Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Please note that the authors have provided a formatted PDF version of this rebuttal, including additional figures and references, via the Open Science Framework: https://osf.io/5acqp/
Reviewer #1
This is an interesting and thorough study characterising human iPSC with hetero or homozygous mutation in pi3k pathway that lead to its hyper-activation. They prove that the increased stemness results from enhanced autocrine responsiveness to TGF signalling pathway. The main conclusions are well supported by the presented data. Cutting edge tools and bioinformatic analysis are adequately applied. I have only one important point:
1) Western blot based validation of TGF pathway activation in wt and mutant iPSCs will be helpful to strengthen the results based on bioinformatic data.
AUTHORS’ RESPONSE__:__ We thank the Reviewer for the positive evaluation of our work.
Functional validation of the signalling hypothesis is indeed important, and we did in fact already present supportive data. Current evidence suggests that SMAD2 is the main transcription factor mediating actions of the TGFb/NODAL pathway in an early developmental context [1,2], and we have shown increased phosphorylation of SMAD2 (S465/S467) in PIK3CAH1047R/H1047R iPSCs using RPPA in the two datasets shown in Fig.2.
We have attempted to demonstrate increased NODAL protein directly in PIK3CAH1047R/H1047R cells, but have been unsuccessful due to poor signal on immunoblotting. We thus opted for functional testing of our hypothesis using the experiment presented in Fig. 5, wherein TGFb (a surrogate for NODAL) is removed from the culture medium. Human iPSCs depend strictly on TGFb/NODAL for maintenance of NANOG expression and thus pluripotency [3,4]. Upon exclusion of TGFb/NODAL from the culture medium of normal human iPSCs, the early responses (prior to overt differentiation) are expected to be: (A) decreased NODAL expression, due to well-established autoregulation [2], then (B) a decrease in NANOG and ultimately POU5F1 (OCT3/4) mRNA levels (see also Introduction, lines 80-90). The evidence in Fig. 5 that PIK3CAH1047R/H1047R fail to exhibit these responses upon exogenous TGFb/NODAL removal supports the notion that these cells autonomously sustain TGFb/NODAL signalling.
For improved clarity, we have also added the following information to the revised manuscript:
lines 202-205: “This is consistent with strong NODAL mRNA upregulation and increased pSMAD2 (S465/S467) in PIK3CAH1047R/H1047R iPSCs in the current study (Dataset S2 and RPPA data in Fig. 2, respectively), and with prior evidence of activation of the NODAL/TGFb pathway in homozygous PIK3CAH1047R iPSCs.”
Reviewer #2
In this manuscript, Madsen et al have investigated the role of heterozygous versus homozygous PIK3CAH1047R gain-of-function mutation at maintaining stemness of induced pluripotent stem cells (iPSCs). The authors have performed high-depth RNAseq, proteomic, and RPPA analyses to show that biallelic PIK3CA alterations induce stronger activation of the PI3K signaling axis, compared to monoallelic mutations. The authors claim that a higher PI3K signaling dose activates the NODAL/TGF-b pathway, which in turn supports stemness in an autocrine fashion. These are important findings, however, the manuscript and its conclusions can be improved.
AUTHORS’ RESPONSE__:__ We thank the Reviewer for acknowledging the importance of the work and for their constructive suggestions for improvements.
The authors have described the role of PIK3CAH-1047R gain-of-function mutation in cancer and overgrowth syndromes. However, cancer associated somatic mutations in PIK3CA are mostly heterozygous. Similarly, PIK3CA related overgrowth syndromes (PROS) are caused by post-zygotic mosaic PIK3CA activating mutation. As such, the relevance of homozygous PIK3CA alterations to these pathological conditions is unclear. The authors should elaborate on the biological implications of their findings.
AUTHORS’ RESPONSE__:__ We disagree with the Reviewer’s comment which implies that homozygous PIK3CA mutations are not relevant to many cancers. In our previous work [5], we provided evidence that many human cancers harbour multiple PIK3CA mutant alleles. Specifically, among cancers with a unique PIK3CA mutation, approximately 50% exhibit multiple copies according to allele copy number analysis. We further demonstrated that a substantial proportion of cancers have multiple different PIK3CA variants or additional oncogenic ‘hits’ within the pathway. These findings have been supported by other recent high-profile papers [6–8]. Such multiple alterations increase activity of the PI3K pathway beyond the level seen with heterozygosity alone [5,6]. This substantial body of literature renders our PIK3CAH1047R iPSC model system highly relevant for studying disease-relevant, dose-dependent oncogenic PIK3CA activation.
The Reviewer is correct, however, that PROS is caused by postzygotic heterozygous PIK3CA mutations almost exclusively. Observations in homozygous cells are therefore not directly relevant to the pathogenesis of PROS. On the other hand, the heterozygous cells are closely relevant, being human, carefully matched with isogenic controls, and unperturbed by further manipulations such as artificial immortalisation. Our prior studies demonstrated no clear phenotypes in heterozygous cells in the iPSC differentiation paradigm, despite the rock solid causal nature of heterozygous mutations in PROS. This negative finding, surprising given the dramatic PROS phenotypes, is very important in understanding how best to create disease-relevant PROS models. One intent of the current study was to increase the sensitivity of our transcriptomic analysis, and to combine this with proteomic studies to determine if heterozygous cells really do not exhibit a phenotype. We now show that there are indeed faint echoes in heterozygous cells of the dramatic changes in homozygous cells. We believe that the human growth phenotype is a summative consequence of such small differences in growth behaviours sustained over months and years, highlighting how subtle difference in signalling can lead to dramatic human growth consequences across the lifecourse. Similar observations were also recently made following systematic analyses of oncogenic RAS mutations [9]. The new information we present about heterozygous PIK3CAH1047R cells, while much less “showy” than the cancer-relevant behavious of homozygous cells, we thus contend is very important for understanding of the PROS phenotype and its experimental modelling. To emphasise this point, we have added the following statements to the abstract and discussion, respectively.
- lines 56-57: “This work illustrates the importance of allele dosage and expression when artificial systems are used to model human genetic disease caused by activating PIK3CA mutations.”
- lines 104-106: “We discuss the implications of our findings for understanding and modelling developmental disorders and cancers driven by genetic PI3K activation.”
- lines 333-340: “Finally, our observations are important for future studies seeking to model human PIK3CA-related diseases. The modest changes observed in heterozygous PIK3CAH1047R cells, in sharp contrast to the radical transcriptional alterations in homozygous cells, emphasise the importance of careful allele dose titration when artificial overexpression systems are used to model disorders caused by genetic PIK3CA activation. Our findings in heterozygous cells are also a reminder that very small effect sizes in cellular systems may summate and result in major human phenotypes over a life course. That such minor changes are found in a cellular study of a rare and severe disorder emphasises the challenges of modelling much more subtle disease susceptibility conferred by GWAS-detected genetic associations, where cellular effect sizes are likely to be smaller still.”
The role of biallelic PIK3CA mutation is reminiscent of compound mutations in PIK3CA which have also been shown to increase PI3K signaling output. However, double PIK3CA mutations confer enhanced sensitivity to PI3K inhibition (Toska et al. Science 2019). Could the authors kindly speculate on this discrepancy.
AUTHORS’ RESPONSE: We emphasise first that PIK3CAH1047R/H1047R cells do respond to BYL719 at the signalling level, as demonstrated previously [5] and in the manuscript (revised Figure S5; see also additional Western blot below). Our point is that the cells have undergone a switch to self-sustained stemness. That is, while PIK3CA activation was the driver of the initial change in cell state, the induced stemness phenotype is no longer reversed by removal of that trigger, with our data suggesting that this is now driven by self-sustained TGFb/NODAL signalling. This is in line with the role of this pathway in the maintenance of the pluripotent state. We speculate that this may be important in a cancer context where surviving stem cells may permit cancer persistence after toxic therapies, even if short term growth of tumours is reduced by agents such as PI3K inhibitors.
Our data are not directly comparable to prior cellular data, for example in Vasan et al. [6], due to: (a) use of different cell model system and (b) assessment of different functional responses. We would also sound some methodological notes of caution re some of the prior studies alluded to, as potentially confounding differences in growth rate in the cells studied was not corrected for. It is well-established that IC50 and Emax values depend on cell division rates, and failure to correct for this can result in artefactual correlations between genotype and drug sensitivity (see, e.g., Hafner et al. Nature Methods 2016: “Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs” [10]**).
Similarly, the p110 alpha specific inhibitor, alpelisib, is highly effective against PIK3CA-mutant ER+ breast cancer and PROS. As such, the clinical relevance of the insensitivity of homozygous PIK3CA mutation to PI3K inhibitors is unclear.
AUTHORS’ RESPONSE__:__ Efficacy of Alpelisib in PROS is currently supported only by unregistered observational studies, but is nevertheless striking. It is not relevant to our findings in homozygous cells, as the Reviewer has previously observed, however.
As for cancer, in a randomised phase 3 trial that compared Alpelisib/BYL719 with fulvestrant to fulvestrant alone, the overall response (irrespective of PIK3CA mutant status) was indeed greater with the combination treatment (26.6 % vs 12.8 %), with a hazard ratio of 0.65 (95% CI, 0.5 to 0.85) in patients with PIK3CA-mutant caners versus a hazard ratio of 0.85 (95% CI, 0.58 to 1.25) in those without a PIK3CA mutation [11]. This trial demonstrated the utility of additional PIK3CA mutant-centric stratification, but a substantial proportion of patients with PIK3CA-mutant tumours (>50%) did not benefit from the BYL719 and fulvestrant combination [11]. However, these observations are not directly relevant to this manuscript and are instead included in a separate manuscript focused on PI3K signalling and stemness in human breast cancers (preprint [12]**).
Figure 2: The authors have performed RPPA analysis in the presence of 100 nM BYL719. Alpelisib is commonly used at 1 uM concentration for in-vitro experiments, and has a cMax of ~5 uM. We suggest the authors perform western blot analysis to confirm the results of RPPA.
AUTHORS’ RESPONSE__:__ We carefully chose the optimal concentration of BYL719 to preserve inhibitor selectivity, and to avoid undue toxicity and confounding off-target effects, rather than copying the dose “commonly used”. The Cmax is not relevant to our use of BYL719 in the current study as a precise tool compound. We refer the Reviewer to the known pharmacological characteristics of this compound [13,14]. According to available evidence, it is only a selective PI3Kα inhibitor at concentrations 250 nM (Table below adapted from Ref. **[13]; for formatted version, please see PDF version: https://osf.io/ecmhr/)
Enzyme
In vitro IC50 for NVP-BYL719 (nM)
PI3Kα
4.6 +/- 0.4
PI3Kα-H1047R
4.8 +/- 0.4
PI3K**b
1156 +/- 77
PI3K**d
290 +/- 180
PI3K**g
250 +/- 140
PI4K**b
571 +/- 42
We have previously demonstrated (Fig. 2C in Ref. [5]) that 100 nM BYL719 is sufficient to restore pAKT (S473) levels in both heterozygous and homozygous PIK3CAH1047R to levels observed in WT cells. This is consistent with the RPPA data reported in the current work (Fig. 2B). Of note, while 500 nM BYL719 completely ablates pAKT irrespective of genotype, we previously noted substantial toxicity [5], precluding use of this or higher doses of BYL719 in our model system. This is in line with a recent Nature Cell Biology study by Yilmaz et al. ([15]) which demonstrated the essential growth-promoting role of the PI3K pathway in human pluripotent stem cells; Yilmaz et al. also demonstrate that compared to somatic cells (fibroblasts), human pluripotent stem cells suffer dramatic effects on growth/survival in response to Torin1/rapamycin [15], overall suggesting that this cell type is exquisitely sensitive to inhibition of the PI3K/AKT/mTOR pathway.
In the present study we have also confirmed that 250 nM BYL719, used for Fig. 5 experiments, has worked as expected at the level of pAKT (S473) as shown in the below Western blot (see also revised Fig. S5; please access PDF version to view Western blot: https://osf.io/ecmhr/)
Figures 3 and 4: The authors should expand their RNAseq analysis to demonstrate enrichment of stemness and TGFb signaling in homozygous mutant cells compared to heterozygous cells.
AUTHORS’ RESPONSE__:__ We thank the Reviewer for this suggestion. The unsupervised MDS plot (Fig. 1A) clearly demonstrates the overlap between wild-type and heterozygous cells, strongly suggesting functional concordance and consistent differences to homozygous counterparts. Indeed, the below count table illustrates that the majority of differentially expressed genes in homozygous versus wild-type cells are also differentially expressed in homozygous versus heterozygous cells, including the direction of the change (please access the PDF version for formatted table: https://osf.io/ecmhr/)
Comparison
Differentially expressed gene count
HOMvsWT
5644
HOMvsHET
5764
HOMvsWT AND HOMvsHET
4825 (2300 upregulated; 2525 downregulated; 1 discordant)
We have now performed additional fast gene set enrichment analyses (fgsea; shown below - please access PDF version to view figure: https://osf.io/ecmhr/) using the R package fgsea ([16]) and 14 of the Broad Institute’s 50 Hallmark Gene Set Collection [17], including manual addition of the PLURINET signature [18]. The 14 gene sets were chosen based on their relevance to answering the Reviewer’s question as well as their connection to PI3K signalling. Fold changes for all expressed genes were included in the analyses, without further thresholding in order to minimise bias.
The results for homozygous vs wild-type comparisons are concordant with our upstream regulator analyses using IPA; as expected, TGFb signalling and PI3K signalling are among the top positively enriched (NES > 1) in comparison between homozygous and heterozygous cells. Unsurprisingly, however, the strength of the enrichments are lower when comparing the two PIK3CAH1047R genotypes.
We are not convinced that including these surplus data will add value to the manuscript and its main message, however we will leave this decision to the discretion of the Editor (please also refer to our response to the subsequent question from Reviewer 2). Moreover, these data will remain visible in the publicly available rebuttal document.
The authors should confirm the results of pathway analysis in vitro to show that homozygous PIK3CA mutation confers increased stemness compared to heterozygous mutation.
AUTHORS’ RESPONSE__:__ This was a key finding in our previous publication [5]. The aim of the current study was to interrogate this phenomenon further through high-depth transcriptomic/signalling analyses.
Figure 5: Kindly provide direct evidence demonstrating that increased PIK3CA signaling output induces NODAL expression in this experimental setting.
AUTHORS’ RESPONSE__:__ We have consistently demonstrated increased NODAL mRNA expression (RNAseq data, Fig. S4 and Ref. [5]). Unfortunately, we have been unsuccessful in attempts to obtain good quality immunoblots for NODAL protein in PIK3CAH1047R/H1047R cells (as noted in response to Reviewer 1). We note, in fact, that such documentation of NODAL protein levels, while not unprecedented, is fairly rare.
Also, please normalize gene expression data to WT cells so it is easy to visualize the changes in NODAL and NANOG expression in homozygous and heterozygous mutants compared to WT iPSCs.
AUTHORS’ RESPONSE__:__ It is arithmetically more precise to normalise to the highest expression (i.e. that of PIK3CAH1047R/H1047R cells) – thereby avoiding artificial inflation of fold-changes when normalising to very low levels of expression. Ultimately, the relative levels calculated – and the increased expression of NODAL in PIK3CAH1047R/H1047R cells – are identical visually. Only the entirely arbitrary units change. Thus we do not deem normalisation to WT to be necessary or to add value to the analysis.
Kindly quantify Fig. S5.
AUTHORS’ RESPONSE__:__ These brightfield micrographs were taken as part of routine practice to monitor cell health during maintenance and experimentation, and are suboptimal for direct quantitation due to uneven illumination background and lack of whole-well imaging. Nevertheless, we have now undertaken quantification as the Reviewer suggests, using individual images taken during independent experimental replicates. The results have been added to Fig. S5 and support our assertion that 250 nM BYL719 had a growth inhibitory effect in homozygous PIK3CAH1047R iPSCs. All raw images and associated data have been uploaded to the Open Science Framework (https://osf.io/hbf7x/). The following short method section detailing the image analysis algorithm has also been included in the revised supplementary material:
“Colony size quantitation from light micrographs
Routine cell culture light micrographs were acquired on an EVOS FL digital inverted microscope (AMF4300, Thermo Fisher Scientific) using the 4X or 10X objective (final magnification 40X and 100X, respectively). For quantitation, 4X images were used for colony segmentation with Definiens Developer XD software. Background was detected using a contrast threshold; for this each pixel was compared to those in the surrounding 24 pixels (i.e. a 5x5 pixel box), and pixels with low contrast (between -50 and +50) were classified as background. Remaining pixels were classified as colonies, and any holes (pixels that were not initially classified as being part of the colony due to low contrast) were filled. Edges of the resulting colonies were smoothened by shrinking and then growing the colonies by 2 pixels. Finally, colonies less than 2000 pixels in size were reclassified as background. The area of the resulting colonies could then be measured and averaged over each field of view.”
Reviewer #3
In this manuscript by Madsen et al., a comparison of the transcriptome and proteome in heterozygous and homozygous PIK3CAH1047R human pluripotent stem cells mutants is presented. The authors demonstrate marked alterations in expression at both the protein and RNA level of homozygous mutants compared to wildtype, while heterozygous lines exhibit only minor changes. Multiple analytical approaches are employed to investigate network alterations, leading the authors to suggest a TGFβ-mediated rewiring of key pluripotent genes to induce a state of sustained stemness. Madsen et al. conclude with a set of experiments to functionally implicate NODAL/TGFβ autocrine signalling in PIK3CAH1047R dose-dependent stemness.
The key conclusions are not convincing. While the unbiased omics approach sets up this study well, the study suffers from a lack of convincing functional assays (cell biological assays) to test their model and tease apart a phenotype for the het cells. More robust functional experiments are required to support the finding the NODAL/TGFβ signalling mediates the self-sustained stemness, particularly because this is the major novel finding distinguished from the authors previous work.
AUTHORS’ RESPONSE__:__ We thank the Reviewer for their detailed critique. Our perspective on the robustness and novelty of our findings diverges from that of the Reviewer, however, as we elaborate on in more detail below.
While the authors present a comprehensive omics investigation into alterations between wild type, homozygous, and heterozygous mutants, the critical functional experiments are lacking. In Figure 5, the authors seek to support the role of TGFβ in mediated stemness in the homozygous mutants, however, are not able to directly deplete TGFβ due to technical limitations of the culture conditions. Consequentially, the experiments are primarily built on the use of NODAL withdrawal and stimulation. The data presented thus implicate NODAL in the stemness phenotype, but it's not obvious TGFβ is substantially involved, particularly considering the inhibitor subsequently employed also inhibits NODAL type 1 receptors.
AUTHORS’ RESPONSE__:__ NODAL and TGFb activate shared signalling pathways downstream from their respective receptors, and indeed they (as well as Activin) can be used interchangeably in stem cell culture, which is common practice [19–21]. Commercially available Essential 8/TeSR-E8 is supplemented with TGFb not NODAL; therefore the factor we have removed is TGFb, prior to any controlled introduction of NODAL (based on strong upregulation of its mRNA in PIK3CAH1047R/H1047R). Any residual TGFb-like ligands will be contributed by Matrigel as outlined in the text (lines 247-251). It is well-established that “NODAL/TGFb signalling” denotes signalling through SMAD2/3/4 (as opposed to BMP signalling through SMAD1/5/8), and this is how we use the term throughout the manuscript. Accordingly, it is functional activation of the “NODAL/TGFb signalling pathway” that we investigate (see also response to Reviewer 1, p.1).
In summary, we seek not to make a distinct point about TGFb, but rather refer to NODAL/TGFb signalling as a matter of biochemical correctness. For clarity, we now replace mentions of “TGFb signalling” with “NODAL/TGFb signalling” throughout the revised manuscript. We have also revised the legend for Figure 3 to make this clearer.
Furthermore, there is a paucity of readouts for stemness. For example, a more convincing narrative would include additional expression markers of the core pluripotency network (e.g. OCT4, SOX2, etc.) as well as functional readouts (e.g. NODAL withdrawal and assessment of differentiation) after NODAL stimulation/depletion and comparing across genotypes. Overall, the primary conclusions of this work are not well-evidence by the presented data and the authors should consider additional functional experiments or reframing the narrative.
AUTHORS’ RESPONSE__:__ We chose the current strategy because we wanted to capture the earliest changes after depletion of NODAL/TGFb/ signalling, prior to any signalling rewiring triggered by differentiation. In fact, we believe that a strength of this study is our observation of differences in critical stemness markers in spite of the short time course. To aid non-expert readers we offered a primer on stemness genes and rationale for the markers chosen in the existing introduction (lines 80-90).
We have further assessed additional stemness and differentiation marker genes in two independent homozygous PIK3CAH1047R cell lines using a high-throughput pluripotent stem cell scorecard (Fig. S4). This replicates the effect on cell marker genes documented by RT-qPCR in Fig.5, while also showing additional reductions in genes that were upregulated in homozygous PIK3CAH1047R cells (MYC, GDF3, FGF4) and which have previously been shown to be highly expressed in pluripotent stem cells (we have now added this additional clarification to the legend of Fig. S4) [22]. Despite the short term treatment, these data also show that no other treatment but SB431542 is capable of triggering expression of early neuroectoderm markers (CDH9, MAP2 and PAPLN) [23], prior to overt morphological changes in the cultures (Fig. S5; higher resolution images are also available via The Open Science Framework: https://osf.io/hbf7x/). Neuroectodermal gene expression is expected upon inhibition of TGFb signalling in human pluripotent stem cells [24,25].
A key conclusion of this study is there is a dose-dependent stemness phenotype. As this is not explicitly defined, to this reader, it would imply a graded response between wild type, heterozygotes, and homozygotes in the phenotypic and molecular characteristics. However, as is noted particularly in the omics components of the manuscript, there is in fact "near-binary" alteration in the assayed characteristics. Again, this should be qualified more explicitly, but it is more consistent with the data, which suggests the heterozygotes behave very similarly to the wild types, while homozygotes have substantial alterations. I would suggest the authors consider renaming their descriptions, removing "near-binary" and "dose-dependent" to something like "dose-threshold." This suggests after X threshold of oncogenic PI3K signalling, substantial alterations occur; under this threshold (e.g. hets), changes are marginal. In the event however that there may be a more "dose-dependent" effect, I would expect the transcriptomic and proteomic changes observed in the heterozygous cell lines should be seen in the homozygous cell lines (of which they are likely in greater in magnitude in addition to other changes).
AUTHORS’ RESPONSE__:__ This appears to us to be largely a matter of semantics. In talking of “dose dependency” we were certainly not implying a graded affect (as the Reviewer points out, our are findings are far from this, suggesting a sharp threshold of dose which triggers widespread changes), and indeed nothing in these words strictly suggests this interpretation. Nevertheless we are sensitive to the fact of the Reviewer’s interpretation of the term, and mindful that this might be shared by other readers. On the other hand talking of a “near-binary” effect seems to us to be an accurate description of our findings. We have edited the manuscript to minimise ambiguity with the following changes:
- line 49 “dose” replaced with “strength”: “We demonstrate signalling rewiring as a function of oncogenic PI3K signalling strength, and provide experimental evidence that self-sustained stemness is causally related to enhanced autocrine NODAL/TGFb”
- line 102: “This work provides in-depth characterisation of the near-binary PI3K signalling effects seen in hPSCs ….”
- lines 195, 198, 317: inserted “allele dose-dependent”
We would also like to take issue with the case that the Reviewer seems to be making that a more graded change in gene expression across heterozygotes and homozygotes is to be expected. As mentioned in the manuscript (lines 206-210), there is evidence for NODAL/TGFb pathway activation in heterozygous cells. Nevertheless given the known temporal, context- and dose-dependent effects of this pathway [1,2,26,27] and, importantly, the widely described biological properties of developmental systems (featuring positive feedback loops, bistability and hysteresis; see Ref. [28,29]), we have no reason to expect that transcriptomic and proteomic changes observed in homozygous cell lines will be reproduced in heterozygous cell lines.
The manuscript would benefit from more direct comparisons between the heterozygotes and homozygotes.
AUTHORS’ RESPONSE__:__ Please refer to the additional data provided in response to a similar question by Reviewer 2.
Further to the above point, as the marginal phenotype observed in heterozygotes is a critical point in this paper, the authors would benefit from including heterozygote lines in the functional experiments presented in Fig 5. Inclusion of the hets in these experiments would instill confidence in this reader that the marginal molecular alterations characterized at the proteomic and transcriptomic level is reflected in the lack of functional stemness-sustaining behaviour.
AUTHORS’ RESPONSE__:__ The lack of stemness-sustaining behaviour in the heterozygous clones was demonstrated across multiple different experiments in our previous work, and further functional studies of early differentiation in these cells seemed a poor use of resource and very unlikely to give useful insights. Given the major disease phenotype associated with the same genetic change (PROS), the relative lack of phenotype in heterozygous cells was surprising and holds obvious implications for disease modelling (see also response to Reviewer 2, pp.2-3), and for how model systems are “calibrated” against human developmental disease. The aim of the current work was to:
- Determine whether increasing the depth of signalling and transcriptomic analyses would unmask small but important changes in heterozygous mutants that might have been missed in prior studies (i.e. we actively aimed to increase the power of the study for identification of subtle changes) and *
- To characterise in greater depth the signalling and transcriptional changes underpinning the robust threshold effect observed for self-sustained stemness driven by PIK3CAH1047R/H1047R. We would further observe that PROS does not feature obvious qualititative errors in tissue specification, but rather excessive growth of more or less normally differentiated tissues. We conceptualise this as reflecting a small incremental growth advantage in normally differented tissues of certain lineages that summates to create a major disease phenotype over months and years.*
Thus, without the functional and mechanistic experiments alluded to above, the claims/ conclusions are speculative. In particular, the cancer narrative is irrelevant to the study. Considering both the lack of conclusive differentiation experiments or relevant breast cancer experiments, the discussion on differentiation therapy for breast cancer should be removed.
AUTHORS’ RESPONSE__:__ The reference to cancer links to a computational study of human breast cancers where we specifically looked at the relationship between strength of PI3K signalling and ‘stemness’ [12], both measured using established transcriptional indices. We have included the bioRxiv reference in our revised manuscript (see l.337). While there is an element of speculation in this cancer observation, we do feel it is important and grounded in this and the BioRXiv study, and would prefer to maintain it. However, if editors take a different view it can be removed.
Reproducibility is a concern for this study. The authors should perform more replicates on their experiments (focusing on technical replicates of the lines employed to discern technical vs biological variability). A challenge in reading this manuscript is understanding which replicates were used for which experiments, and whether they are technical or biological (i.e. different lines). While some of the figure legends note this information, it would be helpful to provide clarity throughout the text. In addition, it should be noted that some experiments (e.g. the RPPA analysis in Fig 2B and Fig S3B) show substantial variability between replicates, but because it appears only a single technical replicate from two different cell lines was used, it is impossible to distinguish whether the variability is of a biological or technical nature. The authors would do well to focus on collecting more technical replicates of fewer biological replicates, and then expand to include more biological replicates if initial biological variation is observed.
AUTHORS’ RESPONSE__:__ We strenuously disagree with the Reviewer on this point. Throughout this manuscript, we have been transparent and thorough in reporting how experiments were performed, including the number of both biological and technical replicates. Representative examples include:
Legend to Figure 2A (RPPA dataset in growth-replete conditions): “The data are based on 10 wild-type cultures (3 clones), 5 PIK3CAWT/H1047R cultures (3 clones) and 7 PIK3CAH1047R/H1047R cultures (2 clones) as indicated.”
Legend to Figure 5: “The data are from two independent experiments, with each treatment applied to triplicate cultures of three wild-type and two homozygous iPSC clones.”
Specifically to address the RPPA studies, and as is clear from the Figure 2 legend, we initially performed RPPA analyses in growth factor-replete conditions with extensive technical and biological replication, arguing against the Reviewer’s point. To aid interpretation, we opted for summarising this large dataset in Venn diagrams (following extensive limma-based statistical analysis, including correction for multiple comparisons and sample interdependence as advised in Ref. [30]). If the Reviewer deems it valuable, we could include a heatmap overview as shown below:
[To view figure, please access PDF version of this rebuttal on https://osf.io/ecmhr/]
We took the view that the above representation, while comprehensive, is not particularly informative to the reader. All individual data points for both total and phosphoproteins – with and without normalisation – are plotted as part of separate barplots in the accompanying RNotebook (https://osf.io/d9tca/). These clearly demonstrate that the technical and biological variability in canonical PI3K signalling responses at the level of AKT and immediately downstream of AKT is very low. The same applies to the increased phosphorylation of SMAD2 (S465/S467) in PIK3CAH1047R iPSCs. We include two examples below, and would be happy to include the link to the above RNotebook in the respective Figure legend if the Reviewer deems this helpful.
[To view figure, please access PDF version of this rebuttal on https://osf.io/ecmhr/]
The interpretation of the second RPPA experiment (Fig. 2B) in growth factor-depleted conditions is focused entirely on these responses due to their consistency across both datasets (further supported by low-throughput signalling analyses in the previous PNAS publication).
We had made all raw data and guided analysis scripts for the above RPPA dataset publicly available, and the same is true for all original data as highlighted in the Materials & Methods section. Thus we strongly believe that readers have the opportunity to assess our work and reproduce our analyses/conclusions fully should they wish to do so.
- Finally, we noted in the initial PNAS paper describing these models that we derived and worked with up to 10 independent homozygous PIK3CAH1047R clones, as well as with 3 and 4 independent heterozygous and wild-type clones, respectively. This exceeds the common use of 2 clones (if at all mentioned) in many similar studies in the stem cell literature (e.g. Ref. [31–34]). In our view, derivation of more than two independent clones is crucial for reproducibility in gene editing studies given substantial variability arising from genetic drift [35,36]. We have consistently shown the phenotypic robustness of our mutant clones across the two studies; note, for example, the low technical and biological variability in both heterozygous and homozygous mutants in the transcriptomic data in Fig. 1A. As noted in the manuscript, the high-depth RNAseq data analysis was performed in different clones and independently of the RNAseq reported in Ref. [5], yet yields highly similar results and confirms transcriptional rewiring of PIK3CAH1047R/H1047R iPSCs.*
Throughout the text, the authors frequently reference their previous study in PNAS and often the lines of what is novel in this paper vs. reproduction of previous findings is blurred. The authors would benefit from reducing the frequency of referencing their previous study and focusing on emphasizing the novelty of the present findings.
AUTHORS’ RESPONSE__:__ We have carefully reviewed all instances of citation of our previous study in the manuscript and have reduced their numbers to improve focus on the current findings as suggested. As noted above, however, the current study builds closely upon the findings of the previous work, and referring to these to put the current work in context is important. Indeed, this is reflected in some of the reviewers’ collective comments and questions which are answered by the prior study. We have carefully reviewed the places in which we have cited our previous study and note that except for 2 citations in the Introduction and 3 more in the Discussion, all remaining citations are in the context of linking new and old data, which we believe is important for clarity as suggested by the reviewers. However, if editors take a different view we can minimise this and reduce the number of citations.
Without functional assays to complement and test their models, this manuscript is not a significant advance.
AUTHORS’ RESPONSE__:__ While we take the Reviewer’s point that further studies could have strengthened robustness of the evidence supporting a mediating role of NODAL/TGFb signalling in PI3K-driven stemness, we think this assertion is far too sweeping, and neglects numerous facets of the study of use and interest to several fields (as agreed by the other reviewers). To recapitulate some key points of interest/use of this study:
- Using a carefully derived PIK3CAH1047R iPSC model system and pharmacologically relevant doses of a recently approved PI3Ka-selective inhibitor, we demonstrate that the efficacy of the latter can depend on the strength of PI3K pathway activation and phenotype under investigation – despite expected downregulation of PI3K signalling by Alpelisib, the stemness phenotype is not reversed.
- We link this to self-sustained TGFb signalling in cells with strong PI3K activation by homozygous PIK3CAH1047R The link between the two pathways and the underlying rewiring are likely to be relevant in other contexts, as observed recently in a breast epithelial model system [37]. Given similarity between human pluripotent stem cells and cancer cells, our findings are of wider relevance.
- Aberrant PI3K activation has been associated with numerous pathologies, so it is important for the field to have well-characterised model systems with endogenous expression of one of the most common PIK3CA mutations. Our thorough characterisation of PIK3CAH1047R iPSCs validates one such model.
- To our knowledge, this is the first study to provide a comprehensive and integrated characterisation of isoform-specific PI3K signalling and transcriptomic changes in human pluripotent stem cells. This is important because current knowledge of PI3K signalling in human PSCs is largely based on extrapolation of findings from mouse embryonic stem cells, with many previous studies relying on high concentrations of the non-specific pan-PI3K inhibitor LY294002 (the use of which has been discouraged by the PI3K signalling community [38]).
I believe the narrative was written for pluripotent stem cell biologists but without robust functional and quantitative cell biological assays to test their models, I don't anticipate stem cell biologists will be very interested.
AUTHORS’ RESPONSE__:__ The Reviewer is incorrect in his/her assertion about the target audience. PI3K signalling plays a key role in numerous disease and physiological processes as well as in development, and is of broad interest to cancer biologists, genetecists, rare disease biologists, biochemists, cell signallers, and endocrinologists among many others. Indeed we started with a primary focus on disease modelling (cancer, PROS) rather than stem cell biology, but because our findings are significant for the role of PI3K in stem cell biology as well as for these diseases, we aimed to make findings accessible across many of these readers. We refer the Reviewer to our previous response with regards to the significance of this work.
**Minor Comments:**
Consider adding gridlines to the MDS plots for clarity of read
AUTHORS’ RESPONSE__:__ This is a matter of taste, and as we honestly can not see how it would enhance appreciation of the very clear clustering, we have decided to leave the plot in its current form.
In Fig S2, some of the in-figure labelling is incorrect
AUTHORS’ RESPONSE__:__ We thank the Reviewer for spotting this. We believe the labelling error to be corrected now and we have further tried to streamline the plot headings, but please do let us know if there is something else which we may have missed.
In Fig S1C, the authors note poor correlation in the heterozygotes between this and a previous study. It would be helpful to qualify this discrepancy, as it is potentially concerning.
AUTHORS’ RESPONSE__: The sensitivity to detect differential gene expression is high for large fold changes (as seen in PIK3CAH1047R/H1047R mutants) in transcriptomic studies, but declines rapidly for fold changes in expression lines 126-131: “The magnitudes of gene expression changes in PIK3CAH1047R/H1047R cells correlated strongly with our previous findings (Spearman’s rho = 0.74, p WT/H1047R iPSCs (Fig. S1C), as expected given the smaller number and lower magnitude of observed gene expression changes in heterozygous cells, and the lower depth of previous transcriptomic studies__.”*
Line 208, the authors state that the small p-value for the homozygotes is suggestive of a dose-dependent effect. This is not the case; it simply suggests a greater probability of the effect being non-random.
AUTHORS’ RESPONSE__:__ The Reviewer is formally correct, and we apologise for the imprecision of our language. Nevertheless biological effect size is pertinent to the p value determined, and so our statement, while requiring an inductive leap from the reader, is not wholly invalid. To tidy this up and improve precision we have reworded as follows:
lines 215-217: “This is in keeping with the much lower effect size in heterozygous cells, and consistent with a critical role for the TGFbeta pathway in mediating the allele dose-dependent effect of PIK3CAH1047R in human iPSCs.”
What does the height in Fig 4B correspond to? It would perhaps be of value to scale nodes based on the significance value.
AUTHORS’ RESPONSE__:__ 4B illustrates hierarchical clustering of the module eigengenes - the height corresponds to similarity of gene expression. We clarify this in the revised manuscript.
References
1 Lee, K. L. et al. (2011) Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genet. 7.
2 Hill, C. S. (2018) Spatial and temporal control of NODAL signaling. Curr. Opin. Cell Biol. 51, 50–57.
3 Xu, R. H. et al. (2008) NANOG is a Direct Target of TGFβ/Activin-Mediated SMAD Signaling in Human ESCs. Cell Stem Cell 3, 196–206.
4 Vallier, L. et al. (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136, 1339–49.
5 Madsen, R. R. et al. (2019) Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc. Natl. Acad. Sci. 116, 8380–8389.
6 Vasan, N. et al. (2019) Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science (80-. ). 366, 714–723.
7 Saito, Y. et al. (2020) Landscape and function of multiple mutations within individual oncogenes. Nature 582, 95–99.
8 Gorelick, A. N. et al. (2020) Phase and context shape the function of composite oncogenic mutations. Nature.
9 Gillies, T. et al. (2020) Oncogenic mutant RAS signaling activity is rescaled by the ERK/MAPK pathway 1–19.
10 Hafner, M. et al. (2016) Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527.
11 André, F. et al. (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940.
12 Madsen, R. R. et al. (2020) Relationship between stemness and transcriptionally-inferred PI3K activity in human breast cancer. bioRxiv 2020.07.09.195974.
13 Fritsch, C. et al. (2014) Characterization of the novel and specific PI3Ka inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol. Cancer Ther. 13, 1117–1129.
14 Furet, P. et al. (2013) Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorganic Med. Chem. Lett.
15 Yilmaz, A. et al. (2018) Defining essential genes for human pluripotent stem cells by CRISPR–Cas9 screening in haploid cells. Nat. Cell Biol. 20, 610–619.
16 Sergushichev, A. A. (2016) An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv 060012.
17 Liberzon, A. et al. (2015) The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 1, 417–425.
18 Müller, F. J. et al. (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455, 401–405.
19 James, D. et al. (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–82.
20 Vallier, L. et al. (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509.
21 Chen, G. et al. (2011) Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424–429.
22 Adewumi, O. et al. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816.
23 Tsankov, A. M. et al. (2015) A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat. Biotechnol. 33, 1–15.
24 Smith, J. R. et al. (2008) Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev. Biol. 313, 107–117.
25 Vallier, L. et al. (2004) Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403–421.
26 Sorre, B. et al. (2014) Encoding of temporal signals by the TGF-β Pathway and implications for embryonic patterning. Dev. Cell 30, 334–342.
27 David, C. J. and Massagué, J. (2018) Contextual determinants of TGFβ action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 1–17.
28 Alon, U. (2007) Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461.
29 Sonnen, K. F. and Aulehla, A. (2014) Dynamic signal encoding-From cells to organisms. Semin. Cell Dev. Biol. 34, 91–98.
30 Germain, P. L. and Testa, G. (2017) Taming Human Genetic Variability: Transcriptomic Meta-Analysis Guides the Experimental Design and Interpretation of iPSC-Based Disease Modeling. Stem Cell Reports 8, 1784–1796.
31 Wang, L. et al. (2017) GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports 10, 287–299.
32 Zeng, H. et al. (2016) An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell 0, 1660–1669.
33 Ho, L. et al. (2015) ELABELA Is an Endogenous Growth Factor that Sustains hESC Self-Renewal via the PI3K/AKT Pathway. Cell Stem Cell 17, 435–447.
34 Roudnicky, F. et al. (2019) Modeling the effects of severe metabolic disease by genome editing of HPSC-derived endothelial cells reveals an inflammatory phenotype. Int. J. Mol. Sci. 20, 1–10.
35 Veres, A. et al. (2014) Low incidence of Off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15, 27–30.
36 Ben-David, U. et al. (2018) Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330.
37 Katsuno, Y. et al. (2019) Chronic TGF-b exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci. Signal. 12, eaau8544.
38 Manning, B. D. and Toker, A. (2017) AKT/PKB Signaling: Navigating the Network. Cell 169, 381–405.