. Furthermore, in case of the real data, each distribution can be independently affected by different selective pressures that might bias the background distribution. While the inversion in paralogs is expectedly involving few, functional, residues, the inversion in orthologs is expected to have a broad effect. For example, a temperature adaptation might shift the number of polar residues on the protein surface (see for example: https://academic.oup.com/peds/article/13/3/179/1466666). Also, a different protein chosen for analysis might generate a different background distribution of the two events. In the larger dataset, the similarity of the two distributions is even more (99th percentile of 0.07 and 0.08). Because of the shown similarity of the two event distributions, and the possible issues with different selective pressures, we leave the analysis suggested by the reviewer as a post-processing possibly performed by the user. We report a summary of this result born from the reviewer’s observation in line 478.
In summary, I believe that the topic is very interesting, the authors potentially found a new aspect of evolution of a specific gene family. However, in my opinion a major revision is needed to unite this text with the terms in the field, the previous publication and to integrate the two additional analyses I suggested.
Minor Comments:
I started adding these specific comments before generalizing the broader deviation from the common evolutionary language. There are more further along in the manuscript, but in the interest of time I will not articulate them here hoping that the authors will first try a major revision targeting these issues.
Line 64: While neutral mutations help to determine the phylogenetic position of a protein, mutations of functional residues are a signal of functional shifts that might occur independently of the phylogeny. - this is quite misleading. All substitutions (neutral or beneficial) have a phylogenetic signal. In any case, this is discussed here in phylogenetic terms: https://pubmed.ncbi.nlm.nih.gov/10742039/
We corrected the sentence to refer to divergence time instead of phylogenetic signal.
OLD VERSION:
While neutral mutations help to determine the phylogenetic position of a protein, mutations of functional residues are a signal of functional shifts that might occur independently of the phylogeny.
NEW VERSION:
While neutral substitutions are directly proportional to the time of divergence, a change in functional residues could be a signal of a functional shift that might occur independently of the divergence time.
Line 107: "under high evolutionary pressure" - I do not know what evolutionary pressure is nor why it can be high or low.
We corrected the term to “selective pressure”.
OLD VERSION:
Lorin et al. showed that both copies of EGFR might have been retained because they are involved in the complex process of skin pigmentation (40), which is under high evolutionary pressure in most fish.
NEW VERSION:
Lorin et al. showed that both copies of EGFR might have been retained because they are involved in the complex process of skin pigmentation (40), a trait that is under selective pressure in most fish
Line 112 "linearly inherited across orthologs" - linear is a poor choice of a word here. The first thing that comes to my mind is quadratic inheritance as an alternative. Perhaps the authors are looking for "vertical" versus "horizontal" - these are established terms in phylogenetics (think "horizontal gene transfer").
We corrected the term to “vertically inherited”.
OLD VERSION
Therefore, the power to predict functional residues is limited by our ability to track protein function on the phylogenetic tree when it is not linearly inherited by orthologs.
NEW VERSION
Therefore, the power to predict functional residues is limited by our ability to track protein function on the phylogenetic tree when it is not vertically inherited by orthologs.
It is my invariant practice to reveal my identity to the authors,
Fyodor Kondrashov
Reviewer #2 (Significance (Required)):
Addressed in the above
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Review of Pascarelli and Laurino titled "Identification of residue inversions in large phylogenies of duplicated proteins"
I find the topic of the paper very exciting and long overdue. Indeed, I was under the impression that the question of parallel evolution in paralogous copies must have been addressed long ago: to my surprise, having looked in depth at the literature, that is only partially so. The manuscript, therefore, addresses a relatively novel and fundamental question of broad interest.
Having said this, I also found the manuscript to suffer from an identity problem, which in many places encroaches on the underlying quality of the science. I will structure my review into three concerns: the identity issues, the novelty issue and the emergent quality issues from the two.
Identity issues:
The manuscript is primarily dealing with an evolutionary issue - or I am biased to see it this way as an evolutionary researcher myself. Nevertheless, much of the language and terminology of the paper either misuses evolutionary terms or invents new ones in its place with a bias towards a protein chemistry perspective. Specifically, what the authors call "residue inversions" is called "parallel evolution" or "convergent evolution" in the literature. Also, "residues" are typically used for physical amino acids in a structure. If we are talking about sequence level "amon acid" would be a better term. The issue is further confounded by the meaning of "inversion" in genetics as a single mutation that inverts the position of nucleotides (i.e. an "AT" becomes "TA").
I strongly recommend for the authors to become familiarized with the common usage of existing and widely used terms in evolutionary biology that describe the phylogenetic patterns they see: parallel evolution, convergent evolution, homoplasy, etc, and to use them consistently throughout the manuscript.
The same goes for "mutation", which the authors confuse on two levels: evolutionary and biochemical. Sometimes the authors refer to "mutation" of amino acids (which can be entertained at some level, but from a genetic perspective only nucleotides mutate - in the protein biochemistry field this term is frequently applied to amino acid residues, which is the basis of the identity issue). However, since the authors also use "mutation" to refer to a "substitution" (which is what we call a mutation that has become fixed in evolution) this creates another level of confusion. I urge the authors to change this aspect of the language of the manuscript to better reflect evolutionary concepts.
As part of the language issues I am not sure how meta-functionalization in the author's view differs either from neofunctionalization or specialization of duplicated genes.
Novelty issues:
As I mentioned, the issue of parallel evolution of gene duplications is an extremely interesting topic. I was sure that the people who studied parallel evolution, or those interested in gene duplications, must have published extensively on this. However, my search of the literature revealed only a modest pre-existing effort. Nevertheless, previous efforts are not entirely non-existent and should be cited and discussed in this paper too. The most pertinent example is
https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-020-01660-1
which has an identical setup from what I can tell (compare Figure 1 in each paper).
This paper was not hard to find using "parallel evolution", thus my focus on the language issues in the previous section.
Content issues:
The lack of attention to evolutionary concepts, in my opinion, provided some missed opportunities for the authors to attack the problem in a more convincing fashion. Specifically, in the setup to distinguish between parallel evolution of paralogues versus orthologues ("inversion" versus "species-specific adaptation" in the author's text) one must be able to distinguish between the two copies and assign true evolutionary relationship. In practice, that is not always possible based on tree lengths or topologies alone because of confounding factors such as independent duplications or gene conversion events.
I would feel better about the results of this study if the following two things were integrated.
The use of synteny to better determine homologous relationships (declare copies to be true paralogues if they occupy the same syntenic region). To compare the frequency or parallel evolution of paralogues versus orthologues as a null model of the expected number of parallel events in paralogous copies.
The second point targets the way the model derives the expectations: at the author's own admission the model makes a number of unrealistic assumptions, ") equal branch length between the two paralogs; 2) only zero to one mutation can occur in each of the six branches; 3) after a mutation, each residue is equiprobable; 4) no selective pressure; 5) the probability of a mutation on a branch solely depends on the branch length (mutation rate). The authors do not really test the resulting tree on deviation from these assumptions (I am sure that it does not conform) but essentially comparing the occurrence of parallel events in paralogues versus orthologues may solve the problem with a less restrictive set of assumptions (that one expects an equal number of parallel events in paralogues and orthologues unless there is some paralogue-specific selection pressure, which is what the authors are looking for.
In summary, I believe that the topic is very interesting, the authors potentially found a new aspect of evolution of a specific gene family. However, in my opinion a major revision is needed to unite this text with the terms in the field, the previous publication and to integrate the two additional analyses I suggested.
Minor Comments:
I started adding these specific comments before generalizing the broader deviation from the common evolutionary language. There are more further along in the manuscript, but in the interest of time I will not articulate them here hoping that the authors will first try a major revision targeting these issues.
Line 64: While neutral mutations help to determine the phylogenetic position of a protein, mutations of functional residues are a signal of functional shifts that might occur independently of the phylogeny. - this is quite misleading. All substitutions (neutral or beneficial) have a phylogenetic signal. In any case, this is discussed here in phylogenetic terms: https://pubmed.ncbi.nlm.nih.gov/10742039/
Line 107: "under high evolutionary pressure" - I do not know what evolutionary pressure is nor why it can be high or low.
Line 112 "linearly inherited across orthologs" - linear is a poor choice of a word here. The first thing that comes to my mind is quadratic inheritance as an alternative. Perhaps the authors are looking for "vertical" versus "horizontal" - these are established terms in phylogenetics (think "horizontal gene transfer").
It is my invariant practice to reveal my identity to the authors,
Fyodor Kondrashov
Addressed in the above
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This article focuses on one possible outcome of protein sequence evolution after duplication, in which the residue distribution at specific positions of a multiple sequence alignment becomes uncoupled from the distribution expected from the phylogeny of the protein family. The authors call these events "residue inversions" and interpret them as the result of functional pressures on family members with diverging cellular roles. Based on a theoretical model of residue evolution after duplication of the coding gene, the authors describe the criteria for categorizing a particular position in a protein as a "residue inversion" and develop an algorithm to identify such events in a multiple alignment. They then apply their approach to the family of Epidermal Growth Factor Receptors in Teleost fishes and identify 19 EGFR positions in a dataset of 88 fish genomes, which satisfy the criteria of "residues inversions". They provide support to the scoring scheme used in their approach through a simulated evolution run and conclude from a comparison of their positions to the ones predicted by SPEER to represent Specificity Determining Sites that the two are largely orthogonal and may therefore complement each other in sequence-based function prediction.
Major comments:
It would probably strengthen the article substantially if the authors would (I) use their program to scan a large number of multiple alignments in order to establish more reliably how frequent this phenomenon actually is, and whether it is universal or a specifc aspect of eukaryotic, maybe even only vertebrate evolution; and then (II) mapped the positions identified on structural models for the proteins, obtained by homology modeling or AlfaFold prediction, in order to substantiate their potential origin as functional adaptations.
A method to improve the functional annotation of proteins in a paralogous family would be very useful, given the abundance of sequence data.
I am knowledgeable in varios aspects of molecular evolution and functional annotation. I am neither a mathematician, nor a developer of phylogenetic methods, so I cannot judge these aspects of the paper.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Note: Figures we made to respond to the referee comments appear to be not supported by the ReviewCommons system.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
**Summary:**
The authors characterized a new lncRNA locus named FLAIL that controls flowering time in Arabidopsis thaliana. The functional validation of this locus is strongly supported by the use of several different tools (CRISPR-Cas9 deletions, T-DNA insertion, amiRNA gene silencing, and transgene complementation of KO lines). It is also suggested that FLAIL lncRNA works in trans but not in cis. There are strong observations supporting that FLAIL works in trans.
Moreover, it is suggested that FLAIL regulates gene expression by interacting with distant chromatin loci. This was assessed using RNA-Seq and ChIRP-Seq. Yet, the overlap between DEGs in the flail mutant and FLAIL binding sites at the chromatin is very small, with only 12 genes. From those, only 2 flowering genes' expression was rescued by FLAIL transgene complementation. The final conclusion that FLAIL lncRNA represses flowering by direct inhibition of the 2 flowering genes expression is correlative, and lacks genetic validation.
#1.1 We plan to support the conclusions in the manuscript genetically as the reviewer suggests. We started these experiments yet they will require the timeframe of the full revision.
In addition inspection of the supplementary file shows that the ChIRP analysis was done without filtering for the FDR so that some of the positive hits have an FDR of 0,232.
#1.2 We strengthened the manuscript by implementing and FDR filter of ChIRP-seq results. The distribution of FLAIL binding sites in Fig. S7B and Table S4, and overlapping numbers between DEGs and FLAIL-ChIRP in Fig. S8A were correspondingly updated.
In addition, many of the peaks land in intergenic regions with is not mentioned in the text a graph with the position of the peaks in respect to nearby genes would help.
#1.3 Thank you for the suggestion, we strengthened the manuscript with the requested analysis. We implemented the FDR filter, then we used "tssRegion" in ChIPseeker to set distance to the nearest TSS as (-1000, 1000), then most peaks were located in promoter regions (67.24%) and in intergenic regions with 16.38%. Since many papers present the position of the peaks by ChIPseeker (PMID: 32338596, PMID: 28221134, PMID: 31081251, PMID: 32012197, PMID: 31649032, PMID: 32633672) we also applied a similar method to display a distribution of FLAIL binding loci relative to distance from the nearest TSS in Fig. S7C.
In one sentence, the authors used the right model system and methodology, including advanced techniques, to characterize a new trans-acting lncRNA important for controlling the flowering time in Arabidopsis but lack evidence supporting a mechanism of action that goes beyond the interaction with several chromatin loci.
**minor points:**
line#63-64 the authors say the COLDAIR and ASL work on FLC in cis in my view the original papers suggested/showed they work in trans.
#1.4 We increased precision by changing this sentence to ‘Vernalization-induced flowering associates with several lncRNAs such as ____COOLAIR____, COLDAIR____, ANTISENSE LONG (ASL), and COLDWRAP____ that in cis or in trans locally repress gene expression of FLOWERING LOCUS C (FLC), a key flowering repressor at different stages of vernalization’____.
Fig 1B please add some more protein-coding RNAs for the bio-info analysis for comparison
#1.5 ____done.
Order of Supplementary Fig citation is mixed with S2 coming before S1B
#1.6 Thank you, we ordered all figures by appearance in the text. __
__
It would help the reader to have a schematic of the crisper deletions, T-DNA insertion, and position of primers used for the RT-qPCR.
#1.7 We enhanced our presentation of Fig. 1A. It shows a schematic of them as well as positions of primers.
In the supplementary PDF file, some of the text is missing on page 3 beginning and end of lines.
#1.8 we ensured all text in new submission.
Reviewer #1 (Significance (Required)):
The use of several different tools to validate the biological function of FLAIL locus is a major strength of this work.
The authors propose that flowering time and its gene regulation are controlled by sense FLAIL lncRNAs. However, the sense transcription of FLAIL locus is not detected in wild-type plants by TSS-Seq, TIF-Seq, or plaNET-Seq.
#1.9.1 There appears to be some confusions. Transcription of sense FLAIL can be observed in chr-DRS, TSS-seq, TIF-seq in wild type and even in plaNET-seq in NRPB2-FLAG nrpb2-1 plant. We enhanced presentation of Fig. 1 and provided a more clear description in Line 81-99.
If the authors would have explored further the expression of FLAIL transcripts in different stages of development (vegetative and non-vegetative) and in response to different conditions, it would make their claims on the function of FLAIL lncRNAs more convincing. Additionally, flail mutants could have been obtained in the hen-2 background, since it's there where we can observe FLAIL transcription.
#1.9.2 Thank you for the suggestion. We included additional analyses in ____Fig. S2 for FLAIL transcription level in different tissues and different abiotic stress conditions base on 20,000 publicly available RNA-seq libraries (PMID: 32768600). Although many libraries are non-stranded, this analysis determined that sense FLAIL or total FLAIL (including sense and antisense) is broadly expressed over many tissues and induced in response to many abiotic stresses (Fig. S2A-B), therefore suggesting that FLAIL may be needed broadly in Arabidopsis.
FLAIL locus lays on the proximal promoter region of PORCUPINE (PCP), an important regulator of plant development. As flail mutants, pcp mutants display an early flowering phenotype. The authors show no link between FLAIL and PCP from the overlap between re-analysis of published RNA-Seq data for pcp and RNA-Seq and ChIRP-Seq from the authors. This analysis is not enough to exclude the involvement of PCP from the FLAIL function. PCP expression using RT-qPCR should be performed in flail mutants to further support that FLAIL works independently from PCP.
#1.10 We strengthened this conclusion by adding the requested experiment. PCP transcription level in flail3 mutant was provided by RT-qPCR and RNA-seq in Fig. S11A-B.
This work does not hypothesize any molecular mechanism besides the interaction of FLAIL lncRNAs with several chromatin loci. It was recently proposed in Arabidopsis that a trans-acting lncRNA interacts with distant loci via the formation of R-loops. The authors do not comment on that. This work would benefit in correlating FLAIL binding sites with R-loop-forming regions mapped in Arabidopsis, regardless of the results from this analysis. Additionally, the authors could attempt to look for a motif responsible for FLAIL binding.
Check R-loop forming data R-loops (Santos-Pereira and Aguilera, 2015) in Arabidopsis, determined by DRIP-seq (Xu et al., 2017).
#1.11 Thanks very much for this excellent suggestions.
First, we searched for a consensus DNA motif on FLAIL binding regions by Homer. We determined four commonly enriched DNA sequence motifs among FLAIL target genes (Fig. 4G). Notably, the target genes CIR1 and LAC8 contained consensus sequences that matched to all FLAIL binding motifs (Fig. 4G). These data are consistent with a model where FLAIL binds DNA targets through a sequence complementary mechanism. Functionally important sequences are frequently conserved among evolutionarily distant species, we observed three motifs that appeared to cross-species conserved (Fig. S9), suggesting a potential evolutionarily constrained role.
Second, we indeed identified R-loops peaks on several of FLAIL binding sites by DRIP-seq (Xu et al., 2017). For example, we observed R-loop formation over three FLAIL binding motifs at CIR1 locus and one at LAC8 (Fig. R1), indicating that R-loop formation may also be a factor determining FLAIL binding. Even though R-loop peaks are present at several FLAIL targets, full elucidation if R-loop formation determines FLAIL targeting requires further experimental evidence is beyond the scope of the current manuscript.
Fig. R1 Representative tracks at LAC8 and CIR1 showing R-loop formation by DRIP-seq on Watson strand (w-R loops), Crick strand (c-R loops). Undetectable R-loops after RNAse-H treatment was shown as negative control. Four conserved sequence regions of FLAIL binding motifs were indicated by red arrows at LAC8 and CIR1 loci. Gene annotation was shown at the bottom.
Most of the key conclusions are convincing, except for the flowering time control directly through CIR1 and LAC8, which should be mentioned as speculative
____#1.12____ Thank you for finding most key conclusions convincing. We plan strengthen the manuscript with additional genetic evidence to as part of the full revision.
The words locus and loci are latin and they should be written in italic. The word Brassicaceae, referring to the family should be in italic, and should not be "Brassicaceaes". The word analysis has the wrong spelling.
#1.13 We follow conventions given in Scientific Style and Format: The CBE Manual for Authors, Editors and Publishers (1994) Cambridge University Press, Cambridge, UK, 6th edn. The words locus and loci are common Latin terms and should not be italicized. However, should the format of the final prefer these words in italics we will change it later. We improved consistency of using italics. “Brassicaceaes” was changed to “Brassicaceae”.
"How much time do you estimate the authors will need to complete the suggested revisions: this is difficult to answer as it depends to which level the author would like to take their work. In my view, if all new experiments would have to be started from scratch it is too far away to be estimated.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
In this ms, the authors identified the FLAIL lncRNA that represses flowering in Arabidopsis from a locus producing sense and antisense transcripts. They use an allelic series involving T-DNA insertions, CRISPR/Cas9 and artificial miRNAs to study the role of FLAIL in flowering. A complementation series of constructs of the flail3 allele allowed them to show that the sense FLAIL lncRNA can act in trans. RNAseq revealed a small group of genes linked to the regulation of flowering whose expression is affected in the mutant and restored in the complementation line. To gain further insight into FLAIL function, the authors used a ChIRPeq approach to test whether the lncRNA can recognize potential target genes along the genome and they could show that FLAIL binds specific genomic regions. Clearly, this paper shows very nice evidence that the FLAIL lncRNA can act in trans to regulate gene expression. Nevertheless, there are certain points that need to be clarified to further support the action of the sense FLAIL transcript.
1.According to Fig. 1 A, the antisense FLAIL is "internal" to the DNA genomic area spanning the sense FLAIL. Hence, with direct RT-qPCR is very difficult to distinguish between these molecules as a minor "RT" activity of the Taq polymerase may lead to detection of low levels of antisense, idem if RDRs may generate low antisense levels. Although I think that the plaNET seq brings strong evidence about the start and ends of these molecules, to measure them by RT-qPCR is not trivial and requires the use of strand-specific RT-PCR using a 5' extension of the oligo and amplification with one oligo of the FLAIL sequence (sense or antisense) and the added oligo.
#2.1.1 Thanks for this good suggestion. We tested both sense and antisense FLAIL transcription using oligo linked gene specific reverse primers for RT and a pair of the linked oligo and gene specific forward primer for qPCR. Primer locations were shown in Fig. 1A and new data were in Fig. 1C-D, Fig. 2B-C, and Fig. S4B-C.
It is not clear how they could distinguish precisely sense and antisense particularly when both RNAs correlate as it is the case here in all alleles (Fig. 1 C and 1D). This should be more explicitly mentioned in the materials and methods section.
#2.1.2 We gave a description of strand specific RT-qPCR method in detail in Line 397-402.
2.In Fig. 2, what are the levels of antisense in the complementing lines with the sense transcript? And reciprocally sense levels in antisense constructs?
#2.2 We added this data in Fig. 2B-C and described in Line 136-143. We indeed observed that sense FLAIL transcripts in the transformed asFLAIL construct or asFLAIL transcripts in the transformed sense FLAIL construct was similar to the control 35S:GUS (Fig. 2B-C), validating that NOS terminator inhibits antisense transcripts. We also noted that the transformed 35S:GUS and sense FLAIL construct expressed higher asFLAIL compared to the flail3 mutant (Fig. 2C). This may be caused by a T-DNA insertion of the resulting transgenic plants.
This will definitively demonstrate the assumption that the T-NOS termination will not allow any expression on the other strand. At present, only one of the lncRNAs is measured in each experiment?
#2.3 We appreciate the next-level reflection of this reviewer, with so many regions initiating cryptic antisense transcription it is an interesting challenge to identify a 3´- terminator that initiates no or poor antisense transcription.
First, previous published data argue that the NOS terminator is largely abolishing initiation of antisense transcription (PMID: 33985972, PMID: 30385760, PMID: 27856735). All these studies address roles of antisense transcription by generating mutations abolishing antisense lncRNA transcription using the NOS terminator sequences.
Second, to satisfy the curiosity of this reviewer, we provide data below that from another manuscript of the lab in preparation. It’s a screenshot of plaNET-seq in fas2-4 NRPB2-FLAG nrpb2-1 mutant carrying a pROK2 construct. The pROK2 T-DNA coincidentally carries a NOS terminator. We mapped plaNET-seq reads to the pROK2 scaffold to display the reads. In pROK2, a NOS promoter activates NPTII expression (red) with NOS terminator as a terminator sequence. No antisense transcription (blue) is detectable by this sensitive method to detect nascent transcripts. Taken together, the selection of the NOS terminator as a region suppressing initiation of antisense transcription represents a valid choice.
Fig. R2 Genome browser screenshot of plaNET-seq at NPTII locus of pROK2 T-DNA vector in fas2-4 NRBP2-FLAG nrpb2-1 mutant. This mutant carries a pROK2 construct, in which a NOS promoter activates NPTII expression with NOS terminator a terminator sequence. Sense strand was shown in red and antisense strand in blue. pROK2 annotation was shown at the bottom.
3.In Fig. 3, it will be important to also show the FLAIL locus in the flail3 mutants (in comparison to the wt) as well as the transgene locus. Here the reads will be strand specific and furthermore this will allow to show that the transgene is not generating antisense transcripts (through RDRs for gene silencing?) and confirm that the sense FLAIL is required for the complementation.
#2.4 Thank you very much for this suggestion. NGS reads for endogenous FLAIL and transgenic FLAIL both map to the FLAIL locus, so we show the FLAIL locus in Fig 3B. This representation shows that sense FLAIL transcripts were significantly reduced in flail3 and rescued in complementation line comparing to wild type. These data argue against the idea of gene silencing and linked antisense production from the transgene. However, RNA-seq suggests that an isoform of asFLAIL appears to accumulate in flail3. Since we fail to identify this accumulation by strand specific RT-qPCR result in flail3 and in CRISPR-deletion lines, this may be an asFLAIL isoform resulting from the T-DNA insertion.
4.In Fig. S5, the expression of FLAIL is shown in the artificial miRNA lines. Is the antisense FLAIL affected "indirectly" by the cleavage of the amiRNA or remains constant? This is likely the case but should be shown.
#2.5 We added this result in Fig. S4C and expression level of asFLAIL remains constant compared to the transformed empty vector control.
5.The ChIRPseq data adds major novelty to the ms and brings new ideas about the way of action of FLAIL. However, are there any common epigenetic states between ChIRP targets (e.g. histone modifications, antisense RNA production, homologies "detected" in the conserved regions between Camelina and Arabidopsis and the target loci? Or others) that may highlight potential mechanisms leading to repression mediated by FLAIL of these loci? There are many databases that could be explored (even during flowering) to search for potential relationships. Although precise description of the mechanism is out of the scope of this ms, this can be discussed in more detail to further expand on the nice data obtained.
#2.6 We searched for a consensus DNA motif on FLAIL binding regions by Homer. We determined four commonly enriched DNA sequence motifs in target genes. Notably, the target genes CIR1 and LAC8 contained consensus sequences that matched to all FLAIL binding motifs (Fig. 4G). These data are consistent with a model where FLAIL binds DNA targets through a sequence complementarity mechanism. Functionally important sequences are frequently conserved among evolutionarily distant species, we observed three motifs that appeared to cross-species conserved (Fig. S9), suggesting a potential evolutionarily constrained role.
**Minor comments:**
6.In Fig. S3, a global alignment between FLAIL and two loci in Arabidopsis and Camelina is sown. What is the extent of homology? How conserved is this sequence at nucleotide level (small or very long?) to support the conservation of this lncRNA. Are there potential structures conserved among these lncRNAs?
#2.7 T____wo consensus regions of ____FLAIL____ sequences among eleven disparate Brassicaceae genomes were shown in Fig. S9. ____Camelina sativa_ shared 98-nucleotide_ conserved sequences with Arabidopsis thaliana. In the future, it will be interesting to explore evolutional conserved structures among Brassicaceae genomes. However, these analyses are beyond the scope of the current manuscript.
7.In Fig. S4B, arrows may help to understand which seeds were selected.
__#2.8 Thanks. Arrows were included.____
__
Reviewer #2 (Significance (Required)):
This paper is a very nice piece of work and demonstrate the action of a long non-coding RNA (lncRNA) in trans on specific targets involved in the regulation of a developmental process, flowering. There is growing evidences that the non-coding genome hides large number of lncRNAs and there is little detailed genetic support for the action of lncRNAs globally. In contrast to many descriptive papers in the field, this ms demonstrates genetically, through an allelic series and complementation experiments, that this lncRNA locus is involved in flowering regulation and that its sense lncRNA recognizes target loci genome-wide, bringing interesting perspectives on potential new mechanisms of transcriptional regulation mediated by non-coding RNAs.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
In the manuscript by Jin et al authors characterize the FLAIL DNA locus in Arabidopsis (using a wide array of publicly available datasets), which produces a set of sense and anti-sense lncRNAs.
While our work on the FLAIL manuscript was ongoing we published the manuscripts where we presented these novel genomics methods and related data to capture nascent transcription and cryptic isoforms. We shared most data with TAIR, so we are happy to hear that these data are considered publically available.
Authors determined that the sense FLAIL lncRNA (or a set of sense lncRNAs, which isn't fully clear from the way the data are presented) is involved in flowering time in Arabidopsis based on the fact that the several flail mutants lead to the early flowering phenotype and this flowering defect is complemented by transgenic FLAIL DNA, meaning that FLAIL lncRNA acts in trans.
A series of experiments lead us to conclude that the sense isoform of FLAIL is responsible for the effect. We improved the data representation and writing of the manuscript to enhance accessibility.
The T DNA flail3 - mutant results in expression changes (up or down) of 1221 genes, including twenty genes linked to flowering in various ways. Expression of a group of these flowering-related genes could be either fully (for eight genes) or partially (for five genes) rescued by transgenic FLAIL. Authors also conducted the ChIRP-seq to determine which genes are physically bound by FLAIL lncRNA genome-wide. It was found that 210 genes in the genome are bound by FLAIL lncRNA. Comparison of the dataset of differentially expressed genes in the T-DNA flail3 mutant with the ChIRP-seq dataset of genes that are bound by FLAIL lncRNA revealed the 12 overlapping genes.
Among these twelve overlapping genes, four were found to be functionally connected to flowering with expression of these four genes being down in flail3 T-DNA mutant. Two out of these four genes were ruled out from being involved in the regulation of flowering by FLAIL. Authors conclude that the two other genes (Cir1 and Lac8) are responsible for the late flowering phenotype of flail mutants based on the three lines of evidence: (i) these genes expression is reduced in the flail mutant, (ii) FLAIL lncRNA directly interacts with these genes chromatin, (iii) the mutants of these genes were previously reported by others to display early flowering phenotypes too. While I find many of the findings reported in the manuscript very interesting, building a good foundation on which to expand the study and providing a very good leads for follow up experiments, I also have serious concerns about the manuscript in its current form.
Most importantly, this reviewer doesn't think that the mechanism of FLAIL lncRNA action was convincingly demonstrated. The main question would be how FLAIL lncRNA works and this question wasn't fully answered. It is great that FLAIL lncRNA binds directly to the two flowering-related genes, but what does it mean? Does it change any chromatin context of these genes quantitatively or qualitatively to affect the transcription? Or does it bind any components of transcriptional machinery and thus controls the transcriptional output?
#3.1 This manuscript addresses an important question in the field question: what is the evidence for functional elements in non-coding regions of genomes? Despite many efforts, convincing genetic support for these functions often remained limited. In addition to our strong genetic data, we provided new evidence that FLAIL recognizes targets with evolutionally conserved sequence motifs as part of the revision in Fig 4F and Fig. S9. Additionally, we plan to do ChIP-qPCR to identify histone modifications on FLAIL targets.
Additionally, flail3 T-DNA mutant affects the expression of 1221 genes and FLAIL lncRNA physically interact with 210 genes, so how can authors be fully sure that FLAIL lncRNA has only direct effect on these two genes and doesn't also contribute to the regulation of the upstream to Cir1 and Lac8 genes or even components of the transcriptional machinery that regulate these genes?
#3.2 We agree with this opinion. It is the reason why we felt stating this exact conclusion in our previous manuscript was justified. We improved accessibility of our manuscript in the revision, these clarify our model, that the trans-acting lncRNA sense FLAIL can interact with the chromatin regions of its target genes to directly or indirectly regulate gene expression changes involving flowering (Line 274).
Theoretically, doing RNA-seq in the amiR-FLAIL sense lncRNA mutant might have a chance of reducing the number of affected DEGs, making it easier to analyze the FLAIL targets, even if the allele can't be used for complementation experiments.
#3.3 Thanks for this suggestion. We plan to confirm key gene expression changes using amiRNA-FLAIL in full revision.
Also, auhors totally neglect putting the Cir1 and Lac8 genes into the context of flowering regulation, but it is something that needs to be done.
#3.4 ____We discussed roles of CIR1 and LAC8 in flowering regulation in Line 260-272. Flowering is fine-tuned to maximize reproductive success and seed production and by endogenous genetic cues and external environmental stimuli such as photoperiod. Nevertheless, many details of the flowering pathways and their integration remain to be investigated____. CIR1 is a circadian clock gene, induced by light and involved in a regulatory feedback loop that controls a subset of the circadian outputs and thus determines flowering time. Our GO analysis supports that a subset of DEGs are connected to the response to red or far red light that contains among other key flowering genes such as ____phytochrome interacting factor____ 4____ (PIF4) and CONSTANS (CO)____. FLAIL also binds the chromatin region of LAC8. LAC8 is a laccase family member that mainly modulates phenylpropanoid pathway for lignin biosynthesis____. Similar to flail, lac8 mutants flower early. While intermediates in this pathway or dysregulation of lignin-related genes could promote flowering in plants, the molecular connections of reduced LAC8 expression to effects on flowering time will require further investigation.
Lastly, the paper needs to be totally rewritten to be even properly evaluated. In its current state it reads like a very short draft.
#3.5 We reorganized the structure of manuscript, improved clarity and provided new mechanistic evidence in Fig. 4G and Fig. S9 to present a more complete manuscript.
The Abstract is weak, the Introduction is written in a such telegraphic style that it is barely readable, in many places there is no connections between sentences leading to the information appear to be presented as random, even if it isn't.
#3.6- We strengthened the Abstract by providing new evidence and improved for the Introduction.
The Results section is written rather rudimentary with information not being sufficiently provided to describe the results but rather scattered between the Results and Figure legends.
#3.7 Thanks for your suggestions, we described each FLAIL length and all constructs in detail in Results, put a schematic of T-DNA and CRISPR mutants in Fig. 1A, moved comparative genomics data to the end of Results and ensured all figures in order.
The Discussion is the best written part of the manuscript.
Thanks for your appreciation of the Discussion.
The Conclusion section carries no specific information and reads more like a little summary suitable for a review article rather than experimental paper.
#3.8 We agree this opinion, this paragraph fits Discussion better and Conclusion was removed.
Therefore, this reviewer thinks that regardless of how authors will choose to proceed with the current experimental version of the manuscript, it'd be in the authors' best interests to at least fully revise the paper before resubmitting anywhere. I'd also advise authors to seek professional editorial help specifically using an editor with the background in the plant sciences.
Authors might also want to consider moving Fig.3 into the Suppl. as it doesn't carry much weight or significance and perhaps make existing figures more meaningful and comprehensive and by including a better diagram of the locus (e.g., Fig. S1), etc.
#3.9 We thank this helpful suggestion. Fig.3 represents the RNA-seq data. In combination with supporting data in the supplementary material, it gives an easy visual readout of the reproducibility of the findings in replicates of stranded RNA-seq. In a new submission, we moved it to Fig. S5B and highlighted 13 differentially expressed flowering genes as well as sense FLAIL in flail3 that were rescued in complementation line in Fig. 3A. Moreover, we gave screenshots of FLAIL itself and four flowering related FLAIL targets in RNA-seq with a clear schematic representation of each locus. We believe these revisions improve Fig. 3.
It's not practical to list all issues with the writing as the paper requires total re-writing, so I can just make a few suggestions without any specific order to help authors improve the paper:
We are happy to improve our manuscript with the help of the reviewers. We addressed all comments including from reviewer #3 with a constructive spirit. However, since colleagues and reviewers #1 and #2 found the manuscript comprehensible to the point where they could make expert-level comments that illustrate understanding of the manuscript, a total re-writing did not feel like the most constructive suggestion to improve the manuscript.
--There is no statement anywhere that states the goal of the study.
#3.10____ We stated the goal of the study in line 50-69 and we think this is a misunderstanding. We summarized three issues currently exist in characterization of functional lncRNA in the last sentence of the first three paragraphs in Background: 1 in Line 50, the broad range of candidate hypotheses by which lncRNA loci may play functional roles call for multiple approaches to distinguish alternative molecular mechanisms. 2 in Line 59, functional characterization of trans-acting lncRNAs remains a key knowledge gap to understand the regulatory contributions of the non-coding genome. 3 in Line 69, the contribution of trans-acting lncRNAs to the regulation of distant flowering genes is currently unclear. So in the last paragraph of the background, we claimed that our goals are to address these questions through characterization of functional FLAIL lncRNA in flowering repression using multiple genetic approaches and various genomic data.
--No rational is provided on why authors decided to examine this specific genomic locus.
#3.11 For several years, our lab studies the rules and roles of non-coding transcription. We characterized and are characterizing several loci with evidence of non-coding transcription in a range of species. Early experiments suggested that FLAIL functioned in flowering, this manuscript clarifies that the function is executed as trans-acting lncRNA of the sense FLAIL isoform.
--Typically, the significance is in studying the function of lncRNA or a group of lncRNAs produced from a genomic locus, I don't think I ever encountered the instances when it was exciting to study just a specific genomic locus. If the locus does indeed have any significance for initiating the study, it needs to be explained.
#3.12 This study is remarkable in many aspects. We fully discuss key strengths in the discussion. First, we ____exhibit a trans-acting lncRNA FLAIL that represses flowering by promoting the expression of floral repressor genes as discussed in Line 247-281_; Second, in Line 284-306, we informed that this study provide a compelling model about how to apply _series of convincing genetic data____ to functionally characterize lncRNA loci. Third, in Line 307-312, evolutionary conserved FLAIL sequences across species is key to characterize the functional _microhomology in other _Brassicaceae.
--The locus can produce lncRNAs, but it can't harbor them.
#3.13 We clarified this confusion by enhancing ____presentation of Fig. 1 and providing a more clear description of each sequencing method and results in Line 81-99. Although we provided evidence that transcription of both sense and antisense FLAIL are more stable in hen2-2, they were clearly observed in chr-DRS in wild type and plaNET-seq in NRBP2-FLAG nrpb2-1 and sense FLAIL was even detected in TSS-seq and TIF-seq in wild type.
--No length of FLAIL lncRNAs or their range is provided in the first section of Results.
#3.14 We gave the length of sense FLAIL in Line 82 and antisense FLAIL in Line 86.
--On many occasions authors don't state rational for doing experiments, which leads to information often flowing as random.
#3.15 we enhanced clarity of the rational for each experiment and made some connections between sentences to make more fluent. For example, in sentences in Line 99, Line 113, Line 126, Line 159, Line 183, Line 214, and Line 219.
--What do authors mean by the subtitle "FLAIL characterizes a trans-acting lncRNA repressing flowering"? How can lncRNA FLAIL or FLAIL locus characterize lncRNA?
#3.16 We changed it to “FLAIL represses flowering as trans-acting lncRNA” in Line 112.
--Check all figures. E.g., Fig. 3B-E mentions only accession numbers for the genes.
#3.17 The systematic gene IDs are a valid way to represent data, in particular for genomics data since it facilitates cross-comparisons. To make it more accessible we also show systematic names of each gene in Fig. 3A-F, Fig. S6 and Table S3.
--It is not clear where exactly the T-DNA insertion is located relative to sense FLAIL in flail3 mutant (Fig. S4).
#3.18 We moved the schematic to clarify this to revised Fig. 1A and the exact T-DNA insertion site is mentioned in the legend.
--- What is the length of the complementing sense FLAIL lncRNA?
#3.19 We now include the length of the complementing sense and antisense FLAILs in Line 351-352.
--Check the description of each and every construct used and provide explanation for each in the Results. E.g., the pFLAIL:gFLAIL18/88 and pasFLAIL:gasFLAIL18/39 constructs aren't explained in Results, and can only be found in Fig. 2 legends.
#3.20 We described each construct including pFLAIL:gFLAIL18/88 and pasFLAIL:gasFLAIL18/39 constructs in Line 133, amiR-FLAIL-11 and amiR-FLAIL-11 in Line 149.
Reviewer #3 (Significance (Required)):
Tens of thousands of lncRNAs have been identified in various eukaryotes, but their biological roles have been shown only for a small fraction of them, and the mechanisms of their action are delineated for only a very few of them. Most of the advances on the field of lncRNAs are reported in metazoan, while the field of lncRNAs in plants is lagging far behind in terms of knowledge about lncRNAs with assigned biological functions or lncRNAs with delineated mechanisms of action. From this point of view, this reviewer is always excited to see any new functional plant lncRNAs for which either biological or mechanistic functions have been determined, and deems the information on this subject significant. The manuscript's findings are potentially very interesting and present a decent body of work that lays a very solid groundwork for future experiments. My main concern about the manuscript's significance in its current form is the fact that no real solid mechanism of action for the described lncRNA or a set of lncRNAs (?) has been demonstrated. The best mechanistically studied lncRNAs in Arabidopsis are involved in the regulation of flowering time, particularly those that function in the vernalization flowering pathway and to lesser extent in autonomous pathway. The new FLAIL lncRNA or lncRNAs (?) described in this manuscript also appear to regulate the flowering time in Arabidopsis, however more experiments would be needed to provide a definite conclusion about how direct FLAIL's effect is and how exactly it functions. That unfortunately obviously diminishes the significance of the manuscript and makes it potentially interesting only to researches studying flowering in Arabidopsis and even then the manuscript results would be incomplete to make solid conclusion.
Lots of functional phenotype have
Additionally, the manuscript requires complete re-writing.
We thank this reviewer for the appreciation of __a decent body of work and a very solid groundwork for future experiments. We are confident that our revisions make the manuscript more comprehensible to highlight the qualities of our manuscript more accessibly.____
__
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In the manuscript by Jin et al authors characterize the FLAIL DNA locus in Arabidopsis (using a wide array of publicly available datasets), which produces a set of sense and anti-sense lncRNAs. Authors determined that the sense FLAIL lncRNA (or a set of sense lncRNAs, which isn't fully clear from the way the data are presented) is involved in flowering time in Arabidopsis based on the fact that the several flail mutants lead to the early flowering phenotype and this flowering defect is complemented by transgenic FLAIL DNA, meaning that FLAIL lncRNA acts in trans. The T-DNA flail3 mutant results in expression changes (up or down) of 1221 genes, including twenty genes linked to flowering in various ways. Expression of a group of these flowering-related genes could be either fully (for eight genes) or partially (for five genes) rescued by transgenic FLAIL. Authors also conducted the ChIRP-seq to determine which genes are physically bound by FLAIL lncRNA genome-wide. It was found that 210 genes in the genome are bound by FLAIL lncRNA. Comparison of the dataset of differentially expressed genes in the T-DNA flail3 mutant with the ChIRP-seq dataset of genes that are bound by FLAIL lncRNA revealed the 12 overlapping genes.
Among these twelve overlapping genes, four were found to be functionally connected to flowering with expression of these four genes being down in flail3 T-DNA mutant. Two out of these four genes were ruled out from being involved in the regulation of flowering by FLAIL. Authors conclude that the two other genes (Cir1 and Lac8) are responsible for the late flowering phenotype of flail mutants based on the three lines of evidence: (i) these genes expression is reduced in the flail mutant, (ii) FLAIL lncRNA directly interacts with these genes chromatin, (iii) the mutants of these genes were previously reported by others to display early flowering phenotypes too. <br /> While I find many of the findings reported in the manuscript very interesting, building a good foundation on which to expand the study and providing a very good leads for follow up experiments, I also have serious concerns about the manuscript in its current form. Most importantly, this reviewer doesn't think that the mechanism of FLAIL lncRNA action was convincingly demonstrated. The main question would be how FLAIL lncRNA works and this question wasn't fully answered. It is great that FLAIL lncRNA binds directly to the two flowering-related genes, but what does it mean? Does it change any chromatin context of these genes quantitatively or qualitatively to affect the transcription? Or does it bind any components of transcriptional machinery and thus controls the transcriptional output? Additionally, flail3 T-DNA mutant affects the expression of 1221 genes and FLAIL lncRNA physically interact with 210 genes, so how can authors be fully sure that FLAIL lncRNA has only direct effect on these two genes and doesn't also contribute to the regulation of the upstream to Cir1 and Lac8 genes or even components of the transcriptional machinery that regulate these genes? Theoretically, doing RNA-seq in the amiR-FLAIL sense lncRNA mutant might have a chance of reducing the number of affected DEGs, making it easier to analyze the FLAIL targets, even if the allele can't be used for complementation experiments. Also, authors totally neglect putting the Cir1 and Lac8 genes into the context of flowering regulation, but it is something that needs to be done. Lastly, the paper needs to be totally rewritten to be even properly evaluated. In its current state it reads like a very short draft. The Abstract is weak, the Introduction is written in a such telegraphic style that it is barely readable, in many places there is no connections between sentences leading to the information appear to be presented as random, even if it isn't. The Results section is written rather rudimentary with information not being sufficiently provided to describe the results but rather scattered between the Results and Figure legends. The Discussion is the best written part of the manuscript. The Conclusion section carries no specific information and reads more like a little summary suitable for a review article rather than experimental paper.
Therefore, this reviewer thinks that regardless of how authors will choose to proceed with the current experimental version of the manuscript, it'd be in the authors' best interests to at least fully revise the paper before resubmitting anywhere. I'd also advise authors to seek professional editorial help specifically using an editor with the background in the plant sciences. Authors might also want to consider moving Fig.3 into the Suppl. as it doesn't carry much weight or significance and perhaps make existing figures more meaningful and comprehensive and by including a better diagram of the locus (e.g., Fig. S1), etc.
It's not practical to list all issues with the writing as the paper requires total re-writing, so I can just make a few suggestions without any specific order to help authors improve the paper:
--There is no statement anywhere that states the goal of the study.
--No rational is provided on why authors decided to examine this specific genomic locus.
--Typically, the significance is in studying the function of lncRNA or a group of lncRNAs produced from a genomic locus, I don't think I ever encountered the instances when it was exciting to study just a specific genomic locus. If the locus does indeed have any significance for initiating the study, it needs to be explained.
--The locus can produce lncRNAs, but it can't harbor them.
--No length of FLAIL lncRNAs or their range is provided in the first section of Results.
--On many occasions authors don't state rational for doing experiments, which leads to information often flowing as random.
--What do authors mean by the subtitle "FLAIL characterizes a trans-acting lncRNA repressing flowering"? How can lncRNA FLAIL or FLAIL locus characterize lncRNA?
--Check all figures. E.g., Fig. 3B-E mentions only accession numbers for the genes.
--It is not clear where exactly the T-DNA insertion is located relative to sense FLAIL in flail3 mutant (Fig. S4). --- What is the length of the complementing sense FLAIL lncRNA?
--Check the description of each and every construct used and provide explanation for each in the Results. E.g., the pFLAIL:gFLAIL18/88 and pasFLAIL:gasFLAIL18/39 constructs aren't explained in Results, and can only be found in Fig. 2 legends.
Tens of thousands of lncRNAs have been identified in various eukaryotes, but their biological roles have been shown only for a small fraction of them, and the mechanisms of their action are delineated for only a very few of them. Most of the advances on the field of lncRNAs are reported in metazoan, while the field of lncRNAs in plants is lagging far behind in terms of knowledge about lncRNAs with assigned biological functions or lncRNAs with delineated mechanisms of action. From this point of view, this reviewer is always excited to see any new functional plant lncRNAs for which either biological or mechanistic functions have been determined, and deems the information on this subject significant. The manuscript's findings are potentially very interesting and present a decent body of work that lays a very solid groundwork for future experiments. My main concern about the manuscript's significance in its current form is the fact that no real solid mechanism of action for the described lncRNA or a set of lncRNAs (?) has been demonstrated. The best mechanistically studied lncRNAs in Arabidopsis are involved in the regulation of flowering time, particularly those that function in the vernalization flowering pathway and to lesser extent in autonomous pathway. The new FLAIL lncRNA or lncRNAs (?) described in this manuscript also appear to regulate the flowering time in Arabidopsis, however more experiments would be needed to provide a definite conclusion about how direct FLAIL's effect is and how exactly it functions. That unfortunately obviously diminishes the significance of the manuscript and makes it potentially interesting only to researches studying flowering in Arabidopsis and even then the manuscript results would be incomplete to make solid conclusion. Additionally, the manuscript requires complete re-writing.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this ms, the authors identified the FLAIL lncRNA that represses flowering in Arabidopsis from a locus producing sense and antisense transcripts. They use an allelic series involving T-DNA insertions, CRISPR/Cas9 and artificial miRNAs to study the role of FLAIL in flowering. A complementation series of constructs of the flail3 allele allowed them to show that the sense FLAIL lncRNA can act in trans. RNAseq revealed a small group of genes linked to the regulation of flowering whose expression is affected in the mutant and restored in the complementation line. To gain further insight into FLAIL function, the authors used a ChIRPeq approach to test whether the lncRNA can recognize potential target genes along the genome and they could show that FLAIL binds specific genomic regions. Clearly, this paper shows very nice evidence that the FLAIL lncRNA can act in trans to regulate gene expression. Nevertheless, there are certain points that need to be clarified to further support the action of the sense FLAIL transcript.
1.According to Fig. 1 A, the antisense FLAIL is "internal" to the DNA genomic area spanning the sense FLAIL. Hence, with direct RT-qPCR is very difficult to distinguish between these molecules as a minor "RT" activity of the Taq polymerase may lead to detection of low levels of antisense, idem if RDRs may generate low antisense levels. Although I think that the plaNET seq brings strong evidence about the start and ends of these molecules, to measure them by RT-qPCR is not trivial and requires the use of strand-specific RT-PCR using a 5' extension of the oligo and amplification with one oligo of the FLAIL sequence (sense or antisense) and the added oligo. It is not clear how they could distinguish precisely sense and antisense particularly when both RNAs correlate as it is the case here in all alleles (Fig. 1 C and 1D). This should be more explicitly mentioned in the materials and methods section.
2.In Fig. 2, what are the levels of antisense in the complementing lines with the sense transcript? And reciprocally sense levels in antisense constructs? This will definitively demonstrate the assumption that the T-NOS termination will not allow any expression on the other strand. At present, only one of the lncRNAs is measured in each experiment?
3.In Fig. 3, it will be important to also show the FLAIL locus in the flail3 mutants (in comparison to the wt) as well as the transgene locus. Here the reads will be strand specific and furthermore this will allow to show that the transgene is not generating antisense transcripts (through RDRs for gene silencing?) and confirm that the sense FLAIL is required for the complementation.
4.In Fig. S5, the expression of FLAIL is shown in the artificial miRNA lines. Is the antisense FLAIL affected "indirectly" by the cleavage of the amiRNA or remains constant? This is likely the case but should be shown.
5.The ChIRPseq data adds major novelty to the ms and brings new ideas about the way of action of FLAIL. However, are there any common epigenetic states between ChIRP targets (e.g. histone modifications, antisense RNA production, homologies "detected" in the conserved regions between Camelina and Arabidopsis and the target loci? Or others) that may highlight potential mechanisms leading to repression mediated by FLAIL of these loci? There are many databases that could be explored (even during flowering) to search for potential relationships. Although precise description of the mechanism is out of the scope of this ms, this can be discussed in more detail to further expand on the nice data obtained.
Minor comments:
6.In Fig. S3, a global alignment between FLAIL and two loci in Arabidopsis and Camelina is sown. What is the extent of homology? How conserved is this sequence at nucleotide level (small or very long?) to support the conservation of this lncRNA. Are there potential structures conserved among these lncRNAs?
7.In Fig. S4B, arrows may help to understand which seeds were selected.
This paper is a very nice piece of work and demonstrate the action of a long non-coding RNA (lncRNA) in trans on specific targets involved in the regulation of a developmental process, flowering. There is growing evidences that the non-coding genome hides large number of lncRNAs and there is little detailed genetic support for the action of lncRNAs globally. In contrast to many descriptive papers in the field, this ms demonstrates genetically, through an allelic series and complementation experiments, that this lncRNA locus is involved in flowering regulation and that its sense lncRNA recognizes target loci genome-wide, bringing interesting perspectives on potential new mechanisms of transcriptional regulation mediated by non-coding RNAs.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
The authors characterized a new lncRNA locus named FLAIL that controls flowering time in Arabidopsis thaliana. The functional validation of this locus is strongly supported by the use of several different tools (CRISPR-Cas9 deletions, T-DNA insertion, amiRNA gene silencing, and transgene complementation of KO lines). It is also suggested that FLAIL lncRNA works in trans but not in cis. There are strong observations supporting that FLAIL works in trans.
Moreover, it is suggested that FLAIL regulates gene expression by interacting with distant chromatin loci. This was assessed using RNA-Seq and ChIRP-Seq. Yet, the overlap between DEGs in the flail mutant and FLAIL binding sites at the chromatin is very small, with only 12 genes. From those, only 2 flowering genes' expression was rescued by FLAIL transgene complementation. The final conclusion that FLAIL lncRNA represses flowering by direct inhibition of the 2 flowering genes expression is correlative, and lacks genetic validation. In addition inspection of the supplementary file shows that the ChIRP analysis was done without filtering for the FDR so that some of the positive hits have an FDR of 0,232. In addition, many of the peaks land in intergenic regions with is not mentioned in the text a graph with the position of the peaks in respect to nearby genes would help.
In one sentence, the authors used the right model system and methodology, including advanced techniques, to characterize a new trans-acting lncRNA important for controlling the flowering time in Arabidopsis but lack evidence supporting a mechanism of action that goes beyond the interaction with several chromatin loci.
minor points:
line#63-64 the authors say the COLDAIR and ASL work on FLC in cis in my view the original papers suggested/showed they work in trans.
Fig 1B please add some more protein-coding RNAs for the bio-info analysis for comparison
Order of Supplementary Fig citation is mixed with S2 coming before S1B
It would help the reader to have a schematic of the crisper deletions, T-DNA insertion, and position of primers used for the RT-qPCR.
In the supplementary PDF file, some of the text is missing on page 3 beginning and end of lines.
The use of several different tools to validate the biological function of FLAIL locus is a major strength of this work.
The authors propose that flowering time and its gene regulation are controlled by sense FLAIL lncRNAs. However, the sense transcription of FLAIL locus is not detected in wild-type plants by TSS-Seq, TIF-Seq, or plaNET-Seq. If the authors would have explored further the expression of FLAIL transcripts in different stages of development (vegetative and non-vegetative) and in response to different conditions, it would make their claims on the function of FLAIL lncRNAs more convincing. Additionally, flail mutants could have been obtained in the hen-2 background, since it's there where we can observe FLAIL transcription.
FLAIL locus lays on the proximal promoter region of PORCUPINE (PCP), an important regulator of plant development. As flail mutants, pcp mutants display an early flowering phenotype. The authors show no link between FLAIL and PCP from the overlap between re-analysis of published RNA-Seq data for pcp and RNA-Seq and ChIRP-Seq from the authors. This analysis is not enough to exclude the involvement of PCP from the FLAIL function. PCP expression using RT-qPCR should be performed in flail mutants to further support that FLAIL works independently from PCP.
This work does not hypothesize any molecular mechanism besides the interaction of FLAIL lncRNAs with several chromatin loci. It was recently proposed in Arabidopsis that a trans-acting lncRNA interacts with distant loci via the formation of R-loops. The authors do not comment on that. This work would benefit in correlating FLAIL binding sites with R-loop-forming regions mapped in Arabidopsis, regardless of the results from this analysis. Additionally, the authors could attempt to look for a motif responsible for FLAIL binding.
Most of the key conclusions are convincing, except for the flowering time control directly through CIR1 and LAC8, which should be mentioned as speculative
The words locus and loci are latin and they should be written in italic. The word Brassicaceae, referring to the family should be in italic, and should not be "Brassicaceaes". The word analysis has the wrong spelling.
I was asked "How much time do you estimate the authors will need to complete the suggested revisions: this is difficult to answer as it depends to which level the author would like to take their work. In my view, if all new experiments would have to be started from scratch it is too far away to be estimated.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Manuscript number: RC-2021-01118
Corresponding author(s): Jun, Nakayama and Kentaro, Semba
We are grateful to all of the reviewers for their critical comments and insightful suggestions that have helped us considerably improve our paper. As indicated in the responses that follow, we have taken all of these comments and suggestions into account in the revised version of our paper, including the supplementary information.
In the revised manuscript, we focus on the existence of two cancer stem cell-like populations in TNBC xenograft model and patients. The response to each reviewer is described below.
Sincerely,
Jun Nakayama
Kentaro Semba
Department of Life Science and Medical Bioscience
School of Advanced Science and Engineering
Waseda University
E-mail: junakaya@ncc.go.jp or jnakayama.re@gmail.com to JN
ksemba@waseda.jp to KS
Reviewer #1 (Evidence, reproducibility and clarity (Required)): * **Summary:** Nakayama and colleagues use their previously developed automated tissue microdissection punching platform to perform spatial transcriptomics on a breast cancer xenograft model. Using transcriptomics on multiple clumps of 10-30 cells from different regions in a tumor and a lymph node metastasis they identified different cell-type clusters. Two of these clusters expressed different cancer stem cell markers. This led the authors to suggest that two distinct cancer stem cell(-like) populations may exist within one (breast) tumor, which could potentially make tumors more drug-resilient.
**Major comments:** While the quality of the presented sequencing data is good and the manuscript is mostly written in a clear and accessible style, there are some concerns that limit the impact of this story. Most importantly, the manuscript in its present form does not convince me that the MDA-MB-231 xenografts indeed contain two distinct populations of cancer stem(-like) cells.
1.The data obtained are not single cell data, which makes it difficult -if not impossible- to draw conclusions about presence of cancer stem cells. Each data point is the average of 10-30 cells, and the interpretation of the data is severely limited by this. How can the quantification of expression of CD44/MYC/HMGA1 in clumps of 10-30 cells teach us something about the stemness of tumor cells? *
Answer: We would thank the comment. The reviewer’s suggestion is an important point; however, this is technical limitation of spatial transcriptomics technology. Most advanced spatial transcriptomics technologies, e.g. Visium (10x Genomics), also have the same problem. It means that our technology and the advanced technologies are technics to analyze gene expression and characteristics of tissues from 10-30 cells in each spot. Although high resolution spatial transcriptomics has been developed in 2021 [1], it is not generally used yet as described in the comment (Significance) from reviewer1.
From our spatial analysis, we identified that CD44, MYC, and HMGA1 were expressed from human cancer cell. Their expression profiles were distinct among specific parts of the tumor section. To validate the existence of two types of cancer stem-like cells in TNBC tumors, we performed the additional analysis with the public scRNA-seq datasets of high-metastatic MDA-MB-23-LM2 xenograft model (GSE163210) [2]. This study performed scRNA-seq analysis of primary tumor and circulating tumor cells in MDA-MB-231-LM2 xenograft model. We analyzed it with Seurat/R (Figure A-1). As a result of reanalysis, HMGA1 and CD44 expression were confirmed at single-cell resolution (Figure A-2,3). These results verified the existence of two cancer stem cell-like populations (HMGA1-high, CD44-high) in MDA-MB-231 xenograft. Hence, the study of MDA-MB-231 xenograft supported our findings from spatial transcriptomics.
Additionally, we performed the immuno-staining of sections using anti-CD44 antibody and anti-HMGA1 antibody as described in reviewer’s comment 5. As a result, CD44 and HMGA1 were detected in primary tumor sections. There were cells that express either CD44 or HMGA1 and cells that co-express both CD44 and HMGA1 (Figure B). We believe that our findings are solid results because the findings were also validated by other methods.
In the revised manuscript, Figure A are incorporated as Figure 3B-E. Figure B is incorporated as Figure 3A. Hope our new results will be now accepted by the learned Reviewer and Editor.
Figure A-1. Reanalysis of scRNA-seq of metastatic MDA-MB-231 xenograft
Flowchart of the public single-cell RNA-seq (scRNA-seq) reanalysis using GSE163210 datasets.
Figure A-2. UMAP plots of xenograft and CD44/HMGA1 expression
UMAP plot of MDA-MB-231-LM2 xenograft tumors and circulating tumor cells (Left). Expression of CD44 and HMGA1 in the UMAP plot (Right).
Figure A-3. Pie chart of CD44/HMGA1 positive cancer cells in MDA-MB-231 xenograft
Pie chart of cancer stem cell-like population ratio in MDA-MB-231-LM2 xenografts.
Figure B. Fluorescent immuno-staining of MDA-MB-231 primary tumor
Representative images immunostained with CD44 and HMGA1 in primary tumor sections of the MDA-MB-231 xenograft model. Red: HMGA1, Green: CD44, and Blue: Nucleus. Scale bars, 20 μm (left), 10 μm (right). White arrows represent cancer cells that independently expressed or co-expressed.
* 2.Furthermore, the authors should better explain their data analysis strategy with identification of gene expression profiles. It is unclear how they found CD44, MYC, and HMGA1 other than by cherry-picking from the list of cluster markers. *Answer: In this research, to identify the characteristics of clusters, we analyzed differentially expressed genes (DEGs) by ‘FindAllMarkers’ function of Seurat. As a result, ‘Cluster 0’ significantly expressed HMGA1 gene, and ‘cluster 1’ significantly expressed CD44. HMGA1 and CD44 are popular cancer stem cell markers in triple-negative breast cancer [3, 4]. In this study, we focus on metastasis-related genes and cancer stem cell markers (described in introduction section). Therefore, we focus on cancer-stem cell markers in the presented study. Cancer stemness is an important concept in cancer metastasis [5-7]. These results suggested that the existence of two cancer stem cell-like populations could potentially make tumors more drug-resilient in xenograft models and clinical patients.
To improve the manuscript, we revised the description in the revised manuscript (Pages 5-6, Lines 97-105).
* 3.Following up on the above point: I looked in the supplementary tables, but couldn't find MYC. How did the authors conclude that MYC is involved in cluster 1? In fact, when I ran a quick analysis in EnrichR, I saw that putative MYC target genes were strongly enriched among the markers in the HMGA1 cluster, but not the CD44/MYC. That's opposite to what I would expect. *__Answer: __We apologize for our confusing data and description. First, we found the expression of CD44 and HMGA1 in each cluster. Therefore, we performed the up-stream enrichment analysis using gene signatures of FindAllMakers by Metascape. From the result of enrichment analysis, we found the MYC activation in CD44 high-cluster; therefore, we named the cluster “CD44/MYC-high” cluster.
To improve the manuscript, we revised the Figure2, Supplementary Table S3, and manuscript (Pages 5-6, Lines 103-106).
* 4.All data were produced from 1 primary tumor and 1 metastasis. Thus, reproducibility and robustness of the methodology cannot be evaluated. The interpretation of the data could be strengthened when xenografts from at least 3 different mice are shown. *__Answer: __We would thank the suggestion. As the reviewer’s comment, we performed 1 primary tumor and 1 metastasis lesion from a transplanted mouse. Since this experiment take a long time, we tried to validate the findings by other methods (Figure A: scRNA-seq analysis of MDA-MB-231 xenografts, Figure B: Immuno-staining of MDA-MB-231 primary tumor, Figure C: scRNA-seq analysis of TNBC patients).
First, we reanalyzed the public dataset which performed single-cell RNA-seq analysis of MDA-MB-231 xenografted tumor and circulating tumor cells in immunodeficient mice as shown in the answer to comment 1 (Figure A). Next, we performed the immuno-staining of sections using anti-CD44 antibody and anti-HMGA1 antibody as described in reviewer’s comment 5. As results, CD44 and HMGA1 were detected in primary tumor sections. There were cells that express either CD44 or HMGA1 and cells that co-express both CD44 and HMGA1 (Figure B). Next, we performed the reanalysis of 19 scRNA-seq samples from integrated 3 TNBC cohorts (Figure C-1). In a UMAP plot, differences between CD44-positive cancer cell and HMGA1-positive cancer cell were observed; however, these cells did not visually form the specific clusters (Figure C-2). CD44 and HMGA1 expressed globally in the UMAP plot, but CD44 makes some specific clusters (cluster at right side). Additionally, following the comment, we performed the population analysis in each patient (Figure C-3 and C-4). Detection of double-positive population in TNBC patients suggested that the population may be more undifferentiated cancer stem cells diving into both CD44-positive cells and HMGA1-positive cells.
In addition, we reanalyzed primary tumors and metastasis lesions from other mice as a test trial sample (Figure D-1). The microspots including test trial samples showed 3 human clusters which were classified into CD44/MYC, HMGA1, and Marker-low clusters. We believe that our findings are solid results because the findings were also validated by other methods.
In the revised manuscript, Figure A are incorporated as Figure 3B-E. Figure B is incorporated as Figure 3A. Figure C is incorporated as Figure 5. We only showed Figure D in the response to the reviewer’s comment. Hope our new results will be now accepted by the learned Reviewer and Editor.
Figure C-1. Reanalysis of integrated TNBC patients scRNA-seq
A flowchart of the reanalysis of a public scRNA-seq dataset. We downloaded GSE161529, GSE176078, and GSE180286 (scRNA-seq data of 19 TNBC patients). Integrated datasets were analyzed with Seurat. Log normalization, scaling, PCA and UMAP visualization were performed following the basic protocol in Seurat. To extract the cancer cells, cells expressing EPCAM/KRT8 (epithelial marker) were filtered. A UMAP plot of cancer cell from 19 TNBC patients (right).
Figure C-2. CD44/HMGA1 expression in TNBC patients
Expression analysis of CD44 (Expression level > 2) and HMGA1 (Expression level > 2) with UMAP plots.
Figure C-3. CD44/HMGA1-positive cancer cell with UMAP plot
UMAP plots of CD44-high, HMGA1-high, HMGA1/CD44-high, and Negative cancer cells.
Figure C-4. Ratio of CD44/HMGA1-positive cancer cell in each patient
The bar plot showed the ratio of cancer cells that expressed CD44 and HMGA1.
Figure D-1. Analysis of microspots of MDA-MB-231 xenografts including test trial samples
UMAP plots of CD44-high, HMGA1-high, and Marker-low clusters with test trial samples (2 primary tumors and 1 lung metastasis). ‘Primary tumor 1’ has 20 microspots, ‘Primary tumor 2’ has 24 microspots, and ‘lung metastasis’ has 7 microspots. Most microspots of lung metastasis failed extraction of RNA; therefore, these spots classified into Marker-low cluster.
Figure D-2. Expression analysis of CD44, HMGA1, and MYC
Feature plot of CD44-high, HMGA1-high, and Marker-low clusters with test trial samples.
* 5.The only methodology is single cell RNA-sequencing. Immuno-staining on relevant markers such as CD44, MYC, HMGA1 plus human epithelium and cell cycle markers would provide strong additional support for the claims made by the authors, because it's a complementary technique and it allows quantification at single cell resolution. *__Answer: __We would thank the comment. As described in the responses to the reviewer’s comment 1 and 4, we performed the immuno-staining of sections using anti-CD44 antibody and anti-HMGA1 antibody as described in reviewer’s comment 5. As a result, CD44 and HMGA1 were detected in primary tumor sections. There were cells that express either CD44 or HMGA1 and cells that co-express both CD44 and HMGA1 (Figure B).
In the revised manuscript, Figure B is incorporated as Figure 3A.
* 6.Line 173-175. The marker-low cluster look to me simply like spots containing a relatively high amount of dead/dying (tumor) cells. The identity/state of cells in the marker-low cluster should be characterized and discussed more extensively. *__Answer: __We would thank the comment. This suggestion is important. In fact, total count of RNA in the Marker-low cluster decreased as compared to HMGA1-high and CD44/MYC-high (Supplementary Figure S1B). Additionally, Ttr-high mouse cluster also has low total count of RNA (Supplementary Figure S1C).
Following the comment, we described that the Marker-low cluster and Ttr-high cluster have the possibility to include dead/dying cells (Page 13, Lines 268-279).
* 7.Figure 5 and accompanying text in line 182-194; the authors try to infer cell-to-cell interactions using a previously published tool. However, any biological interpretation is lacking. What can be concluded from this analysis? *__Answer: __Initially, algorithms of cell-to-cell interaction were reported with previously published tool [8, 9]; however, in this manuscript, we originally conducted the code for cell-to-cell interaction with the interaction database of the Bader laboratory from Toronto University (https://baderlab.org/CellCellInteractions#Download_Data) as previously described [10, 11]. We aimed to estimate the cell-to-cell interaction in each spot (including 10-30 cells). We think that this analysis will be helpful for discovering the cancer stem cell niche and metastatic niche [6].
However, in the revised manuscript, we focused on the existence of two cancer stem cell-like populations in TNBC xenograft and patients. Therefore, CCI analysis in previous Figure 5 moved to Supplementary Figure S7. Previous Figure 6 is removed from revised manuscript.
* 8.Figure 6. Can the authors please explain more clearly what they mean by "PT" and "Mix" groups? I had a very hard time to understand what the data in figure mean. Again, an overall interpretation at the end (line 211) is lacking. *__Answer: __We apologize for the confusing result. We examined the combinations of human cancer cell cluster and mouse stromal cell cluster. To summarize, there are 10 combinations in the MDA-MB-231 xenograft. The combination groups in only primary tumor were named “PT”; on the other hand, the combination groups in both primary tumor and lymph-node metastasis were named “Mix”. These CCI analysis focused on cluster types of cancer cell and stromal cell. However, according to this revision, our presented study mainly focuses on the existence of two types of cancer stem cell-like population in TNBC xenograft and patients. Therefore, CCI analysis with cluster types was deleted from revised manuscript.
In the revised manuscript, we focused on the existence of two cancer stem cell-like populations in TNBC xenograft and patients. Previous Figure 6 was removed from the revised manuscript.
* 9.Figure 7. I like the effort to align the results with public scRNA-seq data. But although the expression of the cluster-signatures is heterogeneous, there is no evidence for distinct (CSC-like) cell populations. Why don't these HMGA1 vs CD44 signature cells cluster away from each other in the UMAPs? Perhaps the patient-to-patient heterogeneity overwhelms differences within tumors, but in that case the authors could re-run their analysis for each patient separately, to make 6 patient-specific UMAPs. In its present form, this analysis does not convince me that two distinct CSC(-like) populations within one TNBC exist. *Answer: We would thank the comment. To improve the quality of reanalysis of clinical cohorts, we performed the reanalysis of 19 scRNA-seq samples from integrated 3 TNBC cohorts (Figure C-1). In a UMAP plot, there are differences between CD44-positive cancer cells and HMGA1-positive cancer cells; however, these cells did not visually form the specific clusters (Figure C-2). CD44 and HMGA1 were expressed globally in the UMAP plot, but CD44 made some specific clusters (cluster at right side). Additionally, following the comment, we performed the population analysis in each patient (Figure C-3 and C-4). There is double-positive population in TNBC patients suggesting that this population may be more undifferentiated cancer stem cells, dividing into both CD44-positive cells and HMGA1-positive cells.
In the revised manuscript, Figure C is incorporated as Figure 5.
* **Minor comments:** 10.In the Supplemental table 2 noticed that many of the marker genes have adjusted P values well above 0.05 (and even above 0.1). That makes the statistical analysis rather weak. This could especially be problematic since the authors entirely base their main claims on this marker analysis, and I recommend that the authors use more stringent P-value cut-offs in the cluster analysis. *Answer: We would thank the comment. We reshaped the list of differentially expressed genes (DEGs). Significantly expressed genes (adjusted p-value In mouse clusters, the enrichment analysis using significantly DEGs showed that only Tcell-like clusters had a lot of enriched terms. Citric acid (TCA) cycle, chemical stress response, and fatty acid oxidation were enriched in Tcell-like populations (Page 7, Lines 141-144).
In the revised manuscript, enrichment analyses are showed as Supplementary Figure S2 and S3B. We revised the sentence of enrichment analyses (Page 6, Lines 114-121), (Page 7, Lines 141-144). The network visualization of enrichment analysis was removed from the revised manuscript because this result did not support conclusions of the presented study.
* 11.Line 129/130. If I look at figure 3A, I don't see this tendency that the authors describe. Can the authors provide statistical support or visual aid to make their claim more apparent to the reader? *__Answer: __We would thank the suggestion. Following the comment, we performed the statistical analysis of spot position. The spots were categorized outer side (tumor edge) and Inner site (Center of tumor) in the primary tumor section (Figure E-1 upside). We counted the spot numbers of the clusters (Figure E-1 table) and performed statistical test by chi-test. As a result, CD44/MYC clusters significantly resided at outer side of primary tumor (Figure E-1 barplot). On the other hand, the spots in lymph-node metastasis are not readily defined the outer or inner. In addition, cell cycle analysis in the primary tumor and lymph node metastasis was performed with statistical test. As a result, HMGA1-high cluster and CD44/MYC-high cluster significantly proliferated in the lymph node metastasis section (Figure E-2).
Therefore, in the revised manuscript, we revised the sentence of spot position in lymph-node metastasis (Pages 8-9, Lines 159-172). Figure E-1 is incorporated as Figure 4D. Figure E-2 is incorporated as Figure 4F. Hope our new results will be now accepted by the Reviewer and Editor.
Figure E-1. Statistical analysis of spot position
Chi-test was performed by R. *p Figure E-2. Statistical analysis of cell cycle index
Fisher’s exact test was performed by R. *p * 12.Line 217; shouldn't this be 6 patients? I see six clusters and in the original paper six patients are mentioned. *Answer: We would thank the comment. ‘6 patients’ is correct, we revised it. However, in the revised manuscript, we added integrated analysis of TNBC as shown in the answer to comment 9.
Previous reanalysis of clinical scRNA-seq (previous Figure 7) was removed from the revised manuscript. The reanalysis using 3 integrated TNBC cohorts (Figure C) is incorporated as Figure 5.
Reviewer #1 (Significance (Required)): * Conceptual/biological impact: Showing the existence of distinct populations of CSCs within one (breast-)tumor potentially has a high impact on the field of fundamental and translational cancer research. As the authors state, it could be one key reason underlying drug resistance. However, the technology used by the authors does in my view not allow to make such a claim. First and foremost because the technology does not allow analysis at single cell resolution.
Technical impact: The platform used by the authors can be of interest for some applications, but they already published this in Scientic Reports a few years ago. I'm afraid that with the rapid recent developments in the field of spatial single cell transcriptomics (See for example Srivatsan et al Science 2021; 373: 111-117), the technical impact on the field is relatively low.
Audience: Researchers in the field of cancer biology with an interest to perform low-cost molecular analysis at low-resolution spatial-resolved tissue specimens (transcriptomics, but perhaps expanded with bisulfite sequencing, or ATAC sequencing) could be interested in the technology presented in this manuscript.
My expertise: single cell transcriptomics, (cancer) cell cycle, cancer drug resistance, cell plasticity, mouse models. *
**Referee Cross-commenting** I have read the comments and align mostly with reviewer #2. The authors need to improve this manuscript a lot before it's suitable for publication in any of the Review Commons journals. Answer: We are grateful to the reviewers. As indicated in the responses that follow, we have taken all of these comments and suggestions into account in the revised version of our paper, including the supplementary information.
*
*
Reviewer #2 (Evidence, reproducibility and clarity (Required)): * This manuscript uses spatial transcriptomics to perform single cell-like expression analysis between a breast cancer cell line and tumor microenvironment in mice xenografted with these cells. Unfortunately, from the title, abstract, and introduction, it is difficult to understand exactly what the authors are focusing and discussing. It is also unclear the advantage of their technique for evaluating the populations observed within this manuscript. Furthermore, there is very little explanation of the results, and it does not appear to be a scientific logical structure. Hence, this manuscript is not suitable for acceptance in the journal. In order to improve the scientific quality of this study, the following concerns are presented.
**Major concerns:** 1.Is cell-cell interaction (CCI) analysis novel method? If so, please specify detail in the manuscript. If the basic concept and the principle of CCI analysis have not been published, please mention in the discussion section as a limitation that a manuscript on CCI analysis is under submission to the preprint. In addition, please revise the abstract and related text. *__Answer: __Initially, algorithms of cell-to-cell interaction were reported with previously published tool [8, 9]; however, in this manuscript, we originally conducted the code for cell-to-cell interaction with the interaction database of the Bader laboratory from Toronto University (https://baderlab.org/CellCellInteractions#Download_Data) as previously described [10, 11]. We aimed to estimate the cell-to-cell interaction in each spot (including 10-30 cells). We think that this analysis will be helpful for discovering the cancer stem cell niche and metastatic niche [6].
However, in the revised manuscript, we focused on the existence of two cancer stem cell-like populations in TNBC xenograft and patients. Therefore, CCI analysis in previous Figure 5 is moved to Supplementary Figure S7. Previous Figure 6 are removed from the revised manuscript. We revised the description in the manuscript (Page 18, Lines 385-387).
* 2.The reviewer thinks that spatial transcriptomics plays an important role in your manuscript. Please describe the technique in the introduction. *__Answer: __We would thank the comments. Following the comments, we described the spatial technics in Introduction section. We revised the manuscript (Page 4, Lines 63-65) (Page 12, Lines 250-253).
* 3.The classification by expression profile (HMGA1, CD44/MYC and marker-low) lacks an explanation. Authors should mention in detail how these populations were extracted from breast cancer cell lines. *Answer: In this research, to identify the characteristics of clusters, we analyzed differentially expressed genes (DEGs) by FindAllmarkers function of Seurat. As a result, ‘Cluster 0’ significantly expressed HMGA1 gene, and ‘cluster 1’ significantly expressed CD44. Next, we performed the up-stream enrichment analysis using gene signatures of FindAllMakers by Metascape. From result of enrichment analysis, we found the MYC activation in CD44 high-cluster; therefore, we named the cluster “CD44/MYC-high” cluster.
HMGA1 and CD44 are popular cancer stem cell markers in triple-negative breast cancer [3, 4]; therefore, we focus on cancer-stem cell marker in presented study. Cancer stemness is an important concept in cancer metastasis [5-7].These results suggested that the existence of two cancer stem cell-like populations could potentially make tumors more drug-resilient in xenograft model and clinical patient.
To improve the manuscript, we revised the Figure2, Supplementary Table S2 and S4, and manuscript (Pages 5-6, Lines 97-106).
* 4.The description of the results is back and forth and confusing. Please reconsider the flow of the analysis. *__Answer: __We would thank the comment. We reconsidered the description and structure of manuscript. In revised manuscript, we focused on the existence of two cancer stem cell-like populations in TNBC xenograft and patients.
To improve the manuscript, we revised the Figure2 for examination of cluster characteristics by clustering and gene expression profiling. Figure 3 was revised for the validation of two cancer stem cell-like populations in TNBC xenograft model. Figure 4 was revised for the elucidation of spatial characteristics of each cluster. Figure 5 was revised for the validation of two cancer stem cell-like populations in TNBC patients.
* 5.How did you evaluate the outsides of the samples with very different spot positions in Figure 3A? Please mention your evaluation method in a scientific manner. In particular, authors should clearly indicate the outer evaluation for the metastatic case. *
Answer: We would thank the suggestion. Following the comment, we performed the statistical analysis of spot position. The spots were categorized outer side (tumor edge) and Inner site (Center of tumor) in primary tumor section (Figure E-1 upside). We counted the spot numbers of the clusters (Figure E-1 table) and performed statistical test by chi-test. As a result, CD44/MYC clusters significantly resided at outer side of primary tumor (Figure E-1 bar plot). On the other hand, the spots in lymph-node metastasis are not readily defined the outer or inner. In addition, cell cycle analysis in the primary tumor and lymph node metastasis was performed with statistical test. As a result, HMGA1-high cluster and CD44/MYC-high cluster significantly proliferated in the lymph node metastasis section (Figure E-2).
Therefore, in the revised manuscript, we revised the sentence of spot position in lymph-node metastasis (Pages 8-9, Lines 153-172). Figure E-1 are incorporated as Figure 4D. Figure E-2 are incorporated as Figure 4F. Hope our new results will be now accepted by the Reviewer and Editor.
Figure E-1. Statistical analysis of spot position
Chi-test was performed by R. *p Figure E-2. Statistical analysis of cell cycle index
Fisher’s exact test was performed by R. *p * 6.The spots in primary tumor have few counts derived from mouse stromal/immune cells, as shown in Figure S1A. Nevertheless, Figure 3C shows that mouse stromal/immune cells are evaluated in the same way in primary and metastatic sites. The reviewer thinks that the regions identified as Tcell-like in the metastatic site, where there are many mouse-derived counts, and in the primary, where there are few mouse-derived counts, do not have the same characteristics. If many mouse-derived counts were detected in a spot using the spatial transcriptomics, then there must be many mouse-derived cells in the spot. Please discuss how this expression is evaluated on this technique, which is not a single cell analysis. *__Answer: __We would thank the comment. The reviewer’s suggestion is an important point; however, this suggestion is technical limitation of spatial transcriptomics technology. Most advanced spatial transcriptomics technologies, e.g. Visium (10x Genomics), also have the same problem. It means that our technology and the advanced technologies are technics to analyze gene expression and characteristics of tissues from 10-30 cells in each spot.
In this spatial transcriptome analysis of mouse genes, we first performed the log normalization and scaling. Since Seurat used variable features among the samples for single-cell or spot clustering, we extracted the variable features for detection of clusters using the ‘FindVariableFeatures’ function. PCA and clustering using only mouse genes was performed for detecting the neighboring samples. After the clustering of mouse spots, we identified the character of clusters by finding the gene signatures. As the indication by the reviewer, the detected RNA counts and features are different, so it is difficult to define the exact character and cell type of stromal cells. Theoretically, spatial transcriptomics could only detect some kinds of stromal cells expressing the T-cell marker gene in the spot. Therefore, we named the cluster as “Tcell-like”. Not all of the Tcell-like cluster have the same characteristics or cell types, but they certainly express T-cell marker genes. This is also a technical limitation of spatial transcriptomics. Spatial transcriptomics with higher resolution probably is able to detect the stromal cells as a single-cell resolution, such as the one developed in previous research [1].
In the revised manuscript, we focused on the two types of cancer stem cell-like populations that were validated by other methods (scRNA-seq and Immuno-staining). As the method is not able to define the exact cluster characters, we moved CCI analyses to supplementary figures or removed partly.
We also revised the discussion in the revised manuscript (Pages 13-14, Lines 279-283).
* 7.Please explain how the gene symbols listed in Figure 4A were selected. Also, please indicate the characteristics of the gene groups that are not listed. *__Answer: __We selected the gene signature list from results of ‘FindAllMarker’ function in Seurat. ‘FindAllMarker’ function enables to extract the significantly expressed genes in each cluster. Heatmap in previous Figure 4A was drawn using these marker genes (Adjusted p-value 0.1). Highlighted genes in the heatmap have been reported as cancer-related genes or cell cycle-related genes.
The genes used for drawing heatmap are shown in Supplementary Table S2 and S4.
* 8.Please describe the details of the division and cycle index in lines 141-142. *__Answer: __Cell cycle index is a basic function of Seurat [12] (https://satijalab.org/seurat/archive/v3.1/cell_cycle_vignette.html). A list of cell cycle markers is loaded with Seurat. We can segregate this list into markers of G2/M phase and markers of S phase. We subjected this function into our spatial transcriptomics to estimate the cell cycle in each spot.
We revised the description manuscript (Page 16, Lines 331-332).
* 9.In Line 148-151, the expression and prognosis of TMSB10, CTSD, and LGALS1 is mentioned based on the previous reports. Aren't these findings the result of bulk? Is the HMGA1 cluster that the authors found involved in the prognosis of mice? Please clarify, as it is unclear what you want to discuss. *
Answer: We apologize for our confusing data and description. These highlighted genes (TMSB10, CTSD, LGALS1, CENPK, and CENPN) were extracted as DEGs of human cancer clusters (Supplementary Table S2). Previously, these genes have been reported as cancer-related genes or cell cycle-related genes, described in the manuscript (Page 6, Lines 107-110). To show the other expressed genes in each human cluster, we focused on these genes in the manuscript.
We extracted the gene signatures from DEGs and showed the gene signatures from HMGA1-high cluster correlated to poor prognosis in TNBC patients. Our data suggested that the HMGA1 signatures from the microspot resolution has the potential to be a novel biomarker for diagnosis, and HMGA1-high cancer stem cells may contribute to poor prognosis.
In this revision, since we reperformed DEGs analysis with significant threshold; therefore, survival analysis was reperformed with novel gene signatures with METABRIC TNBC cohorts (Figure F).
To improve the manuscript, we revised the description of DEGs extraction and heatmap (Page 6, Lines 106-112). Hope our Reviewer will approve this revised sentence.
Figure F. Survival analysis with gene signatures of HMGA1-high and CD44/MYC-high
Survival analysis of TNBC patients (claudin-low subtype and basal-like subtype) in METABRIC cohorts by the Kaplan-Meier method. (Left) Survival analysis with the expression of the HMGA1 signatures (High = 151, Low = 247). Shading along the curve indicates 95% confidential interval. Log-rank test, p = 0.012. (Right) Survival analysis with the expression of the CD44/MYC signatures (High = 333, Low = 65). Log-rank test, p = 0.079.
* 10.Please provide details of all statistical tests used in this manuscript and describe significance levels used in the p-values and FDR. *__Answer: __We performed the extraction of differentially expressed genes (DEGs) by ‘FindAllMarkers’ function with MAST method. MAST method identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data [13]. Adjusted p-value is calculated based on Bonferroni correction using all features in the dataset. In spatial spot analysis, statistical analyses were performed by Chi-test and Fisher’s exact test.
We revised materials and methods section in the manuscript (Page 19, Lines 391-394).
* 11.Please mention CCI score (line 198). *Answer: As described in answer to comment 1, the algorithms of CCI score calculation were performed using previously published tool [8, 9]; however, we originally conducted the code for cell-to-cell interaction with the interaction database of the Bader laboratory from Toronto University (https://baderlab.org/CellCellInteractions#Download_Data). We extracted the genes whose expression value was greater than 2. We selected the combinations representing ligand__-__receptor interactions, in which both ligand genes and receptor genes were expressed in the same spot.
We revised materials and methods section in the manuscript and Supplementary Legends (Page 18, Lines 385-387).
* 12.Lines 204-206 and Figure 6G show specific interaction of ITGB1 and CST3, but it is unclear why only these molecules were extracted. What about the other molecules? At least ITGB1 is not scored in mix5. *Answer: We selected genes that have been reported as cancer-related ones in breast cancer to discuss the interactions in primary tumor and lymph-node metastasis. However, according to this revision, our presented study mainly focused on the existence of two types of cancer stem cell-like population in TNBC xenografts and patients. Therefore, CCI analysis with cluster types moved to supplementary Figure or some were not shown now.
In the revised manuscript, previous Figure 6 is removed.
* 13.HMGA1 signature appears in Line 214, please explain in detail. *__Answer: __As described in answer to comment 7, we selected the gene signature list from results of ‘FindAllMarker’ function. ‘FindAllMarker’ function enables to extract the significantly expressed genes in each cluster. HMGA1 signature genes were selected from significantly differentially expressed genes of HMGA1-high clusters.
We revised the description in the revised manuscript (Pages 9-10, Lines 190-193).
* 14.Authors should discuss how the previously reported bulk expression data used in Figure 7E can be linked to the single-cell-like analysis in this study. *__Answer: __Previous research reported that gene signatures extracted from specific clusters in scRNA-seq study have the potential to be a prognosis marker [14]. We showed the gene signatures from HMGA1-high cluster correlated to poor prognosis in TNBC patients. Our results suggested that the gene signatures from the resolution of microspot (10-30 cells) could have the potential to be prognosis markers. This punching microdissection system enables to extract only the parts of a section that are necessary for diagnosis of cancer and to analyze at low-cost. It could be applied to diagnostics instead of the laser-capture microdissection methods.
We performed additional survival analysis with METABRIC cohorts. As described in this revision, since we reperformed DEGs analysis with significant threshold, survival analysis was reperformed with novel gene signatures with METABRIC TNBC cohorts (Figure F).
In revised manuscript, Figure F were incorporated as Figure 6. The usefulness of gene signatures from microspot resolution was additionally discussed (Page 12, Lines 242-245, 250-253).
* **Minor concerns:** 15.Please describe how the normalized centrality was calculated in UMAP algorithm and explain what this means in the results. __Answer: __The data showed that the expressional diversity in each cluster based on the network centrality of a correlational network with graph theory. The differences in the centrality among the clusters suggested expressional diversity in each (Supplementary Figure 4). Higher centrality represented lower expressional diversity and vice versa*. The detailed method for the calculation of centrality was previously shown to reveal the difference between smokers and never-smokers [10, 11].
We added the description in the Legend (Pages 7-8, Lines 145-150).
* 16.Please mention an explanation for the red X in Figure 1B to the legend. *__Answer: __The red X means failure spot for RNA extraction. We added the description in Figure 1B.
* 17.Please spell out the abbreviations in all figure legends. *__Answer: __We added the abbreviations in the legends of all figures.
* 18.Please explain what is meant by the color of the lines and the size of the circles in Figure 4D. *__Answer: __The network analysis was performed by Metascape (https://metascape.org/gp/index.html#/main/step1) [15]. The node size is proportional to the number of genes belonging to the term, and the node color represents the identity of the cluster. However, as described in the answer to reviewer’s comment 9, we reperformed enrichment analysis with significant DEGs. As a result, only CD44/MYC cluster had a lot of enrichment terms.
Therefore, network visualizations were removed from the revised manuscript.
* 19.Please mention an explanation for the color of the spots in Figure 5D and 5F to the legend. *__Answer: __The color showed the spots categorized into the selected group.
In the revised manuscript, previous Figure 5 was incorporated as Supplementary Figure S7. We added the description in Supplementary Figure S7 and S8 with the legends.
* 20.Is "S51" in Line 148 a typo for "S5A"? *Answer: Thank you. We revised “S5A”.
* 21.Please mention an explanation for the bars in Figure 6D and 6F to the legend. *__Answer: __The bars showed relative CCI scores. As described below, we removed the results of CCI analysis with cluster group (previous Figure 6) in the revised manuscript.
* 22.Please mention an explanation for the colors in Figure 7E to the legend. *__Answer: __The color showed patients’ group based on expression levels of gene signatures. We added the description in the Legend of Figure 6.
*
*
Reviewer #2 (Significance (Required)): * The approach in Figure 5 is interesting, but the rest of the results do not take full advantage of the technology developed by the authors. The structure of the manuscript should be re-examined and new perspectives added. I look forward to the future of the authors' research.
*
Reviewer #3 (Evidence, reproducibility and clarity (Required)): Microtissue transcriptome analysis of triple-negative breast cancer cell line MDA-MB-231 xenograft model using automated tissue microdissection punching techonology revealed that the existence of three cell-type clusters in the primary tumor and axillary lymph node metastasis. The CD44/MYC-high cluster showed aggressive proliferation with MYC expression, the HMGA1-high cluster exhibited HIF1A activation and upregulation of ribosomal processes. The cell-cell-interaction analysis revealed the interaction dynamics generated by the combination of cancer cells and stromal cells in primary tumors and metastases. The gene signature of the HMGA1-high cancer stem cell-like cluster has the potential to serve as a novel biomarker for diagnosis. The key conclusions are convincing. The data and methods are presented in a reproducible way. The experiments are adequately replicated and statistical analysis is adequate. Prior studies are appropriately referenced. The text and figures are clear and accurate. __Answer: __We would thank the valuable comments. As the reviewer mentioned, our findings showed that the existence of two cancer stem cell-like populations has the potential to make tumors more drug-resilient. Our results suggested that the gene signatures from the resolution of microspot (10-30 cells) could have the potential to be prognosis markers. This punching microdissection system enables to extract only the parts of a section that are necessary for diagnosis of cancer and to analyze at low-cost. It could be applied to diagnostics instead of the laser-capture microdissection methods.
In this revision, we focused on the existence of two cancer stem cell-like populations in TNBC xenografts and patients. Following the other reviewer’s comments, we performed the extraction of DEGs with significant threshold; therefore, we revised the results of enrichment analysis but it did not influence our main findings.
To validate the existence of two types of cancer stem-like cells in TNBC tumors, we performed the additional analyses (reanalysis of public scRNA-seq datasets and immuno-staining of MDA-MB-231 primary tumor). These results verified two cancer stem cell-like populations (HMGA1-high, CD44-high) in MDA-MB-231 xenograft and TNBC patients. We believe that our findings are solid results because the findings were also validated by other methods.
Again, we would thank kind reviewing our manuscript.
Reviewer #3 (Significance (Required)): * In the past several studies showed the heterogeneity of cell-cell interactions between cancer cells and stromal cells in situ (Andersson et al, 2021; Wu et al, 2021) and tumor microheterogeneity (Jiang et al, 2016; Liu et al, 2016; Zhang et al, 2020). Spatial transcriptomics methods are important to reveal microheterogeneity of cancer. As a physician working in gynecology and obstetrics in my opinion the results of the study and spatial transcriptomic methods could be relevant to detect new biomarkers for diagnosis and prognosis of breast cancer in future and to find novel therapeutic targets to overcome drug resistance and facilitate curative treatment of breast cancer.
*
References in response letter
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Microtissue transcriptome analysis of triple-negative breast cancer cell line MDA-MB-231 xenograft model using automated tissue microdissection punching techonology revealed that the existence of three cell-type clusters in the primary tumor and axillary lymph node metastasis. The CD44/MYC-high cluster showed aggressive proliferation with MYC expression, the HMGA1-high cluster exhibited HIF1A activation and upregulation of ribosomal processes. The cell-cell-interaction analysis revealed the interaction dynamics generated by the combination of cancer cells and stromal cells in primary tumors and metastases. The gene signature of the HMGA1-high cancer stem cell-like cluster has the potential to serve as a novel biomarker for diagnosis.
The key conclusions are convincing. The data and methods are presented in a reproducible way. The experiments are adequately replicated and statistical analysis is adequate.
Prior studies are appropriately referenced. The text and figures are clear and accurate.
In the past several studies showed the heterogeneity of cell-cell interactions between cancer cells and stromal cells in situ (Andersson et al, 2021; Wu et al, 2021) and tumor microheterogeneity (Jiang et al, 2016; Liu et al, 2016; Zhang et al, 2020). Spatial transcriptomics methods are important to reveal microheterogeneity of cancer. As a physician working in gynecology and obstetrics in my opinion the results of the study and spatial transcriptomic methods could be relevant to detect new biomarkers for diagnosis and prognosis of breast cancer in future and to find novel therapeutic targets to overcome drug resistance and facilitate curative treatment of breast cancer.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This manuscript uses spatial transcriptomics to perform single cell-like expression analysis between a breast cancer cell line and tumor microenvironment in mice xenografted with these cells. Unfortunately, from the title, abstract, and introduction, it is difficult to understand exactly what the authors are focusing and discussing. It is also unclear the advantage of their technique for evaluating the populations observed within this manuscript. Furthermore, there is very little explanation of the results, and it does not appear to be a scientific logical structure. Hence, this manuscript is not suitable for acceptance in the journal. In order to improve the scientific quality of this study, the following concerns are presented.
Major concerns:
1.Is cell-cell interaction (CCI) analysis novel method? If so, please specify detail in the manuscript. If the basic concept and the principle of CCI analysis have not been published, please mention in the discussion section as a limitation that a manuscript on CCI analysis is under submission to the preprint. In addition, please revise the abstract and related text.
2.The reviewer thinks that spatial transcriptomics plays an important role in your manuscript. Please describe the technique in the introduction.
3.The classification by expression profile (HMGA1, CD44/MYC and marker-low) lacks an explanation. Authors should mention in detail how these populations were extracted from breast cancer cell lines.
4.The description of the results is back and forth and confusing. Please reconsider the flow of the analysis.
5.How did you evaluate the outsides of the samples with very different spot positions in Figure 3A? Please mention your evaluation method in a scientific manner. In particular, authors should clearly indicate the outer evaluation for the metastatic case.
6.The spots in primary tumor have few counts derived from mouse stromal/immune cells, as shown in Figure S1A. Nevertheless, Figure 3C shows that mouse stromal/immune cells are evaluated in the same way in primary and metastatic sites. The reviewer thinks that the regions identified as Tcell-like in the metastatic site, where there are many mouse-derived counts, and in the primary, where there are few mouse-derived counts, do not have the same characteristics. If many mouse-derived counts were detected in a spot using the spatial transcriptomics, then there must be many mouse-derived cells in the spot. Please discuss how this expression is evaluated on this technique, which is not a single cell analysis.
7.Please explain how the gene symbols listed in Figure 4A were selected. Also, please indicate the characteristics of the gene groups that are not listed.
8.Please describe the details of the division and cycle index in lines 141-142.
9.In Line 148-151, the expression and prognosis of TMSB10, CTSD, and LGALS1 is mentioned based on the previous reports. Aren't these findings the result of bulk? Is the HMGA1 cluster that the authors found involved in the prognosis of mice? Please clarify, as it is unclear what you want to discuss.
10.Please provide details of all statistical tests used in this manuscript and describe significance levels used in the p-values and FDR.
11.Please mention CCI score (line 198).
12.Lines 204-206 and Figure 6G show specific interaction of ITGB1 and CST3, but it is unclear why only these molecules were extracted. What about the other molecules? At least ITGB1 is not scored in mix5.
13.HMGA1 signature appears in Line 214, please explain in detail.
14.Authors should discuss how the previously reported bulk expression data used in Figure 7E can be linked to the single-cell-like analysis in this study.
Minor concerns:
15.Please describe how the normalized centrality was calculated in UMAP algorithm and explain what this means in the results.
16.Please mention an explanation for the red X in Figure 1B to the legend.
17.Please spell out the abbreviations in all figure legends.
18.Please explain what is meant by the color of the lines and the size of the circles in Figure 4D.
19.Please mention an explanation for the color of the spots in Figure 5D and 5F to the legend.
20.Is "S51" in Line 148 a typo for "S5A"?
21.Please mention an explanation for the bars in Figure 6D and 6F to the legend.
22.Please mention an explanation for the colors in Figure 7E to the legend.
The approach in Figure 5 is interesting, but the rest of the results do not take full advantage of the technology developed by the authors. The structure of the manuscript should be re-examined and new perspectives added. I look forward to the future of the authors' research.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Nakayama and colleagues use their previously developed automated tissue microdissection punching platform to perform spatial transcriptomics on a breast cancer xenograft model. Using transcriptomics on multiple clumps of 10-30 cells from different regions in a tumor and a lymph node metastasis they identified different cell-type clusters. Two of these clusters expressed different cancer stem cell markers. This led the authors to suggest that two distinct cancer stem cell(-like) populations may exist within one (breast) tumor, which could potentially make tumors more drug-resilient.
Major comments:
While the quality of the presented sequencing data is good and the manuscript is mostly written in a clear and accessible style, there are some concerns that limit the impact of this story. Most importantly, the manuscript in its present form does not convince me that the MDA-MB-231 xenografts indeed contain two distinct populations of cancer stem(-like) cells.
1.The data obtained are not single cell data, which makes it difficult -if not impossible- to draw conclusions about presence of cancer stem cells. Each data point is the average of 10-30 cells, and the interpretation of the data is severely limited by this. How can the quantification of expression of CD44/MYC/HMGA1 in clumps of 10-30 cells teach us something about the stemness of tumor cells?
2.Furthermore, the authors should better explain their data analysis strategy with identification of gene expression profiles. It is unclear how they found CD44, MYC, and HMGA1 other than by cherry-picking from the list of cluster markers.
3.Following up on the above point: I looked in the supplementary tables, but couldn't find MYC. How did the authors conclude that MYC is involved in cluster 1? In fact, when I ran a quick analysis in EnrichR, I saw that putative MYC target genes were strongly enriched among the markers in the HMGA1 cluster, but not the CD44/MYC. That's opposite to what I would expect.
4.All data were produced from 1 primary tumor and 1 metastasis. Thus, reproducibility and robustness of the methodology cannot be evaluated. The interpretation of the data could be strengthened when xenografts from at least 3 different mice are shown.
5.The only methodology is single cell RNA-sequencing. Immuno-staining on relevant markers such as CD44, MYC, HMGA1 plus human epithelium and cell cycle markers would provide strong additional support for the claims made by the authors, because it's a complementary technique and it allows quantification at single cell resolution.
6.Line 173-175. The marker-low cluster look to me simply like spots containing a relatively high amount of dead/dying (tumor) cells. The identity/state of cells in the marker-low cluster should be characterized and discussed more extensively.
7.Figure 5 and accompanying text in line 182-194; the authors try to infer cell-to-cell interactions using a previously published tool. However, any biological interpretation is lacking. What can be concluded from this analysis?
8.Figure 6. Can the authors please explain more clearly what they mean by "PT" and "Mix" groups? I had a very hard time to understand what the data in figure mean. Again, an overall interpretation at the end (line 211) is lacking.
9.Figure 7. I like the effort to align the results with public scRNA-seq data. But although the expression of the cluster-signatures is heterogeneous, there is no evidence for distinct (CSC-like) cell populations. Why don't these HMGA1 vs CD44 signature cells cluster away from each other in the UMAPs? Perhaps the patient-to-patient heterogeneity overwhelms differences within tumors, but in that case the authors could re-run their analysis for each patient separately, to make 6 patient-specific UMAPs. In its present form, this analysis does not convince me that two distinct CSC(-like) populations within one TNBC exist.
Minor comments:
10.In the Supplemental table 2 noticed that many of the marker genes have adjusted P values well above 0.05 (and even above 0.1). That makes the statistical analysis rather weak. This could especially be problematic since the authors entirely base their main claims on this marker analysis, and I recommend that the authors use more stringent P-value cut-offs in the cluster analysis.
11.Line 129/130. If I look at figure 3A, I don't see this tendency that the authors describe. Can the authors provide statistical support or visual aid to make their claim more apparent to the reader?
12.Line 217; shouldn't this be 6 patients? I see six clusters and in the original paper six patients are mentioned.
Conceptual/biological impact: Showing the existence of distinct populations of CSCs within one (breast-)tumor potentially has a high impact on the field of fundamental and translational cancer research. As the authors state, it could be one key reason underlying drug resistance. However, the technology used by the authors does in my view not allow to make such a claim. First and foremost because the technology does not allow analysis at single cell resolution.
Technical impact: The platform used by the authors can be of interest for some applications, but they already published this in Scientic Reports a few years ago. I'm afraid that with the rapid recent developments in the field of spatial single cell transcriptomics (See for example Srivatsan et al Science 2021; 373: 111-117), the technical impact on the field is relatively low.
Audience: Researchers in the field of cancer biology with an interest to perform low-cost molecular analysis at low-resolution spatial-resolved tissue specimens (transcriptomics, but perhaps expanded with bisulfite sequencing, or ATAC sequencing) could be interested in the technology presented in this manuscript.
My expertise: single cell transcriptomics, (cancer) cell cycle, cancer drug resistance, cell plasticity, mouse models.
Referee Cross-commenting
I have read the comments and align mostly with reviewer #2. The authors need to improve this manuscript a lot before it's suitable for publication in any of the Review Commons journals.
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Reply to the Reviewers
I thank the Referees for their...
Referee #1
Responses + The typical domed appearance of a hydrocephalus-harboring skull is apparent as early as P4, as shown in a new side-by-side comparison of pups at that age (Fig. 1A). + Though this is not stated in the MS 2. Figure 6: Why has only...
Response: We expanded the comparison
Minor comments:
Response: We added...
Referee #2
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
all OK
This is a valuable paper that make use of the rapid mitotic cycles of the Drosophila syncytial embryo to study the recruitment of proteins in mitotit centrosome maturation. The synchrony of these cycles make this an excellent experimental system in which to follow the relative timing of recruitment of individual molecules to the centrosome and, while the system may have idiosyncrasies that facilitate rapid cycling, it provides valuable information. This is a significant data set that shows the pulsatile recruitment of Spd2 and Polo kinase peaking in mid S-phase in contrast to the continuous recruitment of Cnn.
The authors carry out some interesting modelling to account for the pulsatile activity of Polo through recruitment to the centriole. As they have previously shown Polo recruitment to be dependent upon S-S/t motifs in An1 and Spd, the authors examine the effects of multiple mutations at these potential recruitment sites. Interestingly they show that mutation of 34 such sites in Ana1 has little effect on recruitment of Polo to old-mother centrioles but perturbs recruitment onto ne mothers. Expression of the multiply mutated Spd-2, on the other hand, perturbs the Polo pulse on both old- and new- mothers. Together this would be in line with their previous suggested role for Ana1 in initially recruiting Polo to centrioles and Spd2 having a role in expanding the PCM.
The modelling carried out by the authors is simple but effective. As with almost any cell cycle model, the models have their short-comings and the authors are largely aware of these. I thought it would be worthwhile to have some more discussion of what activates Polo kinase. It could be partially activated by the Polo-box binding to its receptor site but do other kinases carry out its T-loop phosphorylation? There are plenty of mitotic kinases around and so this could be discussed in greater detail. Moreover, although the pulsatile association of Polo with the centrosome does not have to correspond to pulsatile activity, this is likely. In which case, further discussion of the roles of opposing phosphatases would be in order.
All in all, however, this is a useful paper that comes up with a thorough description of the timing of events of centrosome maturation in Drosophila embryos.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Review of 'Mother centrioles generate a local pulse of Polo/PLK1 activity to initiate mitotic centrosome assembly' from Wong et al.
In this paper, Wong et al address the mechanisms of centrosome assembly in flies. They start with the interesting observation that Polo localized at centrosomes oscillates before cells enter mitosis, while Cnn (and with it centrosome maturation) either increases or reaches a plateau. The phenomenon is local, since Polo levels at in the cell are high during mitosis. They propose that the oscillation is driven by a negative feedback loop whereby Polo inhibits its own binding to the centrosome, Ana1 being the most likely relevant receptor. Finally, they discuss the possible meaning of this oscillatory behavior, in the light of the rapidity of the early embryonic cell cycles.
Major comments
1- One can imagine different reasons for the fact that the model displays different dynamics for Cnn and Spd-2/Polo. For example, a major difference may be due to the different dissociation rates of the clusters Cstar and Shat. These are governed by different laws and different parameters (kdis vs kidsCstar1/n). If I understand, both parameters and dependency on Cstar^2 are assumptions. Hence, it would be important to pinpoint which component of the model is more directly responsible for the observed behavior. The analysis should not be limited to the dissociation, but should be extended to the whole model. To this aim, one could test the robustness of the model's parameters. The results of this analysis will also be a prediction of the model.
2- The presence of a positive-feedback loop involving Cnn could offer an alternative and more robust explanation for the slower dynamics of Cnn. Such a loop between Cnn and Spd-2 was proposed by the authors (Conduit, eLife, 2014). I think some comment on this point would be interesting (eg, could the Cnn/Spd-2 loop proposed earlier work in this context? If not, why? If yes, should not this option be explored?).
3- The prediction presented in Figure 6 is very relevant. I wonder how robust this behavior is to changes in parameters values.
4- Additional testing of the model would be important to confirm that the negative feedback loop is actually in place, although I understand experiments may be difficult to be performed. Possible examples: constantly high levels of Polo are expected to decrease its centrosomal localization, is that correct and, if so, testable? Is it possible to delay one cycle, and then observe the decay in Cnn values? This latter experiment, for example, could help to distinguish positive feedback vs slow decay rates. If the experiments are not possible, it may be worth anyway to present some predictions worth testing.
5- The difference between Models 2 and 3 is not clear to me. In mathematical terms, they seem to be basically the same thing: reaction (50)=(33), (51)~(34) given (40) and (52)~(35) again given (40). This is precisely since the model comes with the assumption of a well-stirred system, and thus adding P in solution is not so different from assuming P=Rphat (40). I would have imagined that also Model 2 accounts for the fact that in Spd-2-S16T and Ana1-S347T Polo is recruited slower and for a longer period. Is it not true? If so, is model 3 really needed? More in general, assuming a role for an increase of local concentration of P* is quite a jump, especially given the small distances involved, and the fast diffusion occurring within cells.
Minor points
1-Could the authors use the FRAP data to estimate the different kdis? If so, a comparison with the 20-fold difference used in the model would be useful.
2- p. 6, The authors should state clearly for the worm-uneducated like me whether the fusions were done with the endogenous proteins or not.
3- p.7 Figure 1B, in the text it is referred to display 'levels of peaks' and in the figure and legend we find 'growth period'. Not clear how the two refer to the same quantity.
4- Spd2-mCherry is present in both Figure 1C and D, but with very different amplitudes. Why is that the case?
5- The fact that Polo peaks in mitosis is a key observation. Unfortunately, this is often reported as a personal communication. The authors never tried to produce this piece of data?
6- p.11 It is explained that NM and OM differ for their initial values because the OM starts with some PCM from the previous cycle. However in Figure 3A, for example, the values of Polo at the end of the cycle are identical in the two. Is not this in contrast with the explenation?
Still p11, there is reference to Figure 3C,D, but Figure 3D does not exist, I guess it should be 3A,C.
7- In the formulation of the model (page numbers in Suppl Mat are unfortunately missing..), one citation for the total amount of Polo being large is needed.
8- I do not understand this point: scaled c output is 1, and the initial condition for c=1 also?
9- It has been shown in different systems (from yeast -- haase winey reed, NCB, 2001-- to worms -- McCLeland O-Farrell CB 2008) that centrosome duplication can occur independently from the cell cycle oscillator. I was wondering whether the proposed negative feedback loop may play a role in this phenomenon. This is only a curiosity, which does not need to be addressed.
The new observation and hypotheses presented in the paper provide a sizeable advance. The presence of an oscillation in Polo, uncoupled from cellular levels, is new, and the model proposes a testable hypothesis to explain it. Some additional experiments to verify the model would strengthen the manuscript.
The work is probably more appropriate for experts in the centrosome field. My primary expertise for this review was in mathematical models.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Embryogenesis is characterized by rapid cell divisions without gap phases. How these cells achieve successive rounds of chromosome segregation in dozens of minutes without failure is of great interest to cell and developmental biologists. A key aspect of rapid divisions is the oscillatory nature of centrosome assembly, which aids in building the mitotic spindle during mitosis, and centrosome disassembly during mitotic exit. Polo kinase activation and localization to the centriole is essential for centrosome dynamics, but its molecular targets, timescales of activation and deactivation, and overall mechanism of action is still not fully determined.
This paper aims to build a mathematical model to tease out the mechanism of Polo recruitment to centrioles and transformation of centrosome scaffold proteins (Spd2/Cep192 and Cnn/CDK5RAP2) from inactive forms to functional, multimeric platforms. The authors posit that several features are critical to describe the dynamics of Polo, Spd-2, and Cnn: 1) a negative feedback loop that releases Polo from a centriole receptor, 2) a kinetic relay that allows Spd-2 to assemble, followed by Cnn, and 3) a disassembly mechanism driven by de-phosphorylation. They validate their model in several ways, most notably by introducing an Ana1 mutant that inhibits Polo binding to centrioles: their model predicts a delay in Polo accumulation which bears out in vivo.
The cell biology experiments of this paper are of high quality and well quantified, and I have no concerns there. However, the mathematical model elevates this study to the next level, and thus deserves greater scrutiny. I'm not concerned that the model doesn't get everything right, or that all of the parameters are correct. This is new territory. I think the value of models is their power to predict, rather than their power to explain existing data. The authors are giving the field a great hypothesis generator which we can use to plan experiments for the next 5 years. Then the model will be updated to be more accurate. Thus, this work represents a significant achievement.
Still, some key validations regarding phosphorylation rates are missing that could be easily tested. Furthermore, the study would be strengthened by greater understanding of the PCM disassembly. mechanism. Addressing these two points will improve my confidence in the mathematical model.
Major Comments.
Surely, the authors could test how changing phosphorylation rate (kcat S and kcat C) and de-phosphorylation rate (kdis) affects the recruitment and departure of Spd-2, Polo, and Cnn in vivo. This could be achieved by 1) titrating an inhibitor of Polo (e.g., BI-2536) or introducing a mutation in the T-loop of Polo (the equivalent of T210D or T210V in flies; T210D should raise kcat, while T210V should lower kcat; https://doi.org/10.1021/bi602474j), and 2) inhibiting a phosphatase such as PP2A, which is the presumed antagonist of Polo according to several C. elegans studies.
If their model adequately predicts the outcome of these two experiments (changing phosphorylation and dephosphorylation rates), I will be more convinced.
Experimentally determining these parameters would greatly strengthen this paper, but I think that would require gargantuan effort that is beyond the scope of the current work. Instead, it is therefore critical to test how robust the model is by probing the parameter space. For example, could the authors show us what the model predicts (e.g., as in Figure 2C) when each parameter is changed by 2-fold? Presumably the authors have already done this, but I would like to see the outcomes.
Minor Comments.
-Figure 1. The authors should include representative images of centrosomes for the plots in panels A,C and D. The x-axes could have more informative labels (e.g., time relative to NEB). - Figure 1A. Much of Figure 1 has already been performed in C. Elegans, yet this fact is not mentioned until the discussion. For example, the pulsed nature of Polo and SPD-2 appearance and disappearance has been reported in C. elegans in Mittasch et al. 2020 and Magescas et al., 2019. These findings, and their implications for evolutionary conservation, should be mentioned in the main text (e.g. page 6 or 7). - Figure 2. It's hard to envision how a scaffold can both flux outward and be structurally strong. The mere fact that there is outward movement of scaffold chunks implies breaking of bonds, which indicates overall structural weakness. Are the authors talking about strength of the entire PCM, or just strength of the chunks? It would be great if the authors could clarify this. -Figure 2. One would think that scaffold flux and strength are anti-correlated. Perhaps this is the case? As far as I'm aware, previous studies of Cnn flux were performed primarily in S-phase, when there is presumably less need for PCM strength. What about during mitosis during chromosome segregation? Does the PCM become stronger during mitosis? Does Cnn flux decrease during mitosis? - Figure 2B. I would prefer a legend in the actual figure indicating what the different symbols mean. I found it difficult glancing back and forth between the text and the figure. - "We also allow the rate of 𝐶∗ disassembly to increase as the size of the 𝐶∗ scaffold increases, which appears to be the case in these embryos (Conduit et al, 2010)."
I can't find any analysis of PCM disassembly in this study. What are the authors referring to as "disassembly"? Do they mean departure of Cnn from the PCM in S-phase? Or, disassembly of the whole PCM during mitotic exit?
-"If the centriole and PCM receptors (Ana1 and Spd-2, respectively) recruit less Polo, the centriole receptor (Ana1) will be inactivated more slowly."
Is Ana1 a known substrate of Polo? This seems highly speculative. The authors should note that deactivation of Ana1 could be through various other mechanisms. Furthermore, Polo could be locally degraded as shown in human cells doi: 10.1083/jcb.200309035.
-"We note that our mathematical models are purposefully minimal to reduce the number of parameters and test possible mechanisms rather than to mimic experimental data." I appreciate this statement.
This paper aims to build a mathematical model to understand the cyclic nature of centrosome assembly and disassembly in fruit flies. Due to the conserved nature of the components (proteins in the system, such as Polo Kinase, Spd-2, and Cnn/CDK5RAP2), this model could likely be extended to a broad swath of eukaryotes. This approach is quite unique in the centrosome field, as only one other study (Zwicker et al., PNAS 2014) has tried seriously to model the growth kinetics of PCM, the outermost part of a centrosome. The field has been dominated by genetics and cell biology approaches, so implementing a mathematical model will advance the field and generate hypotheses, even if the model is not yet fully fleshed out. This paper represents a significant advance.
This study will be of broad interest to the centrosome field.
Expertise: centrosome biogenesis, mitosis, biophysics
Note: I am not sufficiently qualified to evaluate the mathematics underlying the model.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary: The Non-Photochemical Quenching (NPQ) protects photosystems from energy overloading by excess light exposure. The NPQ consists of multiple factors which function in different time scales and energy levels. One of the factors, qH, has been proposed based on chlorophyll fluorescence lifetime observation and the plastid lipocalin has been identified as the important player to regulate qH. It remains to link the qH phenotype and molecular mechanisms. The authors purify photosynthetic protein complexes from the qH mutants and tried to build a biophysical model to link qH phenomena and protein science based on chlorophyll fluorescence lifetime observation.
Response: Thank you for your constructive comments which we have addressed and complete the manuscript nicely.
Major comments: There are two major issues. One issue is, even many kinetics are presented, but the relationship between these values and qH phenotypes is not clearly stated or connected. One idea is to build the mathematical model(s) to explain these kinetics. The other issue is, lipid composition is not considered. Indeed, this phenomenon is observed or emphasized in low temperatures. Generally thinking, lipid composition bound to photosynthetic complexes would be disturbed or modified its conformation.
Response: ____We have not attempted to build a descriptive model of how the different molecular players in qH operate in the membrane to yield the observed fluorescence kinetics as this is beyond the scope of our study. However, we agree that lipid composition should be considered and we have now added two additional authors, text in the method and result sections and new Fig. 6 and Fig. S9 examining lipid composition of thylakoid extract, LHCII trimer and LHCII/Lhcb monomer fractions. No significant differences can be observed between the qH ON and OFF states in the main chloroplastic lipids.
Minor comments: Some datasets are less biological replicates or not clearly stated about the biological replicate number (Figure 2, Figure 4, Figure 5, Figure S2, Figure S5, and Figure S8). Normally, at least three independent biological replicates are required. Technical replicates are not acceptable.
Response: ____If by biological replicates, you mean three independent plant individuals, we agree that this would be the bare minimum required, and we apologize for the confusion. The definition of biological replicate (also referred to as biological experiment) in our study is each one represents a separate batch of several plant individuals pooled (n = 2 to 8) grown at independent times. Then within each biological experiment, we perform technical replicates (i.e. independent measurements of different aliquots from the same sample) which we believe are acceptable and necessary but we agree not sufficient. For most data, we have at least 2 biological experiments, and up to 3, for assessing the quenched nature of LHCII trimer and not LHCII/Lhcb monomer (Fig. 3). We have rephrased the text so this aspect is clearer and also provide more detail below about the aforementioned figures.
Fig. 2: TCSPC on thylakoids, n=3 technical replicates from 2 independent biological experiments; Two separate thylakoid preparations were made from independently grown plants (leaves from n > or = 5 plants were pooled each time). Fig. 4: CN-PAGE, n=3 technical replicates from 2 independent biological experiments (leaves from n > or = 3 plants were pooled each time). Fig. 5: TCSPC on isolated complexes, n=3 technical replicates from 2 independent biological experiments; Two separate thylakoid preparations were made from independently grown plants (leaves from n = 8 plants were pooled each time). Fig. S2: step solubilization, n=2 technical replicates; here 1 biological experiment was used from n = 8 plants. Fig. S5 contains the biological replicates 1 (n=2 plants) and 2 (n=8 plants) of the representative experiment shown in Fig3, biological replicate 3 (n=8 plants). Fig. S8: HPLC on isolated complexes from 2 independent biological experiments (leaves from n = 8 plants were pooled each time).
In Figure 3 and Figure S3, extend the length of the major tick for each axis. It is hard to distinguish between major tick and minor tick.
Response: Ok, done.
In Figure 3, mark the measured peak wavelength value on the top for readers.
Response: ____Ok, done, added in the legend “with maxima at 679 nm for all samples”.
In Figure 4, Why do not you present chlorophyll kinetics? I suspect it is possible to acquire if you used SpeedZen.
Response: In Figure 4, we present a measurement of fluorescence emission from separated pigment-protein complexes by CN-PAGE, there are no light-induced changes to be measured here hence we do not present chlorophyll fluorescence kinetics.
In Figure 6, decrease the thickness of the border for the bar graph or marker. Markers on the top of the bar graph are not visible.
Response: Ok, done.
Figures S3 and S6, provide the elution volume of protein standard in the chromatograph.
Response: We don’t make any statement regarding the molecular weights of the protein complexes from the chromatograms, so elution volumes of protein standards are not required. Composition of the different peaks were validated by Iwai et al. 2015 (Nat Plants 1: 14008) and further verified here (Fig. S6, S10).
Figures S11 and S12, describe the number of biological replicates.
Response: ____Ok, done (now Fig. S12 and S13).
Reviewer #1 (Significance (Required)): The topic is important for plant physiology especially photosynthesis regulation and biophysical characterization is straightforward to interpret molecular machinery. Other studies are only for chlorophyll observation for the whole plant body, but most importantly, this study is the challenging work on qH characterization with a biochemical approach.
Response: Thank you for your appreciation of our work!
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Authors observed qH in isolated LHCII trimers with Chl fluorescence changes (shorter), and concluded that no single major Lhcb isomers is necessary for qH.
Response: Thank you for your constructive comments which we have now addressed and make the manuscript clearer.
Major concern is: LHCII trimers are divided into S, M, L trimers with different compositions. Authors are requested to interpret their results in terms of L-, M-, S-trimers.
Response: Our solubilization conditions and isolation method don’t allow to distinguish between loosely (L), moderately (M) or strongly (S)-bound trimers, the LHCII trimer fraction is a pool of these trimers. We have now specified this aspect in the discussion and cannot interpret our results further than narrowing down the LHCII trimer as a quenching site. In future work, we will attempt their separation although getting entirely pure fractions of each is technically challenging.
Minor comments are: Authors describes qI as reversible NPQ, but qI with D1 damage is not reversible.
Response: ____D1 can be repaired thereby relaxing qI, see recent article from Nawrocki et al. Sci Adv 2021. We have clarified this point in the introduction.
In page 3 - 2nd paragraph, Authors define components of NPQ one by one, but the definition or recovery kinetics for qH is skipped, And authors suddenly start explaining molecular players of qH without changing paragraph.
Response: We have now clarified that the relaxation kinetics for sustained NPQ including qH are slow (hours to days) and changed paragraph to introduce the molecular players known to be regulating qH.
In Fig. S6, authors tried to confirm the trimer and monomer fractions they used by using Lhcb2 and Lhcb4 antibodies, respectively. But, the distribution of Lhcb2 only in Trimer fraction in WT, which is different from the distribution in other mutants. Contamination of Lhcb4 in Trimer fraction is also of concern. Authors may use BN-PAGE or Ultracentrifugal separation, rather than gel filtration.
Response: Regarding the different distribution of Lhcb2 between WT and mutants, we have now better labeled Fig. S6B so it is clear that WT is non-treated (non-stress condition) and the mutants underwent a cold and high light-treatment (stress condition). This difference may thus be explained by the trimers stability/propensity to be solubilized by the detergent varying between non-stress and stress conditions. It is not a concern as we’re not comparing mutants to WT. Contamination by Lhcb4 in the trimer fraction is neither a concern as its amount is similarly low between the compared samples: soq1 mutant cold HL (qH ON) and soq1 lcnp mutant cold HL (qH OFF). So presence of Lhcb4 cannot account for the observed difference in fluorescence quenching as its quantity does not differ between the ON and OFF states. Importantly, the monomeric fraction, enriched in Lhcb4, does not show fluorescence quenching. We have used CN-PAGE as a complementary approach that showed that LHCII trimers are quenched after a cold and high light-treatment in both WT and soq1 mutants (Fig. 4). These aspects are described page 7 in the results section “qH is observed in isolated major LHCII”. Here we chose not to use BN/CN-PAGE or sucrose gradient ultracentrifugation for the isolation of the trimeric and monomeric fractions for two reasons: they would not be as suitable for TCSPC experiments due to their acrylamide or sucrose content and they would take more time; gel filtration was preferred to limit buffer exchange and time required from plant protein extraction to measurement.
Reviewer #2 (Significance (Required)):
Localization of qH in LHCII trimers is interesting, but not surprizing.
So, authors are recommended to rewrite the significance of their findings.
Response:____ In the last paragraph of the introduction, we have now clarified that this study identifies qH quenching in the LHCII trimers but not in the minor monomeric Lhcbs. Prior to this work, the peripheral antenna as a whole was known to be required for qH, now this study identified the major trimeric LHCII as a quenching site. The novelty and significance of this work is further substantified by the isolation of quenched antenna directly from plants in physiological conditions, as opposed to artificial induction in vitro. Regarding the “surprising” nature of findings in general, please see answer below to reviewer #3.
My expertise: I am working on the movement of L and M trimers in plants under photoinhibitory illumination.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
The studies reported in this manuscript were designed to test the hypothesis that LCNP binds (or modifies) a molecule in the vicinity of (or within) the antenna proteins, under stress conditions. This in turn triggers a conformational change that converts antenna proteins from a light-harvesting to a dissipative state. Experiments were performed to locate the qH quenching site within the peripheral antenna of PSII and determine its sensitivity to Lhcb subunit composition. The authors were able to isolate antenna complexes with active qH that remained quenched after purification. Analysis of these complexes revealed that qH can occur in the major trimeric LHCII complexes. The elegant studies reported in this manuscript have made good use of appropriate molecular techniques and genetic resources. Genome editing and genetic crosses were used to demonstrate that qH is not restricted to inherent regulation of a specific major Lhcb subunit. The data are clearly presented and the data are convincing.
Response: Thank you very much for your appreciation of our work!
Reviewer #3 (Significance (Required)):
The studies reported in this manuscript build on a firm foundation of previous work by these authors and others. The conclusions are based on the analysis of Chl fluorescence lifetimes in intact leaves, thylakoids, and isolated antenna complexes in which qH was "ON" or "OFF". The findings are interesting and incremental in terms of increasing current understanding. However, the data extend our knowledge of the location of qH within the peripheral antenna of PSII. Rather unsurprisingly, the authors highlight the need to preserve thylakoid membrane macroorganisation for a full qH response.
Response: The philosophical concept of findings not being surprising could be discussed at length. To quote a commenter from this blog: ____https://blogs.uw.edu/ajko/2009/09/17/whats-surprising/____, just because one could have guessed the outcome of an experiment is not the same as empirically validating it. We hope you agree. Plus, as Fabrice Rappaport used to say, “we’re never sheltered from a discovery” and it could have been that isolated LHCII with qH ON showed short Chl fluorescence lifetimes similar to observed in leaves. We couldn’t know until we tried!
Data are presented showing that while qH occurs in the trimeric LHCII complexes, it does not require a specific Lhcb subunit and is insensitive to Lhcb composition. However, the discussion is rather speculative because data interpretation is limited by an absence of knowledge regarding what happens to the LHC trimers and qH during isolation of thylakoids and photosynthetic complexes. This point is considered appropriately in the discussion. The authors also acknowledge the existence of additional quenching sites beyond the LHCII trimers that are required for qH.
Response: Indeed, thank you we have addressed these points in the discussion, and have now added new data on the lack of changes in lipid composition in the LHCII trimer with qH ON or OFF. We view this study as an important milestone to obtain knowledge on the molecular origin of qH.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The studies reported in this manuscript were designed to test the hypothesis that LCNP binds (or modifies) a molecule in the vicinity of (or within) the antenna proteins, under stress conditions. This in turn triggers a conformational change that converts antenna proteins from a light-harvesting to a dissipative state. Experiments were performed to locate the qH quenching site within the peripheral antenna of PSII and determine its sensitivity to Lhcb subunit composition. The authors were able to isolate antenna complexes with active qH that remained quenched after purification. Analysis of these complexes revealed that qH can occur in the major trimeric LHCII complexes. The elegant studies reported in this manuscript have made good use of appropriate molecular techniques and genetic resources. Genome editing and genetic crosses were used to demonstrate that qH is not restricted to inherent regulation of a specific major Lhcb subunit. The data are clearly presented and the data are convincing.
The studies reported in this manuscript build on a firm foundation of previous work by these authors and others. The conclusions are based on the analysis of Chl fluorescence lifetimes in intact leaves, thylakoids, and isolated antenna complexes in which qH was "ON" or "OFF". The findings are interesting and incremental in terms of increasing current understanding. However, the data extend our knowledge of the location of qH within the peripheral antenna of PSII. Rather unsurprisingly, the authors highlight the need to preserve thylakoid membrane macroorganisation for a full qH response.
Data are presented showing that while qH occurs in the trimeric LHCII complexes, it does not require a specific Lhcb subunit and is insensitive to Lhcb composition. However, the discussion is rather speculative because data interpretation is limited by an absence of knowledge regarding what happens to the LHC trimers and qH during isolation of thylakoids and photosynthetic complexes. This point is considered appropriately in the discussion. The authors also acknowledge the existence of additional quenching sites beyond the LHCII trimers that are required for qH.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Authors observed qH in isolated LHCII trimers with Chl fluorescence changes (shorter), and concluded that no single major Lhcb isomers is necessary for qH.
Major concern is: LHCII trimers are divided into S, M, L trimers with different compositions. Authors are requested to interpret their results in terms of L-, M-, S-trimers.
Minor comments are: Authors describes qI as reversible NPQ, but qI with D1 damage is not reversible.
In page 3 - 2nd paragraph, Authors define components of NPQ one by one, but the definition or revoery kinetics for qH is skipped, And authors suddenly start explaining molecular players of qH without changing paragraph.
In Fig. S6, authors tried to confirm the trimer and monomer fractions they used by using Lhcb2 and Lhcb4 antibodies, respectively. But, the distribution of Lhcb2 only in Trimer fraction in WT, which is diferetnf from the distribution in other mutants. Contamination of Lhcb4 in Trimer fraction is also of concern. Authors may use Bn-PAGE or Ultracentrigugal separation, rather than gel filtration.
provide evidences for
Localization of qH in LHCII trimers is interesting, but not surprizing.
So, authors are recommended to rewrite the significance of their findings.
My expertise: I am working on the movement of L and M trimers in plants under photoinhibitory illumination.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
The Non-Photochemical Quenching (NPQ) protects photosystems from energy overloading by excess light exposure. The NPQ consists of multiple factors which function in different time scales and energy levels. One of the factors, qH, has been proposed based on chlorophyll fluorescence lifetime observation and the plastid lipocalin has been identified as the important player to regulate qH. It remains to link the qH phenotype and molecular mechanisms. The authors purify photosynthetic protein complexes from the qH mutants and tried to build a biophysical model to link qH phenomena and protein science based on chlorophyll fluorescence lifetime observation.
Major comments:
There are two major issues. One issue is, even many kinetics are presented, but the relationship between these values and qH phenotypes is not clearly stated or connected. One idea is to build the mathematical model(s) to explain these kinetics. The other issue is, lipid composition is not considered. Indeed, this phenomenon is observed or emphasized in low temperatures. Generally thinking, lipid composition bound to photosynthetic complexes would be disturbed or modified its conformation.
Minor comments:
Some datasets are less biological replicates or not clearly stated about the biological replicate number (Figure 2, Figure 4, Figure 5, Figure S2, Figure S5, and Figure S8). Normally, at least three independent biological replicates are required. Technical replicates are not acceptable.
In Figure 3 and Figure S3, extend the length of the major tick for each axis. It is hard to distinguish between major tick and minor tick.
In Figure 3, mark the measured peak wavelength value on the top for readers.
In Figure 4, Why do not you present chlorophyll kinetics? I suspect it is possible to acquire if you used SpeedZen. In Figure 6, decrease the thickness of the border for the bar graph or marker. Markers on the top of the bar graph are not visible.
Figures S3 and S6, provide the elution volume of protein standard in the chromatograph.
Figures S11 and S12, describe the number of biological replicates.
The topic is important for plant physiology especially photosynthesis regulation and biophysical characterization is straightforward to interpret molecular machinery. Other studies are only for chlorophyll observation for the whole plant body, but most importantly, this study is the challenging work on qH characterization with a biochemical approach.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity):
The manuscript reports the identification of a novel protein complex involved in denervation-induced desmin degradation. The first protein to be identified was the ATPAse Atad1. A clever isolation strategy was based on the fact that the ATPAse p97/VCP is involved in the extraction of ubiquitinated myofibrillar proteins but is not required for the removal of ubiquitinated desmin filaments. The authors reasoned that a related ATPAse might be specifically required for desmin filaments. Atad1 was identified by treating desmin filaments with a nonhydolyzable ATP analog and looking for ATPases that are associated with desmin filaments by proteomics. Knockdown of Atad1 causes a loss of desmin degradation and led to a loss of denervation-induced muscle atrophy. It seems that Atad1 binds desmin in a phsphorlation-dependent manner, although the binding maybe mediated by a protein that hasn't yet been identified. The authors went on and identified two additional proteins which together with Atad1 form a protein complex involved in recruiting calpain for desmin degradation.<br> Overall, this study is very convincing providing novel important insight. I have only some minor comments
Minor comments
- I wondered whether Aatd1 is expressed at higher-than-normal levels in muscle and heart. I looked that expression pattern up and it seems that they are especially abundant in muscle and heart and expressed at lesser levels in smooth muscle and overall have a restricted expression.
We now analyzed ATAD1 levels in various tissues by Western Blotting and the new data is presented as Fig. S2. ATAD1 is present in many tissues and thus may have many cellular roles.
Maybe you have some data on their expression in muscle tissue. Did you perform some staining of muscle tissue at baseline and after denervation with regard to the protein localization by immunostaining?
The new associations between ATAD1 and its protein partners reported herein were further validated by an immunofluorescence staining of longitudinal sections from 7 d denervated muscles and super-resolution Structured illumination microscopy (SIM). The new data presented as Fig. 3E demonstrate colocalization of ATAD1 with calpain-1, PLAA and UBXN4. To confirm that these proteins in fact colocalize, we measured the average colocalization of ATAD1 with calpain-1, PLAA and UBXN4 using the spots detection and colocalization analysis of the Imaris software (Fig. 3E). Only spots that were within a distance threshold of less than 100 nm were considered colocalized (Fig. 3E, graph).
- The string data presented in Figure 3C needs some further explanation with regard to the colors used for the different proteins. While the authors explained the meaning of the proteins labeled in red, there is no explanation for the other colors.
These were arbitrary colors assigned to protein nodes by the STRING database. The current color code we use is only meant to group the UPS enzymes based on function (e.g. E2s, E3s, DUBs etc). This information has now been added to figure legend.
- Molecular weights in Fig. 2E, 3D needs to be 'repaired' and additional MW information is required in case of the ubiquitin blot shown in 3D.
All molecular weight values and protein ladders have been added.
- Fiber size distributions shown in Fig. 1D and 4F. Have the differences been statistically tested?
We thank the reviewer for raising this important point because we just established an approach to quantitate these effects statistically using Vargha-Delaney A-statistics test and Brunner-Manzel test. Our new paper on this topic entitled “A semi-automated measurement of muscle fiber size using the Imaris software” by Gilda et al. was recently published in the AJP Cell Physiol. As requested by the reviewer, we now also apply A-statistics test and Brunner-Manzel test on the fiber size measurements presented in our current manuscript (Figs. 1C, 4F and Table I), which show a significant difference in size distributions of fibers expressing shAtad1 vs. adjacent non-transfected fibers. As indicated in our paper (Gilda et al, 2021), the A-statistics is a direct measure of the fiber size effect, and it shows significant beneficial effects on cell size by shAtad1 (Table I). Such effects can be simply missed by traditional measurements of median, average, and Student’s t-test.
- For my taste the referral to the individual data (Fig. numbers) in the discussion section is too detailed and becomes a second results section. This should be substituted by a summary paragraph before the implications are discussed.
We agree and revised the discussion section accordingly.
- The summary slide is very good. However, could you please add information, which protein of the three in the Atad1 complex is depicted by each symbol?
The model slide has been revised to include all enzymes studied in this paper, and a legend to improve clarity.
Reviewer #1 (Significance)
Novel insight into the proteins involved in desmin filament degradation. Since this is an important subject both in muscle and heart and plays an important role in muscle and heart disease, it is of significant clinical importance. Currently it has only been implicated in denervation-induced skeletal muscle atrophy, but it is likely that desmin filament metabolisms is also similarly regulated in the heart.
I am a researcher mainly focusing on the cardiac biology with some expertise also on muscle, however no specific knowledge about desmin filament biology. <br> Referee Cross-commenting Overall, I think all three reviewers agree that this is a significant and important paper. I think that the comments made by the reviewers are fair and probably add to the quality of the manuscript.
We are pleased that the reviewers found our paper novel and important.
Thus, both myself and reviewer 2 agree that it would be useful to visualize Atad1 and partners localization in muscle fibers by immunofluorescence. These data would provide independent support to the model the authors are proposing, which currently is only based on biochemical analysis.
These data have been added as new Fig. 3E.
I also support the proposed use of proximity ligation to provide further evidence of the presence of the Atad1, Ubxn4 and PLAA in a complex. However, this experiment depends on the quality of the available antibodies and I would consider this not absolutely required.
Because our antibodies are not suitable for proximity ligation assay (PLA), we used a super-resolution SIM microscope, immunofluorescence, and the spots detection and colocalization analysis of the Imaris software to confirm colocalization of ATAD1 and its partners (new Fig. 3E). Similar to PLA (where signal is generated only if two antibodies used for staining are 100nm apart), only spots that were within a distance threshold of less than 100 nm were considered colocalized (Fig. 3E, graph). In addition, we present immunoprecipitation (Fig. 3D) and use three independent mass spectrometry-based proteomic approaches to validate these new associations.
I also agree that some further information on the proteomics data (as suggested by reviewer 3) is required with regard to the method of filtering for UPS components was performed.
We agree and thank the reviewer for this comment. More information on the proteomics data have been added to the text and legend to Table II.
The proposed request for further information on the electroporation approach is a valid comment and if the authors have this information, it would be good to provide. However, I do not recommend further experiments as overall the data are very consistent and the findings are very significant and represent a major advance in our understanding of desmin degradation.
With regard to the electroporation approach, i) representative images have been added to Figs. 1C and 4F, ii) a statement was added to Methods under “in vivo electroporation” about the percent of transfection routinely used in our experiments (60-70%), iii) we determine transfection efficiency by dividing the number of transfected fibers (also express GFP) by the total number of fibers in the same muscle cross section (using the Imaris software). This approach was fully validated in our recent papers by Goldbraikh et al EMBO Rep, 2020 (see supplementary material) and Gilda et al AJP-Cell Physiol, 2021.
Reviewer #2 (Evidence, reproducibility and clarity)
In their manuscript the authors show the involvement of the AAA ATPase Atad1 in Desmin degradation. They identify PLAA and Ubxn4 as partners of Atad1 that participate to its function in desmin degradation.<br> A general comment is that some conclusions are overstated. The authors mention several times that Atad1 depolymerises desmin filaments. The data show that Atad1 participates to the degradation of Desmin and to its solubilization. "Depolymerisation" should be kept for the model presented in figure 8 but not used in the result section.
We respectfully disagree with the reviewer that our conclusions are overstated. Early studies from Fred Goldberg’s group showed that filaments are not accessible to the catalytic core of the proteasome (Solomon and Goldberg, JBC, 1996), and therefore must depolymerize before degradation. Accordingly, more recent studies by us and others identified distinct enzymes and cellular steps promoting disassembly and subsequent degradation of ubiquitinated desmin filaments (Cohen, JCB, 2012; Aweida, JCB, 2018) and myofibrils (Cohen, JCB, 2009; Volodin, PNAS, 2017). In the current manuscript, we employed a similar approach as we used before to analyze disassembly of filamentous myofibrils by p97/VCP (Volodin, PNAS, 2017), and demonstrate a critical role for ATAD1-PLAA-UBXN4 complex in promoting desmin IF disassembly and loss (figures 2C, 3D, 3G, 4C, 4G, 4H). We show that ATAD1 binds intact insoluble desmin filaments in an early phase during atrophy (3 d after denervation)(figures 2B, 2F) and later accumulates in the cytosol bound to soluble ubiquitinated desmin (figure 3D). Moreover, downregulation of ATAD1, PLAA or UBXN4 in mouse muscles prevents the solubilization of desmin IF (figures 2C, 3G, 4C) because in these muscles desmin accumulates as ubiquitinated insoluble filaments. Based on these data we conclude that Atad1 complex promotes desmin IF disassembly and subsequent loss.
Major comments:<br> 1) It would be useful to visualize Atad1 and partners localization in muscle fibers in immunofluorescence. Do they colocalize with desmin filaments, with calpain?
As requested, the new associations between ATAD1 and its protein partners reported herein were further validated by an immunofluorescence staining of longitudinal sections from 7 d denervated muscles and super-resolution Structured illumination microscopy (SIM). The new data presented as Fig. 3E demonstrate colocalization of ATAD1 with calpain-1, PLAA and UBXN4. To confirm that these proteins in fact colocalize, we measured the average colocalization of ATAD1 with calpain-1, PLAA and UBXN4 using the spots detection and colocalization analysis of the Imaris software (Fig. 3E). Only spots that were within a distance threshold of less than 100 nm were considered colocalized (Fig. 3E, graph). Given the antibodies in hand and new ones that we purchased, as well as the species of the antibodies, we were able to perform and optimize the staining only for the presented combinations of antibodies.
2) In the same line, interactors were obtained from large crosslinked complexes. It would make the model more convincing if direct interactions with Atad1 were shown, for example using Proximity Ligation Assays.
Because our antibodies are not suitable for proximity ligation assay (PLA), we used a super-resolution SIM microscope, immunofluorescence, and the spots detection and colocalization analysis of the Imaris software to confirm colocalization of ATAD1 and its partners (new Fig. 3E). Similar to PLA (where signal is generated only if two antibodies used for staining are 100nm apart), only spots that were within a distance threshold of less than 100 nm were considered colocalized (Fig. 3E, graph). In addition, we present immunoprecipitation (Fig. 3D) and use three independent mass spectrometry-based proteomic approaches to validate these new associations._
3) Evaluation of atrophy is made on cross-sections of muscles electroporated with shRNAs. Histology pictures should be shown.
As requested, representative images of transfected muscles were added to figures 1C and 4F.
4) What is the percentage of electroporated fibers? To evaluate the effect of shRNAs it is important to have this information. For example, if the efficiency is 50% it means that the reduction in expression of the target in electroporated fibers is twice the value reported for the whole muscle. Alternatively, immunofluorescence could be provided to see the decrease in targeted proteins in electroporated fibers.
We determine transfection efficiency by dividing the number of transfected fibers (also express GFP) by the total number of fibers in the same muscle cross section (using the Imaris software). This approach is fully validated in our recent papers by Goldbraikh et al EMBO Rep, 2020 (see supplementary material) and Gilda et al AJP-Cell Physiol, 2021. For our biochemical studies we always analyze muscles that are at least 60-70% transfected (added to methods).
As shown in figures 1B, 3F, and 4A-B, our shRNAs reduced gene expression by at least 40-50%, which in a whole muscle was sufficient to promote the beneficial effects on muscle (as mentioned in the text, shCAPN1 was validated in Aweida, JCB, 2018). Similar reduction in gene expression is commonly seen by the in vivo electroporation of a fully developed mouse muscles because transfection efficiency is never 100%. This means that the beneficial effects on muscle by the electroporated shRNA must underestimate the actual protective effects by gene downregulation. To prove that these beneficial effects on muscle result from specific gene downregulation, we compare and analyze in parallel in each experiment muscles transfected with shLacz scrambled control.
5) The same is true for all the experiments quantifying the effect of shRNAs in western blot. Since quantifications are probably made on whole muscles (ie a mix between electroporated and non electroporated fibers) and since the percentage of electroporated fibers is not given it is not possible to estimate the efficiency of the shRNAs in electroporated fibers.
As mentioned above and now also in the text, for our biochemical studies we always analyze muscles that are ~60-70% transfected. This methodology is very well established in our lab, and a reduction of 40-50% in gene expression by our shRNAs is sufficient to promote the beneficial effects on mouse muscle (see our papers in JCB, PNAS, Nat Comm, EMBO rep).
6) Figure 2C: by decreasing solubilization of desmin, one would expect a decrease in the levels of soluble desmin. Conversely the authors observe an increase in both insoluble and soluble desmin. Of course, this can be explained by reduced desmin degradation once solubilized but this should be demonstrated at least by showing that UPS inhibitors induces an increase in soluble ubiquitinated Desmin.
The reviewer raises an important point that we now discuss in the text. Soluble pool of desmin, its homolog vimentin as well as other Type III IF proteins is small as these proteins mostly exist in the cell assembled within filaments (see papers by RA Quinlan and WW Franke). This soluble pool of desmin may function either as precursors to the mature filament or as components released during filament turnover. Because we block desmin IF disassembly by downregulating Atad1, the soluble desmin that accumulates in the cytosol likely represents new precursors whose degradation also requires ATAD1. Therefore, we conclude that ATAD1 promotes degradation of desmin filaments and of soluble proteins (see also figures 2E and 4D).
As requested by the reviewer, we inhibited proteasome activity by injecting mice with Bortezommib and measured the effects on desmin content in denervated muscle (new figure 2D). Our new data clearly demonstrate accumulation of ubiquitinated desmin in atrophying muscles where proteasome activity was inhibited, indicating that in denervated muscles desmin is degraded by the proteasome.
7) Figure 2E: the levels of Atad1 in the insoluble fraction seem to be the same in the shLacZ and GSK3DN conditions, whereas the phosphor Ser is different. In other words, there should be more Atad1 in the insoluble fraction with shLacZ than with GSAK3DN since the phosphorylation level with shLacZ is significantly higher.
To quantitate the changes in ATAD1 association with desmin and avoid confusion by the reader, we performed densitometric measurements of ATAD1 and desmin, and depict in a graph the ratio of ATAD1 to desmin in the insoluble fraction. The new data was added to figure 2F and clearly demonstrate that ATAD1 association with desmin is significantly reduced in muscles expressing GSK3b-DN. These findings further support our conclusions that Atad1 association with desmin IF requires desmin phosphorylation.
8) Figure 4E: the authors state that phosphorylation decreases because of increased degradation (lanes 6-8). However, Calpain also increases degradation and phosphorylation is increased (lanes 2-4), so increasing degradation does not systematically cause a decrease in phosphorylation. Similarly, lane 5 Atad1 induces less degradation than Calpain, however, it causes a decrease in phosphorylation. Explain.
Here we use a cleavage assay, which was established and validated in our recent JCB paper (Aweida 2018). Desmin filaments were isolated from mouse muscle and the obtained preparation was divided between 9 tubes (hence there is no situation for “increase in phosphorylation” as indicated by the reviewer). Recombinant calpain-1 was then added to the tubes and cleavage of phosphorylated desmin was analyzed over time. Because the substrate for calpain-1 is phosphorylated desmin, we measured the content of both desmin and its phosphorylated form in the tube throughout the duration of the experiment. Only when cleavage of phosphorylated desmin by calpain-1 was accelerated (i.e., in the presence of Atad1), a rapid reduction in the amount of phosphorylated desmin could be detected (compare lanes 6-8 with 5) concomitantly with accumulation of small desmin fragments in short incubation times (compare lanes 6-7 with 2-3).
With respect to the reviewer’s comment that “Atad1 induces less degradation than Calpain” in lane 5, please note that Atad1 is not a protease and cleavage of desmin occurs in this experiment only in the presence of calpain-1. However, if there is a slight reduction in phosphorylated desmin, it should account for the ability of ATAD1 appears to slowly disassemble desmin IF (as our in vivo data by shATAD1 show).
9) The AAA ATPase VCP shares partners with Atad1 and is involved in muscle atrophy. It would greatly add to the manuscript if the authors inhibited VCP to compare its effect to Atad1
As stated in the text, we previously demonstrated that p97/VCP is not required for desmin filament loss: “the AAA-ATPase, p97/VCP disassembles ubiquitinated filamentous myofibrils and promotes their loss in muscles atrophying due to denervation or fasting (Piccirillo and Goldberg, 2012; Volodin et al., 2017). However, desmin IF are lost by a mechanism not requiring p97/VCP (Volodin et al., 2017). We show here that their degradation requires a distinct AAA-ATPase, ATAD1”. Therefore, our current studies were undertaken to specifically identify the AAA-ATPase that is involved in desmin filament disassembly and loss. Accordingly, p97/VCP was not detected by our mass spectrometry-based proteomic analyses presented here (stated in the discussion).
We did identify PLAA and UBXN4 as ATAD1 partners and show they are required for desmin loss, and therefore state in the text that “PLAA and UBXN4 are also known cofactors for p97/VCP (Liang et al., 2006; Papadopoulos et al., 2017), a AAA-ATPase that was not in our datasets, indicating that p97/VCP adaptors can bind and function with other AAA-ATPases”.
Minor comments:
1) The soluble fraction contains a large number of ubiquitinated proteins. Please explain how it can be stated that an increase in total soluble polyubiquitinated proteins corresponds to an increase in ubiquitinated desmin.
We do not state in the text that “an increase in total soluble polyubiquitinated proteins corresponds to an increase in ubiquitinated desmin”. We state that “stabilization of desmin filaments attenuates overall proteolysis. The reduced structural integrity of desmin filaments on denervation is likely the key step in the destabilization of insoluble proteins (e.g. myofibrils) during atrophy, leading to the enhanced solubilization and degradation in the cytosol”. We invite the reviewer to read our papers about this topic by Cohen 2012, Volodin 2017, and Aweida 2018. Using a dominant negative of desmin polymerization we show that disassembly of desmin filaments is sufficient to trigger myofibril destruction and consequently overall proteolysis (because myofibrils comprise ~70% of muscle proteins).
2) Page 11: the authors conclude that denervation enhance the interactions with Atad1. Figure 3D indeed show an increase for Ubxn4, but it is not clear for the other proteins.
Figure 3D shows that in 7 d denervated muscles there is an increase in associations between ATAD1 and ubiquitinated desmin, UBXN4, PLAA and calpain-1.
3) Figure 4 F: show muscle sections
A representative image was added as requested.
4) Page 21 in vivo transfection: it is stated "see details under immunofluorescence" but there is no immunofluorescence section in materials and methods.
Thank you. An immunofluorescence section has been added to Methods.
5) The authors show that Atad1 inhibition in innervated muscle is sufficient to induce muscle hypertrophy (Figure 4E). They conclude that the hypertrophic effect of Atad1 is due to the inhibition of Desmin degradation. However, this hypertrophic effect could be independent of the action of Atad1 on Desmin.
We believe the reviewer refers to figure 4F-H, where we show that downregulation of ATAD1 prevents the basal turnover of desmin and of soluble proteins and causes muscle fiber growth. Based on this data we speculate in the text that “ATAD1 attenuated normal muscle growth most likely by promoting the loss of desmin filaments and of soluble proteins … Thus, ATAD1 seems to function in normal postnatal muscle to limit fiber growth, and suppression of its activity alone can induce muscle hypertrophy”. We agree with the reviewer that in addition to these beneficial effects on desmin and soluble proteins, ATAD1 downregulation may contribute to muscle growth by additional mechanisms.
Reviewer #2 (Significance)
This is new information in the field since calpain cannot hydrolyze desmin insoluble filaments and that the mechanisms that give calpain access to desmin are not known.
The authors already made important contribution in the study of muscle atrophy and especially in desmin degradation. This work constitutes a new advance in their attempts to understand the molecular mechanisms leading to desmin degradation and muscle atrophy.
Audience: desmin is the main intermediate filament in skeletal muscle. This work will therefore interest scientists working on skeletal muscle.
Expertise of the reviewer: molecular and cellular biology of skeletal muscles, muscle atrophy.
Referee Cross-commenting
I fully agree with reviewer 1.
Reviewer #3 (Evidence, reproducibility and clarity)
Summary:
The manuscript by Aweida & Cohen introduces a novel complex formed by the AAA-ATPase ATAD1 and its interacting partners PLAA and UBXN4 as initiator of calpain-1-mediated disassembly of ubiquitylated desmin intermediate filaments (IF) during muscle atrophy. The authors use a denervation model of murine tibialis anterior muscles as their main resource for experimentation. They apply a kinase trap-assay and co-immunoprecipitation method followed by mass spectrometry as starting point for identifying novel interactors of desmin IF (Aweida et al. 2018 in JCB). They continue to analyze their candidates using immunoblotting, co-immunoprecipitation, shRNA-mediated intramuscular knock-down, gel filtration, mass spectrometry, and enzyme assays. In their experiments, thee authors show an accumulation of ATAD1 in the insoluble desmin filament fraction of denervated muscle fibers together with an increase in ubiquitylation of desmin filaments. Both proteomics experiments of size-exclusion chromatography of denervated muscles and ATAD1 immunoprecipitation identify several components of the ubiquitin-proteasome system as novel interactors of ATAD1, that are also bound to insoluble desmin filaments after muscle denervation. Following additional co-immunoprecipitation and knock-down experiments, the authors confirm PLAA and UBXN4 as novel cofactors of Atad1 that help in extracting previously GSK3-β-phosphorylated and TRIM32-ubiquitylated (Aweida et al. 2018 in JCB, Volodin et al. 2017 in PNAS) desmin from desmin IF. The authors further show that ATAD1 encourages calpain-1-dependent proteolysis of soluble desmin after extraction from the desmin IF in an in vitro enzymatic proteolysis assay.
Major comments:
The authors present clear and convincing arguments from in vivo and in vitro experiments for their proposed model of ATAD1/PLAA/UBXN4-aided calpain-1-mediated proteolysis of desmin IF.
In my opinion, no additional experimental evidence is essential to underlining their statement.
Data and methods are presented clearly and understandably to allow for the reproduction and the reapplication of the utilized methods for verifying the presented data and analyzing complementary aspects in a similar fashion.
A concern is with the presentation of mass spectrometry results, particularly regarding Table I: I am wondering whether the presented UPS components were the only proteins found in the proteomics screens or whether any filtering has taken place to only show UPS components in this manuscript. If so, please note the total number of proteins identified in the respective proteomics analyses and explain how filtering for UPS components was performed. This comment goes in line with the first minor comment on Figure 1A, see below.
We thank the reviewer for this valuable comment, as it helps clarify a point that was not completely lucid in the previous version of this manuscript. Because our paper focuses on protein degradation, we extracted from our datasets only UPS components that were identified with ³ 2 unique peptides using DAVID annotation tool-derived categories (Table II). Column 1 includes UPS components that were co-purified with ATAD1 by size exclusion chromatography (SEC)(20 out of 427 total proteins), and column 2 includes UPS components that were co-purified with ATAD1 by immunoprecipitation from muscle homogenates (17 out of 592 total proteins). These two proteomics experiments were oriented specifically towards identifying ATAD1-binding partners. To further validate our observations, we compared these lists of ATAD1-interacting components to our previous kinase-trap assay dataset (Aweida 2018, 1552 total proteins were identified) and included in column 3 only the proteins that overlapped with the other two proteomics approaches. The kinase trap assay was used to identify proteins that utilize ATP for their function and act on desmin, and as mentioned in the text, ATAD1 was one of the most abundant proteins in the sample. Of note is UBXN4, which was identified only by our kinase trap assay, and accumulated on desmin after denervation. These interactions between active enzymes in vivo must be transient and very dynamic, hence using three approaches did not identify the exact same subset of putative adaptors (see “discussion”). These points are now further elaborated in the text and the legend for Table II.
The relatively small number of individuals analyzed per experiment is owing to the limiting nature of mouse research and therefore acceptable. The observed alignment of the individual results is commendable, underlines the experimentator's ability, and strengthens the reached conclusion of the study.
We thank the reviewer for this comment.
Minor comments:
Figure 1A seems redundant, since the experimental approaches are described in the text and the Venn diagram does not integrate the identification of ATAD1 into the setting of the conducted screens, e.g. by showing how many additional proteins were identified in these two screens before the authors tended to their candidate ATAD1.
We agree and therefore removed Fig. 1A.
Word order mistake on page 6 in the sentence: "To test whether Atad1 is important for atrophy, we suppressed...".
Corrected.
Figure 1D: statistical analysis of the significance of the fiber area difference missing
Statistics for these effects is now included in new Table I. We quantitated the effects statistically using Vargha-Delaney A-statistics test and Brunner-Manzel test, based on our recent methodology paper in AJP Cell Physiol: “A semi-automated measurement of muscle fiber size using the Imaris software” (Gilda et al. 2021). The new statistical analyses show a significant difference in size distributions of fibers expressing shAtad1 vs. adjacent non-transfected fibers (Table I). As indicated in our paper (Gilda et al, 2021), the A-statistics is a direct measure of the fiber size effect.
Figure 2A: desmin ubiquitylation is not shown in these samples by immunoblotting against (poly-)ubiquitin, but only by the identification of high molecular weight bands of the desmin blot. I wonder about the specificity of the desmin antibody in this case and about the manner of sample extraction/isolation for this particular blot, as a detailed description is missing. There seems not to have been any muscle tissue fractionation beforehand, if I am correct?
This blot presents an analysis of desmin filaments isolated from mouse muscle, which are purified with associated proteins. In order to specifically detect ubiquitinated desmin filaments we must use a specific desmin antibody (antibody and methodology are validated in Cohen 2012 JCB, Volodin 2017 PNAS, and Aweida 2018 JCB). An antibody against ubiquitin conjugates will detect all proteins that are ubiquitinated in this insoluble preparation (e.g. proteins that bind desmin).
Orthography mistake "demin" instead of "desmin" on page 7 in sentence "It is noteworthy that the amount of ubiquitinated demin..."
Corrected.
Figure 3C: image quality is insufficient; some protein names are rather difficult to decipher
The figure has been revised to improve clarity.
Word missing on page 13 in sentence "In addition, by 10 minutes of incubation, phosphorylated ... due to their processive cleaveage by calpain-1 ..."
We thank the reviewer for reading the paper thoroughly and carefully. The missing word was added to the text.
Figure 4F: statistical analysis of the significance of the fiber area difference missing
Statistics is now included in new Table I. Asmentioned above, we quantitated the effects statistically using Vargha-Delaney A-statistics test and Brunner-Manzel test, based on our recent methodology paper in AJP Cell Physiol: “A semi-automated measurement of muscle fiber size using the Imaris software” (Gilda et al. 2021).
"ug" on page 21 in "Briefly, 20ug of plasmid DNA..." is probably supposed to be "µg". In general, please be aware of correct unit declaration and space character usage before units.
Corrected.
Please be aware of the usage of correct nucleic acid and protein nomenclature and style: When referring to gene or transcript levels mark the candidate characters in italic, e.g. Atad1 mRNA levels, shUbxn4, versus ATAD1 protein etc. In addition, please be aware to use the correct gene and protein name styles: e.g. shCapn1 instead of shCAPN1 for shRNA targeting the murine Capn1 transcript in Figure 4 in comparison to CAPN1 the protein. Helpful link: https://www.biosciencewriters.com/Guidelines-for-Formatting-Gene-and-Protein-Names.aspx
We thank the reviewer for this comment. The nomenclature for all genes and proteins have been revised accordingly.
Reviewer #3 (Significance)
Aweida & Cohen present evidence for the involvement of the AAA-ATPase ATAD1 not only in regulation of synaptic plasticity and the extraction of mislocalized proteins from the mitochondrial membrane, but also in a collaboration with the ubiquitin-binding proteins PLAA and UBXN4 in the disassembly of desmin intermediate filaments in muscle atrophy. The authors compare this newly discovered function of the AAA-ATPase ATAD1 to the numerous functions of the AAA+ ATPase p97/VCP and raise compelling arguments for their statement. Previously, E3 ligases that ubiquitylate sarcomere components in muscle atrophy have been identified, such as MuRF1 (Bodine et al. 2001 in Science) and TRIM32 (reviewed in Bawa et al. 2021 in Biomolecules), but the complete extraction mechanism of monomers from the diverse macromolecular fibrillary structures in muscle has been lacking.
Both, researchers of general proteostasis mechanisms, in particular their impact on muscle function and metabolism, as well as medical researcher investigating therapeutic roads may appreciate the authors' work. This study opens up various roads to follow with complementing investigations on the many functions of the UPS in the regulation of muscle fiber architecture and functionality.
I am working on proteostasis and particularly the UPS. I have a long-standing track record on muscle assmebly mechanisms, the regulation of E3 ligases and p97/VCP functions.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
The manuscript by Aweida & Cohen introduces a novel complex formed by the AAA-ATPase ATAD1 and its interacting partners PLAA and UBXN4 as initiator of calpain-1-mediated disassembly of ubiquitylated desmin intermediate filaments (IF) during muscle atrophy. The authors use a denervation model of murine tibialis anterior muscles as their main resource for experimentation. They apply a kinase trap-assay and co-immunoprecipitation method followed by mass spectrometry as starting point for identifying novel interactors of desmin IF (Aweida et al. 2018 in JCB). They continue to analyze their candidates using immunoblotting, co-immunoprecipitation, shRNA-mediated intramuscular knock-down, gel filtration, mass spectrometry, and enzyme assays. In their experiments, thee authors show an accumulation of ATAD1 in the insoluble desmin filament fraction of denervated muscle fibers together with an increase in ubiquitylation of desmin filaments. Both proteomics experiments of size-exclusion chromatography of denervated muscles and ATAD1 immunoprecipitation identify several components of the ubiquitin-proteasome system as novel interactors of ATAD1, that are also bound to insoluble desmin filaments after muscle denervation. Following additional co-immunoprecipitation and knock-down experiments, the authors confirm PLAA and UBXN4 as novel cofactors of Atad1 that help in extracting previously GSK3-β-phosphorylated and TRIM32-ubiquitylated (Aweida et al. 2018 in JCB, Volodin et al. 2017 in PNAS) desmin from desmin IF. The authors further show that ATAD1 encourages calpain-1-dependent proteolysis of soluble desmin after extraction from the desmin IF in an in vitro enzymatic proteolysis assay.
Major comments:
The authors present clear and convincing arguments from in vivo and in vitro experiments for their proposed model of ATAD1/PLAA/UBXN4-aided calpain-1-mediated proteolysis of desmin IF. In my opinion, no additional experimental evidence is essential to underlining their statement. Data and methods are presented clearly and understandably to allow for the reproduction and the reapplication of the utilized methods for verifying the presented data and analyzing complementary aspects in a similar fashion.
A concern is with the presentation of mass spectrometry results, particularly regarding Table I: I am wondering whether the presented UPS components were the only proteins found in the proteomics screens or whether any filtering has taken place to only show UPS components in this manuscript. If so, please note the total number of proteins identified in the respective proteomics analyses and explain how filtering for UPS components was performed. This comment goes in line with the first minor comment on Figure 1A, see below. The relatively small number of individuals analyzed per experiment is owing to the limiting nature of mouse research and therefore acceptable. The observed alignment of the individual results is commendable, underlines the experimentator's ability, and strengthens the reached conclusion of the study.
Minor comments:
Figure 1A seems redundant, since the experimental approaches are described in the text and the Venn diagram does not integrate the identification of ATAD1 into the setting of the conducted screens, e.g. by showing how many additional proteins were identified in these two screens before the authors tended to their candidate ATAD1.
Word order mistake on page 6 in the sentence: "To test whether Atad1 is important for atrophy, we suppressed...".
Figure 1D: statistical analysis of the significance of the fiber area difference missing
Figure 2A: desmin ubiquitylation is not shown in these samples by immunoblotting against (poly-)ubiquitin, but only by the identification of high molecular weight bands of the desmin blot. I wonder about the specificity of the desmin antibody in this case and about the manner of sample extraction/isolation for this particular blot, as a detailed description is missing. There seems not to have been any muscle tissue fractionation beforehand, if I am correct?
Orthography mistake "demin" instead of "desmin" on page 7 in sentence "It is noteworthy that the amount of ubiquitinated demin..."
Figure 3C: image quality is insufficient; some protein names are rather difficult to decipher
Word missing on page 13 in sentence "In addition, by 10 minutes of incubation, phosphorylated ... due to their processive cleaveage by calpain-1 ..."
Figure 4F: statistical analysis of the significance of the fiber area difference missing
"ug" on page 21 in "Briefly, 20ug of plasmid DNA..." is probably supposed to be "µg". In general, please be aware of correct unit declaration and space character usage before units.
Please be aware of the usage of correct nucleic acid and protein nomenclature and style: When referring to gene or transcript levels mark the candidate characters in italic, e.g. Atad1 mRNA levels, shUbxn4, versus ATAD1 protein etc. In addition, please be aware to use the correct gene and protein name styles: e.g. shCapn1 instead of shCAPN1 for shRNA targeting the murine Capn1 transcript in Figure 4 in comparison to CAPN1 the protein. Helpful link: https://www.biosciencewriters.com/Guidelines-for-Formatting-Gene-and-Protein-Names.aspx
Aweida & Cohen present evidence for the involvement of the AAA-ATPase ATAD1 not only in regulation of synaptic plasticity and the extraction of mislocalized proteins from the mitochondrial membrane, but also in a collaboration with the ubiquitin-binding proteins PLAA and UBXN4 in the disassembly of desmin intermediate filaments in muscle atrophy. The authors compare this newly discovered function of the AAA-ATPase ATAD1 to the numerous functions of the AAA+ ATPase p97/VCP and raise compelling arguments for their statement. Previously, E3 ligases that ubiquitylate sarcomere components in muscle atrophy have been identified, such as MuRF1 (Bodine et al. 2001 in Science) and TRIM32 (reviewed in Bawa et al. 2021 in Biomolecules), but the complete extraction mechanism of monomers from the diverse macromolecular fibrillary structures in muscle has been lacking.
Both, researchers of general proteostasis mechanisms, in particular their impact on muscle function and metabolism, as well as medical researcher investigating therapeutic roads may appreciate the authors' work. This study opens up various roads to follow with complementing investigations on the many functions of the UPS in the regulation of muscle fiber architecture and functionality.
I am working on proteostasis and particularly the UPS. I have a long-standing track record on muscle assmebly mechanisms, the regulation of E3 ligases and p97/VCP functions.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In their manuscript the authors show the involvement of the AAA ATPase Atad1 in Desmin degradation. They identify PLAA and Ubxn4 as partners of Atad1 that participate to its function in desmin degradation.
A general comment is that some conclusions are overstated. The authors mention several times that Atad1 depolymerises desmin filaments. The data show that Atad1 participates to the degradation of Desmin and to its solubilization. "Depolymerisation" should be kept for the model presented in figure 8 but not used in the result section. Major comments:
Minor comments:
This is new information in the field since calpain cannot hydrolyze desmin insoluble filaments and that the mechanisms that give calpain access to desmin are not known.
The authors already made important contribution in the study of muscle atrophy and especially in desmin degradation. This work constitutes a new advance in their attempts to understand the molecular mechanisms leading to desmin degradation and muscle atrophy.
Audience: desmin is the main intermediate filament in skeletal muscle. This work will therefore interest scientists working on skeletal muscle.
Expertise of the reviewer: molecular and cellular biology of skeletal muscles, muscle atrophy.
Referee Cross-commenting
I fully agree with reviewer 1.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
The manuscript reports the identification of a novel protein complex involved in denervation-induced desmin degradation. The first protein to be identified was the ATPAse Atad1. A clever isolation strategy was based on the fact that the ATPAse p97/VCP is involved in the extraction of ubiquitinated myofibrillar proteins but is not required for the removal of ubiquitinated desmin filaments. The authors reasoned that a related ATPAse might be specifically required for desmin filaments. Atad1 was identified by treating desmin filaments with a nonhydolyzable ATP analog and looking for ATPases that are associated with desmin filaments by proteomics. Knockdown of Atad1 causes a loss of desmin degradation and led to a loss of denervation-induced muscle atrophy. It seems that Atad1 binds desmin in a phsphorlation-dependent manner, although the binding maybe mediated by a protein that hasn't yet been identified. The authors went on and identified two additional proteins which together with Atad1 form a protein complex involved in recruiting calpain for desmin degradation.
Overall, this study is very convincing providing novel important insight. I have only some minor comments
Minor comments
Novel insight into the proteins involved in desmin filament degradation. Since this is an important subject both in muscle and heart and plays an important role in muscle and heart disease, it is of significant clinical importance. Currently it has only been implicated in denervation-induced skeletal muscle atrophy, but it is likely that desmin filament metabolisms is also similarly regulated in the heart.
I am a researcher mainly focusing on the cardiac biology with some expertise also on muscle, however no specific knowledge about desmin filament biology.
Referee Cross-commenting
Overall, I think all three reviewers agree that this is a significant and important paper. I think that the comments made by the reviewers are fair and probably add to the quality of the manuscript.
Thus, both myself and reviewer 2 agree that it would be useful to visualize Atad1 and partners localization in muscle fibers by immunofluorescence. These data would provide independent support to the model the authors are proposing, which currently is only based on biochemical analysis.
I also support the proposed use of proximity ligation to provide further evidence of the presence of the Atad1, Ubxn4 and PLAA in a complex. However, this experiment depends on the quality of the available antibodies and I would consider this not absolutely required.
I also agree that some further information on the proteomics data (as suggested by reviewer 3) is required with regard to the method of filtering for UPS components was performed.
The proposed request for further information on the electroporation approach is a valid comment and if the authors have this information, it would be good to provide. However, I do not recommend further experiments as overall the data are very consistent and the findings are very significant and represent a major advance in our understanding of desmin degradation.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
RESPONSE TO REVIEWER #1:
We wish to express our appreciation to Reviewer #1 for his or her insightful comments, which will significantly improve this paper. We thank the reviewers for giving us the opportunity to improve the manuscript. We have responded to all the comments pointed out. The revised sections are highlighted in red characters and yellow backgrounds in the preliminary revised manuscript.
Reviewer #1 (Evidence, reproducibility and clarity (Required)): This manuscript "Histidine-rich protein 2: a new pathogenic 1 factor of Plasmodium falciparum malaria" by Iwasaki, et al. reports effects of recombinant HRP2 protein on various mammalian cell lines. The MS clearly demonstrates that recombinant HRP2 enters into HT1080 cells, causes inhibition of autolysosome fusion, increases lysosomal Ca ion concentration and reduces general autophagic degradation. The authors also show that the presence of FBS or metal chelators like EDTA and EGTA mitigate toxicity of HRP2, as the former traps HRP2 and the latter compete with HRP2 for Ca binding. The experiments are appropriately carried out with suitable controls in most of the cases. There are some concerns as listed below:
**Major concerns:** 1.HRP2 has been shown to be associated with virulence and causes vascular leakage, particularly cerebral malaria (references 37 and 38 ). Plasmodium falciparum histidine-rich protein II has been demonstrated to exacerbate experimental cerebral malaria in mice, which has been proposed to be associated with vascular leakage, activation of inflammasome and cytokine production (references 37, 38 and PMID: 31858717). This study complements the previous findings of the effect of HRP2 on mammalian cells. However, this study reveals another mechanism by which HRP2 might cause toxicity, which is inhibition of general autophagy and increase in lysosomal Ca concentration. However, whether these in vitro effects would translate in vivo needs to be shown.
Response: We sincerely appreciate the reviewer's effort to evaluate our work. As the reviewer pointed out, this is an in vitro study, so further in vivo validation is essential in the future. However, it is also true that we discovered new findings that have been overlooked because we conducted an artificial and simple in vitro experiment. In the future, it is necessary to demonstrate the cytotoxicity, autophagy inhibition, and lysosomal calcium concentration variation of PfHRP2 by in vivo studies using model animals. Concretely, we need to confirm whether PfHRP2 behaves as a similar virulence factor in vivo by animal experiments using PfHRP2-administrated or PfHRP2-overexpressing/deficient P. falciparum-infected mouse models. These future tasks have been added to the Discussion (page 9, lines 294–297 and 309–310; page 10, lines 339–342). We have also added the study (PMID: 31858717) reporting PfHRP2 elicits pro-inflammatory effect and induces vascular permeability as reference 40.
Furthermore, the title of the original paper was vague and gave the impression that it included in vivo experiments. Therefore, to avoid misunderstanding, we modified the paper's title to be more concrete, "Plasmodium falciparum histidine-rich protein II exhibits cell penetration and cytotoxicity with autophagy dysfunction".
Reference
P. Dinarvand, L. Yang, I. Biswas, H. Giri, A. R. Rezaie, Plasmodium falciparum histidine rich protein HRPII inhibits the anti-inflammatory function of antithrombin. J. Thromb. Haemost. 18, 1473–1483 (2020).
2.All the experiments are done with recombinant HRP2 and BSA as a control. The authors should show if similar effects happen with infected parasites.
Response: As the reviewer pointed out, it is required to perform in vivo experiments, i.e., to clarify whether the same phenomenon observed in the present study occurs in PfHRP2-administrated or P. falciparum-infected mouse models. However, in vivo studies are not possible immediately because we do not have the research facilities to carry out in vivo experiments. Therefore, we have added statements (page 9, lines 294–297 and 309–310; page 10, lines 339–342) to emphasize that the present findings are limited to in vitro and that further in vivo studies described above will be required in the future.
3.HRP2 is released in circulation, making it accessible to endothelial cells and immune cells. How would it reach to the equivalents of these cells in the human body?
Response: Since PfHRP2 induces vascular permeability as described in References 37–40, we propose that PfHRP2 can reach and contact cells in the human body after causing vascular leakage. I have added this possibility of contact between PfHRP2 and cells in the human body to Discussion (page 9, lines 287–290).
**Minor concerns** 1.p62 is an appropriate marker to assess autophagy cargo degradation. If possible, it would be good to support this with LC3 processing as well.
Response: Following the reviewer's advice, we will use LC3 as an autophagy marker as well as p62 to evaluate the autophagy inhibition of PfHRP2. Concretely, we plan to treat HT1080 cells with PfHRP2 (1 μM) for 12–60 hours and quantify the amount of LC3 protein by Western blotting. The results of this experiment will be added to Fig. 5 in the main manuscript.
2.HRP2 might affect general lysosomal degradation process. The authors can also check whether HPR2 affects degradation of a lysosomal substrate.
Response: Following the reviewer's advice, we will determine the effect of PfHRP2 on lysosomal degradation activity using the plasmid-based lysosomal-METRIQ (MEasurement of protein Transporting integrity by RatIo Quantification) probe, reported in a previous study (https://doi.org/10.1038/s41598-019-48131-2), to quantify lysosomal activity. The results of this experiment will be added to Fig. 5 in the main manuscript.
Reviewer #1 (Significance (Required)): This study compelements previous findings (references 37, 38 and PMID: 31858717). It identifies a new mechanism by which HRP2 might cause toxicity. However, it is completely an in vitro study, and the previous studies (references 37 and 38) have used in vivo models as well.
Response: We wish to thank the reviewer for this comment. As the reviewer pointed out, this study is completely in vitro, and further in vivo studies are essential in the future. Therefore, we have added statements (page 9, lines 294–297 and 309–310; page 10, lines 339–342) to emphasize that the present findings are limited to in vitro and that further in vivo studies are required in the future. We have also added the study (PMID: 31858717) reporting PfHRP2 elicits pro-inflammatory effect and induces vascular permeability as reference 40.
Furthermore, the title of the original paper was vague and gave the impression that it included in vivo experiments. Therefore, to avoid misunderstanding, we modified the paper's title to be more concrete.
Reference
P. Dinarvand, L. Yang, I. Biswas, H. Giri, A. R. Rezaie, Plasmodium falciparum histidine rich protein HRPII inhibits the anti-inflammatory function of antithrombin. J. Thromb. Haemost. 18, 1473–1483 (2020).
We thank you again for giving us the opportunity to improve our paper, and we hope that the changes are satisfactory.
RESPONSE TO REVIEWER #2:
We wish to express our appreciation to Reviewer #2 for his or her insightful comments, which will significantly improve this paper. We thank the reviewers for giving us the opportunity to improve the manuscript. We have responded to all the comments pointed out. The revised sections are highlighted in red characters and yellow backgrounds in the preliminary revised manuscript.
Reviewer #2 (Evidence, reproducibility and clarity (Required)): This paper showed that recombinant Plasmodium falciparum HRPII generated in E. coli is internalized by human tumor derived cells lines and at high concentrations, induces calcium-dependent cell death. The authors propose that HRPII inhibits autolysosome formation and autophagy. Of major concern is the use of E. coli generated HRP2 without addressing the inherent confounders of copurified bacterial components, namely endotoxin LPS. It is crucial for validation of their conclusions that the authors address steps taken to remove endotoxin which is known to bind poly-histidine and HRPII, the quantification of endotoxin bound to purified protein, and the LPS sensitivity of model cell lines. Even small quantities of LPS have been shown to potentially inhibit endosome maturation (https://doi.org/10.1074/jbc.M114.611442). Would recommend caution with conclusions regarding cytotoxicity and autophagy inhibition without addressing this issue.
Response: We sincerely appreciate the reviewer's effort to evaluate our work. The reviewer points out that the endotoxin LPS may also affect the cytotoxicity and autophagy inhibition of PfHRP2 in this study. The reviewer's point is crucial, and we agree with the reviewer. In our study, recombinant PfHRP2 was captured by anti-FLAG antibody-immobilized affinity gel (Medical & Biological Laboratories Co., Ltd., Nagoya, Japan) and washed with 20-bed volumes of washing buffer (20 mM Tris-HCl pH7.4, 500 mM NaCl, 0.1% Triton X-100) to remove contaminants including endotoxin LPS according to the manufacturer's protocol (https://ruo.mbl.co.jp/bio/dtl/dtlfiles/3328R-ver4.0.pdf). After washing, affinity gel was equilibrated with 10-bed volumes of washing buffer without Triton X-100, and recombinant PfHRP2 was eluted by 10-bed volumes of elution buffer (20 mM Tris-HCl pH7.4, 500 mM NaCl, 0.1 mg/mL FLAG peptide: DYKDDDDK). However, we did not determine the residual endotoxin LPS bound to purified PfHRP2. To address the reviewer's concern, we will follow the reviewer's suggestion and quantify the residual endotoxin LPS in the purified PfHRP2 using the LAL Endotoxin Assay Kit. We also plan to test whether the same amount of endotoxin LPS alone as the residual endotoxin LPS affects cytotoxicity and autophagy inhibition. The results of additional experiments on endotoxin LPS will be added to Supplementary Information as Fig. S2. Furthermore, we have added additional information on the purification and washing of PfHRP2 to the Materials and methods section (page 11, lines 356–362).
Additional concerns for specific experiments are as follows: Figure 2A. There is an increase in BSA penetration at lower pH as well which suggests nonspecific increased cell permeability.
Response: As pointed out by the reviewer, the cell membrane permeability of BSA was enhanced at low pH (pH less than 5.8), and this result implies an increase in nonspecific cell permeability. Since we have reported in another study (https://doi.org/10.1093/bbb/zbab221) that BSA shows cell penetration to human gastric cancer cell lines at pH 5.0, the cell membrane permeability of BSA at low pH in this study is satisfactory. However, comparing pH 7.4 and pH 5.6, the net charge of BSA increased by 21.9 from -14.0 (pH7.4) to +7.9 (pH5.6), and the cell penetration increased by 34%. On the other hand, the net charge of PfHRP2 increased by 79.4 from -19.2 (pH7.4) to +60.2 (pH5.6), and the cell penetration increased by 246%. This suggests that the increase in cell membrane permeability of PfHRP2 under low pH conditions is due to the increase in net charge, not to the non-specific increase in cell permeability as seen in BSA. The above explanation has been added to lines 97–103.
Figure 3A, 3B, and 4C. There is inconsistency between the cell viability data. For example, in panel A, 1 μM of HRPII for 24 h showed 84% cell viability whereas in panel B, the cell viability is 61% for 1 μM HRP2 by 24 hours. Figure 3A and 4C (full length) differ at cell viability for 5 μM HRP2.
Response: We thank the reviewer for the critical remarks. There was an error in the time condition described in the graph of Fig. 3A. Correctly, Fig. 3A is the result of cell viability treated with 1 μM PfHRP2 for 3 hours, so we have corrected the time condition described in Fig. 3A. Namely, Fig. 3A and 3B show that a 3-hour treatment with 1 μM PfHRP2 results in 84% cell viability, but a 24-hour treatment with 1 μM PfHRP2 decreases cell viability to 61%. These results are correctly described in lines 119–120, highlighted in yellow.
On the other hand, as the reviewer points out, in Fig. 3A and Fig. 4C (full-length PfHRP2), the cell viability treated with 5 μM PfHRP2 for 24 hours was 5% and 26%, respectively. We believe that the discrepancy in these values is an experimental error. However, both Fig. 3A and Fig. 4C (full-length PfHRP2) agree that 5 μM PfHRP2 is statistically and significantly cytotoxic, which should not affect the claims of this study.
Figure 5C. It would be more informative if the cell viability data at 1 μM of HRP at timepoints beyond 60 hours and for bafilomycin treatment is also presented.
Response: We thank the reviewer for their suggestions. However, the purpose of the experiment in Figure 5C is to prove that PfHRP2 induces autolysosomal dysfunction. Since we confirmed that treatment of cells with 1 µM PfHRP2 for 60 hours resulted in accumulation of p62 in the same amount as the positive control, Bafilomycin A1, we believe that no further additional experiments are necessary.
Figure 3D. (Minor) Consider additional experimental detail regarding maintenance of cell cultures for 5 day. Are there interval media changes or supplement additions?
Response: We apologize for the insufficient information in the description of the experimental procedure in Fig. 3D. In the experiment in Fig. 3D, cell culture was maintained for 5 days by changing a fresh medium containing each concentration of proteins every day. We have added this information to the legends of Figure 3 (page 23, lines 653–655) and Figure S2 (page 4, lines 28–29).
Reviewer #2 (Significance (Required)): The authors present the novel finding of HRP2 permeability into human cells. The significance of these findings is limited given the major confounder with endotoxin and also since the experiments were conducted in tumor-derived cells lines with supraphysiologic concentrations of HRPII. Although the authors showed cell viability effects with lower concentrations over 3 and 5 days, the bulk of the experiments were at more than 10-fold mean physiological concentrations. Also, since these are early findings in tumor-derived cell lines, it is difficult to extrapolate the physiological relevance of these findings and use of calcium chelators as therapeutics. Several studies have proposed a pathogenic role for HRP2 including those cited in the paper regarding blood-brain barrier disruption (references 37 and 38), coagulation disruption (DOI: 10.1182/blood-2010-12-326876), and pro-inflammatory signaling (DOI: 10.1111/jth.14713). The challenge with all these studies is establishing the clinical relevance of the multitude of HRPII effects. If the issue of endotoxin is addressed, this paper could establish an interesting mechanism for further study in more clinically representative systems. Our lab has studied the many functions of HRPII including catalysis of heme polymerization, inhibition of antithrombin, brain endothelial disruption using tissue culture and mouse models.
Response: As pointed out by the reviewer, this study must clear up the effect of endotoxin LPS. In this regard, as mentioned above, we plan to quantify the residual endotoxin LPS in the purified PfHRP2 using the LAL Endotoxin Assay Kit. We will also check the effect of the endotoxin LPS itself on cytotoxicity and autophagy inhibition.
Furthermore, as the reviewer pointed out, this is an in vitro study using high concentrations of PfHRP2 and a tumor-derived cell line, so further in vivo validation is essential in the future. However, it is also true that we discovered new findings that have been overlooked because we conducted an artificial and simple in vitro experiment. In the future, it is necessary to demonstrate the cytotoxicity and autophagy inhibition of PfHRP2 by in vivo studies using model animals. Concretely, we need to confirm whether PfHRP2 behaves as a similar virulence factor in vivo by animal experiments using PfHRP2-administrated or PfHRP2-overexpressing/deficient P. falciparum-infected mouse models. We also need to demonstrate that calcium chelators such as EDTA have an in vivo therapeutic effect. These future tasks have been added to the Discussion (page 9, lines 294–297 and 309–310). We have also added the studies (DOI: 10.1182/blood-2010-12-326876, DOI: 10.1111/jth.14713) reporting PfHRP2 elicits pro-inflammatory effect and induces vascular permeability as reference 37 and 40.
Furthermore, the title of the original paper was vague and gave the impression that it included in vivo experiments. Therefore, to avoid misunderstanding, we modified the paper's title to be more concrete, "Plasmodium falciparum histidine-rich protein II exhibits cell penetration and cytotoxicity with autophagy dysfunction".
References
M. Ndonwi, et al., Inhibition of antithrombin by Plasmodium falciparum histidine-rich protein II. Blood 117, 6347–6354 (2011). P. Dinarvand, L. Yang, I. Biswas, H. Giri, A. R. Rezaie, Plasmodium falciparum histidine rich protein HRPII inhibits the anti-inflammatory function of antithrombin. J. Thromb. Haemost. 18, 1473–1483 (2020).
We thank you again for giving us the opportunity to improve our paper, and we hope that the changes are satisfactory.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This paper showed that recombinant Plasmodium falciparum HRPII generated in E. coli is internalized by human tumor derived cells lines and at high concentrations, induces calcium-dependent cell death. The authors propose that HRPII inhibits autolysosome formation and autophagy.
Of major concern is the use of E. coli generated HRP2 without addressing the inherent confounders of copurified bacterial components, namely endotoxin LPS. It is crucial for validation of their conclusions that the authors address steps taken to remove endotoxin which is known to bind poly-histidine and HRPII, the quantification of endotoxin bound to purified protein, and the LPS sensitivity of model cell lines. Even small quantities of LPS have been shown to potentially inhibit endosome maturation (https://doi.org/10.1074/jbc.M114.611442). Would recommend caution with conclusions regarding cytotoxicity and autophagy inhibition without addressing this issue.
Additional concerns for specific experiments are as follows:
Figure 2A. There is an increase in BSA penetration at lower pH as well which suggests nonspecific increased cell permeability.
Figure 3A, 3B, and 4C. There is inconsistency between the cell viability data. For example, iIn panel A, 1 uM of HRPII for 24 h showed 84% cell viability whereas in panel B, the cell viability is 61% for 1 uM HRP2 by 24 hours. Figure 3A and 4C (full length) differ at cell viability for 5 uM HRP2.
Figure 5C. It would be more informative if the cell viability data at 1 uM of HRP at timepoints beyond 60 hours and for bafilomycin treatment is also presented.
Figure 3D. (Minor) Consider additional experimental detail regarding maintenance of cell cultures for 5 day. Are there interval media changes or supplement additions?
The authors present the novel finding of HRP2 permeability into human cells. The significance of these findings is limited given the major confounder with endotoxin and also since the experiments were conducted in tumor-derived cells lines with supraphysiologic concentrations of HRPII. Although the authors showed cell viability effects with lower concentrations over 3 and 5 days, the bulk of the experiments were at more than 10-fold mean physiological concentrations. Also, since these are early findings in tumor-derived cell lines, it is difficult to extrapolate the physiological relevance of these findings and use of calcium chelators as therapeutics.
Several studies have proposed a pathogenic role for HRP2 including those cited in the paper regarding blood-brain barrier disruption (references 37 and 38), coagulation disruption (DOI: 10.1182/blood-2010-12-326876), and pro-inflammatory signaling (DOI: 10.1111/jth.14713). The challenge with all these studies is establishing the clinical relevance of the multitude of HRPII effects. If the issue of endotoxin is addressed, this paper could establish an interesting mechanism for further study in more clinically representative systems.
Our lab has studied the many functions of HRPII including catalysis of heme polymerization, inhibition of antithrombin, brain endothelial disruption using tissue culture and mouse models.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This manuscript "Histidine-rich protein 2: a new pathogenic 1 factor of Plasmodium falciparum malaria" by Iwasaki, et al. reports effects of recombinant HRP2 protein on various mammalian cell lines. The MS clearly demonstrates that recombinant HRP2 enters into HT1080 cells, causes inhibition of autolysosome fusion, increases lysosomal Ca ion concentration and reduces general autophagic degradation. The authors also show that the presence of FBS or metal chelators like EDTA and EGTA mitigate toxicity of HRP2, as the former traps HRP2 and the latter compete with HRP2 for Ca binding. The experiments are appropriately carried out with suitable controls in most of the cases. There are some concerns as listed below:
Major concerns:
1.HRP2 has been shown to be associated with virulence and causes vascular leakage, particularly cerebral malaria (references 37 and 38 ). Plasmodium falciparum histidine-rich protein II has been demonstrated to exacerbate experimental cerebral malaria in mice, which has been proposed to be associated with vascular leakage, activation ofinflamosome and cytokine production (references 37, 38 and PMID: 31858717). This study complements the previous findings of the effect of HRP2 on mammalian cells. However, this study reveals another mechanism by which HRP2 might cause toxicity, which is inhibition of general autophagy and increase in lysosomal Ca concentration. However, whether these in vitro effects would translate in vivo needs to be shown.
2.All the experiments are done with recombinant HRP2 and BSA as a control. The authors should show if similar effects happen with infected parasites.
3.HRP2 is released in circulation, making it accessibele to endothelial cells and immune cells. How would it reach to the equivalents of these cells in the human body?
Minor concerns
1.p62 is an appropriate marker to assess autophagy cargo degradation. If possible, it would be good to support this with LC3 processing as well.
2.HRP2 might affect general lysosomal degradation process. The authors can also check whether HPR2 affects degradation of a lysosomal substrate.
This study compelements previous findings (references 37, 38 and PMID: 31858717). It identifies a new mechanism by which HRP2 might cause toxicity. However, it is completely an in vitro study, and the previous studies (references 37 and 38) have used in vivo models as well.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
In this paper, Harterink and colleagues investigate the establishment of minus-end-out microtubule polarity in the anterior dendrite of C. elegans PVD neurons. These neurons offer an excellent model system due to their simplicity and well-defined microtubule polarity. The authors investigate the role of two proteins in particular, the well-studied Patronin protein and a newly identified homologue of Ninein (Noca-2). They show that these proteins are redundantly required for correct minus-end-out polarity. Absence of one of these proteins results in a low penetrant phenotype, but absence of both results in a strongly penetrant phenotype. Interestingly, in all cases the neurons display either almost fully retrograde or almost fully anterograde microtubule polarity, and not a mix of retrograde and anterograde microtubules. This is probably linked to the fact that the authors show that endosomes at the distal tip of the dendrite (that are known to mediate retrograde microtubule nucleation events) are either present or absent in these mutants (to differing degrees that reflect the polarity phenotypes of each mutant type). The authors further show that Noca-2, but not Patronin, is required for proper localisation of γ-tubulin to the distal endosomes, suggesting that the proteins influence microtubule polarity in different ways. They provide some evidence that Patronin clusters, while not colocalized to the distal endosomes, are somehow connected. The paper and figures are clear and the work should be reproducible.
Most conclusions are supported by the data, except for when the authors say: "Taken together, these results show that PTRN-1 (CAMSAP) and NOCA-2 (NINEIN) act in parallel in the PVD neuron during early development to establish minus-end out microtubule organization, and that this organization is important for proper dendritic morphogenesis." But the authors show that removal of Patr results in some neurons having a complete anterograde phenotype in the anterior genotype, but that no Patr neurons have a severe morphology defect (Fig 2). This would suggest that the severe morphology defects in Patr/Noca-2 double mutants are not simply due to the reversal of polarity in the anterior dendrite. This should be discussed.
We agree with the comment, and we will discuss this more clearly in a revised manuscript.
The paper could be strengthened with some biochemistry showing that Noca-2 can associate with γ-TuRCs i.e. do purified fragments of Noca-2 pull out γ-TuRCs from a cell extract (not necessarily a neuron cell extract)? This should be possible within 1 month.
We thank the reviewer for this suggestion. We will perform some biochemistry experiment to probe the association of NOCA-2 with γ-TuRCs. However, instead of doing the IP by overexpression of NOCA-2 and γ-TuRCs in cells, we will use the CRISPR knockin animals for NOCA-2 and γ-TuRCs, to exclude potential overexpression artifacts.
Minor comments
1) "However, in polarized cells such as neurons, most microtubules are organized in a non-centrosomal manner (Nguyen et al., 2011)." Need more up to date reference here, such as a recent review from Jens Lüders.
We will update the references in the revision version of the manuscript.
2) "and also in Drosophila Patronin was found important for dendritic microtubule polarity (Feng et al., 2019)." Also Wang et al., 2019 in eLife.
We will add this reference.
3) "In the non-ciliated PHC neuron or the ciliated URX neuron we did not observe microtubule organization defects in the ptrn-1 mutant (Supplemental figure 1A-B), which suggests that these neurons do less or do not dependent on PTRN-1." End of sentence needs re-phasing
We will rephrase the text.
Reviewer #1 (Significance (Required)):
Overall, the paper adds some interesting information to the field but does not make a conceptual advance that would make it attractive to a wide audience. It will, however, be of interest to those studying mt regulation in neurons. It is a shame that the molecular mechanism that allow Noca-2, and particularly Patronin, to establish microtubule polarity remain to be determined. Figuring out these mechanisms would significantly strengthen the paper.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
Harterink comments:
In this manuscript He et al investigate the role of two key microtubule minus end regulators, Patronin/CAMSAP and NOCA-2/ninein, in establishing dendrite microtubule organization. The authors use a well-characterized branched sensory neuron in C. elegans for their analysis and make significant contributions to our understanding of neuronal microtubule organization. First, they show that C. elegans has not one, but two, ninein-like proteins, NOCA-1 and NOCA-2. Previously only NOCA-1 had been identified, and neuronal functions of ninein have remained elusive, perhaps in part because NOCA-2 had been missed. It had previously been shown that in epithelial cells NOCA-1 acts with gamma-tubulin as one arm of a microtubule minus end organizing pathway, while Patronin acts in parallel on minus ends. The current manuscript very nicely extends this functional map to neurons. The authors show that NOCA-2 helps recruit the gamma-tubulin ring complex (g-TuRC) to Rab11 endosomes that are important for microtubule nucleation at developing dendrite tips. As in epithelial cells, Patronin seems to act in parallel to this pathway and rather than being involved in recruiting the g-TuRC to Rab11 endosomes, is instead important for allowing the Rab11 endosomes to be transported to developing dendrite tips. In total this analysis not only identifies a new player in dendritic microtubule organization (NOCA-2), but also helps synthesize the functions of other players (g-TuRC, Patronin) into a model that makes sense in the broader context of microtubule organization across species and cell types.
We thank the reviewer for pointing this out. In Fig 1G and 2E we indeed quantified EBP-2::GFP growth events. Although we later show that the microtubule nucleator gamma-tubulin localized to the distal segment where we observe increased microtubule growth events, we agree that we cannot distinguish microtubule nucleation from regrowth after catastrophe. Therefore, we will describe this more accurately in the text, legend and in the figure.
We thank the reviewer for pointing this out. We will flesh out this data either by adding several examples and/or a movie to show the localization of Rab-11 and NOCA-2 in the revised version of the manuscript.
We agree that a summary diagram could be helpful, and we will consider adding this to the revised version of the manuscript.
We agree that the function of NOCA-1 is interesting to be investigated in the future, since we found it acts redundantly to PTRN-1 and NOCA-2. As NOCA-1 is an essential gene this brings along some technical difficulties to properly address its function and would require generating novel tools. We appreciate the reviewers understanding that this is beyond the scope of the current manuscript.
We thank the reviewer for pointing this out. We will better explain the localization of NOCA-2, PTRN-1, GIP-2 and RAB-11 vesicles in developing neurons vs mature neurons in a revised version of the manuscript.
We thank the reviewer for pointing this out. Feng et al indeed showed that EB proteins can track microtubule plus- and minus-end growth in the sensory neurons of Drosophila. Since the slower event co-localize with Patronin they suggested that these help to populate the minus-end out microtubules in the drosophila dendrites (Feng et al., 2019).
Although we do not have strong data against this model for the PVD dendrites in C. elegans, there are several observations that to us suggest that it is unlikely that minus-end growth is the driving force for the forward movement of the MTOC vesicles. These include: the MT being mixed in the distal segment, therefore it is hard to imagine how specifically one pool is growing; we do not see EBP-2 localize to the Camsap puncta as was seem in Drosophila; the Camsap dynamics at the growth cone seem very different (less processive) to the dynamics in the shaft (which indeed could be minus-end growth). We will make this reasoning more clear in the revised manuscript.
We will correct the text grammar and typos in the revision version of manuscript.
Reviewer #2 (Significance (Required)):
This analysis will help synthesize a more complete and meaningful understanding of how non-centrosomal microtubules are organized. The authors not only identify a new player in non-centrosomal microtubule organization, but also help fit together several existing players into a framework that brings together observations from other model systems and cell types into a more coherent whole.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Harterink comments:
In this manuscript He et al investigate the role of two key microtubule minus end regulators, Patronin/CAMSAP and NOCA-2/ninein, in establishing dendrite microtubule organization. The authors use a well-characterized branched sensory neuron in C. elegans for their analysis and make significant contributions to our understanding of neuronal microtubule organization. First, they show that C. elegans has not one, but two, ninein-like proteins, NOCA-1 and NOCA-2. Previously only NOCA-1 had been identified, and neuronal functions of ninein have remained elusive, perhaps in part because NOCA-2 had been missed. It had previously been shown that in epithelial cells NOCA-1 acts with gamma-tubulin as one arm of a microtubule minus end organizing pathway, while Patronin acts in parallel on minus ends. The current manuscript very nicely extends this functional map to neurons. The authors show that NOCA-2 helps recruit the gamma-tubulin ring complex (g-TuRC) to Rab11 endosomes that are important for microtubule nucleation at developing dendrite tips. As in epithelial cells, Patronin seems to act in parallel to this pathway and rather than being involved in recruiting the g-TuRC to Rab11 endosomes, is instead important for allowing the Rab11 endosomes to be transported to developing dendrite tips. In total this analysis not only identifies a new player in dendritic microtubule organization (NOCA-2), but also helps synthesize the functions of other players (g-TuRC, Patronin) into a model that makes sense in the broader context of microtubule organization across species and cell types.
Specific points
This analysis will help synthesize a more complete and meaningful understanding of how non-centrosomal microtubules are organized. The authors not only identify a new player in non-centrosomal microtubule organization, but also help fit together several existing players into a framework that brings together observations from other model systems and cell types into a more coherent whole.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this paper, Harterink and colleagues investigate the establishment of minus-end-out microtubule polarity in the anterior dendrite of C. elegans PVD neurons. These neurons offer an excellent model system due to their simplicity and well-defined microtubule polarity. The authors investigate the role of two proteins in particular, the well-studied Patronin protein and a newly identified homologue of Ninein (Noca-2). They show that these proteins are redundantly required for correct minus-end-out polarity. Absence of one of these proteins results in a low penetrant phenotype, but absence of both results in a strongly penetrant phenotype. Interestingly, in all cases the neurons display either almost fully retrograde or almost fully anterograde microtubule polarity, and not a mix of retrograde and anterograde microtubules. This is probably linked to the fact that the authors show that endosomes at the distal tip of the dendrite (that are known to mediate retrograde microtubule nucleation events) are either present or absent in these mutants (to differing degrees that reflect the polarity phenotypes of each mutant type). The authors further show that Noca-2, but not Patronin, is required for proper localisation of γ-tubulin to the distal endosomes, suggesting that the proteins influence microtubule polarity in different ways. They provide some evidence that Patronin clusters, while not colocalized to the distal endosomes, are somehow connected. The paper and figures are clear and the work should be reproducible.
Most conclusions are supported by the data, except for when the authors say: "Taken together, these results show that PTRN-1 (CAMSAP) and NOCA-2 (NINEIN) act in parallel in the PVD neuron during early development to establish minus-end out microtubule organization, and that this organization is important for proper dendritic morphogenesis." But the authors show that removal of Patr results in some neurons having a complete anterograde phenotype in the anterior genotype, but that no Patr neurons have a severe morphology defect (Fig 2). This would suggest that the severe morphology defects in Patr/Noca-2 double mutants are not simply due to the reversal of polarity in the anterior dendrite. This should be discussed.
The paper could be strengthened with some biochemistry showing that Noca-2 can associate with γ-TuRCs i.e. do purified fragments of Noca-2 pull out γ-TuRCs from a cell extract (not necessarily a neuron cell extract)? This should be possible within 1 month.
Minor comments
Overall, the paper adds some interesting information to the field but does not make a conceptual advance that would make it attractive to a wide audience. It will, however, be of interest to those studying mt regulation in neurons. It is a shame that the molecular mechanism that allow Noca-2, and particularly Patronin, to establish microtubule polarity remain to be determined. Figuring out these mechanisms would significantly strengthen the paper.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Manuscript number: RC-2021-01129
Corresponding author(s): Koji Kikuchi
Reviewer #1
Evidence, reproducibility and clarity (Required):
In this manuscript, Kikuchi et al describe the characterization of MAP7D2 and MAP7D1, two MAP7 family members in mouse with specific expression patterns. Focusing mostly on MAP7D2, they assess its expression pattern across the body and find that it is mostly expressed in certain neuronal subsets. They then characterize the MT-related properties of MAP7D2 based on previous knowledge of other MAP7 family members. They show that MAP7D2 binds MTs (via the N-terminus), determine the binding affinity, and show that it can stimulate MT polymerization (or stabilization) both in vitro and in vivo. Using a specific antibody, they localize MAP7D2 to centrosomes, midbody and neurites in N1-E115 cells. Functionally, they show that loss of MAP7D1/2 mildly affects microtubule stability as judged by acetyl-tubulin staining, and properties of these cells that rely on cytoskeletal elements such as cell migration and neurite growth. Interestingly, there might be a feedback loop regulating MAP7D1/2 expression, as knockdown of MAP7D1 upregulates MAP7D2.
Overall, the experiments and conclusions are very solid and convincing, such that I would not ask for further experiments. This is in part because the experiments are largely based on previous characterizations of other MAP7 family members, which are largely confirmed. The presentation of the data is also very clear.
Significance (Required):
I see the value of the study in the fact that it provides solid and specific research tools for MAP7D1/2 which could be very useful for the microtubule/neuronal cytoskeleton community.
Response: We thank the reviewer very much for appreciating the content of our manuscript.
\*Referees cross-commenting***
Reviewers 2 and 3 criticize that the evidence for an effect of MAP7D1/2 on MT dynamics is weak. I would agree in that ac-tub stainings and in vitro experiments are rather indirect. The experiments suggested by reviewer 2 should clarify this (esp. nocodazole should be easy). I also agree that an experiment addressing the potential involvement of kinesin-1 would help, the involvement of which seems to have been omitted by the authors. A kinesin-binding deficient mutant would add another MAP7D1/2 tool and increase the value for the community.
Response: As for the reviewer’s suggestions listed above, please refer to our responses to the comments of Reviewer #2.
Reviewer #2
Evidence, reproducibility and clarity (Required):
In this study, the authors investigate 2 members from the MAP7 family Map7D2 and Map7D1. They first address the tissue distribution of Map7D2, by northern blotting using a variety of rat tissues. To complement their analysis, they also raised an antibody to look at the protein distribution. From their studies, they concluded that Map7D2 is abundantly expressed in the brain and testis. The authors went on to perform a series of functional assays. First, they biochemically demonstrated that rat Map7D2 directly binds to MTs by MT co-sedimentation assay. The MT binding domain was mapped to the N-terminal half. They performed MT turbidity assay to demonstrate enhanced MT polymerisation in the presence of Map7D2, suggesting that this Map stabilises MTs. The authors went on to characterise in detail the subcellular localisation of Map7D2 which was predominantly present in the centrosome and partially localised to MTs including within neurites from N1-E115 cells. Kikuchi et al. further revealed the overlap in expression between Map7D2 and another family member, Map7D1. The authors continued these studies by a series of functional studies in N1-E115 cells where they performed single or combined knock-downs of Map7D2 and Map7D1 and studied the levels of acetylated and detyrosinated tubulins and the effect of the knock-downs on migration and neurite extension. The main conclusion from this work was that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms which are important in controlling cell motility and neurite outgrowth. Map7D2 is proposed to stabilise MTs by direct binding whereas Map7D1 does it indirectly by affecting acetylation.
Major comments:
The main conclusion from this work that Map7D2 and Map7D1 facilitate MT stabilization and that this is necessary for correct migration and neurite extension has not been convincingly demonstrated. In my opinion, a more detailed study of MT properties to demonstrate a role in MT stabilisation would greatly benefit the work, eg. experiments using MT destabilising agents such as nocodazole. In addition, a series of experiments aiming to study MT dynamics would help to understand the function of these MT regulators. The authors proposed an elevation in microtubule dynamics to explain the increase in migration and neurite extension but no experimental proof was provided.
Response: According to the reviewer’s suggestion, we plan to assess the role of MT stabilization in greater detail by analyzing the sensitivity to the MT-destabilizing agent, nocodazole.
To study MT dynamics, methods such as analyzing the velocity and direction of an EB1-GFP comet are commonly used. We have previously analyzed the roles of Map7 and Map7D1 in MT dynamics using HeLa cells stably expressing EB1-GFP (Kikuchi et al., EMBO Rep., 2018). However, no such tools have been developed for analyzing MT dynamics in N1-E115 cells, which were used in this study. In addition, it is difficult to analyze MT dynamics by transient expression of EB1-GFP because of the low plasmid transfection efficiency. Therefore, we instead plan to assess the effect on MT dynamics by measuring the EB1 comet length by immunofluorescence, referring to Fig. 7D in EMBO J. 32:1293–1306, 2013.
Moreover, considering the possibility that the Map7D2 dynamics are altered when MT stability is changed, e.g., before and after differentiation induction, we analyzed the Map7D2 dynamics at the centrosome by fluorescence recovery after photobleaching (FRAP) using N1-E115 cells stably expressing EGFP-rMap7D2. We found that the dynamics were altered between the proliferative and differentiated states (see the figure below). Compared to the proliferative state, the recovery rate of EGFP-Map7D2 was reduced (lower left panel), and the immobile fraction of Map7D2 was increased in the differentiated state (lower right panel). As these data suggest that the increase in immobile Map7D2 may enhance MT stabilization, we will present them in a new figure in our manuscript along with the results of the above two experiments.
It has been previously demonstrated that loss of MAP7D2 leads to a decrease in axonal cargo entry to axons resulting in defects in axon development and neuronal migration. The C-terminus is necessary for this function as it mediates interaction with Kinesin-1 (Pan et al., 2019). Such mechanisms could also explain the defects in migration and neurite growth that the authors observed. This possibility has not been considered but instead, the subtle changes in total α-tubulin led to suggest MT stabilisation as a key function without proof of causation. Could the authors provide some further experimental evidence to demonstrate that stability is the main contributor to the phenotypes observed? Eg. by rescuing migration and neurite phenotypes with a variant of MAP7D2 which cannot bind kinesin1.
Response: The reviewer states “Such mechanisms could also explain the defects in migration and neurite growth that the authors observed;” however, our results showed that loss of Map7D2 elevated the rates of both cell motility and neurite outgrowth (original Fig. 5). In contrast, it has been reported in several papers that when Kinesin-1 function is impaired, both cell motility and neurite outgrowth are reduced (Curr. Biol., 23: 1018–1023, 2013; Mol. Cell. Biol., 39: e00109–19, 2019; etc.). Therefore, it is likely that the phenotypes we observed are independent of the functions associated with Kinesin-1 in N1-E115 cells. It is indeed possible that the experiment suggested by the reviewer may reveal relationships between Map7D2 and kinesin-1 in terms of cell motility and neurite outgrowth, however, it is difficult to conduct such an experiment because transient expression of Map7D2 induces MT bundling, as shown in original Fig. 2F. Based on the above, we plan to add a discussion of the relationship between Map7D2 and Kinesin-1.
A key conclusion proposed by the authors is that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms. Such different roles in MT stabilisation are important in controlling cell motility and neurite outgrowth. In my opinion, their data does not fully support this statement and the findings using MT readouts do not match the defects in migration and neurite growth. Loss of Map7D2 leads to a very subtle phenotype on α-tubulin, while Map7D1 decreases both α-tubulin and acetylated tubulin, but Map7D1 seems to have a milder or similar effect on migration and neurite growth than Map7D2. Furthermore, it would be expected that the combined loss of function would lead to a stronger phenotype in cell migration when compared to the single loss of functions due to their distinct roles on MT stability, however, this seems not to be the case.
Response: The fact that no stronger phenotype was observed may be because, besides Map7D2 and Map7D1, other molecules are involved in MT stabilization. Another possible explanation is that the increases in both cell motility and neurite outgrowth caused by decreased MT stabilization are offset by Kinesin-1 dysfunction. We plan to add a discussion of the above two possibilities.
Minor comments:
1) In the first result section, the author refers to Fig. S3 to suggest the expression of MAP7D2 in the cerebral cortex, however, there are no transcripts in the cerebral cortex according to the figure. Similarly, the immunofluorescence analysis done by the authors shows marginal expression of MAP7D2 in the cerebral cortex.
Response: According to the reviewer’s comment, we have changed the order of the data shown in Fig. 1C, top panels. The data from the olfactory bulb, cerebellum, and hippocampus, in which Map7D2 expression was detected in the database, were arranged in the top three rows, and the data from the cerebral cortex, in which Map7D2 expression was not detected in the database, were moved to the bottom row as a negative control. In addition, we have revised the relevant part of the Results section as follows: “Based on RNA-seq CAGE, RNA-Seq, and SILAC database analysis (Expression Atlas, https://www.ebi.ac.uk/gxa/home/), Map7D2 expression was detected in the cerebellum, hippocampus, and olfactory bulb, and not in the cerebral cortex (Fig. S3). We further confirmed Map7D2 expression in the above four brain tissue regions of postnatal day 0 mice by immunofluorescence. Among these regions, Map7D2 was the most highly expressed in the Map2-negative area of the olfactory bulb, i.e., the glomerular layer (Fig. 1C). Weak signals were detected in the cerebellum, and marginal signals were observed in the hippocampus and cerebral cortex (Fig. 1C).” (page 5, lines 4–11)
2) The authors use γ-Tubulin as a housekeeping gene in Fig. 3D, since Map7D2 is enriched in centrosomes this may not be the most appropriate choice.
Response: γ-Tubulin is abundant in both the cytosol and the nuclear compartments of cells (Sig. Transduct. Target Ther. 3: 24, 2018). As it has been used for similar purposes in several other studies (Cancer Res., 61: 7713–7718, 2001; J. Biol. Chem., 291: 23112–23125, 2016; etc.), we considered it acceptable for use as a loading control for immunoblotting.
3) According to the authors, knockdown of Map7D2 leads to a decrease in the intensity of α-tubulin and Map7D1 (Fig. 4C and D). This data doesn't agree with the previous statement made by the authors where they show that Map7D2 knockdown or knockout did not affect Map7D1 expression by Western Blot Analysis (Fig. S2C and S5B)
Response: The immunoblotting results indicate that the total amount of Map7D1 in the cells is not affected by loss of Map7D2. In contrast, the immunofluorescence results indicate that the amount (distribution) of Map7D1 localized around the centrosome is decreased by loss of Map7D2, presumably due to a reduction in the number of MT structures that can serve as scaffolds for Map7D1. We plan to add this interpretation in the Results section.
4) Line 6 page 7 "Endogenous Map7D2 expression is suppressed in N1-E115 cells stably expressing EGFP-rMap7D2 and was restored by specific knock-down of EGFP-rMap7D2 using gfp siRNA (Fig. 3D)". No quantifications and stats are shown. Also, endogenous Map7D2 after knock-down of EGFP-rMap7D2 is not comparable to the control.
Response: According to the reviewer’s suggestion, we have quantified the amount of endogenous Map7D2 or EGFP-rMap7D2, normalized it to the amount of γ-tubulin, and calculated relative values to endogenous Map7D2 in the parental control. The amount of endogenous Map7D2 was decreased to 53% in N1-E115 cells stably expressing EGFP-rMap7D2, suggesting that EGFP-rMap7D2 expression suppressed endogenous Map7D2 expression. In this cell line, the total amount of Map7D2 (EGFP-rMap7D2 + endogenous Map7D2) was increased, however, when EGFP-rMap7D2 was depleted using sigfp in this cell line, endogenous Map7D2 was expressed to the same level as EGFP-rMap7D2 before knock-down. Together with the finding that Map7d1 knock-down increased the amount of Map7D2, these findings indicate that the amount of Map7D2 in the cells is regulated in response to the amount of Map7D1 and exogenous Map7D2. We have added this interpretation in the Results section. (page 7, lines 8–15)
In addition, we have changed the legend of the original Fig. 3D to clarify the quantification method, as follows: “(D) Generation of N1-E115 cells stably expressing EGFP-rMap7D2. To check the expression level of EGFP-rMap7D2, lysates derived from the indicated cells were probed with anti-GFP (top panel) and anti-Map7D2 (middle panel) antibodies. The blot was reprobed for γ-tubulin as a loading control (bottom panel). The amount of endogenous Map7D2 or EGFP-rMap7D2 was normalized to the amount of γ-tubulin, and the value relative to endogenous Map7D2 in the parental control was calculated.” (page 22, lines 18–20)
5) Line 8 page 7 "These results suggest that the expression of Map7D2 was influenced by changes in that of Map7D1" This statement seems in the wrong place, after the Map7D2 and EGFP-rMap7D2 experiment. Instead for clarity, it would be better placed after line 5 where the authors explain the effect of Map7D1 knock-down on the levels of Map7D2.
Response: According to the reviewer’s suggestion, we have rephrased the relevant sentence as “Interestingly, Map7d1 knock-down upregulated Map7D2 expression, as confirmed with three different siRNAs (Fig. S2C), suggesting that Map7D2 expression is affected by changes in Map7D1 expression, not by off-target effects of a particular siRNA.” (page 7, lines 7, 8)
6) Line 8 page 8 "Although the physiological role of the C-terminal region of Map7D2 is currently unknown..." This statement seems not adequate as there are several studies reporting the role of the C-terminal region of Map7D2 in Kinesin1- mediated transport. The authors mention such studies in the discussion.
Response: According to the reviewer’s suggestion, we plan to add a discussion of the relationship between Map7D2 and kinesin-1.
7) Line 6 page 9 " Further, the knock-down of either resulted in a comparable reduction of MT intensity (Fig. 4C and D) ..." This is not visible and/or justified by the images provided and would benefit from some sort of quantification at other regions such as neurites.
Response: Considering the cell motility, quantification of α-tubulin/Ace-tubulin/Map7D1/Map7D2 intensities in neurites is not appropriate. Instead, we have added arrowheads indicating α-tubulin/Ace-tubulin/Map7D1/Map7D2 in Fig. 4C, for better understanding.
8) In Fig. 2B, a band corresponding to his6-rMAP7D2 of molecular weight >97 kDa co-sedimented with the microtubules. However, the cloned rMAP7D2 had a molecular weight of 84.82 kDa and the addition of 6XHis-Tag would add another 2-3 kDa, therefore, the final protein band observed should be less than 90 kDa. It would be beneficial if the authors could specify the molecular weight of the purified protein after the addition of the V5-his tag and/or if there was addition of amino acids due to cloning strategy.
Response: In Fig. 2B, we used full-length GST-tagged rMap7D2, like in Fig. 2E and D; therefore, we have corrected His6-rMap7D2 as GST-rMap7D2. We apologize for the mistake.
9) In Fig. 2C, there is misalignment of the western blot with the panel or text underneath.
Response: We thank the reviewer for pointing this out; we have corrected the misalignment of the CBB staining in Fig. 2C.
10) In Fig. 3C the inset from the first panel seems to correspond to a different focal plane than the main image.
Response: We have revised the relevant part of the figure legend as follows: “In C, images of differentiated cells were captured by z-sectioning, because the focal planes of the centrosome and neurites are different. Each inset shows an enlarged image of the region indicated with a white box at each focal plane. Arrowheads indicate the centrosomal localization of Map7D2.”
11) In Fig. 4A, the cell type is not specified and is referred as "indicated cells", also the material and methods section seems to omit the specific cells used.
Response: We have added “in N1-E115 cells treated with each siRNA” in the legend of Fig. 4A.
12) Fig. S6 is not mentioned in the results.
Response: We apologize for having referred to Fig. S6 only in the Discussion section in the original manuscript. We plan to describe the findings shown in the original Fig. S6 to the Results section and renumber the figures accordingly.
Significance (Required):
MTs play essential roles in practically every cellular process. Their precise regulation is therefore crucial for cellular function and viability. MAPs are specialised proteins that interact with MTs and regulate their behaviour in different manners. Understanding their precise function in different cellular contexts is of utmost importance for many biological and biomedical fields.
MAPs are well known for their ability to promote MT polymerization, bundling and stabilisation in vitro (Bodakuntla et al., 2019). Several members of the Map7 family have been shown to regulate microtubule stability. For instance, MAP7 can prevent nocodazole-induced MT depolymerization and maintain stable microtubules at branch points in DRG neurons (Tymanskyj & Ma, 2019). Ensconsin, the Drosophila Map, is required for MT growth in mitotic neuroblasts by regulating the mean rate of MT polymerization (Gallaud et al., 2014). However, this family of Maps seems to have diverse functions encompassing a variety of mechanisms, as exemplified by a series of studies demonstrating the involvement of MAP7 family proteins in the recruitment and activation of kinesin1 (Hooikaas et al., 2019; Pan et al., 2019) and in microtubule remodelling and Wnt5a signalling (Kikuchi et al., 2018). Further understanding of this family of Maps and how its members differ in their function is important and will help to advance the field.
Response: We appreciate the reviewer’s comments. We believe that our revision plan will greatly improve the quality of our manuscript.
Reviewer #3
Evidence, reproducibility and clarity (Required):
Summary:
Microtubule Associated Proteins (MAPs) are important regulators of microtubule dynamics, microtubule organization and vesicular transport by modulating motor protein recruitment and processivity. In the current manuscript the authors have characterized 2 members of the MAP7 protein family, MAP7D1 and MAP7D2. The authors characterized MAP7D2 expression pattern in the brain and its microtubule binding properties in vitro and in cells. In cells both proteins localize to the centrosome and to microtubules and upon depletion centrosome localized microtubules seem reduced, and cell migration and neurite outgrowth are increased. Surprisingly, they find that microtube acetylation (a common marker for stable microtubules) is reduced upon MAP7D1 depletion but not MAP7D2 depletion. Based on this finding the authors conclude that these proteins have a distinct mechanism in stabilizing MTs to affect cell migration and neurite outgrowth; MAP7D2 stabilizes by binding to MTs, whereas MAP7D1 stabilizes MTs by acetylation.
Main comments:
- Both MAP7 proteins show strong localization to the centrosome and to a lesser degree to MTs. Knockdown of either protein leads to reduced MTs around the centrosome, which lead the authors to conclude the MAP7s are stabilizing the MTs. However, the effect could just as well be an indirect effect due to a function of these MAPs at the centrosome. To address this authors could e.g. quantify microtubule properties in postmitotic cells. In addition, antibody specificity should be tested using knockdown of knockout cells, as this centrosome localization was not observed in Hela cells (Hooikaas, 2019; Kikuchi, 2018). Maybe this localization is specific to rat MAP7s or to the cell line used.
Response: We think that this comment partly overlaps with the comments raised by Reviewer #2. We plan to assess the role of MT stabilization in greater detail by analyzing the sensitivity to the MT-destabilizing agent, nocodazole, and the effect on MT dynamics by measuring the EB1 comet length by immunofluorescence.
Regarding the reviewer’s concern about antibody specificity, we had carefully confirmed the antibody specificity, as shown in Fig. S2 of the original manuscript. Subsequently, Map7D2 localization was confirmed in N1-E115 cells stably expressing EGFP-rMap7D2, as shown in Fig. 3D, E of the original manuscript. In addition, we are currently conducting analyses using Map7d1-egfp knock-in mice, which confirmed that Map7D1 localizes around the centrosome in cortical neurons, as shown below (we would like to disclose these unpublished data to the reviewers only). Therefore, it is thought that the localization pattern of Map7D2 and Map7D1 differs depending on the cell type and cell line. We plan to add this interpretation to the Results section.
- Centrosome nucleated microtubules are typically highly dynamic and little modified. Therefore is the Ac-tub staining at the centrosome really MTs? I cannot identify MTs in the fluorescent images in 4C. Maybe authors could consider ac-tub/alpha-tub ratio in non centrosomal region (e.g. neurites). Moreover, as both Acetylation and detyrosination are associated with long-lived/stable MTs, it is surprising that only acetylated tubulin goes down on WB. Does this suggest that long-lived MTs are still present to normal level? If so, can one still argue that the loss of acetylation is the cause of the lower MT levels? This should at least be discussed.
Response: As for the reviewer’s statement “Centrosome nucleated microtubules are typically highly dynamic and little modified. Therefore is the Ac-tub staining at the centrosome really MTs?”, it has been previously reported that tubulin acetylation is observed around the centrosome in some cell lines (J. Neurosci., 30: 7215–7226, 2010; PLoS One, 13: e0190717, 2018; etc.). N1-E115 is one of the cell lines in which tubulin acetylation is observed around the centrosome.
It is not surprising that “only acetylated tubulin goes down on WB,” as it has been previously reported that acetylated and detyrosinated tubulins are sometimes not synchronous (J. Neurosci., 23: 10662–10671, 2003; J. Neurosci., 30: 7215–7226, 2010; J. Cell Sci., 132: jcs225805, 2019., etc.). For instance, Montagnac et al. (Nature, 502: 567–570, 2013) showed that defects in the α-tubulin acetyltransferase αTAT1-clathrin-dependent endocytosis axis reduce only tubulin acetylation, resulting in a shift from directional to random cell migration. Although the details of the molecular function of Map7D1 are beyond the main purpose of this study, we plan to add a discussion of the reduced tubulin acetylation by Map7d1 knock-down based on the above.
- MAP7D1 and MAP7D2 depletion leads to subtle defect in cell migration and neurite outgrowth, which the author suggest is caused by reduced MT stability. However, MAP7 proteins have well characterized functions in kinesin-1 transport, and thus the phenotypes may well be caused by defects in kinesin-1 transport. Ideally the authors would do rescue experiments with FL or just the MT binding N-termini to separate these functions. Moreover this is needed to substantiate the claim of the authors that MAP7D1 effect on MT stability is not mediated by direct binding.
Response: As this comment largely overlaps with the comments raised by Reviewer #2, please refer to our responses to the comments of Reviewer #2.
- The authors do not refer well to published work. Several papers have published very similar work (especially to Fig1+2) and it would help the reader much if this would be discussed/compared along the results section and not briefly mention these in the results section. In addition, authors overstate the novelty of their results e.g. page 3: these proteins are not "functionally uncharacterized" nor are their expression patter and biochemical properties analyzed for the first time in this manuscript; page 8 "Although the physiological role of the C-terminal region of Map7D2 is currently unknow, ..." There is a clear function for the C-terminus for the recruitment/activation of kinesin-1.
Response: According to the reviewer’s suggestion, we plan to add a comparison with data on the Map7 family members presented in previous papers in the Results section and rephrase the relevant part regarding the physiological role of the C-terminal region of Map7D2.
Minor comments
- P6 Map7D3 also binds with its N-terminus to MTs, like other MAP7s (Yadav et al)
Response: According to the reviewer’s comment, we have revised this as “Map7D3 binds through a conserved region on not only the N-terminal side, but also the C-terminal side (Sun, 2011; Yadav et al., 2014).” (page 6, lines 4, 5)
- P7 "As Map7D2 has the potential to functionally compensate for Map7D1 loss" where is this based on?
Response: For clarity, we have rephrased this as “As Ma7D2 expression was upregulated upon suppression of Map7D1 expression, Map7D2 has the potential to functionally compensate for Map7D1 loss.” (page 7, line 17, 18)
- Fig2F quality of black-white images is low potentially due to conversion issues
Response: We thank the reviewer for pointing out these conversion issues, and we have made the necessary corrections.
Significance (Required):
At this stage the conceptual advance is limited. Part of the findings are not novel. The finding that MAP7s depletion have a different effect on MTs acetylation may be interesting to cytoskeleton researchers, although the potential mechanism has not been addressed experimentally or textually.
However, their conclusion that this leads to reduced MTs and then to cellar migration and neurite formation defects is not sufficiently supported by experimental evidence.
Response: We appreciate the reviewer’s comments. We believe that our revision plan will greatly improve the quality of our manuscript.
\*Referees cross-commenting***
I completely agree with reviewer #2: At this stage the paper's conclusions are not sufficiently supported by the data. Important will be to further characterize the effect om the MTs (do they really have a different effect) and to look at the possible involvement of the motor recruitment. Maybe that a 3 to 6 months revision time would have been more accurate.
Response: Please refer to our responses to the comments of Reviewer #2.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Microtubule Associated Proteins (MAPs) are important regulators of microtubule dynamics, microtubule organization and vesicular transport by modulating motor protein recruitment and processivity. In the current manuscript the authors have characterized 2 members of the MAP7 protein family, MAP7D1 and MAP7D2. The authors characterized MAP7D2 expression pattern in the brain and its microtubule binding properties in vitro and in cells. In cells both proteins localize to the centrosome and to microtubules and upon depletion centrosome localized microtubules seem reduced, and cell migration and neurite outgrowth are increased. Surprisingly, they find that microtube acetylation (a common marker for stable microtubules) is reduced upon MAP7D1 depletion but not MAP7D2 depletion. Based on this finding the authors conclude that these proteins have a distinct mechanism in stabilizing MTs to affect cell migration and neurite outgrowth; MAP7D2 stabilizes by binding to MTs, whereas MAP7D1 stabilizes MTs by acetylation.
Main comments:
Minor comments:
At this stage the conceptual advance is limited. Part of the findings are not novel. The finding that MAP7s depletion have a different effect on MTs acetylation may be interesting to cytoskeleton researchers, although the potential mechanism has not been addressed experimentally or textually.
However, their conclusion that this leads to reduced MTs and then to cellar migration and neurite formation defects is not sufficiently supported by experimental evidence.
Referees cross-commenting
I completely agree with reviewer #2: At this stage the paper's conclusions are not sufficiently supported by the data. Important will be to further characterize the effect om the MTs (do they really have a different effect) and to look at the possible involvement of the motor recruitment. Maybe that a 3 to 6 months revision time would have been more accurate.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this study, the authors investigate 2 members from the MAP7 family Map7D2 and Map7D1. They first address the tissue distribution of Map7D2, by northern blotting using a variety of rat tissues. To complement their analysis, they also raised an antibody to look at the protein distribution. From their studies, they concluded that Map7D2 is abundantly expressed in the brain and testis. The authors went on to perform a series of functional assays . First, they biochemically demonstrated that rat Map7D2 directly binds to MTs by MT co-sedimentation assay. The MT binding domain was mapped to the N-terminal half. They performed MT turbidity assay to demonstrate enhanced MT polymerisation in the presence of Map7D2, suggesting that this Map stabilises MTs. The authors went on to characterise in detail the subcellular localisation of Map7D2 which was predominantly present in the centrosome and partially localised to MTs including within neurites from N1-E115 cells. Kikuchi et al. further revealed the overlap in expression between Map7D2 and another family member, Map7D1. The authors continued these studies by a series of functional studies in N1-E115 cells where they performed single or combined knock-downs of Map7D2 and Map7D1 and studied the levels of acetylated and detyrosinated tubulins and the effect of the knock-downs on migration and neurite extension. The main conclusion from this work was that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms which are important in controlling cell motility and neurite outgrowth. Map7D2 is proposed to stabilise MTs by direct binding whereas Map7D1 does it indirectly by affecting acetylation.
Major comments:
The main conclusion from this work that Map7D2 and Map7D1 facilitate MT stabilization and that this is necessary for correct migration and neurite extension has not been convincingly demonstrated. In my opinion, a more detailed study of MT properties to demonstrate a role in MT stabilisation would greatly benefit the work, eg. experiments using MT destabilising agents such as nocodazole. In addition, a series of experiments aiming to study MT dynamics would help to understand the function of these MT regulators. The authors proposed an elevation in microtubule dynamics to explain the increase in migration and neurite extension but no experimental proof was provided.
It has been previously demonstrated that loss of MAP7D2 leads to a decrease in axonal cargo entry to axons resulting in defects in axon development and neuronal migration. The C-terminus is necessary for this function as it mediates interaction with Kinesin-1 (Pan et al., 2019). Such mechanisms could also explain the defects in migration and neurite growth that the authors observed. This possibility has not been considered but instead, the subtle changes in total -tubulin led to suggest MT stabilisation as a key function without proof of causation. Could the authors provide some further experimental evidence to demonstrate that stability is the main contributor to the phenotypes observed? Eg. by rescuing migration and neurite phenotypes with a variant of MAP7D2 which cannot bind kinesin1.
A key conclusion proposed by the authors is that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms. Such different roles in MT stabilisation are important in controlling cell motility and neurite outgrowth. In my opinion, their data does not fully support this statement and the findings using MT readouts do not match the defects in migration and neurite growth. Loss of Map7D2 leads to a very subtle phenotype on -tubulin, while Map7D1 decreases both -tubulin and acetylated tubulin, but Map7D1 seems to have a milder or similar effect on migration and neurite growth than Map7D2. Furthermore, it would be expected that the combined loss of function would lead to a stronger phenotype in cell migration when compared to the single loss of functions due to their distinct roles on MT stability, however, this seems not to be the case.
Minor comments:
MTs play essential roles in practically every cellular process. Their precise regulation is therefore crucial for cellular function and viability. MAPs are specialised proteins that interact with MTs and regulate their behaviour in different manners. Understanding their precise function in different cellular contexts is of utmost importance for many biological and biomedical fields.
MAPs are well known for their ability to promote MT polymerization, bundling and stabilisation in vitro (Bodakuntla et al., 2019). Several members of the Map7 family have been shown to regulate microtubule stability. For instance, MAP7 can prevent nocodazole-induced MT depolymerization and maintain stable microtubules at branch points in DRG neurons (Tymanskyj & Ma, 2019). Ensconsin, the Drosophila Map, is required for MT growth in mitotic neuroblasts by regulating the mean rate of MT polymerization (Gallaud et al., 2014). However, this family of Maps seems to have diverse functions encompassing a variety of mechanisms, as exemplified by a series of studies demonstrating the involvement of MAP7 family proteins in the recruitment and activation of kinesin1 (Hooikaas et al., 2019; Pan et al., 2019) and in microtubule remodelling and Wnt5a signalling (Kikuchi et al., 2018). Further understanding of this family of Maps and how its members differ in their function is important and will help to advance the field.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this manuscript, Kikuchi et al describe the characterization of MAP7D2 and MAP7D1, two MAP7 family members in mouse with specific expression patterns. Focusing mostly on MAP7D2, they assess its expression pattern across the body and find that it is mostly expressd in certain neuronal subsets. They then characterize the MT-related properties of MAP7D2 based on previous knowledge of other MAP7 family members. They show that MAP7D2 binds MTs (via the N-terminus), determine the binding affinity, and show that it can stimulate MT polymerization (or stabilization) both in vitro and in vivo. Using a specific antibody, they localize MAP7D2 to centrosomes, midbody and neurites in N1-E115 cells. Functionally, they show that loss of MAP7D1/2 mildly affects microtubule stability as judged by acetyl-tubulin staining, and properties of these cells that rely on cytoskeletal elements such as cell migration and neurite growth. Interestingly, there might be a feedback loop regulating MAP7D1/2 expression , as knockdown of MAP7D1 upregulates MAP7D2.
Overall, the experiments and conclusions are very solid and convincing, such that I would not ask for further experiments. This is in part because the experiments are largely based on previous characterizations of other MAP7 family members, which are largely confirmed. The presentation of the data is also very clear.
I see the value of the study in the fact that,it provides solid and specific research tools for MAP7D1/2 which could be very useful for the microtubule/neuronal cytoskeleton community.
Referees cross-commenting
Reviewers 2 and 3 criticize that the evidence for an effect of MAP7D1/2 on MT dynamics is weak. I would agree in that ac-tub stainings and in vitro experiments are rather indirect. The experiments suggested by reviewer 2 should clarify this (esp. nocodazole should be easy). I also agree that an experiment addressing the potential involvement of kinesin-1 would help, the involvement of which seems to have been omitted by the authors. A kinesin-binding deficient mutant would add another MAP7D1/2 tool and increase the value for the community.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1:
This is the first such piece of data to come from human infective parasites in the field. Technically this is a feat - because the small number of parasites that are present per mL of human blood at any given time during infection with T gambiense. Nevertheless they manage to identify up to 14 unique VSGs per patient sample. And this raises the first theoretical question: can they extrapolate to the average diversity load per human?
This is an intriguing question that we would like to eventually answer, but we do not believe we can make this estimate from the data we currently have. We know our sampling is insufficient based on the correlation between parasitemia and diversity, and we do not have sufficiently precise estimates of parasitemia that could be used to extrapolate total diversity in the blood. Moreover, our analysis was only performed on RNA extracted from whole blood samples. Recent studies indicate that significant populations of parasites reside in extravascular tissue spaces, and our analysis did not address antigenic diversity in these spaces. We believe it is unlikely that the blood alone reflects the full diversity of VSG expression in an infection, and an estimate based only on blood-resident parasites (if possible) could be misleading.
this is important because the timing of sample collection (ie that it occurred within a period of weeks) suggesting that an initial group of infected tsetse infected these patients (rather than a small number of interactions between a bloodmeal and a new infection - generally in itself on the order of 1 month or so). If parasitemia is low and diversity limited, this would explain both why CATT works as well as it does (because really it shouldn't at all!) and perhaps even the chronicity of infection (in the sense that the organism is unlikely to "run out" even of complete VSGs, never mind mosaics). The paper would benefit from a direct discussion on this.
Indeed, the timing of sample collection could inform our interpretation of the data. However, sample collection occurred over a period of six months. More importantly, patients were in both early and late stage disease at the time of sample collection, so we cannot estimate how long any individual patient had been infected. We have added text (line 180) to highlight this fact. Because some patients were infected at least 6 months apart (if not much more than that), it is unlikely that patients were infected around the same time by a small group of infected tsetse flies. Reviewer #1 introduces an interesting point about the efficacy of the CATT diagnostic test as it relates to antigenic diversity. We discuss CATT sensitivity in the introduction (lines 115-120) as well as the discussion, where regional sensitivity differences are mentioned (lines 715-718). Given uncertainty about total diversity and time since initial infection, we have refrained from speculating about how diversity/timing could affect CATT sensitivity.
An interesting feature of this new study is the apparent bias to type B N-terminal domain VSGs as well as the discovery that two patients share a specific VSG isolate (though it is not mentioned whether they are related by distance etc). This raises the possibility of substrains with different VSG archives that vary by geography.
We found two VSGs which were expressed in more than one patient. One was expressed in two patients from the same village (village C) while the other VSG was common between two cases originating from villages C and D, some 40 km apart. We agree that our data generally support the possibility that the VSG archive might vary geographically. We have performed additional analyses suggested by reviewer #2 that support this idea: we have now shown that Tbg patient VSGs classified in this study, which originated from the DRC, are distinct from the VSGs encoded by the reference strain Tbg DAL 972 which was isolated in Cote d’Ivoire. We mention this possibility on lines 721-724.
Alternatively it suggests that perhaps type B VSGs are picked up differentially by serology (and there the one feature of type B VSGs that could be shared, with regards to detection, is the O-hexose decoration on a number of type B VSG surfaces. Could CATT be detecting elements common to sugar decorated VSGs? Experimentally this is something that can be tested even with mouse infection materials.
This is indeed an intriguing possibility. We mention this in the discussion (lines 772-778): “In T. brucei, several VSGs have evolved specific functions besides antigenic variation [74]. Recently, the first type B VSG structure was solved [75], revealing a unique O-linked carbohydrate in the VSG’s N-terminal domain. This modification was found to interfere with the generation of protective immunity in a mouse model of infection; perhaps structural differences between each VSG type, including patterns of glycosylation, could influence infection outcomes.” While this is an experimentally tractable explanation for the type B VSG bias we observe, we believe such experiments are beyond the scope of the current paper.
Side comment: are the common VSGs mutated between patient samples?
We classified VSGs as common between patient samples if they had >98% nucleotide sequence identity as well as meeting the other quality cutoffs such as 1% expression level and consistency across technical replicates. This identity cutoff still allows for several mismatches between sequences, which we do occasionally observe. However, we cannot confidently rule out that the “mutations” we observe are sequencing or PCR errors. Thus, we cannot say for sure if there are mutations between common VSGs.
Reviewer #2
1.Throughout the manuscript you observe 'diversity' in expressed VSG and its existence becomes a principal conclusion. I feel that the meaning of diversity and its significance is not sufficiently explained for the reader. In the abstract (l48) you say that there is 'marked diversity' in parasite populations. Presumably you mean parasite infrapopulations, i.e. within patients, not across the DRC? In any case, what is 'marked' about it, and relative to what? Why does it matter that there are multiple expressed VSG in a single patient at one time? Is this not a reasonable expectation for a population of (presumably) clones capable of switching the expressed VSG? How is this different to the view typical of the literature since 1970 that one VSG dominates while others wait in the background at low frequencies. If 'diversity' is the conclusion, then you need to define it and explain its significance more.
When we refer to diversity, we do mean infrapopulations of parasites within patients, or individual animals in this case, rather than across the DRC. We have edited the text to make this clear (see below). However, the study which benchmarked the application of VSG-seq to quantify VSG expression in vivo during mouse did not support the previously-held view that one VSG dominates while others wait in the background at low frequencies. Frequently we observe a handful of VSGs present at 10-20% of the population at any timepoint, and many VSGs (~50% of all detected variants) present at “In a proof-of-principle study, we used VSG-seq to gain insight into the number and diversity of VSGs expressed during experimental mouse infections [30]. This proof-of-principle study revealed significant VSG diversity within parasite populations in each animal, with many more variants expressed at a time than the few thought to be sufficient for immune evasion. This diversity suggested that the parasite’s genomic VSG repertoire might be insufficient to sustain a chronic infection, highlighting the potential importance of recombination mechanisms that form new VSGs.
2.Following on from 1., why does the analysis deal in counts of distinct VSG or N-terminal domains, and not then progress to their relative expression? The expression data are in Supp Table 3 and they show that, in most cases where many VSG are observed in the same patient, 1-3 of these are 'dominant', i.e. they account for >50% of the population.
The VSG-seq analysis pipeline does estimate the relative expression level of each identified variant in the population, and this information is available in the supplemental data (Supplemental Figure 1, Supplemental Table 3). However, we chose not to rely on these measurements too heavily because there was some variation between Tbg technical replicates, which is shown in the supplemental heatmap (Supplemental Figure 1). Replicate three tends to not agree with the first two replicates. We suspect that this was due to the order of sample processing and the fact that the parasite-enriched cDNA sample was repeatedly freeze-thawed between library preparations for technical replicates. Additionally, because our sampling did not reach saturation, some VSGs are not detected in all replicate libraries, making it difficult to estimate their abundance.
We have added a discussion of these issues to the text on lines 431-433: “Because our sampling did not reach saturation, resulting in some variability between technical replicates, we chose to focus only on the presence/absence of individual VSGs rather than expression levels within parasite populations.”
Figure 1 deals in VSG counts, but I would then expect another figure to illustrate the reality that only a minority of these observed VSG are likely to be clinically relevant (i.e. the subject of the immune response). This impacts the 'diversity' conclusion, as given in the discussion (ll 657-9), because you cannot afford to treat all these VSG equally when their abundances are quite different.
We agree that relative expression level is a useful metric, but absent longitudinal sampling it is impossible to determine which VSGs are clinically relevant as defined by the reviewer: low abundance VSGs at one time point may be the predominantly expressed variant at another. Moreover, the threshold for triggering an anti-VSG antibody response remains unknown. Thus, we have chosen to treat all detected variants equally.
3.How related are these VSG? Were you able to ensure unique read mapping to the VSG assembly? Can you show that reads mapped to a single VSG only and therefore, that the RPKM values are reliable?
Our analysis accounts for the fact that VSGs can be very similar. We only considered uniquely mapping reads in our VSG-seq analysis. We also account for mappability in our quantification, so VSG sequences that are less unique (and thus have fewer uniquely mapping reads) are not artificially underrepresented in estimates of relative expression. We have specified the parameters used for alignment (line 274) in the methods.
4.The authors observed no orthology between expressed VSG and DAL972 genes. This is really interesting and deserves closer attention. Presumably there is microhomology? For T. brucei VSG, with constant recombination, we would predict that a comparison of the VSG in West and Central Africa would reveal a pattern of mosaicism, such that individual sequences in DRC would break down into motifs present in multiple genes in the West African reference. Question is, how many genes? What does that distribution look like? What is the smallest homology tract? There is an opportunity here to comment on how VSG repertoires diverge under recombination. How much of the expressed VSG sequence is truly unrepresented in the West African reference (or other T.b.gambiense genome sequences available in ENA). I can believe that none of the N-terminal domains in these data are present intact in DAL972, but I cannot believe that their components are not present without evidence.
We appreciate the reviewer’s suggestion to look at this more closely. We have performed additional analyses to address sequence similarity, or lack thereof, between the assembled DRC patient VSG and the West African reference TbgDAL972. We ran a nucleotide BLAST of expressed VSGs against the TbgDAL972 genome reference sequence pulled from TriTrypDB.org (release 54). We have added a supplemental figure depicting the results of this analysis (Supplemental Figures 6 and 7). Briefly, our analysis shows that most of the N-termini we identified have no significant similarity to DAL972 VSGs, even with very permissive search parameters. There are frequent hits in the VSG C-termini, however, which might be expected. Most BLAST hits are short spans 98% identity are short 20-25 bp regions. Given the large divergence from the reference, we were unable to infer any patterns of recombination in the VSGs. However, we believe this analysis supports our claim that the N-termini of VSGs assembled from DRC patients are novel, with their component parts largely unrepresented in the West African reference genome.
Figure 4 compares NTD type composition in the DRC data with previously published mouse experiments. The latter take place over very short timescales in maladapted hosts, while the timescales of the latter in natural hosts are unknown but plausibly very much longer. So are these data really comparable and are we learning anything from their comparison, given that the most likely explanation for the NTD bias in expressed VSG is the underlying genomic composition?
Indeed, this is our intended conclusion from figure 4. The figure is meant to illustrate our claim that the expressed VSGs in each experimental set reflect the underlying genomic composition of their corresponding reference strains, despite fluctuations over time. The language and legend for Figure 4 has been clarified to emphasize this point. We have emphasized in the text that it is unknown whether these fluctuations occur over time in much longer natural infections.
6.Please comment on the technical reproducibility of the data, there are multiple instances in Supp Table 3 where technical replicates expressed different VSG.
Three RNA-seq library technical replicates were prepared for each individual gHAT patient RNA sample. Replicates were prepared in batches together so all 1’s were done on the same day, for example. The original parasite-enriched cDNA sample was frozen and thawed between each batch. We suspect that the cDNA degraded after repeated freeze-thaw cycles, which is why replicate three tends to not agree with the other two as can be seen on the heatmap in supp fig. 1 and the expression data in supp table 3. We also suspect the fact that our sampling did not reach saturation resulted in the detection of different VSGs in individual replicate preps. We have edited the methods and mentioned this variability in the results section to communicate this issue more transparently.
Reviewer #3
In line 499, the authors conclude the due to the expressed VSGs being different in the blood and CSF being difference it may indicate that different organs harbor different VSG sets. Given that this is n=1 for patient samples I think this is too speculative a statement. There is also no indication as to whether the samples were taken at the same time or not.
This is absolutely correct. The precise timing of CSF sample collection is unknown for these samples. It likely occurred within hours to days after blood collection, but even on this short time scale, the unique CSF repertoire could represent the antibody-mediated clearance of one VSG population and replacement with another. We have scaled back our language and only point out that there are unique VSGs in this space (Lines 522 – 524).
I think that the authors need to be very careful as to the conclusions drawn about VSG expression over time in terms of hierarchy and N-terminal fluctuations. For any conclusions to be drawn on the hierarchy of VSG expression more data points are needed taken over time (this is obviously challenging when looking at patient samples). I find it too speculative to draw any conclusions when single time points are assessed and the assumption on the progression of the infection depends on whether it is a Tb or Tbr.
Reviewer #2 also pointed this out. We agree and have attempted to limit definitive conclusions in the text and instead discuss multiple possible explanations behind our observations.
I found some of the figure legends a bit terse. For example, in Figure 1 C, what do the black circles and lines represent? Perhaps a little more detail would help the reader.
Clarified legends for UpSet plots in figures 1C and 3C as follows: “The intersection of expressed VSG sets in each patient. Bars on the left represent the size of the total set of VSGs expressed in each patient. Dots represent an intersection of sets with bars above the dots representing the size of the intersection.”
In figure 2, I found it difficult to distinguish between the orange and dark red in (A) and the two lighter blue colors.
We have changed N-terminal type color palette for all plots to make red and blue hues more distinctive.
In line 389 – estimate
Corrected
In line 498 - should be reference been to figure 2C?
This should be a reference to Figure 3B. We have corrected the reference.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
In this work, So and Sudlow et al have used an established methodology - VSG-seq to assess the expressed VSG diversity in 12 patients infected with T. brucei gambiense. As with what is seen in mouse models, there is a diversity in VSG expression seen in patients. The application of this technology has not previously been used on patient samples and is now validated as a valuable tool to study antigenic variation in human populations. The authors have found that in addition to the VSG diversity seen there was a significant bais towards B type N-terminal domains and a restricted C-terminal types. This work, although on a small sample group, is an important step forward to applying this technology to understanding trypanosome immune evasion in the field.
Major comments:
I think that overall, the key conclusions on the expressed VSG diversity and that there are geographical variations are convincing and would agree with the conclusions that it is now feasible to study antigenic variation in the field. But given the sample size the I feel that two of the findings are overstated and should at least be qualified as speculative.
1.In line 499, the authors conclude the due to the expressed VSGs being different in the blood and CSF being difference it may indicate that different organs harbor different VSG sets. Given that this is n=1 for patient samples I think this is too speculative a statement. There is also no indication as to whether the samples were taken at the same time or not.
2.I think that the authors need to be very careful as to the conclusions drawn about VSG expression over time in terms of hierarchy and N-terminal fluctuations. For any conclusions to be drawn on the hierarchy of VSG expression more data points are needed taken over time (this is obviously challenging when looking at patient samples). I find it too speculative to draw any conclusions when single time points are assessed and the assumption on the progression of the infection depends on whether it is a Tb or Tbr. I don't believe that any other experiments are needed and the statistical analysis is adequate.
Minor comments:
I found some of the figure legends a bit terse. For example, in Figure 1 C, what do the black circles and lines represent? Perhaps a little more detail would help the reader.
In figure 2, I found it difficult to distinguish between the orange and dark red in (A) and the two lighter blue colors.
In line 389 - estimate
In line 498 - should be reference been to figure 2C?
Overall, this is an interesting study and shows the practical application of VSG-seq on the study of human infections. There is clearly interesting biology to be learned about both Tbg and Tbr infections and immune evasion by these parasites - which can now be done with the development and application of these technologies. I am a molecular cell biologist who specialises in trypanosome biology.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
So et al. have analyzed the expression profiles of T.b.gambiense VSG genes in 12 natural human infections in DRC during a six month period of 2013, and compared these results to existing data for T.b.rhodesiense VSG and previously published data from mice. They use the VSGseq approach developed by the Mugnier lab over the last few years to good effect and provide a description of the expression profiles using phylogenetic and network approaches. The main conclusions are that parasite infrapopulations in each patient expression largely mutually exclusive VSG cohorts, with a couple of exceptions where patients 'shared' identical VSG transcripts. The authors note that these congolese VSG are not comparable with the West African T.b.gambiense reference sequence, and there is a pronounced bias in the systematic composition of expressed VSG (towards 'B-type VSG') that is not observed in other T. brucei subspecies. These latter observations lead to the suggestion that there may be substantial variation in expressed VSG repertoire among T. brucei populations that could have important consequences for pathology, although the spatial or temporal scale upon which this variation could be expected to occur cannot be inferred from these data. Overall, a competent study and a welcome addition to, if not extension of, recent work describing the dynamics of VSG expression in multiple African trypanosomes.
Major points:
1.Throughout the manuscript you observe 'diversity' in expressed VSG and its existence becomes a principal conclusion. I feel that the meaning of diversity and its significance is not sufficiently explained for the reader. In the abstract (l48) you say that there is 'marked diversity' in parasite populations. Presumably you mean parasite infrapopulations, i.e. within patients, not across the DRC? In any case, what is 'marked' about it, and relative to what? Why does it matter that there are multiple expressed VSG in a single patient at one time? Is this not a reasonable expectation for a population of (presumably) clones capable of switching the expressed VSG? How is this different to the view typical of the literature since 1970 that one VSG dominates while others wait in the background at low frequencies. If 'diversity' is the conclusion, then you need to define it and explain its significance more.
2.Following on from 1., why does the analysis deal in counts of distinct VSG or N-terminal domains, and not then progress to their relative expression? The expression data are in Supp Table 3 and they show that, in most cases where many VSG are observed in the same patient, 1-3 of these are 'dominant', i.e. they account for >50% of the population. Figure 1 deals in VSG counts, but I would then expect another figure to illustrate the reality that only a minority of these observed VSG are likely to be clinically relevant (i.e. the subject of the immune response). This impacts the 'diversity' conclusion, as given in the discussion (ll 657-9), because you cannot afford to treat all these VSG equally when their abundances are quite different.
3.How related are these VSG? Were you able to ensure unique read mapping to the VSG assembly? Can you show that reads mapped to a single VSG only and therefore, that the RPKM values are reliable?
4.The authors observed no orthology between expressed VSG and DAL972 genes. This is really interesting and deserves closer attention. Presumably there is microhomology? For T. brucei VSG, with constant recombination, we would predict that a comparison of the VSG in West and Central Africa would reveal a pattern of mosaicism, such that individual sequences in DRC would break down into motifs present in multiple genes in the West African reference. Question is, how many genes? What does that distribution look like? What is the smallest homology tract? There is an opportunity here to comment on how VSG repertoires diverge under recombination. How much of the expressed VSG sequence is truly unrepresented in the West African reference (or other T.b.gambiense genome sequences available in ENA). I can believe that none of the N-terminal domains in these data are present intact in DAL972, but I cannot believe that their components are not present without evidence.
5.Figure 4 compares NTD type composition in the DRC data with previously published mouse experiments. The latter take place over very short timescales in maladapted hosts, while the timescales of the latter in natural hosts are unknown but plausibly very much longer. So are these data really comparable and are we learning anything from their comparison, given that the most likely explanation for the NTD bias in expressed VSG is the underlying genomic composition?
6.Please comment on the technical reproducibility of the data, there are multiple instances in Supp Table 3 where technical replicates expressed different VSG.
Minor points:
The significance of this work relates to the application of VSG expression profiling to natural human infections, something not previously done largely because human infections are rare and materials difficult to obtain. The approach and the conclusions are not novel and do not represent substantial advances on previous efforts, but have an important aspect in confirming for natural infections what has been observed in quite artificial experimental settings. Sample size is small and this means that the conclusions remain speculative and cannot readily be extended to all HAT settings. This is not a criticism, since the analysis of any human samples is progress, but it does mean that the study raises interesting questions (e.g. variation across the population in N-terminal domain usage) rather than providing definitive conclusions. It is likely to interest trypanosome biologists with a specific interest in antigenic variation.
My own field concerns trypanosome genomics and the evolutionary dynamics of variant antigen genes.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this paper by Mugnier and colleagues describe the repertoire of VSGs present within a cohort of human HAT cases that occurred at relatively close geographical distance.
VSG repertoires were first described by the senior author a few years ago already, from mouse infection data. This is the first such piece of data to come from human infective parasites in the field. Technically this is a feat - because the small number of parasites that are present per mL of human blood at any given time during infection with T gambiense. Nevertheless they manage to identify up to 14 unique VSGs per patient sample. And this raises the first theoretical question: can they extrapolate to the average diversity load per human? this is important because the timing of sample collection (ie that it occurred within a period of weeks) suggesting that an initial group of infected tsetse infected these patients (rather than a small number of interactions between a bloodmeal and a new infection - generally in itself on the order of 1 month or so). If parasitemia is low and diversity limited, this would explain both why CATT works as well as it does (because really it shouldn't at all!) and perhaps even the chronicity of infection (in the sense that the organism is unlikely to "run out" even of complete VSGs, never mind mosaics). The paper would benefit from a direct discussion on this.
An interesting feature of this new study is the apparent bias to type B N-terminal domain VSGs as well as the discovery that two patients share a specific VSG isolate (though it is not mentioned whether they are related by distance etc). This raises the possibility of substrains with different VSG archives that vary by geography. Alternatively it suggests that perhaps type B VSGs are picked up differentially by serology (and there the one feature of type B VSGs that could be shared, with regards to detection, is the O-hexose decoration on a number of type B VSG surfaces. Could CATT be detecting elements common to sugar decorated VSGs? Experimentally this is something that can be tested even with mouse infection materials.
Side comment: are the common VSGs mutated between patient samples?
Significance: high in the sense that this is the first in human field study of a disease that has been studied quite a lot in mouse models. Clearly from this work, there is still a lot to be learned from studying a disease in context.
Audience: parasitologists
My own expertise: parasitology and immunology
Referees cross-commenting
Nothing substantial to add. From the comments (all of which are worthwhile) I would suspect this would require minor revision.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity): Thank you for the opportunity to review "Population-level survey of loss-of-function mutations revealed that background dependent fitness genes are rare and functionally related in yeast" by Caudal et al. This manuscript reports on the genetic background-dependent traits resulting from natural variation. Authors use 39 natural isolates of the budding yeast (S. cerevisiae) and apply transposon saturation mutagenesis approach to analyze fitness due to loss of function mutations. They identified background and environment dependent genes. They estimate that background specific rewiring is rare and represents instances of bridging between bioprocesses as well as connecting functional related genes. Major comments
Authors filtered strains based on whole chromosome aneuploidies, but what about chromosome arm aneuploidies. Were they detected and if so how were they handled? This should be discussed.
We did not detect any chromosome arm aneuploidies. In fact, if any significant segmental duplication were present in any of the tested strains, we would have observed changes of gene essentiality for multiple successive ORFs, which was not the case.
How does chromatin structure variation across different genetic backgrounds affect the results of the screen? Is this a confounding variable? This should be discussed.
We thank the author for raising this interesting point. There are two aspects to take into consideration. First, transposon insertion is biased by nucleosome occupation, as is more or less expected. In previous screens and in our data, this bias is translated by the lower insertion density in the promoter in addition to the ORF for essential genes. If the nucleosome occupancy were conserved across different genetic background, this insertion bias won’t be a confounding factor as the same gene will share the same bias across different genetic backgrounds. Second, if the nucleosome occupancy is variable across different genetic backgrounds, it could potentially lead to some background-specific insertion biases, however it is difficult to know whether it would be the cause or the consequence of the mutation. In any case, currently there is no chromatin structure data across different genetic backgrounds available and this could be a direction for future research.
On page 7 authors discuss the involvement of other biological processes in addition to respiration and mitochondrial function. It is not clear what they are referring to. This should be clarified in the main text.
We clarified this point in the modified ms.
It would be useful to annotate the functional information discussed in the text directly on the network in Fig. 4 A and B.
We included annotations on the networks (see Fig. 4 and Fig. S4) as suggested in the modified ms.
On page 9, authors should comment on the origin of ACP and CLG strain that would result in the similarity of their fitness profile to S288C which they note as an exception.
ACP is an isolate from Russian wine and CLG is a clinical isolate from UK. In terms of the overall genetic diversity, these two strains are not closely related to the reference strain S288C. As for other profiles, no correlations were observed between the background-dependent mutant fitness variation and their genetic origins.
On page 10 authors discuss that background-specific fitness genes can belong to protein complexes. Can authors test this formally by looking at the overlap with the protein complex standard or protein interaction standard? This would strengthen this statement.
Due to the low number of cases, it is impossible to test this using protein complex standards as the size of the terms are too small as well as the sample size. However, the enriched SAFE terms are in general representative of biological processes which includes multiple protein complexes with similar functions. The genes enriched for each SAFE term is further broken down to specific GO terms, as indicated in Table S4.
Authors should discuss the reasons why transcription & chromatin remodeling and nuclearcytoplasmic transport, are anticorrelated with genes involved in mitochondrial translation in terms of their fitness profiles and the implications for the evolution of environment-dependent fitness genes.
These observations were new and we are currently looking for potential explanations to this effect. Unfortunately, there is no obvious explanation we can think of and discuss at this point. More data and further experiments are needed to have some clues about this observation.
Authors discuss the limitation of the Hermes system however couldn't they test this system with a different inducible promoter such as estradiol regulated promoter to remove the effect of galactose metabolism?
For the Hermes system to work effectively, we need a highly expressed promoter system that is also inducible and GAL1 is the strongest available. As for the estradiol system, first it requires the induction machinery to be integrated in the strain and that will significantly limit the scaling of the project, and second, the maximum induction level is significantly lower than that from the GAL1 system, as is recently shown in Arita et al., MSB 2021. For these reasons, the effect of galactose metabolism is inevitable using any transposon system at present.
Minor comments All figures should contain the appropriate colour bars and legends. For example, Figure S5B relies on the colour bar in Figure 5C but it should have its own colour bar.
We modified the figures as suggested.
Reviewer #1 (Significance): This work provides a comprehensive survey of the variation in natural isolates of yeast and would be interesting to a broad audience studying the genotype-to-phenotype relationship. It is the first study that systematically assessed the fitness effect of loss of function mutations across a large panel of natural isolates providing novel insight into the background specific and environment dependent genes. This represents a valuable resource for the community to ask questions about natural variation in yeast. My expertise is in complex genetic networks in yeast and genome evolution.
Reviewer #2 (Evidence, reproducibility and clarity): For decades, geneticists have used loss of function (LoF) mutations to unravel the molecular bases of phenotypic variability. However, a common concern is to what extent the phenotypes observed in a strain or accession recapitulates what happens at the species level. In not few cases, anecdotal evidence show that an observed mutant phenotype is not recapitulated in another strain, presumably due to the "strain background". Recent efforts using different strains of Saccharomyces cerevisiae have addressed the problem, but the number has been limited. Here, Elodie Caudal et al. use an ingenious transposon-saturation strategy to carry out a large-scale, genome-wide screen of LoF mutations in 39 strains. Based on a competitive-pooling strategy, authors estimate the probability of 4,469 genes being essential, compared to the reference S288C laboratory strain. Background-specific effects were in general rare. Around 15% of these genes show an essential phenotype which is dependent on the strain background, most of them showing continuous variation across all backgrounds and one third being specific of only one strain. Such background specific genes are functionally related and are under relaxed purifying selection and show "intermediate" integration in genetic-interaction networks compared to essential and non-essential genes. The manuscript is very easy to follow, and the experimental/statistical procedures are transparent and in general well described. Major comments
- A limitation of the transposon saturation strategy is the need of galactose as the carbon source, which confounds scoring of genetic background effects. The study would highly benefit from any kind of orthogonal validation or phenotype predictions, beyond the BMH1 case presented (Fig S5). Few options would be direct testing of lethal/sick phenotypes of clean gene knockouts for discussed hits (Fig 5) in several strains and conditions including galactose, testing few of the transposon libraries under different conditions to validate the environment nature of the continuous behavior, or testing the predictive power of the method using data or strains used in Galardini 2019 (ref. 25).
As all three reviewers suggested that validation of our predicted probability score should be supported by experimental data, we performed orthogonal validations for 8 genes across 17 backgrounds. We have included the new results in the revised ms.
Showing the degree of replicability of the entire procedure would also help, form transposon insertion to phenotypic comparisons. If we understood correctly, this was indeed done for isolate AKE. What is the correlation of their probability scores?
The AKE strain was done twice due to the mixed haploid/diploid profile, as mentioned in the text. In this case the reproducibility in terms of probability scores is expected to be lower. We plotted the predicted probability values for the two reps (attached below) and calculated the Pearson’s correlation. The correlation coefficient is 0.86 (P-value
The use of "fitness genes" is confusing, since the main phenotypic output here scored for each gene is LoF lethality, or more specifically the probability of being lethal or non-essential. Lethality or essentiality would be a more appropriate concept throughout. A next step would indeed be to quantify the phenotypic effects in a more quantitative manner (which is generally used while referring to a gene's fitness effect).
We clarified this point in the revised version and use “predicted fitness variation” instead of “fitness genes”.
Some minor comments -Considering that part of the signal is coming from the specific environment tested, one would expect some degree of clustering among related strains based on their gene-essentiality probability (Fig2), given that growth phenotypes correlate well with strain origins when tested under different environments (Warringer et al., 2011). Please discuss.
In Warringer et al. 2011, the correlation was more pronounced between species (S. paradoxus vs. S. cerevisiae) than intraspecifically. Moreover, it was based on a very small sample size. In fact, multiple more recent studies have shown that the growth phenotypes across a large number of conditions between strains in S. cerevisiae is not correlated with their genetic origins (Peter et al. Nature 2018). Indeed, it is not unexpected that the gene-essentiality probability profiles are not correlated with their origins.
-Galactose is not a non-fermentable carbon source (pg 11, pg12). It is true that flux trough the fermentative pathways is lower and that the respiratory pathways are induced in galactose, when compared to growth on glucose, but galactose is readily fermented under low oxygen conditions. Indeed, variation in the regulation of these pathways could explain the environmental effects detected.
The reviewer raised a good point. While galactose is not a non-fermentable carbon source, the entry of galactose into glycolysis requires the respiration pathways and rho-/rho0 yeast mutants are unable to grow on galactose as the sole carbon source. We clarified this in the new version of the ms.
-Examples on FigS3 were useful for a better intuition of how the actual data looks like. Perhaps some of this belongs in Fig1.
Schematic presentation of the insertion profiles is already shown in Figure 1C. Due to the limited size of Figure 1, we kept Fig S3 as it is in the new version of the ms.
Fig2, restrict the #insertions label to the actual limits for the set of 39 strains. Currently, it seems there are strains with fewer than 100K and no strain with 300K insertions.
We thank the reviewer for pointing this out, it was a scaling problem and we fixed it.
-pg5 paragraph 2, a line on how representative is the set of 106 isolates and again later for the final data set of 39. Which main clades are missing or perhaps overrepresented?
Compared to the original 106 isolates, the final 39 isolates are still broadly representative of the species diversity, albeit some of the most divergent clusters, such as isolates from the French Guiana and from China, are underrepresented. We included this comment in the revised version.
-pg6 paragraph 1, should be 106 or 107?
It was 106 plus the reference strain. This point is clarified now in the new ms.
-pg14 line2, is OD of 0.5 correct or was also 0.05 as in galactose? This is relevant, since it would change the competitive selection regime under galactose or glucose (more generations under glucose in the latter case). For clarity, authors could here state an approximate number of cell divisions in each medium.
The OD of 0.5 was correct as this step was only intended as a “recovery phase” and was used to increase the mutant pool for sequencing. We also clarified this point in the text. -pg14 line 2, correct wording "to enrich for cells the transposon.."
We clarified this point in the revised version.
Reviewer #2 (Significance): While recent previous studies have measured genetic background dependent effects of gene mutations at the genome-wide level, this is the first study addressing the problem at the broader population level. Confirming that such effects are in general rare, even at this broad level, is a significant advance in the field. It is limited in the number of environmental conditions and subsequent insights (as in Galardini 2019, ref #25) and in more mechanistic views of specific allele interactions (as in Mullis 2018, ref #5). We feel, however, that these directions would already be out of the scope of the well-framed question here addressed. Because of the problem addressed and tackled in an ingenious and comprehensive manner, this manuscript will attract the attention of a broad audience of geneticists, genome and systems biologists. Our main expertise is in yeast genetics and functional genomics. **Referee Cross-commenting** Reviewer #1 commented the possibility that insertion density could be determined by local chromatin status instead of gene essentiality, given that transposon insertion occurs more often at nucleosome free sites (point 2). While the insertion pattern around the essential gene's vicinity is convincing, we agree that it would help to show that these phenomena are independent from one another, or that this issue must at least be discussed. The seeming need of further experimental or analytical validation was raised by reviewers #1 and #3. As mentioned above, we performed orthogonal validations for 8 genes across 17 backgrounds and we included the results in the revised ms.
Reviewer #3 (Evidence, reproducibility and clarity): In this manuscript, Caudal et al tested differences in gene knockout phenotypes across genetically diverse yeast strains using a transposon system. After initially querying 106 strains, most tested strains were removed from further consideration due to low transposon insertion numbers, aneuploidies, or other issues. The authors used the remaining 39 strains to identify a set of 632 genes that are required for normal growth in some genetic backgrounds but not in others. These context-dependent fitness genes are enriched for genes with a role in respiration, which could be because the experiment is performed using galactose as carbon source. Further analysis of potential environment-dependent fitness genes revealed two separate groups of genes that were anti-correlated in their fitness profiles. I found this an interesting paper, that explores differential gene essentiality (fitness) across diverse yeast strains. The authors give a detailed description of their findings, thereby differentiating between "environmental" and "genetic background" factors. The paper is well-written and the results are clearly presented. I have only two main concerns, both regarding the quality of the produced data: Major comments:
- Looking at the differential fitness scores in the supplementary data, none of the 57 genes that are known to show differential essentiality between S288C and Sigma1278b (Dowell et al., 2010, Science) appear to be identified as having differential fitness in the transposon screen. The authors mention that some of these genes have a severe fitness defect when deleted in the nonessential background and that some are only partially essential. Although this is certainly true for specific cases, deletion mutants of most of these 57 genes show a large difference in fitness between S288C and Sigma, and this thus doesn't sufficiently explain the complete lack of validation of 57 known positive cases. I think the authors need to further clarify why these known positive controls are not identified in their screen.
In Dowell et al. 2010, the essentiality was determined by tetrad dissection comparing S288C and Sigma, and as shown in the supplemental data, ~1/3 out of the 57 are in fact extremely sick in one background and non-viable in the other. This strong fitness defect cannot be distinguished using the transposon method. More recently in Hou et al. PNAS 2019, it has been shown that ~15 out of the 57 original cases were due to chromosomal genetic modifiers, which again, mainly concerned the “domain essential” effect that we also captured in our data. An addition, 8 hits out of the 57 were shown to be related to mitochondrial genomes in Edward et al. PNAS 2014, and due the galactose condition we used, these cases were not detected. Other undetected cases were due to the low coverage in the corresponding regions in either one or both backgrounds.
- Related to the previous point, the authors perform no secondary validation of identified context-dependent essential genes. They show that they can recapitulate known sets of essential and nonessential genes in S288c, but given my previous point, it is not clear how well their logistic model works for predicting differential gene essentiality/fitness. In my opinion, experimental validation of a subset of the identified differential fitness genes is needed to be able to be confident about the results.
As already mentioned above, new experiments were performed in order to validate a subset of the identified differential fitness genes. The results were included in the revised version of the ms.
Minor comments:
- The authors provide lots of data spread over many columns in the supplementary tables. However, a description of what is in each column is missing, and without it, it is not always possible to understand the data.
We added column annotations in the spread sheets as suggested.
- I didn't understand the sentence at the bottom of page 5: "the number of insertion drops from -100 bp prior to CDS and extends to - 100 bp until the terminator region". Perhaps the authors can rephrase.
We clarified this point in the revised version.
Reviewer #3 (Significance): To my knowledge, this is the first paper exploring gene essentiality across a large number of genetically diverse yeast strains. This paper will be of interest to a broad range of geneticists.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this manuscript, Caudal et al tested differences in gene knockout phenotypes across genetically diverse yeast strains using a transposon system. After initially querying 106 strains, most tested strains were removed from further consideration due to low transposon insertion numbers, aneuploidies, or other issues. The authors used the remaining 39 strains to identify a set of 632 genes that are required for normal growth in some genetic backgrounds but not in others. These context-dependent fitness genes are enriched for genes with a role in respiration, which could be because the experiment is performed using galactose as carbon source. Further analysis of potential environment-dependent fitness genes revealed two separate groups of genes that were anti-correlated in their fitness profiles.
I found this an interesting paper, that explores differential gene essentiality (fitness) across diverse yeast strains. The authors give a detailed description of their findings, thereby differentiating between "environmental" and "genetic background" factors. The paper is well-written and the results are clearly presented. I have only two main concerns, both regarding the quality of the produced data:
Major comments:
Minor comments:
To my knowledge, this is the first paper exploring gene essentiality across a large number of genetically diverse yeast strains. This paper will be of interest to a broad range of geneticists.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
For decades, geneticists have used loss of function (LoF) mutations to unravel the molecular bases of phenotypic variability. However, a common concern is to what extent the phenotypes observed in a strain or accession recapitulates what happens at the species level. In not few cases, anecdotal evidence show that an observed mutant phenotype is not recapitulated in another strain, presumably due to the "strain background". Recent efforts using different strains of Saccharomyces cerevisiae have addressed the problem, but the number has been limited. Here, Elodie Caudal et al. use an ingenious transposon-saturation strategy to carry out a large-scale, genome-wide screen of LoF mutations in 39 strains. Based on a competitive-pooling strategy, authors estimate the probability of 4,469 genes being essential, compared to the reference S288C laboratory strain. Background-specific effects were in general rare. Around 15% of these genes show an essential phenotype which is dependent on the strain background, most of them showing continuous variation across all backgrounds and one third being specific of only one strain. Such background specific genes are functionally related and are under relaxed purifying selection and show "intermediate" integration in genetic-interaction networks compared to essential and non-essential genes. The manuscript is very easy to follow, and the experimental/statistical procedures are transparent and in general well described.
Major comments
Some minor comments
-Considering that part of the signal is coming from the specific environment tested, one would expect some degree of clustering among related strains based on their gene-essentiality probability (Fig2), given that growth phenotypes correlate well with strain origins when tested under different environments (Warringer et al., 2011). Please discuss.
-Galactose is not a non-fermentable carbon source (pg 11, pg12). It is true that flux trough the fermentative pathways is lower and that the respiratory pathways are induced in galactose, when compared to growth on glucose, but galactose is readily fermented under low oxygen conditions. Indeed, variation in the regulation of these pathways could explain the environmental effects detected.
-Examples on FigS3 were useful for a better intuition of how the actual data looks like. Perhaps some of this belongs in Fig1.
Fig2, restrict the #insertions label to the actual limits for the set of 39 strains. Currently, it seems there are strains with fewer than 100K and no strain with 300K insertions.
-pg5 paragraph 2, a line on how representative is the set of 106 isolates and again later for the final data set of 39. Which main clades are missing or perhaps overrepresented?
-pg6 paragraph 1, should be 106 or 107?
-pg14 line2, is OD of 0.5 correct or was also 0.05 as in galactose? This is relevant, since it would change the competitive selection regime under galactose or glucose (more generations under glucose in the latter case). For clarity, authors could here state an approximate number of cell divisions in each medium.
-pg14 line 2, correct wording "to enrich for cells the transposon.."
While recent previous studies have measured genetic background dependent effects of gene mutations at the genome-wide level, this is the first study addressing the problem at the broader population level. Confirming that such effects are in general rare, even at this broad level, is a significant advance in the field. It is limited in the number of environmental conditions and subsequent insights (as in Galardini 2019, ref #25) and in more mechanistic views of specific allele interactions (as in Mullis 2018, ref #5). We feel, however, that these directions would already be out of the scope of the well-framed question here addressed.
Because of the problem addressed and tackled in an ingenious and comprehensive manner, this manuscript will attract the attention of a broad audience of geneticists, genome and systems biologists. Our main expertise is in yeast genetics and functional genomics.
Referee Cross-commenting
Reviewer #1 commented the possibility that insertion density could be determined by local chromatin status instead of gene essentiality, given that transposon insertion occurs more often at nucleosome free sites (point 2). While the insertion pattern around the essential gene's vicinity is convincing, we agree that it would help to show that these phenomena are independent from one another, or that this issue must at least be discussed.
The seeming need of further experimental or analytical validation was raised by reviewers #1 and #3.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Thank you for the opportunity to review "Population-level survey of loss-of-function mutations revealed that background dependent fitness genes are rare and functionally related in yeast" by Caudal et al. This manuscript reports on the genetic background-dependent traits resulting from natural variation. Authors use 39 natural isolates of the budding yeast (S. cerevisiae) and apply transposon saturation mutagenesis approach to analyze fitness due to loss of function mutations. They identified background and environment dependent genes. They estimate that background specific rewiring is rare and represents instances of bridging between bioprocesses as well as connecting functional related genes.
Major comments
Minor comments
All figures should contain the appropriate colour bars and legends. For example, Figure S5B relies on the colour bar in Figure 5C but it should have its own colour bar.
Significance
This work provides a comprehensive survey of the variation in natural isolates of yeast and would be interesting to a broad audience studying the genotype-to-phenotype relationship. It is the first study that systematically assessed the fitness effect of loss of function mutations across a large panel of natural isolates providing novel insight into the background specific and environment dependent genes. This represents a valuable resource for the community to ask questions about natural variation in yeast. My expertise is in complex genetic networks in yeast and genome evolution.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
This is a very interesting paper with novel observations. The authors find that, in yeast, Rvb1/2 AAA+ ATPases couple transcription, mRNA granular localization, and mRNAs translatability during glucose starvation. Rvb1 and Rvb2 were found to be enriched at the promoters and mRNAs of genes involved in alternative glucose metabolism pathways that are transcriptionally upregulated but translationally downregulated during glucose starvation.
The following are some comments
Introduction
"Structural studies have shown that they form a dodecamer comprised of a stacked Rvb1 hexametric ring and a Rvb2 hexametric ring." o Rvb1 and Rvb2 form a heterohexameric ring with alternating arrangement (not homohexamers that stack on top of each other as suggested by this sentence) o In yeast, they oligomerize mostly as single hexametric rings, with dodecamers reported being less than 10% in frequency in vivo (eg Jeganathan et al. 2015 https://doi.org/10.1016/j.jmb.2015.01.010)
Results Section: Rvb1/Rvb2 are identified as potential co-transcriptionally loaded protein factors on the alternative glucose metabolism genes
Figure 1C, unclear whether p-value here is for FC of GLC3 over HSP or FC of GLC3 over CRAPome. In addition, both FC datasets should have p-values.
Section: Rvb1/Rvb2 are enriched at the promoters of endogenous alternative glucose metabolism genes
"Structural studies have shown that Rvb1/Rvb2 can form a dodecamer complex. Their overlapped enrichment also indicates that Rvb1 and Rvb2 may function together." • They function together regardless of forming a dodecamer or not, as they assemble as heterohexamers
Section: Engineered Rvb1/Rvb2 tethering to mRNAs directs the cytoplasmic localization and repressed translation
"Results showed that after replenishing the glucose to the starved cells, the translation of those genes is quickly induced, with an ~8-fold increase in ribosome occupancy 5 minutes after glucose readdition for Class II mRNAs (Figure 4-figure supplement 9)" o Would be important to see this recovery (increase in translation after glucose replenishment) in one of the reporter constructs used in the paper, such as GL3 promoter driven CFP.
Section: Engineered Rvb1/Rvb2 binding to mRNAs increases the transcription of corresponding genes
Reviewer #1 (Significance (Required)):
This is a very interesting manuscript that ascribes yet another function of the highly conserved RVB1/2 AAA+ ATPases.
**Referee Cross-commenting**
All reviewers agree that this an interesting paper. However, the reviewers do suggest specific experiments to verify some of the results. Carrying out these experiments will definitely improve the paper.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
In their manuscript entitled "Rvb1/Rvb2 proteins couple transcription and translation during glucose starvation", Chen and co-authors use genetics and microscopy to demonstrate how budding yeast regulate cytoplasmic translation by their promoter sequences by two conserved ATPases Rvb1 and Rvb2 during nutrient stress. The authors show that these two ATPases repress translation of target mRNAs and then propose that these two proteins also recruit mRNAs to P bodies. The authors show that Rvb1/2 preferentially binds in the presence of Class II promoters using CoTrIP, that Rvb1/2 binds specifically at Class II promoters using ChIP-Seq, that Rvb1/2 are bound to transcripts with Class II promoters using RIP-Seq, that tethering of Rvb1/2 to a transcript decreases its translatability and that Rvb1/2 binding to a transcript increases its transcript levels by increasing transcription and not slowing mRNA decay.
The CoTrIP experiment is clever and for the most part well executed. The key conclusions are largely convincing but some clarifications are nevertheless needed (see below). Overall, this paper is well written with well executed experiments that largely support the authors' model. No major additional experiments are needed to support the claims of the paper. There are a few minor concerns that should be addressed before this manuscript gets published. These are: Minor comments: 1) Are Rvb1/2 components (enriched in) of P bodies? The model proposed by the authors suggests this but no data is show. 2) Fig. 1A: The model proposed by the authors indicates that Rvb1/2 and other proteins are recruited to the mRNAs in a promoter-dependent manner and not mRNA sequence dependent manner. This is largely supported by the data presented in the paper. However the authors should also discuss the possibility that RNA sequences could nevertheless contribute as only a uniform ORF has been tested. Could the promoter recruit Rvb1/2 similarly regardless of the ORF sequence tested? Please provide a sequence of the uniform ORF, discuss what this "uniformity" means and how a change in RNA sequence could affect the outcome of the experiment outlined in Fig. 1A. 3) Fig. 2: The authors use Pgk 1 in their ChIP control but this is not the appropriate control for the experiment as Pgk 1 is not nuclear and thus cannot demonstrate non-specific interaction with genetic regions of tested genes. Regardless, the data is convincing enough to support the model that Rvb1/2 are specifically recruited to the promoters of Class II stress-induced genes and not Class I stress-induced genes. GFP-NLS would be a better control. The authors should discuss in their materials and methods section why they chose a cytoplasmic protein for their normalization control but preferably perform ChIP with GFP-NLS or other nuclear protein that could bind to chromatin non-specifically to further demonstrate the specificity of Rvb1/2 enrichment at Class II promoters. 4) The authors claim that Rvb1/Rvb2 binding to transcripts leads to formation of granules that are non-colocalized with P-bodies and instead co-localized to SGs, but no SG fluorescent marker is used to demonstrate this claim. The authors should provide this data or remove this claim from their manuscript. 5) Fluorescent images are fuzzy, very small and difficult to interpret. mRNA puncta are difficult to observe and it is hard to conclude which green puncta colocalize with P bodies and which do not (and how frequently). It is difficult to differentiate between the cytoplasm and nucleus. Consider adding DAPI overlay. 6) The relevance of Figure 2B is not clear - please discuss. 7) Fig 5A modeling adds little supporting evidence to the entire figure. The experimental results are more convincing. Consider moving to the Supplement. 8) Fig. 4 and 3B. The authors suggest that Rvb1/2 loaded by the promoters onto the mRNA determine accumulation of mRNAs to P bodies. To test this model, the authors tether Rvb1/2 onto the mRNA using MS2-MCP system and then look for co-localization of the mRNA with P bodies. However, if the authors' model is correct, this experiment could have been achieved already using the constructs in Fig. 3B. The authors should look at the P body localization pattern using chimeras used in Fig. 3B. 9) Fig. 6: The authors present a model where mRNAs transcribed from Class II promoters are decorated with Rvb1/2 co-transcriptionally, exported into the cytoplasm, recruited to P bodies and translationally repressed. However, this model is not fully supported by the data shown. Specifically, the authors have not shown that localization of mRNAs to P bodies induces translational repression or whether the recruitment is a consequence of this repression. The authors should revise their model to reflect this uncertainty. Also, the numbering of steps 1,2 3 is confusing. Does it imply a temporal sequences? Some of these steps could be occurring simultaneously (like 1 and 3). How does step 3 lead from step 2? Please clarify this model. 10) Consider showing data-points in Fig 1 figure supplement 1. The box/whisker plot doesn't give a good sense of the enrichment alone 11) Figure 1 Fig supplement 2 shows that the fluorophore seems to influence the % of cells with foci. Why is this the case? 12) List gene names in Fig 2 fig supp 5. 13) Throughout the paper the graph axis labels are very small and difficult to read. 14) Figure 4 fig supplement 7C and 8E: on the y-axis the legend says proportion of cells (%), so the value on the y-axis might be 25, 50, 75 and not 0.25, 0.50 and 0.75. 15) The last paragraph of the Introduction (page 2) detailed how Rvb1/Rvb2 are core components of the stress granule. Yet most experiments were conducted to relate Rvb1/Rvb2 with P-bodies. Maybe some information about the known roles Rvb1/Rvb2 play in the P-bodies in the Introduction section could help.
Reviewer #2 (Significance (Required)):
Ruvb helicase has been shown to regulate the formation of stress granules in human U2OS cells during oxidative stress (Parker lab, Cell, 2016). Thus, the authors suggest that Rvb proteins could have a broad and conserved role in the formation of RNA granules, which advances our understanding of how biomolecular condensates could form. In addition, translationally-repressed mRNAs have been shown to preferentially recruit to diverse RNA granules, from stress granules P bodies in human cells as well as germ granules in C. elegans and Drosophila. These observations have gained considerable attention in the past 5 years and exact molecular principles behind this phenomenon are not entirely clear. Long and exposed RNA sequences are thought to be sufficient for this enrichment. The authors however suggest that specific proteins (Rvb1/2) could also trigger enrichment either directly by interacting with P bodies or indirectly by repressing translation and exposing RNA sequences. This finding will be particularly relevant to the field of biomolecular condensates. My expertise is in the area of RNA biology, mRNA decay, RNA granules and mRNA localization.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Dr. Brian Zid has previously published in Nature that, in response to glucose starvation, promoters of some genes ("class II") can control synthesis of mRNAs that are sequestered in cytoplasmic P bodies or Stress granules, away from the translation apparatus. In this paper, his group reports about the underlying mechanism. They have found proteins that bind preferentially class II promoters as well as their transcripts and are capable of repressing their translation and stimulating their assembly with P bodies. They found a correlation between the capacity of Rvb1/2 binding to promoters and binding to mRNAs. Using a tethering technique, they found that Rb1/Rvb2 recruitment to reporter mRNA (not class II) led to the association of the transcript with PBs and its translation repression. Interestingly, Binding of Rvb1/Rvb2 to the studied transcript increased transcription of its own gene, probably by remodeling the nearby chromatin. The paper uncovers a mechanism to sequester mRNAs as translationally repressed in RNA granules during starvation and warrants a publication in a good journal, after responding to various comments below.
CoTrIP is a method to identify proteins that differentially bind plasmids carrying different promoters/genes. However, the claim that it identifies proteins bound to nascent mRNAs is an overreach, as the proteins bind both DNA and RNA and the purified plasmid contains both types of nucleic acids. Therefore, the title of section 1 ("Rvb1/Rvb2 are identified as potential co-transcriptionally loaded protein factors on the alternative glucose metabolism genes") should be changed to something like: Rvb1/Rvb2 are identified as proteins that are co-purified with a plasmid expressing alternative glucose metabolism genes. Description of CoTrIP and its results should be discussed throughout the manuscript accordingly.
The engineered Rvb1/Rvb2 tethering to mRNAs of choice is a potentially convincing way to show the causative effect of Rvb1/Rvb2 on RNA performance. Using this method, the authors show that attachment of Rvb1/Rvb2 to an engineered mRNA mediate its association with granules and inhibits its translation. However, this experiment takes Rvb1/2 out of its natural context such that its behavior in this case may not be exemplative of its endogenous function. The authors are encouraged to support their results by depleting Rvbs with AID and examine the outcome of this depletion on PBs formation and translation of class II genes (and class I as controls).
The tethering experiments, shown in Fig. 4, would be more convincing by including an additional control. To rule out the possibility that any bulky protein that is recruited to the 3'-UTR by the PP7 element affects translation (not an unlikely possibility), they want to consider fusing irrelevant protein (e.g., Pgk1p) to CP, in place of Rvb1/2.
The proposal that Rvb1 binds class II transcripts during transcription is a plausible possibility (which I personally believe to represent the reality), but by no means demonstrated. This should be clearly addressed in the paper.
An optional suggestion: The paper can be upgraded by performing ribosome profiling, as shown in Supplemental Fig. 9, after a short depletion of Rvb1/2 by AID (see comment 2). This, in combination with the results already shown in Supp Fig. 9, can demonstrate the role of Rvb1/2 in mRNA storage in granules and in translation shortly after glucose refeeding. The large data sets thus produced (in particular the ratio between depleted and non-depleted signal per each gene) can be used to try correlate the extent of ribosome occupancy (or the above mentioned ratio) with cis-element(s) or known trans-acting elements within the promoters. This may identify elements within the promoters that recruit (directly or indirectly) Rvb1/2. If successful, it can pave the way to demonstrate co-transcriptional RNA binding. I also suggest moving Supp Fig. 9 as an additional panel of the main Fig. 4. Minor point:
Reviewer #3 (Significance (Required)):
The paper uncovers a mechanism to sequester mRNAs as translationally repressed in RNA granules during starvation. This significantly advances our understanding of how gene expression in yeast responds to the environment and warrants a publication in a good journal, after responding to the various comments, indicated above. My expertise is regulation of gene expression.
**Referee Cross-commenting**
In general all reviewers feel that the paper deals with a significant issue, each from his/her point of view, and is basically of high quality.
I concur with all the comments of Reviewer 1 and 2. In particular, two comments drove my attention. Reviewer 1: Would be important to see increase in translation after glucose replenishment in one of the reporter constructs used in the paper, such as GL3 promoter driven CFP. Reviewer 2: The authors should look at the P body localization pattern using chimeras used in Fig. 3B.
There are comments common to more than one reviewer.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Dr. Brian Zid has previously published in Nature that, in response to glucose starvation, promoters of some genes ("class II") can control synthesis of mRNAs that are sequestered in cytoplasmic P bodies or Stress granules, away from the translation apparatus. In this paper, his group reports about the underlying mechanism. They have found proteins that bind preferentially class II promoters as well as their transcripts and are capable of repressing their translation and stimulating their assembly with P bodies. They found a correlation between the capacity of Rvb1/2 binding to promoters and binding to mRNAs. Using a tethering technique, they found that Rb1/Rvb2 recruitment to reporter mRNA (not class II) led to the association of the transcript with PBs and its translation repression. Interestingly, Binding of Rvb1/Rvb2 to the studied transcript increased transcription of its own gene, probably by remodeling the nearby chromatin.<br> The paper uncovers a mechanism to sequester mRNAs as translationally repressed in RNA granules during starvation and warrants a publication in a good journal, after responding to various comments below.
Minor point:
The paper uncovers a mechanism to sequester mRNAs as translationally repressed in RNA granules during starvation. This significantly advances our understanding of how gene expression in yeast responds to the environment and warrants a publication in a good journal, after responding to the various comments, indicated above.
My expertise is regulation of gene expression.
Referee Cross-commenting
In general all reviewers feel that the paper deals with a significant issue, each from his/her point of view, and is basically of high quality.
I concur with all the comments of Reviewer 1 and 2. In particular, two comments drove my attention. Reviewer 1: Would be important to see increase in translation after glucose replenishment in one of the reporter constructs used in the paper, such as GL3 promoter driven CFP. Reviewer 2: The authors should look at the P body localization pattern using chimeras used in Fig. 3B.
There are comments common to more than one reviewer.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In their manuscript entitled "Rvb1/Rvb2 proteins couple transcription and translation during glucose starvation", Chen and co-authors use genetics and microscopy to demonstrate how budding yeast regulate cytoplasmic translation by their promoter sequences by two conserved ATPases Rvb1 and Rvb2 during nutrient stress. The authors show that these two ATPases repress translation of target mRNAs and then propose that these two proteins also recruit mRNAs to P bodies. The authors show that Rvb1/2 preferentially binds in the presence of Class II promoters using CoTrIP, that Rvb1/2 binds specifically at Class II promoters using ChIP-Seq, that Rvb1/2 are bound to transcripts with Class II promoters using RIP-Seq, that tethering of Rvb1/2 to a transcript decreases its translatability and that Rvb1/2 binding to a transcript increases its transcript levels by increasing transcription and not slowing mRNA decay.
The CoTrIP experiment is clever and for the most part well executed. The key conclusions are largely convincing but some clarifications are nevertheless needed (see below). Overall, this paper is well written with well executed experiments that largely support the authors' model. No major additional experiments are needed to support the claims of the paper. There are a few minor concerns that should be addressed before this manuscript gets published. These are:
Minor comments:
1) Are Rvb1/2 components (enriched in) of P bodies? The model proposed by the authors suggests this but no data is show.
2) Fig. 1A: The model proposed by the authors indicates that Rvb1/2 and other proteins are recruited to the mRNAs in a promoter-dependent manner and not mRNA sequence dependent manner. This is largely supported by the data presented in the paper. However the authors should also discuss the possibility that RNA sequences could nevertheless contribute as only a uniform ORF has been tested. Could the promoter recruit Rvb1/2 similarly regardless of the ORF sequence tested? Please provide a sequence of the uniform ORF, discuss what this "uniformity" means and how a change in RNA sequence could affect the outcome of the experiment outlined in Fig. 1A.
3) Fig. 2: The authors use Pgk 1 in their ChIP control but this is not the appropriate control for the experiment as Pgk 1 is not nuclear and thus cannot demonstrate non-specific interaction with genetic regions of tested genes. Regardless, the data is convincing enough to support the model that Rvb1/2 are specifically recruited to the promoters of Class II stress-induced genes and not Class I stress-induced genes. GFP-NLS would be a better control. The authors should discuss in their materials and methods section why they chose a cytoplasmic protein for their normalization control but preferably perform ChIP with GFP-NLS or other nuclear protein that could bind to chromatin non-specifically to further demonstrate the specificity of Rvb1/2 enrichment at Class II promoters.
4) The authors claim that Rvb1/Rvb2 binding to transcripts leads to formation of granules that are non-colocalized with P-bodies and instead co-localized to SGs, but no SG fluorescent marker is used to demonstrate this claim. The authors should provide this data or remove this claim from their manuscript.
5) Fluorescent images are fuzzy, very small and difficult to interpret. mRNA puncta are difficult to observe and it is hard to conclude which green puncta colocalize with P bodies and which do not (and how frequently). It is difficult to differentiate between the cytoplasm and nucleus. Consider adding DAPI overlay.
6) The relevance of Figure 2B is not clear - please discuss.
7) Fig 5A modeling adds little supporting evidence to the entire figure. The experimental results are more convincing. Consider moving to the Supplement.
8) Fig. 4 and 3B. The authors suggest that Rvb1/2 loaded by the promoters onto the mRNA determine accumulation of mRNAs to P bodies. To test this model, the authors tether Rvb1/2 onto the mRNA using MS2-MCP system and then look for co-localization of the mRNA with P bodies. However, if the authors' model is correct, this experiment could have been achieved already using the constructs in Fig. 3B. The authors should look at the P body localization pattern using chimeras used in Fig. 3B.
9) Fig. 6: The authors present a model where mRNAs transcribed from Class II promoters are decorated with Rvb1/2 co-transcriptionally, exported into the cytoplasm, recruited to P bodies and translationally repressed. However, this model is not fully supported by the data shown. Specifically, the authors have not shown that localization of mRNAs to P bodies induces translational repression or whether the recruitment is a consequence of this repression. The authors should revise their model to reflect this uncertainty. Also, the numbering of steps 1,2 3 is confusing. Does it imply a temporal sequences? Some of these steps could be occurring simultaneously (like 1 and 3). How does step 3 lead from step 2? Please clarify this model.
10) Consider showing data-points in Fig 1 figure supplement 1. The box/whisker plot doesn't give a good sense of the enrichment alone.
11) Figure 1 Fig supplement 2 shows that the fluorophore seems to influence the % of cells with foci. Why is this the case?
12) List gene names in Fig 2 fig supp 5.
13) Throughout the paper the graph axis labels are very small and difficult to read.
14) Figure 4 fig supplement 7C and 8E: on the y-axis the legend says proportion of cells (%), so the value on the y-axis might be 25, 50, 75 and not 0.25, 0.50 and 0.75.
15) The last paragraph of the Introduction (page 2) detailed how Rvb1/Rvb2 are core components of the stress granule. Yet most experiments were conducted to relate Rvb1/Rvb2 with P-bodies. Maybe some information about the known roles Rvb1/Rvb2 play in the P-bodies in the Introduction section could help.
Ruvb helicase has been shown to regulate the formation of stress granules in human U2OS cells during oxidative stress (Parker lab, Cell, 2016). Thus, the authors suggest that Rvb proteins could have a broad and conserved role in the formation of RNA granules, which advances our understanding of how biomolecular condensates could form.
In addition, translationally-repressed mRNAs have been shown to preferentially recruit to diverse RNA granules, from stress granules P bodies in human cells as well as germ granules in C. elegans and Drosophila. These observations have gained considerable attention in the past 5 years and exact molecular principles behind this phenomenon are not entirely clear. Long and exposed RNA sequences are thought to be sufficient for this enrichment. The authors however suggest that specific proteins (Rvb1/2) could also trigger enrichment either directly by interacting with P bodies or indirectly by repressing translation and exposing RNA sequences. This finding will be particularly relevant to the field of biomolecular condensates.
My expertise is in the area of RNA biology, mRNA decay, RNA granules and mRNA localization.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
This is a very interesting paper with novel observations. The authors find that, in yeast, Rvb1/2 AAA+ ATPases couple transcription, mRNA granular localization, and mRNAs translatability during glucose starvation. Rvb1 and Rvb2 were found to be enriched at the promoters and mRNAs of genes involved in alternative glucose metabolism pathways that are transcriptionally upregulated but translationally downregulated during glucose starvation.
The following are some comments
Introduction
Results Section: Rvb1/Rvb2 are identified as potential co-transcriptionally loaded protein factors on the alternative glucose metabolism genes
Section: Rvb1/Rvb2 are enriched at the promoters of endogenous alternative glucose metabolism genes
Section: Engineered Rvb1/Rvb2 tethering to mRNAs directs the cytoplasmic localization and repressed translation
Section: Engineered Rvb1/Rvb2 binding to mRNAs increases the transcription of corresponding genes
This is a very interesting manuscript that ascribes yet another function of the highly conserved RVB1/2 AAA+ ATPases.
Referee Cross-commenting
All reviewers agree that this an interesting paper. However, the reviewers do suggest specific experiments to verify some of the results. Carrying out these experiments will definitely improve the paper.
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Download the complete Review Process [PDF] including:
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
RC-2021-00739
“Plasma membrane damage limits replicative lifespan in yeast and induces premature senescence in human fibroblasts”
Kono et al.
Point-by-point response
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
*In this article, Kono et al worked on cellular outcomes induced by plasma membrane damage (PMD) in yeast and in human cells. Plasma membrane damage is induced by some stresses and alteration of its repair can lead to some diseases. Globally little is known about PMD. Authors observed that PMD-induced by low concentration of SDS in yeast and in human cells can limit their replicative lifespan. A genetic screen in yeast has identified the endosomal sorting complexes required for transport (ESCRT) genes as required for PMD response. In human cells, the authors observed that PMD-induced premature senescence is dependent of p53 activity but independent of DNA damage. This work sounds novel and interesting in the context of senescence on human cells. Nevertheless, they are some limits and questions that should be addressed to strongly improve this interesting work.**
*
Thank you very much for reviewing our manuscript. We are delighted to know that reviewer #1 thinks our work is novel and interesting.
**\*Major comments:****
*- can the authors describe and explain what are common and divergent betweenreplicative lifespan in yeast and human cells, for instance on telomere biology? It is particularly important as the authors jumped from replicative lifespan in yeast to replicative senescence in human cells.
Thank you for raising this point. The telomere biology in yeast and human cells share at least three central mechanisms but obviously there are limitations of using yeast as a model. We included this point in discussion (page 12, line 10-22).
- a better characterization of premature senescence induced by SDS is required to delineate this new type of senescence: for instance, SASP content characterization and EdU incorporation assays to properly demonstrate the proliferation arrest.
According to the reviewer’s suggestion, we added SASP qPCR results (Fig. 3I and J). We also performed EdU incorporation assays and included in the revised manuscript (Fig. 3F).
- the authors claimed that PMD-induced senescence is DNA damage-independent and that PMD could occur during replicative senescence. As mentioned in some references cited by the authors, replicative senescence normally occurs in response to telomere shortening and this shortening results in a DNA damage response which initiates senescence (ref 23). So authors should formulate their conclusions and discussion in the light of these well described results and tone down some of their conclusions.
We agree with the reviewer’s point that the best-studied mechanism underlying replicative senescence is telomere shortening (Blackburn, 2001; Shay and Wrightas, 2001) and telomere-dependent replicative senescence is mediated by the DNA repair pathway (d'Adda di Fagagna et al., 2003). We changed the title, abstract, and introduction (title, “Plasma membrane damage limits replicative lifespan in yeast and induces premature senescence in human fibroblasts”, abstract page 2 line 12-13, introduction page 4 line 1-2). We hope new sentences describe our findings more precisely.
In that context it will be also interesting to investigate whether PMD occurs in other types of cellular senescence (different inducers and different cell types).
Thank you very much for the suggestion. We performed the experiment. The results indicate that PMD does not occur in DNA damage (doxorubicine)-dependent premature senescence (Fig. S8A and B).
- this story will be strongly improved if the authors provide some mechanistic insights. In particular if they can link their observations in yeast to their observation in human cells. For instance, does ESCRT impact SDS-induced senescence in human cells? Can this be linked to p53 activity?
Thank you very much for the suggestion. According to the comment, we tested whether VPS4A/B overexpression extends replicative lifespan in human cells analogous to what we observed in yeast. Unfortunately, VPS4A/B overexpression from CMV promoter gradually decreased cell viability within several days. Therefore, we could not conclude their functions on lifespan extension.
*
According to the reviewer’s suggestion, we measured cytosolic calcium levels and included them in our revised manuscript (Fig. 5A-C). Our new results indicate that the cytosolic Ca2+ is increased after SDS treatment. We also added new figures confirming the previously reported result that KCl-dependent Ca2+-influx is sufficient for senescence induction (Fig. 5D-F). To test whether Ca2+ is required for PMDS, we treated the cells with both SDS and Ca2+ chelators but the cells ruptured immediately due to the failure of membrane resealing. Therefore, although it is likely that Ca2+ is required for PMDS, we could not dissect Ca2+’s function in membrane resealing and premature senescence. We will intensively analyze this point in our next paper.
*- ESCRT is involved in nuclear envelope repair. Can the authors ruled out any effects of SDS on nuclear envelopes as nuclear envelope alterations can be involved in cellular senescence?**
*
We appreciate reviewer #1 for raising an important point. We can rule out the possibility based on the following evidence. Nuclear deformation and subsequent upregulation of DNA damage signaling is a striking feature of nuclear envelope damage as observed in premature aging diseases Laminopathies (Eriksson et al., 2003; De Sandre-Giovannoli et al, 2003; Earle et al., 2019). We found that SDS treatment did not induce nuclear envelope deformation (Fig. 1F and Fig. S2A). Moreover, ESCRT did not accumulate at the nuclear membrane after SDS treatment (Fig. S3D, green). These results suggest that the SDS-dependent cellular senescence cannot be attributed to the nuclear envelope damage. We added sentences in discussion of the revised manuscript (page 12, line 1-5).
\*Minor comments:***
*
According to the reviewer’s comment, we replaced the images.
- in Figure 3 it will be better to present cumulative population doublings which is a more classical way to present these results.
According to the reviewer’s comment, we replaced the graphs.
*- several human cell lines are used but in most of time for different experiments. It will be good to show that at least one of them display the expected results with the different assays.**
*
According to the reviewer’s comment, we added Fig. S7 to show that WI-38 cells also show PMDS. Thank you again for reviewing our manuscript despite your hectic schedule.
* Reviewer #1 (Significance (Required)):
see above.*
*Reviewer #2 (Evidence, reproducibility and clarity (Required)):**
**Summary:**
Makoto Nakanishi and co-workers use SDS (and EGTA) to induce plasma membrane damage (PMD) on budding yeast cells and human fibroblast. Their results correlate SDS induced PMD with reduced the replicative lifespan of budding yeast and p53 mediated senescence in human fibroblast.
Using genetic screens in budding yeast, 48 SDS sensitive mutants were identified, including a large set of ESCRT mutants, V-ATPase mutants, and several mutants deficient in metabolic enzymes (amino acid metabolism and lipid metabolism). Three of the SDS sensitive yeast mutants showed a reduced replicative lifespan.
SDS induced PMD on human fibroblast triggered p53 induction (without concomitant DNA damage) and subsequent p53 mediated senescence. SDS induced PMD also induced phosphatidyl-serine (PS) externalization of PM projections that co-localized with the ESCRT-III subunit CHMP4a.
These results describe a potentially interesting and novel pathophysiological effect of PMD.
*
Thank you very much for serving as a reviewer. We are delighted that the reviewer #2 considers our work to be novel and interesting.
\*Major points.***
While the description of the PMD induced phenotypes in yeast and fibroblast are interesting, mechanistic insight is not provided. Perhaps the phenotypic description could be solidified by addressing the following points: *
Thank you so much for the valuable suggestion. According to the comment, we performed these experiments. We could successfully quantify the DAPI penetration in normal human fibroblasts by FACS (added to the revised manuscript as Fig. S2D). In contrast, we failed to detect the increase of Annexin V (PS externalization signals) by FACS, probably due to the detection limit of the FACS machine we used (please see below). Let me remind you that the signal at the PS externalizing spots after PMD are extremely weak; the signals cannot be compared with massive PS externalization during apoptosis. Instead, we quantified the Annexin V signals of entire cells using Zeiss inverted confocal microscope (LSM780) and Zen blue software and included them in Fig. S3B. We hope these new data serve as objective evidence supporting our conclusion.
Thank you very much for the suggestion. According to the reviewer’s comment, we performed characterization of the screening hits and identified four novel mechanisms involved in PMD response in budding yeast (Fig. S5, S6, and Supplementary texts).
Why do the authors focus on 'replicative lifespan' rather than on e.g. 'nutrient-utilization'.
Thank you for the comment. Indeed, we are also interested in the relation of PMD and other cellular processes, including nutrient utilization. The project is on-going. In this manuscript, we would like to focus on the point that the PMD response and the replicative lifespan regulation share some key regulators.
In principle, this is fine with me, given that there are only 48 hits, but then the authors could rather argue e.g.: that they look into ESCRT mutants because the ESCRTs have been already implicated in resealing the PM in a Ca2+ dependent manner.
Thank you for the comment. In the revised manuscript, we edited the text and emphasized that ESCRT was known to be involved in membrane repair in higher eukaryotes (page 6 line 25-page 7 line 2). Here, we looked into ESCRT to test our working hypothesis that the PMD responses and the replicative lifespan regulation could share part of the fundamental mechanisms.
To drive home the point the ESCRTs (but also Vps34 and Erg2) limit the replicative life span of budding yeast due to the accumulation of PMD, this should be experimentally tested (e.g. compare replicative life span of the mutants +/- SDS to WT cells +/- SDS). Snf7, Vps34 and Erg2 mutants could affect the replicative life-span in a number of ways that is independent from PMD.
Thank you very much for raising this point. We performed the experiment. The result was that all mutants (snf7, vps34, and erg2) did not divide at all in the presence of SDS (replicative lifespan=0), consistent with the screening strategy that we isolated the mutants with absolutely no growth on SDS plates (Fig. S4). These results were added to the result section of the revised manuscript (page 7, line 11-13).
Thank you for asking this question. Vps4 is a AAA-ATPase promoting disassembly of the structural components (ESCRT-III filaments) and thus critical for pinching off the membrane. The most straightforward rate-limiting factor could be ATP but obviously it is nonspecific, having too many downstream consequences. Therefore, we decided to mildly overexpress VPS4 from TEF1 promoter and luckily the strategy worked well.
Perhaps it would be more telling to overexpress Vps4 in a snf7 mutant and test if it still improves the replicative life-span?
Thank you for the comment. According to the comment, we constructed pTEF1-VPS4 in a snf7 mutant and found that the strain is lethal. Thus, the lifespan extension by pTEF1-VPS4 is at least partly mediated by SNF7. In addition, the synthetic lethality suggests that pTEF1-VPS4 also does some deleterious function to a part of the ESCRT functions. That makes sense because ESCRT is involved in many cellular processes including nuclear membrane repair, lysosome repair, multivesicular body formation, cytokinesis, and exosome production.
The finding that PMD induces p53 mediated senescence in fibroblast is an important initial finding, as is the observation of the formation of PM extrusion that contain ESCRTs and externalize PS. Unfortunately, also these experiments remain rather descriptive. Many questions remain open: a. How is p53 activated? b. Are these 'protrusion' formed by the ESCRTs? c. Are the protrusions essential for entry into senescence or a consequence?
*
We cannot thank more for these fascinating suggestions. We are thrilled to tackle these questions. Using mRNA seq and pathway analysis, we identified upstream regulators of p53 during PMDS. We are ready to submit it as an independent manuscript because it involves large datasets.
\*Minor points:****
I understand that the author can use FIB-SEM as a very powerful technique for volumetric ultrastructural analysis. I'm wondering why it was used in Figure 5c? Would 'simple' SEM not yield exactly the same results but given the relative ease of SEM, many more cells could be quantified...? FIB-SEM would actually be great for the analysis of PMD more directly, right after SDS treatment in both yeast cells (were the entire volume of the cell could be analyzed) and in human cells.
*
Thank you very much for a valuable advice. As reviewer #2 may know very well, SEM requires dehydration of cells, and the data acquisition is performed under high-vacuum condition. These two treatments significantly alter the structure of the plasma membrane of human normal fibroblasts. In contrast, for FIB-SEM observation, the cells in a culture dish can be directly fixed and embedded in resin, which preserves fine structures of the plasma membrane including soft and tiny projections (280-2500 nm). Based on these reasons, we decided to utilize FIB-SEM in Fig. 5C (now Fig. 6C in the revised manuscript).
* Reviewer #2 (Significance (Required)):
The authors report very exciting observations that describe novel effects of plasma membrane damage (PMD) on cell (patho)physiology. Unfortunately, I find it difficult to connect the yeast part to the studies using human fibroblast (expect that SDS is used to cause PMD). While the description of the PMD induced phenotypes in yeast and fibroblast are interesting, mechanistic insight (e.g. the role of the ESCRTs in PMD and induction of p53 mediated senescence) is largely lacking at the moment. Provided that a more through phenotypic description (see major points) and perhaps some mechanistic insight can be provided, this work will be of interest to a wide audience in molecular cell biology.*
Thank you very much for the encouraging comment. We are delighted to know that reviewer #2 highly evaluates the potential impact of this work. Here, we would like to report that 1) the PMD limits replicative lifespan in two independent eukaryotic cell types, and 2) the PMD response and the replicative lifespan regulations partly share their fundamental mechanisms, especially the mechanisms underlying cell cycle checkpoint activation. This work opens up many exciting future directions and we are extensively following them up. We hope we will be able to report detailed mechanisms very soon. Thank you again for reviewing our manuscript despite your hectic schedule.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Summary:
Makoto Nakanishi and co-workers use SDS (and EGTA) to induce plasma membrane damage (PMD) on budding yeast cells and human fibroblast. Their results correlate SDS induced PMD with reduced the replicative lifespan of budding yeast and p53 mediated senescence in human fibroblast.
Using genetic screens in budding yeast, 48 SDS sensitive mutants were identified, including a large set of ESCRT mutants, V-ATPase mutants, and several mutants deficient in metabolic enzymes (amino acid metabolism and lipid metabolism). Three of the SDS sensitive yeast mutants showed a reduced replicative lifespan.
SDS induced PMD on human fibroblast triggered p53 induction (without concomitant DNA damage) and subsequent p53 mediated senescence. SDS induced PMD also induced phosphatidyl-serine (PS) externalization of PM projections that co-localized with the ESCRT-III subunit CHMP4a.
These results describe a potentially interesting and novel pathophysiological effect of PMD.
Major points.
While the description of the PMD induced phenotypes in yeast and fibroblast are interesting, mechanistic insight is not provided. Perhaps the phenotypic description could be solidified by addressing the following points:
Minor points:
I understand that the author can use FIB-SEM as a very powerful technique for volumetric ultrastructural analysis. I'm wondering why it was used in Figure 5c? Would 'simple' SEM not yield exactly the same results but given the relative ease of SEM, many more cells could be quantified...? FIB-SEM would actually be great for the analysis of PMD more directly, right after SDS treatment in both yeast cells (were the entire volume of the cell could be analyzed) and in human cells.
The authors report very exciting observations that describe novel effects of plasma membrane damage (PMD) on cell (patho)physiology. Unfortunately, I find it difficult to connect the yeast part to the studies using human fibroblast (expect that SDS is used to cause PMD). While the description of the PMD induced phenotypes in yeast and fibroblast are interesting, mechanistic insight (e.g. the role of the ESCRTs in PMD and induction of p53 mediated senescence) is largely lacking at the moment. Provided that a more through phenotypic description (see major points) and perhaps some mechanistic insight can be provided, this work will be of interest to a wide audience in molecular cell biology.
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
In this article, Kono et al worked on cellular outcomes induced by plasma membrane damage (PMD) in yeast and in human cells. Plasma membrane damage is induced by some stresses and alteration of its repair can lead to some diseases. Globally little is known about PMD. Authors observed that PMD-induced by low concentration of SDS in yeast and in human cells can limit their replicative lifespan. A genetic screen in yeast has identified the endosomal sorting complexes required for transport (ESCRT) genes as required for PMD response. In human cells, the authors observed that PMD-induced premature senescence is dependent of p53 activity but independent of DNA damage. This work sounds novel and interesting in the context of senescence on human cells. Nevertheless, they are some limits and questions that should be addressed to strongly improve this interesting work.
Major comments:
Minor comments:
see above.
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
We thank the reviewers for their helpful comments. We believe that we will be able to address all of their concerns and suggestions. We have highlighted our responses in the revision plan and the changes we have already made to the manuscript in blue text. For figures where we have added data or analyses at the request of reviewers, we have highlighted the corresponding text in the figure legends.
Reviewer #1
2- In Figure 4, the two mutations appear to have statistically differential effects on Rab5 and Rab7 puncta even though the data mean and distribution seem very similar. Interestingly, in each case the non-significant effect is associated with a smaller sample size. Given that the overall sample sizes used are rather small for such highly variable data, this could easily cause a statistical anomaly due to sampling bias. The sample size should be made uniform across all genotypes and should ideally be at least doubled.
We will repeat this staining to increase the n to at least double this number, and adjust our conclusions if need be, in the revised manuscript..
3- Perhaps the most important issue related to Figure 6 where the authors find that there is no sterol accumulation at 96h APF in the Vps50 mutant. However, even that the dendritic phenotype is slower to appear in this mutant compared to the Vps54, are the authors sure that the accumulation is not just slower? This should be examined using the same temporal sequence used for Vps54 shown in Future 6 C. In addition, the fact that sterol accumulation returns to normal in the Vps54 mutant at 1 day, supports the notion of a delay phenotype (see point 1 above). These issues should be experimentally addressed to see if the data fully support the initial conclusions, or if the conclusions should be modified to suggest differential contribution of the two complexes to the process being studied and to a developmental delay phenotype.
We had included the filipin staining for Vps50KO/KO at 1 day in Figure S4 A (which did not show a significant difference from control). We did not collect data for this genotype at 72hrs APF because the dendritic length phenotype didn’t appear until later, and so we did not include Vps50KO/KO in the full time-course in Fig 6 C. We will collect additional data so that we can include Vps50KO/KO at all timepoints in this figure in the revised manuscript.
. Reviewer #2
It is stated that loss of VPS50 and VPS54 only causes dendrite morphogenesis defects. However, the corresponding supplemental figure S2c (which is not referenced in the text), is not suited to address this question. Axonal arborization, in particular terminal arbors, are not visible in samples where multiple/all c4da axons are labeled simultaneously (Fig. S2c). Analogous to the dendrite analysis of c4da neurons single cell resolution is essential to examine this in a meaningful way. Likely, however, c4da neurons may not be a good choice to address this question.
We should be able to get single cell resolution of the c4da axon terminals using MARCM. We already have two of the knockout lines recombined with FRTs (Vps53 and Vps54) for this analysis and we will make the third recombinant line so that we can use MARCM for all three lines to examine single-cell axon morphology, as suggested.
Overall, I am concerned whether the data shown here can be generalized. The cd4a neurons are rather extreme cell types due to their very large dendritic compartment. It seems quite possible that many other neurons may not have a comparable sensitivity to the supply of lipids/sterols. This type of question can only be addressed if other types of neurons/dendrites are examined. Are class 2 or class 3 da neurons showing any defects in VPS mutants?
Given that we see the phenotype emerge during the pupal stage, we want to analyze neurons that persist from the larval to adult stages. However, not all of the dendritic arborization neurons survive into adulthood- class I and II persist, while class III die during metamorphosis (Shimono et al., 2009). As we do not have adequate tools to for studying the class II neurons, we will examine dendrite morphology of the class I neurons in larvae and adults in our knockout lines. We would be happy to look at class III neurons at the reviewers request, but our analysis will necessarily be limited to the larval stage.
Reviewer #3
- Some of the experiments include multiple genotypes and so it would be important to show all in all figures. For example, figure 4B,D show four groups but figure 4F, presumably from the same set of animals, shows only three. Addition of the rescue genotype to 4F is particularly important here so should be shown. The same concern is valid for figure 5, where puncta number and area must be available.
The data from Fig. 4 F (using a genetically encoded marker for lysosomes, UAS-spin-RFP) are not from the same samples as Fig. 4 B and D (staining). We did not include the rescue for Fig 4. F because the lysosome marker, the rescue transgenes and the neuronal membrane marker are all on the third chromosome. We will build additional fly stocks so that we can include the rescue in experiments looking at lysosome morphology.
- This concern is amplified by the images in figure 6 of the filipin staining, that are more obviously perinuclear. However, the two sets of images in 6A and 6D, where co-staining with Golgin245 is shown, look very different. Improved images are required and it may be helpful to use supplementary information to show additional examples of the staining.
The images in Fig. 6 A are maximum projections of z stacks while Fig. 6 D shows single confocal planes, making it easier to see the perinuclear Golgi ring. Because other reviewers wanted some additional experiments related to Fig. 6 that we plan to incorporate into this figure in the revised manuscript, we will address this comment in a future revision and include additional images in the supplement.
- For the lipid regulation experiments in figure 7, please use an orthogonal approach to show that the Osbp and fwd RNAi had the expected effects on lipid accumulation.
In addition to sterol, Osbp and fwd both affect levels of PI4P at the Golgi. We have obtained a transgenic PI4P sensor that we can use to show the effect of these manipulations on this lipid as well.
Reviewer #1 While the data presented clearly support a role for GARP in regulating sterol levels to support dendritic growth, they do not inter current for suffice to exclude a role for EARP as important analyses to allow such a clear cut conclusion are either insufficient or missing. If the authors wish to maintain this claim - as suggested by the title of the manuscript - further analyses are essential.
We don’t mean to argue the EARP complex doesn’t contribute to dendrite development at all – we do show it contributes to development in Fig 3, and as we discuss in the text.. We want to argue that the GARP and EARP complexes contribute to dendrite development by distinct mechanisms. Losing the GARP complex inhibits dendrite development by means of sterol accumulation at the TGN, which is what we are trying to highlight with our title. The reduced dendrite growth that we observe in EARP deficient neurons must occur by some other as yet unknown means. We apologize for the confusion and have reworded the title to read “Sterol accumulates at the trans-Golgi in GARP complex deficient neurons during dendrite remodeling.”
1- Figure 3E shows that whereas both Vps50 and Vps54 mutations reduce dendritic complexity, the Vps54 phenotype appears earlier (96h APF). Furthermore, at 7 days dendrites appear to grow again but at a slower rate than controls. This begs the question of whether these mutations are causing a delay rather than a block in the regrowth after pruning and whether the growth will eventually be normal a few days later or whether it will stop at some point.
We have included data for an additional adult timepoint (21 days) in the new Fig. 3 E. We also included graphs in which we show the statistics for each genotype over time (new Fig. S2 D-F), and discuss this analysis in the text (lines 186-195). We have also included a table of the p-values for each comparison in the Supplemental Materials (Table S2). From this analysis, we conclude that there is not a developmental delay in the knockouts, but rather a decrease in growth during the 72-96hrs APF and 1-7 day windows when the control neurons grow. We are unable to draw conclusions about the rate of growth as we analyzed neurons from different samples at each developmental timepoint, and not the same neurons over time.
Reviewer #2
It would be important to know, whether the dendrite morphogenesis defect is indeed a developmental patterning defect or rather a "scaling" defect due to the fact that da neurons increase their size (but not necessarily their projection pattern) during larval maturation.
We have analyzed the larval data for coverage index – neuron area/hemisegment (receptive field) area as defined in (Parrish et al., 2009) to determine if there is a scaling defect at this stage in development. We do not observe a defect in scaling (Fig. S2 C) and discussed in lines 175-182.
Reviewer #3
- The statistical analyses generally look appropriate but it would be critical to clarify what N means in every case. For example in figure 2 the authors state n=8 without clarifying if this is n=8 animals or n=8 neurons. N should always be the number of animals, but then the n of independent cells counted should also be indicated. Typically, one would either pre-average per genotype or use a mixed model that includes N of animals and n of cells (or similar).
For experiments analyzing dendrite morphology, n represents the number of neurons, as we have clarified in our figure legends. As per another reviewer’s request, we will increase the n for the organelle and filipin staining in our planned revision and specify fly and cell number at that time.
- Please add details of how experiments were blinded to genotype
The researcher was blinded to genotype during analysis. We have included that detail in our Methods section (line 566).
- Some of the experiments include multiple genotypes and so it would be important to show all in all figures. For example, figure 4B,D show four groups but figure 4F, presumably from the same set of animals, shows only three. Addition of the rescue genotype to 4F is particularly important here so should be shown. The same concern is valid for figure 5, where puncta number and area must be available.
We address the first portion of this comment in section 2, for additional experiments involving generating new fly lines. We have included data on puncta area, and mean fluorescence intensity for Rab5 and Rab7 in the supplement (Fig S3). We had already included the data on puncta number and area in Fig 5, but we have added the data on mean fluorescence intensity as well.
- Related to figure 5, please provide validation of the staining of the TGN. Typically, one would expect trans Golgi to be close to the nucleus with at least some extended stacks. A Golgin245 knockout would be ideal.
The Golgi in most Drosophila cells is typically found as discrete puncta dispersed throughout the cytosol like what we see in the Golgin245 staining, as opposed to the ribbon “stack of pancake” morphology typically seen near the nucleus in mammalian cells. For reference, please see Figure 6D in (Ye et al., 2007), Figures 2,4,5 in (Rosa-Ferreira et al., 2015), and observations reviewed in (Kondylis and Rabouille, 2009).
The Golgin245 antibody was well characterized in the paper first describing it (Riedel et al., 2016) (colocalization with other Golgi markers, decreased staining with Golgin245 RNAi), but we would be happy to repeat this validation in the c4da neurons at the reviewer’s request. There do not appear to be Golgin245 mutant or KO lines available, so we would also use the Golgin245 RNAi.
- For figures 6F, G please show examples of staining for late endosomes and lysosome with appropriate validation.
Because several of our planned revisions relate to Fig. 6, we will include images for Fig. 6 F and G when we remake this figure to incorporate those planned revisions. To clarify, we used the same reagents to mark late endosomes and lysosomes in both Fig. 4 and Fig. 6. Like the Golgin245 antibody, the Rab7 antibody was developed by the Munro lab and characterized in (Riedel et al., 2016) (partial colocalization with the endosomal marker Hrs and with the lysosomal marker Arl8). Spinster (aka benchwarmer) is a known lysosomal transmembrane protein that colocalizes with Lamp1 (Dermaut et al., 2005; Rong et al., 2011). The fluorescently tagged spin transgenes were developed by the Bellen lab and have been frequently used to mark lysosomes. We would be happy to carry out additional validation experiments at the reviewer’s specification.
- The title of figure 2 is inaccurate, at least if I understand the experiment, as it does not show neuron-specific knockout but instead whole body knockout with neuron rescue. Please rephrase.
Because of the lethality of whole body Vps53KO/KO in adult flies, we analyze MARCM clonal neurons that are Vps53KO/KO in flies that are otherwise heterozygous (Vps53KO/+). To clarify this experiment, we have changed the title of Fig. 2 from “Neuron-specific knockout of Vps53 results in smaller dendritic arbors” to “Vps53KO/KO MARCM clonal neurons have smaller dendritic arbors”.
- Figure 8 needs examples of the TGN and late endosome morphology.
We have included these images in Figure
The order appears different in Fig. 4 B & D because we only included the rescue for the KO that shows a phenotype for each staining. The genotypes included in Fig. 4 B are: +/+, Vps50KO/KO, Vps50KO/KO + rescue, and Vps54KO/KO. The genotypes included in Fig. 4 D are +/+, Vps50KO/KO, Vps54KO/KO, Vps54KO/KO + rescue. We have changed the shading of the bars corresponding to these rescue genotypes throughout the manuscript to make it easier to distinguish the two rescue conditions.
References Cited
Dermaut, B., K.K. Norga, A. Kania, P. Verstreken, H. Pan, Y. Zhou, P. Callaerts, and H.J. Bellen. 2005. Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. Journal of Cell Biology. 170:127–139. doi:10.1083/jcb.200412001.
Kondylis, V., and C. Rabouille. 2009. The Golgi apparatus: Lessons from Drosophila. FEBS Letters. 583:3827–3838. doi:10.1016/j.febslet.2009.09.048.
Parrish, J.Z., P. Xu, C.C. Kim, L.Y. Jan, and Y.N. Jan. 2009. The microRNA bantam Functions in Epithelial Cells to Regulate Scaling Growth of Dendrite Arbors in Drosophila Sensory Neurons. Neuron. 63:788–802. doi:10.1016/j.neuron.2009.08.006.
Riedel, F., A.K. Gillingham, C. Rosa-Ferreira, A. Galindo, and S. Munro. 2016. An antibody toolkit for the study of membrane traffic in Drosophila melanogaster. Biology Open. 5:987–992. doi:10.1242/bio.018937.
Rong, Y., C.K. McPhee, S. Deng, L. Huang, L. Chen, M. Liu, K. Tracy, E.H. Baehrecke, L. Yu, and M.J. Lenardo. 2011. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proceedings of the National Academy of Sciences. 108:7826–7831. doi:10.1073/pnas.1013800108.
Rosa-Ferreira, C., C. Christis, I.L. Torres, and S. Munro. 2015. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi. Biology Open. 4:474–481. doi:10.1242/bio.201410975.
Shimono, K., A. Fujimoto, T. Tsuyama, M. Yamamoto-Kochi, M. Sato, Y. Hattori, K. Sugimura, T. Usui, K. Kimura, and T. Uemura. 2009. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death. Neural Dev. 4:37. doi:10.1186/1749-8104-4-37.
Ye, B., Y. Zhang, W. Song, S.H. Younger, L.Y. Jan, and Y.N. Jan. 2007. Growing Dendrites and Axons Differ in Their Reliance on the Secretory Pathway. Cell. 130:717–729. doi:10.1016/j.cell.2007.06.032.