7,186 Matching Annotations
  1. Mar 2024
    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The delineation of MBOAT function is important with theoretical and practical implications in MAFLD, alcohol-induced hepatic steatosis, and lysosomal diseases. The strength of evidence is convincing using methodology in line with current state-of-the-art, with good support for the claims.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors provide mechanistic insights into how the loss of function of MBOAT7 promotes alcoholassociated liver disease. They showed that hepatocyte-specific genetic deletion of Mboat7 enhances ethanol-induced hepatic steatosis and increased ALT levels in a murine model of ethanol-induced liver disease. Through lipidomic profiling, they showed that mice with Mboat7 deletion demonstrated augmented ethanol-induced endosomal and lysosomal lipids, together with impaired transcription factor EB (TFEB)-mediated lysosomal biogenesis and accumulation of autophagosomes.

      Strengths:

      Alcohol-induced liver disease (ALD) and metabolic-associated steatotic liver disease (MASLD) are major global health problems, and polymorphism near the gene encoding MBOAT7 has been associated with these conditions. This paper is timely as it is important to gain insights on how loss of MBOAT function contributes to liver disease as this may eventually lead to therapeutic strategies. -The conclusions of the paper are mostly well supported by data.

      We sincerely thank Reviewer #1 for constructive feedback on this work.

      Weaknesses:

      (1) In regards to circulating levels of MBOAT7 products, a comparison of heavy drinkers with ALD versus heavy drinkers without ALD would be more clinically relevant.

      We agree this comparison would be an important comparison to make in future studies, but given the difficulties in accessing well-matched samples such as these we see this as beyond the scope of the current work.

      (2) A few typos need to be addressed. For Figure 1 - figure supplement 1, should the second column heading be "Heavy drinkers" instead of "Healthy drinkers"? Also, in the same figure, it is unclear what the "healthy" subcategory under MELD means.

      The typographical error was addressed in the main text and in all associated tables and figures.

      (3) Some of the data in the tables need to be addressed/discussed. For instance, the white blood cell count (WBC) in Figure 1 - figure supplement 1 for "healthy controls" is 34, compared to 13.51 for drinkers. A WBC of 34 is not at all healthy and should be explained. The vast difference between BMI and also between racial distribution within the two cohorts should also be explained. Is it possible that some of these differences contributed to the different levels of circulating MBOAT7 products that were measured?

      Sincere thanks for catching this error. In follow up, we found that some of our patient recruitment sites were using different units to report WBC counts (percent vs 1000/ml) and at this time we cannot retrospectively correct that difference. Therefore, we have incomplete WBC values for the cohort so elected to exclude that information to avoid confusing readers. A revised table is provided in revision reflecting these changes/ If we look at each site separately, values for WBC were in the normal range, so we do not think this is a major limitation of our studies. In regards to BMI and race: Race is not actually significant, but close. For BMI, there are 2 very low BMIs in the Heavy drinkers which bring that average down. We agree with Reviewer # 1 that race and / or BMI could impact MBOAT7, but larger cohorts are needed to detect such potential differences.

      (4) The representation of the statistical difference between the bars in the results figures by using alphabets is a bit confusing. For instance, in figure 2C, does that mean all the bars labelled A are significantly different from B? The solid black bar seems to be very similar to the open red bar; please double check.

      We apologize for this confusing presentation. Using the letter system, groups not sharing a common superscript differ statistically. Given this concern, we have gone back and reviewed all statistical comparisons and realized that there were several mistakes in the graph Figure 2C, Figure 3F and G, Figure 3-Supplementary Figure 1 F and Figure 3-Supplementary Figure 10H. The graphs themselves were not altered, but the denotation of statistical significance was updated with the correct letter superscripts.

      Reviewer #2 (Public Review):

      Summary:

      The work by Varadharajan et. al. explored a previously known genetic variant and its pathophysiology in the development of alcohol-associated liver injury. It provides a plausible mechanism for how varying levels of MBOAT7 could impact the lipid metabolomics of the cell, leading to a deleterious phenotype in MBOAT7 knockout. The authors further characterized the impact of the lipidomic changes and raised lysosomal biogenesis and autophagic flux as mechanisms of how MBOAT7 deletion causes the progression of ALD.

      Strengths:

      Connecting the GWAS data on MBOAT7 variants with plausible pathophysiology greatly enhances the translational relevance of these findings. The global lipidomic profiling of ALD mice is also very informative and may lead to other discoveries related to lipid handling pathways.

      We sincerely thank Reviewer #1 for constructive feedback on this work.

      Weaknesses:

      The rationale of why MBOAT7 metabolites are lower in heavy drinkers than in normal individuals is not well explained. MBOAT7 loss of function drives ALD, but unclear if MBOAT7 deletion also drives preference for alcohol or if alcohol inhibits MBOAT7 function. Presuming most individuals studied here were WT and expressed an appropriate level of MBOAT7?

      Although we were unable to genotype for the rs641738 SNP in the human subjects studied here, the original study by Buch et al. published in Nature Genetics performed cis expression quantitative trait lock (cis-eQTL) analyses to demonstrate that the minor disease-associated allele was associated with reduced MBOAT7 expression in subjects with alcohol-related cirrhosis. It is important to note that we did not see any evidence that alcohol preference was altered in either myeloid- or hepatocyte-specific Mboat7-knockout mice, given ethanol intake was similar in all genotypes. Additional studies are needed to address the possibility that MBOAT7 loss of function may promote alcohol preference, but we agree that this should be further investigated.

      Also, the discussion of mechanisms of MBOAT7-induced dysregulation of lysosomal biogenesis/autophagy, while very interesting, seems incomplete. It is not clear how MBOAT7 an enzyme involved in membrane phospholipid remodeling increases mTOR which leads to decreased TFEB target gene transcription.

      Although we agree with Reviewer #2 that mechanistic understanding by which MBOAT7 loss of function impacts mTOR activity and TFEB-driven lysosomal biogenesis is still incomplete, we do feel that the results published here will inform downstream investigation linking phosphatidylinositol remodeling to mTOR and TFEB. The MBOAT7 gene encodes an acyltransferase enzyme that specifically esterifies arachidonyl-CoA to lysophosphatidylinositol (LPI) to generate the predominant molecular species of phosphatidylinositol (PI) in cell membranes (38:4). It is well established that PI-related lipids can regulate membrane dynamics and signal transduction pathways. For instance PI-phosphates (PIPs) are dynamically shaped by PI kinases and phosphatases to play crucial roles in the regulation of a wide variety of cellular processes via specific interactions of PIP-binding proteins. Among PI phosphates, PI 3phosphate (PI3P) regulates vesicular trafficking pathways, including endocytosis, endosome-toGolgi retrograde transport, autophagy and mTOR signaling. Although additional work is needed to understand the molecular details of how MBOAT7-driven LPI acylation impacts mTOR and TFEB, it is not particularly surprising that PI lipid remodeling could broadly impact cell signaling.

      Furthermore, given the significant disturbances of global lipidomic profiling in MBOAT7 knockout, many pathways are potentially affected by this deletion. Further in vivo modeling that specifically addresses these pathways (TFEB targeting, mTOR inhibitor) would help strengthen the conclusions of this paper.

      We agree that further in vivo studies are needed that are beyond the scope of the current work.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) p values are rather hard to read. For example, Figure 2c, Hepatocyte-specific deletion of Mboat7 resulted in enhanced ethanol-induced increases in liver weight. However, doesn't look like there is a significant difference between the 2 EtOH groups in Figure 2C? Same comment for Figure 2e, not sure if pair-fed groups had a significant difference.

      (2) Figure 2 Supp fig 1, what is the top band on the MBOAT7 WB?

      We have addressed these statistical comparison comments as described above. Although we cannot be sure, it is likely that the top band on the MBOAT7 Western blot is a non-specific band that shows up with the antibody combination used given there is equal intensity in the Mboat7flox/flox and the MSKO mice (Mboat7flox/flox+LysM-Cre).

    1. Reviewer #2 (Public Review):

      Summary:

      This study looks into the complex dominance patterns of S-allele incompatibilities in Brassicaceae, through which it attempts to learn more about the sheltering of deleterious load. I found several weak points in the analyses that diminished my excitement about the results. In particular, the way in which deleterious mutations were classified lacked the ability to distinguish the severity of the mutations and thus their expected associated dominance. Furthermore, the simulation approach could have provided this exact sort of insight but was not designed to do so, making this comparison to the empirical data also less than exciting for me.

      Major and minor comments:

      I think the introduction (or somewhere before we dive into it in the results) of the dominance hierarchy for the S-alleles needs a more in-depth explanation. Not being familiar with this beforehand really made this paper inaccessible to me until I then went to find out more before continuing. I would expect this paper to be broad enough that self-contained information makes it accessible to all readers. For example, lines 110-115 could be in the Introduction.

      Along with my above comment, perhaps it is not my place to comment, but I find the paper not of a broad enough scope to be of interest to a broad readership. This S-allele dominance system is more than simple balancing selection, it is a very complex and specific form of dominance between several haplotypes, and the mechanism of dominance does not seem to be genetic. I am not sure that it thus extrapolates to broad comments on general dominance and balancing selection, e.g. it would not be the same as considering inversions and this form of balancing selection where we also expect recessive deleterious mutations to accumulate.

      It would have been particularly interesting, or a nice addition, to see deleterious mutations classed by something like SNPeff or GERP where you can have different classes of moderate to severe deleterious variants, which we would expect also to be more recessive the more deleterious they are. In line with my next comment on the simulations, I think relative differences between mutations expected to be more or less dominant may be even more insightful into the process of sheltering which may or may not be going on here.

      In the simulations, h=0 and s=0.01 (as in Figure 5) for all deleterious mutations seems overly simplistic, and at the convenient end for realistic dominance. I think besides recessive lethals which we expect to be close to h=0 would have a much larger selection coefficient, and other deleterious mutations would only be partially recessive at such an s value. I expect this would change some of the simulation results seen, though to what degree I am not certain. It would be nice to at least check the same exact results for h=0.3 or 0.2 (or additionally also for recessive lethals, e.g. h=0 and s=-0.9). I would also disagree with the statement in line 677, many studies have shown, particularly those on balancing selection, that partially recessive deleterious mutations are not eliminated by natural selection and do play a role in population genetic dynamics. I am also not surprised that extinction was found for higher s values when the mutation rate for such mutations was very high and the distribution of s values was constant. An influx of such highly deleterious mutations is unlikely to ever let a population survive, yet that does NOT mean that in nature, the rare influx of such mutations does lead to them being sheltered. I find overall that the simulation results contribute very little, to none, to this paper, as without something more realistic, like a simultaneous distribution of s and h values, you cannot say which, if any class of these mutations are the ones expected to accumulate because of S-allele dominance. Rather they only show the disappointing or less exciting result that fully recessive, weakly deleterious mutations (which I again think do not even exist in nature as I said above) have minor, to no effect across the classes of S-allele dominance. They provide no insight into whether any type of recessive deleterious mutation can accumulate under the S-allele dominance hierarchy, and that is the interesting question at hand. I would either remove these simulations or redo them in another approach. The authors never mention what simulation approach was used, so I can only assume this is custom, in-house code. Yet I do not find that code provided on the github page. I do not know if the lack of a distribution for h and s values is then a choice or a programming limitation, but I see it as one that should be overcome if these simulations are meant to be meaningful to the results of the study.

  2. Feb 2024
    1. level 1 vs level 2

      (#14) (*14)J11(Rita) Is there a specific sampling design for multilevel regression analysis? Are there any assumptions to take into consideration when looking at multilevel regression?

      Response: Anytime the data is clustered you have a multilevel design. I.e., Add health data is clustered by schools. Longitudinal data like the NLSY is clustered at the individual level. The WVS is clustered by countries. Clusters provide the context→and context, for a sociologist, may actually be the point. (More on this in class).

      (*14)J12(Osamudia): A very broad question as I start the reading–is there ever any debate about how we define the levels in multilevel modeling? Reading table 1.1 of the reading, I found myself questioning whether the various levels were appropriately characterized and distinguished.

      Response: You are right to critique this. The levels depend on how we are conceptualizing context, and that depends on sociological theory. I.e., variation in social structure and context might be a level 2 variable, but the way we define that will affect how we think about the model. I.e., is religion a level 1 or level 2 variable?

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you and the two reviewers for the thorough review of our manuscript. We found the reviewer’s comments highly valuable and addressed them by the following additional experiments and changes in the text and the figures:

      (1) We measured the effect of ROCK MASO’s on the ROCK expression by immunostaining and observed a reduction in ROCK signal, supporting the downregulation of ROCK protein level under ROCK MASO’s (new Fig. S3).

      (2) We measured the effect of lower concertation of ROCK inhibitor, Y27632 (10µM), and observe the same phenotypes of skeletal loss, skeletal reduction and ectopic branching in this concentration (Fig. 2, S4). Importantly, these phenotypes were not observed when directly inhibiting PKA and PKC, in whole sea urchin embryos (1) and in skeletogenic cell cultures (2), further supporting the specificity of ROCK inhibitor.

      (3) We added a time course of Pl-ROCK expression and immunostaining of ROCK in the fertilized egg, that show that this gene is maternal and the protein is present in the egg Fig. 2SA-C.

      (4) We recorded F-actin in ROCK MASO’s and demonstrate that it is still detected around the spicules and their tips, similarly to ROCK inhibited embryos (new Fig.S3).

      (5) We revised the paper text and figures to provide a better description of our results, distinguish clearly between our data and our interpretations and emphasize the novelty of our findings.

      This paper demonstrates that ROCK, F-actin polymerization and actomyosin contractility play critical roles in biomineral growth and in shaping biomineral morphology in the sea urchin embryo, and that ROCK activity affects skeletogenic gene expression. Our findings together with previous reports of the role of actomyosin in Eukaryotes biomineralization, suggest that this molecular machinery is a part of the common molecular tool-kit used in biomineralization. The identification of a common molecular mechanism within the diverse gene regulatory networks, organic scaffolds and minerals that Eukaryote use to build their biominerals will be of high interest to the field of biomineralization and evolutionary biology. Furthermore, our paper portrays the interplay between the cellular and the genetic machinery that drives morphogenesis. We believe it would be of great interest to the broad readership of eLife and particularly to the fields of biomineralization, cell, developmental and evolutionary biology.

      Thank you very much for the helpful review of our paper.

      Reviewer #1 (Public Review):

      We thank the reviewer for the appreciation of our work the helpful comments that guided us to strengthen the experimental evidence for our conclusions and increase the paper’s clarity. Below are our responses to the specific comments:

      Major comments

      One MASO led to reduced skeleton formation while the other one additionally induced ectopic branching. How was the optimum concentration for the MASOs determined? Did the authors perform a dose-response curve? What is the reason for this difference? Which of the two MASOs can be validated by reduced ROCK protein abundance? Since the ROCK antibody works, I would like to see a control experiment on Rock protein abundance in control and ROCK MO injected larvae which is the gold-standard for validating the knock-down.

      We tested several MASO concentrations to identify a concentration where the control embryos injected with Random MASO were overall healthy and ROCK MASO’s showed clear phenotypes.

      To test the effect of ROCK MASO’s on ROCK protein levels we did immunostaining experiments that are now presented in new Fig. S3. We could not do Western blot for injected embryos since ROCK antibody requires thousands of embryos for Western blot, which is not feasible for injected embryos. Therefore, we tested the effect of the two translation ROCK MASO’s on ROCK abundance compared to uninjected and Random MASO injected embryos using immunostaining. We observed a reduction of ROCK signal, supporting the downregulation of ROCK protein level in these genetic perturbations (new Fig. S3).

      L212 "Together, these measurements show that ROCK is not required for the uptake of calcium into cells." But what about trafficking and exocytosis? As mentioned earlier, I think this is a really important point that needs to be confirmed to understand the function of ROCK in controlling calcification. In their previous study (reference 45) the authors demonstrated that they have superior techniques in measuring vesicle dynamics in vivo. Here an acute treatment with the ROCK inhibitor would be sufficient to test if calcein-positive vesicle motion, including the observed reduction in velocity close to the tissue skeleton interface, is affected by the inhibitor.

      We thank the reviewer for the appreciation of our previous work where we studied calcium vesicle dynamics in whole embryos (Winter et al, Plos Com Biol 2021). We agree with the reviewer that the best way to test directly the effect of ROCK on mineral deposition and vesicle kinetics is to observe it in live skeletogenic cells. However, in Winter et al 2021, we found that the skeleton (spicules) doesn’t grow when the embryos are immobilized in either control or treated embryos. We have to immobilize the embryos to record live timelapses of whole embryos. Hence, this means that we can not determine the role of ROCK or any other perturbation in vesicle trafficking and exocytosis based on experiments conducted in immobilized whole embryos, since skeletogenesis is arrested. We believe that we can do it in skeletogenic cell cultures and we are currently developing this assay for vesicle tracking, but this is beyond the scope of this current work.

      Is there a colocalization of ROCK and f-actin in the tips of the spicules? This would support the mechano-sensing-hypothesis by ROCK.

      Our studies show that F-actin is localized around the spicule cavity and in the cortex of the cells (Figs. 5 and 6) while ROCK is enriched in the skeletogenic cell bodies, with some localization near the skeletogenic cell membranes (Fig. 1). To directly address the reviewer question we immune-stained ROCK and F-actin in the same embryos, and showed that their sub-cellular localizations does not show a strong overlap (Fig. S3 Q-T). However, ROCK does not bind F-actin directly: ROCK activates another kinase, LimK that phosphorylates Cofilin that interacts with F-actin. Therefore, the fact that ROCK is not colocalized with F-actin does not support nor contradicts the possible role of ROCK in mechano-sensing.

      L 283. "F-actin is enriched at the tips of the spicules independently of ROCK activity" The results of this paragraph clearly demonstrate that ROCK inhibition has no effect on the localization of f-actin at the tips of the growing spicules. In addition, the new cell culture experiments underline this observation. Still, the central question that remains is, what is the interaction between ROCK, f-actin, and the mineralization process, that leads to the observed deformations? What does the f-actin signal look like in a branched phenotype or in larvae that failed to develop a skeleton (inhibition from Y20)?

      As we report in Fig. 6, and now on new Fig. S3, under ROCK late inhibition or in ROCK morphants, we still detect F-actin around the spicule and enriched at the tips. When ROCK is inhibited and the embryo fails to develop a skeleton, we observe Factin accumulation in the skeletogenic cells, but the F-actin is not organized (Fig. 5). As the spicule is absent in this condition, it is hard to conclude whether the effect on F-actin organization is direct or due to the absence of spicule in this condition. We stated that explicitly in the current version in the results, lines 324-326 and in the discussion, lines 405-408.

      Immunohistochemical analyses on f-actin localization and abundance should be additionally performed with ROCK knock-down phenotypes to confirm the pharmacological inhibition.

      We did that in our new Figure S3 and showed that ROCK morphant show the same F-actin localization at the tips like control and ROCK inhibited embryos.

      L 365 "...supporting its role in mineral deposition..." "...Overall, our studies indicate that ROCK activity....is essential for the formation of the spicule cavity......which could be essential for mineral deposition..." I think the authors need to do a better job in clearly separating between the potential processes impacted by ROCK perturbation. Is it stabilization and mechano-sensing in the spicule tip or the intracellular trafficking and deposition of the ACC? If the dataset does not allow for a definite conclusion, I suggest clearly separating the different possibilities combined with thorough discussion-based findings from other mineralizing systems where the interaction between ROCK and F-actin has been described.

      We thank the reviewer for this important comment. We believe that ROCK and the actomyosin are involved in both, mechano-sensing of the rigid biomineral and in the transport and exocytosis of mineral-bearing vesicles. In the current version we provide explicit explanations of these two hypotheses in the discussion section. The possible role in exocytosis and the experiments that are required to assess this role are described in lines 427-439, and the possible mechano-sensing role and effect on gene expression is described in lines 440-453.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      L185 "These SR-µCT measurements show that the rate of mineral deposition is significantly reduced under ROCK inhibition." To correctly support this statement I would suggest to calculate the real growth rates (µm3 time-1). For example, an increase in volume from 6,850 µm3 at 48 hpf to 14,673 µm3 at 72 hpf would result in a growth rate of 7823 µm3 24h-1.

      We thank the reviewer for this suggestion. We calculated the rate of spicule growth as the reviewer suggested and we added this information in lines 218-221.

      L343: "This implies that....within the skeletogenic lineage." This concluding sentence is very speculative and therefore misplaced in the results section.

      We removed this sentence from the results section into the discussion, lines 443-445.

      L382: "The participation of F-actin and ROCK in polarized tip-growth and vesicle exocytosis has been observed in both, animals and plants." L407-409: "...F-actin could be regulating the localized exocytosis of mineral-bearing vesicles...." I think this is exactly the core question that remains unresolved in this study. To reduce speculations I strongly recommend addressing the effect of ROCK inhibition on vesicle trafficking and exocytosis (Monitoring of calcein-positive Vesicles in PMCs).

      We agree with the reviewer that this is a critical question that we would have address, but as we explained above, is beyond the scope of this study.

      Figure 5: The values below the scale bars in the newly added figures U+V are extremely small. Also, the Legend for this figure sounds incorrect. Should read: "...and skeletogenic cell cultures that were treated with 30µM ROCK inhibitor that was added at 48hpf and recorded at 72hpf.

      We increased the font near the scale bars and corrected the figure caption. Thanks for this and your other helpful comments!

      Reviewer #2 (Public Review):

      We thank the reviewer for raising the important issue of inhibitor concentration which led us to do additional experiments with lower concentration that were valuable and strengthen the manuscript. We also thank the reviewer for asking us to be clearer with the interpretation of the results. Below are our responses to the specific comments:

      My concerns are the interpretation of the experiments. The main overriding concern is a possible over-interpretation of the role of ROCK. In the literature that ROCK participates in many biological processes with a major contribution to the actin cytoskeleton. And when a function is attributed to ROCK, it is usually based on the determination of a protein that is phosphorylated by this kinase. Here that is not the case. The observation here is in most cases stunted growth of the spicule skeleton and some mis-patterning occurs or there is an absence of skeleton if the inhibitor is added prior to initiation of skeletal growth. They state in the abstract that ROCK impairs the organization of F-actin around the spicules. The evidence for that as a direct role is absent.

      We agree with the reviewer that since the spicule doesn’t form under ROCK continuous inhibition, it is unclear if the absence of F-actin around the spicule in this condition is a direct outcome of the lack of ROCK activation of F-actin polymerization, or an indirect outcome due to the lack of spicule to coat. We therefore deleted this line in the abstract and explicitly stated that we cannot conclude whether the impaired F-actin organization is directly due to ROCK effect on actin polymerization in the results, lines 324-326 and in the discussion, lines 405-408.

      They use morpholino data and ROCK inhibitor data to draw their conclusion. My main concern is the concentration of the inhibitor used since at the high concentrations used, the inhibitor chosen is known to inhibit other kinases as well as ROCK (PKA and PKC). They indicate that this inhibition is specifically in the skeletogenic cells based on the isolation of skeletogenic cells in culture and spicule production either under control or ROCK inhibition and they observe the same - stunting and branching or absence of skeletons if treated before skeletogenesis commences. Again, however, the high concentrations are known to inhibit the other kinases.

      In the previous version of the paper we used the range of 30-80µM Y-27632 to block ROCK activity. These concentrations are commonly used in mammalian systems and in Drosophila to block ROCK activity (3-8). The reviewer is correct stating that at high concentration, this inhibitor can block PKA and PKC. However, the affinity of the inhibitor for these kinases is more than 100 times lower than its affinity to ROCK as indicated by the biochemical Ki values reported in the manufactory datasheet: 0.14-0.22 μM for ROCK1, 0.3 μM for ROCK2, 25 μM for PKA and 26 μM for PKC.

      Importantly, these Ki values are based on biochemistry assays where the activity of the inhibitor is tested in-vitro with the purified protein. Therefore, these concentrations are not relevant to cell or embryo cultures where the inhibitor has to penetrate the cells and affect ROCK activity in-vivo. Y-27632 activity was studied both in-vitro and in-vivo in Narumiya, Ishizaki and Ufhata, Methods in Enzymology 2000 (9). This paper reports similar concentrations to the ones indicated in the manufactory datasheet for the in-vitro experiments, but shows that 10µM concentration or higher are effective in cell cultures. We therefore tested the effect of 10µM Y-27632 added at 0hpf (continuous inhibition) and at 25hpf (late inhibition) and added this information to Figs. 2 and S3. Continuous inhibition at this concentration resulted with three major phenotypes: skeletal loss, spicule initiations and small spicules with ectopic branching. This result supports our conclusion that ROCK activity is necessary for spicule formation, elongation and prevention of branching. Late inhibition in this concentration resulted with the majority of the embryos developing branched spicules, which is very similar to the effect of MyoII inhibition with Blebbistatin. This result again, supports the inference that ROCK activity is required for normal skeletal growth and the prevention of ectopic branching. Importantly, there are two papers were PKA and PKC were directly inhibited in whole sea urchin embryos (1) and in skeletogenic cell cultures (2). In both assays, PKC inhibition resulted with mild reduction of spicule length while PKA inhibition did not affect skeletal formation. Neither skeletal loss nor ectopic branching were ever observed under PKC or PKA inhibition, supporting the specific inhibition of ROCK by Y-27362. Furthermore, both genetic and pharmacological perturbations of ROCK resulted with significant reduction of skeletal growth and with the enhancement of ectopic branching. Therefore, we believe we provide convincing evidence for the role of ROCK in spicule formation, growth and prevention of branching. We revised Fig. 2 and S3 to include the 10µM Y-27632 data and the text describing the inhibition to include the explanations and references we provided here.

      They use blebbistatin and latrunculin and show that these known inhibitors of actin cytoskeleton lead to abnormal spiculogenesis, This coincidence is suggestive but is not proof that it is ROCK acts on the actomyosin cytoskeleton given the specificity concerns.

      As stated above, we believe that in the current vesion we overcame the specificity concerns and provided solid evidence that ROCK activity is necessary for spicule formation, growth and prevention of branching. Furthermore, the skeletogenic phenotypes of late 10µM Y-27632 are highly similar to those of MyoII inhibition (Blebbistatin) while the phenotypes of higher concetrations resemble the inhibition of actin polymerization by Latrunculin. We agree with the reviewer that: “This coincidence is suggestive but is not proof that ROCK acts on the actomyosin cytoskeleton” and we revise the discussion paragraph to differentiate between our solid findings and our speculations (lines 421-426): “These correlative similarities between ROCK and the actomyosin perturbations lead us to the following speculations: the low dosage of late ROCK inhibition is perturbing mostly ROCK activation of MyoII contractility while the higher dosage affects factors that control actin polymerization (Fig. 8F). Further studies in higher temporal and spatial resolution of MyoIIP activity and F-actin structures in control and under ROCK inhibition will enable us to test this.”

      Reviewer #2 (Recommendations For The Authors):

      The following areas require attention:

      (1) You begin and end the abstract with statements on evolution in which the actomyosin cytoskeleton is associated with skeletogenesis despite different GRNs, different contributing proteins, etc. You then move to ROCK and claim to reveal that ROCK is a central player in the process. As above, in the judgement of this reviewer, you fail to establish a direct role of ROCK to the actomyosin role in skeletogenesis. Sure, the ROCK inhibitors suggest that ROCK plays some kind of role in the process but you also indicate that ROCK could act on many processes, none of which you directly associate with the necessary activity of ROCK.

      We agree that our paper provides correlative similarities between the phenotypes of ROCK and those of direct pertrubations of the actomyosin network, and lacks causal relationship. We made this point clear throughout the current version of the manuscript.

      (2) In the abstract you report that ROCK inhibition impairs the actin cytoskeleton around the skeleton. In examining your images in Fig. 5 that is not the case. Based on Phalloidin staining, actin surrounds both the control and the ROCK-inhibited skeleton. The distribution of actin is the same in both cases. Myosin is also stained in this figure and it too shows similar staining both in experimental and control. So, to this reviewer, there is insufficient evidence to suggest that the actin cytoskeleton is impaired, and there is no evidence directly relating ROCK with that cytoskeleton. I'm not questioning the observation that inhibition of ROCK causes stunting and mispatterning of the skeleton. That you show and quantify well. The issue is the precise target of ROCK. Your data does not establish the specific cause. It could be the actin cytoskeleton but your experiments do not directly address that.

      Fig. 5 shows a clear difference between F-actin in control and under ROCK inhibition. In control F-actin is enriched around the spicule and under ROCK inhibition the spicule doesn’t form and disorganized F-actin is accumulated in the skeletogenic cells. Yet, as we stated above – this is not a proof for the direct effect of ROCK on F-actin polymerization, and we explain it explicitly in the results, lines 324-326 and in the discussion, lines 405-408.

      (3) In parts of the manuscript you use the term filopodia and in other parts I think you use pseudopodia to refer to the same structure. Since Ettensohn has provided the most evidence on the organization of the skeletogenic syncytia, I suggest you use the same term he used for those cellular extensions.

      The filopodia and the pseudopodia are two distinct structures generated by the skeletogenic cells. The filopodia is the common cellular extension described in many cells, while the term “pseudopodia cable” describes the specific structure that forms between the skeletogenic cells in which the spicule cavity forms, in agreement with Prof. Ettensohn terminology.

      (4) In trying to find relationships you cite a number of previous papers at the end of the introduction. I went back to those papers and they describe (from your work) calcium exocytosis, plus filopodia formation, plus planar cell polarity, plus CDC42, any one of which could involve an actin cytoskeleton. You even cite a paper saying that perturbations of ROCK prevent spicule formation. I went back to that paper and that isn't the case. You then summarize the Introduction by relating ROCK and the actin cytoskeleton, thereby raising reader expectation that the two will be connected. As above, in reality, your evidence here does not connect the two.

      We thank the reviewer for giving us credit for all these works, but only the paper on vesicle kinetics is from our lab (winter et al 2021). As for Croce et al, 2006 that the reviewer refers to: in Fig. 9A, 75µM of Y-27632 is used to inhibit ROCK in the same sea urchin species that we use, and the phenotype is identical to what we observe – the skeletogenic cells are there, but the spicule is not formed. As mentioned above, in the current version we distinguished clearly between our solid findings and our interpretations.

      (5) You emphasize in Fig. 1 the inhibition of ROCK in the presence of VEGFR inhibition. However, at no place in the manuscript do you say anything about how VEGFR is inhibited, when it is inhibited, or how you know it is inhibited. That oversight must be corrected. You mention axitinib but don't say anything about what it does. Some readers may know its activity but many will not.

      We now indicate that we use Axitinib to block VEGFR in the results section (line 104) and in the methods section (lines 470-471).

      (6) Fig. 2. The use of Y27632 as a selective inhibitor of ROCK. According to data sheets from the manufacturer, at the levels used in your experiments, 120 µm, 80 µm and 30 µm, those levels of inhibitor also inhibit the activity of PKA and PKC (both inhibited at around 25 µm). This is concerning because of the literature indicating that activation of the VEGFR operates through PKA. Inhibition of PKA, then, would inhibit the activity of VEGF signaling. Thus, the inhibitory effects of Y27632 may actually not be attributed specifically to ROCK. Furthermore, the heading of this section states that ROCK activity controls initiation, growth, and morphology of the spicule. Yet, even in high levels of inhibitor spicule production is initiated. Yes, the growth and the morphology are compromised, but the initiation doesn't seem to be.

      The spicule fails to form under ROCK continuous inhibition in all concentrations (Fig. 2). Also, as we explained in details above, these Ki values are based on biochemical experiments with purified proteins and are not relevant to in-vivo use of the inhibitor. Yet, these Ki values demonstrate that the affinity of the inhibitor to ROCK is 100 higher than of its affinity to PKA and PKC. Specifically to the reviewer suggestion here: direct inhibition of PKA does not have skeletogenic phenotypes, not in whole embryos (1) and not in skeletogenic cell culture (2). Since we see the same skeletogenic phenotypes at low Y-27362 concentration and the genetic and pharmacological pertrubations of ROCK reconcile, we believe that these phenotypes can be atributed directly to ROCK.

      (7) The synchrotron study is very nice with two points that should be addressed. Again, a high concentration of Y27632 was used giving a caveat on ROCK specificity. And second, the blue and green calcein pulses are very nice but the recent paper by the Bradham group should be cited.

      We added a reference to Bradham recent paper on two calcein pulses (10).

      (8) Fig. 5 is where an attempt is made to associate ROCK inhibition to alterations in actomyosin. Again, a high concentration of the inhibitor is used casting doubt on whether it specifically inhibits ROCK. However, even if the inhibition is specific to ROCK the images do not provide convincing evidence that ROCK activity normally is directed toward actomyosin. This is crucial to the manuscript.

      As stated above, we addressed the specificity in this version and we modified the text to emphasize the correlation and not cuasation: Fig. 5 shows a clear difference between F-actin in control and under ROCK inhibition. In control F-actin is enriched around the spicule and under ROCK inhibition the spicule doesn’t form and disorganized F-actin is accumulated in the skeletogenic cells. Yet, as we stated above – this is not a proof for the direct effect of ROCK on F-actin polymerization, and we explain it explicitly in the results, lines 324-326 and in the discussion, lines 405-408.

      (9) Again in Fig. 6 the inhibitor is used with the same concern about whether the effects noted are due to ROCK.

      Fig. 6 is now Fig. 7 – the effect of ROCK on gene expression and as explained above, we addressed the specificity in this version.

      (10) Lines 350-358. This interpretation falls apart without showing that the inhibitor is specific for ROCK as indicated above. Also, Fig. 5 is unconvincing in showing a difference in actin or myosin distribution in control vs ROCK inhibited embryos. Yes, the spicules are stunted, but whether actin or myosin have anything to do with that as a result of lack of ROCK activity is not demonstrated.

      As stated above, we addressed the specificity in the revised version and we modified the text to emphasize the correlation and not cuasation: Fig. 5 shows a clear difference between F-actin in control and under ROCK inhibition. In control F-actin is enriched around the spicule and under ROCK inhibition the spicule doesn’t form and disorganized F-actin is accumulated in the skeletogenic cells. Yet, as we stated above – this is not a proof for the direct effect of ROCK on F-actin polymerization, and we explain it explicitly in the results, lines 324-326 and in the discussion, lines 405-408.

      (11) Throughout, the manuscript spelling, grammar, and sentence structure will require extensive editing. The mistakes are numerous.

      We did our best to correct the spelling and grammar. If we still missed some mistakes, we would be happy to further correct them.

      References

      (1) Mitsunaga K, Shinohara S, Yasumasu I. Probable Contribution of Protein Phosphorylation by Protein Kinase C to Spicule Formation in Sea Urchin Embryos: (sea urchin/protein kinase C/spicule formation/H-7/HA1004). Dev Growth Differ. 1990;32(3):335-42.

      (2) Mitsunaga K, Shinohara S, Yasumasu I. Does Protein Phosphorylation by Protein Kinase C Support Pseudopodial Cable Growth in Cultured MicromereDerived Cells of the Sea Urchin, Hemicentrotus pulcherrimus?: (sea urchin/protein kinase C/spicule formation/phorbol ester/H-7). Dev Growth Differ. 1990;32(6):647-55.

      (3) Su Y, Huang H, Luo T, Zheng Y, Fan J, Ren H, et al. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov. 2022;8(1):35.

      (4) Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, et al. Human blastoids model blastocyst development and implantation. Nature. 2022;601(7894):600-5.

      (5) Canellas-Socias A, Cortina C, Hernando-Momblona X, Palomo-Ponce S, Mulholland EJ, Turon G, et al. Metastatic recurrence in colorectal cancer arises from residual EMP1(+) cells. Nature. 2022;611(7936):603-13.

      (6) Becker KN, Pettee KM, Sugrue A, Reinard KA, Schroeder JL, Eisenmann KM. The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian DiaphanousRelated (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells. Cells. 2022;11(9).

      (7) Segal D, Zaritsky A, Schejter ED, Shilo BZ. Feedback inhibition of actin on Rho mediates content release from large secretory vesicles. J Cell Biol. 2018;217(5):1815-26.

      (8) Fischer RS, Gardel M, Ma X, Adelstein RS, Waterman CM. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol. 2009;19(3):2605.

      (9) Narumiya S, Ishizaki T, Uehata M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 2000;325:273-84.

      (10) Descoteaux AE, Zuch DT, Bradham CA. Polychrome labeling reveals skeletal triradiate and elongation dynamics and abnormalities in patterning cue-perturbed embryos. Dev Biol. 2023;498:1-13.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The OSCA/TMEM63 channels have recently been identified as mechanosensitive channels. In a previous study, the authors found that OSCA subtypes (1, 2, and 3) respond differently to stretch and poke stimuli. For example, OSCA1.2 is activated by both poke and stretch, while OSCA3.1, responds strongly to stretch but poorly to poke stimuli. In this study, the authors use cryo-EM, mutagenesis, and electrophysiology to dissect the mechanistic determinants that underlie the channels' ability to respond to poke and stretch stimuli.

      The starting hypothesis of the study is that the mechanical activation of OSCA channels relies on the interactions between the protein and the lipid bilayer and that the differential responses to poke and stretch might stem from variations in the lipid-interacting regions of OSCA proteins. The authors specifically identify the amphipathic helix (AH), the fenestration, and the Beam Like Domain (BLD) as elements that might play a role in mechanosensing.

      The strength of this paper lies in the technically sound data - the structural work and electrophysiology are both very well done. For example, the authors produce a high-resolution OSCA3.1 structure which will be a useful tool for many future studies. Also, the study identifies several interesting mutants that seemingly uncouple the OSCA1.2 poke and stretch responses. These might be valuable in future studies of OSCA mechanosensation.

      However, the experimental approach employed by the authors to dissect the molecular mechanisms of poke and stretch falls short of enabling meaningful mechanistic conclusions. For example, we are left with several unanswered questions surrounding the role of AH and the fenestration lipids in mechanosensation: Is the AH really important for the poke response if mutating residues conserved between OSCA1.2 and OSCA3.1 disrupts the OSCA1.2 ability to respond to poke but mutating the OSCA1.2 AH to resemble that of OSCA3.1 results in no change to its "pokability"? Similar questions arise in response to the study of the fenestrationlining residues.

      We thank the reviewer for their feedback. We believe that the different OSCA1.2 mutants on their own suggest an involvement of the AH and fenestration-lining residues in its mechanosensitive response. We attribute the inability to restore the poke response of OSCA3.1 with similar mutations to its inherent high threshold to this particular stimulus and perhaps other structural differences, or a combination of them, that we did not probe in this study. We agree more work is required in the field to address these remaining questions and further dissect the difference between poke and stretch responses.

      Reviewer #2 (Public Review):

      Summary:

      Jojoa-Cruz et al. determined a high-resolution cryo-EM structure in the Arabidopsis thaliana (At) OSCA3.1 channel. Based on a structural comparison between OSCA3.1 and OSCA1.2 and the difference between these two paralogs in their mechanosensitivity to poking and membrane stretch, the authors performed structural-guided mutagenesis and tested the roles of three structural domains, including an amphipathic helix, a beam-like domain, and a lipid fenestration site at the pore domain, for mechanosensation of OSCA channels.

      Strengths:

      The authors successfully determined a structure of the AtOSCA3.1 channel reconstituted in lipid nanodiscs by cryo-EM to a high resolution of 2.6 Å. The high-resolution EM map enabled the authors to observe putative lipid EM densities at various sites where lipid molecules are associated with the channel. Overall, the structural data provides the information for comparison with other OSCA paralogs.

      In addition, the authors identified OSCA1.2 mutants that exhibit differential responses to mechanical stimulation by poking and membrane stretch (i.e., impaired response to poke assay but intact response to membrane stretch). This interesting behavior will be useful for further study on differentiating the mechanisms of OSCA activation by distinct mechanical stimuli.

      Major weakness:

      The major weaknesses of this study are the mutagenesis design and the functional characterization of the three structural domains - an amphipathic helix (AH), a beam-like domain (BLD), and the fenestration site at the pore, in OSCA mechanosensation.

      (1) First of all, it is confusing to the reviewer, whether the authors set out to test these structural domains as a direct sensor(s) of mechanical stimuli or as a coupling domain(s) for downstream channel opening and closing (gating). The data interpretations are vague in this regard as the authors tend to interpret the effects of mutations on the channel 'sensitivity' to different mechanical stimuli (poking or membrane stretch). The authors ought to dissect the molecular bases of sensing mechanical force and opening/closing (gating) the channel pore domain for the structural elements that they want to study.

      We agree with the reviewer that our data are unable to distinguish the transduction of a mechanical stimulus and channel gating. We set up to determine whether these features were involved in the mechanosensitive response. However, as the reviewer points out, evaluating whether they work as direct sensors or coupling domains would require a more involved experimental design that lies beyond the scope of this work. Thus, we do not claim in our study whether these features act as direct sensors of mechanosensitive stimuli or as coupling domains, only their involvement.

      Furthermore, the authors relied on the functional discrepancies between OSCA1.2 (sensitive to both membrane poking and stretch) and OSCA3.1 (little or weak sensitivity to poking but sensitive to membrane stretch). But the experimental data presented in the study are not clear to address the mechanisms of channel activation by poking vs. by stretch, and why the channels behave differently.

      We had hoped that when we switched regions of the OSCA1.2 and OSCA3.1 channels we would abolish poke-induced responses in OSCA1.2 and confer poke-induced sensitivity to OSCA3.1. We agree with the reviewer that we were not able to pinpoint the reason or multiple reasons, as it could be a compounded effect of several differences, that caused OSCA3.1 higher threshold and thus we could not confer to it an OSCA1.2-like phenotype. Yet, we shed some light on some of the structural differences that appear to contribute to OSCA3.1 behavior, as mutagenesis of OSCA1.2 to resemble this channel led to OSCA3.1-like phenotype.

      (2) The reviewer questions if the "apparent threshold" of poke-induced membrane displacement and the threshold of membrane stretch are good measures of the change in the channel sensitivity to the different mechanical stimuli.

      The best way to determine an accurate measure of sensitivity to mechanical stimuli is stretch applied to a patch of membrane. There are more complicating factors that influence the determination of "apparent threshold" in the whole cell poking assay, including visualizing when the probe first hits the cell (very difficult to see). With that said, the stretch assay has its own issues such as the creep of the membrane into the pipette glass which we try to minimize with positive pressure between tests.

      (3) Overall, the mutagenesis design in the various structural domains lacks logical coherence and the interpretation of the functional data is not sufficient to support the authors' hypothesis. Essentially the authors mutated several residues on the hotspot domains, observed some effects on the channel response to poking and membrane stretch, then interpreted the mutated residues/regions are critical for OSCA mechanosensation. Examples are as follows.

      In the section "Mutation of key residues in the amphipathic helix", the authors mutated W75 and L80, which are located on the N- and C-terminal of the AH in OSCA1.2, and mutated Pro in the OSCA1.2 AH to Arg at the equivalent position in OSCA3.1 AH. W75 and L80 are conserved between OSCA 1.2 and OSCA3.1. Mutations of W75 and/or L80 impaired OSCA1.2 activation by poking, but not by membrane stretch. In comparison, the wildtype OSCA3.1 which contains W and L at the equivalent position of its AH exhibits little or weak response to poking. The loss of response to poking in the OSCA1.2 W/L mutants does not indicate their roles in pokinginduced activation.

      Besides, the P2R mutation on OSCA1.2 AH showed no effect on the channel activation by poking, suggesting Arg in OSCA3.1 AH is not responsible for its weak response to poking. Together the mutagenesis of W75, L80, and P2R on OSCA1.2 AH does not support the hypothesis of the role of AH involved in OSCA mechanosensation.

      Mutagenesis of OSCA1.2 in the amphipathic helix for residues W75 and L80 suggests a role of the helix in the poke response in OSCA1.2, regardless of OSCA3.1 having the same residues. Furthermore, the lack of alteration in the response for mutant P77R suggests that specific residues of the helix are involved in this response and is not a case where any mutation in the helix will lead to a loss of function.

      OSCA3.1 WT exhibits a high-threshold response (near membrane rupture) in the poke assay without any mutations, and this could be due to other features, for example, the residues lining the membrane fenestration, as well as features not identified/probed in this study. We agree with the reviewer that the differences in the AH do not explain the different response to poke in OSCA1.2 and OSCA3.1, and we have added this statement explicitly in the discussion for clarification (line #251-252).

      In the section "Replacing the OSCA3.1 BLD in OSCA1.2", the authors replaced the BLD in OSCA 1.2 with that from OSCA3.1, and only observed slightly stronger displacement by poking stimuli. The authors still suggest that BLD "appears to play a role" in the channel sensitivity to poke despite the evidence not being strong.

      We agree with the reviewer that the experiments carried out show little difference between the response of OSCA1.2 WT and OSCA1.2 with OSCA3.1 BLD, and we have stated so (line #259: “Substituting the BLD of OSCA1.2 for that of OSCA3.1 had little effect on poke- or stretchactivated responses. Although these results suggest that the BLD may not be involved in modulating the MA response of OSCA1.2…”). However, the section of the discussion that the reviewer points out also considers evidence provided by recent reports from Zheng, et al. (Neuron, 2023) and Jojoa-Cruz, et al. (Structure, 2024) and we suggest an hypothesis to reconcile our findings with these new evidence.

      OSCA1.2 has four Lys residues in TM4 and TM6b at the pore fenestration site, which were shown to interact with the lipid phosphate head group, whereas two of the equivalent residues in OSCA3.1 are Ile. In the section "Substitution of potential lipid-interacting lysine residues", the authors made K435I/K536I double mutant for OSCA1.2 to mimic OSCA3.1 and observed poor response to poking but an intact response to stretch. Did the authors mutate the Ile residues in OSCA3.1 to Lys, and did the mutation confer channel sensitivity to poking stimuli resembling OSCA1.2? The reviewer thinks it is necessary to perform such an experiment, to thoroughly suggest the importance of the four Lys residues in lipid interaction for channel mechanoactivation.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are no longer able to perform such experiments.

      Reviewer #3 (Public Review):

      Summary:

      Jojoa-Cruz et al provide a new structure of At-OSCA3.1. The structure of OSCA 3.1 is similar to previous OSCA cryo-em structures of both OSCA3.1 and other homologues validating the new structure. Using the novel structure of OSCA3.1 as a guide they created several point mutations to investigate two different mechanosensitive modalities: poking and stretching. To investigate the ability of OSCA channels to gate in response to poking they created point mutations in OSCA1.2 to reduce sensitivity to poking based on the differences between the OSCA1.2 and 3.1 structures. Their results suggest that two separate regions are responsible for gating in response to poking and stretching.

      Strengths:

      Through a detailed structure-based analysis, the authors identified structural differences between OSCA3.1 and OSCA1.2. These subtle structural changes identify regions in the amphipathic helix and near the pore that are essential for the gating of OSCA1.2 in response to poking and stretching. The use of point mutations to understand how these regions are involved in mechanosensation clearly shows the role of these residues in mechanosensation.

      Weaknesses:

      In general, the point mutations selected all show significant alterations to the inherent mechanosensitive regions. This often suggests that any mutation would disrupt the function of the region, additional mutations that are similar in function to the WT channel would support the claims in the manuscript. Mutations in the amphipathic helix at W75 and L80 show reduced gating in response to poking stimuli. The gating observed occurs at poking depths similar to cellular rupture, the similarity in depths suggests that these mutations could be a complete loss of function. For example, a mutation to L80I or L80Q would show that the addition of the negative charge is responsible for this disruption not just a change in the steric space of the residue in an essential region.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have several questions regarding some of the aspects of your study:

      Mutation of the hydrophobic W75 and L80 in OSCA1.2 to charged residues significantly decreases the poke response in OSCA1.2 without affecting the stretch response. However, W75 and L80 are also present in OSCA3.1, which does not respond efficiently to poke. You conclude that these two residues are important for the poke response, but do not delve into why, if these residues are important, OSCA3.1 is not poke-sensitive.

      In addition, mutation of the OSCA1.2 AH to resemble that of OSCA3.1 does not produce channels that are less poke-sensitive. Given the data presented, if AH were a universal "poke sensor", one could also expect WT OSCA3.1 to exhibit a robust poke response, like OSCA1.2. Here I think it would be important to explain in more detail how this data might fit together.

      We thank the reviewer for bringing up this issue. We decided to test the importance of the AH due to the presence of similar structures in other mechanosensitive channels. Our data showed that single and double mutants of the AH of OSCA1.2 affected its poke response but not stretch. This supports the idea of the AH involvement in the poke response. Yet, we agree that the differences in the AH between OSCA1.2 and OSCA3.1 (P77R mutation) do not explain the higher threshold of OSCA3.1, we have explicitly added this in line #255. The particular OSCA3.1 phenotype may be due to other differences in the structure, for example, differences in the membrane fenestration area, or a combined effect of several differences, which we believe is more likely.

      I also have some questions about the protein-lipid interactions in the fenestration. A lipid has been observed in this location in both OSCA1.2 and OSCA3.1 structures. Mutation of the two OSCA1.2 lysines to isoleucines results in channels that are resistant to poke which leads to the conclusion that the interactions between the fenestration lysines and lipids are important for the poke response.

      Here, there are several questions that arise but are not answered:

      It is not shown what happens when OSCA3.1 isoleucines are mutated to lysines - do these mutants result in poke-able channels? Is the OSCA3.1 mechanosensing altered?

      We performed a preliminary test on OSCA3.1 I423K/I525K double mutant (n = 3). However, we did not see an increase in poke sensitivity. We attributed this to other unexplored differences in OSCA3.1 having an effect in channel mechanosensitivity.

      It is implied that the poke response is predicated on the lysine-lipid interaction. However, lipid densities are present in both OSCA1.2 and OSCA3.1 structures, indicating that both fenestrations interact with lipids. How can we be certain that the mutation of lysine to isoleucine does not disrupt an inter-protein interaction rather than a protein-lipid one? For example, the K435I mutation might disrupt interactions with D523 or the backbone of G527?

      The reviewer brings up a good point. We believe the phenotype seen is due to a different strength in the interaction between lipids and proteins, however, disrupted interaction with other residues is a valid alternative explanation. We agree that the suggested experiments will further clarify the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      Similarly, the effects of single lysine-to-isoleucine (K435I or K536I) mutations are not explored.

      The observed effect might be caused by only one of these substitutions.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      I also wanted to take this opportunity to ask a couple of philosophical (?) questions about using a mammalian system to study ion channels that have evolved to function in plants. Your study highlights the intimate relationship between the lipid bilayer and protein function/mechanosensitivity. Plant cells contain high levels of sterols and cerebrosides that would significantly affect both cell stiffness and the specific interactions that can be formed between the protein and the lipid bilayer. I wonder if the properties of the lipid bilayer might shift the thresholds for poke and/or stretch stimuli and if structural elements that do not appear to have a major role in mechanosensation in a mammalian cell (e.g., BLD) might be very influential in a lipid environment that more closely resembles that of a plant?

      Conversely, is it possible that OSCA channels are not poke-sensitive in plant cells? These questions are beyond the scope of your study, but they might be a nice addition to your discussion.

      The reviewer poses a great question. Electrophysiological approaches for studying plant mechanosensitive channels suffer the limitation of not being able to fully reconstitute the environment of a plant cell. To be able to patch the cell, the cell wall needs to be disposed of, which eliminates the tension generated from this structure onto the membrane. In that sense, performing these assays in plant cells or another system would not give us a fully accurate picture of the physiological thresholds of these channels. Given this limitation, we performed our study with mammalian cells given our expertise with them. Like the reviewer, we are also intrigued by the effect of different membrane compositions on the behavior of OSCA channels and how these channels will behave under physiological conditions, but we agree with the reviewer that these questions are out of the scope of our work. To address this point, in line #294 we have added: “It is also important to note that the membrane of a plant cell contains a different lipid composition than that of HEK293 cells used in our assays, and thus these lipids, or the plant cell wall, may alter how these channels respond to physiological stimuli.”

      Line 313 For structural studies, human codon-optimized OSCA3.1. Could you please clarify what this means?

      We have changed the phrase to “For structural studies, the OSCA3.1 (UniProt ID: Q9C8G5) coding sequence was synthesized using optimized codons for expression in human cells and subsequently cloned into the pcDNA3.1 vector” in line #327 to clarify this sentence.

      As a final comment, in the methods you use references to previously published work. I would strongly encourage you to replace these with experimental details.

      We understand the reviewer’s argument. However, this article falls under eLIFE’s Research Advances and will be linked to the original published work to which we reference the method. As suggested in the guidelines for this type of article, we only described the methods that were different from the original paper.

      Reviewer #2 (Recommendations For The Authors):

      (1) In line 85, provide C-alpha r.m.s.d. values for the structural alignment among OSCA3.1, OSCA1.1, and OSCA1.2 protomers.

      As requested, we have added the C-alpha RMSD in line #86.

      (2) In line 90, should the figure reference to Fig. 1d be Fig. 1e?

      We thank the reviewer for catching this error. We have corrected it in the manuscript.

      (3) In lines 89-94, what putative lipid is it resolved in the OSCA3.1 pore? Can the authors assign the lipid identity? Is this the same or different from the lipids resolved in OSCA1.2, OSCA1.1, and TMEM63?

      In the model, we have built the lipid as palmitic acid to represent a lipid tail, but the resolution in this area makes it difficult to ascertain the identity of said lipid, hence we cannot compare to lipids in other orthologs.

      (4) In lines 115-121, the authors describe the presence of AHs and their functional roles in MscL and TMEM16. It will be more informative if the authors can add figures to show the structure of MscL and highlight the analogous AH. In addition, the current Supplementary Fig. 6 is not informative so it should be improved. It is not clear to the reviewer why that stretch of helix in TMEM16 is equivalent or analogous to the AH in OSCAs, either sequence alignment or a detailed structural alignment is helpful to address this point. Also, in lines 120-121, it says this helix in TMEM16 "does not present amphipathic properties", please show the sequence or amphipathicity of the helix.

      We thank the reviewer for the feedback on this figure. Supplementary Fig. 6 has been thoroughly modified to address the reviewer’s concerns. We now include a panel showing the structure of MscL and its amphipathic helix. We have modified the alignment of OSCA3.1 to a TMEM16 homolog to make clearer the homologous positioning of the helices in question and zoom in to show their sequences.

      (5) In discussion, lines 249-257, the authors referred to a recent study that suggested three evolutionarily coupled residue pairs located on BLD and TM6b. The authors speculate that the reason they did not observe a significant effect of channel response to poke/stretch stimuli in the BLD swapping between OSCA1.2 and 3.1 is due to the 2 of 3 salt bridges remaining for the residue pairs. To test the importance of these residue pairs and their coupling for channel gating, instead of swapping the entire BLD, can the authors systematically mutate the residue pairs, disrupt the salt-bridge interactions, and analyze the effect on channel response to mechanical force?

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      (6) The reviewer suggests the authors tone down the elaboration of polymodal activation of OSCA by membrane poking and stretch.

      We believe the idea of polymodal activation is sufficiently toned down as we only postulate it as a possibility and following we give an alternative explanation based on methodological limitations: “Nonetheless, the discrepancy could be due to inherent methodological differences between these two assays, as whole-cell recordings during poking involve channels in inaccessible membranes (at the cell-substrate interface) and channel interactions with extracellular and intracellular components, while the stretch assay is limited to recording channels inside the patch.”

      (7) In lines 81-83, the authors described the BLD as showing increased flexibility, and the EM map at this region is less well resolved for registry assignment. In the method for cryo-EM image processing and Supplementary Fig. 1, the authors only carried out 3D refinement and classification at the full channel level. Have the authors attempted to do focus refinement or classification at the BLD domain in order to improve the local resolution or to sort out conformational heterogeneity? The reviewer suggests doing so because the BLD domain is a hot spot that the authors have proposed to play an important role in OSCA mechanosensation. Conformational changes identified in this region might provide insights into its role in the channel function.

      We thank the reviewer for this suggestion. We have performed focused classification on the BLD with and without surrounding regions and, in our hands, it did not improve the resolution or provide further insights.

      Reviewer #3 (Recommendations For The Authors):

      Here are a few specific minor corrections that should be addressed

      (1) In lines 117-135, in the discussion of Figure 2, the data shows an apparent increase in the poking threshold to gate W75K/L80E. The substantial increase in the depth required to gate the channel suggests that these channels are less sensitive to poking. Would it be possible to compare the depth at which these two patches show activity and the depth at which the other 22 cells ruptured? Line 161 mentions that the rupture threshold of HEK cells is close to the gating of OSCA3.1 at 13.8 µm.

      The distance just before the cell ruptured in 22 cells with no response was 12.5 +/- 2.5 um. The distance at which the cells ruptured was 0.5 um more (13 +/- 2.5 n=22). We have added this last value in line #137.

      (2) Would it be possible in Figures 2 panels b and c, 3, and figure 4 to label the WT as WT OSCA1.2?

      We thank the reviewer for pointing this out. We agree this modification will improve the clarity of the figures and have changed the figures to follow the reviewer’s suggestion.

      (3) Can you provide a western blot of the mutations described in Figure 2? This would provide insight into the amount of protein at the cell surface and available to respond to poking, the stretch data shows that these channels are in the membrane but does not show if they are in the membrane in similar quantities.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      (4) The functional differences between the two channels are projected to be tied to several distinct point mutations, however, the data could be strengthened by additional point mutations at all sites to show that the phenotypes are due to the mutations specifically not just any mutation in the region.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

    1. Limits of Reconciliation# When we think about repair and reconciliation, many of us might wonder where there are limits. Are there wounds too big to be repaired? Are there evils too great to be forgiven? Is anyone ever totally beyond the pale of possible reconciliation? Is there a point of no return? One way to approach questions of this kind is to start from limit cases. That is, go to the farthest limit and see what we find there by way of a template, then work our way back toward the everyday. Let’s look at two contrasting limit cases: one where philosophers and cultural leaders declared that repairs were possible even after extreme wrongdoing, and one where the wrongdoers were declared unforgivable.1 Nuremberg Trials# After the defeat of Nazi Germany, prominent Nazi figures were put on trial in the Nuremberg Trials. These trials were a way of gathering and presenting evidence of the great evils done by the Nazis, and as a way of publicly punishing them. We could consider this as, in part, a large-scale public shaming of these specific Nazis and the larger Nazi movement. Some argued that there was no type of reconciliation or forgiveness possible given the crimes committed by the Nazis. Hannah Arendt argued that no possible punishment could ever be sufficient: The Nazi crimes, it seems to me, explode the limits of the law; and that is precisely what constitutes their monstrousness. For these crimes, no punishment is severe enough. It may well be essential to hang Göring, but it is totally inadequate.

      I think the Nuremberg Trials illustrate a critical boundary in the concept of reconciliation. In my view, they show that while legal justice is vital, it may not always provide complete closure or moral resolution, especially for vast atrocities. This challenges us to think deeply about the limits of forgiveness and justice.

    1. Harassment in social media contexts can be difficult to define, especially when the harassment pattern is created by a collective of seemingly unconnected people. Maybe each individual action can be read as unpleasant but technically okay. But taken together, all the instances of the pattern lead up to a level of harm done to the victim which can do real damage. Because social media spaces are to some extent private spaces, the moderators of those spaces can ask someone to leave if they wish. A Facebook group may have a ‘policy’ listed in the group info, which spells out the conditions under which a person might be blocked from the group. As a Facebook user, I could decide that I don’t like the way someone is posting on my wall; I could block them, with or without warning, much as if I were asking a guest to leave my house. In the next section, we will look in more detail about when harassment tactics get used; how they get justified, and what all this means in the context of social media.

      in my opinion, this detailed exploration of the nuanced nature of violence and harassment underscores the complexity of defining and addressing these issues within the frameworks of law and social norms. It leads me to think the fine line between permissible actions and those that cause harm, which totally broaden my views.

    2. You might remember from Chapter 14 that social contracts, whether literal or metaphorical, involve groups of people all accepting limits to their freedoms. Because of this, some philosophers say that a state or nation is, fundamentally, violent. Violence in this case refers to the way that individual Natural Rights and freedoms are violated by external social constraints. This kind of violence is considered to be legitimated by the agreement to the social contract. This might be easier to understand if you imagine a medical scenario. Say you have broken a bone and you are in pain. A doctor might say that the bone needs to be set; this will be painful, and kind of a forceful, “violent” action in which someone is interfering with your body in a painful way. So the doctor asks if you agree to let her set the bone. You agree, and so the doctor’s action is construed as being a legitimate interference with your body and your freedom. If someone randomly just walked up to you and started pulling at the injured limb, this unagreed violence would not be considered legitimate. Likewise, when medical practitioners interfere with a patient’s body in a way that is non-consensual or not what the patient agreed to, then the violence is considered illegitimate, or morally bad. We tend to think of violence as being another “normatively loaded” word, like authenticity. But where authenticity is usually loaded with a positive connotation–on the whole, people often value authenticity as a good thing–violence is loaded with a negative connotation. Yes, the doctor setting the bone is violent and invasive, but we don’t usually call this “violence” because it is considered to be a legitimate exercise of violence. Instead, we reserve the term “violence” mostly for describing forms of interference that we consider to be morally bad. 17.4.2. A Bit of History# In much of mainstream Western thought, the individual’s right to freedom is taken as a supreme moral good, and so anything that is viewed as an illegitimate interference with that individual freedom is considered violence or violation. In the founding of the United States, one thing on people’s minds was the way that in a Britain riddled with factions and disagreement, people of one subgroup could not speak freely when another subgroup was in power. This case was unusual because instead of one group being consistently dominant, the Catholic and Protestant communities alternated between being dominant and being oppressed, based on who was king or queen. So the United States wanted to reinforce what they saw as the value of individual freedoms by writing it into the formal, explicit part of our social contract. Thus, we got the famous First Amendment to the Constitution, saying that individuals’ right to freely express themselves in speech, in their religion, in their gatherings, and so on could not legally be interfered with. As a principle, the concept is pretty clear: let people do their thing. But we do still live in a society which does not permit total freedom to do whatever one wants, with no consequences. Some actions do too much damage, and would undermine the society of freedom, so those actions are written into the law (that is, proscribed) as a basis for reprisals. This happens a few ways: Some are proscribed as crimes that lead to arrest, trial, and possibly incarceration. Some are proscribed as concepts or categories of thing, which a person could use to take someone else to court. For example, copyright infringement doesn’t usually result in someone showing up to arrest and imprison in the States. But if someone believes their copyrights have been violated, they can sue the offending party for damages pay, etc. The concept of copyright is proscribed in law, so it forms the basis for such lawsuits. Beyond what is proscribed by law, there are plenty of other actions and behaviors we don’t want people to be doing in our society, but they are not such as should be written into law. I don’t want my friends to lie to me, generally speaking, but this is not against the law. It would be weird if it was! Plain old lying isn’t proscribed, but perjury is (lying under oath in a court of law). The protections of freedom in the First Amendment were designed to help articulate a separation between what we might not like (e.g., someone having a different faith, or someone lying) and what is actually damaging enough to warrant formal legal mechanisms for reprisal (e.g. perjury). The Catholics and the Protestants don’t need to like each other, but they have the right to coexist in this society regardless of which group currently has a monarch on the throne. 17.4.3. So what is harassment?# One useful way to think about harassment is that it is often a pattern of behavior that exploits the distinction between things that are legally proscribed and things that are hurtful, but not so harmful as to be explicitly prohibit by law given the protection of freedoms. Let’s use an example to clarify. Suppose it’s been raining all day, and as I walk down the sidewalk, a car drives by, spraying me with water from the road. This does not make me happy. It makes me uncomfortable, since my clothes are wet, and it could hurt me if wet clothes means I get so cold I become ill. Or it could hurt me if I were on my way to an important interview, for which I will now show up looking sloppy. But the car has done nothing wrong, from a legal standpoint. There is no legal basis for reprisals, and indeed it would seem quite ridiculous if I tried to prosecute someone for having splashed me by driving near me. In a shared world, we sometimes wind up in each others’ splash zones. Now, suppose it was more dramatic than that. Suppose the car had to really veer to spray me with the puddle, such that they could be described as driving recklessly, if anyone happened to be describing it. This is not the splash zone of regular living; it’s malice. But it’s still not illegal, nor the basis for legal action. Finally, suppose it’s not just one car. There is a whole caravan of cars. I recognize the drivers as classmates whom I don’t get along with. They have planned a coordinated strike, each driving through the puddles so fast I can’t hardly catch a breath between splashes. My bag is soaked; my laptop and phone permanently damaged. Since damaging someone else’s private property is proscribed, I could try to prosecute the drivers. I have no idea if this hypothetical case would get anywhere in a real court, but if I could get a judge onside, they might issue a fine, to be paid by the drivers, to answer for my damages (that is, to pay for the replacement of my private property which was destroyed, specifically my laptop and phone). At a guess, I would suspect that it would be very difficult to get anywhere with such a suit in court. Puddle-based harassment isn’t something that is recognized by law. This is what harassment does: it uses a pattern of minorly hurtful actions, so that the harasser can maintain plausible deniability about intent to harm, or at least, failing that, can avoid formal consequences. When harassment concepts get proscribed, this situation shifts. Think about employment law in the States. Depending on what State you’re in and what sector, employment law does not permit racial harassment in the workplace. This means that if you can show a pattern of repeating behavior which is hurtful and based on racially coded comments, then you might have a viable case for a racial harassment suit. (Practically, this probably doesn’t mean suing. It means notifying HR that you have evidence of the pattern and request that they take disciplinary action. What the law does is say that if the harassing party subsequently sues for something like wrongful termination, the company has a legal basis for construing your evidence as showing a pattern of harassment.) If there were a rise in, or a new recognition of, widespread and harmful puddle-based harassment, we might gather with activists and fight to get puddle-based harassment recognized by law, in order to reduce its occurrence. Not that this would be easy, but it would give us the legal basis for pressing charges when coordinated puddle-attacks occur. Getting the action proscribed by the law doesn’t stop people from taking that action. They are still free to puddle-splash at will. But there would be a possibility of consequences, should their pedestrian victims seek reprisal. Harassment is behavior which uses a pattern of actions which are permissible by law, but still hurtful. Variations: Where a relevant harassment definition exists in law, there can be legal consequences. Other institutions can also make their own harassment policies. The consequences would not arise at the legal level, but at the social level. Many universities have policies about sexual harassment which are much richer and more detailed than statutory law. If behavior is reported which is defined by the university policy as harassment, then they can issue consequences such as suspension of the student. Implicit policies can be implemented as well. I don’t have a formal harassment policy that I require my houseguests to sign before entering my home; but it is my home, and if they start behaving in ways that I consider problematic, I do have the right to kick them out of my house. Harassment in social media contexts can be difficult to define, especially when the harassment pattern is created by a collective of seemingly unconnected people. Maybe each individual action can be read as unpleasant but technically okay. But taken together, all the instances of the pattern lead up to a level of harm done to the victim which can do real damage. Because social media spaces are to some extent private spaces, the moderators of those spaces can ask someone to leave if they wish. A Facebook group may have a ‘policy’ listed in the group info, which spells out the conditions under which a person might be blocked from the group. As a Facebook user, I could decide that I don’t like the way someone is posting on my wall; I could block them, with or without warning, much as if I were asking a guest to leave my house. In the next section, we will look in more detail about when harassment tactics get used; how they get justified, and what all this means in the context of social media.

      The comparison of harassment to being sprayed by oncoming cars effectively emphasizes how difficult it is to identify and deal with harassment, particularly in social media settings where people's individual actions may appear harmless but can have detrimental effects when combined. In the same way that a homeowner may ask someone to leave their home if their behavior becomes undesirable, platforms must have clear policies and procedures in place to deal with such behavior.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02270

      Corresponding author(s): Usha Vijayraghavan

      General Statements

      We thank all three Reviewers for their thorough assessment of our manuscript and their constructive feedback and comments.

      Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1

      We are encouraged by the very positive comments made on the significance of our study that it provides convincing insights on alternative modes of nuclear positioning and division which is an important question in cell biology. We also took all possible suggestions to improve the interpretation of our results, have also added some newer data to address the constructive points raised by the reviewer.

      Major comments:

      1. A) I am concerned about the lethal phenotype caused by slu7 deprivation. Slu7 deficiency causes defective nuclear positioning at the bud in late G2. This phenotype per se should not cause defective mitosis, so slu7 deficiency may also be interfering with other aspects of mitosis which might indeed impinge on cell viability.

      Response: Our data indeed show Slu7 knockdown has severe growth defect when grown on non-permissive media (YPD) where a two-fold difference in O.D. was seen by 12 hours (Supplementary figure 2.B).

      We agree with the reviewer that defective mitosis, arises from several aspects of cell cycle including those in mitosis. The data we present show G2 arrest, small-budded cells with unsegregated nuclei and large-budded cells with segregated nuclei, all which do not progress through cell cycle phases and contribute to the severe growth defect. Further, GO enrichment analysis of deregulated pathways on knockdown of Slu7 support the above findings as various cell cycle related pathways are abnormal in their expression levels. In this study, we have focused on an in depth analysis of the role of Slu7 in a particular window and uncover how it controls nuclear position for progress G2-M phase cell cycle progression. The likely targets and mechanisms by which Slu7 regulates other phases of the cell cycle which needs similar other deeper investigations in future. Our detailed analysis of nuclear movement in Slu7 knockdown cells grown in YPD for 12 hours showed no nuclear movement (Supplementary figure 3B) which is the terminal phenotype. To examine events that lead to nuclear mispositioning phenotype we investigated the dividing slu7kd cells grown in non-permissive media for only 6 hours; under these conditions Slu7 protein is still detected at lower amount (Supplementary figure 1D). From the studies of nuclear position, mitotic spindle position and dynein distribution in mother and daughter cell, we propose that in the dividing cells, the nucleus does not experience enough force to move inside the daughter bud during mitosis. Further, we delineate the role of Slu7 in the splicing of transcripts for PAC1 encoding a protein whose homolog in S. cerevisiae has a proven role in nuclear migration. In live imaging of slu7kd cells that show nuclear segregation at the start of live imaging, new bud was not formed till the end of 60 minutes, implying that are arrested after transition to mitosis. We could speculate a role for Slu7 through regulation of genes involved in mitotic exit or cytokinesis.

      1. B) Supp. Fig4 shows defective mitosis in TBZ, so TBZ may be exacerbating defective mitosis of slu7-deficient cells.

      __Response: __Studies with yeast and mammalian model systems have revealed that the mobility and repair of damaged DNA are compromised upon disruption of microtubules (Wu et al, 2008; Chung et al, 2015; Lottersberger et al, 2015; Lawrimore et al, 2017; Oshidari et al, 2018; Laflamme et al, 2019). These data point to reasons why the mutants in DNA damage checkpoint genes are sensitive to TBZ. In this context, we observed that CnSlu7 knockdown is also sensitive to MMS stress (shown below). In addition, recent work on human Slu7 in Hela cell lines has elucidated the its role in the maintenance of genome integrity by preventing the formation of R-loops (Jiménez et al, 2019). We suggest that TBZ may exacerbate the defective mitosis of Slu7 depleted cells, however, whether it is particular only to mitosis or to the other cellular processes where the microtubules are involved needs further investigation.

      Throughout the figures it can be observed uneven chromosome/nuclear segregation in cells deprived of slu7, however, these mitotic defects have not been mentioned or explored in depth. From Supp Figure 3C it can be inferred that CENP-A segregation is uneven. Is this correct? Is CENP-A-GFP segregation normal?

      __Response: __ It should be noted that in Cryptococcus, the kinetochore remains unclustered during the early phase of cell cycle, cluster to a single punctum at the end of G2 phase and then de-cluster at the end of mitosis. Since this is a highly dynamic process, its technically challenging to measure the intensity CENP-A in mother and daughter cell. In the fixed cell imaging or live imaging data, there are no appreciable differences in intensity of the GFP signal of the tagged proteins (H4 and CENPA). The uneven chromosome/nuclear segregation observed in certain panels images presented are due to technical issues in that particular stack while generating the montage. This has been re-examined and we infer that there are no major differences in the signals from GFP-H4 and GFP - CENPA through mitosis.

      Additionally, taking the cue from the reviewer’s comment, we examined the likelihood of improper chromosome segregation by evaluating if there are any appreciable cell populations that are aneuploid. We revisited our flow cytometry data, we found no significant difference in the population of aneuploid cells between the knockdown strain and wildtype strain grown in non-permissive condition for 12 hours. This data was assessed again in new experiments where we also analyzed by flow cytometry the ipl1 mutant where aneuploidy is reported (Varshney et al, 2019). It has been reported in Cryptococcus neoformans that aneuploid cells are resistance to anti-fungal drug fluconazole. Preliminary experiments showed that slu7kd cells were sensitive to fluconazole and in this assay were similar to wildtype cells. Hence, we speculate that chromosome segregation is normal in Slu7 depleted cells.

      If chromosome segregation is altered upon slu7 deprivation, this might also explain the drop in cell viability and slow growth rates of this condition.

      __Response: __ From live microscopy imaging and flow cytometry data, we believe that the chromosome segregation is normal in Slu7 depleted cells. Dilution spotting in permissive media after growth in non-permissive media revealed that slu7kd cells resumed growth without losing viability, indicating the arrest phenotype associated with the depletion of Slu7 is largely reversible and does not cause chromosome mis-segregation (figure is now added to manuscript as supplementary figure 2D). Prolonged arrest at various cell cycle phase might lead to cell death and hence drop in cell viability.

      The manuscript will improve if authors analyse chromosome segregation for example, by showing time-lapse images of chromosome dynamics during mitosis.

      __Response: __Chromosome dynamics during the mitotic phase is given below. We observe that the chromosome segregation is equal in both mother and daughter bud. The uneven chromosome/nuclear segregation observed in certain panels images presented in original manuscript were due to technical issues while generating the montage.

      The authors perform an RNA seq comparing wild-type cells with slu7 deficiency and detect changes in gene expression, however, they do not explore from this data the percentage of un-spliced introns genome-wide which might be very informative, even more than changes in gene expression, which many of them, might be an indirect consequence of Slu7 deficiency. Authors should re-analyze the RNA seq data looking for unprocessed mRNAs and provide information about the overall impact of slu7 in intron processing.

      __Response: __ A very detailed bioinformatic analysis of the impact on slu7 on global transcriptome and splice pattern, is an ongoing study in the laboratory. The findings are indeed giving good leads which are being validated by further experiments using mini-gene exon-intron constructs. These studies are extensive and form a future manuscript identifying and characterizing intronic features which predispose an intron towards Slu7 dependency. Therefore, it falls outside the scope for this study on the cell biological role of Slu7 on mitosis, specifically nuclear position to ensure faithful mitotic segregation.

      Minor comments:

      __ __1. "Previous studies of slu7 mutants in S. cerevisiae and the conditional knockdown of its S. pombe homolog". Consider replacing homolog with Ortholog.

      Response: The suggestion is well taken, and the word “homolog” has been replaced with word “ortholog”.

      1. A) Taking these results together, we conclude that the inability of the conditional mutant to grow in the non-permissive media is due to impaired progression through the G2-M phase of the cell cycle. Is the G2/M delay the cause of the slow growth phenotype of the Slu7 deficiency?

      Response: From the live microscopy, we note that even when the budding index for mitosis has been reached the nucleus in slu7kd cells is still in the mother cell and spends more time here rather than reaching the bud or bud neck. We present G2/M delay as ONE of the reasons for the slow growth of Slu7 depleted cells. Although we have showed that Slu7 depletion does not activate MAD2 dependent Spindle Assembly Checkpoint, we have not investigated the activation of other cell cycle checkpoints such as G2 DNA damage checkpoint. These are potential new leads as we infer from our RNA seq datasets that CHK1, TEL1, BDR1 and RAD51 show increased expression in Slu7 knockdown condition when compared to wildtype. It is therefore reasonable to conclude that Slu7 might play a role at various cell cycle phases through direct or indirect effect on genes involved in these phases. Delayed positioning of the nucleus during G2/M is one of the major effects that is investigated in depth in this study.

      1. B) If so, growth defects of slu7 deficiency could be suppressed by ectopic expression of G2/M activators.

      Response: We have not tested this possibility, but we predict that expression of G2/M activators would at best offer only partial rescue the growth defect of Slu7 depleted cells since multiple pathways are adversely affected in cells depleted of Slu7.

      In this line of investigation, we have tested the consequences of PAC1 overexpression, as PAC1 expression levels and splicing are affected by loss of Slu7. We report a partial rescue of nuclear position defect during mitosis, yet these cells were arrested at cytokinesis. Further, the unavailability of an array of suitable auxotrophic (or other) markers in this model system makes it technically challenging to do rescue experiments by overexpression of multiple candidate downstream genes.

      Supp Figure 3C, remove the drawing on the right. Adjust times relative to panels.

      Response: The drawing has been removed and the time points have been adjusted.

      1. Tracking the nucleus in wild-type cells with a small bud showed that the nucleus moved into the daughter bud, divided into two, and one-half migrated to the mother bud (Supplementary Figure 3B, top row).

      Please replace the sentence: "one-half" with "one of the daughter nuclei". Additionally, as this nuclear positioning occurring during late mitosis is due to spindle elongation, I would not use the term migrated but "positioned" or "moved". Nuclear movement into the bud, which is referred to as "moved", can indeed be named "migrated".

      Response: The word “migrated” in the above sentence has been replaced with the word “moved”.

      1. Indicates in Figure 2B the marker used (GFP-H4), as in Fig Supp 3B.

      Response: The marker has been indicated in the figure.

      1. Nuclear division initiates in the bud, and one of the divided nuclei with segregated chromosomes migrates back to the mother cell (Figure 2B, top panel, wildtype, quantified in Figure 2C grey bar).

      As mentioned before, I would not name this, nuclear migration as it is the result of spindle elongation, and it can be confusing or misleading for non-expert readers.

      Response: The word “migrate” in the above sentence has been replaced with the word “move”.

      1. These two conclusions should be revised and described in temporal/sequential order.
      2. Thus, we identify that the depletion of CnSlu7 severely affects the temporal and spatial sequence of events during mitosis, particularly nuclear migration and division.
      3. Together, these results confirmed that without affecting the kinetochore clustering, depletion of Slu7 affects nuclear migration during the G2 to mitotic transition in Cryptococcus neoformans.

      Response: We thank the reviewer for bringing out the clarity in the concluding statements. These has now been revised to read as follows:

      “Together, these results confirm that without affecting the kinetochore clustering, depletion of Slu7 affects nuclear movement during the G2 to mitotic transition in Cryptococcus neoformans. Thus, we identify that the depletion of CnSlu7 severely affects the temporal and spatial sequence of events during mitosis, particularly nuclear migration, and division.”

      1. In slu7d cells, in cells with small buds, numerous cMTs were nucleated from the MTOCs, and as the cell cycle progressed, they organized to form the unipolar mitotic spindle (Figure 3A, slu7kd GFP-TUB1 panel, time point 55 mins).

      Please, revise whether the term unipolar mitotic spindle is correct here.

      Response: The word unipolar has been removed.

      1. I suggest including page and line numbers in the manuscript to facilitate revision.

      Response: We regret missing out this formatting guideline. The Page and line numbers have provided.

      Reviewer #2

      We are thankful by the very positive comments on the significance of our work, its novelty and findings being of broad interest to microbiology; splicing; cell cycle and cell division communities. We respond to all comments raised below.

      1. The authors test the Mad2-dependent spindle assembly checkpoint and show that it is not relevant for slu7-depletion. This is as expected if the defect is in nuclear positioning. They could test other checkpoint pathways that would monitor nuclear positioning in budding yeasts. Perhaps they have considered this: Bub2, Bfa1, Tem1, Lte1 mutants? I don't think this experiment is essential for publication, but it could strongly support their model.

      Response: We appreciate the comment on other checkpoints operating during mitosis. However, we have not done these experiments to examine role of components that arrest mitosis (Bub2, Tem1 etc.) in response to spindle or kinetochore damage. We hope the reviewer appreciates that this line of work would require the generation of bub2Δ strain and extensive characterization for their role in checkpoint in Cryptococcus before it can be brought into strains compromised for Slu7.

      __ Minor comments:__ 1. in Figure 3, Dyn1-GFP is imaged and in many of the cells in which Slu7 is depleted, nothing (or very little) can be seen. It is later argued that this is an indirect effect, due to defects in Pac1 and associated functions. Have the authors attempted a Dynein western blot (the 3xGFP tag should be quite sensitive)? It would be good to demonstrate that the Dynein motor complex hasn't simply fallen apart and Dynein been degraded in the slu7-depletion.

      Response: A study in S. cerevisiae has reported the dynein expression does not change in pac1Δ cells (Lee et al., 2003). Since the molecular weight of CnnDYN1 along with the tag is 630kDa, we did attempt the very challenging experiment of western blot to check for the expression levels this very large protein in wildtype and slu7kd cells. Based on the reviewer’s suggestion, we have attempted dot blot of protein lysates from wild type and from slu7kd cells probed with anti GFP antibody for estimating DYN-GFP levels. Untagged WT H99 strain was used as negative control. The same blot was stripped and re-probed for PSTAIRE which served as a loading control. This experiment revealed that dynein levels are same in both wildtype and slu7kd cells.

      in Figure 7: have any intronless genes been tested for rescue of the post-mitotic delay/arrest? This is not necessary for publication, but if any have been tested already, they could be listed here.

      Response: We have not tested intronless genes for their role in the rescue of post mitotic delay/arrest. From the RNA seq data, we observed that most of the genes involved in mitotic exit network (MEN) and cytokinesis were highly expressed in slu7kd cells as compared to the wildtype indicating and indirect role for Slu7 in their expression level. So, we had validated three candidates MOB2, CDC12 and DBF2 by qRT PCR (Supplementary 7.D) and found they were upregulated in slu7kd cells and hence speculate that deregulation of these transcript could contribute to the post mitotic arrest in slu7kd.

      In SFig2C legend make it clear that these cells are HU arrested at time zero. Are the cells in glucose or galactose during HU treatment.?

      Response: We regret the lack of clarity in the legend and the required details have been added. The cells were initially grown in non-permissive media for 2 hours to deplete Slu7 and then HU was added to the non-permissive media and the cell were allowed to grow for 4 hours.

      in SFig4, the TBZ sensitivity isn't very convincing as the slu7kd strain is struggling to grow at all on YPD.

      Response: We agree with the reviewer comment on the growth of slu7kd cells on media YPD containing TBZ. TBZ may exacerbate the defective mitosis of Slu7 depleted cells, however whether it pertains only to mitosis or any cellular processes where microtubules are involved requires further investigation.

      In SFig5 legend the volcano plot needs to be better explained. What are the dashed lines etc. ?

      Response: We regret missing these details on the volcano plot which has now been added to the legend.

      __Reviewer #3 __

      We appreciate the views that our work provides strong evidence to support out conclusions that Cryptococcus neoformans Slu7 controls mitotic progression by efficient splicing of cell cycle regulators and cytoskeletal elements. We have taken all comments of the reviewer into account to revise our manuscript with additional data, and by improving the presentation. The key additional data are summarized below.

      Major comments:

      1) The authors claimed that CnSlu7 is the most divergent among the fungal homologs and closer to its human counterpart (Fig. 1A, Supplementary Fig 1A). -Just based on the phylogenetic tree including limited members, as in Supplementary Fig. 1, it cannot be concluded that CnSlu7 is closer to its human counterpart since the basidiomycete yeast such as C. neoformans itself is more closely positions to humans compared to the ascomycete yeasts S. cerevisiae and Sch. pombe in phylogenetic tree analysis. It is strongly recommended to include other fungal species from the Basidiomycota, such as Ustilago maydis, in phylogenetic analysis in Supplementary Fig. 1. - Conservation analysis among diverse eukaryotes is more meaningful data that the conservation withing the fungi group, so that it is recommended that the data of Fig. 1 A would be replaced with the revised Supplementary Fig 1. -The analysis data on amino acid identities among Slu7 homologues should be presented to support the claim.

      Response: We agree with the reviewer that our data would be better served by an improved analysis of the phylogenetic relationship between various Slu7 homologs. We have therefore reconstructed the phylogenetic tree by including other fungal groups. This is presented here and also in the revised manuscript Supplementary Figure 1A. These data too, show that Cryptococcus (deneoformans and neoformans) Slu7 is the most diverged among its homologs from various fungal species with its closest homologs being other pathogens Puccinia graminis and Ustilago maydis.

      2) Despite that CnSlu7 is the main key subject, the comparative analysis of CnSlu7 to the previously reported Slu7 homologues, in the aspect of functional domain organization, is not provided in the present manuscript. - It was reported that Slu7 contains the four motifs that control its cellular localization and canonical function as a splicing factor, such as a nuclear location signal, a zinc knuckle motif, four stretches of leucine repeats and a lysine-rich domain. Notably, human Slu7 protein is 204 amino acids longer than S. cerevisiae homolog with only 24% identity in the zinc knuckle motif (Molecular Biology of the Cell Vol. 15, 3782-3795). Thus, it is strongly recommended to provide additional information on the conserved and diverged features of CnSlu7 compared to other Slu7 homologs as a part of revised Figure.

      Response: The multiple sequence alignment of Cryptococcus neoformans Slu7 with its fungal and higher eukaryote homologs such as human Slu7 and plant Slu7 proteins revealed that only the CCHC zinc finger motif is highly conserved. We do not detect conservation in the nuclear localization signal, stretch of leucine repeats and lysine rich domain except for leucine 3 stretch near the C terminal. This additional information is presented in revised Figure 1A.

      3) The manuscript clearly demonstrated that one of key targets of Slu7-mediated splicing is PAC1 in C. neoformans. Considering, Pac1 is also conserved from S. cerevisiae to human, it could be speculated that the defect of Slu7 can affect nuclear migration in other fungal species and human cells by inefficient splicing of PAC1, despite striking differences in their nuclear position during cell division. Please discuss this possibility or provide the qRT-PCR analysis data of PAC1 homologs in the available fungal Slu7 mutant strains.

      Response: Cell cycle arrest phenotypes of splicing factor mutants (studied largely in budding and fission yeast) results from inefficient pre-mRNA splicing of cell cycle-related genes. Slu7 is a well characterized second step splicing factor in S. cerevisiae where in vitro splicing assays with ACT1 minigene transcripts with a modified single intron showed ScSlu7 is dispensable for splicing when the branchpoint to 3'SS distance is less than seven nucleotides in the mini transcript (Brys and Schwer, 1996). In fission yeast we reported the effects of metabolic depletion of Slu7, which is an essential gene (Banerjee et al., 2013) and showed unexpectedly that in addition to BrP to 3'SS distance new intronic features contributors of dependency of fission yeast intron containing transcripts on Slu7 functions. The work also showed in multi-intronic transcripts its role is intron-specific and thus the candidate gene/ transcript is likely to be to dependent on Slu7 by virtue of the intronic features and not its biological function. In this study a splicing dependent role of CnSlu7 in cell cycle progression is investigated where based on a strong nuclear mis-positioning phenotype we narrowed on PAC1 transcripts as one of targets. We show PAC1, encoding a cytoskeletal factor, has introns dependent on CnSlu7 for efficient splicing and show partial rescue of nuclear position in strain complemented with expression of an intronless PAC1 gene. In this scenario, while it is likely that in other species where PAC1 exon-introns nucleotide sequences are similar to that in Cryptococcus a role for Slu7 may be predicted, for validation by other experimentalists.

      Interestingly, PAC1 in S. cerevisiae is an intronless gene and its homolog is not annotated in S. pombe. In human cell lines, knockdown of Slu7 by siRNA resulted in metaphase arrest by inefficient splicing of soronin – which is crucial in sister chromatid cohesion and correct spindle assembly, according to recent research in human cell lines (Jiménez et al., 2019).

      Hence the roles of splicing factor in cell cycle is through splicing of targets involved in cell cycle wherein the targets regulated by splicing factor may or may not be conserved in other species.

      Minor comments:

      General points 1) Provide information on the marker sizes in the data of qRT-PCR analysis presented in Figures 5 and 6, and Supplementary Fig 2A.

      Response: We regret the omission of this technical data and have corrected the same by providing the marker sizes in all the figures.

      2) Please unify the format of gene names. Some genes were written with superscript of "+", such as CLN1+ and PAC1+ in Fig. 4. What does "+" mean in the gene names?

      Response: We have taken the suggestion to carefully review the nomenclature of genes and their expressed transcripts as is typical for Cryptococcus neoformans. To depict the wildtype form of transcript we had used +. Thus CLN1+ was used to denote Cyclin 1 cellular transcript from expressed from its own locus without any modification of promoter or the intronic features.

      3) Supplementary Figure 1 C: Please correct "Slu7KD" 6 hrs YPD to "slu7kd" 6 hrs YPD.

      Response: This error has been corrected.

      4) Supplementary Figure 2A: What do "mRNA" and "No RT29X/", respectively, indicate?

      Response: The mRNA indicates the spliced form across any intron after intron is spliced out, so denotes exon-exon sequences in the mRNA. The reactions marked as “No RT 29 X” denote semi- quantitative PCR performed on DNase treated RNA sample, without reverse transcription to generate the cDNA. These reactions were done to confirm that there is no genomic DNA present in the RNA sample used for reverse transcription reaction of the cellular transcripts. Some of these details are now included in the Supp Fig 2A legend.

      5) Supplementary Figure 4C: Please provide brief explanation in the text on why the authors employed mad2Δ slu7kd cells.

      Response: In Page 8, line 6, we had provided the rationale for generating and studying mad2Δ slu7kd strain. This is recapitulated below:

      “To investigate whether Slu7 knockdown triggers the activation of spindle assembly checkpoint (SAC), we generated a strain with conditional slu7kd in cells with mad2Δ allele and the GFP-H4 nuclear marker.”

      6) Supplementary Figure 6D legend: Please correct the description of "slu7kd SH:Slu7 FL" from "expressing intronless PAC1" to "expressing full length of SLU7".

      Response: The error in the legend is regretted and this has been corrected.

      7) Supplementary Figure 7D: The authors confirmed that MOB2, CDC12, and DFB1 were expressed at higher levels in slu7kd when compared to wildtype. Please briefly explain in the text why the expression level of these genes in slu7kd was mentioned.

      Response: slu7kd cells expressing intronless Pac1 arrest post nuclear division. Revisiting our transcriptomic data, we found that genes involved in mitosis exit network and cytokinesis, such as DFB1, MOB2, CDC12, BUD4, and CHS2, were deregulated in slu7kd when compared to wildtype. We confirmed the same by performing qRT PCRs for three candidates, MOB2, DBF1 and CDC12 and that these transcript were expressed at high levels in knockdown when compared to wildtype.

      8) The species name should be written as abbreviation after the first mention. For example, please correct Cryptococcus neoformans to C. neoformans throughout manuscript.

      Response: The suggestion is well taken, and the required edits have been made throughout the text.

      9) Please unify the format of paper titles listed in References.

      Response: This formatting error is regretted and corrected to have all references in a single format.

      10) No page information for Hoffmann et al (2010) in References.

      Response: This omission is corrected.

      11) Update the information on the published journal of Chatterjee et al. (2021) in References.

      Response: This omission is regretted and is now corrected.

      12) Information on the authors, title, published journal and pages should be provided for the papers (Yadav and Sanyal, 2018; Sridhar et al., 2021) in Supplementary Table 1, which were not included in the main Reference list.

      Response: The references are now added to the main list.

      References used for addressing the reviewer’s comments:

      1. Chung DKC, Chan JNY, Strecker J, Zhang W, Ebrahimi-Ardebili S, Lu T, Abraham KJ, Durocher D, Mekhail K (2015) Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun doi:10.1038/NCOMMS8742.
      2. Jiménez M, Urtasun R, Elizalde M, Azkona M, Latasa MU, Uriarte I, Arechederra M, Alignani D, Bárcena-Varela M, Alvarez-Sola G et al (2019) Splicing events in the control of genome integrity: Role of SLU7 and truncated SRSF3 proteins. Nucleic Acids Res 47: 3450–3466. doi:10.1093/nar/gkz014.
      3. Laflamme G, Sim S, Leary A, Pascariu M, Vogel J, D’Amours D (2019) Interphase Microtubules Safeguard Mitotic Progression by Suppressing an Aurora B-Dependent Arrest Induced by DNA Replication Stress. Cell Rep 26: 2875-2889.e3. doi:10.1016/J.CELREP.2019.02.051.
      4. Lawrimore J, Barry TM, Barry RM, York AC, Friedman B, Cook DM, Akialis K, Tyler J, Vasquez P, Yeh E et al (2017) Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol Biol Cell 28: 1701–1711. doi:10.1091/MBC.E16-12-0846.
      5. Lee WL, Oberle JR, Cooper JA (2003) The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J Cell Biol. doi:10.1083/jcb.200209022.
      6. Lottersberger F, Karssemeijer RA, Dimitrova N, De Lange T (2015) 53BP1 and the LINC Complex Promote Microtubule-Dependent DSB Mobility and DNA Repair. Cell 163: 880–893. doi:10.1016/J.CELL.2015.09.057.
      7. Oshidari R, Strecker J, Chung DKC, Abraham KJ, Chan JNY, Damaren CJ, Mekhail K (2018) Nuclear microtubule filaments mediate non-linear directional motion of chromatin and promote DNA repair. Nat Commun doi:10.1038/S41467-018-05009-7.
      8. Varshney N, Som S, Chatterjee S, Sridhar S, Bhattacharyya D, Paul R, Sanyal K (2019) Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans. PLoS Genet doi:10.1371/journal.pgen.1007959.
      9. Wu G, Zhou L, Khidr L, Guo XE, Kim W, Lee YM, Krasieva T, Chen PL (2008) A novel role of the chromokinesin Kif4A in DNA damage response. Cell Cycle 7: 2013–2020. doi:10.4161/CC.7.13.6130.
    1. "I don't remember. Are you measuring yourself by that?""You waited six months, and you do too remember. And this is five months. And we're not measuring anything. William and I have known each other longer than five months, but we've been together - you know, as a couple - five months. And I'm almost twenty-three, which is two years older than Mom was. And don't tell me it was different when you guys did it.""No," he heard himself say. "It's pretty much the same, I imagine?"

      In this section, I noticed the dynamic both Ballinger and Melanie have is very odd, especially the way she assumes telling her father about her significant other when the truth is the contrary. By the beginning of the conversation, we can already see that Melanie and Ballinger have a close relationship with each other, but Melanie seems to have grown distant from her family and made some choices she knew her parents would not be proud of once she told them the truth. However, she has an idea; she can start the conversation by slowly introducing her father Coombs by talking a little bit more about him and quickly assuming they already had this conversation before which does not give her father the chance to think properly about the situation except to accept it. That strategy did not work for long once her father started to figure out how serious her relationship was with Coombs as well as how impossible it was to share Melanie his problems with his wife, Mary. Ballinger and Melanie seemed to have a close relationship with each other, but this situation may drift the, away for a long time.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      TRIP13/Pch2 is a conserved essential regulator of meiotic recombination from yeast to humans. In this manuscript, the authors generated TRIP13 null mice and Flag-tagged TRIP13 knock-in mice to study its role in meiosis. They demonstrate that TRIP13 regulates MORMA domain proteins and is essential for meiotic completion and fertility. The main impact of this manuscript is its clarification of the in vivo function of TRIP13 during mouse meiosis and its previously unrecognized role as a dose-sensitive regulator of meiosis.

      Strengths:

      Two previously reported Trip13 mutations in mice are both hypomorphic alleles with distinct phenotypes, precluding a conclusion on its function. This study for the first time generated the TRIP13 null mice, definitively revealing the function of TRIP13 in meiosis. The authors also show the novel localization of TRIP13 at SC and its independence from the axial element components. The finding of dose-sensitive regulation of meiosis by TRIP13 has implications in understanding human meiosis and disease phenotypes.

      Weaknesses:

      This manuscript would be more impactful if more mechanistic advancements could be made. For example, the authors could follow up with one of the new interactors identified by MS to offer new insight into the molecular function of TRIP13.

      We agree that it would be interesting to follow up on new candidate interactors but think that it would be more feasible to follow up on them in future studies.

      Reviewer #2 (Public Review):

      Summary and Strengths:

      In this manuscript, Chotiner and colleagues demonstrated the localization of TRIP13 and clarified the phenotypes of Trip13-null mice in mouse meiosis. The meiotic phenotypes of Trip13 have been well characterized using the hypomorph alleles in the literature. However, the null phenotypes have not been examined, and the localization of TRIP13 was not clearly demonstrated. The study fills these important knowledge gaps in the field. The demonstration of TRIP13 localization to SC in mice provides an explanation of how HOMRA domain proteins are evicted from SC in diverse organisms. This conclusion was confirmed in both IF and TRIP13-tagged Tg mice. Further, the phenotypes of Trip13-null mice are very clear. The manuscript is well crafted, and the discussion section is well organized and comprehends the topic in the field. All in all, the manuscript will provide important knowledge in the field of meiosis.

      Weaknesses:

      The heterozygous phenotypes demonstrate that TRIP13 is a dosage-sensitive regulator of meiosis. In relation to this conclusion, as summarized in the discussion section, other mutants defective in meiotic recombination showed dosage-sensitive phenotypes. However, the authors did not examine meiotic recombination in the Trip13-null mice.

      Meiotic recombination was extensively characterized in Trip13 severe hypomorph mutants in two previous studies: gamma-H2AX, BLM, BRCA1, ATR, RPA, RAD51, DMC1, MLH1 (Li and Schimenti, 2007; Roig et al., 2010). All the meiotic defects in our Trip13-null mice were also present in Trip13 severe hypermorph mutants: meiotic arrest, defects in chromosomal synapsis, asynapsis at chromosomal ends, and accumulation of HORMAD1/2 on the SC axis. Therefore, the defects in meiotic recombination in Trip13-null mice are expected to be similar to those in Trip13 severe hypermorph mutants and thus we did not examine the proteins involved in meiotic recombination in the Trip13-null mutant.

      Reviewer #3 (Public Review):

      Summary:

      The authors perform a thorough examination of the phenotypes of a newly generated Trip13 null allele in mice, noting defects in chromosome synapsis and impact on localization of other key proteins (namely HORMADs) on meiotic chromosomes. The vast majority of data confirms observations of several prior studies of Trip13 alleles (moderate and severe hypomorphs). The original or primary aims of the study aren't clear, but it can be assumed that the authors wanted to better study the role of this protein in evicting HORMADs upon synapsis by studying phenotypes of mutants and better characterizing TRIP13 localization data (which they find localizes to the central element of synapsed chromosomes using a new epitope-tagged allele). Their data confirm prior reports and are consistent with localization data of the orthologous Pch2 protein in many other organisms.

      Strengths:

      The quality of data is high. Probably the most important data the authors find is that TRIP13 is localized along the CE of synapsed chromosomes. However, this was not unexpected because PCH2 is also similarly localized. Also, the authors use a clear null (deletion allele), whereas prior studies used hypomorphs.

      Weaknesses:

      There is limited new data; most are confirmatory or expected (i.e., SC localization), and thus the impact of this report is not high. The claim that TRIP13 "functions as a dosage-sensitive regulator of meiosis" is exaggerated in my opinion. Indeed, the authors make the observation that hets have a phenotype, but numerous genes have haploinsufficient phenotypes. In my opinion, it is a leap to extrapolate this to infer that TRIP13 is a "regulator" of meiosis. What is the definition of a meiosis regulator? Is it at the apex of the meiosis process, or is it a crucial cog of any aspect of meiosis?

      TRIP13 is not haploinsufficient, as Trip13 heterozygotes were still viable and fertile (albeit with defects in meiosis). TRIP13 is an ATPase and changes the conformation of meiosis-specific proteins such as HORMAD proteins. TRIP13 is essential for meiosis and its mutations cause defects in both meiotic recombination and chromosomal synapsis. Reviewer 1 stated that “TRIP13/Pch2 is a conserved essential regulator of meiotic recombination from yeast to humans”. Therefore, we feel that TRIP13 can be called a regulator of meiosis.

      Reviewer #1 (Recommendations For The Authors):

      A schematic illustration of SC structure, the components involved, and the main finding, would be helpful for readers to better understand the advancement made by this study.

      We have now added a schematic illustration in a new panel - Figure 7C.

      Fig. 1B, the stage with diplotene cells should be XII.

      The pachytene cells (Pac) were mis-labelled as diplotene cells. Corrected.

      Fig. 1C, color mislabeled.

      Corrected.

      Reviewer #2 (Recommendations For The Authors):

      The manuscript will provide important knowledge in the field of meiosis. I support the publication of this study. I have some suggestions to improve and polish the manuscript.

      Major points:

      (1) The heterozygous phenotypes demonstrate that TRIP13 is a dosage-sensitive regulator of meiosis. In relation to this conclusion, as summarized in the discussion section, other mutants defective in meiotic recombination showed dosage-sensitive phenotypes. Given the function of HORMAD1 in meiotic recombination, it would be informative if the authors could examine how major makers of meiotic recombination behave in Trip13-null meiosis.

      Please see our response to Weaknesses from Reviewer #2.

      (2) Relating to the above point, the complete lack of synapsis on the sex chromosomes in the Trip13-null meiosis is impressive. This result raises a question as to whether the pathway to designate XY-obligatory crossover (which can be detected with large foci of ANKRD31 and MEI4/REC114 at PAR) is affected or not. It would be interesting to examine whether the ANKRD31 and MEI4/REC114 foci are present on PAR in Trip13-null meiosis.

      We have performed immunofluorescent analysis of REC114 in spermatocytes. In Trip13-null pachytene-like spermatocytes, X and Y chromosomes are not synapsed. REC114 still formed one focus each on the unsynapsed X and Y chromosomes. We have added this new data in the Results as a new supplementary figure (Figure 4 -supplement 1).

      (3) Figure 4 can be improved if there are quantified data for each phenotype. These phenotypes look nearly complete, but it would be informative to show the penetrance of these phenotypes.

      Because some chromosomes have unsynapsed ends, resulting in two centromere or telomere foci, the total number of centromere or telomere foci is always higher in Trip13-null pachytene-like spermatocytes than wild type pachytene spermatocytes. Therefore, we did not count the foci of centromeres and telomeres. Consistently, the centromere and telomere markers localized as expected in both wild type and Trip13-null spermatocytes.

      (4) I am not fully convinced by these photos: "synapsed sister chromatids (Figure 6B)" and "Sycp2-/- spermatocytes formed short stretches of synapsis (Figure 6C)". The authors may try confocal microscopy with super-resolution deconvolution as they did for other data.

      These have been previously demonstrated. The “synapsed sister chromatids (Figure 6B)” were previously demonstrated by confocal microscopy with super-resolution deconvolution (Guan et al., 2020). The short stretches of synapsis in Sycp2-/- spermatocytes was previously demonstrated by electron microscopy (Tripartite SC structure) and SYCP1 immunofluorescence (Yang et al., 2006). We have revised the text by citing the previous evidence and the publications.

      Minor points:

      (1) Line 19-21: "Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC". These findings confirm the previously reported phenotypes of the Trip13 hypomorph alleles. This information can be added to the abstract. Otherwise, it sounds like these are totally new findings, as written.

      This information is now added to the abstract: “These findings confirm the previously reported phenotypes of the Trip13 hypomorph alleles.”

      (2) The introduction section seems too long and contains unnecessary information. Some molecular details that are not touched in the result section can be deleted (e.g., Line 65-73).

      We would like to keep the molecular details on the two conformation states, as it provides biochemical background on TRIP13-HORMAD interactions.

      (3) Introduction, Line 92. A rationale can be added as to why the authors characterized the Trip13-null allele.

      a rationale has been added as follows: “To determine the effect of complete loss of TRIP13, we characterized Trip13-null mice.”

      (4) Line 205: Typo "TRRIP13". Corrected.

      Reviewer #3 (Recommendations For The Authors):

      Just a few recommendations:

      (1) In my opinion, the title is an overreach. "Regulator" invokes other concepts such as transcription factors.

      Please see our explanation in response to weaknesses from Reviewer #3.

      (2) The first sentence of the results deals with TRIP13 expression in only 3 tissues. The authors might look at more comprehensive RNA-seq data from mice and humans.

      We examined TRIP13 protein expression in 8 mouse tissues by WB and found that TRIP13 protein was abundant in testis but present at a very low level in ovary and liver (Figure 1A). We feel that readers can easily look up the relative transcript levels of Trip13 in more tissues from mice and humans from NCBI database under “Gene”.

      (3) The null allele is semi-lethal. Is body size affected? Were the mice abnormal in any other ways, given that TRIP13 has been implicated in other diseases and processes, and is expressed in other tissues (TRIP13 stands for Thyroid receptor interacting protein).

      The body weight of 2-3 month-old males was not significantly different between wild type (24.3±2.8 g, n=5) and Trip13 KO mice (22.8±1.7 g, n=5, p=0.3, Student’s t-Test). We have included the body weight information in the revised manuscript. We didn’t observe abnormal somatic defects in the viable Trip13-null mice, nor did the authors report any in the Trip13 hypomorph mutants in two previous studies (Li and Schimenti, 2007; Roig et al., 2010).

      (4) Line 276 : It would be nice to elaborate on the "spatial explanation."

      We meant that TRIP13 localizes to SC while HORMAD proteins are removed from SC upon chromosomal synapsis, thus providing a spatial explanation. However, we have now deleted “spatial”.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      However, there are several concerns to be explained more in this study. In addition, some results should be revised and updated.

      Thank you for your comments. The concerns were addressed by the description and experiment.

      Some results were revised and updated accordingly.

      Reviewer #2 (Public Review):

      The minor weakness of the study is inconsistent use of terminology throughout the manuscript, occasional logic-jump in their flow, and missing detailed description in methodologies used either in the text or Materials and Methods section, which can be easily rectified.

      Thank you for your review. We have revised the manuscript and corrected errors according to your comments.

      Reviewer #3 (Public Review):

      Importantly, besides the Miwi ubiquitination experiment which is performed in a heterologous and therefore may not be ideal for extracting conclusions, the possible involvement of ubiquitination was not shown for any other proteins that the authors found that interact with FBXO24. Could histones and transition proteins be targets of the proposed ubiquitin ligase activity of FBXO24, and in its absence, histone replacement is abrogated?

      Thank you for your comments. The histones and transition proteins were not found in the immunoprecipitates of FBXO24, suggesting they are not the direct targets of FBXO24, shown in Figure S3G.

      Miwi should be immunoprecipitated and Miwi ubiquitination should be detected (with WB or mass spec) in WT testis.

      We agree with this suggestion. In the revision, the expression and ubiquitination of MIWI were detected in WT testis by the immunoprecipitation and ubiquitination assay, as shown in Figure 8H.

      Therefore, the claim that FBXO24 is essential for piRNA biogenesis/production (lines 308, 314) is not appropriately supported.

      We appreciate the comment. We have revised the description and modified the claim on page 11.

      Reviewing Editor's note for revision

      (1) As noted by all three reviewers, as currently written the rationale to focus on MIWI is not entirely clear. A transitional narrative to focus on MIWI needs to be provided as well as an explanation for how the absence of FBXO24 as an E3 ubiquitin ligase is responsible for the observed mRNA and protein differential expression.

      We appreciate your comments. We have supplemented the transitional narrative by focusing on MIWI and explained mRNA and protein differential expression upon FBXO24 deletion, shown on Page 7 and Page 13, respectively.

      (2) As it can be indirect, mass spec detection of MIWI in testis co-IP and MIWI ubiquitination should be detected (with WB or mass spec) in WT testis.

      In the revision, the expression and ubiquitination of MIWI were detected in WT testis by the immunoprecipitation and ubiquitination assay, as shown in Figure 8H.

      (3) Please tone down the claim that FBXO24 is essential for piRNA biogenesis/production as it requires further evidence.

      We have revised the description and modified the claim on page 11.

      (4) Ontology analysis of the genes with abnormally spliced mRNAs to provide an explanation for developmental defects.

      In the revision, we have performed the ontology analysis and provided new data regarding the abnormally spliced genes, as shown in Figure S4D.

      Reviewer #1 (Recommendations For The Authors):

      Major comments

      (1) The authors performed mainly with the WT (or knock-in) and Fbxo24-knockout mouse model. Do the heterozygous males and their sperm have any physiological defects like FBXO24-deficient mice?

      This is a good question. We did the phenotype analysis and found that heterozygous males are all fertile, and their sperm do not have any physiological defects.

      (2) Fbxo24-KO sperm carries swollen mitochondria. How do the mitochondria affect sperm function?

      Thank you for raising this interesting question. Based on our data and published literature, the defective mitochondria were associated with energetic disturbances and reduced sperm motility, as shown on Page 12.

      (3) TEM images show that Fbxo24-KO spermatids carry swollen mitochondria and enlarged chromatoid bodies. How the swollen mitochondria and enlarged chromatid are defective for sperm motility and flagellar development, requires more explanation. In addition, it is unclear how the enlarged diameter of the chromatoid body is critical for normal sperm development.

      Thank you for your comments. The chromatoid bodies are considered to be engaged in mitochondrial sheath morphogenesis. Analysis of the chromatoid bodies' RNA content reveals enrichment of PIWI-interacting RNAs (piRNAs), further emphasizing the role of the chromatoid bodies in post-transcriptional regulation of spermatogenetic genes. We added this explanation on Page 12-13.

      (4) The authors only show band images to compare the protein amounts between WT and KO sperm and round spermatids. As the blots for loading controls are not clear, the authors should quantify the protein levels and perform a statistical comparison.

      We quantified the protein levels and performed a statistical comparison, as shown in Figure S3B.

      (5) The authors show the defective sperm head structure from Fbxo24-KO sperm in Figure 5. However, the Fbxo24-KO sperm heads seem quite normal in Figure 3. How many sperm show defective sperm head structure? In addition, the authors observed altered histone-to-protamine conversion in sperm, but it is unclear whether the altered nuclear protein conversion causes morphological defects in the sperm head.

      We appreciate the comments. In our study, we found over 80% of Fbxo24 KO sperm showed defective structure in the sperm head. Altered histone-to-protamine conversion caused the decondensed nucleus of Fbxo24 KO sperm. Notably, in many knockout mice studies, impaired chromatin condensation is frequently associated with abnormal sperm head morphology, as shown in reference 15 of Page 8.

      (6) The authors compare the protein levels of RNF8, PHF7, TSSK6, which participate in nuclear protein replacement in sperm. However, considering the sperm is the endpoint for the nuclear protein conversion, it is unclear to compare the protein levels in mature sperm. The authors might want to compare the protein levels in developing germ cells.

      Thank you for your comment. Yes, we actually detected the protein levels of RNF8, PHF7, and TSSK6 in the testes, not in sperm. We have corrected it in the Figure 5E. We apologize for our carelessness.

      (7)This reviewer suggests describing more rationales for how the authors focus on the MIWI protein. Also, it is wondered whether MIWI is also detected from testis co-IP mass spectrometry.

      We agree with this suggestion. Since MIWI was a core component of CB and also identified as an FBOX24 interacting partner from our immunoprecipitation-mass spectrometry (IP-MS) (Table S1), we focused on the examination of MIWI expression between WT and Fbxo24 KO testes. We have added this description in the revision (see lines 191-193 on page 7).

      (8) The authors need to provide a more detailed explanation for how the altered piRNA production affects physiological defects in germ cell development. In addition, it will be good to describe more how the piRNAs affect a broad range of mRNA levels.

      Thank you for your comments. The previously published studies have demonstrated that piRNAs could act as siRNAs to degrade specific mRNAs during male germ cell development and maturation. We have cited these studies on lines 369-372 of Page 13.

      (9) The authors observed an altered splicing process in the absence of FBXO24. However, it is a little bit confusing how the altered splicing events affect developmental defects. Therefore, the authors should state which mRNAs have undergone abnormal splicing processes and provide ontology analysis for the genes.

      We have performed the ontology analysis and showed the new data in Figure S4D.

      Minor comments

      (1) Figure 1A-C - Statistical comparison is missed. Numbers for biological replication should be described in corresponding legends.

      Thank you for your careful review. We have provided the statistical comparison and the numbers for biological replication in the legends of Figure 1A-C.

      (2) Figure 1E, F - Current images can't clearly resolve the nuclear localization of the FBXO24 testicular germ cells. To clarify the intracellular localization, the authors should provide images with higher resolution.

      The resolution of Figure 1E, F was improved, as suggested. Thank you!

      (3) Figure 1E, F - Scale bar information is missing.

      The scale bars of Figure 1E, F were provided.

      (4) It will be much better to show the predicted frameshift and early termination of the protein translation in Fbxo24-knockout mice.

      The predicted frameshift of Fbxo24-knockout mice was added and shown in Figure S1B.

      (5) It is required to provide primer information for qPCR.

      The primer information for qPCR was provided, as shown in Table S7.

      (6) The authors describe that Fbxo24-KO sperm show abrupt bending of the tail. However, the description is unclear and the sperm shown in Figure 3C seems quite normal. The authors should clarify the abnormal bending pattern of the tail and show quantified results.

      Thank you for pointing out this issue. In Fbxo24 KO sperm, abnormal bending of the sperm tails mainly included neck bending and midpiece bending. We have shown them in Figure S3A.

      (7) The authors mention that Fbxo24-KO sperm have swollen mitochondria at the midpiece, but this is also unclear. How many mitochondria are swollen in Fbxo24-KO sperm?

      This is a good question. However, since it is very difficult to observe all of the mitochondria in each sperm using the electronic microscope, we could not quantify the swollen mitochondria in Fbxo24 KO sperm.

      (8) Scale bar information is missed - Fig 3C insets, Fig 3D, Fig 3F insets, 4A insets, Figure 4C insets.

      All the scale bars have been added.

      (9) How many sperm have annulus defects? In Figure 3F, WT sperm does not have an annulus, which could be damaged during sample preparation. Is the annulus defects in Fbxo24-KO sperm consistent?

      Thank you for asking these questions. Based on our results, about 30% of Fbxo24 KO sperm showed defective annulus structure. Since both TEM (Figure 3F) and SEM (Figure 3G) results clearly showed the defective annulus structure of Fbxo24 KO sperm, we believe the annulus defects are consistent and highly unlikely caused by sample preparation.

      (10) A Cross-section image for the endpiece of Fbxo24-KO sperm is not suitable. There is a longitudinal column structure of the principal piece.

      Thank you for your comments. It is difficult to observe a completely longitudinal structure of sperm tail under TEM. The cross-section of the endpiece and principal piece allowed us know the structure of the axoneme, ODFs and fibrous sheath (FS).

      (11) The endpiece of Fbxo24-KO sperm seems to have a normal axoneme. Do all endpieces of Fbxo24KO sperm have normal axoneme? Also, the authors need to describe whether an axonemal structure is damaged and disrupted in all Fbxo24-KO sperm.

      Our TEM data showed the axonemal structure was impaired in the endpiece of Fbxo24 KO sperm (See right panels of Figure 3H). Moreover, based on the ultrastructure analysis of TEM, we found over 90% of Fbxo24 sperm had a damaged axonemal structure.

      (12) Reference blots in Fig 3I, 3J, 4E (left), 5C and 5E are quite faint. The authors should replace the blot images.

      Thank you for pointing out this. We have rerun Western blot multiple times but could not obtain better images due to antibody sensitivity. However, we quantified the protein levels and performed a statistical comparison, as shown in Figure S3B, to establish a good readout from these images for the readers.

      (13) Loading controls are required - 7D-H.

      Done as suggested. Thanks!

      (14) How do the authors measure the midpiece length? From where to where? This should be clarified.

      Good question. We measured the midpiece length from the sperm neck to the sperm annulus by MitoTracker staining. We have clarified this on Page 16.

      (15) How are the bands for Fbxo24 shifted during IP in Fig 7A?

      The protein modification in the interaction may cause the band shift.

      (16) There are several typos throughout the manuscript. Please check carefully and fix them.

      Thank you for your careful review. We have corrected and fixed all the typos as far as we can.

      Reviewer #2 (Recommendations For The Authors):

      Major comments

      (1) Please provide a schematic of HA-Fbxo24 knock-in construct and strategy together with knockout (Figure S2) or even separately early in Figure S1. The description of using the transgenic mouse is mentioned even earlier than the knockout but there are no citations or methods provided in the text other than that listed in Materials and Methods.

      Thank you for your suggestion. As suggested, the schematic of the HA-Fbxo24 knock-in strategy has been supplemented in Figure S2A. The description of using the transgenic mouse has been added to the results, as shown on page 4 of lines 102-103.

      Also, it is not clear to what extent the phenotypic and molecular characterization of HA-transgenic mice is performed. For example, Lines 134-139: The use of Fbxo24-HA labeled transgenic mice results in the rescue of spermatogenesis and fertility as shown in Figure 2F by measuring the litter size. It is not clear how this observation leads the author to state that this rescues defects in spermiogenesis. Please clarify how and what other measures are taken to support this conclusion. Is the observed infertility due to defects in spermatogenesis or spermiogenesis?

      Thank you for your question. We crossed FBXO24-HATag males with FBXO24−/− females to obtain FBXO24−/−; FBXO24-HATag males. We examined the testes volume and histological morphology of FBXO24−/−; FBXO24-HATag males and found that they were similar to FBXO24+/−; FBXO24-HATag littermates, indicating that spermatogenesis was restored, as shown in Figure S2H.

      (2) Line 107 vs Line 114: Please use the terminology spermatogenesis and spermiogenesis consistently throughout the text. Earlier in the introduction, the authors clearly defined that spermatogenesis involves three phases, with the third phase referred to as spermiogenesis. However, the author concludes in the first line that "FBXO24 plays a role during spermatogenesis" while summarizing at the end of the paragraph that this protein is "expressed in haploid spermatids specifically during spermiogenesis". Therefore, it is not clear whether the authors conclude that FBXO24 is important for all of spermatogenesis (line 107) or only for part of spermiogenesis (line 114). Another example is line 219 vs. 238: At this point in the manuscript, it is again unclear whether the authors want to study molecular changes during spermatogenesis or spermiogenesis upon FBXO24 depletion. Many examples of such cases throughout the text, and it is recommended to be consistent in using more restrictive terminology whenever applicable for a clear interpretation.

      We thank you for your careful review. We have double-checked the terminology of spermatogenesis and spermiogenesis and made it consistent throughout the text of the revised manuscript.

      (3) It is not clear how rampant/frequent the Fbxo24-knockout sperm show defects in head morphology based on Figures 3C, 3F, and 5A since it seems that there are some sperm showing relatively normallooking sperm heads. Please provide quantification.

      We have performed the quantification and found that over 80% of Fbxo24 KO sperm showed defective structures in the sperm head.

      (4) Figure 3B: The authors describe in the figure legend that 3 mice were analyzed in each group. The standard deviation for the WT analysis is missing, or if the author wanted to set the WT value to 100%, the bar and scale shown on the y-axis do not fit. The value for WT looks more like 95%.

      We have indeed analyzed sperm motility based on the WT value set at 100% and have revised Figure 3B in the revision. We apologize for this oversight.

      (5) Figure 3 B and C: It is not clear how the motility is measured. Is CASA used (not described in Methods). The conclusion about abnormal flagellar bending in KO spermatozoa cannot be drawn from the static microscopic images alone. Please provide more details of motility analysis together with videos of live cell imaging.

      The sperm motility was measured manually using a hemocytometer, according to the reference.

      We provided the details of sperm motility analysis in the Materials and Methods section on Page 16.

      (6) Figure 3 I and J: These are one of a few figures that are not supported by statistical analysis. In particular, for 3I, GAPDH controls of WT and KO protein do not show equal loading, which could explain the lower expression of the KO protein. Please show normalized bar graphs with multiple biological replicates or at least show a representee technical replicat that shows equal loading of GAPDH to better support the conclusion.

      Thank you for your suggestion. Statistical comparison of relative protein expression was supplemented, as shown in new Figure S3B.

      (7) Line 184: It is not clear how the authors define a swollen mitochondrion? Are there any size criteria (roundness) that can be measured to distinguish between a swollen and a non-swollen mitochondrion? It is recommended to use another terminology as often 'swollen' implies there is a difference in osmolarity but there is no experiment to support this implication.

      Thank you for your comment. We have changed the “swollen” to “vacuolar” in the revision, as shown on Page 7.

      (8) Figure S4, without a bright field image, it is hard to see the purity and morphology of the isolated prep. Please provide the bright field images together or as overlaid images.

      We agree with your comment. We have provided the overlaid images in new Figure S4A.

      (9) There is a big logic jump in what prompts the authors to look MIWI protein level and link the observation to MIWI/piRNA pathway in both Introduction and Results while it is one of the main findings. It is recommended to provide a better rationale and logical flow in the text.

      Thank you for your suggestion. We have added a sentence explaining why we wanted to focus on studying MIWI expression (see lines 190-193 on page 7).

      Minor comments

      (1) Please keep all the conventions of gene vs. protein nomenclature. For example, write the genes mentioned in the figures in italics with the first letter in Capital, as it is done in the main part. Proteins should be in ALL CAPITAL like FBXO24.

      The names of gene and protein have been revised in the revision, as suggested.

      (2) In the MM section, the name of the manufacturer and the location of the materials used are missing in several sections. Please go back through the MM section and add this information in the appropriate places.

      Done as suggested. Thank you!

      (3) On page 4, the authors mentioned that "Further qPCR analysis of developmental testes and purified testicular cells showed that FBXO24 mRNA was highly expressed in the round spermatids and elongating spermatids (Fig 1B-C)". Please include statistical analyses for Fig 1B-C as well as for Fig 1A to support the written statements.

      Statistical comparison was supplemented, as shown in Figure 1. P-values are denoted in figures by *p < 0.05.

      (4) Figure 3E: Please describe in more detail how the length of the midpiece was measured. Was it based on TEM images or based on fluorescent images using MitoTracker?

      As we responded to Reviewer #1, we measured the midpiece length from the sperm neck to the sperm annulus by MitoTracker staining. We have clarified this in the Method and Material section on Page 16.

      (5) Line 431: In the "Electron Microscopy" section of the MM part, the author should indicate the ascending ethanol series (%) used.

      Done as suggested. Thank you!

      (6) Line 432: The thickness of the sections prepared is missing, as well as an indication of the microtome used.

      We have added thickness and the microtome in the Method and Material section on Page 16.

      (7) Line 433: If the generated tiff files have been processed with Adobe Photoshop, this information is missing.

      We have provided information on the usage of Adobe Photoshop for the generation of tiff files on Page 17.

      (8) Lines 445, 452, 467: In some places in the paper, the temperature is written with a space between the number and {degree sign}C, and sometimes it is not. Please go through the paper and make it consistent. The usual spelling is 4{degree sign}C.

      We have gone through the manuscript and checked all the spelling of temperature writing to make them consistent. Thank you for careful review.

      (9) Line 469: The gel documentation system used is not mentioned.

      Done as suggested. Thank you!

      (10) Line 469: The 'TM' should be superscripted.

      Done as suggested.

      (11) Line 489: A space is missing between the changes and the parenthesis.

      Done as suggested.

      (12) Line 495-496: The authors write that the fractions enriched with round spermatids after sedimentation were collected manually. Was a determination of cell concentration - e.g., 2 x106 cells/ml -performed after collection of the cells? How were the cells stored until use? Please add the sedimentation time and used temperature.

      Store the cell in the 1´ Krebs buffer on ice. The cell sediment was through a BSA density gradient for 1.5 h at 4°C. The cell concentration was determined after collection, as shown on Page 18.

      (13) Line 505: spelling error. Instead of " manufacturer's procedure" it is written manufactures' instructions.

      The spelling error was corrected.

      (14) Line 520: Please write a short sentence on how the purification of the 16-40 nt long RNA was performed.

      The length of 16–40 nt RNA was enriched by polyacrylamide gel electrophoresis. We added this information on Page 19 of line 531.

      (15) Line 528: The version of the used GraphPad software is missing.

      The version of GraphPad software was supplemented, as shown on Page 19.

      (16) Line 677: For qPCR analyses, the number of mice analyzed (N) and a statistical evaluation are missing.

      The statistical comparison and the numbers for biological replication were added, as shown on Page 26.

      (17) Figure 3D: Please add a scale bar.

      Done as suggested. Thanks!

      (18) Line 371 and Line 377: Two times "in summary" is written. Please make one summary for the whole paper.

      This sentence was revised, as shown in Page 13.

      (19) Line 382: To be consistent in the whole paper, please write Figure 10 in bold letters.

      Done as suggested.

      (20) Please make the size and font of the references consistent with the main text.

      Done as suggested. Thanks again for your careful review.

      Reviewer #3 (Recommendations For The Authors):

      I would like to see the description of the FBXO24 immunoprecipitation experiment performed in HEK293T cells. This somatic cell line does not normally express Miwi, so how Miwi was detected in FBXO24 mCherry IP beads? It is not mentioned if Miwi is expressed from a recombinant vector in this experiment. Similarly, I would like to see a better description of the experiment described in the same paragraph towards the end of it with the ubiquitin peptides, it is not clear.

      Thank you for your comments. FBXO24-mCherry was expressed in HEK293T cells and the immunoprecipitates was incubated with the protein lysate of the testes (see lines 268-272 on Page 10). The description of the ubiquitin experiment was added as well, as shown in lines 283-286 on Page 10.

      Line 263: I think the term ectopic here is not appropriate, a correction is needed.

      We have changed “ectopic” to “increased” in the revision (see line 268 on Page 10).

      I would like the authors to provide a tentative explanation or evidence of why FBXO24 KO males are completely sterile, even though there are still mature sperm produced with some motility. Since there are defects in nuclear condensation it will be very relevant to check DNA damage/fragmentation, which could contribute to the sterility phenotype.

      This is a good suggestion. We reanalyzed the sperm DNA damage by TUNEL staining and shown the new data in Figure S3E-F.

      Line 213: There have been some conflicting reports about the role of RNF8 in spermiogenesis, but a recent report has shown that RNF8 is not involved in histone PTMs that mediate histone to protamine transition (Abe et al Biol Reprod 2021 https://doi.org/10.1093%2Fbiolre%2Fioab132).

      Thank you for your comment. We have cited this critical reference and discussed it in Discussion section on Page 12.

      Figure 7: I would like to see zoomed-out views of the affected exons, so that flanking unaffected exons can be used as a reference for unaffected splicing. Most of the genome browser views in this image only show affected exons and it is impossible to see if these alone are affected or if the reduced RNAseq coverage in those exons is a result of overall reduced mapped reads in these genes. Also, a fixed Y axis with the same max value should be shown for these genome browser snapshots so that the expression level is comparable between the two genotypes.

      Thank you for your comments. Loading control of RT-PCR and scale range of Y axis were added in new Figure 7.

      Minor corrections:

      Line 70: correct "..functions as protein-protein interaction..".

      Thank you for your careful review. We have corrected this sentence (see line 69 on Page 3).

      Line 101: correct "..qPCR analysis of developmental testis..".

      We have corrected this sentence (see line 100 on Page 4). Thanks again.

      Line 116: correct "..results in detective..".

      Corrected.

      Line 186: correct ".. explored..".

      Corrected.

      Line 218: correct ".. gene expressions.

      Corrected.

      Line 221: correct "..genes significantly differentiated expressed".

      Corrected.

      Line 241: FBXO24 was shown earlier in both cytoplasm and nucleus.

      We have changed “FBXO24 is mainly confined to the nucleus” to “FBXO24 expressed in the nucleus”, as shown in line 247 on Page 9.

      Line 501-502: correct "..reverse transcriptional".

      “reverse transcriptional” was changed into “reverse transcription”, showing in Page 18.

      Line 686: correct ".. deficiency male..".

      Corrected.

      Line 769: correct "..Western blots were adopted..".

      Corrected.

      Line 784: correct "..WT tesis..".

      Corrected.

      I cannot understand exactly what is shown in Figure 9B. Some elements marked on the X-axis are single base locations (-2K, TSS, +2K) and others are stretches of sequences so they cannot be equivalent. Why there is only an intron shown? There should be a measure of normalized expression on the Y-axis.

      Thank you for your questions. The X-axis means that genome segments were scaled to the same size and were calculated the signal abundance, which was analyzed by computeMatrix. Aim to know the piRNA source, piRNA was mapped to the gene body, including introns, CDS and UTRs. The value of the Y-axis is the normalized count.

      Figure 6F is not needed.

      Figure 6F was used to illustrate the number of different types of mRNA splicing upon FBXO24 deletion in the round spermatids. To better understand the splicing for the reader, we decided to keep it.

      The last two paragraphs of the discussion seem to be redundant.

      Thank you for pointing out this. We have revised the last two paragraphs of the discussion.

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Maestri et al. use an integrative framework to study the evolutionary history of coronaviruses. They find that coronaviruses arose recently rather than having undergone ancient codivergences with their mammalian hosts. Furthermore, recent host switching has occurred extensively, but typically between closely related species. Humans have acted as an intermediate host, especially between bats and other mammal species.

      Strengths:

      The study draws on a range of data sources to reconstruct the history of virus-host codivergence and host switching. The analyses include various tests of robustness and evaluations through simulation.

      Weaknesses:

      The analyses are limited to a single genetic marker (RdRp) from coronaviruses, but using other sections of the genome might lead to different conclusions. The genetic marker also lacks resolution for recent divergences, which precludes the detailed examination of recent host switches. Careful and detailed reconstruction of the timescale would be helpful for clarifying the evolutionary history of coronaviruses alongside their hosts.

      The use of a single short genetic marker (the RdRp palmprint region) from coronaviruses is indeed a limitation. However, this marker is the one that is currently used for routinely delimiting operational taxonomic units in RNA viruses and reconstructing their evolutionary history (Edgar et al. 2022, see also the Serratus project; https://serratus.io/); therefore, we took the conscious decision early on to rely on this expertise. Unfortunately, this marker cannot provide robust timescale reconstructions for coronavirus evolution (previous estimates of coronavirus origin range from around 10 thousand years ago to 293 million years ago depending on modeling assumptions). Only future genomic work across Coronaviridae that will characterize multiple genetic regions with different evolutionary rates will allow us to precisely elucidate the timescale of the evolutionary history of coronaviruses alongside their hosts. In the meantime, we show here that, while the RdRp palmprint region cannot by itself resolve the precise timescale of coronavirus evolution, it strongly suggests, when used along with cophylogenetic approaches, a recent evolutionary origin in bats.

      R. C. Edgar, et al., Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147 (2022).

      Reviewer #2 (Public Review):

      Summary:

      In their study titled "Recent evolutionary origin and localized diversity hotspots of mammalian coronaviruses," authors Benoît Perez-Lamarque, Renan Maestri, Anna Zhukova, and Hélène Morlon investigate the complex evolutionary history of coronaviruses, particularly those affecting mammals, including humans. The study focuses on unraveling the evolutionary trajectory of these viruses, which have shown a high propensity for causing pandemics, as evidenced by the SARS-CoV2 outbreak.

      The research addresses a significant gap in our understanding of the evolutionary dynamics of coronaviruses, particularly their history, patterns of host-to-host transmission, and geographical spread. These aspects are important for predicting and managing future pandemic scenarios.

      Historically, studies have employed cophylogenetic tests to explore virus-host relationships within the Coronaviridae family, often suggesting a long history of virus-host codiversification spanning millions of years. However, the team led by Perez-Lamarque proposes a novel phylogenetic framework that contrasts this traditional view. Their approach, which involves adapting gene tree-species tree reconciliation, is designed to robustly test the validity of two competing scenarios: an ancient origination and codiversification versus a more recent emergence and diversification through host switching.

      Upon applying this innovative framework to the study of coronaviruses and their mammalian hosts, the authors' findings challenge the prevailing notion of a deep evolutionary history. Instead, their results strongly support a scenario where coronaviruses have a more recent origin, likely in bat populations, followed by diversification predominantly through host-switching events. This diversification, interestingly, seems to occur preferentially within mammalian orders.

      A critical aspect of their findings is the identification of hotspots of coronavirus diversity, particularly in East Asia and Europe. These regions align with the proposed scenario of a relatively recent origin and subsequent localized host-switching events. The study also highlights the rarity of spillovers from bats to other species, yet underscores the relatively higher likelihood of such spillovers occurring towards humans, suggesting a significant role for humans as an intermediate host in the evolutionary journey of these viruses.

      The research also points out the high rates of host-switching within mammalian orders, including between humans, domesticated animals, and non-flying wild mammals.

      In conclusion, the study by Perez-Lamarque and colleagues presents an important quantitative advance in our understanding of the evolutionary history of mammalian coronaviruses. It suggests that the long-held belief in extensive virus-host codiversification may have been substantially overestimated, paving the way for a reevaluation of how we understand, predict, and potentially control the spread of these viruses.

      Strengths:

      The study is conceptually robust, and its conclusions are convincing.

      Weaknesses:

      Despite the availability of a dated host tree the authors were only able to use the "undated" model in ALE, with the dated method (which only allows time-consistent transfers) failing on their dataset (possibly due to dataset size?). Further exploration of the question would be potentially valuable.

      Our intuition is that ALE in its “dated” version did not necessarily fail on our dataset due to its size (ALE ran, but provided unrealistic parameter estimates and was not able to output possible reconciliations, as mentioned in our Material and Methods section). We think it most likely did not run because there is no pattern of codiversification: the coronavirus and mammal trees are so distinct that finding a reconciliation scenario between these trees with time-consistent transfers is very difficult and ALE fails at estimating an amalgamated likelihood for such an unlikely scenario. Following a suggestion from reviewer #3, we are going to try running the dated version of ALE independently on the alpha and beta-coronaviruses, resulting in smaller datasets. This will help us elucidate whether the dated version of ALE fails due to data size or the absence of a codiversification pattern.

      Reviewer #3 (Public Review):

      Summary:

      This work uses tools and concepts from co-phylogenetic analyses to reconstruct the evolutionary and diversification history of coronaviruses in mammals. It concludes that cross-species transmissions from bats to humans are a relatively common event (compared to bats to other species). Across all mammals, the diversification history of coronaviruses suggests that there is potential for further evolutionary diversification.

      Strengths:

      The article uses an interesting approach based on jointly looking at the extant network of coronaviruses-mammals interactions, and the phylogenetic history of both these organisms. The authors do an impressive job of explaining the challenges of reconstructing evolutionary dynamics for RNA viruses, and this helps readers appraise the relevance of their approach.

      Weaknesses:

      I remain unconvinced by the argument that sampling does not introduce substantial biases in the analyses. As the authors highlight, incomplete knowledge of the extant interactions would lead to a biased reconstruction of the diversification history. In a recent paper (Poisot et al. 2023, Patterns), we look at sampling biases in the virome of mammals and suggest that is a fairly prominent issue, that is furthermore structured by taxonomy, space, and phylogenetic position. Case in point, even for betacoronaviruses, there have been many newly confirmed hosts in recent years. For organisms that have received less intense scrutiny, I think a thorough discussion of potential gaps in data would be required (see for example Cohen et al. 2022, Nat. Comms).

      I was also surprised to see little discussion of the differences between alpha and beta coronaviruses - there is evidence that they may differ in their cross-species transmission (see Caraballo et al. 2022 Micr. Spectr.), which could call into question the relevance of treating all coronaviruses as a single, homogeneous group.

      Some of the discussions in this paper also echo previous work by e.g. Geoghegan et al. (see 2017, PLOS Pathogens), which I was surprised to not see discussed, as it is a much earlier investigation of the relative frequencies of co-divergence and host switches for different viral families, with a deep discussion of how this may structure future evolutionary dynamics.

      We totally agree that sampling biases in the virome of mammals is a prominent issue, which is why we conducted a series of sensitivity analyses to test their effect on our main conclusions. We thoroughly tested the effect of (i) the unequal sampling effort across mammalian species that have been screened and (ii) the unequal screening of mammalian species across the mammalian tree of life by subsampling the data to correct for the unequal sampling effort (see Supporting Information Text). In both cases, we still reported low support for a scenario of codiversification, the origin in bats in East Asia, the preferential host switches within mammalian orders, and the rare spillovers from bats to humans. The robustness of our findings to sampling biases may be explained by the fact that the cophylogenetic approach we used (ALE) explicitly accounts for undersampling by assuming that all host transfers involve unsampled intermediate hosts. To address the reviewer's comment, we will better underline the importance of sampling biases in our main text and include the suggested references. We will also better highlight our sensitivity analyses by moving them from the Supporting Information Text to the main text.

      We agree that distinguishing between alpha and beta coronaviruses will provide useful additional insights; we are going to run separate cophylogenetic analyses for these two sub-clades. We will report the results of these additional analyses in the revised manuscript, and put them in context with the existing literature about the two sub-clades.

      We were not aware of the work of Geoghegan et al. (see 2017, PLOS Pathogens), thank you for providing this reference that we will now discuss.

    2. Reviewer #3 (Public Review):

      Summary:<br /> This work uses tools and concepts from co-phylogenetic analyses to reconstruct the evolutionary and diversification history of coronaviruses in mammals. It concludes that cross-species transmissions from bats to humans are a relatively common event (compared to bats to other species). Across all mammals, the diversification history of coronaviruses suggests that there is potential for further evolutionary diversification.

      Strengths:<br /> The article uses an interesting approach based on jointly looking at the extant network of coronaviruses-mammals interactions, and the phylogenetic history of both these organisms. The authors do an impressive job of explaining the challenges of reconstructing evolutionary dynamics for RNA viruses, and this helps readers appraise the relevance of their approach.

      Weaknesses:<br /> I remain unconvinced by the argument that sampling does not introduce substantial biases in the analyses. As the authors highlight, incomplete knowledge of the extant interactions would lead to a biased reconstruction of the diversification history. In a recent paper (Poisot et al. 2023, Patterns), we look at sampling biases in the virome of mammals and suggest that is a fairly prominent issue, that is furthermore structured by taxonomy, space, and phylogenetic position. Case in point, even for betacoronaviruses, there have been many newly confirmed hosts in recent years. For organisms that have received less intense scrutiny, I think a thorough discussion of potential gaps in data would be required (see for example Cohen et al. 2022, Nat. Comms).

      I was also surprised to see little discussion of the differences between alpha and beta coronaviruses - there is evidence that they may differ in their cross-species transmission (see Caraballo et al. 2022 Micr. Spectr.), which could call into question the relevance of treating all coronaviruses as a single, homogeneous group.

      Some of the discussions in this paper also echo previous work by e.g. Geoghegan et al. (see 2017, PLOS Pathogens), which I was surprised to not see discussed, as it is a much earlier investigation of the relative frequencies of co-divergence and host switches for different viral families, with a deep discussion of how this may structure future evolutionary dynamics.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      REPLY TO REVIEWERS

      Reviewer #1

      __Evidence, reproducibility and clarity: __Interesting results from exposing human brain organoids to FGF8 include suggestions that FGF8 contributes to the anterior to posterior patterning of the neocortex, as previously reported in mouse. Good, varied methods with reproducibility described well in the methods section. It would improve the reader's experience however to cite numbers of organoids used in specific experiments/assays in the main text.

      Response: We thank the Reviewer for the positive assessment of our study, and we agree that citing the number of organoids per experimental approach would better allow the readers to appreciate the intrinsic variability of organoid protocols. We will include the number of organoids per experiment both in figure legends and in Materials and Methods as a summary table.

      ....Organoids do not develop individual neocortical areas. To approach this issue of area identity, however, the authors compared control and FGF8-treated organoids against an existing dataset of transcriptomes of human fetal brains that separated pre-frontal, motor, somatosensory, and visual areas. This seems a good idea, but results showed both treated and untreated organoids alike expressed genes characteristic of somatosensory and pre-frontal cortical regions (anterior and midlevel areas) apparently suggesting that exogenous FGF8 had little effect. Because the previous dataset was not the authors' work, however, and because a comparison between organoids and actual human tissue is hard to interpret, this whole section is probably only confusing to include.

      Response: We would like to clarify to the reviewer that the effect of FGF8 on antero-posterior area identity is only partial in our organoid system, suggesting that different doses or temporal windows of FGF8 treatment may be necessary to achieve a stronger modulation of area identity genes. We agree with the Reviewer that, due to this partial effect, the transcriptomic comparison with fetal brain areas might be confusing for readers. Therefore, we plan to move this type of data to the Supplementary Material. We thank the Reviewer for bringing this to our attention.

      The authors further stress a dorsal/ventral effect in FGF8-treated organoids. The population of ventral telencephalic interneurons, produced in the lateral ganglionic eminence in mice, expand in the human organoids at the expense of glutamatergic neurons of the dorsal telencephalon. This may be consistent with the loss of ventral telencephalic structures in FGF8-deficient mice. The authors suggest that FGF8 expansion of interneurons is a novel finding not previously seen in animal research and may point to a human-specific characteristic. Readers may believe this part of the paper requires more support, just because multiple studies of FGF8 have not revealed this action. Overall, this paper would benefit from shortening, and by statements that some of the results suggest, but do not guarantee, particular conclusions.

      Response: We agree with the reviewer that before stating that FGF8-induced expansion of interneurons in dorsal telencephalic territories is a human-specific characteristic, more support in mouse studies would need to be performed. However, as suggested by reviewer 2 below, there is some evidence that ventral interneuron markers, such as ASCL1 and DLX2, are expressed in the dorsal telencephalon of the early fetal human cerebral cortex, even if at much lower levels than in the ventral telencephalon, and that individual human cortical progenitors can generate both excitatory neurons and inhibitory interneurons in culture. Thus, FGF8 might promote an intrinsic capacity of dorsal cortical neurons to induce the generation of ventral interneurons, which would indeed be a human (or maybe primate)-specific trait. We plan to better discuss this issue in the revised version of the manuscript.

      Significance

      The paper is for a fairly specialized audience interested in the development of the cerebral cortex, but also has interest regarding developmental human brain defects

      Response: Although the manuscript sounds upon first reading specific to a specialized audience interested in cortical development, we believe that the strength of our human organoid system is the formation of regionalized organoids including brain regions other than the cortex. Moreover, considering the increasing attention on brain organoids in general, and the lack of information on the action of FGF8 during human cortical development, we are confident that this study will attract a broader audience.

      Interesting results from exposing human brain organoids to FGF8 include suggestions that FGF8 contributes to the anterior to posterior patterning of the neocortex, as previously reported in mouse. Good, varied methods with reproducibility described well in the methods section. It would improve the reader's experience however to cite numbers of organoids used in specific experiments/assays in the main text.

      Response: We thank again the reviewer for acknowledging the potential of our study. As previously mentioned, we agree that providing information about the number of organoids used will enhance the statistical analysis. This will definitely be added in a revised version.

      Reviewer #2

      Evidence, reproducibility and clarity

      ……However, organoid technology offers a solution to this and the present study presents an elegant approach to addressing how FGF8 signalling directs both anterior/posterior and dorsal/ventral identity in neural progenitors and their offspring in human development. This has both biological and clinical relevance has the study demonstrates how FGF8 may be a key regulator of expression of susceptibility genes for neurodevelopmental conditions. The methods and approach are described clearly and in great detail and it serves as an exemplar for how studies like this might be pursued in the future. Likewise, the results are presented logically, using excellent figures with clear descriptions of the findings. It is positively entertaining to read and very thought provoking. We don't have any major issues with the conclusions.

      Response: We sincerely appreciate the reviewer’s enthusiastic and thoughtful feedback. The positive remarks on the clarity and detail of our methods and results are very encouraging, and we are pleased that the reviewer found our study both entertaining and thought-provoking.

      We have some minor issues over presentation and interpretation that we would like the authors to consider.

      1) Developmental staging. It is stated that the organoids have reached a developmental stage equivalent to 16.5 GW based on expression of key genes such as CRYAB. Firstly, we would prefer an unambiguous way of stating age such as post-conceptional age. It is never clear what gestational weeks exactly means (post-menstrual, post-ovulatory?). Secondly, in several figures, UMAPs generated from the organoids are presented alongside representative mouse brain sections from E13.5 which is equivalent to about 11 post conceptional weeks in human. Although we find the mouse sections helpful, perhaps the potential discrepancy in developmental stage should be pointed out.

      Response: We agree with the reviewer that the staging of human organoids in vitro can be very tricky. We will clarify this issue by using post-conceptional weeks (PCW) instead of gestational weeks in the revised version of the manuscript. It is true, that schematic representations of brain sections of mouse telencephalon of around E13.5 were used in the paper, but the idea was to choose an age where dorsal and ventral territories are clearly separated during embryogenesis to highlight the expression of the different genes. We will change the schematics to make sure they can be better compared with scRNA-seq data and will highlight that they represent early mid-gestation stages of mouse embryos.

      2) Dorso-ventral patterning. Firstly, we wondered why VGLUT2 was used as a marker for dorsal identity when it is generally regarded as being expressed by subcortical neurons, e.g. thalamus and midbrain, whereas VGLUT1 is the standard marker for cortical neurons :https://doi.org/10.1016/j.tins.2003.11.005? Potentially, VGLUT2 expression may be more an indicator of mid/hindbrain identity than cortical identity. Is there any evidence for VGLUT2 expression by cortical cells in development? Also, MASH1 (more correctly called ASCL1) is not exclusively ventral, having shown to be expressed in a subset of intermediate progenitor cells for glutamatergic neurons in rodent doi:10.1093/cercor/bhj168 and particularly human doi: 10.1111/joa.12971. We are surprised that the recent evidence that human cortical progenitors do have capacity to generate GABAergic neurons 10.1038/s41586-021-04230-7; 10.1101/2023.11.06.565899 is not mentioned in this section as perhaps FGF8 doesn't so much ventralise progenitor cells as promote an inherent property. This might explain why MGE-like identity is not observed, whereas LGE/CGE like is, as it has already been shown that MGE-like gene expression by dorsal progenitors is very much less likely than LGE/CGE like expression 10.1038/s41586-021-04230-7; DOI 10.1007/s00429-016-1343-5

      Response: We fully agree and thank the reviewer for bringing to our attention this interesting discussion and pointing to our confusion between VGLUT1 and VGLUT2 expression profiles. After checking our scRNA-seq data, we realized that the Reviewer is absolutely correct about the issue of using VGLUT2 as a dorsal telencephalic marker, as it is expressed in both dorsal and ventral cells. In contrast, VGLUT1 appears to be more specific for neocortical (dorsal) neurons (see UMAP images below). Moreover, it perfectly fits with our results showing a downregulation of VGLUT1 in dorsal glutamatergic neurons.

      We are currently conducting additional staining experiments to support this point. Specifically, our plan includes:

      • Performing immunostaining assays to validate the expression patterns of VGLUT2 in dorsal cortical neurons, notably triple VGLUT2/TRB1/CTIP2 and double VGLUT2/SATB2 stainings, to be added in Supplementary material. This will allow to confirm the use of VGLUT2 as a dorsal marker.
      • Performing additional immunostainings involving VGLUT1, either juxtaposed with GAD67 to assess dorso-ventral neuronal balance or in conjunction with dorsal cortical markers to examine co-expression. This new analysis will be quantified using AI and integrated into Figure 4. Notably, these experiments will provide a comprehensive understanding of the expression patterns of VGLUT1 and VGLUT2 in the dorsal or ventral telencephalon and will further elucidate their utility as markers for specific neuronal populations in human brain organoids.

      Furthermore, and importantly, we fully agree with the reviewer that human dorsal cortical progenitors do have the ability to generate GABAergic neurons, even if at lower efficiency than glutamatergic neurons, and that FGF8 might promote this inherent property in human organoids. This new discussion and the new references suggested by the reviewer will significantly contribute to our data interpretation about LGE/MGE development. Therefore, we intend to incorporate them into the revised version of the text. Again, thank you to the reviewer for these insightful suggestions.

      3) MEA recordings. The presentation of electrophysiological data is quite simple. Detection of spikes is claimed therefore representative traces of the spikes should be included and these can be easily generated with the Maxwell system software. It isn't clear how many times the experiments were repeated and there is no statistical analysis. For example, in the text they state on page 15 'Notably, WNTi+FGF8 organoids showed lower spike frequency (firing rate) and amplitude'. The amplitude difference is 43uV vs 41uV; we doubt this is significantly different. Threshold for detecting burst firing appears to be different between Figure 5C and 5d. Why? Shouldn't it be the same? The axonal tracking analysis in fig 5E/F needs more explanation. How many axons were tracked? Is there any statistical analysis beyond means and standard deviation?

      Response: We agree with the Reviewer that the presentation of our electrophysiological data need further improvement. We are currently repeating key recordings on four additional samples coming from two different batches, which will allow us to conduct a better statistical analysis.

      In detail, we plan to:

      • Extract representative traces of spikes from the Maxwell software, which will be included as Supplementary material. Footprints of action potentials will be extracted using the in-built analysis tool available in the software.
      • Perform axon tracking analysis on three control and three FGF8-treated samples coming from two distinct batches of organoids. Recordings and analyses will be conducted over a period of two weeks to monitor the growth of axonal tracts, enabling us to perform statistical analysis and observe the temporal evolution of axonal growth. Furthermore, placing the threshold for detecting bursts in the network analysis at different levels in control or treated samples seems to be a routine procedure in this MEA system. Indeed, while the user can set a fixed multiplying factor (that is, of course, the same for both control and treated samples), it is the software that multiplies such factor by the basal average activity of the sample. In this way, bursts can be detected as synchronized activity emerging from the basal one, which, of course, varies in every sample. We plan to better explain this point in the Materials and Methods section, and we thank the reviewer for raising this lack of clarity.

      4) Anterior/posterior patterning. Returning to the subject of cortical GABAergic neurons, it has been proposed that the prefrontal cortex contains a relatively higher proportion of GABAergic neurons, although the mechanism for this has not been elucidated (see https://doi.org/10.1111/joa.13055 and references therein). Might higher anterior FGF8 specifying cortical progenitors to produce GABA neurons have a role in this?

      Response: We thank the reviewer for citing this very interesting review. It is highly possible that FGF8 normally expressed anteriorly might have a role in inducing distinct GABAergic subtypes, such as Calretinin+ interneurons, which have been found to be more abundant in frontal cortices of the developing human fetal brain. Our organoids are too early in terms of developmental age to verify whether interneuron subtypes such as CalR+ are more or less represented, but we will definitely add this very interesting point to our discussion in the revised version.

      5) Nomenclature. As this study principally presents data on mRNA expression levels it might be preferable to use italicised capitals for all gene names (except where referring to mouse genes). Also, common names are used in places and standard gene names in others, e.g. COUPTF1 is referred to NR2F1 but VGLUT1 is not referred to SLC17A7 (also see above re MASH1). It would be good to see everything standardised.

      Response: We appreciate the Reviewer for highlighting these discrepancies. We will standardize gene names both in the text and figures accordingly.

      Significance

      This study involves a very imaginative use of organoids combined with a variety of approaches to test if fundamental principles of forebrain development, particularly cell specification and regional patterning, that we have learnt from mouse models are relevant to human brain development. It also has clinical relevance as it explores potential disruptions to development that leader to diseases of higher cognition, such as autism of schizophrenia. It is a very accessible manuscript that should have broad appeal. It makes several incremental additions to the field and points the way to future experiments in this area.

      Response: We sincerely thank the Reviewer's insightful comments and positive assessment of our study.

      __Reviewer #3 __

      __Evidence, reproducibility and clarity: __

      In the manuscript "FGF8-mediated gene regulation affects regional identity in human cerebral organoids" the authors used FGF8 to change cellular fate in human brain organoids. The experiments are well-performed and the authors used well-established protocols to generate brain organoids. The results clearly show that FGF8 addition induces an increase of diencephalon/midbrain markers (OTX2, EN2), suggesting that long-term FGF8 treatment can induce also posterior regional identities. These data are reinforced also by scRNAseq highlighting a possible mix of cellular identity.

      Response: We thank the reviewer for this encouraging report about our study highlighting the significance of our findings.

      Main concern:

      1. The authors should start using FGF8 at later stages than day 19-21, in trying to maintain the forebrain identity.

      Response: As the Reviewer correctly pointed out, the temporal window of FGF8 treatment seems of pivotal importance for the final outcome of regional identity acquisition. Indeed, while early treatment with FGF8 at day 5 disrupts FOXG1 expression in organoids, as demonstrated in Supplementary Figure 1, our first attempts at adding FGF8 at day 15 resulted in poor regulation of the major FGF8-target gene NR2F1. However, we noticed that high expression of FOXG1 was still maintained, supporting forebrain identity. We fully agree with the reviewer that it is worth treating organoids with FGF8 at later stages to test whether forebrain identity becomes enriched while midbrain one is reduced, which would highlight an FGF8-dependent dosage of forebrain identity acquisition. To this purpose, we have already started additional experiments to assess the effect of delayed FGF8 treatment on forebrain markers and FGF-target genes, such as ETV1, SPRY4, DUSP6, ETV4 and ETV5, but also on representative midbrain markers. Importantly, we will treat the same batch of organoids with the same amount of FGF8 but at different times to be able to compare the different treatments in parallel. We plan to incorporate these supplementary analyses into the Supplementary material to provide a more comprehensive characterization of the efficiency time windows of FGF8.

      In detail, we plan to structure these additional experiments as follows:

      • We will culture in parallel neural progenitors (cortical induction protocol, with XAV-939 as a WNT inhibitor) that will be treated with 100 ng/ML FGF8 starting at day5 (early treatment), at day10 (normal treatment) or at day 20 (late treatment).
      • Each condition will require at least n=6 organoids.
      • Samples will be cultured until day 30.
      • At day 30, we will fix n=3 organoids per condition to be processed by immunostaining, and harvest n=3 organoids per condition for RNA extraction and Real Time RT-PCR analysis.
      • By immunostaining, we will measure the number of FOXG1+ cells as a read-out of telencephalic identity and the intensity of NR2F1 staining to evaluate FGF8 action.
      • By RT-PCR, we will measure the expression level of the following regional identity markers and FGF8 target genes: FOXG1, EN2, OTX2, NR2F1, ETV1, SPRY4, DUSP6, ETV4 and ETV5. This experimental setup will allow us to further detail the efficiency of distinct temporal windows for FGF8 treatment and their effects on cell identity and FGF target gene modulation. However, based on the first data we already obtained, we expect poor FGF target gene modulation upon late FGF8 treatment. This is why we believe that the temporal window we selected for our study already represents an optimal compromise between maintaining high levels of FOXG1 while effectively modulating FGF8 targets in human organoids.

      To verify the identity of the neurons in the organoids the authors should check their ability to make projections in immunodeficient mice. Human iPSC-derived cortical neurons establish subcortical projections in the mouse brain after transplantation and the location of the different neuronal projections could reveal the rosto-caudal identity of the cortical neurons.

      Response: We agree with the reviewer that in general conducting in vivo transplants of human organoids offers an interesting approach to testing the identity of differentiated neurons by tracking their projections. However, we believe that due to the multi-regional character of FGF8-treated organoids (which includes also midbrain-like neurons), their transplant into the neocortex would be of difficult interpretation and would not reveal the precise rostrocaudal identity of transplanted human cortical neurons, as requested by the reviewer. Furthermore, this would almost constitute an entire project on its own, given the technical challenges associated with such experimental approaches. We think that our thorough scRNA sequencing analysis is powerful enough for assessing cell identity, as supported by the majority of organoid studies investigating cell identity through scRNA-seq without resorting to transplantation. In our study, the scRNA-seq analysis was subsequently validated by several steps of immunostainings, a simple but fundamental corroborative control approach that is sometimes overlooked in similar studies. Finally, we would like to emphasize that reviewers #1 and 2 found our complementary approaches (molecular, cellular, and functional) appropriate, well-performed, logical and reproducible.

      Significance:

      The proposed protocol is useful to generate brain organoids with mixed cell populations from different regions of the brain (forebrain, midbrain, hindbrain). However, has limited applications since is not clear whether the proposed structures have some kind of organization.

      Response: We agree with the Reviewer that each protocol comes with its own limitations and that a careful characterization of the proportion of different regional domains could definitively improve the significance and applicability of our protocol. To this aim, we are now using artificial intelligence-mediated detection of cortical versus midbrain-like domains in control and FGF8-treated organoids, to further improve the characterization of distinct cellular populations and quantify the extent of their domains in multi-regional organoids. These data will be added in Figure 3.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We wish to thank the reviewers for their helpful insightful comments. Their concerns were mainly related to the interpretation of the data, help in clarifying our statements and improving our discussion.

      Reviewer #1 (Recommendations For The Authors):

      This is a very interesting study It involves the utilization of hippocampal neuronal cultures from syntaxin 1 knock-out mice. These cultures serve as a platform for monitoring changes in synaptic transmission through electrophysiological recording of postsynaptic currents, upon lentiviral infection with various isoforms, chimeras, and point mutations of syntaxins.

      The authors observe the following:

      (1) Syntaxin2 restores neuronal viability and can partially rescue Ca2+-evoked release in syntaxin1 knock-out neurons that it is much slower (cumulative charge transfer differences) and with a clearly smaller RRP than when rescued with syntaxin1. In contrast, syntaxin2-mediated rescue leads to a high increase in spontaneous release (Figure 1). Convincingly, the authors conclude that syntaxin 1 is optimized for fast phasic release and for clamping of spontaneous release, in comparison with syntaxin2.

      (2) The replacement of the SNARE domain (or its C-terminal part) of syntaxin1 by the SNARE domain of syntaxin2 (or its C-terminal part) rescues the fast kinetics, but not the amplitude, of Ca2+-evoked release. This is associated with a decrease in the size of the RRP and an increase in spontaneous release. The probability of vesicular release (PVR) is a little bit increased, which is intriguing because a little decrease would be expected instead according to the reduced RRP, indicating that an enhancement of Ca2-dependent fusion is occurring at the same time by unknown mechanisms as the authors properly point out. The replacement of the Analogous experiments in which the SNARE domain of syntaxin1 is replaced into syntaxin2, reveals the exitance of differential regulatory elements outside the SNARE domain.

      (3) Different constructs of syntaxin 1 and syntaxin 2 display different expression levels. On the other hand, the expression levels of Munc-18 are associated with the characteristics of the transfected specific syntaxin construct. In any case, the electrophysiological phenotypes cannot be consistently explained by changes in Munc-18.

      (4) Mutations in several residues of the outer surface of the C-terminal half of the syntaxin1 SNARE domain lead to alterations in the RRP and the frequency of spontaneous release, but the changes cannot attributed to a change in the net surface charge, because the alterations occur even in paired mutations in which electrical neutrality is conserved.

      Comments:

      (1) This is a comment regarding the interpretation of the results. In general, the decrease in the RRP size is associated with the increased frequency of spontaneous release due to unclamping. The authors claim that both phenomena seem to be independent of each other. In any case, how can the authors discard the possibility that the unclamping of spontaneous release leads to a decrease in the RRP size?

      The main argument against the reduction of the RRP being caused by the observed increase in the mEPSC frequency is based on kinetics of refilling and depletion. The average time a vesicle fuses spontaneously after it becomes primed is 500 – 1000 seconds (spontaneous vesicle release rate – STX1 Figure 1, Figure 2 and Figure 3). The time it takes to refill the RRP after depletion is in the order of 3 seconds (Rosenmund and Stevens, 1996). Therefore, the refilling of the RRP is more than 100 times faster. Even when the spontaneous release would increase 5 fold, this would lead to less than 5 % of the steady state depletion of the RRP.

      (2) The authors have analyzed the kinetics of mEPSCs and found differences (Fig2-Supp. Fig1; Fig2-Supp. Fig1). It would be interesting and pertinent to discuss these data in the context of potential phenotypes in the fusion pore kinetics involving syntaxin1 and syntaxin2 and their SNARE domains. Indeed, the figure will improve by including averaged traces of mEPSCs.

      We thank the reviewer for the idea. Upon closer examination of the changes in mEPSC rise time and mEPSC decay time we noticed a minor slowing in the mEPSC rise time from 0.443ms (SEM0.0067) of STX1A to 0.535ms (SEM0.0151) for STX1A-2(SNARE) or 0.507ms (SEM0.01251) for STX1A-2(Cter), while the mEPSC half widths did not change significantly. It is possible that the measured change is related to the detection algorithm as mEPSC detection at elevated frequencies becomes more difficult due to increased overlap of event, and we therefore prefer to refrain from making any mechanistic claims.

      Minor comments:

      (1) Fig2 J; Fig 3 J. It is difficult to distinguish between different colors and implementing a legend within the graph will be very helpful.

      (2) Fig3 H. Please change the color of the box plot for Stx1 A to improve the contrast with the individual data points.

      (3) Page 6. Line 225. "Figure 2D and E" should be corrected to "Figure 2C and D"

      (1) Colors were changed for clearer visualization. (2) Unfortunately, changing the color did not improve the contrast with the individual plots. However, the numerical data is all included in the data sheets of the corresponding figure. (3) The mistake was corrected.

      Reviewer #2 (Recommendations For The Authors):

      Line 135-136: Are cited numbers cited in the text mean and SEM? Please indicate.

      Line 139 and Figure 1G: The difference between purple and blue was very hard to see on my hard copy.

      Line 152: Reference to Figure 1L should probably be 1K.

      Line 183: Reference to Figure 2C should probably be Figure 2F.

      Line 225: Reference to Figure 2D and 2E should probably be 2C and 2D.

      Line 239: Reference to Figure 3I should probably be 3H.

      All typos were addressed and colors were changed for better visualization.

      Line 210-211: Sentence ("One of the benefits..") is hard to understand.

      Thank you for noticing this mistake, agreeably the the sentence did not add any important or new information and so it was deleted. Additionally, the message of the mentioned sentence was already clearly stated in lines 209-211.

      Figure 4E-H misses data for STX2, for the figure to be arranged like Figure 5.

      Given that STX1 is the endogenous syntaxin in hippocampal neurons, we use it at a control for all the analysis done in STX2 and STX2-chimera experimental groups, thus it is included in Figure 3 and 5.

      It appears that the authors do not present or discuss the Western Blot in Fig. 4D. Are the quantitative results of the Western Blot consistent with or different from the quantification of the immunostainings (Fig. 4B-C)? A similar question for Figure 5D, which also seems not to be presented.

      In terms of quantification, we have relied mainly on the ICC experiments because they test also for putative impairments in transport to the presynaptic compartment. Our WB data are overall consistent with the results, but were not used to quantitate expression of our syntaxin chimeras and mutations in the STX1-null hippocampal neuron model.

      Figure 6F-G: The normalization of spontaneous vesicular release rates is not clear, because the vesicular release rates already contain a normalization (mEPSC rate divided by RRP size). Is a further normalization of the STX1A condition informative? The authors should consider presenting the release rates themselves. In any case, the normalization should be presented/explained, at least in the legends.

      The reviewer is in principle correct. Due to the large number of experimental groups we had to perform recordings from multiple cultures, where not all experimental groups were present, while the WT STX1 was present as a consistent control. The reduce culture to culture variability, additional normalization to the WT control group was performed. However, we also included the raw data numerical values in the data-source sheets (Normalized and absolute), which produce a similar overall outcome.

      References to Figure 7 subpanels (A, B, and C) are missing.

      Thank you for the comment. We have integrated all panels into one for better representation and understanding since they are representative of one another.

      Lines 330-339 and Figure 7 in Discussion: the authors discuss that adding the non-cognate STX2 SNARE-domain to syntaxin-1 might destabilize the primed state and decrease the fusion energy barrier (as indicated in Figure 7C). What is the evidence that the decrease in RRP size is not caused solely by the depletion of the pool due to the increased spontaneous fusion?

      Please see the comments to major point 2 of reviewer 1.

      Statistics: Missing is the number of observations (n) for all data. Even if all data points are displayed, this should be stated.

      N numbers are included in the data sheets attached to each figure.

      The statement (start of Discussion,) that the SNARE-domain of STX1 'plays a minimal role in the regulation for Ca2+-evoked release' is somewhat puzzling, since without the SNARE-domain in STX1 there would be no Ca2+-evoked release. I guess these statements (similar statements are found elsewhere) are due to the interesting finding that STX2 leads to a decrease in release kinetics, compared to STX1, and this is not (entirely) due to differences in the SNARE-domain. I would suggest rephrasing the finding in terms of release kinetics. Also, the statement in the last sentence of the Abstract is not clear.

      Thank you for pointing this out and we agree that our experiments showed strong impact of the syntaxin isoform exchange on release kinetics and overall release output. A similar comment came also from reviewer #3 and so, we have addressed both comments as one.

      Our confusing statement resulted from the order of the presented results and our summarizing remarks for each section. Our statement reflected our finding that mutating residues in the C-terminal part of the STX1 SNARE motif affected only spontaneous release and RRP size but not release efficacy. We now state (pg. 6 lines 231-233) that the data observed from the comparison of “the results obtained from the Ca2+-evoked release between STX1 and STX2 support major regulatory differences of the domains outside of the SNARE domain between isoforms”.

      We have changed the abstract pg. 2 lines 55-56

      We have changed the introduction pg. 3 lines 102-105 for a better contextualization.

      We have changed the start of the discussion pg. 9 lines 250-252 for better contextualization.

      Reviewer #3 (Recommendations For The Authors):

      In this manuscript, Salazar-Lázaro et al. presented interesting data that C-terminal half of the Syx1 SNARE domain is responsible for clamping of spontaneous release, stabilizing RRP, and also Ca2+-evoked release. The authors routinely utilized the chimeric approach to replace the SNARE domain of Syx1 with its paralogue Syx2 and analyzed the neuronal activity through electrophysiology. The data are straightforward and fruitful. The conclusions are partly reasonable. One obvious drawback is that they did not explore the underlying mechanism. I think it is easy for the authors to carry out some simple assays to verify their hypothesis for the mechanism, instead of just talking about it in the discussion section. In all, I appreciate the data presented in the manuscript. If the authors could supply more data on the mechanisms, this would be important research in the field. Some critical comments are listed below:

      We thank the reviewer for his/her comments and suggestions.

      Major comments:

      (1) In pg.3, lines 102-104, the authors stated that 'We found that the C-terminal half of the SNARE domain of STX1.. ..while it is minimally involved in the regulation of Ca2+-evoked release.' But in pg.5, lines 174-176, they wrote that 'Replacement of the full-SNARE domain (STX1A-2(SNARE)) or the C-terminal half (STX1A-2(Cter)) of the SNARE domain of STX1A with the same domain from STX2 resulted in a reduction in the EPSC amplitude (Figure 2B).' and in pg.5-6, lines 197-199, they wrote that 'Taken together our results suggest that the C-terminal half of the SNARE domain of STX1A is involved in the regulation of the efficacy of Ca2+-evoked release, the formation of the RRP and in the clamping of spontaneous release.' It puzzles me a lot as to what the authors are really trying to express for the relationship between C-half of the SNARE complex and Ca2+-evoked release (i.e., minimally involved or significantly participate in the process?). Please clarify and reorganize the contexts.

      Please see our reply to the last comment of reviewer 2.

      (2) Figure 1-figure supplement 1, the authors should analyze Syx1/VGlut1 level additionally. And, if possible, compare the difference between Syx1/VGlut1 and Syx2/VGlut1.

      The levels of STX1/VGlut1 and STX2/VGlut1 were analyzed in detail in Figures 4 and 5.

      The direct comparison between the expression levels of these two proteins is not possible since affinities of the antibodies to the target proteins are different and can induce potential biases. While this could be overcome by the use of a FLAG-tag to the syntaxin proteins, we have not utilized this approach in this publication. We in addition inferred sufficient and comparable expression of both syntaxins from their ability to rescue some of syntaxin1 loss of function phenotypes.

      (3) Figure 2D only analyzed the EPSC half-width, could the author alternatively analyze the rise/decay time? Also, in Figure 3-figure supplement 1, does it refer to the kinetic parameters of Syx2-1A in Figure 3? It is very confused.

      We have changed the text accordingly and each parameter is referenced to its corresponding figure for clarity. As for the decay and rise time of STX1 and STX1-chimeras, they are in Figure 2-figure supplement 1A and B.

      (4) On pg.4, lines 151-152, 'Finally, no change was observed in the paired-pulse ratio (PPR) between STX1A and STX2 groups (Figure 1L).' does not contain any explanations and comments for this observation in the texts.

      The small EPSC amplitudes and altered kinetics on the STX2 constricts (Figure 1 and Figure 3) have made it more difficult to quantitate paired pulse experiments. Therefore, we preferred not to overinterpret these measurements. The findings that the paired pulse data were not significantly different, fit with the vesicular release probability measurements which showed no major changes. We have made our statement on this basis.

      (5) On pg.6, lines 235-236, the authors wrote that 'Additionally, we found that only STX2-1A(SNARE) and STX2-1A(Cter) could rescue the RRP to around double of what we measured from STX2 and STX2-1A(Nter) (figure 3F)'. However, in Figure 3F, the authors indicated 'n.s.' (p>0.05) for the differences between STX2 and STX2-1A(SNARE)/STX2-1A(Cter). It is perplexing how the authors interpret their data. Definitely, the p-value could not be arbitrarily used as a criterion of difference. An easier way is that indicating the exact p-values for each comparison (indicate in figure legends or list in tables).

      We apologize for any confusion, and hope the modification gives more clarity in our interpretation. The calculated p-values are included in attached data source tables and hope this will provide clarity to our comparative analysis. We have changed the text in pg 7 lines 238-241 and are cautious to overinterpret these results and rely more on the data observed in STX1A-chimeras, which show significant changes in the RRP.

      (6) I noticed that the authors preferred using 'xx% increase/decrease' or 'xx-fold increase/decrease' to interpret their inter-group data. I would doubt whether the interpretations are appropriate. First, it seems that most of the individual scatters from one set were not subject to Gaussian distribution; also, the authors utilized non-parameter tests to compare the differences. Second, the authors did not explicitly indicate the method to calculate the % or fold, e.g., by comparing mean value or median. I think it is a bad choice to use the median to calculate fold changes; meanwhile, the mean value would also be biased, given the fact that the data were not Gaussian-distributed. The authors should be cautious in interpreting their data.

      We thank the reviewer for pointing the inaccuracy of our descriptions and have included the parameter used to calculated the percentage and fold increase/decrease in the materials and methods section. Specifically, the mean. Our intention is to plainly state the amount of change seen in a parameter based on the observed changes in the mean value. We agree with the reviewer that interpreting this could be problematic if we are speculating possible mechanisms. Further test should be conducted as to state whether similar increase/decrease changes in a parameter are due to the disturbance of the same mechanisms or different. E.g., we discussed whether the regulation of SYT1 might be or not be the mechanism affected in some of the chimeras that show an increase in the spontaneous release rate, for the release rate observed in some is massively higher than that seen in SYT1-KO (Bouazza-Arostegui et al., 2022). It is tempting to speculate that it could be due to other mechanisms based on the differences in the changes. For this reason, we have given an array of possible mechanisms affected when we manipulate the SNARE domain of STX1.

      (7) The authors routinely analyzed the levels of Munc18-1 in neuronal lysates by WB and Munc18-1/VGlut1 by immunofluorescence in various Syx1 mutants. However, in my view, these assays were slightly indirect. It is evident that the SNARE domain of Syx1 participates in the binding to Munc18-1 according to the atomic structures (pdb entries: 3C98 and 7UDB). Meanwhile, Han et al. reported that K46E mutation (located in domain 1 of Munc18-1) strongly impairs Syx1 expression, Syx1-interaction, vesicle docking and secretion (Han et al., 2011, PMID: 21900502). Intriguingly, the residue K46 of Munc18-1, which is close to D231/R232 of Syx1, may have potential electrostatic contacts to D231 and R232 of Syx1. This is reminiscent of the possibility that Syx1D231/R232 and some Syx1-2 chimeras lost their normal function through their defective binding to Munc18-1.nmb, To better understand the underlying mechanism, the authors may need to carry out in vivo and/or in vitro binding analysis between syntaxin mutants/chimeras and Munc18-1. They also need to conduct more discussions about the issue.

      We express our gratitude for the identification of a previously overlooked aspect in our investigation of the interplay between Munc18-1 and STX1. In response, we have incorporated additional discourse on this matter in pg11 lines 419-431.

      Additionally, we appreciate the thoughtful suggestion regarding additional experiments to further explore the molecular relationship between Munc18-1 and STX1. We agree that co-immunoprecipitation experiments (either by using an antibody against Munc18-1 or STX1 and STX2) would offer greater insight into whether the binding of these proteins is affected in the isoform or the mutants. Notably, we performed immunoprecipitation experiments by using neuronal lysates of the corresponding groups and using STX1A and STX2 antibodies for the pull-downs. However, we were unable to co-IP Munc18-1 when doing so. Changing the conditions of the experiment did not yield better results and so these experiments remained inconclusive for the moment. For this reason, we included it as an open question and a potential concluding hypothesis of the molecular mechanism. However, Shi et al., 2021, have performed co-IP assays using Munc18-1-wt and a mutant form which affects the binding to the C-terminal half of the SNARE domain of STX, and STX1-wt and a STX mutants targeting some of our residues of interest and showed a decrease in the pulled-down levels of Munc18-1 using HeLa cells. We have made sure to mention the conclusion of this important publication in our discussion.

      (8) The third possible mechanism (i.e., interaction with Syt1) proposed by the authors seems more reasonable. However, the discussions raised by the authors were not enough. For instance, plenty of literature has indicated that Syt1 may participate in synaptic vesicle priming through stabilizing partially or fully assembled SNARE complex (Li et al., 2017, PMID: 28860966; Bacaj et al., 2015, PMID: 26437117; Mohrmann et al., 2013, PMID: 24005294; Wang et al., 2011; PMID: 22184197; Liu et al., 2009, PMID: 19515907); complexins are also SNARE binding modules that regulate synaptic exocytosis. Lack of complexins could lead to unclasping of spontaneous fusion of synaptic vesicles, though it causes severe Ca2+-triggered release at the same time (Maximov et al., 2009, PMID: 19164751). Meanwhile, different domains of complexin may accomplish different steps of SV fusion, early research had indicated that the C-terminal sequence of complexin is selectively required for clamping of spontaneous fusion and priming but not for Ca2+-triggered release (Kaeser-Woo et al., 2012, PMID: 22357870). Likewise, if possible, the authors may need to carry out in vivo and/or in vitro binding analysis to confirm their hypothesis.

      The exploration of complexin´s involvement was limited in our study primarily due to our methodological focus on comprehending molecular mechanisms concerning the sequence disparities between STX1 and STX2. Our laboratory has studied the role of Complexin extensively, and we certainly have had a possible involvement in mind. However, since the sites identified on syntaxin are either conserved between STX1 and STX2 or not close to the central or accessory helical domains of complexin, we did not perform experiments to test putative interactions, and we refrained from discussing complexin in this paper.

      (9) Lastly, I would suspect that whether the defects of Syx2 and Syx1 chimeras were caused by the SNARE complex itself, from another point of view that is different from the hypothesis raised by the authors. Changing the outward residues (or we say the solvent-accessible residues) of the SNARE complex may affect the stability, assembly kinetics, and energetics (Wang and Ma, 2022, PMID: 35810329; Zorman et al., 2014, PMID: 25180101), especially for the C-terminal halves. Is this another possible mechanism through which the C-terminus of Syx1 might contribute to SV priming and clamping of spontaneous release? The authors should at least conduct some discussions about the point.

      Thank you for this suggestion. We indeed assumed that since the hydrophobic layers of the SNARE domains that form the hydrophobic pocket of STX2 and STX1 are mainly conserved, that the intrinsic stability of the SNARE complex is largely unchanged. Additionally, Li et al., (2022) PMID: 35810329 examined the stability of the alfa-helix structure of the SNARE domain of SNAP25. And while they found no changes in the stability and formation of the alfa-helix when mutating outwards-facing residues for methodological purposes (bimane-tryptophan quenching), their study did not selectively explore the effect of mutations of outer-surface residues on the stability of the alfa-helix.

      Zorman et al., (2014) PMID: 25180101, as noted by the reviewer, observed that changes in the sequence of the SNARE domain (by using SNARE proteins from different trafficking systems (neuron, GLUT4, yeast…) correlated with changes in the step-wise SNARE complex assembly. However, they also did not selectively mutate the outer solvent-accessible residues, hindering conclusive speculations in the contribution of said residues on the kinetics and energetics of assembly and intrinsic stability of the SNARE complex.

      Upon petition of the reviewer, we have added this paragraph to discuss an additional mechanism:

      “As a final remark, it is possible that the changes in the spontaneous release rate and the priming stability may stem from a reduced stability of the SNARE complex itself through putative interactions between outer surface residues. Studies of the kinetics of assembly of the SNARE complex which mutate solvent-accessible residues in the C-terminal half of the SNARE domain of SYB2 have shown reduction in the stability of the SNARE complex assembly and are correlated with impaired fusion (Jiao et al., 2018). However, STX1 mutations of outward residues were inconclusive and were always accompanied by hydrophobic layer mutations (Jiao et al., 2018), which affect the assembly kinetics and energetics of the SNARE complex (Ma et al., 2015). Single molecule optical-tweezer studies have focused on the impact of regulatory molecules on the stability of assembly such as Munc18-1 (Ma et al., 2015; Jiao et al., 2018) and complexin (Hao et al., 2023), or on the intrinsic stability of the hydrophobic layers in the step-wise assembly of the SNARE complex (Gao et al., 2012; Ma et al., 2015; Zhang et al., 2017). Although the conserved hydrophobic layers in the SNARE domains of STX1A and STX2 (Figure 1) suggest unchanged zippering and intrinsic stability of the complex, further studies addressing the contribution of surface residues on the stability of the alfa-helix structure of the SNARE domain of STX1 (Li et al., 2022) or the stability of the SNARE complex should be conducted.”

      Minor comments:

      (1) In pg.6, line 236, 'figure 3F', the initial 'f' should be uppercased.

      (3) On pg.11, line 396, the section title 'The interaction of the C-terminus of de SNARE domain of STX1A with Munc18-1 in the stabilization of the primed pool of vesicles.' The word 'de' is confusing, please check.

      (4) In pg.12, line 446, the section title, should 'though' be 'through'?

      These comments have been acknowledged and changed. Thank you

      (2) In pg.7, line 239, '..had an increased PVR (Figure 3G), no change in the release rate (Figure 3I)', should Figure 3I be Figure 3H? and line 240, 'and an increase in short-term depression during 10Hz train stimulation (Figure 3I)', should Figure 3I be Figure 3J? If so, Figure 3I will not be cited in the texts and lack adequate interpretations. Please check.

      We apologize for the oversight in not referencing this specific subpanel of the figure and have incorporated the reference in the text. Additionally, our interpretation of this data is connected to the mechanisms that govern efficacy of Ca2+-evoked response, and its dependence on the integrity of the entire-SNARE domain. We wish to highlight the modifications made to the discussion on the regulation of the Ca2+-evoked response based on previous reviewer comment #1, and a similar comment from reviewer #2 (as stated previously).

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      Visual Perceptual Learning (VPL) results in varying degrees of generalization to tasks or stimuli not seen during training. The question of which stimulus or task features predict whether learning will transfer to a different perceptual task has long been central in the field of perceptual learning, with numerous theories proposed to address it. This paper introduces a novel framework for understanding generalization in VPL, focusing on the form invariants of the training stimulus. Contrary to a previously proposed theory that task difficulty predicts the extent of generalization - suggesting that more challenging tasks yield less transfer to other tasks or stimuli - this paper offers an alternative perspective. It introduces the concept of task invariants and investigates how the structural stability of these invariants affects VPL and its generalization. The study finds that tasks with high-stability invariants are learned more quickly. However, training with low-stability invariants leads to greater generalization to tasks with higher stability, but not the reverse. This indicates that, at least based on the experiments in this paper, an easier training task results in less generalization, challenging previous theories that focus on task difficulty (or precision). Instead, this paper posits that the structural stability of stimulus or task invariants is the key factor in explaining VPL generalization across different tasks

      Strengths:

      • The paper effectively demonstrates that the difficulty of a perceptual task does not necessarily correlate with its learning generalization to other tasks, challenging previous theories in the field of Visual Perceptual Learning. Instead, it proposes a significant and novel approach, suggesting that the form invariants of training stimuli are more reliable predictors of learning generalization. The results consistently bolster this theory, underlining the role of invariant stability in forecasting the extent of VPL generalization across different tasks.

      • The experiments conducted in the study are thoughtfully designed and provide robust support for the central claim about the significance of form invariants in VPL generalization.

      Weaknesses:

      • The paper assumes a considerable familiarity with the Erlangen program and the definitions of invariants and their structural stability, potentially alienating readers who are not versed in these concepts. This assumption may hinder the understanding of the paper's theoretical rationale and the selection of stimuli for the experiments, particularly for those unfamiliar with the Erlangen program's application in psychophysics. A brief introduction to these key concepts would greatly enhance the paper's accessibility. The justification for the chosen stimuli and the design of the three experiments could be more thoroughly articulated.

      Response: We appreciate the reviewer's feedback regarding the accessibility of our paper. In response to this feedback, we plan to enhance the introduction section of our paper to provide a concise yet comprehensive overview of the key concepts of Erlangen program. Additionally, we will provide a more thorough justification for the selection of stimuli and the experimental design in our revised version, ensuring that readers understand the rationale behind our choices.

      • The paper does not clearly articulate how its proposed theory can be integrated with existing observations in the field of VPL. While it acknowledges previous theories on VPL generalization, the paper falls short in explaining how its framework might apply to classical tasks and stimuli that have been widely used in the VPL literature, such as orientation or motion discrimination with Gabors, vernier acuity, etc. It also does not provide insight into the application of this framework to more naturalistic tasks or stimuli. If the stability of invariants is a key factor in predicting a task's generalization potential, the paper should elucidate how to define the stability of new stimuli or tasks. This issue ties back to the earlier mentioned weakness: namely, the absence of a clear explanation of the Erlangen program and its relevant concepts.

      Response: Thanks for highlighting the need for better integration of our proposed theory with existing observations in the field of VPL. Unfortunately, the theoretical framework proposed in our study is based on the Klein’s Erlangen program and is only applicable to geometric shape stimuli. For VPL studies using stimuli and paradigms that are completely unrelated to geometric transformations (such as motion discrimination with Gabors or random dots, vernier acuity, spatial frequency discrimination, contrast detection or discrimination, etc.), our proposed theory does not apply. Some stimuli employed by VPL studies can be classified into certain geometric invariants. For instance, orientation discrimination with Gabors (Dosher & Lu, 2005) and texture discrimination task (F. Wang et al., 2016) both belong to tasks involving Euclidean invariants, and circle versus square discrimination (Kraft et al., 2010) belongs to tasks involving affine invariance. However, these studies do not simultaneously involve multiple geometric invariants of varying levels stability, and thus cannot be directly compared with our research. It is worth noting that while the Klein’s hierarchy of geometries, which our study focuses on, is rarely mentioned in the field of VPL, it does have connections with concepts such as 'global/local', 'coarse/fine', 'easy/difficulty', 'complex/simple': more stable invariants are closer to 'global', 'coarse', 'easy', 'complex', while less stable invariants are closer to 'local', 'fine', 'difficulty', 'simple'. Importantly, several VPL studies have found ‘fine-to-coarse’ or ‘local-to-global’ asymmetric transfer (Chang et al., 2014; N. Chen et al., 2016; Dosher & Lu, 2005), which seems consistent with the results of our study.

      In the introduction section of our revised version and subsequent full author response, we will provide a clear explanation of the Erlangen program and elucidate how to define the stability of new stimuli or tasks. In the discussion section of our revised version, we will compare our results to other studies concerned with the generalization of perceptual learning and speculate on how our proposed theory fit with existing observations in the field of VPL.

      • The paper does not convincingly establish the necessity of its introduced concept of invariant stability for interpreting the presented data. For instance, consider an alternative explanation: performing in the collinearity task requires orientation invariance. Therefore, it's straightforward that learning the collinearity task doesn't aid in performing the other two tasks (parallelism and orientation), which do require orientation estimation. Interestingly, orientation invariance is more characteristic of higher visual areas, which, consistent with the Reverse Hierarchy Theory, are engaged more rapidly in learning compared to lower visual areas. This simpler explanation, grounded in established concepts of VPL and the tuning properties of neurons across the visual cortex, can account for the observed effects, at least in one scenario. This approach has previously been used/proposed to explain VPL generalization, as seen in (Chowdhury and DeAngelis, Neuron, 2008), (Liu and Pack, Neuron, 2017), and (Bakhtiari et al., JoV, 2020). The question then is: how does the concept of invariant stability provide additional insights beyond this simpler explanation?

      Response: We appreciate the alternative explanation proposed by the reviewer and agree that it presents a valid perspective grounded in established concepts of VPL and neural tuning properties. However, performing in the collinearity and parallelism tasks both require orientation invariance. While utilizing the orientation invariance, as proposed by the reviewer, can explain the lack of transfer from collinearity or parallelism to orientation task, it cannot explain why collinearity does not transfer to parallelism.

      As stated in the response to the previous review, in the revised discussion section, we will compare our study with other studies (including the three papers mentioned by the reviewer), aiming to clarify the necessity of the concept of invariant stability for interpreting the observed data and understanding the mechanisms underlying VPL generalization.

      • While the paper discusses the transfer of learning between tasks with varying levels of invariant stability, the mechanism of this transfer within each invariant condition remains unclear. A more detailed analysis would involve keeping the invariant's stability constant while altering a feature of the stimulus in the test condition. For example, in the VPL literature, one of the primary methods for testing generalization is examining transfer to a new stimulus location. The paper does not address the expected outcomes of location transfer in relation to the stability of the invariant. Moreover, in the affine and Euclidean conditions one could maintain consistent orientations for the distractors and targets during training, then switch them in the testing phase to assess transfer within the same level of invariant structural stability.

      Response: Thanks for raising the issue regarding the mechanism of transfer within each invariant conditions. We plan to design an additional experiment that is similar in paradigm to Experiment 2, aiming to examine how VPL generalizes to a new test location within a single invariant stability level.

      • In the section detailing the modeling experiment using deep neural networks (DNN), the takeaway was unclear. While it was interesting to observe that the DNN exhibited a generalization pattern across conditions similar to that seen in the human experiments, the claim made in the abstract and introduction that the model provides a 'mechanistic' explanation for the phenomenon seems overstated. The pattern of weight changes across layers, as depicted in Figure 7, does not conclusively explain the observed variability in generalizations. Furthermore, the substantial weight change observed in the first two layers during the orientation discrimination task is somewhat counterintuitive. Given that neurons in early layers typically have smaller receptive fields and narrower tunings, one would expect this to result in less transfer, not more.

      Response: We appreciate the reviewer's feedback regarding the clarity of our DNN modeling experiment. We acknowledge that while DNNs have been demonstrated to serve as models for visual systems as well as VPL, the claim that the model provides a ‘mechanistic’ explanation for the phenomenon still overstated. In our revised version,

      We will attempt a more detailed analysis of the DNN model while providing a more explicit explanation of the findings from the DNN modeling experiment, emphasizing its implications for understanding the observed variability in generalizations.

      Additionally, the substantial weight change observed in the first two layers during the orientation discrimination task is not contradictory to the theoretical framework we proposed, instead, it aligns with our speculation regarding the neural mechanisms of VPL for geometric invariants. Specifically, it suggests that invariants with lower stability rely more on the plasticity of lower-level brain areas, thus exhibiting poorer generalization performance to new locations or stimulus features within each invariant conditions. However, it does not imply that their learning effects cannot transfer to invariants with higher stability.

      Reviewer #2 (Public Review):

      The strengths of this paper are clear: The authors are asking a novel question about geometric representation that would be relevant to a broad audience. Their question has a clear grounding in pre-existing mathematical concepts, that, to my knowledge, have been only minimally explored in cognitive science. Moreover, the data themselves are quite striking, such that my only concern would be that the data seem almost too clean. It is hard to know what to make of that, however. From one perspective, this is even more reason the results should be publicly available. Yet I am of the (perhaps unorthodox) opinion that reviewers should voice these gut reactions, even if it does not influence the evaluation otherwise. Below I offer some more concrete comments:

      (1) The justification for the designs is not well explained. The authors simply tell the audience in a single sentence that they test projective, affine, and Euclidean geometry. But despite my familiarity with these terms -- familiarity that many readers may not have -- I still had to pause for a very long time to make sense of how these considerations led to the stimuli that were created. I think the authors must, for a point that is so central to the paper, thoroughly explain exactly why the stimuli were designed the way that they were and how these designs map onto the theoretical constructs being tested.

      (2) I wondered if the design in Experiment 1 was flawed in one small but critical way. The goal of the parallelism stimuli, I gathered, was to have a set of items that is not parallel to the other set of items. But in doing that, isn't the manipulation effectively the same as the manipulation in the orientation stimuli? Both functionally involve just rotating one set by a fixed amount. (Note: This does not seem to be a problem in Experiment 2, in which the conditions are more clearly delineated.)

      (3) I wondered if the results would hold up for stimuli that were more diverse. It seems that a determined experimenter could easily design an "adversarial" version of these experiments for which the results would be unlikely to replicate. For instance: In the orientation group in Experiment 1, what if the odd-one-out was rotated 90 degrees instead of 180 degrees? Intuitively, it seems like this trial type would now be much easier, and the pattern observed here would not hold up. If it did hold up, that would provide stronger support for the authors' theory.

      It is not enough, in my opinion, to simply have some confirmatory evidence of this theory. One would have to have thoroughly tested many possible ways that theory could fail. I'm unsure that enough has been done here to convince me that these ideas would hold up across a more diverse set of stimuli.

      Response: (1) We appreciate the reviewer’s feedback regarding the justification for our experimental designs. We recognize the importance of thoroughly explaining how our stimuli were designed and how these designs correspond to the theoretical constructs being tested. In our revised version, we will enhance the introduction of Erlangen program and provide a more detailed explanation of the rationale behind our stimulus designs, aiming to enhance the clarity and transparency of our experimental approach for readers who may not be familiar with these concepts.

      (2) We appreciate the reviewer’s insight into the design of Experiment 1 and the concern regarding the potential similarity between the parallelism and orientation stimuli manipulations.

      The parallelism and orientation stimuli in Experiment 1 were first used by Olson & Attneave (1970) to support line-based models of shape coding and then adapted to measure the relative salience of different geometric properties (Chen, 1986). In the parallelism stimuli, the odd quadrant differs from the rest in line slope, while in the orientation stimuli, in contrast, the odd quadrant contains exactly the same line segments as the rest but differs in direction pointed by the angles. The result, that the odd quadrant was detected much faster in the parallelism stimuli than in the orientation stimuli, can serve as evidence for line-based models of shape coding. However, according to Chen (1986, 2005), the idea of invariants over transformations suggests a new analysis of the data: in the parallelism stimuli, the fact that line segments share the same slope essentially implies that they are parallel, and the discrimination may be actually based on parallelism. Thus, the faster discrimination of the parallelism stimuli than that of the orientation stimuli may be explained in terms of relative superiority of parallelism over orientation of angles—a Euclidean property.

      The group of stimuli in Experiment 1 has been employed by several studies to investigate scientific questions related to the Klein’s hierarchy of geometries (L. Chen, 2005; Meng et al., 2019; B. Wang et al., n.d.). Due to historical inheritance, we adopted this set of stimuli and corresponding paradigm, despite their imperfect design.

      (3) Thanks for raising the important issue of stimulus diversity and the potential for "adversarial" versions of the experiments to challenge our findings. We acknowledge the validity of your concern and recognize the need to demonstrate the robustness of our results across a range of stimuli. We plan to design additional experiments to investigate the potential implications of varying stimulus characteristics, such as different rotation angles proposed by the reviewer, on the observed patterns of performance.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Comment 1.1: “Did the UKB or HCHS datasets have information on accurate markers of insulin resistance, such as HbA1c or HOMA-IR (if fasting glucose was not available)? Looking at that data would allow us to determine the contribution of insulin resistance to the observed cortical phenotype.”

      Reply 1.1: We appreciate the insightful suggestion from the reviewer. In response, we incorporated the HbA1c into our analysis, enhancing its sensitivity to potential effects of insulin resistance. Subsequently, our analysis was reperformed, integrating HbA1c alongside non-fasting blood glucose in the PLS. This addition did not alter our main results, i.e., that of the PLS, virtual histology, and network contextualization analysis. Notably, as a result of the inclusion of HbA1c, the second latent variable now accounted for a greater shared variance (22.13%), with HbA1c showing the highest loading among MetS component variables. The manuscript has been thoroughly revised to incorporate these results.

      Comments 1.2: “(Results, p.13, 291-292) "A correlation matrix relating all considered MetS component measures is displayed in supplementary figure S12. Please clarify in this figure labels whether this was non-fasting glucose. If this is non-fasting glucose, it is not a MetS-related risk factor. The reader might be misled into thinking that fasting-glucose has a weak correlation, while its contribution (and the effect of insulin resistance) was not studied here.”

      “Table S8 and Table S9: Is the glucose metric here measured following fasting? If not, this should not be listed as a metabolic syndrome criterion. Or it should be specified that it isn't fasted glucose, otherwise, it sounds misleading.”

      Reply 1.2: We thank the reviewer for bringing this ambiguity to our attention. The initial analysis included only non-fasting plasma glucose in the PLS, as fasting plasma glucose data was unavailable for UKB and HCHS participants. Following your suggestion in reply 1.1, we have now incorporated HbA1c, a more indicative marker of insulin resistance. We retained non-fasting blood glucose in our analysis, recognizing its relevance as a diagnostic variable for type 2 diabetes mellitus, although it is less informative than fasting plasma glucose, HbA1c, or HOMA-IR. This decision is substantiated by the significant correlation found between non-fasting plasma glucose and HbA1c in our sample (r=.49).

      To enhance clarity, we have revised the methods section to explicitly mention that the study investigates non-fasting blood glucose. The revised sentence reads: “Here, we related regional cortical thickness and subcortical volumes to clinical measurements of MetS components, i.e., obesity (waist circumference, hip circumference, waist-hip ratio, body mass index), arterial hypertension (systolic blood pressure, diastolic blood pressure), dyslipidemia (high density lipoprotein, low density lipoprotein, total cholesterol, triglycerides) and insulin resistance (HbA1c, non-fasting blood glucose).”

      Additionally, we have updated the caption of supplementary figure S13 (formerly supplementary figure S12) to clearly indicate the investigation of non-fasting plasma glucose. The table detailing diagnostic MetS criteria (supplementary table S2) has also been amended to clarify the absence of fasting plasma glucose data in our study and to indicate that only data on antidiabetic therapy and diagnosis of type 2 diabetes mellitus were used as criteria for insulin resistance in the case-control analysis.

      Comment 1.3: “I do not understand how the authors can claim there is a deterministic relationship there if all the results are only correlational or comparative. Can the differences in functional connectivity and white matter fiber tracts observed not be caused by the changes in cortices they relate to? How can the authors be sure the network organisation is shaping the cortical effects and not the opposite (the cortical changes influence the network organisation)? This should be further discussed or explained.”

      Reply 1.3: We agree with the reviewer's comment on the non-causative nature of our data and have accordingly revised the discussion section to reflect a more cautious interpretation of our findings. We have carefully reframed our language to avoid any implications of causality, ensuring the narrative aligns with the correlational nature of our data. Nevertheless, we believe that exploring causal interpretations can offer valuable clinical insights. Therefore, while moderating our language, we have maintained certain speculative discussions regarding potential causative pathomechanistic pathways.

      Comment 1.4: “The hippocampus is also an area where changes have consistently been observed. Why did the authors limit their analysis to the cortex.”

      Reply 1.4: We appreciate this reviewer comment. In response, we have added volumes of Melbourne Subcortical Atlas parcels (including the hippocampus) to the analysis. Corresponding results are now shown in figure 2. The subcortical bootstrap ratios indicated that higher MetS severity was related to lower volumes across all investigated subcortical structures.

      Comment 1.5: “Which field ID of the UK biobank are the measures referring to? If possible, please specify the Field ID for each of the UKB metrics used in the study.”

      Reply 1.5: We thank the reviewer for the recommendation. The Field IDs used in our study are now listed in supplementary figure S1.

      Comment 1.6: “Several Figures were wrongly annotated, making it hard to follow the text.”

      Reply 1.6: Thank you for bringing the annotation issues to our awareness. We have thoroughly edited all annotations which should now correctly reference the figure content.

      Reviewer 2

      Comment 2.1: “Do the authors have the chance to see how the pattern relates to changes in cognitive function in the UKBB and possibly HCHS? This could help to provide some evidence about the directionality of the effect.” Reply 2.1: Thank you for your suggestion. We acknowledge the potential value of investigating gray matter morphometric data alongside longitudinal information on cognitive function. Although we concur with the significance of this approach, we are constrained by the ongoing processing of the UKB's imaging follow-up data and the pending release of the HCHS follow-up data. Consequently, our current analysis cannot incorporate this aspect for now. We plan to explore the relationship between MetS, cognition and brain morphology using longitudinal data as soon as it becomes available.

      Comment 2.2: “Also, you could project new data onto the component and establish a link with cognition in a third sample which would be even more convincing. I can offer LIFE-Adult study for this aim.”

      Reply 2.2: We are grateful for your recommendation to enhance our study's robustness by including a third sample to establish a cognitive link. While we recognize the merit of such a sensitivity analysis, we believe that our current dataset, derived from two large, independent cohorts, is sufficiently comprehensive for the scope of our current analysis. However, we are open to considering this approach in future studies and appreciate your offer of the LIFE-Adult study. We would welcome further conversation with you regarding future joint projects.

      Comment 2.3: “The sentences (p.17, ll.435 ff) seem to repeat: "Interestingly, we also observed a positive relationship between cortical thickness and MetS in the superior frontal, parietal and occipital lobe. Interpretation of this result is, however, less intuitive. We also noted a positive MetS-cortical thickness association in superior frontal, parietal and occipital lobes, a less intuitive finding that has been previously reported [60,61].”

      Reply 2.3: Thank you for making us aware of this duplication. We have deleted the first part of the section. It now reads “We also noted a positive MetS-cortical thickness association in superior frontal, parietal and occipital lobes, a less intuitive finding that has been previously reported.”

      Comment 2.4: “I would highly appreciate empirical evidence for the claim in ll. 442 "In support of this hypothesis, the determined cortical thickness abnormality pattern is consistent with the atrophy pattern found in vascular mild cognitive impairment and vascular dementia" Considering the previous reports about the co-localization of obesity-associated atrophy and AD neurodegeneration (Morys et al. 2023, DOI: 10.3233/JAD-220535), that most dementias are mixed and that MetS probably increases dementia risk through both AD and vascular mechanisms, I feel such "binary" claims on VaD/AD-related atrophy patterns should be backed up empirically.”

      Reply 2.4: Thank you for highlighting the need for clarity in differentiating between vascular and Alzheimer's dementia. We recognize the intricate overlap in dementia pathologies. Acknowledging the prevalence of mixed dementia and the influence of MetS on both AD and vascular mechanisms, we realize our original statement might have implied a specificity to vascular dementia, which was not intended.

      To address your concern, we have revised our statement to avoid an exclusive focus on vascular pathology, ensuring a more balanced representation of dementia types. Additionally, we have included Morys et al. 2023 as a reference. The section now reads: “In support of this hypothesis, the determined brain morphological abnormality pattern is consistent with the atrophy pattern found in vascular mild cognitive impairment, vascular dementia and Alzheimer’s dementia.”

      Comment 2.5: “I wonder how specific the cell-type results are to this covariance pattern. Maybe patterns of CT (independent of MetS) show similar associations with one or more of the reported celltypes? Would it be possible to additionally show the association of the first three components of general cortical thickness variation with the cell type densities?”

      Reply 2.5: Thank you for your query regarding the specificity of the cell-type results to the observed covariance pattern. To address this, we have conducted a virtual histology analysis of the first three latent variables of the main analysis PLS. The findings of this extended analysis have been detailed in the supplementary Figure S21. The imaging covariance profile of latent variable 2 was significantly associated with the density of excitatory neurons of subtype 3. The imaging covariance profile linked to latent variable 3 showed no significant association of cell type densities. Possibly, latent variable 3 represents only a noise component as it explained only 2.12% of shared variance. We hope this addition provides a clearer understanding of the specificity of our main results.

      Comment 2.6: “I agree that this multivariate approach can contribute to a more holistic understanding, yet I would like to see the discussion expanded on how to move on from here. Should we target the MetS more comprehensively or would it be best to focus on obesity (being the strongest contributor and risk factor for other "downstream" conditions such as T2DM)? A holistic approach is somewhat at odds with the in-depth investigation of specific mechanisms.”

      Reply 2.6: We value your suggestion to elaborate on the implications of our findings. Our study indicates that obesity may have the most pronounced impact on brain morphology among MetS components, suggesting it as a key contributor to the clinical-anatomical covariance pattern observed in our analysis. This highlights obesity as a primary target for future research and preventive strategies. However, we believe that our results warrant further validation, ideally through longitudinal studies, before drawing definitive clinical conclusions.

      Additionally, our study endorses a comprehensive approach to MetS, highlighting the importance of considering the syndrome as a whole to gain broader insights. We want to clarify, however, that such an approach is meant to complement, rather than replace, the study of individual cardiometabolic risk factors. The broad perspective our study adopts is facilitated by its epidemiological nature, which may not be as applicable in experimental settings that are vital for deriving mechanistic disease insights.

      To reflect these points, we have expanded the discussion in our manuscript to include a more detailed consideration of these implications and future research directions.

      Comment 2.7: “Please report the number of missing variables.”

      Reply 2.7: Thank you for your request to report the number of missing variables. We would like to direct your attention to table 1, where we have listed the number of available values for each variable in parentheses. To determine the number of missing variables, one can subtract these numbers from the total sample size.

      Comment 2.8: “Was the pattern similar in pre-clinical (pre-diabetes, pre-hypertension) vs. clinical conditions?“

      Reply 2.8: Thank you for your interest in the applicability of our findings across different MetS severity levels. Our analysis employs a continuous framework to encompass the entire range of vascular and cardiometabolic risks, including those only mildly affected by MetS. The linear relationship we observed between MetS severity and gray matter morphology patterns, as illustrated in Figure 2d, supports the interpretation that our findings apply to the entire spectrum of MetS severities.

      Comment 2.9: “How did you deal with medication (anti-hypertensive, anti-diabetic, statins..)?”

      Reply 2.9: Information on medication was considered for defining MetS for the case-control sensitivity analysis but was not included in the PLS. Detailed information can be found in table 1.

      Comment 2.10: “It would be really interesting to determine the genetic variations associated with the latent component. Have you considered doing a GWAS on this, potentially in the CHARGE consortium or with UKBB as discovery and HCHS as replication sample?”

      Reply 2.10: Thank you for your valuable suggestion regarding the implementation of a GWAS. We agree that incorporating a GWAS would provide significant insights, but we also recognize that it extends beyond the scope of our current analysis. However, we are actively planning a follow-up analysis. This subsequent analysis will encompass a comprehensive examination of both genetic variation and imaging findings in the context of MetS.

      Comment 2.11: “Please provide more information on which data fields from UKBB were used exactly (e.g. in github repository).”

      Reply 2.11: We appreciate your recommendation. The details regarding the Field IDs used in our study have been included as supplementary table S1.

      Reviewer 3

      Comments 3.1: “After a thorough review of the methods and results sections, I found no direct or strong evidence supporting the authors' claim that the identified latent variables were related to more severe MetS to worse cognitive performance. While a sub-group comparison was conducted, it did not adequately account for confounding factors such as educational level.”

      “Page 18-19 lines 431-446: the fifth paragraph in the discussion section. - As previously mentioned in the "Weaknesses" section, this study did not conduct a direct association analysis between MetS and cognitive levels without considering subgroup comparisons. Hence, I recommend the content of this paragraph warrants careful reconsideration.”

      Reply 3.1: We acknowledge the reviewer's constructive feedback regarding our analysis of cognitive data. We have performed a mediation analysis relating the subject-specific clinical PLS score of latent variable 1 representing MetS severity and cognitive test performances and testing for mediating effects of the imaging PLS score capturing the MetS-related brain morphological abnormalities. The imaging score was found to statistically mediate the relationship between the clinical PLS score and executive function and processing speed, memory, and reasoning test performance. These findings highlight brain structural differences as a relevant pathomechanistic correlate in the relationship of MetS and cognition. Corresponding information can now be found in figure 3, methods section 2.6.2, result section 3.3 and discussion section 4.2.

      Moreover, we would like to apologize for any confusion caused by previous unclear presentation. Our study further incorporates association analyses between MetS, brain structure, and cognition using MetS components, regional brain morphological measures, and cognitive performance data in a PLS to investigate whether cognitive measures contribute to the latent variable. These analyses were separately performed on the UK Biobank and HCHS datasets, due to their distinct cognitive assessments. We adjusted for age, sex, and education in the subgroup analyses by removing their effects from the input variables. These relationships are detailed in supplementary figures S16b and S17b, with loadings close to zero for age, sex, and education, confirming effective deconfounding.

      In sum, we greatly appreciate the suggestion to conduct a mediation analysis, which has substantially enhanced the strength and relevance of our analysis.

      Comment 3.2: “I would suggest the authors provide a more comprehensive description of the metrics used to assess each MetS component, such as obesity (incorporating parameters like waist circumference, hip circumference, waist-hip ratio, and body mass index) and arterial hypertension (detailing metrics like systolic and diastolic blood pressure), etc.”

      Reply 3.2: Thank you for your suggestion regarding a more detailed description of the metrics for assessing each component of MetS. We would like to point out that the specific metrics used, including those for obesity (such as waist circumference, hip circumference, waist-hip ratio, and body mass index) and arterial hypertension (including systolic and diastolic blood pressure), are comprehensively detailed in table 1 of our manuscript. We hope this table provides the clarity and specificity you are seeking regarding the MetS assessment metrics in our study.

      Comment 3.3: “I recommend the inclusion of an additional, detailed flowchart to further illustrate the procedure of virtual histology analysis. This would enhance the clarity of the methodological approach and assist readers in better comprehending the analysis method.”

      Reply 3.3: Thank you for your suggestion. Recognizing the challenges in visually representing many of our analysis steps, we have instead supplemented our manuscript with additional references. These references provide a clearer understanding of our virtual histology approach, particularly focusing on the processing of regional microarray expression data.

      The corresponding sentence reads: “Further details on the processing steps covered by ABAnnotate can be found elsewhere (https://osf.io/gcxun) [42]”

      Comment 3.4: “Why were both brain hemispheres used instead of solely utilizing the left hemisphere as the atlas, especially considering that the Allen Human Brain Atlas (AHBA) only includes gene data for the right hemisphere for two subjects?”

      Reply 3.4: Thank you for your query regarding our decision to use both brain hemispheres instead of solely the left hemisphere, especially considering the Allen Human Brain Atlas (AHBA) predominantly featuring gene data from the left hemisphere. Given the AHBA's limited spatial coverage of expression data in the right hemisphere, our approach involved mirroring the existing tissue samples across the left-right hemisphere boundary using the abagen toolbox,1 a practice supported by findings that suggest minimal lateralization of microarray expression.2,3 Further details are provided in previous work employing ABAnnotate.4 These studies are now referenced in our methods section.

      Comment 3.5: “The second latent variable was not further discussed. If this result is deemed significant, it warrants a more detailed discussion. "

      Reply 3.5: Thank you for the suggestion. We have added a paragraph to the discussion that discusses the second latent variable in greater detail. It reads: “The second latent variable accounted for 22.33% of shared variance and linked higher insulin resistance and lower dyslipidemia to lower thickness and volume in lateral frontal, posterior temporal, parietal and occipital regions. The distinct covariance profile of this latent variable, compared to the first, likely indicates a separate pathomechanistic connection between MetS components and brain morphology. Given that HbA1c and blood glucose were the most significant contributors to this variable, insulin resistance might drive the observed clinicalanatomical relationship.”

      Comment 3.6: “I suggest appending positive MetS effects after "..., insular, cingulate and temporal cortices;" for two reasons: a). The "positive MetS effects" might represent crucial findings that should not be omitted. b). Including both negative and positive effects ensures that subsequent references to "this pattern" are more precise.”

      Reply 3.6: We concur with the notion that the positive MetS effects should be highlighted as well. We modified the first discussion paragraph now mentioning them.

      Comment 3.7: “I would appreciate further clarification on this sentence and the use of the term "uniform" in this context. Does this suggest that despite the heterogeneity in the physiological and pathological characteristics of the various MetS components (e.g., obesity, hypertension), their impacts on cortical thickness manifest similarly? How is it that these diverse components lead to "uniform" effects on cortical thickness? Does this observation align with or deviate from previous findings in the literature?”

      Reply 3.7: Thank you for highlighting the ambiguity in our previous explanation. We agree that the complexity of the relationship between MetS components and brain morphology requires clearer articulation. To address this, we have revised the relevant sentence for better clarity. It now reads: „This finding indicates a relatively uniform connection between MetS and brain morphology, implying that the associative effects of various MetS components on brain structure are comparatively similar, despite the distinct pathomechanisms each component entails.“

      Comment 3.8: “Figure 1 does not have the labels "c)" and "d)". ”

      Reply 3.8: Thank you. We have modified figure 1 and made sure that the caption correctly references its content.

      Comment 3.10: “Incorrect figure/table citation:

      • Page 18 line 418: "(figure 2b and 1c)" à (figure 2b and 2c).

      • Page 18 line 419: "(supplementary figures S8 and S12-13)" à (supplementary figures S11 and S1516).

      • In the supplementary material, "Text S5 - Case-control analysis" section contains several figure or table citation errors. Please take a moment to review and correct them.”

      Reply 3.10: Thank you for bringing this to our attention. We have corrected the figure and table citation errors.

      Comment 3.11: “Page 8 line 184: The more commonly used term is "insulin resistance" rather than "insuline resistance.”

      Reply 3.11: We now use “insulin resistance” throughout the manuscript.

      Comment 3.12: “Nevertheless, variations in gene sets may introduce a degree of heterogeneity in the results (Seidlitz, et al., 2020; Martins et al., 2021). Consequently, further validation or exploratory analyses utilizing different gene sets can yield more compelling results and conclusions.”

      Reply 3.12: Thank you for your insightful comment regarding the potential heterogeneity introduced by variations in gene sets. We agree that exploring different gene sets could indeed enhance the robustness and generalizability of our findings. However, we think conducting a comprehensive methodological analysis of the available cell-type specific gene sets is a substantial effort and warrants its own investigation to thoroughly implement it and assess its implications. We also like to highlight that we are adhering to previous practices in our analysis setup.4,5

      References

      (1) Markello RD, Arnatkeviciute A, Poline JB, Fulcher BD, Fornito A, Misic B. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Jbabdi S, Makin TR, Jbabdi S, Burt J, Hawrylycz MJ, eds. eLife. 2021;10:e72129. doi:10.7554/eLife.72129

      (2) Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391-399. doi:10.1038/nature11405

      (3) Hawrylycz M, Miller JA, Menon V, et al. Canonical genetic signatures of the adult human brain. Nat Neurosci. 2015;18(12):1832-1844. doi:10.1038/nn.4171

      (4) Lotter LD, Saberi A, Hansen JY, et al. Human cortex development is shaped by molecular and cellular brain systems. Published online May 5, 2023:2023.05.05.539537. doi:10.1101/2023.05.05.539537

      (5) Lotter LD, Kohl SH, Gerloff C, et al. Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion. Neuroscience & Biobehavioral Reviews. 2023;146:105042. doi:10.1016/j.neubiorev.2023.105042

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a useful characterization of the biochemical consequences of a disease-associated point mutation in a nonmuscle actin. The study uses solid and well-characterized in vitro assays to explore function. In some cases the statistical analyses are inadequate and several important in vitro assays are not employed.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths:

      The authors first perform several important controls to show that the expressed mutant actin is properly folded, and then show that the Arp2/3 complex behaves similarly with WT and mutant actin via a TIRF microscopy assay as well as a bulk pyrene-actin assay. A TIRF assay showed a small but significant reduction in the rate of elongation of the mutant actin suggesting only a mild polymerization defect.

      Based on in silico analysis of the close location of the actin point mutation and bound cofilin, cofilin was chosen for further investigation. Faster de novo nucleation by cofilin was observed with mutant actin. In contrast, the mutant actin was more slowly severed. Both effects favor the retention of filamentous mutant actin. In solution, the effect of cofilin concentration and pH was assessed for both WT and mutant actin filaments, with a more limited repertoire of conditions in a TIRF assay that directly showed slower severing of mutant actin.

      Lastly, the mutated residue in actin is predicted to interact with the cardiomyopathy loop in myosin and thus a standard in vitro motility assay with immobilized motors was used to show that non-muscle myosin 2A moved mutant actin more slowly, explained in part by a reduced affinity for the filament deduced from transient kinetic assays. By the same motility assay, myosin 5A also showed impaired interaction with the mutant filaments.

      The Discussion is interesting and concludes that the mutant actin will co-exist with WT actin in filaments, and will contribute to altered actin dynamics and poor interaction with relevant myosin motors in the cellular context. While not an exhaustive list of possible defects, this is a solid start to understanding how this mutation might trigger a disease phenotype.

      We thank the reviewer for the positive evaluation of our work.

      Weaknesses:

      • Potential assembly defects of the mutant actin could be more thoroughly investigated if the same experiment shown in Fig. 2 was repeated as a function of actin concentration, which would allow the rate of disassembly and the critical concentration to also be determined.

      The polymerization rate of individual filaments observed in TIRFM experiments showed only minor changes, as did the bulk-polymerization rate of 2 µM actin in pyrene-actin based experiments. Therefore, we decided not to perform additional pyrene-actin based experiments, in which we titrate the actin concentration, as we expect only very small changes to the critical concentration. Instead, we focused on the disturbed interaction with ABPs, as we assume these defects to be more relevant in an in vivo context. Using pyrene-based bulkexperiments, we did determine the rate of dilution-induced depolymerization of mutant filaments and compare them with the values determined for wt (Figure 5A, Table 1).

      • The more direct TIRF assay for cofilin severing was only performed at high cofilin concentration (100 nM). Lower concentrations of cofilin would also be informative, as well as directly examining by the TIRF assay the effect of cofilin on filaments composed of a 50:50 mixture of WT:mutant actin, the more relevant case for the cell.

      The TIRF assay for cofilin severing was performed initially over the cofilin concentration range from 20 to 250 nM. The results obtained in the presence of 100 nM cofilin allow a particularly informative depiction of the differences observed with mutant and WT actin. This applies to the image series showing the changes in filament length, cofilin clusters, and filament number as well as to the graphs showing time dependent changes in the number of filaments and total actin fluorescence. We have not included the results for a 50:50 mixture of WT:mutant actin because its attenuating effect is documented in several other experiments in the manuscript.

      • The more appropriate assay to determine the effect of the actin point mutation on class 5 myosin would be the inverted assay where myosin walks along single actin filaments adhered to a coverslip. This would allow an evaluation of class 5 myosin processivity on WT versus mutant actin that more closely reflects how Myo5 acts in cells, instead of the ensemble assay used appropriately for myosin 2.

      Our results with Myo5A show a less productive interaction with mutant actin filaments as indicated by a 1.7-fold reduction in the average sliding velocity and an increase in the optimal Myo5A-HMM surface density from 770 to 3100 molecules per µm2. These results indicate a reduction in binding affinity and coupling efficiency, with a likely impact on processivity. We expect only a small incremental gain in knowledge about the extent of changes by performing additional experiments with an inverted assay geometry, given that under physiological conditions the motor properties of Myo5A and other cytoskeletal myosins are modulated by other factors such as the presence of tropomyosin isoforms and other actin binding proteins.

      Reviewer #2 (Public Review):

      Greve et al. investigated the effects of a disease-associated gamma-actin mutation (E334Q) on actin filament polymerization, association of selected actin-binding proteins, and myosin activity. Recombinant wildtype and mutant proteins expressed in sf9 cells were found to be folded and stable, and the presence of the mutation altered a number of activities. Given the location of the mutation, it is not surprising that there are changes in polymerization and interactions with actin binding proteins. Nevertheless, it is important to quantify the effects of the mutation to better understand disease etiology.

      We thank the reviewer for the positive evaluation of our work.

      Some weaknesses were identified in the paper as discussed below.

      • Throughout the paper, the authors report average values and the standard-error-of-the-mean (SEM) for groups of three experiments. Reporting the SEM is not appropriate or useful for so few points, as it does not reflect the distribution of the data points. When only three points are available, it would be better to just show the three different points. Otherwise, plot the average and the range of the three points.

      We have gone through the manuscript carefully to correct any errors in the statistics, as explained below.

      Figure 1B, 5B, 5C, 5D, 8D, 9B, and 8 – figure supplement 2 all show the mean ± SD, as also correctly reported for Figure 8E and 8F in the figure legend. The statement, that these figures show the mean ± SEM was inaccurate. We corrected this mistake for all the listed figures. Furthermore, we now give the exact N for every experiment in the figure legend.

      Figure 2C, 2E, 2F, 4B, 5A, 6B-E showed the mean ± SEM. As suggested by the reviewer, we corrected the figures to show the mean ± SD.

      We still refer to the mean ± SEM in Figure 2B, where elongation rates for more than 100 filaments were recorded, and in Figure 8B, where sliding velocities for several thousand actin filaments were measured.

      • The description and characterization of the recombinant actin is incomplete. Please show gels of purified proteins. This is especially important with this preparation since the chymotrypsin step could result in internally cleaved proteins and altered properties, as shown by Ceron et al (2022). The authors should also comment on N-terminal acetylation of actin.

      We added an additional figure showing the purification strategy for the recombinant cytoskeletal γ –actin WT and p.E334Q protein with exemplary SDS-gels from different stages of purification (Figure 1 – figure supplement 1).

      In a previous paper, we reported the mass spectrometric analysis of the post-translational modifications of recombinant human β- and γ-cytoskeletal actin produced in Sf-9 cells. (Müller et al., 2013, Plos One). Recombinant actin showing complete N-terminal processing resulting in cleavage of the initial methionine and acetylation of the following aspartate (β-actin) or glutamate (γ-actin) is the predominant species in the analyzed preparations (> 95 %). While the recombinant actin in the 2013 study was produced tag-free and purified by affinity chromatography using the column-immobilized actin-binding domain of gelsolin (G4-G6), we have no reason to assume that the purification strategy using the actin-thymosin-β4 changes the efficiency of the N-terminal processing in Sf-9 cells. This is supported by our, yet unpublished, mass-spectrometric studies on recombinant human α-cardiac actin purified using the actin- thymosin-β4 fusion construct, which revealed actin species with an acetylated aspartate-3. This N-terminal modification of α-cardiac actin is catalyzed by the same actinspecific acetyltransferase (NAA80) as the acetylation of asparate-2 or glutamate-2 in cytoskeletal actin isoforms (Varland et al., 2019, Trends in Biochemical Sciences). Furthermore, additional studies that used the actin-thymosin-β4 fusion construct for the production of recombinant human cytoskeletal actin isoforms in Pichia pastoris reported robust N-terminal acetylation, when the actin was co-produced with NAA80 (In contrast to Sf-9 cells, NAA80 is not endogenously expressed in Pichia pastoris) (Hatano et al., 2020, Journal of Cell Science).

      We therefore, added the following statement to the manuscript:

      “Purification of the fusion protein by immobilized metal affinity chromatography, followed by chymotrypsin–mediated cleavage of C–terminal linker and tag sequences, results in homogeneous protein without non–native residues and native N-terminal processing, which includes cleavage of the initial methionine and acetylation of the following glutamate. “

      • The authors do not use the best technique to assess actin polymerization parameters. Although the TIRF assay is excellent for some measurements, it is not as good as the standard pyrene-actin assays that provide critical concentration, nucleation, and polymerization parameters. The authors use pyrene-actin in other parts of the paper, so it is not clear why they don't do the assays that are the standard in the actin field.

      The polymerization rate of individual filaments observed in TIRFM experiments showed only minor changes, as did the bulk-polymerization rate of 2 µM actin in pyrene-actin based experiments. Therefore, we decided not to perform additional pyrene-actin based experiments, in which we titrate the actin concentration, as we expect only very small changes to the critical concentration. Instead, we focused on the disturbed interaction with ABPs, as we assume these defects to be more relevant in an in vivo context. Using pyrene-based bulkexperiments, we did determine the rate of dilution-induced depolymerization of mutant filaments and compare them with the values determined for WT (Figure 5A, Table 1).

      • The authors' data suggest that, while the binding of cofilin-1 to both the WT and mutant actins remains similar, the major defect of the E334Q actin is that it is not as readily severed/disassembled by cofilin. What is missing is a direct measurement of the severing rate (number of breaks per second) as measured in TIRF.

      The severing rate as measured in TIRF is dependent on a number of parameters in a nonlinear manner. Therefore, we opted to show the combination of images directly showing the progress of the reaction and graphs summarizing the concomitant changes in cofilin clusters, actin filaments, actin-related fluorescence intensity and cofilin-related fluorescence intensity.

      • Figure 4 shows that the E334Q mutation increases rather than decreases the number of filaments that spontaneously assemble in the TIRF assay, but it is unclear how reduced severing would lead to increased filament numbers, rather, the opposite would be expected. A more straightforward approach would be to perform experiments where severing leads to more nuclei and therefore enhances the net bulk assembly rate.

      Figure 4 shows polymerization experiments that were started from ATP-G-actin in the presence of cofilin-1. These experiments show clearly that, especially at the higher cofilin-1 concentration (100 nM), the filament number is strongly increased in experiments performed with mutant actin. Inspection of the corresponding videos of these TIRFM experiments suggest that the increased number of filaments must result from an increased number of de novo nucleation events and not primarily from a mutation-induced change in severing susceptibility. The observation of a cofilin-stimulated increase in the de novo nucleation efficiency of actin was initially described by Andrianantoandro & Pollard (2006, Molecular Cell) using TIRFMbased experiments and is thought to arise from the stabilization of thermodynamically unfavorable actin dimers and trimers by cofilin. While the exact role of this cofilin-mediated effect in vivo is not completely clear, it is thought to contribute to cofilin-meditated actin dynamics synergistically with cofilin-mediated severing. It is therefore necessary, to clearly distinguish between the two effects of cofilin in vitro: stimulation of de novo nucleation and stimulation of filament disassembly. Our data indicated that the E334Q mutation affects these two effects differentially, as we state in the abstract and in the discussion.

      Abstract: “E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing.”

      Discussion: “Cofilin-mediated severing and nucleation were previously proposed to synergistically contribute to global actin turnover in cells (Andrianantoandro & Pollard, 2006; Du & Frieden, 1998). Our results show that the mutation affects these different cofilin functions in actin dynamics in opposite ways. Cofilin-mediated filament nucleation is more efficient for p.E334Q monomers, while cofilin-mediated severing of filaments containing p.E334Q is significantly reduced. The interaction of both actin monomers and actin filaments with ADF/cofilin proteins involves several distinct overlapping reactions. In the case of actin filaments, cofilin binding is followed by structural modification of the filament, severing and depolymerizing the filament (De La Cruz & Sept, 2010). Cofilin binding to monomeric actin is followed by the closure of the nucleotide cleft and the formation of stabilized “long-pitch” actin dimers, which stimulate nucleation (Andrianantoandro & Pollard, 2006)”.

      We interpret the reviewer's suggestion to mean that additional pyrene-actin-based bulk polymerization experiments should be performed to investigate the bulk-polymerization rate of ATP-G-actin in the presence of cofilin-1. In our understanding, these experiment would not provide additional value as 1) An observed increase of the bulk-polymerization rate cannot be directly correlated to a change of the efficiency of de novo nucleation or severing and 2) the effect of the mutation on cofilin-mediated filament disassembly was extensively analyzed in other experiments starting from preformed actin filaments. Moreover, our results are consistent with in silico modelling and normal mode analysis of the WT and mutant actin-cofilin complex.

      • Figure 5 A: in the pyrene disassembly assay, where actin is diluted below its critical concentration, cofilin enhances the rate of depolymerization by generating more free ends. The E334Q mutation leads to decreased cofilin-induced severing and therefore lower depolymerization. While these data seem convincing, it would be better to present them as an XY plot and fit the data to lines for comparison of the slopes.

      We now present the data as suggested by the reviewer. Furthermore, we determined the apparent second-order rate constant for cofilin-induced F-actin depolymerization (kc) to quantify the observed differences between WT, mutant and heterofilaments, as suggested by the reviewer.

      The paragraph describing these results was changed accordingly:

      “The observed rate constant values are linearly dependent on the concentration of cofilin–1 in the range 0–40 nM, with the slope corresponding to the apparent second– order rate constant (kC) for the cofilin-1 induced depolymerization of F–actin. In experiments performed with p.E334Q filaments, the value obtained for kC was 4.2-fold lower (0.81 × 10-4 ± 0.08 × 10-4 nM-1 s-1) compared to experiments with WT filaments (3.42 × 10-4 ± 0.22 × 10-4 nM-1 s-1). When heterofilaments were used, the effect of the mutation was reduced to a 2.2-fold difference compared to WT filaments (1.54 × 10-4 ± 0.11 × 10-4 nM-1 s-1).”

      • Figure 5 B and C: the cosedimentation data do not seem to help elucidate the underlying mechanism. While the authors report statistical significance, differences are small, especially for gel densitometry measurements where the error is high, which suggests that there may be little biological significance. Importantly, example gels from these experiments should be shown, if not the complete set included in the supplement. In B, the higher cofilin concentrations would be expected to stabilize the filaments and thus the curve should be Ushaped.

      We do not completely agree with the reviewer on this point. We think the co-sedimentation experiments are useful, as they show that cofilin-1 efficiently binds to mutant filaments, but is less efficient in stimulating disassembly in these endpoint-experiments. This information is not provided by the analysis of the effect of cofilin-1 on the bulk-depolymerization rate and adds to our understanding of the defect of the actin-cofilin interaction for the mutant.

      While we agree with the reviewer on the point that co-sedimentation experiments must be repeated several times to produce reliable data, we cannot fully grasp the reasoning behind the statement “While the authors report statistical significance, differences are small, especially for gel densitometry measurements where the error is high, which suggests that there may be little biological significance.”. We interpret this statement as advice to be cautious when extrapolating the observed perturbances of cofilin-mediated actin dynamics in vitro to the in vivo context. We think we are cautious about this throughout the manuscript.

      The author expects a U-shape curve, as high cofilin concentrations are reported to stabilize actin filaments by completely decorating the filament before severing-prone boundaries between cofilin-decorated and undecorated regions are generated. We have also performed these experiment with cytoskeletal β-actin and human cofilin-1 and never observed this U shape. This indicates that significant filament disassembly also happens at high cofilin concentrations, most likely directly after mixing of F-actin and cofilin. We cannot rule out that the incubation time plays an important role and that the U-shape only appears after longer incubation times. We also want to direct the reviewer to the publication “A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface” (Wong et al. 2013, JBC) in which comparable co-sedimentation experiments were performed (Figure 5E-G) with rabbit skeletal α-actin and human cofilin-1 and also no Ushaped curves were observed, even at higher molar excess of cofilin-1 compared to our experiments and with longer incubation times (1 hour vs. 10 minutes).

      We now included an exemplary gel showing co-sedimentation experiments performed with WT, mutant actin and different concentrations of cofilin at pH 7.8 in the manuscript (Figure 5 – figure supplement 2)

      • Figure 5 D: these data show that the binding of cofilin to WT and E334Q actin is approximately the same, with the mutant binding slightly more weakly. It would be clearer if the two plots were normalized to their respective plateaus since the difference in arbitrary units distracts from the conclusion of the figure. If the difference in the plateaus is meaningful, please explain.

      As suggested by the reviewer, we normalized the data for a better understanding of the message conveyed.

      • Figure 6: It is assumed that the authors are trying to show in this figure that cofilin binds both actins approximately the same but does not sever as readily for E334Q actin. The numerous parameters measured do not directly address what the authors are actually trying to show, which presumably is that the rate of severing is lower for E334Q than WT. It is therefore puzzling why no measurement of severing events per second per micron of actin in TIRF is made, which would give a more precise account of the underlying mechanism.

      The severing rate as measured in TIRF is dependent on a number of parameters in a nonlinear manner. Therefore, we opted to show the combination of images directly showing the progress of the reaction and graphs summarizing the concomitant changes in cofilin clusters, actin filaments, actin-related fluorescence intensity and cofilin-related fluorescence intensity.

      • Actin-activated steady-state ATPase data of the NM2A with mutant and WT actin would have been extremely useful and informative. The authors show the ability to make these types of measurements in the paper (NADH assay), and it is surprising that they are not included for assessing the myosin activity. It may be because of limited actin quantities. If this is the case, it should be indicated.

      Indeed, the measurement of the steady-state actin-activated ATPase with recombinant cytoskeletal actin is very material-intensive and therefore costly, as a complete titration of actin is required for the generation of meaningful data. Since the vast majority of our assays involving a myosin family member were performed with NM2A-HMM, we decided to perform a full actin titration of the steady-state actin-activated ATPase of NM2A-HMM with WT and mutant filaments. The results of these experiments are now shown in Figure 8C. The panel showing the results used for determining the dissociation rate constants (k-A) for the interaction of NM2C-2R with p.E334Q or WT γ –actin in the absence of nucleotide was moved to the supplement (Figure 8 – figure supplement 2).

      We added the following paragraph to the Material and Methods section concerning the Steady-State ATPase assay:

      “For measurements of the basal and actin–activated NM2A–HMM ATPase, 0.5 µM MLCKtreated HMM was used. Phalloidin–stabilized WT or mutant F-actin was added over the range of 0–25 µM. The change in absorbance at 340 nm due to oxidation of NADH was recorded in a Multiskan FC Microplate Photometer (Thermo Fisher Scientific, Waltham, MA, USA). The data were fitted to the Michaelis-Menten equation to obtain values for the actin concentration at half-maximal activation of ATP-turnover (Kapp) and for the maximum ATP-turnover at saturated actin concentration (kcat).”

      Furthermore, we added a description of the results of the experiments to the Results section of the manuscript:

      “Using a NADH-coupled enzymatic assay, we determined the ability of p.E334Q and WT filaments to activate the ATPase of NM2A-HMM over the range of 0-25 µM F-actin (Figure 8C). While we observed no significant difference in Kapp, indicated by the actin concentration at half-maximal activation, in experiments with p.E334Q filaments (2.89 ± 0.49 µM) and WT filaments (3.20 ± 0.74 µM), we observed a 28% slower maximal ATP turnover at saturating actin concentration (kcat) with p.E334Q filaments (0.076 ± 0.005 s-1 vs. 0.097 ± 0.002 s-1).”

      • (line 310) The authors state that they "noticed increased rapid dissociation and association events for E334Q filaments" in the motility assay. This observation motivates the authors to assess actin affinities of NM2A-HMM. Although differences in rigor and AM.ADP affinities are found between mutant and WT actins, the actin attachment lifetimes (many minutes) are unlikely to be related to the rapid association and dissociation event seen in the motility assay. Rather, this jiggling is more likely to be related to a lower duty ratio of the myosins, which appears to be the conclusion reached for the myosin-V data. These points should be clarified in the text.

      We changed the text in accordance with the reviewer’ suggestion. It reads now: Cytoskeletal –actin filaments move with an average sliding velocity of 195.3 ± 5.0 nm s–1 on lawns of surface immobilized NM2A–HMM molecules (Figure 8A, B). For NM2A-HMM densities below about 10,000 molecules per μm2, the average sliding speed for cytoskeletal actin filaments drops steeply (Hundt et al, 2016). Filaments formed by p.E334Q actin move 5fold slower, resulting in an observed average sliding velocity of 39.1 ± 3.2 nm/s. Filaments copolymerized from a 1:1 mixture of WT and p.E334Q actin move with an average sliding velocity of 131.2 ± 10 nm s–1 (Figure 8A, B). When equal densities of surface-attached WT and mutant filaments were used, we observed that the number of rapid dissociation and association events increased markedly for p.E334Q filaments (Figure 8 – video supplement 7– 9).

      Using a NADH-coupled enzymatic assay, we determined the ability of p.E334Q and WT filaments to activate the ATPase of NM2A-HMM over the range of 0-25 µM F-actin (Figure 8C). While we observed no significant difference in Kapp, indicated by the actin concentration at halfmaximal activation, in experiments with p.E334Q filaments (2.89 ± 0.49 µM) and WT filaments (3.20 ± 0.74 µM), we observed a 28% slower maximal ATP turnover at saturating actin concentration (kcat) with p.E334Q filaments (0.076 ± 0.005 s-1 vs. 0.097 ± 0.002 s-1). To investigate the impact of the mutation on actomyosin–affinity using transient–kinetic approaches, we determined the dissociation rate constants using a single–headed NM2A–2R construct (Figure 8D). …..

      • (line 327) The authors report that the 1/K1 value is unchanged. There are no descriptions of this experiment in the paper. I am assuming the authors measured the ATP-induced dissociation of actomyosin and determined ATP affinity (K1) from this experiment. If this is the case, they should describe the experiment and show the data, provide a second-order rate constate for ATP binding, and report the max rate of dissociation (k2). This is a kinetic experiment done frequently by this group, so the absence of these details is surprising.

      In the previous version of the manuscript, the method used to determine 1/K1 (ATP-induced dissociation of the actomyosin complex) was described in the Material and Methods paragraph “Transient kinetic analysis of the actomyosin complex” and the values obtained for 1/K1 were given in Table 1. We now included the experimental data as an additional figure in the manuscript (Figure 8 – figure supplement 3). Furthermore, we also give the maximal dissociation rate k+2 and the apparent second-order rate constant for ATP-binding (K1k+2) for the WT and mutant actomyosin complex in Table 1. Therefore, we changed the paragraph in the Results section concerning this experiment to:

      “The apparent ATP–affinity (1/K1), the maximal dissociation rate of NM2A from F-actin in the presence of ATP (k+2), and the apparent second-order rate constant of ATP binding (K1k+2) showed no significant differences for complexes formed between NM2A and WT or p.E334Q filaments (Table 1, Figure 8 – figure supplement 3).”

      and the section in the Material and Methods to:

      “The apparent ATP–affinity of the actomyosin complex was determined by mixing the apyrase–treated, pyrene–labeled, phalloidin–stabilized actomyosin complex with increasing concentrations of ATP at the stopped–flow system. Fitting an exponential function to the individual transients yields the ATP–dependent dissociation rate of NM2A–2R from F–actin (kobs). The kobs–values were plotted against the corresponding ATP concentrations and a hyperbola was fitted to the data. The fit yields the apparent ATP–affinity (1/K1) of the actomyosin complex and the maximal dissociation rate k+2.

      The apparent second–order rate constant for ATP binding (K1k+2) was determined by applying a linear fit to the data obtained at low ATP concentrations (0 – 25 µM).”

      For a better understanding of the numerous rate and equilibrium constants, we have now included a figure showing the kinetic reaction scheme of the myosin ATPase cycle (Figure 8 – figure supplement 1).

      Recommendations for the authors:

      Reviewer #1:

      • The subdomains of actin are mislabeled in Fig. 1A.

      The labeling of the subdomains has been corrected.

      • Additional experimental data addressing the 3 weaknesses noted in the public review would be informative but are not essential in my opinion. Examining the effect of cofilin on severing by the TIRF assay in more detail and using a processivity assay for myosin V (immobilized actin) would be the two aspects I would most value.

      The TIRF assay for cofilin severing was performed initially over the cofilin concentration range from 20 to 250 nM. The results obtained in the presence of 100 nM cofilin allow a particularly informative depiction of the differences observed with mutant and WT actin. This applies to the image series showing the changes in filament length, cofilin clusters, and filament number as well as to the graphs showing time dependent changes in the number of filaments and total actin fluorescence. We have not included the results for a 50:50 mixture of WT:mutant actin because its attenuating effect is documented in several other experiments in the manuscript.

      Our results with Myo5A show a less productive interaction with mutant actin filaments as indicated by a 1.7-fold reduction in the average sliding velocity and an increase in the optimal Myo5A-HMM surface density from 770 to 3100 molecules per µm2. These results indicate a reduction in binding affinity and coupling efficiency, with a likely impact on processivity. Given that Myo5A is only one of many cytoskeletal myosin motors and that the motor properties of all myosins are modulated by the presence of tropomyosin isoforms and other actin binding proteins, we expect only a small incremental gain in knowledge by performing additional experiments with an inverted assay geometry.

      Reviewer #2:

      • The authors should address the concerns regarding the statistical methodologies.

      We have gone through the manuscript carefully to correct any errors in the statistics, as explained below.

      Figure 1B, 5B, 5C, 5D, 8D, 9B, and 8 – figure supplement 2 all show the mean ± SD, as also correctly reported for Figure 8E and 8F in the figure legend. The statement, that these figures show the mean ± SEM was wrong and we corrected this mistake for all the listed figures. Furthermore, we now give the exact N for every experiment in the figure legend.

      Figure 2C, 2E, 2F, 4B, 5A, 6B-E indeed showed the mean ± SEM. As the reviewer rightly points out, this is not the appropriate way to deal with such sample sizes. We therefore corrected the figures to show the mean ± SD.

      We still refer to the mean ± SEM in Figure 2B, where elongation rates for more than 100 filaments were recorded, and in Figure 8B, where sliding velocities for several thousand actin filaments were measured.

      • The authors should present the actin titration of the steady state ATPase activity for at least one of the myosins, or preferably all of them.

      An actin titration of the steady state ATPase activity of NM-2A has been included in the revised version of the manuscript (Fig 8C).

      • The authors should consider the use of pyrene-actin in measuring the assembly/disassembly of actin.

      Values for the rate of actin assembly/disassembly measured with pyrene-actin are given in Table 1. Based on the small changes observed, we did not determine the critical actin concentration for the mutant construct.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      We thank reviewer #1 for identifying the major caveats of the paper, and have split them out into separate comments below to address them.

      Comment 1) The caveats are that ecosystem processes beyond water availability are not investigated although they are brought into play in the title and in the paper

      Author response: We disagree that water availability is the only ecosystem process investigated in this study, as herbivory, plant mortality, and the maintenance of diversity in higher trophic levels are important processes within ecosystems. We have added text to the abstract and introduction clarifying that we consider these response measures to be ecosystem processes. Further language to this effect already exists in the abstract, methods, and discussion.

      Comment 2) That herbivory beyond leaf damage was not reported (there might be none, the reader needs to be shown the evidence for this)

      Author response: This is typically how herbivory is assessed in ecological studies, and our focus is on folivores. There may be additional herbivory in the form of fluid-sucking insects, shoot/root herbivory, etc., but these were not assessed. It would be interesting to assess these other forms of herbivory to see if they respond similarly with additional studies.

      Comment 3) That herbivore diversity is defined by leaf damage (authors need to give evidence that this is a valid inference)

      Author response: We thank reviewer #1 for pointing out the lack of written support for this claim. We have modified the methods (lines 138-139; 214-217) to clarify that this is a useful proxy for insect richness in the Piper system, and have added citations demonstrating it has been found to correlate well with insect richness in tropical forests.

      Comment 4) That the plots were isolated from herbivores beyond their borders

      Author response: This was not an assumption of the study. We have modified the methods (line 200) to make this clearer to the reader.

      Comment 5) That the effects of extreme climate events were isolated to Peru

      Author response: This was not an assumption of the study, rather it is an observation. While we consider it important to include observed climate differences between sites in the interpretation of our results, it was not necessary for there to be extreme climate events at other sites as we consider manipulated water availability to represent changes in precipitation that are expected to occur at these sites with climate change.

      Comment 6) That intraspecific variation in the host plants needs to be explained and interpreted in more detail

      Author response: We thank reviewer #1 for identifying that our current explanations needed development. We have modified the introduction to explore potential mechanisms relating intraspecific diversity to ecosystem function based on recent studies, and have modified the discussion to bring focus to why the effects of intraspecific differ from interspecific.

      Reviewer #1 (Recommendations For The Authors):

      Comment 1) Pare this material down to simpler results. The most significant to me is the intraspecific variation in damage. Were this broken out and reported in some detail it could be quite interesting. I find the results to be a confusing blizzard of multiple factors that differ among sites; after reading the paper twice I could not recall the takeaway lesson beyond that drought wrecks the diversity of herbivores and sometimes even kills the host plant.

      Author response: We agree that the results are complicated given the variation in effects among sites, but this variation and complexity is important – and is in itself is one of the takeaway points. Unfortunately, nature is not simple. We have made several large edits to the results section, including the removal of methodological and otherwise redundant information, to hopefully bring the major takeaways into focus.

      Reviewer #2 (Public Review):

      Comment 1) This is an important and large experimental study examining the effects of plant species richness, plant genotypic richness, and soil water availability on herbivory patterns on Piper species in tropical forests.

      A major strength is the size of the study and the fact that it tackled so many potentially important factors simultaneously. The authors examined both interspecific plant diversity and intraspecific plant diversity. They crossed that with a water availability treatment. And they repeated the experiment across five geographically separated sites.

      The authors find that both water availability and plant diversity, intraspecific and interspecific, influence herbivore diversity and herbivory, but that the effects differ in important ways across sites. I found the study to be solid and the results to be very convincing. The results will help the field grapple with the importance of environmental change and biodiversity loss and how they structure communities and alter species interactions.

      Author response: We thank reviewer #2 for their kind words.

      Reviewer #2 (Recommendations For The Authors):

      Comment 1) I was confused about why the authors measured species diversity/richness as a proportion of the species pool. This means that the metric of richness decreases if species are added to the species pool but not the plot/experiment. I think I understand it, but I suggest the authors explain this choice.

      Author response: We thank reviewer #2 for pointing out that this was confusing. We have clarified the methods (lines 228-232) to explain that this choice was made to allow easier comparison between intra- and interspecific richness.

      Comment 2) One of the stronger estimated relationships was a positive effect of plant species richness on insect richness. I found it a little hard to interpret this relationship. Is this just because there are host species specialists? So, with more host species there are more herbivore species? Or does insect richness increase multiplicatively with increasing plant species richness? One way to look for this would be for the authors to examine the relationship between plant species richness and the average number of herbivore damage types per plant species.

      Author response: We agree that this is important for the reader to understand and have added text to the introduction and discussion sections explaining that this is the expectation based on theory and other empirical studies. We have additionally added text to the discussion (lines 386-388) pointing out that this pattern was not observed at all sites. While we agree that it would be interesting to explore if this effect was additive or multiplicative, we do not believe this is in the scope of the paper due to the methods used to measure insect richness.

      Comment 3) Unless I missed it, some important information about the models was missing. E.g., what distributions were assumed for each of the variables? Any transformations?

      Author response: We thank reviewer #2 for pointing this out, this information has been added to the methods (lines 272-274)

      Comment 4) Why is there no model with water addition affecting insect richness directly but not percent herbivory directly?

      Author response: While we originally decided to not include this model due to lack of theoretical support and low statistical performance, we have added references to this model (now model II) in the methods and results for consistency and to make model performance clearer to the reader. We have additionally moved supplemental table S1 to the main text to make the models and hypotheses tested by each model more accessible.

      Comment 5) Fig. 2. What are the percentages above the figures? Maybe PD values?

      Author response: These values are now clarified in the figure caption

      Comment 6) L364 "can differ dramatically" This is vague and confusing. Differ in what way? From each other? Did the authors really expect plant richness to have the same effect on herbivory and plant survival? What would it mean anyway for plant richness to have the same effect on herbivory and plant survival?

      Author response: We agree that the language here is confusing and thank reviewer #1 for drawing our attention to it. We have modified the discussion (lines 363-365) to clarify that the direction of effect of intraspecific richness can vary from the direction of effect of interspecific richness, rather than the effects on different response variables varying from each other.

      Comment 7) L 375 "only meaningful differences" This statement feels a little overly strong. It seems like there is a good argument for this, but there could be other things going on.

      Author response: We agree that the language here was unnecessarily strong, and have modified the discussion (lines 398-403) to focus on the lack of difference between methodologies at these two sites, and the observed differences in climate and community structure at each site.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this manuscript, Kohler et al analyze the impact of miR200c on cell motility in vitro and breast cancer metastasis in mouse models. The they show that miR200c represses metastasis to several different organs and propose that reduced motility is a significant cause of this. The experiments are generally sound and well performed. However, the insight gained with the study does not go much beyond what is already known about miR200c function in breast cancer. The experimental tools used in the study could provide the opportunity to reveal novel insights into the role of miR200c in metastasis. However, the investigators did not take full advantage of this and thus we are left with findings that are rather predictable based on the current literature. Details below.

      Major points:

      1. The primary weakness of this study is limited novelty. miR200c has been shown to regulate migration and invasion of breast cancer cells in several previous studies, and this includes analysis using the same breast cancer cell lines that Kohler et al use in the current study, MCF7 and MDA-MB-231 (Jurmeister et al Mol Cell Bio 2012; Zhang et al Genet Mol Res 2017) and a study by the same group (Ljepoja et al Plos One 2019). Moreover, previous studies have also shown that miR200c represses metastasis in two different claudin low triple negative breast cancer models, MDA-MB-231 and genetically-engineered p53 null transplantable model (Simpson et al Genes 2022, Knezevic et al Oncogene 2016). Of note, Kohler et al do analyze metastases not only in lungs, but also in liver, brain and spleen and this could be a source of novel insights depending on the scientific questions. Is the miR200c mediated repression of metastasis caused by the same mechanisms in all these organs, or is it context dependent? What about molecular mediators downstream of miR200c?
      2. The authors focus primarily on migration issues as the potential cause of miR200c mediated repression of metastasis. However, there is significant literature on the role of miR200c in cancer progression. miR200c has been associated with multiple cellular functions, including regulation of epithelial mesenchymal transition (EMT) by repressing key EMT transcription factors ZEB1 and ZEB2. EMT regulation of course may suggest an effect on cell motility, but also several other functions, such as stem cell activity, plasticity, survival under stress and many more. Indeed, in a clinical setting some may question the importance of migration, considering that breast cancer cells disseminate from the primary tumor early in the process and upon diagnosis the cells are likely already lodged in secondary organs. Therefore, it is probable that cell functions such as survival under stress, proliferation and plasticity would be of even higher importance compared to cell motility. I would think that miR200c functional studies need to go beyond cell motility to generate additional insights into its role in metastasis and reveal potentially actionable targets.
      3. The investigators use a dox inducible system to express miR200c in MDA-MB-231 mammary tumors in mice. The mice were treated with dox to induce miR200c when the tumors reached 200 mm3 in size. This is a rather early induction of miR200c and may not address the ability of miR200c to repress actively growing metastatic lesions. I think these experiments should also be done by waiting longer before miR200c induction. What happens if the tumors are allowed to grow to 500 mm3 or 750 mm3? This would really test the ability of miR200c to inhibit overt metastasis.

      Minor points:

      1. Although in some figures the plots/graphs show individual data points, this is not always the case. All box plots and bar graphs should show individual data points (biological replicates).
      2. Representative histological examples of the metastases in Figure 1C-1D should be shown.
      3. Presentation of the data in Figure 2C-2F is confusing. Statistics are also missing.

      Significance

      Although the study is technically sound, it suffers from limited novelty. Overall conclusions are predictable from previous studies. Of note, this study does provide somewhat more detailed analysis of migratory regulation by miR200c in cancer cells compared to previous reports. However, the study's advance is still quite modest.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the authors aimed to investigate how cells respond to dynamic combinations of two stresses compared to dynamic inputs of a single stress. They applied the two stresses - carbon stress and hyperosmotic stress - either in or out of phase, adding and removing glucose and sorbitol.

      Both a strength and a weakness, as well as the main discovery, is that the cells' hyperosmotic response strongly requires glucose. For in-phase stress, cells are exposed to hyperosmotic shock without glucose, limiting their ability to respond with the well-studied HOG pathway; for anti-phase stress, cells do have glucose when hyperosmotically shocked, but experience a hypo-osmotic shock when both glucose and sorbitol are simultaneously removed. Responding with the HOG pathway and so amassing intracellular glycerol amplifies the impact of this hypo-osmotic shock. Counterintuitively then, it is the presence of glucose rather than the stress of its absence that is deleterious for the cells.

      The bulk of the paper supports these conclusions with clean, compelling time-lapse microscopy, including extensive analysis of gene deletions in the HOG network and measurements of both division and death rates. The methodology the authors develop is powerful and widely applicable.

      Some discussion of the value of applying periodic inputs would be helpful. Cells are unlikely to have previously seen such inputs, and periodic stimuli may reveal behaviours that are rarely relevant to selection.

      We thank the referee for his review. To answer the reviewer’s last comment, our main objective was not to study conditions that are ecologically relevant, but rather to perturb the system in an original way to reveal new mechanisms and properties of the system. The main advantage of periodic inputs over more complex or unpredictible types of temporal fluctuations is that they can be defined with few parameters that are easy to interpret and to integrate in biophysical models. For instance, by using periodic inputs we were able to investigate how changing the phasing of two stresses impacted fitness while keeping other parameters constant (the duration of each stress was kept constant). We added two sentences at the beginning of the discussion to highlight the value of using periodic inputs.

      We do not fully agree with the reviewer’s statement that periodic stimuli may reveal behaviours that are rarely relevant to selection. Indeed, many parameters of natural environments are known to vary periodically, such as light, temperature, predation, tides. Even if the periodic stimuli we use are artificial, they can still be a valuable tool to reveal new molecular processes. For instance, null mutants have been invaluable to understand biological systems despite being unlikely to reveal behaviours relevant to selection.

      The authors' findings demonstrate the tight links that can exist between metabolism and the ability to respond to stress. Their study appears to have parted somewhat from their original aim because of the HOG pathway's reliance on glucose. It would be interesting to see if the cells behaviour is simpler in periodically varying sorbitol and a stress where there is little known connection to the HOG network, such as nitrogen stress.

      The use of periodic nitrogen stress is a very interesting suggestion from both reviewers. However, we think it represents a large amount of work that deserves its own study. In particular, it would require first identifying a relevant period at which nitrogen fluctuations have an impact on division rate similar to what we observed for glucose fluctuations before performing experiments in AS and IPS conditions.

      Nitrogen starvation is known to induce filamentous growth via activation of components of the HOG pathway (Cullen and Sprague, 2012), with potential cross-talk between filamentous growth and hyperosmotic stress response. Therefore, periodic osmotic stress and periodic nitrogen starvation may interact in a complex way.

      Reviewer #2 (Public Review):

      The authors have used microfluidic channels to study the response of budding yeast to variable environments. Namely, they tested the ability of the cells to divide when the medium was repeatedly switched between two different conditions at various frequencies. They first characterized the response to changes in glucose availability or in the presence of hyper-osmotic stress via the addition of sorbitol to the medium. Subsequently, the two stresses were combined by applying the alternatively or simultaneously (in-phase). Interestingly, the observed that the in-phase stress pattern allowed more divisions and low levels of cell mortality compared to the alternating stresses where cells were dividing slowly and many cells died. A number mutants in the HOG pathway were tested in these conditions to evaluate their responses. Moreover, the activation of the MAPK Hog1 and the transcriptional induction of the hyper-osmotic stress promoter STL1 were quantified by fluorescence microscopy.

      Overall, the manuscript is well structured and data are presented in a clear way. The time-lapse experiments were analyzed with high precision. The experiments confirm the importance of performing dynamic analysis of signal transduction pathways. While the experiments reveal some unexpected behavior, I find that the biological insights gained on this system remain relatively modest.

      In the discussion section, the authors mention two important behaviors that their data unveil: resource allocation (between glycolysis and HOG-driven adaptation) and regulation of the HOG-pathway based on the presence of glucose. These behaviors had been already observed in other reports (Sharifan et al. 2015 or Shen et al. 2023, for instance). I find that this manuscript does not provide a lot of additional insights into these processes.

      We thank the referee for his review. We agree with the reviewer that the interaction between glucose availability and osmotic stress response has been investigated in previous studies. However, this interaction was investigated using experimental procedures that differed from our approach in critical ways, and therefore the behaviors observed were not the same. In Sharifian et al. (2015), the authors identified a new negative feedback loop regulating Hog1 basal activity and described underlying molecular mechanisms. This feedback loop is unlikely to explain differences of cell fitness we observed in IPS and AS conditions, because 1) differences of division rate was still observed in hog1 mutant cells and 2) differences of death rate involve glycerol synthesis, which is independent of the feedback loop described in Sharifian et al. (2015). In Shen et al. (2023), the authors observed a stronger expression of Hog-responsive genes at lower glucose concentrations, which seems contradictory with our observation of very low pSTL1-GFP expression in absence of glucose. However, they did not use fluctuating conditions and they did not report expression of stress-response genes when glucose was totally depleted (the lower glucose concentration they used was 0.02%) as we did, which may explain the different outcomes. We added three sentences in the discussion to compare our findings to those of Shen et al. (2023).

      One clear evidence that is presented, however, is the link between glycerol accumulation during the sorbitol treatment and the cell death phenotype upon starvation in alternating stress condition. However, no explanations or hypothesis are formulated to explain the mechanism of resource allocation between glycolysis and HOG response that could explain the poor growth in alternating stresses or the lack of adaptation of Hog1 activity in absence of glucose.

      In the revised version of the manuscript, we included a new result section and a supplementary figure (Figure 4 – figure supplement 2) where we tested three hypotheses to explain the lower division rate observed in AS condition relative to IPS condition. We found no evidence supporting these hypotheses, and the mechanisms responsible for the reduced growth in AS condition therefore remains elusive.

      Another key question is to what extent the findings presented here can be extended to other types of perturbations. Would the use of alternative C-source or nitrogen starvation change the observed behaviors in dynamic stresses? If other types of stresses are used, can we expect a similar growth pattern between alternating versus in-phase stresses?

      As mentioned above in our response to the other reviewer, these are very interesting questions that we think go beyond the scope of our study due to the amount of work involved.

      Recommendations for the authors:

      Reviewer #1

      My comments are only minor.<br /> - More paragraphs would improve legibility.

      To improve legibility, we split the longer section of the Results in three paragraphs (page 12, section entitled “Osmoregulation is impaired under in-phase stresses but not under alternating stresses.” However, we kept it as one section with a single title for global coherency: each section of the results corresponds to one main figure and have one main conclusion.

      • I found AS and IPS confusing because what becomes important is whether sorbitol appears with glucose or not. For me, an acronym that makes that co-occurrence clear would be better or even better still no acronyms at all.

      We tried several alternative names for the two conditions in previous drafts of the manuscript. Based on colleagues feedback, AS and IPS acronyms appeared as a good compromise between concision and clarity. To avoid confusion, the two acronyms are precisely defined when they are first used in the Results section. We think it is more important to emphasize the co-occurrence (or not) of the two stresses, rather than the co-occurrence of glucose and sorbitol. Indeed, standard yeast medium contains glucose but no sorbitol, and therefore we defined the two periodic conditions based on differences from standard medium. Even though we avoided using acronyms as much as possible in the manuscript, the use of these two acronyms to refer to the dual fluctuations of the environment seemed essential for concision. Indeed, IPS and AS acronyms are used many times in the results (16 occurrences on page 12 alone), figures and figure legends.

      • I would consider moving some of Fig S2 to the main text: it helps clarify where Fig 2 is coming from and is referenced multiple times.

      We fully agree with the reviewer and we moved panels A-D from Figure S2 to the main Figure 2.

      • On page 10, "constantly facing a single stress that changes over time" is confusing. Perhaps "repetitively facing a single stress" instead?

      We agree this sentence could be wrongly interpreted the way it was written. We changed it to: “cells grow more slowly when facing periodic alternation of the two stresses (AS) than when facing periodic co-occurrence of these stresses (IPS)”.

      • Is there any knowledge on how cells resist hyperosmotic stress in the absence of glucose? That would help explain the IPS results.

      Based on comments from both reviewers, we surveyed the literature to flesh out the discussion of hypotheses that would help explain observed differences between AS and IPS conditions. We found few studies that investigated cell responses in the absence of glucose, and because of significant differences in the experimental approaches it remains difficult to explain our results from conclusions of these previous studies. For instance, Shen et al., 2023 described and modeled the hyperosmotic stress response at various glucose concentrations. They found that Hog1p relocation to the nucleus after hyperosmotic shock lasted longer at lower glucose concentration, which is consistent with our finding in absence of glucose. However, they did not include the absence of glucose in their experiments or periodic fluctuations of glucose concentration. In addition, their model ignores the impact of cell signaling processes involved in growth arrest in response to hyperosmotic stress or glucose depletion. It is therefore difficult to relate their conclusions to our results. We have developed the discussion of our study to include these hypotheses and to clarify what is explained or not in our IPS and AS results.

      There is knowledge on activation of the hyperosmotic stress pathway in response to glucose fluctuations, but not about the response to hyperosmotic stress in absence of glucose.

      • On page 11, Figure 5a should be Figure 4a.

      Correct.

      • I would explain the components of the HOG pathway in the caption of Fig 1 or in the text when you cite Fig 1a. They are described later, but an early overview would be useful.

      To give more context, we added the following sentences to the caption of Figure 1: “Yeast cells maintain osmotic equilibrium by regulating the intracellular concentration of glycerol. Glycerol synthesis is regulated by the activity of the HOG MAP kinase cascade that acts both in the cytoplasm (fast response) and on the transcription of target genes in the nucleus (long-term response). For simplicity, we only represented on the figure genes and proteins involved in this study.”

      • On page 16, I wasn't sure what "redirect metabolic fluxes against glycerol synthesis" meant.

      For more clarity, we modified this sentence to: “Since glucose is a metabolic precursor of glycerol, the absence of glucose may prevent glycerol synthesis and thereby fast osmoregulation."

      • For Fig 2, having a dot-dash and dash-dash lines rather than both dash-dash would be better.

      We made the proposed change, assuming the reviewer was referring to the gray dashed lines and not the colored ones.

      • In the caption of Fig 3, 2% glucose is 20 g/L.

      We thank the reviewer for catching this typo.

      • In the Materials and Methods Summary, adding how you estimated death rates would be helpful: they are not often reported.

      The calculation of death rates was explained in the Methods section. For more clarity, we modified the names of the parameters in the equation to make more explicit which ones refer to cell death.

      Reviewer #2 (Recommendations For The Authors):

      In Figure 2, it would be interesting to show individual growth rates of the perturbations at various frequencies as shown in Figures 3 c and d.

      We thank the reviewer for this suggestion. We added a new supplementary figure (Figure 2 – figure supplement 2) showing the temporal dynamics of division rates at three different frequencies of osmostress and glucose depletion. We did not include high frequencies (periods below 48 minutes) because the temporal resolution of image acquisition in our experiments (1 image every 6 minutes) was too low. Very interestingly, this new analysis suggests that the positive relationship between the frequency of glucose depletion and division rate is explained by a delay between glucose removal and growth arrest rather than a delay between glucose addition and growth recovery. We therefore added the following conclusion:

      “Under periodic fluctuations of 2% glucose, the division rate was lower during half-periods without glucose than during half-periods with glucose (Figure 2 – figure supplement 2d-f), as expected. However, this difference depended on the frequency of glucose fluctuations: the average division rate during half-periods without glucose was higher at high frequency (small period) than at low frequency (large period) of fluctuations (Figure 2 – figure supplement 2d-f). Therefore, the effect of the frequency of glucose availability on the division rate in 2% glucose is likely due to a delay between glucose removal and growth arrest: cell proliferation never stops when the frequency of glucose depletion is too fast.”

      According to Sharifan et al. 2015, I would have expected that Hog1 would not relocate in the nucleus in 0% glucose. I wonder if this is due to the use of sorbitol as a stressor or the presence of low levels of glucose in the medium. I would suggest performing some control experiments with NaCl as hyperosmotic agent and test the addition of 2-deoxy-glucose to completely block glycolysis.

      After careful reading of Sharifian et al. 2015, we fail to understand why the reviewer think Hog1 would be expected to not relocate to the nucleus after hyperosmotic stress in 0% glucose. In this previous study, the authors never combined glucose depletion with a strong hyperosmotic stress as we did in our study. They report the results of independent experiments where cells were exposed either to a single pulse of hyperosmotic stress (0.4 M NaCl) or to transient glucose starvation, but they did not combine these two stimuli. In this context, it is difficult to compare their results with ours. The fact that Sharifian et al. 2015 did not observe Hog1 nuclear relocation in 0% glucose (consistent with our result in Figure 6 – figure supplement 1a, yellow curve) is not inconsistent with our observation of Hog1 nuclear enrichment in 0% glucose + 1M sorbitol. One potential discrepancy between the two studies is the fact that they observed a small transient peak of Hog1 nuclear localization just after glucose is added back to the medium, while we failed to observe this peak in similar conditions (yellow curve in Figure 6 – figure supplement 1a). However, this could be simply explained by the temporal resolution of our experimental system: we image cells once every 6 minutes and the peak lasts less than 2 minutes in Sharifian et al. 2015. We added a sentence to discuss this minor point in the Results: “Although previous studies observed small transient (less than two minutes) peaks of Hog1-GFP nuclear localization after glucose was added back to the medium following glucose depletion (Sharifian et al., 2015, Piao et al., 2013), the temporal resolution in our experiments (one image every 6 minutes) may have been too low to detect these peaks.”.

      While we agree many additional experiments would be interesting, such as testing the effects of different stress factors or the non-metabolizable glucose analog 2-deoxy-D-glucose, we think this is beyond the scope of this study because such experiments are likely to open broad perspectives and to not be conclusive in a reasonable amount of time.

      When discussing Figure 7, the authors write that the HOG pathway is "overactivated" or "hyperactivated". I would refrain from using these terms because as seen in Figure 6, the Hog1 activity pattern, if anything, decreases as the number of alternative pulses increases. The high level of pSTL1mCitrine measured is mostly due to the long half-life of the fluorescent protein.

      We used the formulation “hyper-activation” of the HOG pathway because Mitchell et al. 2015 used it to refer to the same phenomenon in their seminal study. This "hyper-activation" refers to the fact that both the integral activation of Hog1p (sum of areas under Hog1 nuclear peaks) and the global activation of transcriptional targets is much higher during fast periodic hyperosmotic stress than during constant hyperosmotic stress. That being said, we understand the point made by the reviewer about the decreasing size of Hog1 peaks over time during repeated pulses of osmotic stress. Therefore, we slightly modified the text to refer to hyper-activation of pSTL1-mCitrine transcription or expression instead of hyper-activation of the HOG pathway. For coherency, we replaced all instances of “overactivation” by “hyper-activation”.

      Last but not least, the high level of pSTL1-mCitrine is both due to the long half-life of the protein and to the fact that pSTL1 transcription is never turned off due to high Hog1p activity under fast periodic osmostress.

      Minor comments:

      In the main text, I think it might be more intuitive to refer to doubling time in hours instead of division rates in 1/min which are harder to interpret.

      In an early draft of the manuscript, we made figures with either division rates or with doubling times (ln(2)/division rate) and we received mixed opinions from colleagues on what measure was more intuitive to interpret. Both measures are widely used in the literature, and we decided to use division rates in the final version of the figures because it was more directly related to population growth rate and to fitness. For instance, the population growth rate shown in Figure 5 is simply calculated by subtracting the death rate from the division rate. For coherency, we therefore reported division rates instead of doubling times in figures and results. However, to address the reviewer’s comment we included the doubling times (in addition to the division rates) when mentioning the most important results. For instance, page 12: “Strikingly, cells divided about twice as fast under IPS condition (1.67 x 10-3 division/min, corresponding to an average doubling time of 415 minutes) than under AS condition (9.4 x 10-4 division/min, corresponding to an average doubling time of 737 minutes)”.

      I found various capitalized version of "HOG /Hog pathway"

      We corrected this incoherency and used “HOG pathway” everywhere.

      Page 11. Figure 5a should refer to Figure 4a I believe.

      Correct.

      The methods are generally very thorough and precise. The explanation about the calculation of the division rate seems incomplete. For completeness, it would be good to mention the brand and model of valves used. In addition, it would be interesting to have an idea of the number of cells and microcolonies tracked in the various growth experiments.

      We are not sure why the reviewer found the explanation of the calculation of division rate incomplete. For more clarity, we modified the names of parameters in the equations to make them more explicit. We also added a reference to Supplementary File 1 that contains all R scripts used to calculate division rates and death rates. We included the brand and model of valves used, as requested. As for the number of cells tracked in the various experiments, we mentioned in the Methods: “we selected 25 positions (25 fields of view) of the motorized stage (Prior Scientific ProScan III) that captured 10 to 50 cells in each of the 25 growth chambers of the chip and were focused slightly below the median cell plane based on cell wall contrast.” To address the reviewer’s comment, we also included the range of number of tracked cells for each experiment in corresponding figure legends.

    1. Author Response

      The following is the authors’ response to the original reviews.

      First, we would like to thank you and all the reviewers for acknowledging the meaningful contribution of our manuscript to the field. Your useful comments helped us improve the manuscript's quality. We understood the key issues of the manuscript were the quantification of inference accuracy and applicability to methylome data. We here therefore present a revised version of the manuscript addressing all major comments.

      For each demographic inference we have added the root mean square error as demanded by the reviewers. These results confirm the previous interpretation of the graphs especially in recent times. We also added TMRCA inference analysis as requested by one reviewer as a proof of principle that integrating multiple markers can improve ARG inference.

      The discussion was rewritten to further discuss the challenges of application to empirical methylation data. We clarify that in the case epimutations are well understood and modelled, they can be integrated into a SMC framework to improve the approaches accuracy. When epimutations are not well understood, our approach can help understand the epimutations process through generations at the evolutionary time scale along the genome. Hence, in both cases our approach can be used to unveil marker evolution processes through generations, and/or deepen our understanding of the population past history. We hope our discussion underlies better how our approach is designed and can be used.

      eLife assessment

      This important study advances existing approaches for demographic inference by incorporating rapidly mutating markers such as switches in methylation state. The authors provide a solid comparison of their approach to existing methods, although the work would benefit from some additional consideration of the challenges in the empirical use of methylation data. The work will be of broad interest to population geneticists, both in terms of the novel approach and the statistical inference proposed.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors developed an extension to the pairwise sequentially Markov coalecent model that allows to simultaneously analyse multiple types of polymorphism data. In this paper, they focus on SNPs and DNA methylation data. Since methylation markers mutate at a much faster rate than SNPs, this potentially gives the method better power to infer size history in the recent past. Additionally, they explored a model where there are both local and regional epimutational processes.

      Integrating additional types of heritable markers into SMC is a nice idea which I like in principle. However, a major caveat to this approach seems to be a strong dependence on knowing the epimutation rate. In Fig. 6 it is seen that, when the epimutation rate is known, inferences do indeed look better; but this is not necessarily true when the rate is not known. A roughly similar pattern emerges in Supp. Figs. 4-7; in general, results when the rates have to be estimated don't seem that much better than when focusing on SNPs alone. This carries over to the real data analysis too: the interpretation in Fig. 7 appears to hinge on whether the rates are known or estimated, and the estimated rates differ by a large amount from earlier published ones.

      Overall, this is an interesting research direction, and I think the method may hold more promise as we get more and better epigenetic data, and in particular better knowledge of the epigenetic mutational process. At the same time, I would be careful about placing too much emphasis on new findings that emerge solely by switching to SNP+SMP analysis.

      Answer: We thank the reviewer 1 for his positive comments and acknowledging the future promises of our method as better and more reliable data will be available in different species. We appreciate the reviewer noticing the complete set of work undertaken here to integrate local and regional effects of methylation into a model containing as much knowledge of the epigenetics mutational processes as possible. Note that in Figure 2 of the manuscript we observed a gain of accuracy even when the rates are unknown. Our results thus suggests that the accuracy gain of additional marker with unknown rates is also possible, although it is most likely be scenario and rate dependent.

      At last, as noticed and highlighted by the very recent work of the Johannes lab (Yao et al. Science 2023) using phylogenetic methods, knowing the epimutation rate is essential at short time scale to avoid confounding effects of homoplasy. In our estimation of the coalescent trees, the same applies, though our model considers finite site markers. We now provide additional evidence for the potential gain of power to infer the TMRCA (Supplementary Table S7) when knowing or not the epimutation rates and revised the discussion to clarify the potential shortcomings/caveats for the analysis of real data.

      Reviewer #2 (Public Review):

      A limitation in using SNPs to understand recent histories of genomes is their low mutation frequency. Tellier et al. explore the possibility of adding hypermutable markers to SNP based methods for better resolution over short time frames. In particular, they hypothesize that epimutations (CG methylation and demethylation) could provide a useful marker for this purpose. Individual CGs in Arabidopsis tends to be either close to 100% methylated or close to 0%, and are inherited stably enough across generations that they can be treated as genetic markers. Small regions containing multiple CGs can also be treated as genetic markers based on their cumulative methylation level. In this manuscript, Tellier et al develop computational methods to use CG methylation as a hypermutable genetic marker and test them on theoretical and real data sets. They do this both for individual CGs and small regions. My review is limited to the simple question of whether using CG methylation for this purpose makes sense at a conceptual level, not at the level of evaluating specific details of the methods. I have a small concern in that it is not clear that CG methylation measurements are nearly as binary in other plants and other eukaryotes as they are in Arabidopsis. However, I see no reason why the concept of this work is not conceptually sound. Especially in the future as new sequencing technologies provide both base calling and methylating calling capabilities, using CG methylation in addition to SNPs could become a useful and feasible tool for population genetics in situations where SNPs are insufficient.

      Answer: We thank the reviewer 2 for his positive comments. Indeed, surveys of CG methylation in other plant species show that its distribution is clearly bimodal (i.e. binary). This is not the case for non-CG methylation, such as CHG and CHH (where H=C,T,A). However, these later types of methylation contexts are also not heritable across generations and can therefore not be used as heritable molecular markers.

      Reviewer #3 (Public Review):

      I very much like this approach and the idea of incorporating hypervariable markers. The method is intriguing, and the ability to e.g. estimate recombination rates, the size of DMRs, etc. is a really nice plus. I am not able to comment on the details of the statistical inference, but from what I can evaluate it seems sound and reasonable. This is an exciting new avenue for thinking about inference from genomic data. I have a few concerns about the presentation and then also questions about the use of empirical methylation data sets.

      I think a more detailed description of demographic accuracy is warranted. For example, in L245 MSMC2 identifies the bottleneck (albeit smoothed) and only slightly overestimates recent size. In the same analysis the authors' approach with unknown mu infers a nonexistent population increase by an order of magnitude that is not mentioned.

      Answer: We thank the reviewer 3 for his positive comments and refer to our answer to reviewer 1 above. We added RMSE (Root Mean Square Error) analyses to quantify the inference accuracy. We apologize for not mentioning this last point. Thank you for pointing this out and we have now fixed it (line 245-253).

      Similarly, it seems problematic that (L556) the approach requiring estimation of site and region parameters (as would presumably be needed in most empirical systems like endangered nonmodel species mentioned in the introduction) does no better than using only SNPs. Overall, I think a more objective and perhaps quantitative comparison of approaches is warranted.

      Answer : See answer to reviewer 1 above, and more elaborate answers below. We provide now new RMSE analyses to quantify the accuracy of our demographic inference (Supplementary Tables 1,6,7,8,9,10). We also discuss the validity and usefulness of our approach when the epimutation rates are unknown. In short, the discussion was rewritten to further discuss the challenges of application to empirical methylation data. We clarify that in the case epimutations are well known and modelled (as much is known in A. thaliana for example), they can be integrated into a SMC framework to improve the accuracy of the method approach. When epimutations are not well understood and rates unknown, our approach can help understand the epimutational process through generations at the evolutionary time scale. Hence, whether makers are understood or not, our approach can be used to study the marker evolutionary processes through generations and/or to deepen our understanding of the population past history. We hope our discussion underlies better how our approach is designed and can be used.

      The authors simulate methylated markers at 2% (and in some places up to 20%). In many plant genomes a large proportion of cytosines are methylated (e.g. 70% in maize: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496265/). I don't know what % of these may be polymorphic, but this leads to an order of magnitude more methylated cytosines than there are SNPs. Couldn't this mean that any appreciable error in estimating methylation threatens to be of a similar order of magnitude to the SNP data? I would welcome the authors' thoughts here.

      Answer : The reviewer is correct and this is an interesting question. First, studies show that heritable epimutations in plants are restricted to CG dinucleotides that are located well outside of the target regions of de novo methylation pathways in plants. Most of these CGs tend of fall within so-called gene body methylated regions. While it is true that plant species can differ substantially in their proportion of methylation at the genome-wide scale, the number of gene body methylated genes (i.e. genic CG methylation) is relatively similar, and at least well within the same order of magnitude (Takuno et al. Nature Plants 2016, review in Muyle et al. Genome Biol Evol 2022). Moreover, spontaneous CG epimutations in gene body methylated regions has been shown to be neutral (van Der Graaf et al. 2015, Vidali et al. 2016, Yao et al. 2023), which is an ideal property for phylogentic and demographic inference.

      Second, CG methylation calls are sometimes affected by coverage or uncertainty. Stringent filtering for reliable SMP calls typically reduces the total proportion of CG sites that can be used as input for demographic inference. Here we only kept CG sites where the methylation information could be fully trusted after SMP calling (i.e. >99.9% posteriori certainty). Overall, this explains why the percentage of sites with methylation information is so small, and why we have decided to work on simulation with 2% of reliable methylated markers.

      Nevertheless, for the sake of generality, it may be that in some species such as maize a higher percentage of polymorphic methylated sites can be used, and the number of SMPs could be higher than that of SNPs when the effective population size is very small (due to past demographic history and/or life history traits). In this case, any error in the epimutation rate and variance due to the finite site model estimation (and homoplasy) are not corrected by the lack of SNPs and can lead to mis-inference.

      A few points of discussion about the biology of methylation might be worth including. For example, methylation can differ among cell types or cells within a tissue, yet sequencing approaches evaluate a pool of cells. This results in a reasonable fraction of sites having methylation rates not clearly 0 or 1. How does this variation affect the method? Similarly, while the authors cite literature about the stable inheritance of methylation, a sentence or so more about the time scale over which this occurs would be helpful.

      Answer: We thank reviewer 3 for asking those very interesting questions, which we further developed below and mention in the discussion (lines 716-722).

      For Arabidopsis thaliana:

      Following up on our previous comment above, the majority of the CG sites that serve as input to our approach are located in body methylated genes. Previous work has shown that CG methylation in these regions shows essentially no tissue and cellular heterogeneity (e.g. Horvath et al. 2019). This means that bulk methylation measurements only show limited susceptibility to measurement error. That said, to guard against any spurious SMPs call that could arise from residual measurement variation, we applied stringent filtering of CG methylation. We have kept sites where the methylation percentage is close to either 0% or 100% (the rest being removed from the analysis). We have used similar filtering strategies in previous studies of epimutational processes in mutation accumulation lines and long-lived perennials (work of the Johannes lab). In these later studies we found that the SMP calls sufficiently accurate for inferences of phylogenetic parameters in experimental settings (Sharyhary et al. Genome Biology 2021, Yao et al. Science, 2023).

      For other species:

      It is true that currently, evaluating the methylation state of a site from a pool of cells may be problematic for some species for two main reasons: 1) it will add noise to the signal and SMP calling could be erroneous, and 2) the methylation state used in analysis might originate from different tissues at different location of the genome/methylome. Overall, this will lead to spurious SMPs and can render the inference inaccurate (see Sellinger et al 2021 for the effect of spurious SNPs). Hence, caution is advised when calling SMPs in other species and for different tissues.

      Finally, in some species methylated cytosines have mutation rates an order of magnitude higher than other nucleotides. The authors mention they assume independence, but how would violation of this assumption affect their inference?

      Answer: Indeed, we assume the mutation and epimutation process to be independent thus the probability for a SNP to occur does not depend on the local methylation state. If this was the case, the mutation rate use would indeed be wrong to a degree function of the dependency between the processes. We suggest that by ignoring this dependence, we are in the same situation as ignoring the variation of mutation rate along the genome. We have previously documented the effect of ignoring this biological feature of genomes in Strüt et al 2023 and Sellinger et al 2021. The variation in mutation rate along the genome if too extreme and not accounted for can lead to erroneous inference results. However, this problem could be easily solved (modelled) by adapting the emission matrix. To correctly model this dependency, additional knowledge is needed: either the mutation and epimutation rates must be known to quantify the dependency, or the dependency must be known to quantify the resulting rates. As far as we know, these data are at the moment not available, but could maybe be obtained using the MA lines of A. thaliana (used in Yao et al. 2023).

      Recommendations for the authors:

      All three reviewers liked this approach and found it a valuable contribution. I think it is important to address reviewer 1/3 concerns about quantifying the accuracy of inference (the TMRCA approach from reviewer 1 sounds pretty reasonable), and reviewer 1 also highlights an intriguing point about model accuracy being worse when the mutation rate is known. Additionally, I think some discussion is warranted about challenges dealing with empirical methylation data (points from Rev 2 and 3 as well as Rev 1's question about inferred vs published rates of epigenetic mutation).

      Answer : We have added tables containing the root mean square error (RMSE) of every demographic inference in the manuscript to better quantify accuracy. We have below given the explanation on why accuracy in presence of site and region epimutations can in some cases decrease when real rates are known (because methylation state at the region level needs to be first inferred). We added evidence that accounting for methylation can improve the accuracy when recovering the TMRCA along the genome when the rates are known. We also have enhanced the discussion on the challenges of dealing with epimutations data for inference. As is suggested, we hope this study will generate an interest in tackling these challenges by applying the methods to various methylome datasets from different species.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      • For all of the simulated demographic inference results, only plots are presented. This allowsfor qualitative but not quantitative comparisons to be made across different methods. It is not easy to tell which result is actually better. For example, in Supp. Fig. 5, eSMC2 seems slightly better in the ancient past, and times the trough more effectively, while SMCm seems a bit better in the very recent past. For a more rigorous approach, it would be useful to have accompanying tables that measure e.g. mean-squared error (along with confidence intervals) for each of the different scenarios, similar to what is already done in Tables 1 and 2 for estimating $r$.

      Answer : We understand the concern of reviewer #1 for a more quantitative approach to compare the inference results. We agree that plots are not sufficient to fully grasp a method performance. To provide better supports to quantity approaches performance, we added Sup tables 1,6,8,9 and 10 containing the RMSE (in log10 for visibility) for all Figures. The root mean-squared error is calculated as in Sellinger 2021 and a description of how the root mean-squared error is calculated and now found in the method section lines 886-893.

      • 434: The discussion downplays the really odd result that inputting the true value of themutation rate, in some cases, produces much worse estimates than when they are learned from data (SFig. 6)! I can't think of any reason why this should happen other than some sort of mathematical error or software bug. I strongly encourage the authors to pin down the cause of this puzzling behaviour.

      Answer : There are unfortunately no errors in this plot and those results are perfectly normal and coherent, but we understand they can be confusing at first.

      As described in the method section and in the appendix, when accounting for regionlevel epimutations, our algorithm requires the regional methylation status which needs to be inferred as a first step from the data (real or simulated). Because region and single site epimutation events are occurring at similar rates in our simulated scenario, the methylation state of the region is very hard to correctly recover (e.g. there will be unmethylated site in methylated regions and methylated sites in unmethylated regions). In other words, the accuracy of the region estimation HMM procedure is decreased by the joint action of site and region epimutation processes.

      When subsequently applying the HMM for inference, as described in the appendix, the probabilities of two CG site being in the same or different methylation state depends on the methlylation state of the "region". Hence the mislabelling of the region methylation state is (to some extent) equivalent to spurious SMPs (or inaccurate SMP calling).

      If the true rates for site and region epimutations are given as input, the model forces the demography (and other inferred parameters) to fit the observed distribution of SMPs (given the inputted rates), resulting in the poor accuracy observed in the Figure (Now Supplementary Figure 7).

      Note: The estimated rates from real data in A. thaliana suffer from the same issue as the region and site epimutation rates are independently estimated, and the existence of regions first quantified using an independent HMM method (Denkena et al. 2022).

      However, when rates are freely inferred, they are inferred accordingly to the estimated methylation status of regions and SNPs. Therefore, even if the inferred rates are wrong, they are used by the SMC in a more consistent way.

      Note: When methylation rates violate the infinite site assumption, such as here, we first estimate the tree sequence along the genome using SNPs (i.e. DNA mutations). The algorithm then infers the epimutations rates given the inferred coalescent times and the observed methylation diversity.

      To summarise: when inputting rates to the model, if the model fails to correctly recover the region methylation status there will be conflicting information between SNPs and SMPs leading to accuracy loss. However if the rates are inferred this is realized with the help of SNPs, leading to less conflicting information and potentially smaller loss of accuracy. We apologize that the explanations were missing from the manuscript and have added them lines 449-460 and 702-716.

      A further argument is that if region and site epimutations occur at rates of at least two orders of magnitude difference, the inference results are better (and accurate) when the true rates are given. The reason is that one epimutational process overrides the other (see Supplementary Table 2). In that case one epimutation process is almost negligible and we fall back to results from Figure 5 or Supplementary Figure 6.

      • As noted at 580, all of the added power from integrating SMPs/DMRs should come fromimproved estimation of recent TMRCAs. So, another way to study how much improvement there is would be to look at the true vs. estimated/posterior TMRCAs. Although I agree that demographic inference is ultimately the most relevant task, comparing TMRCA inference would eliminate other sources of differences between the methods (different optimization schemes, algorithmic/numerical quirks, and so forth). This could be a useful addition, and may also give you more insight into why the augmented SMC methods do worse in some cases.

      Answer : We fully agree with reviewer 1. We have added a comparison in TMRCA inference as proof of principle between using or not using methylation sites. The results are written in Supplementary Table 7 and methodology is inspired by Schiffels 2014 and described at the end of the method section (line 894-907). Those results demonstrate the potential gain in accuracy when using methylation polymorphic. However, TMRCA (or ARG) inference is a very vast and complex subject in its own right. Therefore, we are developing a complete TMRCA/ARG inference investigation and an improve methodology than the one presented in this manuscript. To do so we are currently working on a manuscript focusing on this topic specifically. We hence consider further investigations of TMRCA/ARG inference beyond the scope of this current study.

      • A general remark on the derivations in Section 2 of the supplement: I checked theseformulas as best I could. But a cleaner, less tedious way of calculating these probabilities would be to express the mutation processes as continuous time Markov chains. Then all that is needed is to specify the rate matrices; computing the emission probabilities needed for the SMC methods reduces to manipulating the results of some matrix exponentials. In fact, because the processes are noninteracting, the rate matrix decomposes into a Kronecker sum of the individual rate matrices for each process, which is very easy to code up. And this structure can be exploited when computing the matrix exponential, if speed is an issue.

      Answer: We thank the reviewer for this very interesting suggestion! Unfortunately, it is a bit late to re-implement the algorithm and reshape the manuscript according to this suggestion. Speed is not yet an issue but will most likely become one in the future when integrating many different rates or when using a more complex SMC model. Hence, we added reviewer #1 suggestions to the discussion (line 648) and hope to be using it in our future projects.

      • Most (all?) of the SNP-only SMC methods allow for binning together consecutiveobservations to cut down on computation time. I did not see binning mentioned anywhere, did you consider it? If the method really processes every site, how long does it take to run?

      Answer: This is a very good question. We do the binning exactly as described in Mailund 2013 & Terhorst 2017, and added this information in the method section (lines 801-809). However, as described in Terhorst 2017, one can only bin observation of the same "type" (to compute the Baum-Welch algorithm). Therefore, the computation time gain by binning is reduced when different markers spread along the genome in high proportion. This is the approach we used throughout the study when facing multiple markers as it had the best speed performance. As for example, when the proportion of site with methylated information is 1% or less, computation time is only slightly affected (i.e. same order of magnitude).

      However, the binning method presented in Mailund 2013 can be extended to observation of different types, but parameters need to be estimated through a full likelihood approach (as presented in Figure 2). In our study this approach did not have the best speed performance. However, as our study is the first of its kind, it remains sub-optimal for now. Hence, we did not further investigate the performance of our approach in presence of many multiple different genomic marker (e.g. 5 different markers each representing ~20% of the genome each). Currently, with SMC approaches a high proportion of sites contain the information "No SNPs", making the Baum welch algorithm described in Terhorst 2017 very efficient. But when further developing our theoretical approach, we expect that most of the sites in a genome analysis will contain some "information", which could render the full likelihood approach computationally more tractable.

      • 486: The assumed site and region (de)methylation rates listed here are several OOMdifferent from what your method estimated (Supp. Tables 5-6). Yet, on simulated data your method is usually correct to within an order of magnitude (Supp. Table 4). How are we to interpret this much larger difference between the published estimates and yours? If the published estimates are not reliable, doesn't that call into question your interpretation of the blue line in Fig. 7 at 533?

      Answer: We thank the reviewer for asking this question. We believe answering this question is indeed the most interesting aspect of our study. Beyond demographic inference, our study has indeed unveiled a discrepancy between rates inferred through biological experiment and our study through the use of SNPs and branch length. There are several reasons which could explained the discrepancy between both approaches:

      • Firstly, our underlying HMM hypotheses are certainly violated. We ignoredpopulation structure, variation of mutations and recombination rate along the genome as well as the effect of selection. Hence, the branch lengths used for methylation rate estimations are to some extent inaccurate. We note that this is especially likely for the short branches of coalescent tree originating from background selection events in the coding regions and which are especially observable when using the methylation sites with a higher mutation rate than SNPs (Yao et al. 2023) at body methylated genes.

      • Secondly, calling single methylation site polymorphism is not 100 % reliable. If theerror rate is 0.1%, as the study was conducted on ~10 generations a minimum epimutation rate of 10-4 is to be expected. However, because our approach works at the evolutionary time scale, we expect that it suffers less from this bias as the proportion of diversity originating from actual epimutations, and not SMP calling error, should be greater.

      • Thirdly, as mentioned above, recovering the methylation status of a region is veryhard. Hence false region status inference could affect our inference accuracy as shown in Supplementary Figure 4.

      • Lastly and most importantly, the reason behind this discrepancy is the modelling ofepimutation and methylation between sites and regions. As we discuss, the current combination of rates and models is still limited to describe the observed diversity along the genome (as we intend in SMC methods). This is in contrast to the recent study by Yao et al. where very few regions of polymorphic SMPs are chosen, which implicitly avoids the influence of the methylation region effect. A study just published by Biffra et al. (Cell reports 2023) also uses a functional model of methylation modelling using a mix of region and site epimutation, albeit not tuned for evolutionary analyses. Thus we suggest, in line with functional studies, that epimutations are not independent from the local methylation context and may tend to stabilize the methylation state of a region. Therefore, the estimated methylation rates show a discrepancy to the previously measured ones. Indeed, the biological experiment would reveal a fast epimutation rate because epimutations can actually be tracked at sites which can mutate, while region mutation rate is much slower. However, because the methylation state of a region is rather stable through time it would reduce the methylation diversity over long time scale, and these rates would differ between methylated or unmethylated regions (i.e. the methylation rate is higher in methylated regions). Our results are thus in agreement with the observation by Biffra et al. that region methylation modelling is needed to explain patterns of methylation across the genome.

      To solve the discrepancy, one would need to develop a theoretical region + site epimutation model capable of describing the observed diversity at the evolutionary time scale (possibly based on the Biffra et al. model within an underlying population evolution model), and then use this model to reanalyse the sequence data from the biological experiment (i.e. in de Graaf et al. 2015 & Denkena et al. 2022) to re-estimate the methylation region sizes and epimutation rates.

      Minor comments:

      • 189: "SMCtheo" first occurs here, but it's not mentioned until 247 that this is the newmethod being presented.

      Answer : Fixed

      • 199: Are the estimates in this section from a single diploid sequence? Or is it n=5 (diploid) as mentioned in the earlier section?

      Answer : Yes, those results were obtained with 5 diploid individuals. We added it in the Table 1 description.

      • 336: I'm confused by the wording: it sounds like the test rejects the null if there is positivecorrelation in the methylation status across sites. But then, shouldn't 339 read "if the test is significant" (not non-significant)?

      Answer : We apologize for the confusion and rewrote the sentence line 339-348, the choice of word was indeed misleading .

      • Fig. 6: for some reason fewer simulations were run for 10Mb (panels C nad D) than for100Mb (A and B). Since it's very difficult to tell what's happening on average in the 10Mb case, I suggest running the same number of simulations.

      Answer : Yes we understand your concern. Actually, the same number of simulations were run but we plotted only the first 3 runs as it was less visually confusing. We now have added the missing lines to the plot C and D.

      Typos:

      • 104: "or or"

      • 292: build => built

      • 388: fulfil

      • 683: sample => samples

      Answer : Many thanks to reviewer 1 for pointing out the typos. They are all now fixed.

      Reviewer #2 (Recommendations For The Authors):

      The authors may find some valuable information in Pisupati et al (2023) "On the causes of gene-body methylation variation in Arabidopsis thaliana" on interpreting epimutation rates.

      Answer: Many thanks for the recommended manuscript. We add it to the cited literature as it strongly supports our use of heritability or methylation. We also added the recent Biffra et al. paper.

      Reviewer #3 (Recommendations For The Authors):

      There are many places throughout the manuscript with minor grammatical errors. Please review these. A few noted below as I read:

      L104: extra "or"

      L123: built not build

      L 160 "relies" instead of "do rely"

      L161 "events"

      L 336 "from methylation data"

      L 378 "exists"

      L 379 "regions are on average shorter" instead of "there are shorter"

      L 338 "a regional-level"

      L 349 "," instead of "but"

      L 394 DMRs

      Table 1 legend: parentheses not brackets?

      Answer : Many thanks to reviewer #3 for finding those mistakes. They are all now fixed.

      I think a paragraph in the discussion of considerations of when to use this approach might be helpful to readers. Comparison to e.g. increased sample size in MSMC2, while not necessary, might be helpful here. It may often be the case that doubling the number of haplotypes with SNP data may be easier and cheaper estimating methylation accurately.

      Answer : We discuss (lines 691-698) that our approach is always useful by design, but cannot always be used for the same purpose. If the evolutionary properties of the used marker used are not understood, we suggest that our approach can be used to investigate the marker heritability process through generations. This could help to correctly design experiments aiming to study the marker heritability through lineages. And if the properties of the marker are well understood and modelled, it can be integrated into the SMC framework to improve inference accuracy.

      Other minor notes:

      L 486 "known" is a stretch. empirically estimated seems appropriate.

      Answer : Fixed

      L 573 ARG? You are not estimating the full ARG here.

      Answer : We apologize for the wrong choice of word and have rephrased the sentence.

      Fig. 2 is not super useful and could be supplemental.

      Answer : We moved Figure 2 to the appendix (now sup fig 1)

    2. Reviewer #1 (Public Review):

      The authors developed an extension to the pairwise sequentially Markov coalecent model that allows to simultaneously analyze multiple types of polymorphism data. In this paper, they focus on SNPs and DNA methylation data. Since methylation markers mutate at a much faster rate than SNPs, this potentially gives the method better power to infer size history in the recent past. Additionally, they explored a model where there are both local and regional epimutational processes.

      Integrating additional types of heritable markers into SMC is a nice idea which I like in principle. However, a major caveat to this approach seems to be a strong dependence on knowing the epimutation rate. In Fig. 6 it is seen that, when the epimutation rate is known, inferences do indeed look better; but this is not necessarily true when the rate is not known. (See also major comment #1 below about the interpretation of these plots.) A roughly similar pattern emerges in Supp. Figs. 4-7; in general, results when the rates have to be estimated don't seem that much better than when focusing on SNPs alone. This carries over to the real data analysis too: the interpretation in Fig. 7 appears to hinge on whether the rates are known or estimated, and the estimated rates differ by a large amount from earlier published ones.

      Overall, this is an interesting research direction, and I think the method may hold more promise as we get more and better epigenetic data, and in particular better knowledge of the epigenetic mutational process. At the same time, I would be careful about placing too much emphasis on new findings that emerge solely by switching to SNP+SMP analysis.

      Major comments:<br /> - For all of the simulated demographic inference results, only plots are presented. This allows for qualitative but not quantitative comparisons to be made across different methods. It is not easy to tell which result is actually better. For example, in Supp. Fig. 5, eSMC2 seems slightly better in the ancient past, and times the trough more effectively, while SMCm seems a bit better in the very recent past. For a more rigorous approach, it would be useful to have accompanying tables that measure e.g. mean-squared error (along with confidence intervals) for each of the different scenarios, similar to what is already done in Tables 1 and 2 for estimating $r$.

      - 434: The discussion downplays the really odd result that inputting the true value of the mutation rate, in some cases, produces much worse estimates than when they are learned from data (SFig. 6)! I can't think of any reason why this should happen other than some sort of mathematical error or software bug. I strongly encourage the authors to pin down the cause of this puzzling behaviour. (Comment addressed in revision. Still, I find the explanation added at 449ff to be somewhat puzzling -- shouldn't the results of the regional HMM scan only improve if the true mutation rate is given?)

      - As noted at 580, all of the added power from integrating SMPs/DMRs should come from improved estimation of recent TMRCAs. So, another way to study how much improvement there is would be to look at the true vs. estimated/posterior TMRCAs. Although I agree that demographic inference is ultimately the most relevant task, comparing TMRCA inference would eliminate other sources of differences between the methods (different optimization schemes, algorithmic/numerical quirks, and so forth). This could be a useful addition, and may also give you more insight into why the augmented SMC methods do worse in some cases. (Comment addressed in revision via Supp. Table 7.).

      - A general remark on the derivations in Section 2 of the supplement: I checked these formulas as best I could. But a cleaner, less tedious way of calculating these probabilities would be to express the mutation processes as continuous time Markov chains. Then all that is needed is to specify the rate matrices; computing the emission probabilities needed for the SMC methods reduces to manipulating the results of some matrix exponentials. In fact, because the processes are noninteracting, the rate matrix decomposes into a Kronecker sum of the individual rate matrices for each process, which is very easy to code up. And this structure can be exploited when computing the matrix exponential, if speed is an issue.

      - Most (all?) of the SNP-only SMC methods allow for binning together consecutive observations to cut down on computation time. I did not see binning mentioned anywhere, did you consider it? If the method really processes every site, how long does it take to run?

      - 486: The assumed site and region (de)methylation rates listed here are several OOM different from what your method estimated (Supp. Tables 5-6). Yet, on simulated data your method is usually correct to within an order of magnitude (Supp. Table 4). How are we to interpret this much larger difference between the published estimates and yours? If the published estimates are not reliable, doesn't that call into question your interpretation of the blue line in Fig. 7 at 533? (Comment addressed in revision.)

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This study examines the role of host blood meal source, temperature, and photoperiod on the reproductive traits of Cx. quinquefasciatus, an important vector of numerous pathogens of medical importance. The host use pattern of Cx. quinquefasciatus is interesting in that it feeds on birds during spring and shifts to feeding on mammals towards fall. Various hypotheses have been proposed to explain the seasonal shift in host use in this species but have provided limited evidence. This study examines whether the shifting of host classes from birds to mammals towards autumn offers any reproductive advantages to Cx. quinquefasciatus in terms of enhanced fecundity, fertility, and hatchability of the offspring. The authors found no evidence of this, suggesting that alternate mechanisms may drive the seasonal shift in host use in Cx. quinquefasciatus.

      Strengths:

      Host blood meal source, temperature, and photoperiod were all examined together.

      Weaknesses: The study was conducted in laboratory conditions with a local population of Cx. quinquefasciatus from Argentina. I'm not sure if there is any evidence for a seasonal shift in the host use pattern in Cx. quinquefasciatus populations from the southern latitudes.

      We agree on the reviewers observation about the evidence on seasonal shift in the host use pattern in Cx. quinquefasciatus populations from southern latitudes. We include a paragraph in the Introduction section regarding this. Unfortunately, studies conducted in South America to understand host use by Culex mosquitoes are very limited, and there are virtually no studies on the seasonal feeding pattern. In Argentina, there is some evidence (Stein et al., 2013, Beranek, 2019) regarding the seasonal change in host use by Culex species, including Cx. quinquefasciatus, where the inclusion of mammals during the autumn has been observed. As part of a comprehensive study on characterising bridge vectors for SLE and WN viruses, our research group is currently working on the molecular identification of blood meals from engorged females to gain deeper insights into the seasonal feeding pattern of Culex mosquitoes. While the seasonal change in host use by Culex quinquefasciatus has not been reported in Argentina so far, there has been an observed increase in reported cases of SLE virus in humans between summer and fall (Spinsanti et al., 2008). It is based on this evidence that we hypothesise there is a seasonal change in host use by Cx. quinquefasciatus, similar to what occurs in the United States. This is also considering that both countries (Argentina and the United States) have regions with similar climatic conditions (temperate climates with thermal and hydrological seasonality). Since we work on the same species and in a similar temperate climate regimen, we assumed there is a seasonal shift in the host use by this mosquito species.

      Reviewer #1 (Recommendations for the authors):

      Abstract

      Line 23: fed on two different hosts.

      Accepted as suggested.

      I think the concluding statement should be rewritten to say that immediate reproductive outcomes do not explain the shift in host use pattern of Cx. quinquefasciatus mosquitoes from birds to mammals towards autumn.

      Accepted as suggested.

      Introduction

      No comments.

      Materials and Methods

      Please mention sample sizes in the text as well (n = ?) for each treatment.

      Accepted as suggested.

      Page 99: ......C. quinquefasciatus, since C. pipiens and its hybrids are present as well in Cordoba.

      Accepted as suggested.

      Results – Line 146: subsequently instead of posteriorly

      Accepted all changes as suggested.

      Line 148: were counted instead of was counted.

      Accepted all changes as suggested.

      Line 160: Subsequently instead of posteriorly

      Accepted all changes as suggested.

      Line 171: on fertility

      Accepted all changes as suggested.

      Line 174: there was an interaction effect on…

      Accepted all changes as suggested.

      Line 175: there were no differences in the number of eggs

      Accepted all changes as suggested.

      Discussion

      I think the first paragraph in the discussion section is redundant and should be deleted.

      The whole discussion was rewritten to be focused on our aims and results.

      Line 282: this sentence needs to be rewritten.

      Accepted as suggested.

      Line 299: at 28{degree sign}C

      Line 300: at 30{degree sign}C

      Sorry, but we are not sure about your comment here. We checked. Temperatures are written as stated, 28°C and 30°C.

      Line 363: I think the authors need to discuss more about the bigger question they were addressing. I think that the discussion section can be strengthened greatly by elaborating on whether there is evidence for a seasonal shift in host use pattern in Cx. quinquefasciatus in the southern latitudes. If yes, what alternate mechanisms they believe could be driving the seasonal change in host use in this species in the southern latitudes now that they show the 'deriving reproductive advantages' hypothesis to be not true for those populations.

      Thanks for this observation. We agree and so the Discussion section was restructured to align it with our results, as suggested.

      Reviewer #2 (Public Review):

      Summary:

      Conceptually, this study is interesting and is the first attempt to account for the potentially interactive effects of seasonality and blood source on mosquito fitness, which the authors frame as a possible explanation for previously observed host-switching of Culex quinquefasciatus from birds to mammals in the fall. The authors hypothesize that if changes in fitness by blood source change between seasons, higher fitness in birds in the summer and on mammals in the autumn could drive observed host switching. To test this, the authors fed individuals from a colony of Cx. quinquefasciatus on chickens (bird model) and mice (mammal model) and subjected each of these two groups to two different environmental conditions reflecting the high and low temperatures and photoperiod experienced in summer and autumn in Córdoba, Argentina (aka seasonality). They measured fecundity, fertility, and hatchability over two gonotrophic cycles. The authors then used a generalized linear mixed model to evaluate the impact of host species, seasonality, and gonotrophic cycle on fecundity and fertility and a null model analysis via data randomization for hatchability. The authors were trying to test their hypothesis by determining whether there was an interactive effect of season and host species on mosquito fitness. This is an interesting hypothesis; if it had been supported, it would provide support for a new mechanism driving host switching. While the authors did report an interactive impact of seasonality and host species, the directionality of the effect was the opposite of that hypothesized. While this finding is interesting and worth reporting, there are significant issues with the experimental design and the conclusions that are drawn from the results, which are described below. These issues should be addressed to make the findings trustworthy.

      Strengths:

      (1) Using a combination of laboratory feedings and incubators to simulate seasonal environmental conditions is a good, controlled way to assess the potentially interactive impact of host species and seasonality on the fitness of Culex quinquefasciatus in the lab.

      (2) The driving hypothesis is an interesting and creative way to think about a potential driver of host switching observed in the field.

      Weaknesses:

      (1) There is no replication built into this study. Egg lay is a highly variable trait, even within treatments, so it is important to see replication of the effects of treatment across multiple discrete replicates. It is standard practice to replicate mosquito fitness experiments for this reason. Furthermore, the sample size was particularly small for some groups (e.g. 15 egg rafts for the second gonotrophic cycle of mice in the autumn, which was the only group for which a decrease in fecundity and fertility was detected between 1st and 2nd gonotrophic cycles). Replicates also allow investigators to change around other variables that might impact the results for unknown reasons; for example, the incubators used for fall/summer conditions can be swapped, ensuring that the observed effects are not artefacts of other differences between treatments. While most groups had robust sample sizes, I do not trust the replicability of the results without experimental replication within the study.

      We agree egg lay is a variable trait and so we consider high numbers of mosquitoes and egg lay during experiments compared to our studies of the same topics. Evaluating variables such as fecundity, fertility, or other types of variables (collectively referred to as "life tables") is a challenging issue that depends on several intrinsic and extrinsic factors. Because all of this, in some experiments, sample sizes might not be very large, and in several articles, lower sample sizes could be found. For instance, in Richards et al. (2012), for Culex quinquefasciatus, during the second gonotrophic cycle, some experiments had 13 or even 6 egg rafts. For species like Aedes aegypti, the sample size for life table analysis is also usually small. As an example, Muttis et al. (2018) reported between 1 and 4 engorged females (without replicates). In addition, small sample size would be a problem if we would not have obtained any effect, which is not the case due to the fact that we were interested in finding an effect, regardless of the effect size. Because of this, we do find our sample sizes quite robust for our results.

      Regarding the need to repeat the experiments in order to give more robustness to the study we also agree. However, after a review of the literature (articles cited in the original manuscript), it is apparent that similar experiments are not frequently repeated as such. Examples of this are the studies of Richards et al. (2012), Demirci et al. (2014) or Telang & Skinner (2019), which even they manipulate several cages at a time as “replicates”, they are not true replicates because they summarise and manipulate all data together, and do not repeat the experiment several times. We see these “replicates” as a way of getting a greater N.

      As was stated by the reviewer, repetition is a resource and time-consuming activity that we are not able to do. Replicating the experiment poses a significant time and resources challenge. The original experiment took over three months to complete, and it is anticipated that a similar timeframe would be necessary for each replication (6 months in total considering two more replicates). Given our existing commitments and obligations, dedicating such an extensive period solely to this would impede progress on other crucial projects and responsibilities.

      Given the limitations of resources and time and the infrequent use of experimental replication in this type of studies, we performed a simulation-based analysis via a Monte Carlo approach. This approach involved generating synthetic data that mimics the expected characteristics of the original experiment and subsequently subjecting it to the same analysis routine. The main goal of this simulation was to evaluate the potential spuriousness and randomness of the results that might arise due to the experimental conditions. So, evaluating the robustness and confidence of our results and data.

      (2) Considering the hypothesis is driven by the host switching observed in the field, this phenomenon is discussed very little. I do not believe Cx. quinquefasciatus host switching has been observed in Argentina, only in the northern hemisphere, so it is possible that the species could have an entirely different ecology in Argentina. It would have been helpful to conduct a blood meal analysis prior to this experiment to determine whether using an Argentinian population was appropriate to assess this question. If the Argentinian populations don't experience host switching, then an Argentinian colony would not be the appropriate colony to use to assess this question. Given that this experiment has already been conducted with this population, this possibility should at least be acknowledged in the discussion. Or if a study showing host switching in Argentina has been conducted, it would be helpful to highlight this in the introduction and discussion.

      Thanks for this observation. We agree. However, we conducted the experiment beside host use data from Argentina since we used the mosquito species, and the centre region of Argentina (Córdoba) has a similar temperate weather regimen that those observed in the east coast of US.

      We are aware that few studies regarding host shifting in South America are available, some such that those conducted by Stein et al. (2013) and Beranek (2019) reported a moderate host switch for Culex quinquefasciatus in Argentina. We have already performed a study about seasonal host feeding patterns for this species. However, even though there are few studies regarding host shifting, our hypothesis is based mainly in the seasonality of human cases of WNV and SLEV, a pattern that has been demonstrated for our region, see for example the study of Spinsanti et al. (2008).

      We include a new paragraph in the Introduction and Discussion sections. Please see answers Reviewer #1.

      (3) The impacts of certain experimental design decisions are not acknowledged in the manuscript and warrant discussion. For example, the larvae were reared under the same conditions to ensure adults of similar sizes and development timing, but this also prevents mechanisms of action that could occur as a result of seasonality experienced by mothers, eggs, and larvae.

      We understand the confusion that may have arisen due to a lack of further details in the methodology. If we are not mistaken, you are referring to our oversight regarding the consideration of carry-over effects of larvae rearing that could potentially impact reproductive traits. When investigating the effects of temperature or other environmental factors on reproductive traits, it is possible to acclimate either larvae or adults. This is due to the significant phenotypic plasticity that mosquitoes exhibit throughout their entire ontogenetic cycle. In our study, we followed an approach similar to that of other authors where the adults are exposed to experimental conditions (temperature and photoperiod). For a similar approach you can refer to the studies conducted by Ferguson et al. (2018) for Cx. pipiens, Garcia Garcia & Londoño Benavides (2007) for Cx. quinquefasciatus or Christiansen-Jucht et al. (2014, 2015) for Anopheles gambiae.

      (4) There are aspects of the data analysis that are not fully explained and should be further clarified. For example, there is no explanation of how the levels of categorical variables were compared.

      The methodology and statistical analysis were expanded for a better understanding.

      (5) The results show the opposite trend as was predicted by the authors based on observed feeding switches from birds to mammals in the autumn. However, they only state this once at the end of the discussion and never address why they might have observed the opposite trend as was hypothesized.

      The discussion was restructured to focus on our results and our model.

      (6) Generally speaking, the discussion has information that isn't directly related to the results and/or is too detailed in certain parts. Meanwhile, it doesn't dig into the meaning of the results or the ways in which the experimental design could have influenced results.

      As mentioned above, the discussion was restructured to reflect our findings. We also included the effect that our design might have influenced our results. However, as stated above we do not fully agree that the design is inadequate for our analysis, we performed standard protocols followed by other researchers and studies in this research field.

      (7) Beyond the issue of lack of replication limiting trust in the conclusions in general, there is one conclusion reached at the end of the discussion that would not be supported, even if additional replicates are conducted. The results do not show that physiological changes in mosquitoes trigger the selection of new hosts. Host selection is never measured, so this claim cannot be made. The results don't even suggest that fitness might trigger selection because the results show that physiological changes are in the opposite direction as what would be hypothesized to produce observed host switches. Similarly, the last sentence of the abstract is not supported by the results.

      We agree with this observation. However, we did not evaluate the impact of fitness on host selection in this study. Instead, we aimed to investigate the potential influence of seasonality on mosquito fitness as a potential trigger for a shift in host selection. We agree that we have incorrectly used the term “host selection” when we should actually be discussing “host use change”. Our results indicate a seasonal alteration in mosquito fitness in response to temperature and photoperiod changes. Building upon this observation, we re-discussed our hypothesis and theoretical model to explain this seasonal shift in host use.

      (8) Throughout the manuscript, there are grammatical errors that make it difficult to understand certain sentences, especially for the results.

      All English grammar and writing of the manuscript was revised and corrected to be easily understood.

      This study is driven by an interesting question and has the potential to be a valuable contribution to the literature.

      Reviewer #2 (Recommendations for The Authors):

      I hope that the authors will consider the suggested revisions and experimental replication to improve the quality of the study and paper.

      This study tests a very interesting hypothesis. I understand that additional replicates are difficult to conduct, but I do believe that fitness studies absolutely require experimental replicates. Unless you are able to replicate the observed effects, I personally would not trust the results of this study. I hope that you will consider conducting replicates so that this important question can be answered in a more robust manner. Below, I expand upon some additional points in the public review and also provide more specific suggestions. I provided some copy-editing feedback, but was not able to point out all grammatical mistakes. I suggest that you use ChatGPT to help you edit the English. For example, you can feed ChatGPT your MS and ask it to bold the grammatical errors or you can ask it to edit grammatical errors and bold the sections that were edited. I understand that writing in a second language is very difficult (from personal experience!), so I view ChatGPT as a great tool to help even the playing field for publishing. Below are line item suggestions. Apologies that wording is curt, I was trying to be efficient in writing.

      20-21: I suggest that you emphasize that you are investigating the interactive effect.

      Accepted as suggested.

      22: they weren't "reared" (from larvae) in different conditions, they were "maintained" as adults

      Accepted as suggested.

      26-27: increased/decreased is a bit misleading since you did not evaluate these groups sequentially in time. It might be more accurate to describe it as less than/greater than. Also, if you say increased/decreased or less than/greater than, you should always say what you are comparing to. The same applies throughout the MS.

      Accepted as suggested.

      29-30: "finding the" is not correct here; could be "with the lowest..."

      Accepted as suggested.

      34-36: I do not think that your results suggest this, even if you were to replicate the results of this experiment. You haven't shown metabolic changes.

      We understand the point. Accepted as suggested.

      42-44: "one of the main responsible" should be "one of the main species responsible..."

      Accepted as suggested.

      48: I think that "host preference" is better than selection here; -philic denotes preference

      Accepted as suggested.

      50: "Moreover" isn't the correct transition word here

      Accepted as suggested.

      57: "could" isn't correct here; consider saying "... species sometimes feed primarily on mammal hosts, including humans, in certain situations."

      Accepted as suggested.

      58: Different isn't correct word here

      Accepted as suggested.

      60: delete "feeding"

      Accepted as suggested.

      66-68: I am not familiar with any blood meal analysis studies in the southern hemisphere that show host switching for Culex species between summer and autumn. If this hasn't been shown, then this critique of the host migration hypothesis doesn't make sense.

      There are some studies pointing this out (Stein et al., 2013, Beranek 2019), and unpublished data from us). However, our hypothesis has supported by epidemiological data observed in human population which indicate a seasonal activity pattern. It was explained in depth in the Introduction section.

      68: ensures is not the right word; I suggest "suggests"

      Accepted as suggested.

      68-70: this explanation isn't clear to me; please revise

      It will be revised. Accepted as suggested.

      70: change cares to care

      Accepted as suggested.

      76-77: can you explain how they were not supported by the data for the benefit of those who are not familiar with these papers please?

      Accepted as suggested.

      87-89: I suggest the following wording: "In the autumn, we expect a greater number of eggs (fecundity) and larvae (fertility) in mosquitoes after feeding on a mammal host compared to an avian host, and the opposite relationship in the summer."

      Accepted as suggested.

      99: edit for grammar

      Accepted as suggested.

      102: suggest: "...offered a blood meal from a restrained chicken twice a month"

      Accepted as suggested.

      107: powder

      Accepted as suggested.

      108: inbred? Is this the term you meant to use?

      Changed as suggested.

      109: "several" cannot be used to describe 20 generations; suggest using "over twenty generations"; also, it would be good to acknowledge in your discussion that lab adaptation could force evolution, especially since mosquitoes are kept at constant temperatures and fed with certain hosts (with easy access) in the lab. Also, it would be good to know when the experiments were conducted to know the lapse of time between the creation of the colony and the experiments.

      Accepted as suggested.

      110-111: Does humidity vary between summer and fall in Córdoba? If so, I suggest acknowledging in the discussion that if humidity differences are involved in a potential interaction between host species and seasonality, then this would not have been captured by your experimental design.

      Several variables change during seasons. We were interested in capturing the effects of temperature and photoperiod, since humidity is a variable difficult to control.

      113-116: I suggest combining into one sentence to make more concise.

      Accepted as suggested.

      135: You might be obscuring the true impact of seasonality by rearing the larvae under the same conditions. There may be signals that mothers/eggs/larvae receive that influence their behavior (e.g. I believe this is the case for diapause), so this limitation should also be acknowledged. I understand why you decided to do this to control for development time and size, but it is something that should be considered in the discussion.

      As it was explained above, Cx. quinquefasciatus do not suffer diapause in our country. Maintaining mosquitoes from adults was an approach selected by us based on other studies.

      138: edit: "with cotton pads soaked in... on plastic..."; what is plastic glass? Do you mean plastic dishes?

      Accepted as suggested.

      141: here and throughout paragraph, full should be "fully"

      Accepted as suggested.

      144: located should be "placed"

      Accepted as suggested.

      147: suggest editing to "at which point, they were fixed with 1 mL of 96% ethanol and the number of L1 larvae per raft was counted."

      Accepted as suggested.

      154-155: edit for grammar

      Accepted as suggested.

      157: Your GLM explanation doesn't say anything about how you made pairwise comparisons between your levels; did you use emmeans?

      This revised version includes a more detailed methodology and statistical analysis. Accepted as suggested.

      158-160: I don't understand why you took this approach - it seems strange to me to use this analysis, but I am not familiar with it, so it might be that I lack the knowledge to be able to adequately evaluate. Please provide more explanation so that readers can better understand this analysis. A citation for this kind of application of the analysis would be helpful.

      It was changed to be in accordance with the remaining analyses.

      173: replace neither with either

      Accepted as suggested.

      174: this applies throughout; edit to : "An interaction effect was observed..."

      Accepted as suggested.

      175: "it was not found" is grammatically incorrect; instead : "We did not find ..." or "no differences in... were detected", etc

      Accepted as suggested.

      183: "it was detected" is grammatically incorrect

      Accepted as suggested.

      185-186: "being this treatment... in terms of fitness": I do not understand what this means. Please rephrase

      Accepted as suggested.

      170-199: you should provide the effect sizes and p values in text and/or in the figure for the pairwise comparisons

      Accepted as suggested.

      193-196. These two sentences are confusing and I am not sure what you mean, especially in the first sentence.

      It was rewritten. Accepted as suggested.

      Figure 1: This figure is great and easy to read and interpret! Thank you for the comment! 218-219: it is important to state which mosquito species you are referring to here.

      Accepted as suggested.

      226-227: you definitely should acknowledge the small sample size here.

      Considered.

      227: "it was observed" should be "We observed" or "A greater hatching rate.... was observed."

      Accepted as suggested.

      228-229: is the result really comparable even though you took very different approaches to the analysis for these outcomes?

      Changed to be comparable.

      230-278: the discussion of these hypotheses is too long and detailed, especially since the comparison of mouse vs chicken wasn't your main question; you really wanted to understand this in the context of seasonality. I suggest cutting this down a lot and making room to dig into your results more, and also to discuss the potential impacts of your experimental design/limitations on the results.

      Discussion was changed to focus on our results and model. Accepted as suggested.

      281: Hoffman is an old citation; I suggest you cite a modern review.

      Accepted as suggested. We deleted it due to the re-writing of the manuscript.

      282: "It can be recognise".. I am not sure what you are trying to say here

      Accepted as suggested.

      1. After the first time you write a species name, you can abbreviate the genus in all future mentions unless it is at the beginning of a sentence.

      Accepted as suggested.

      303-305: Revise this sentence. E.g "Fewer studies are available regarding photoperiod and show mixed results; Mogi (1992) found that mid and long day lengths induced greater fecundity while Costanzo et al. (2015) did not find differences in fecundity by day length."

      Accepted as suggested.

      315-316: typically, unpublished data shouldn't be referenced; I'm not sure if eLife has a policy on this.

      We will check this with eLife guidelines. However, since the lack of evidence on this pattern we consider important to include this unpublished data.

      316: Aegypti should be lowercase

      Accepted as suggested.

      328-330: This sentence is redundant with the first sentence of the paragraph

      Accepted as suggested.

      321-336: You never reintroduced your hypothesis in your discussion. I suggest that you center your whole discussion more directly around the hypothesis that motivated the study. If you decide not to restructure your discussion, you should at least reintroduce your hypothesis here and discuss how your results do not support the hypothesis.

      Accepted as suggested.

      337-348: This paragraph is a bit confusing as you jump between fertility and hatchability

      Accepted as suggested.

      353: is viral transmission the right word to use here? I think you might mean bridge vector transmission to humans specifically?

      Accepted as suggested.

      357: you say "neither" but never define which traits you are referring to

      Accepted as suggested.

      361: I suggest "two variables previously analyzed separately..."

      Accepted as suggested.

      General: There is no statement about the availability of data; it is eLife policy to require all data to be publicly available. Also, it would be helpful to share your code to help understand how you conducted pairwise comparisons, etc.

      In the submission it was not mentioned anything about data availability. However, all data and scripts will be uploaded with the VOR if it is required.

      Recommendations for the authors:

      I found your study interesting and potentially promising. However, there are some fundamental problems with the study design and the hypothesis, including:

      <(1) Seasonality simulation - Seasonality is strongly associated with time, so it is unusual to simulate seasonal factors without accounting for time. The actual factors associated with seasonal change in reproductive output may be neither a difference in host blood meal nor temperature and photoperiod. It is therefore, odd to reduce seasonality to a difference in photoperiod and temperature in summer and autumn without even mentioning the time of year when the experiment was carried (except for the mention of February as the time the stock samples were collected from the wild).

      The temperature and photoperiod settings are established according to a representative day in both autumn and summer. To determine these settings, we utilized climate data spanning a 3-year period (2020-2022), encompassing the most frequently occurring temperatures and day lengths. The weather conditions remained notably consistent throughout this time frame, which is why the specific year was not mentioned. Moreover, including the year in laboratory experiment details is uncommon, as evident in various papers. This practice can be corroborated by referring to multiple sources (cited in the original manuscript). We mention this in the new version.

      (2) Hypothesis - While the hypothesis alludes to the 'reason' for seasonal host shift, the prediction is on the outcome of the interaction between blood meal type and season.

      It might be nicer to frame your hypothesis to be consistent with the aim, which is, testing the partial contributions of blood meal type, versus photoperiod and temperature to seasonal change in the reproductive output of Culex quinquefasciatus. A hypothesis like that can be accompanied by alternative predictions according to the expected individual and interactive effects of both factors.

      It was rewritten in the revised version to be consistent with our predictions and findings.

      Blood meal type, temperature, and photoperiod are all components of seasonality, so the strength of the study is its potential to decouple the effect of blood meal type from that of temperature and photoperiod on the seasonal reproductive output of Culex quinquefasciatus by comparing the two blood meal types under simulated summer and winter conditions. Ideally, this should have been over a natural summer and winter because a natural time difference captures the effect of other seasonal factors other than temperature and photoperiod.

      Furthermore, the hypothesis stemmed from field observations, while the study itself was conducted under laboratory conditions using a local population of Culex quinquefasciatus from Argentina. It remains uncertain whether there is supporting evidence for a seasonal shift in host usage in Culex quinquefasciatus from the stock population. Discussing the field observations within the stock population would provide valuable insights.

      It was considered in the new version.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study seeks to disentangle the different selective forces shaping the evolutionary dynamics of transposable elements (TEs) in the wild grass Brachypodium distachyon. Using haplotype-length metrics, and genetic and environmental differentiation tests, the authors present in large parts convincing evidence that positive selection on TE polymorphisms is rare, and that the distribution of TE ages points to purifying selection being the main force acting on TE evolution in this species. A caveat of this study, as of other studies that seek to assess TE insertion polymorphisms with short reads, is that the rates of false negatives and false positives are difficult to estimate, which may have major effects on the interpretation. This study will be relevant for anyone interested in the role of TEs in evolution and adaptation.

      Thank you for considering our manuscript for publication in eLife. We appreciate the constructive comments and suggestions of the reviewers. We have addressed the raised issues by the reviewers. Below, we provide a more detailed response to each of the reviewer comments.

      Public Reviews:

      Reviewer #1:

      The study presented in this manuscript presents very convincing evidence that purifying selection is the main force shaping the landscape of TE polymorphisms in B. distachyon, with only a few putatively adaptive variants detected, even though most conclusions are based on the 10% of polymorphisms contributed by retrotransposons. That first conclusion is not novel, however, as it had already been clearly established in natural A. thaliana strains (Baduel et al. Genome Biol 2021) and in experimental D. simulans lines (Langmüller et al. NAR 2023), two studies that the authors do not mention, or improperly mention. In contrast to the conclusions reached in A. thaliana, however, Horvath et al. report here a seemingly deleterious effect of TE insertions even very far away from genes (>5kb), a striking observation for a genome of relatively similar size. If confirmed, as a caveat of this study is the lack of benchmarking of the TE polymorphisms calls by a pipeline known for a high rate of false positives (see detailed Private Recommendations #1), this set of observations would make an important addition to the knowledge of TE dynamics in the wild and questioning our understanding of the main molecular mechanisms through which TEs can impact fitness.

      Thank you for your positive evaluation of our paper. We have now adjusted the manuscript to include the mentioned studies (Line 330-333) and to address the issue of false positive and false negative calls. The detailed responses to all the raised points are below.

      Reviewer #2:

      Summary:

      Transposable elements are known to have a strong potential to generate diversity and impact gene regulation, and they are thought to play an important role in plant adaptation to changing environments. Nevertheless, very few studies have performed genome-wide analyses to understand the global effect of selection on TEs in natural populations. Horvath et al. used available whole-genome re-sequencing data from a representative panel of B. distachyon accessions to detect TE insertion polymorphisms (TIPs) and estimate their time of origin. Using a thorough combination of population genomics approaches, the authors demonstrate that only a small amount of the TE polymorphisms are targeted by positive selection or potentially involved in adaptation. By comparing the age-adjusted population frequencies of TE polymorphisms and neutral SNPs, the authors found that retrotransposons are affected by purifying selection independently of their distance to genes. Finally, using forward simulations they were able to quantify the strength of selection acting on TE polymorphisms, finding that retrotransposons are mainly under moderate purifying selection, with only a minority of the insertions evolving neutrally.

      Strengths:

      Horvath et al., use a convincing set of strategies, and their conclusions are well supported by the data. I think that incorporating polymorphism's age into the analysis of purifying selection is an interesting way to reduce the possible bias introduced by the fact that SNPs and TEs polymorphisms do not occur at the same pace. The fact that TE polymorphisms far from genes are also under purifying selection is an interesting result that reinforces the idea that the trans-regulatory effect of TE insertions might not be a rare phenomenon, a matter that may be demonstrated in future studies.

      Weaknesses:

      TEs from different classes and orders strongly differ in multiple features such as size, the potential impact of close genes upon insertion, insertion/elimination ratio (ie, MITE/TIR excision, solo-LTR formation), or insertion preference. Given such diversity, it is expected that their survival rates on the genome and the strength of selection acting on them could be different. The authors differentiate DNA transposons and retrotransposons in some of the analyses, the specificities of the most abundant plant TE types (ie, LTR/Gypsy, LTR/Copia, MITE DNA transposons) are not considered.

      The authors used a short-read-based approach to detect TIPs and TAPs. It is known that detecting TE polymorphisms is challenging and can lead to false negatives, depending on the method used and the sequencing coverage. The methodology used here (TEPID) has been previously applied to other species, but it is unclear if the sensitivity of the TIP/TAP caller is equivalent to that of the SNP caller and how these potential differences may affect the results.

      Thank you for your positive evaluation of our paper. We have now adjusted the manuscript and the discussion to include the mentioned points on the different TE superfamilies and the reliability of the TE calls. The detailed responses to all the raised points are below.

      Private Recommendations:

      Reviewer #1:

      (1) TE polymorphisms (presence and absence variants) were called from short-read sequencing data using a pipeline (TEPID, Stuart et al. eLife 2016) that is known to have a low specificity as well as a low sensitivity in its detection of presence variants (Baduel et al. MIMB 2021). An assessment of the rate of false positives and false negatives in the data presented in this study and how it varies across TE superfamilies is therefore of crucial importance as it may bias all downstream analyses, especially if it impacts the identification of polymorphisms contributed by retrotransposons, as these are the basis of most conclusions of the manuscript. Nonetheless, the fact that the PCA of the polymorphisms contributed by DNA transposons is less able to distinguish genetic clades than with those contributed by retrotransposons, suggests the issue of false positives is most preeminent for DNA transposons. However, high rates of false positives may explain why no significant increase in TE frequency is detected within selective sweep regions, a result that runs against the expectation of hitch-hiking of neutral or weakly deleterious polymorphisms which the authors claim is the category of many TE polymorphisms. Furthermore, given that the reference genome belongs to the B_east clade, and the TEPID is better at calling absence than presence it may bias analyses in this clade (where clade-specific insertions will take the form of absence in other clades which are well detected) compared to other clades (where clade-specific insertions will be presence polymorphisms and may be missed). A benchmark of TE polymorphism calls could be done by de novo assembling one genome from each clade or by cross-checking at least the presence variant calls from TEPID with those made with another of the many TE calling pipelines available.

      We agree with this issue raised by both reviewers regarding the effects of false negative and false positive TE calls. We also think that some reasonable follow-ups should be done to check the potential impact of the false negative and false positive TE calls on the presented results, without turning the manuscript in a method comparison paper as this is not the main goal of this study. Therefore, we generated a subsample of our dataset that included only accession with an average genome wide mapping coverages of at least 20x, as the false negative TE call rate is correlated with the mapping coverage and a high mapping coverage is expected to lead to a reduction in the false negative TE call rates. We then used this subsample to check if our results would change if our dataset had a lower false negative TE call rate. However, reducing the rate of false negative calls through the use of only higher coverage samples did not change our results and interpretations.

      Re-running the ANCOVA analyses revealed similar results regarding the accumulation of TEs in selective sweep regions. This was added to the main text Line 143-148: “Similar results were obtained when investigating the number of fixed TE polymorphisms (Additional file 2: Table S1) and the allele frequency of TE polymorphisms (Additional file 2: Table S2) in high iHS regions using a subset of our dataset with an expected lower false negative TE call rate, that only included samples with a genome-wide mapping coverage of at least 20x (see Discussion and Materials and Methods for more details).” and in Additional file 2: Table S1 and S2.

      Further, we re-ran the age-adjusted SFS based on this subset of our dataset and found that the results and conclusions from the age-adjusted SFS were not only driven by false negative TE calls. This was also included in the text Line 338-349: “One caveat of the approach used in this study is that TE calling pipelines based on short-reads tend to have higher false positive and false negative call rates than SNP calling pipelines, which is also the case for the TEPID TE calling pipeline used here [57, 59]. A high false negative TE calling rate however might bias our TE frequency estimates toward lower frequencies, which could drive the observed patterns in the age-adjusted SFS. To assess if the false negative TE calling rate in our study substantially affected our results, we re-run the age-adjusted SFS on a subset of our dataset only including samples with a genome-wide mapping coverage of at least 20x, as higher mapping coverages are expected to reduce the false negative call rate [27, 59]. Using the TE allele frequencies estimated based on this subset of our data to estimate  frequency revealed similar results of the age-adjusted SFS based on the whole dataset (Additional file 1: Fig. S9), indicating that our observation of retrotransposons evolving under purifying selection is not solely driven by a high false negative TE calling rate.” and in Additional file 1: Fig. S9.

      The details of this analyses have been added to the materials and methods Line 493-498: “Mapping coverage is known to influence false discovery rate [27, 59]. To investigate the impact of false positive and false negative TE calls on our results, we down sampled the TE dataset to only include TEs that have been called in samples that had at least an average mapping coverage of 20x. The allele frequencies of TEs present in our high coverage dataset was recalculated only considering samples with at least an average mapping coverage of 20x. This second TE dataset was then used to check if using a dataset with a higher mapping coverage and presumably a lower false TE calling rate impacted our results.”

      (2) If confirmed, the observation that retrotransposons located more than 5kb away from genes appear to be also affected by purifying selection (L209) is indeed surprising. The authors should add a comparison with SNPs at the same distance from genes to strengthen the claim and make sure it is not the result of mapping artifacts, such as alignment quality dropping far away from genes.

      We added a comparison of the age-adjusted SFS of SNPs and retrotransposons more than 5 kb away from genes to evaluate if the observed shape of the age-adjusted SFS of retrotransposons more than 5 kb away from genes were due to artefacts. The results are included on line 383-389: “Finally, we tested whether TE polymorphisms located more than 5 kb away from genes are evolving under purifying selection could be due to mapping or other artefacts by comparing the shape of the age-adjusted SFS of retrotransposons and SNPs more than 5 kb away from genes. However, the age-adjusted SFS of SNPs 5 kb away from genes differs from the one of retrotransposons (Additional file 1: Fig. S10), indicating that the shape of the age-adjusted SFS of retrotransposons more than 5 kb away from genes is not likely to be the result of artefacts in regions of the genome far away from genes.” and Additional file 1: Fig. S10.

      (3) The authors' claim that most TE polymorphisms are under weak to moderate purifying selection (L273) relies on the comparison of the age of polymorphisms in the oldest age bin with forward simulations. However, the conclusions from these comparisons cannot be extrapolated to the fitness effects of all TE polymorphisms as variants in the oldest age bin are de facto a biased sample of the variants of a category, a point the authors highlight.

      We adjusted the mentioned paragraph to better highlight this point. Line 390-397: “To further ascertain the strength of purifying selection, we used forward simulation and showed that simulations assuming a moderately weak selection pressure (S = -5 or S = -8) against TE polymorphisms best fitted our observed data. In theory, no TE polymorphisms under strong purifying selection should be present in a natural population, as such mutations are expected to be quickly lost, especially in a predominantly selfing species where most loci are expected to be homozygous. Therefore, it is not surprising that TE polymorphisms which persist in B. distachyon are under weak to moderate selection, as also shown, for example, for the L1 retrotransposons in humans [27] or the BS retrotransposon family in Drosophila melanogaster [62].”

      L220-228 for high-effect SNPs. Indeed, the most deleterious TE polymorphisms would be purged very quickly and never contribute to variants in the oldest age bin. Unless new arguments can be made to support this claim, this conclusion should be rephrased to claim instead that even the oldest TE polymorphisms are still mostly non-neutral and under weak to moderate purifying.

      This has been adjusted. Line 231-232: “. Hence, even the oldest retrotransposon polymorphisms seem to be mostly non-neutral and are affected by purifying selection.”

      L214: replace smaller with more negative for clarity.

      Done.

      L233: Given the discussion L220-228, the oldest age bin seems to be biased in its composition and thus not useful for comparisons. The sentence should therefore be rephrased to reflect that DNA transposon polymorphisms appear to be actually less deleterious than high-effect SNPs in S9A and B based on the penultimate age bin.

      This has been fixed.

      Reviewer #2:

      • I wonder if false negative detection could artificially increase the evidence for purifying selection by increasing the amount of low-frequency variants. This could be easily checked if long-read data or genome assembly is available for any of the samples in the collection, by comparing the TIP/TAP prediction with the actual sequence.

      We agree with this point from the reviewers that false negative calls can lead to misinterpretations of the observed low-frequencies of the TEs. (But see response to the first comment of reviewer #1). Unfortunately, long-read data from the sample used here are not available to estimate false negative call rates. However, to check if the observed results are manly driven by high false negative rates, we re-run the age-adjusted SFS based on samples with at least 20x mapping coverage, which should result in the reduction the false negative TE calling rate. The results and conclusions from this second analyses were included in the text Line 338-349: “One caveat of the approach used in this study is that TE calling pipelines based on short-reads tend to have higher false positive and false negative call rates than SNP calling pipelines, which is also the case for the TEPID TE calling pipeline used here [57, 59]. A high false negative TE calling rate however might bias our TE frequency estimates toward lower frequencies, which could drive the observed patterns in the age-adjusted SFS. To assess if the false negative TE calling rate in our study substantially affected our results, we re-run the age-adjusted SFS on a subset of our dataset only including samples with a genome-wide mapping coverage of at least 20x, as higher mapping coverages are expected to reduce the false negative call rate [27, 59]. Using the TE allele frequencies estimated based on this subset of our data to estimate  frequency revealed similar results of the age-adjusted SFS based on the whole dataset (Additional file 1: Fig. S9), indicating that our observation of retrotransposons evolving under purifying selection is not solely driven by a high false negative TE calling rate.” and in Additional file 1: Fig. S9.

      • Supplementary Figure S1. DNA transposons are much worse at separating the samples in comparison to LTR-retrotransposons. Doesn´t this suggest that these two classes have very different dynamics in the population and maybe different intensities of the selection forces acting on them? Could this profile be explained as DNA transposons being older and likely more fixed in all the clades, whereas retrotransposons are more recent and more specific to some populations? Another possibility might be that some B. distachyon DNA transposons had an unusually high excision rate. In any case, in my opinion, this reinforces the need to study the different TE orders in more detail.

      Indeed, different TE orders and superfamilies can have different excision rates, age distributions and be under different selective regimes. To investigate the possibility that different TE orders are affected by very different selective regimes, we split our TE dataset into the four different TE types: Copia, Ty3, Helitron and MITE. We than re-run the age-adjusted SFS analyses and added our results to the text Line 422-430: “To further examine our conclusion on purifying selection, we investigated the selective regime affecting different retrotransposons and DNA-transposons superfamilies. Thereby, we generated age-adjusted SFS for the four most common TE superfamilies Copia, Ty3 (also known under the name Gypsy, but we will avoid using this name because of its problematic nature see [71]), Helitron and MITE and found similar deviations of the  frequency from 0 in the four investigated TE superfamilies (Additional file 1: Fig. S12–S15). These results indicate that our conclusion on the broad effect of purifying selection is not driven by a single TE superfamily but is at least common among the four most numerous TE superfamilies.” and in Additional file 1: Fig. S12- S15.

      • Line 112: "most TE polymorphisms in our dataset were young and only a few were very old". Does this change substantially among TE orders/superfamilies?

      Indeed, there are some differences in the age distribution of the TEs depending on the superfamilies, However, the differences are no substantial as the age bins in the age-adjusted SFS of the different TE superfamilies are fairly similar. See Additional file 1: Fig. S12-S15.

      • Figure 2. Is difficult to read, especially lower panels. I think the grey border of the boxplots makes visualization difficult.

      The gray borders have been removed.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head-restrained mice running down a virtual linear path. Mice were trained to collect water rewards at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in the ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90 s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.

      Strengths:

      The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis of the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.

      Weaknesses:

      Aspects of the methodology, data analysis, and interpretation diminish the overall significance of the findings, as detailed below.

      The LC axonal recordings are well-powered, but the DA axonal recordings are severely underpowered, with recordings taken from a mere 7 axons (compared to 87 LC axons). Additionally, 2 different calcium indicators with differential kinetics and sensitivity to calcium changes (GCaMP6S and GCaMP7b) were used (n=3, n=4 respectively) and the data pooled. This makes it very challenging to draw any valid conclusions from the data, particularly in the novelty experiment. The surprising lack of novelty-induced DA axon activity may be a false negative. Indeed, at least 1 axon (axon 2) appears to be showing a novelty-induced rise in activity in Figure 3C. Changes in activity in 4/7 axons are also referred to as a 'majority' occurrence in the manuscript, which again is not an accurate representation of the observed data.

      The reviewer points out a weakness in the analysis of VTA axons in our dataset. The relatively low n (currently 7) comes from the fact that VTA axons in the CA1 region of the hippocampus are very sparse and very difficult to record from (due to their sparsity and the low level of baseline fluorescence inherent in long range axon segments). This is the reason they have not been recorded from in any other lab outside of our lab. LC axons, on the other hand, are more abundant in CA1. In the paper when comparing VTA versus LC axons we deal with the mismatch in n by downsampling the LC axons to match the VTA axons and repeated this 1000 times to create a distribution. However, because the VTA axon n is relatively low, it is possible that we have not sampled the VTA axon population sufficiently and therefore have a biased population in our dataset. The issue is that it takes months for the baseline expression of GCaMP to reach sufficient levels to be able to record from VTA axons, and it is typical to find only a single axon in a FOV per animal. There are additional reasons why mice and/or axon recordings do not reach criteria and cannot be included in the dataset (these exclusion criteria are reported in the Methods section). For instance, out of the 54 DAT-Cre mice injected, images were never conducted in 36 for lack of expression or because mice failed to reach behavioral criteria. Another 11 mice were excluded for heat bubbles that developed during imaging, z-drift of the FOV, or bleaching of the GCaMP signal.

      However, we do have n=2 additional VTA axon recordings that we will add to the dataset to bring the n up from 7 to 9. We plan on re-analyzing the data with n=9 VTA axons and making comparisons to down-sampled LC axons as described above. This boost in n will increase the power of our VTA axon analysis. To more formally test whether this is sufficient for statistical tests, we plan to utilize the G*power power-analysis tool to compute statistical power for each of the different tests we use. We will report this in the next version of the paper. However, the n=2 additional axons were nor recorded in the novel environment, so the next version will remain at n=7 for the novel environment analysis. We agree with the reviewer that the lack of the novelty induced DA axon activity may be a false negative, and so we will adjust the description of our results and discussion accordingly.

      During the data collection of VTA axon activity we tried two variants of GCaMP: 6s and 7b, to see if one would increase the success rate of finding and recording from VTA axons. Given the long time-course of these experiments and the low yield in success, we pooled the GCaMP variants together to increase statistical power. Because the 2 additional VTA DA axons that were recorded from expressed GCaMP6s, the next version of the paper will have n=5 GCaMP6s, and n=4 GCaMP7b VTA DA axons, which will allow us to compare the activity of the two sensors in the familiar environment. The reviewer correctly pointed out that the sensors themselves could confound our results, and so they should not be pooled unless we can show they do not produce different signals in the axons. We will make this comparison and report the findings in the next version of the paper. If we find no significant differences, we will pool the data. If differences are detected, we will keep these axons separate for subsequent analysis and comparisons to LC axons.

      The authors conducted analysis on recording data exclusively from periods of running in the novelty experiment to isolate the effects of novelty from novelty-induced changes in behavior. However, if the goal is to distinguish between changes in locus coeruleus (LC) axon activity induced by novelty and those induced by motion, analyzing LC axon activity during periods of immobility would enhance the robustness of the results.

      This is indeed true, and this suggested analysis could further support our conclusions regarding the LC novelty signal. For the next version of the paper, we will use the periods of immobility to analyze and isolate any novelty induced activity in LC axons. However, following exposure to the novel environment, mice spend much less time immobile, therefore there may not be sufficient periods of immobility close in time to the exposure to the novel environment (which is when the novelty signal occurs). We plan to analyze mouse behavior during the early exposure to the novel environment for immobility and check whether we have enough of this behavior to perform the suggested analysis.

      The authors attribute the ramping activity of the DA axons to the encoding of the animals' position relative to reward. However, given the extensive data implicating the dorsal CA1 in timing, and the remarkable periodicity of the behavior, the fact that DA axons could be signalling temporal information should be considered.

      This is a very good point. We agree that the VTA DA axons could be signaling temporal information, as we have previously shown that these axons also exhibit ramping activity when you average their activity by time to reward (Krishnan et. al., 2022). We will conduct this analysis on this dataset. We have not, however, conducted any experiments designed to separate out time from distance, such as the experiments conducted in Kim et. al., 2020. Therefore, we cannot determine whether this is due to proximity in space to reward or time to reward. We will clarify in our text that by proximity, we mean either place or time, and cannot conclude which feature of the experience drives the VTA axon signal.

      Krishnan, L.S., Heer, C., Cherian, C., Sheffield, M.E. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 13, 6662 (2022).

      Kim, HyungGoo R., Athar N. Malik, John G. Mikhael, Pol Bech, Iku Tsutsui-Kimura, Fangmiao Sun, Yajun Zhang, et al. A Unified Framework for Dopamine Signals across Timescales. Cell 183, no. 6 (2020).

      The authors should explain and justify the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments.

      LC axon activity was recorded on a 3m track to match the track length from an experiment we recently published (Dong et al., 2021) in which mice were exposed to a novel 3m track while populations of CA1 pyramidal cells were recorded. In that paper we described the time course of place field formation on the novel track. We wanted to test if LC axons signaled novelty (as we hypothesized) and whether the time course of LC axon activity matched the time course of place field formation. We briefly discuss this in the Discussion section of this paper and hypothesize that LC axons in CA1 could open a window of plasticity in which new place fields can form.

      VTA axons were recorded on a 2m track (same VR tracks as LC axons were recorded on) to match another recent paper from our lab in which reward expectation was manipulated (Krishnan et al, 2022). In that study CA1 populations of pyramidal cells were recorded during the reward expectation experiment. To match the experience during recordings of VTA axons in CA1 to test how reward expectation may influence axon signaling along the track, we also used a 2m track. The idea was to check how VTA dopaminergic inputs to CA1 may influence CA1 population dynamics along the track.

      Although the tracks were identical for LC and VTA recordings for both the familiar and novel tracks in terms of visual cues and design, the track lengths are different (simply modulated by gain control of the rotary encoder). To account for this we normalized the lengths for our comparison analysis. This normalization allows for a direct comparison of the patterns of activity across the two types of axons, controlling for the potential confound introduced by the different track lengths. By adjusting the data to a common scale, we could assess the relative changes in activity levels at matched spatial bins, ensuring that any observed differences or similarities are due to the intrinsic properties of the axons rather than differences in track lengths. However, the different lengths do make the animal’s experience slightly different. This is somewhat offset by the observations in our study that none of the LC or VTA axon signals would be expected to be majorly influenced by variations in track length. For instance, LC axons are associated with velocity and a pre-motion initiation signal, neither of which would be influenced by track length. VTA axons are also associated with velocity, which would not influence a direct comparison to LC axon velocity signals as mice reach maximal velocity very rapidly along the track. VTA axons do ramp up in activity as they approach the reward zone, and this signal could be modulated by track length (or maybe not if the signal is encoding time to reward rather than distance). However, LC axons show no ramping to reward signals, so a comparison across axons recorded on different track lengths for this analysis is justified.

      However, to add rigor to comparisons of axon dynamics recorded along 2m and 3m tracks, we plan to plot axon activity of both sets of axons by time to reward, and actual (un-normalized) distance from reward.

      Krishnan, L.S., Heer, C., Cherian, C., Sheffield, M.E. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 13, 6662 (2022).

      Dong, C., Madar, A. D. & Sheffield, M.E. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun 12, 2977 (2021).

      Reviewer #2 (Public Review):

      Summary:

      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.

      The main findings were as follows:

      • In a familiar environment, the activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.
      • VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.
      • In contrast, the activity of LC axons ramped up before the initiation of movement on the Styrofoam wheel.
      • In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral, and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected the approach of a learned reward, and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.

      Strengths:

      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that the activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.

      Weaknesses:

      (1)The findings are correlational and do not allow strong conclusions on how VTA or LC inputs to dorsal CA1 affect cognition and behavior. However, as indicated above under Strengths, the findings will aid the interpretation of previous findings and help to generate new hypotheses as to how VTA or LC inputs to dorsal CA1 affect distinct cognitive and behavioral functions.

      (2) Some aspects of the methodology would benefit from clarification.<br /> First, to help others to better scrutinize, evaluate, and potentially to reproduce the research, the authors may wish to check if their reporting follows the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines for the full and transparent reporting of research involving animals (https://arriveguidelines.org/). For example, I think it would be important to include a sample size justification (e.g., based on previous studies, considerations of statistical power, practical considerations, or a combination of these factors). The authors should also include the provenance of the mice. Moreover, although I am not an expert in 2-photon imaging, I think it would be useful to provide a clearer description of exclusion criteria for imaging data.

      We thank the reviewer for helping us formalize the scientific rigor of our study. There are ten ARRIVE Guidelines and we have addressed most of them in our study already. However, there is an opportunity to add detail. We have listed below all ten points and how we have or will address each one.

      (1) Experimental design - we go into great depth explaining the experimental set-up, how we used the autofluorescent blebs as imaging controls, how we controlled for different sample sizes between the two populations, and the statistical tests used for comparisons. We also carefully accounted for animal behavior when quantifying and describing axon dynamics both in the familiar and novel environments.

      (2)Sample size - We state both the number of ROIs and mice for each analysis. Wherever we state how many axons had a certain kind of activity, we will also state the number of mice we saw this activity in. For the next version of the paper, we plan to conduct a power analysis using G*power to assess the power of our sample sizes for statistical analysis.

      (3) Inclusion/exclusion criteria - Out of the 36 NET-Cre mice injected, 15 were never recorded for either failing to reach behavioral criteria, or a lack of visible expression in axons. Out of the 54 DAT-Cre mice injected, images were never conducted in 36 for lack of expression or failing to reach behavioral criteria. Out of the remaining 21 NET-CRE, 5 were excluded for heat bubbles, z-drift, or bleaching, while 11 DAT-Cre were excluded for the same reasons. This was determined by visually assessing imaging sessions, followed by using the registration metrics output by suite2p. This registration metric conducted a PCA on the motion-corrected ROIs and plotted the first PC. If the PC drifted largely, to the point where no activity was apparent, the video was excluded from analysis.

      (4) Randomization - Already included in the paper is a description of random down sampling of LC axons to make statistical comparisons with VTA axons. LC axons were selected pseudo-randomly (only one axon per imaging session) to match VTA sampling statistics. This randomization was repeated 1000 times and comparisons were made against this random distribution.

      (5) Blinding-masking - no blinding/masking was conducted as no treatments were given that would require this. We will include this statement in the next version.

      (6) Outcomes - We defined all outcomes measured, such as those related to animal behavior and related axon signaling.

      (7) Statistical methods - None of the reviewers had any issues regarding our description of statistical methods, which we described in detail in this version of the paper.

      (8) Experimental animals - We described that DAT- Cre mice were obtained through JAX labs, and NET-Cre mice were obtained from the Tonegawa lab (Wagatsuma et al. 2017)

      (9) Experimental procedure - Already listed in detail in Methods section.

      (10) Results - Rigorously described in detail for behaviors and related axon dynamics.

      Wagatsuma, Akiko, Teruhiro Okuyama, Chen Sun, Lillian M. Smith, Kuniya Abe, and Susumu Tonegawa. “Locus Coeruleus Input to Hippocampal CA3 Drives Single-Trial Learning of a Novel Context.” Proceedings of the National Academy of Sciences 115, no. 2 (January 9, 2018): E310–16. https://doi.org/10.1073/pnas.1714082115.

      Second, why were different linear tracks used for studies of VTA and LC axon activity (from line 362)? Could this potentially contribute to the partly distinct activity correlates that were found for VTA and LC axons?

      A detailed response to this is written above for a similar comment from reviewer 1.

      Third, the authors seem to have used two different criteria for defining immobility. Immobility was defined as moving at <5 cm/s for the behavioral analysis in Figure 3a, but as <0.2 cm/s for the imaging data analysis in Figure 4 (see legends to these figures and also see Methods, from line 447, line 469, line 498)? I do not understand why, and it would be good if the authors explained this.

      This is an error leftover from before we converted velocity from rotational units of the treadmill to cm/s. This will be corrected in the next version of the paper.

      (3) In the Results section (from line 182) the authors convincingly addressed the possibility that less time spent immobile in the novel environment may have contributed to the novelty-induced increase of LC axon activity in dorsal CA1 (Figure 4). In addition, initially (for the first 2-4 laps), the mice also ran more slowly in the novel environment (Figure 3aIII, top panel). Given that LC and VTA axon activity were both increasing with velocity (Figure 1F), reduced velocity in the novel environment may have reduced LC and VTA axon activity, but this possibility was not addressed. Reduced LC axon activity in the novel environment could have blunted the noveltyinduced increase. More importantly, any potential novelty-induced increase in VTA axon activity could have been masked by decreases in VTA axon activity due to reduced velocity. The latter may help to explain the discrepancy between the present study and previous findings that VTA neuron firing was increased by novelty (see Discussion, from line 243). It may be useful for the authors to address these possibilities based on their data in the Results section, or to consider them in their Discussion.

      This is a great point. The decreased velocity in the novel environment could lead to a diminished novelty response in LC axons. We will add a discussion point on this in the next version. This could also be the case for VTA axons, so will add a discussion point that the lack of novelty signaling seen in VTA axons could be due to reduced velocity masking this signal.

      (4) Sensory properties of the water reward, which the mice may be able to detect, could account for reward-related activity of VTA axons (instead of an expectation of reward). Do the authors have evidence that this is not the case? Occasional probe trials, intermixed with rewarded trials, could be used to test for this possibility.

      Mice receive their water reward through a waterspout that is immobile and positioned directly in front of their mouth (which is also immobile as they are head fixed) and water delivery is triggered by a solenoid when the mice reach the end of the virtual track. Therefore, because the waterspout remains in the same place relative to the mouse, and the water reward is not delivered until they reach the end of the virtual track, there is nothing for the mice to detect. We will update the paper to make this clearer.

      Additionally, on the initial laps with no reward, the ramping activity is still present (Krishnan et al, 2022) indicating this activity is not directly related to the presence/absence of water but is instead caused by reward expectation.

      Reviewer #3 (Public Review):

      Summary:

      Heer and Sheffield provide a well-written manuscript that clearly articulates the theoretical motivation to investigate specific catecholaminergic projections to dorsal CA1 of the hippocampus during a reward-based behavior. Using 2-photon calcium imaging in two groups of cre transgenic mice, the authors examine the activity of VTA-CA1 dopamine and LC-CA1 noradrenergic axons during reward seeking in a linear track virtual reality (VR) task. The authors provide a descriptive account of VTA and LC activities during walking, approach to reward, and environment change. Their results demonstrate LC-CA1 axons are activated by walking onset, modulated by walking velocity, and heighten their activity during environment change. In contrast, VTA-CA1 axons were most activated during the approach to reward locations. Together the authors provide a functional dissociation between these catecholamine projections to CA1. A major strength of their approach is the methodological rigor of 2-photon recording, data processing, and analysis approaches. These important systems neuroscience studies provide solid evidence that will contribute to the broader field of learning and memory. The conclusions of this manuscript are mostly well supported by the data, but some additional analysis and/or experiments may be required to fully support the author's conclusions.

      Weaknesses:

      (1) During teleportation between familiar to novel environments the authors report a decrease in the freezing ratio when combining the mice in the two experimental groups (Figure 3aiii). A major conclusion from the manuscript is the difference in VTA and LC activity following environment change, given VTA and LC activity were recorded in separate groups of mice, did the authors observe a similar significant reduction in freezing ratio when analyzing the behavior in LC and VTA groups separately?

      In response to this comment, we will analyze the freezing ratios in DAT-Cre and NET-Cre mice separately. However, other members of the lab have seen the same result in other mouse strains (See Dong et al. 2021), so we do not expect to see a difference (but it is certainly worth checking).

      (2) The authors satisfactorily apply control analyses to account for the unequal axon numbers recorded in the LC and VTA groups (e.g. Figure 1). However, given the heterogeneity of responses observed in Figures 3c, 4b and the relatively low number of VTA axons recorded (compared to LC), there are some possible limitations to the author's conclusions. A conclusion that LC-CA1 axons, as a general principle, heighten their activity during novel environment presentation, would require this activity profile to be observed in some of the axons recorded in most all LC-CA1 mice.

      We agree with the reviewer’s point here. To help avoid this problem, when downsampling LC axons to compare to VTA axons, we matched the sampling statistics of the VTA axons/mice (i.e. only one LC axon was taken from each mouse to match the VTA dataset).

      However, in the next version of the paper we will also report the number of mice that we see a significant novel response in. We will also add the number of mice with significant activity for each of the measures in the familiar environment (e.g. how many mice had axons positively correlated with velocity).

      Additionally, if the general conclusion is that VTA-CA1 axons ramp activity during the approach to reward, it would be expected that this activity profile was recorded in the axons of most all VTA-CA1 mice. Can the authors include an analysis to demonstrate that each LC-CA1 mouse contained axons that were activated during novel environments and that each VTA-CA1 mouse contained axons that ramped during the approach to reward?

      As stated above, we will add the number of mice that had each activity type we reported here.

      (3) A primary claim is that LC axons projecting to CA1 become activated during novel VR environment presentation. However, the experimental design did not control for the presentation of a familiar environment. As I understand, the presentation order of environments was always familiar, then novel. For this reason, it is unknown whether LC axons are responding to novel environments or environmental change. Did the authors re-present the familiar environment after the novel environment while recording LC-CA1 activity?

      This is an important point to address. While we never varied the presentation order of the familiar vs novel environments, we did record the activity of LC axons in some of the mice in a dark environment (no VR cues) prior to exposure to the familiar environment. We will look at these axons to address whether they respond to initial exposure to the familiar environment. This will allow us to check whether they are responding to environmental change or novelty. We will add this analysis to the next version of the paper.

    1. ABSTRACTAs genomic sequencing technology continues to advance, it becomes increasingly important to perform joint analyses of multiple datasets of transcriptomics. However, batch effect presents challenges for dataset integration, such as sequencing data measured on different platforms, and datasets collected at different times. Here, we report the development of BatchEval Pipeline, a batch effect workflow used to evaluate batch effect on dataset integration. The BatchEval Pipeline generates a comprehensive report, which consists of a series of HTML pages for assessment findings, including a main page, a raw dataset evaluation page, and several built-in methods evaluation pages. The main page exhibits basic information of the integrated datasets, a comprehensive score of batch effect, and the most recommended method for removing batch effect from the current datasets. The remaining pages exhibit evaluation details for the raw dataset, and evaluation results from the built-in batch effect removal methods after removing batch effect. This comprehensive report enables researchers to accurately identify and remove batch effects, resulting in more reliable and meaningful biological insights from integrated datasets. In summary, the BatchEval Pipeline represents a significant advancement in batch effect evaluation, and is a valuable tool to improve the accuracy and reliability of the experimental results.

      This work has been published in GigaByte Journal under a CC-BY 4.0 license (https://doi.org/10.46471/gigabyte.108) as part of our Spatial Omics Methods and Applications series (https://doi.org/10.46471/GIGABYTE_SERIES_0005), and has published the reviews under the same license as follows:

      **Reviewer 1. Chunquan Li **

      1. Page 1, Lines 14-16. The authors indicate that “it is crucial to thoroughly investigate the batch effects in the dataset before integrating and processing the data”. The term “thoroughly” may be not accurate enough. The current method can alleviate the batch effects, but it can’t thoroughly solve the related problems. In addition, this work proposes a batch evaluation tool, such “reasonably evaluate the batch effects” may be more accurate than “thoroughly investigate the batch effects”.
      2. In Figure 1, does the first box is “integrated datasets”?
      3. Page 5, Line 168, and Page 6, Lines 169-175, the content of these two paragraphs is similar, with some redundant descriptions. It is recommended to organize and write them into one paragraph.
      4. There is Table 1 in the table list, but Table 1 is missing in the main text.
      5. Page 8, Discussion section, it is better to discuss the differences between the proposed tool and a similar tool “batchQC”, especially the advantages of the proposed tool.
      6. Some other minor issues: Page 1, Line 22, “to do so” should be “to do it”. Page 3, Line 100, Ref. [13] should be cited when it first appears on Line 97. Page 4, Line 114 and Page 5, Line 146, “UMAP” should be given its full name when it first appears and abbreviated directly in the following text. The variable should be in italics, such as “p” on Page 4, Line 119, “H” on Page 6, Line 184.

      Reviewer 2. W. Evan Johnson and Howard Fan

      Is the source code available, and has an appropriate Open Source Initiative license (https://opensource.org/licenses) been assigned to the code?

      Yes. However, the code could use substantial improvements.

      Is installation/deployment sufficiently outlined in the paper and documentation, and does it proceed as outlined?

      No. The manuscript is missing a section describing the software and its implementation.

      Is there enough clear information in the documentation to install, run and test this tool, including information on where to seek help if required?

      Yes. But it took a while to get it installed.

      Have any claims of performance been sufficiently tested and compared to other commonly-used packages?

      No. I think the most glaring deficiency in the paper is the lack of comparison with other methods. For example, there is no comparison of the tools available in BatchEval compared to other methods, such as BatchQC. Also, they mention that BatchQC might not work on larger datasets, but they perform no performance evaluation for BatchEval, and no comparison with BatchQC to demonstrate improved performance.

      Are there (ideally real world) examples demonstrating use of the software?

      Yes. Missed opportunity--I think the most exciting thing I observed from the paper was that the example data were from spatial transcriptomics data! To my knowledge, existing batch effect methods are not directly adapted to manage these data (although they did mention tools like BatchQC cannot handle large datasets, which may be true). But they don’t mention anything about batch adjustment/evaluation in spatial data in the manuscript. I feel that if the authors address this niche it would increase the value/impact of their work!

      Additional Comments:

      This review was conducted and written by Evan Johnson, who developed the competing BatchQC software.

      The authors provide an interesting toolkit for assessing batch effects in genomics data. The paper was clear and well-written, albeit I had a few concerns (see below). We were also able to download the associated software and test it out (comments below as well).

      I think the most exciting thing I observed from the paper was that the example data were from spatial transcriptomics data! To my knowledge, existing batch effect methods are not directly adapted to manage these data (although they did mention tools like BatchQC cannot handle large datasets, which may be true). But they don’t mention anything about batch adjustment/evaluation in spatial data in the manuscript. I feel that if the authors address this niche it would increase the value/impact of their work!

      In addition, this toolkit is written in Python, while BatchQC and other tools are written in R, so this is an advantage of the method as well—it addresses an audience that uses Python for gene expression analysis (not as big as the R community, but substantial). Their Python toolkit might also be more accessible to implementation in a pipeline workflow (for a core or large project) than R-based tools like BatchQC—this might be important to mention this as well.

      I think the most glaring deficiency in the paper is the lack of comparison with other methods. For example, there is no comparison of the tools available in BatchEval compared to other methods, such as BatchQC. Also, they mention that BatchQC might not work on larger datasets, but they perform no performance evaluation for BatchEval, and no comparison with BatchQC to demonstrate improved performance.

      Similarly, the authors claim: “Manimaran [10] has developed user-friendly software for evaluating batch effects. However, the software does not take into account nonlinear batch effects and may not be able to provide objective conclusions.” I don’t understand what the authors mean by “may not be able to provide objective conclusions” – BatchQC provides – several visual and numerical evaluations of batch effect – more so than even the proposed BatchEval does. Did the authors mean something else, maybe that the lack of non-linear correction may lead to less accurate conclusions?

      A related concern: does BatchEval provide non-linear adjustments? I may have missed this, but it seems that BatchEval is not providing non-linear adjustments either. Also, regarding non-linear adjustments, the authors should show in an example the problems with a lack non-linear adjustments and show that pre-transforming the data before using BatchQC does not perform as well as the non-linear BatchEval adjustments.

      In Equation 10, should “batchScore” be BatchEvalScore?

      Also, in the bottom of Figure on page 15, should the “BatchQCScore” also be BatchEvalScore??

      The manuscript is missing a section describing the software and its implementation.

      I asked my research scientist, who recently graduated with his PhD in Bioinformatics, to assess the software and examples. First of all, much of the software is named “BatchQC”. I think this is confusing, since the method is really named BatchEval and it will be confused with BatchQC which is another existing/competing software. Furthmore, it took him a significant effort to install the BatchEval software and get is working on our cluster. I would recommend the authors make their software more accessible and easier to install.

      The output of the software was a nice .html report diagnosing the batch effects in the data—very useful (attached is a combined .pdfs of the .htmls that we generated). We were also able to generate a report for the harmony adjusted example using their code. One major disadvantage was that these reports are separate files, and this could get very complicated comparing cases using multiple batch effect methods that will all be in separate reports (refer to a recent single cell batch comparison that compared more than a dozen methods – Tran et al. Genome Biology, 2020 – it would be hard to use BatchEval for this comparison).

      Also, it seems that the user is required to conduct the batch correction themselves, BatchEval does not help with the correction except for their example code for Harmony.

      Finally, on comparing the raw and Harmony adjusted datasets, inspection of the visual assessments (e.g. PCA) show some improvement—although not a perfect correction. But must of the numerical assessments are still the sample. The BatchEvalScore in both cases leads to the conclusion “Need to do batch effect removal”. What’s missing is the difference or improvement that Harmony makes on its correction. Maybe this is just because Harmony doesn’t fully remove the batch effects? Or is there something not working in the code? Might be good to see another example where the batch effect correction improves the BatchEvalScore significantly.

      Additional Files: https://gigabyte-review.rivervalleytechnologies.com/journal/gx/download-files?YXJ0aWNsZT00NDImZmlsZT0xNzEmdHlwZT1nZW5lcmljJnZpZXc9dHJ1ZQ~~

      Re-review:

      I find this paper to be much improved in this version. The authors have clearly worked hard to address my concerns and have addressed them in a satisfactory manner. I fully support the publication of this paper, and I believe their tools are a nice addition to the field.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this study, the authors collected a large set of data on root traits and root-associated microbes in the root endosphere and rhizosphere in order to integrate these important organisms in the root economics spectrum. By sampling a relatively large set of species from the subtropics along an elevation gradient, they tested whether microbial functions covary with root traits and root trait axes and if so, aimed to discuss what this could tell us about the (belowground) functioning of trees and forests.

      Strengths:<br /> The strengths of this study lie mostly in the impressive dataset set the authors compiled: they sampled belowground properties of a relatively large number of tree species from an understudied region: i.e., the subtropics, where species-level root data are notoriously scarce. Secondly, their extensive sampling of associated microbes to integrate them in the root economics space is an important quality, because of the strong associations between roots and fungi and bacteria: soil microbes are directly related to root form (e.g., mycorrhizal fungi and root diameter and SRL), and function (e.g., taking up soil nutrients from various sources). Thirdly, the PCA figures (Figures 2 and 3) look very nice and intuitive and the paper is very well written.

      Weaknesses:<br /> That said, this study also has several methodological weaknesses that make the results, and therefore the impact of this study difficult to evaluate and interpret.

      (1) Design: The design of this study needs further explanation and justification in the Introduction and Methods sections in order to understand the ecological meaning of the results. Root traits and microbial community composition differ with their environment, and therefore (likely) also with elevation. Elevation is included in the redundancy analysis as a main effect, but without further environmental information, its impact is not ecologically meaningful. What is the rationale for including an elevation gradient in the design and as a main effect in the analyses? Do environmental conditions vary across altitudes and how, and if so, how would this impact the data?

      What is the rationale behind sampling endosphere and rhizosphere microbial communities - why do both? And why also include pathogens - what are their expected roles in the RES? What do we know about this already? The introduction needs a more extensive literature review of these additional variables that are included in the analyses.

      (2) Units of replication and analysis in the model: What are the units of replication and analyses, e.g., how many trees were sampled per species, how many species or trees per elevation, and how many plots per elevation? Were all 11 plots at different elevations and if so, which ones? The level of analysis for the redundancy analyses is not entirely clear: L. 404 mentions that the analyses were done 'across the rhizosphere and root tissue samples', but is that then at the individual-tree level? If so, it seems that these analyses should then also account for dependencies between trees from the same species and phylogeny (as (nested) covariates or random factors). With the information provided, I cannot tell whether there was sufficient replication for statistical interpretations.

      (3) PCA: The results of the parallel analyses are not described: which components were retained? Because the authors aim to integrate microbial functions in a root economics space, I recommend first demonstrating the existence of a root economics space across the 52 subtropical species before running a PCA that includes the microbial traits. The PCA shown in this study does not exactly match the RES and this could be because traits of these species covary differently, but may also simply result from including additional traits to the PCA.

      Also, the PCA's shown are carried out at the individual-tree level. I would recommend, however, including the species-level PCA's in the main text, because the individual-level PCA may not only reflect species-inherent ecological strategies (that e.g., the RES by Bergmann et al. 2020 describe) but also plasticity (Figures 2 and 3 both show an elevation effect that may be partly due to plasticity). While the results here are rather similar, intraspecific differences in root traits may follow different ecological principles and therefore not always be appropriate to compare with an interspecific RES (see for example Weemstra & Valverde-Barrantes, 2022, Annals of Botany).

      I could not deduce whether tree species in the "fungal PCA" (Figure 2) were assigned as AM or EcM based on Table 1, or based on their observed fungal community composition. In the former case, the fungal functional guild gradient (from EcM to saprotrophs and AM) is partially an artificial one, because EcM tree species are not AM species (according to Table 1) and therefore, by definition, constitute a tradeoff or autocorrelation. And, as the authors also discuss, AM tree species may host EcM fungal species. Before I can evaluate the ecological meaning of PC1, and whether or not it really represents a mineral/organic nutrient gradient, information is needed on which data are used here.

      I do not agree with the term 'gradient of bacterial guilds' (i.e., PC1 in Figure 3). All but 1 bacterial 'function' positively loaded on PC1 and 'fermentation' was only weakly negatively correlated with PC1. I do not think this constitutes a 'bacterial gradient'.

      (4) Soil samples: Were they collected from the surrounding soil of each tree (L. 341), or from the root zone (L. 110). The former seems to refer to bulk soil samples, but the latter could be interpreted as rhizosphere soils. It is therefore not entirely clear whether these are the same soil samples, and if so, where they were sampled exactly.

      Aims:<br /> The authors aimed to integrate endospheric and rhizospheric microbial and fungal community composition in the root economics space. Owing to statistical concerns (i.e., lacking parallel analysis results and the makeup of the PCs (AM versus EcM classification), I am not sure the authors succeeded in this. Besides that, the interpretation of the axes seems rather oversimplified and needs some consideration.

      Root N is discussed as an important driver of fungal functional composition. Indeed, it was one of the significant variables in the redundancy models predicting microbial community composition, but its contribution to community composition was small (2 - 3 %), and the mechanistic interpretation was rather speculative. Specifically, the role of root N in root (and tree) functioning remains highly uncertain: the link with respiration and exudation is increasingly demonstrated but its actual meaning for nutrient uptake is not well understood (Freschet et al. 2021. New Phytologist). If and how root economics (represented by root N) and the fungal-driven nutrient economy (EcM versus AM, saprotrophs) can indeed be integrated into a unified framework (L. 223 - 224) seems a relevant question that is worth pursuing based on this paper, but in my opinion, this study does not clearly answer it, because the statistical analyses might need further work (or explanation) and underlying mechanisms are not well explained and supported by evidence.

      In addition, the root morphology axis was indeed independent of the "fungal gradient", but this is in itself not an interesting finding. What is interesting, but not discussed is that, generally, AM species are expected to have thicker roots than EcM tree species (Gu et al. 2014 Tree Physiology; Kong et al. 2014 New Phytologist). I am therefore curious to see why this is not the case here? Did the few EcM species sampled just happen to have very thick roots? Or is there a phylogenetic effect that influences both mycorrhizal type and root thickness that is not accounted for here (Baylis, 1975; Guo et al., 2008 New Phytologist; Kubisch et al., 2015 Frontiers in Plant Science; Valverde-Barrantes et al., 2015 Functional Ecology; 2016 Plant and Soil)?

      I also do not agree with the conclusion that this integrated framework 'explained' tree distributions along the elevation gradient. First of all, it is difficult to interpret because the elevation gradient is not well explained (e.g., in terms of environmental variation). Secondly, the framework might coincide with the framework, but the framework does not explain it: an environmental gradient probably underlies the elevation gradient that may be selected for species with certain root traits or mycorrhizal types, but this is not tested nor clearly demonstrated by the data. It thus remains rather speculative, and it should be more thoroughly explained based on the data observed. Similarly, I do not understand from this study how root traits like root N can influence the abundance of EcM and pathogenic fungi (L. 242 - 243). Which data show this causality? It seems a strong statement, but not well supported (or explained).

      Impact:<br /> The data collected for this study are timely, valuable, and relevant. Soilborne microbes (fungi and bacteria; symbionts and pathogens) play important roles in root trait expressions (e.g., root diameter) and below-ground functioning (e.g., resource acquisition). They should therefore not be excluded from studies into the belowground functioning of forests, but they mostly are. This dataset therefore has the potential to improve our understanding of this subject. Making these data publicly available in large-scale datasets that have recently been initiated (e.g., FRED) will also allow further study in comparative (with other biomes) or global (across biomes) studies.

      Technically, the methodology seems sound, although I lack the expertise to judge the Molecular Methods (L. 349 - 397). However, owing to some statistical uncertainties mentioned above (that the authors might well clarify or improve) and the oversimplified discussion, I am hesitant to determine the impact of the contents of this work. Statistical improvements and/or clearer explanation/justification of statistical choices made can make this manuscript highly interesting and impact, however.

      Context:<br /> As motivated above, I am not sure to what extent the EcM - AM/saprotroph presents a true ecological tradeoff. However, if it does, this work would fit very well in the context of the mycorrhizal-associated nutrient economy (Phillips et al. 2013 New Phytology). This theory postulates that EcM trees generally produce low-quality litter (associated with 'slow traits') that can be more readily accessed by EcM but not AM fungi, thereby slowing down nutrient cycling rates at their competitive advantage, and vice versa for AM tree species. This study did not aim to test the MANE, so it was beyond its scope to study litter quality, and the number of EcM and AM species was unbalanced (8 EcM versus 44 AM species): nonetheless, the denser roots of EcM species and higher root N of AM species indicates that the MANE may also apply to this subtropical forest and may be an interesting impetus for future work on this topic. It might also offer one way to bridge the root economics space and the MANE.

      What I also found interesting is the sparse observations of EcM fungal taxa in the root endosphere of species typically identified as AM hosts (L. 212 - 214). While their functionality remains to be tested (fungal structures in the endosphere were not studied here), this observation might call for renewed attention to classifying species as AM, EcM, or both.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We appreciate the positive and constructive comments of the reviewers on our paper. Below please find our point-by-point response to their comments.

      Reviewer #1:

      Main comments:

      1) The expression levels of many genes, including some major TFs (like CEBPa or HNF4) in isolated primary hepatocytes greatly differ from that in normal liver. This is due to the disruption of cell-cell contacts. For this reason, single nuclei sequencing is more reliable and it is the preferred method. It is not indicated how many biological replicates were used and what level of variability was observed between different preparations.

      We thank the reviewer for pointing out the immediate response of hepatocytes to dissociation, including in expression of CEBPa or HNF4 (this reviewer) and stress-related genes (reviewer 3), which we were aware of.

      Unfortunately, however no perfect method exists to explore only hepatocytes in the context of the liver and single nuclei RNA-seq, which was not available at the start of our study, also has its limitations (e.g. substantial ambient RNA contamination, a lower median number of genes detected and potential for biases and higher doublet rates due to increased amplification steps (PMID: 34515767)).

      Importantly, in our current study, we were interested in exploring gene regulatory networks in hepatocytes by the combination of RNA-seq and ATAC-seq. In our hands, data that we obtained from single cell ATAC-seq was far too shallow and noisy to predict gene regulatory networks. Hence, we needed to rely on pure populations of hepatocytes to perform our studies with bulk ATAC-seq, for which we optimized perfusion and subsequent density gradient centrifugation. While we succeeded in obtaining a very pure hepatocyte population, we agree with the reviewer that due to dissociation-associated changes the results that we obtain might not fully reflect the events happening in hepatocytes in the liver.

      To address this issue brought up by reviewer 1 and 3, i) we will better indicate our rationale within the manuscript, and the limitations as indicated by both reviewer 1 and 3; ii) to provide an overview of potential changes that were induced by the perfusion procedure that we applied, we will compare the hepatocyte RNA-seq transcriptomes that we obtained with in vivo liver RNA-seq, with specific attention to transcription factors and stress-related genes (see reviewer 3, point 1); iii) we will better separate in the figures data obtained from hepatocytes versus data obtained from liver (see also point 2 from this reviewer).

      Additionally, we will indicate how many replicated were used, and the level of variability between different preparations (donors).

      2) The regulome studies involved analysis of ENCODE data sets (ChIP-seq), while the RNA-seq data were obtained in the current work. Due to the different source of the data (e.g primary hepatocytes used for ENCODE consortia members and this study) differences are expected. In the present study the cells were FACS-sorted immediately after isolation, while the ones used to produce ENCODE data sets were not subjected to sorting and were also probably cultured. This limits the accuracy of comparisons. Furthermore, the authors should indicate exactly which ENCODE data-sets were used.

      It is also unusual to observe broad distribution of the ATF3, JUND and EGR1 ChIP-seq reads over the PCK1 gene or the Alb gene (Fig S3). Peaks called by MACS should be indicated. Have the authors verified this distribution, e.g by ChIP-PCR or other means? It is quite unlikely that binding motifs are present all over the gene bodies. Is it possible that these factors interact with elongating RNA Pol-II complexes? What is the situation in other actively transcribing gene bodies?

      In the first paragraph of this comment, the reviewer rightfully points out that we use data from different sources in the first part of our study: scRNA-seq and ATAC-seq from perfusion-obtained hepatocytes (this study) and ENCODE ChIP-seq data which, in contrast to what the reviewer seems to assume, is obtained from liver (as profiled by ENCODE).

      We did choose to use ChIP-seq data from liver tissue to corroborate our findings in isolated hepatocytes in the tissue of origin (largely composed of hepatocytes). Indeed, the near perfect co-localization of HNF4A and ATF3/EGR1 in liver tissue and the enrichment of corresponding DNA motifs in our ATAC-seq data strongly suggests interaction between bZIP family members and hepatocyte-specific transcription factors (including HNF4A) and hence support our conclusion.

      To further address this issue, we will better separate the data obtained from hepatocytes versus data obtained from liver in the figures and include additional data for liver if available (see also point 1 from this reviewer). Additionally, we will indicate exactly which ENCODE datasets were used (see table below). Where relevant, we will explicitly mention the limitations/confounding factors of our analysis.

      EGR1-liver ChIP-seq

      ENCODE Project Consortium

      ENCFF389LQC, ENCFF132PDR

      JUND-liver ChIP-seq

      ENCODE Project Consortium

      ENCFF215GBK, ENCFF978CPC

      ATF3-liver ChIP-seq

      ENCODE Project Consortium

      ENCFF522PUA, ENCFF094LXX

      HNF4A-liver ChIP-seq

      ENCODE Project Consortium

      ENCFF302XOK, ENCFF500ZBE

      FOXA1-liver ChIP-seq

      ENCODE Project Consortium

      ENCFF765EAP, ENCFF945VNK

      CTCF-liver ChIP-seq

      ENCODE Project Consortium

      ENCFF002EXB

      RAD21-liver ChIP-seq

      ENCODE Project Consortium

      ENCFF643ZXX, ENCFF171UDL

      EGR1- K562 ChIP-seq

      ENCODE Project Consortium

      ENCFF000PZK, ENCFF000PZP

      JUND- K562 ChIP-seq

      ENCODE Project Consortium

      ENCFF000YSC, ENCFF000YSE

      ATF3- K562 ChIP-seq

      ENCODE Project Consortium

      ENCFF000PWC, ENCFF000PWA

      With respect to the second paragraph: We obtained these liver tissue ChIP-seq profiles from ENCODE, in which these have gone through thorough validation procedures. Furthermore, we do observe very similar patterns with a complementary, but independent approach, ATAC-seq in hepatocytes. Hence, we do not think that further validation by ChIP-qPCR will have much added value.

      We will follow the advice of the reviewer by i) indicating MACS peaks in our examples, ii) check whether ChIP-seq peaks in coding regions are typical for these datasets. If not, we will show better examples. If they are, we will are investigate potential motifs present in gene bodies, iii) investigate literature for a possible link between these factors and elongating RNA Pol-II complexes; and iv) investigate actively transcribing gene bodies

      3) The synergism between AP1 and HNF4 is based on RNA and ChIP data in Primary hepatocytes. The main evidence for the synergism are co-binding of the two factors and the regulome profiles in the individual cells. In ICOs where both factors are expressed at high levels ChIP-seq data are not available and the potential binding distribution is estimated by the presence of binding motifs in ATAC-seq positive areas. Considering the concern described in point 2, it is important to obtain ChIP-seq data in ICOs too.

      We would like to point out that, we make the central observations on overlapping regulatory modules in perfusion-derived hepatocytes, the ChIP-seq data to show co-binding of AP-1 and other factors with HNF4A (Fig 2c-f; Fig S3c-e) is all based on liver tissues. By showing this in the tissue or origin, we feel we provide sufficient evidence for the (potential) interplay between these factors in the liver, making ChIP-seq in ICOs redundant and beyond the scope of this study.

      In addition, more direct experimental evidence for the synergism is needed. For example, demonstrating the synergism between HNF4 and some AP1 factors in specific genes by co-transfection experiments.

      With regards to the potential synergy between HNF4 and AP1 in adult hepatocytes: previous studies have shown an essential role for c-Jun (part of AP1) in normal hematogenesis, with hepatocytes being rounded and detached in c-Jun KO mice (PMID: 8371760). This clearly shows the critical role of c-Jun in liver development and support to a potential interaction with HNF4 factors.

      Yet, we agree with the reviewers that co-transfection (or knock down) experiments would be an elegant means to further support our conclusion. Unfortunately, however, PHHs are refractory to transfection making this experiment nearly impossible. Hence, instead we will tone down our statements about cooperation between these factors, instead referring to overlapping regulatory modules and co-binding as we observe.

      4) Transcriptome comparisons between primary hepatocytes and intrahepatic cholangiocyte organoids (ICO) or ICOs cultured in hepatocyte differentiation medium (DM-ICO) were performed before (Ref. 6). These cells were derived from the same donor. In the current study ICOs were obtained from a biobank, thus they were from different donors. Differences between the expression patterns of primary cells and EM-IOC and DM-IOC organoid cultures are expected even if they derived from the same donor. In Ref.6 it is clearly demonstrated that DM-IOCs closely mimic many, but not all aspects of the liver phenotype. The present paper therefore provides only incremental new knowledge about the usefulness of organoid cultures in general. On the other hand, the scRNA-seq data with cells from the organoids point to the lack of zonation, which is an important new information, not analysed in Ref.6

      We agree with the reviewer that the EM-ICOs and DM-ICOs have been well characterized in the ground-breaking works Reference 6. Indeed, in Figure 5d of Reference 6, it is shown that DM-ICOs display more comparable expression profile to hepatocytes than EM-ICOs. However, there are also clear differences between hepatocytes and DM-ICOs, indicating incomplete differentiation of the later. In our study, we now make the important observation that the differentiation potential of ICOs at least in part depends on the expression of ELF3 (Figure 3B).

      To address this issue, we will put emphasis on the findings in Ref 6, and we will put our observations in better perspective in relation to Ref 6.

      5) In the methods section the description of ICO culture conditions are very epigrammatic. It refers to previously published protocols but also mentions the addition of BMP7 in the first round of culturing without explaining why was this important. It would be useful if the authors describe exactly the culture conditions they used. Were the ICOs from the biobank established under culture conditions described in Ref 6 or by previous protocols?

      We apologize for this being unclear. We will include this information in the revised manuscript.

      6) The results about ELF3 function are interesting and convincing. This is a novel finding and may worth to perform a global transcriptome analysis and some immunostainings with specific markers in siELF3 cells to further strengthen its regulatory role in cholangiocyte-hepatocyte conversion.

      We agree with the reviewer. To follow this up, we will perform RNA-seq during differentiation of ICOs towards hepatocytes, with and without siRNA-mediated ELF3 knockdown. This will further reveal the precise regulatory role of ELF3 in during hepatocyte differentiation.

      Reviewer #2:

      Comments:

      1) Hepatocyte nuclear factors do not form a transcription factor (TF) family, they are from different TF families: the nuclear receptor, homeobox, and forkhead TF (super)families.

      We thank the reviewer for pointing the mistakes in points 1 to 6 with regards to the naming of protein and protein families in our manuscript, we apologize for these inaccuracies. We will correct these naming and references, and check for any further inconsistencies.

      2) AP-1 is not a TF family either. It is basically a heterodimer of FOS and JUN (sub)family members, which are part of the bZIP (super)family such as C/EBPs and ATF3, which latter is related to JDP2.

      We will adapt this.

      3) EGR1 is not a bZIP protein, it is a zinc finger protein from the EGR family. Was the motif of EGRs enriched? Only the motif of C/EBPs is shown on Fig. 2D.

      We will adapt this. We will also analyze whether the motif of EGRs is enriched

      4) RAD21 is not a TF, it is part of the Cohesin ring, which is associated to the insulator-binding CTCF.

      We will adapt this.

      5) EP300 (Fig. 2A) and PPARGC1A (Fig. 3B) are not TFs, they are co-regulators, basically co-activators, which can interact with several TFs. EP300 is otherwise not so specific, its presence in the chromatin is one of the major active enhancer marks.

      We will adapt this.

      6) DNA sequence motifs are typically not specific for a single TF, rather for a TF (sub)family, so based on a motif, it is usually not possible to identify a certain TF (Fig. 3F). Are there other nuclear receptors, SOX or ETS proteins that can bind to the identified motifs? (For example, FLI1 and several other ETS proteins can bind to the motif of ELF3/EHF, or there are several DR1-binding nuclear receptor dimers like HNF4/HNF4 or PPAR/RXR.)

      We agree with the reviewer. We will analyze this and adapt the manuscript according to our findings.

      &) Although the manuscript is easy to follow and understand, it needs to be checked for grammar.

      We have asked a native speaker to proofread and adapt the manuscript.

      Reviewer #3:

      1) It is well known that perfusion of primary hepatic tissues (mice and human) results in immediate genetic responses, which will be captured right away in the performed RNASeq analysis. Stress pathways are upregulated and will normalize when the cells are put in culture for a couple of days. (Not too long, as they then undergo EMT and de-differentiate into non-parenchyma cells.) These responses can influence the expression profiles observed.

      We thank the reviewer for this comment. Please see how we will address this concern in our reply to reviewer 1, issue 1, who raised a very similar point.

      2) Why were the organoid cultures not differentiating properly into hepatocytes using different media cocktails (EM versus DM)? They seem to maintain cholangiocyte features, which questions the culture conditions used.

      We thank the reviewer for the chance to clarify this important point. We like to stress that we do use the standard differentiation protocol as published (which we will also better detail in our material methods) and it does lead to differentiation towards hepatocyte like cells (both morphologically and gene expression-wise). However, what is not highlighted in previous publications, but broadly observed in the field, is that this differentiation is far from being complete and that the extent to which proper differentiation occurs varies between organoids from different donors. In our study, we now make the important observation that the differentiation potential of ICOs at least in part depends on the expression of ELF3 (Figure 3B).

      3) The authors found the up-regulation of the AP-1 family proteins such as ATF3 and EGR1 which are known to induce apoptosis/cell death. Hepatic organoids are often found to have the un-intended necrotic core development which is caused by the oxygen diffusion matter and this issue is highly likely relevant to the size of the organoids. So, it would be advisable to specify the size of hepatic organoids (i.e., diameter) and check the necrosis-related genes.

      To follow-up on this comment of the reviewer: We will measure the size of our organoids. These organoids indeed are typically hollow inside and hence we will check the expression of necrosis related genes and adjust our conclusions accordingly.

      4) The KD approach with ELF3 in the ICOs is a good way forward, however only a minor number of hepatocellular genes are recovered, questioning the central role of ELF3 in driving the hepatocellular program. Functional assays, such as albumin release, bile acid production and CYP450 response should be coupled with the gene expression analysis.

      In line with the response to reviewer 1 (point 6) we will perform RNA-seq to better characterize ELF3 KD-associated genes expression changes including genes typical and functionally relevant for hepatocyte function (e.g. albumin release and bile acid secretion)

      5) The manuscript should be supplemented by adding the statement regarding the specific reason why a different set of donors was selected for two transcriptomics. The authors used three different donors for scRNA-seq and other two donors for the ATAC-seq. It seems better if all five donors were used for both transcriptomics analyses to reduce the inconsistent proportion of primary human hepatocytes (PHHs) from each donor. In addition, the donors which are selected should have identical genetic backgrounds for in-depth analysis of PHHs. The various backgrounds such as age, sex and ethnicity cause the transcriptional and translational heterogeneity. The authors need to explain the criteria on the selection of the donors.

      We do agree with the reviewer that ideally all experiments are performed on the same set of donors. However, PHHs are obtained from surgical margins and hence provide a very limited source, leading to different experiments being performed on different donors. Importantly, the replicates for each experiment type have been obtained from multiple donors enabling us to capture common rather than donor specific expression/chromatin accessibility signatures.

      Within the revised manuscript, we will include a paragraph on the criteria on the selection of the donors, and why a different set of donors was selected for two transcriptomics. Also, we will provide information with respect to the background of the donors.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We appreciate the time and effort that you and the reviewers have dedicated to providing your valuable feedback on our manuscript. Those comments are all valuable and very helpful for revising and improving our paper, as well as the importance guiding significance to our researches. We have highlighted the changes in yellow within the manuscript.

      *Here is a point-by-point response to the reviewers’ comments and concerns. *

      Comments from Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The provided document, titled "Camel Milk Affects Serum Metabolites by Modulating the Intestinal Microflora," is an extensive research paper. My summary covers the first 44 pages of the total 63 pages. The document begins with a standard review commons manuscript notice and provides contact information for the Review Commons office.

      The research focuses on the effects of camel milk on serum metabolites and the intestinal microflora. It starts with a detailed introduction to the topic, outlining the crucial role of gut microbes in human health and the influence of various factors like diet, genetics, and environment on these microbes. The paper emphasizes the nutritional richness of camel milk and its potential as a functional food, particularly its impact on gut microbiota and host metabolism.

      Initial sections of the paper discuss the research methodologies, including the study's keywords, abstract, and introduction. The abstract highlights the study's significant findings, such as the presence of various beneficial bacteria in sour camel milk, the inter- and intra-species transportation of microbiomes, and the impact of camel milk on the gut microflora and serum metabolites of type 2 diabetic rats.

      The introduction further delves into the composition of the human gut microbiota and the shaping factors of the adult gut microbiome. It also examines the role of diet in modulating gut microbiota and the potential health benefits of dairy products, with a particular focus on camel milk.

      Subsequent sections present detailed research findings, including the results of microbial composition and source analysis in camel milk, the composition and changes of rat gut microbiota under camel milk regulation, and the effects of camel milk-regulated gut microbiota on metabolism in rats. The research also explores the interspecies transfer of microbes using camel milk as a vector and analyzes the gut microbiota in people consuming camel milk.

      The paper further discusses the endophytic flora of camel edible desert plants and their possible influence on the camel's gut microbiota. The discussion section integrates the findings, offering insights into the potential health benefits of camel milk and its probiotic qualities. It also compares the effects of camel milk with other dairy products and discusses its role as a vector for beneficial microbes.

      Materials and methods used in the study are detailed towards the end of the summarized portion, describing sample collection and processing, the experimental setup for rats, and data processing and analysis techniques.

      Reviewer #1 (Significance (Required)):

      The paper continues with detailed research findings, including the microbial composition in camel milk, the impact on the gut microflora of rats and humans, and the serum metabolism effects.

      There's a focus on how camel milk, as a vector, can transfer beneficial microbes between species, influencing gut microbiota and host metabolism.

      The paper compares the effects of camel milk with other dairy products, emphasizing its unique health benefits and its role in transferring beneficial microbes.

      It discusses various bacteria found in camel milk and their potential health benefits.

      The research findings extend to understanding how camel milk affects human gut microbiota, with studies on pastoral herders who consume camel or bovine milk.

      Author response: We thank you for your approval and constructive and valuable feedback from you and other reviewers.

      Comments from Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      summary:

      The authors introduce a study assessing the bacterial flora of sour fermented camel milk and its capability to introduce beneficial species into consumer's gut. They further tested the potential of its nutrients and species for beneficial effects on type 2 diabetic (t2d) rats. They claim that t2d rats fed with high-dose camel whey reveal a microbiota closer to that of healthy rats rather than that of other t2d rats not receiving the camel whey treatment. Further they claim that this effect is due to the presence of Eubacterium limnetica that was exclusively found in the gut microflora of rats taking camel milk and producing MtcB protein. They conclude that camel milk may have the potential to be functional food.

      Overall, I think the approach of looking into camel milk and its microbiota is of broad interest, as it is food consumed traditionally by many tribes and in several countries. However, to me the presentation of the findings, the data and the analysis is often unprecise and confusing.

      For example, the MtcB protein they claim to be the mechanism of reducing the risk for t2d in the abstract is mentioned only once in the whole study and there only as a finding of another study (cited). According to my understanding the abstract should contain the main findings of the study, rather than some side-finding from other studies happens to match with the study results. I assume the authors have plenty of results from their sequencing data and metabolomics that they could mention in the abstract.

      In the text the authors mention the analysis of the microbial composition and source analysis of camel milk, the analysis of the gut microbiota of young camels, the composition, and changes of rat gut microbiota under the regulation of camel milk, the structure and changes of gut microbiota in people taking camel milk and the analysis of the endophytic flora of camel edible desert plants. And this just quoting the headers in the results section. Why is that not represented/mentioned in the abstract? Instead the authors focus on the t2d rats and the MtcB mechanism they fail to present.

      Further the authors are sloppy when it comes to typos and preciseness. For example, in the abstract they talk first about sour camel milk, then whey and then milk again.

      I suggest a major restructuring/rewriting and if necessary partial reanalysing of the results and the conclusions.

      It would be good to have an overview figure combining the work done, also stating the number of samples for each experiment.

      __Author response: __Thank you very much for your nice suggestion on our manuscript, we applied some restructuring to our manuscript and the changes were highlighted in yellow.

      Major comments:

      1) Please make sure all raw data (sequences and filtering/assembly results) are deposited in public databases, like NCBI, ENA or else.

      __Author response: __The corresponding data is available as Mendeley Data, V1, https://doi.org/10. 17632/4w8n8n96tc.1, some datasets with bigger size uploaded failed owing to internet problem. The full version could be offered in other approaches if requested.

      2) Please state briefly for each dataset analysed, which sequencing method was used, how many samples were collected and how many were pooled for the sequencing runs:

      AmpliAeq, whole metagenome HiSeq, MiSeq?

      __Author response: __Sample and dataset information for sequence was supplied in Supplementary Table 9 and 12. Sequencing library was prepared following Illumina library preparation instructions, and sequenced using Illumina Miseq platform at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) with pair-end (PE) 150 bp reads.

      3) Page14 line283:

      F082? What is it? A strain, species or a sample?

      Please state clearly in the text.

      Also please avoid using abbreviations where possible and if you have to use them, please define.

      __Author response: __When applying diversity analysis at the specie level, a species annotated as unclassified_g_norank_f_F082 was found abundant in camel feces in Darbancheng.

      4) Page14 line307:

      "These evidenced that camel milk was a vector transferring microbes from the female camel to their cubs."

      Yes, that may be likely, but 16S amplicon-seq cannot provide evidence. Evidence would be strain similarity confirmed by SNP's or the like. So please state that this is speculative or show appropriate evidence.

      __Author response: __We completely agree that SNP’s is better evidence for this point and thank you. Microbial diversity analysis was a main part of initial design, and our limited sample couldn’t meet the needs of diversity and SNPs in the same time. There also were reports which used 16S based methods to trace the microbes source(Du et al., 2022; El-Mokdad, 2014; Wang et al., 2018).

      5) Page15 line322 ff:

      "Besides, using raw milk was not effective in type 2 diabetic rat model, so we chose camel whey and bovine whey as the diet of type 2 diabetic rats in follow-up experiments"

      Data/evidence? How is it different from whey on a nutrient perspective, as whey was more effective? Any explanation for this difference? And the bovine whey, what species did it contain? Can they be transferred regarding the processing of whey prior to application?

      __Author response: __This is an interesting and valuable question. We prepared raw milk and whey for the pre-test, then directly turned to validate the function of whey. Maybe we will investigate the composition difference in the future. The whey was prepared using the following protocol: Centrifuge fresh milk for 20 mins at 5000 r/min, discard the fat, and precipitate and obtain the middle layer of skim milk. After 20 mins in a 40 ℃ water bath, adjust the pH to 4.6 with 10% glacial acetic acid, and store in a 4°C refrigerator, overnight. Then, the skim milk was centrifuged at 8000 r/min for 20 min, repeated twice, and the middle whey fraction was collected. The centrifuged whey was poured into a petri dish and sealed. It was frozen at -80°C for 12 hours and then pierced with a sterile toothpick on the petri dish and then freeze-dried to get whey powders. A speculation was the preparing progress of whey played an important role in their functional difference. A comprehensive comparison of camel raw milk, camel whey, bovine raw milk, and whey will be an interesting point and we may investigate it shortly.

      6) Page17 line366ff:

      "Taking the number of microbes involved in this pathway, 8001 species were noted in the high-dose camel whey group, 3447 in the positive drug group, and only 1467 in the diabetics." How many species were present in the rats initially? Was species abundance different in the first place, or did they get lost, or came from the camel whey?

      __Author response: __The rats were fed with broad-spectrum antibiotics for 2 weeks, which ensured the same species abundance in the beginning.

      7) Page17 line369 ff:

      "It indicated that these microbes might resist the high glucose environment of the host through the synthesis and metabolism of their amino acids, and the effect of high-dose camel milk was more effective than that of metformin"

      -> How high was the glucose level in the rat gut? Or were there any obvious physiological changes in the t2d model rats that are characteristic for such a high-glucose environment? Please explain.

      __Author response: __This is an interesting and critical question. We didn’t measure the glucose level in the rat gut directly because we had to make sure other related characterizations worked properly. Besides, we thought camel milk could regulate microbial community, and further influence the blood sugar level, which was more representative in our sight. Blood sugar level is supplied in Fig.4O and Supplementary Table 11.

      8) The resolution/quality of the figures is low and the labelling often small. So not all text is readable.

      __Author response: __We adjusted the figures in the manuscript and offered additional independent picture files. Additionally, it seemed caused by the PDF merge progress, please check the pictures in .docx or .png files for details.

      9) Page19 line400 ff:

      What serum metabolites were analysed and why? Please write an intro-sentence to make it easier for the reader.

      Please write more precise what methods were used. Maybe I missed it, but I didn't find it in the methods part as well (Page40/41).

      __Author response: __The rats fed high-dose camel whey or metformin showed similar improvement in serum metabolite imbalance and were closer to normal. Caproylcarnitine, taurodeoxycholic acid, acetylcarnitine, creatinine, linoleic acid, and tridecanoic acid were detected as upregulated; 2-deoxyuridine, cyclohexylamine, L-pipecolic acid, LysoPC(18:0), uracil, caprylic acid, cholesterol sulfate, L-citrulline, pelargonic acid, and phenol downregulated. Carnitine supplementation, due to its key role in lipid metabolism and antioxidant effects, may effectively manage Type 2 Diabetes by addressing fatty acid metabolism dysregulation and oxidative stress(Bene, Hadzsiev, & Melegh, 2018). Studies have shown that taurodeoxycholic acid can enhance the effect of insulin and reduce blood sugar levels by regulating endoplasmic reticulum stress, and have potential in the treatment of diabetes(Xing, Zhou, Wang, & Xu, 2023). Low serum creatinine is associated with the development of T2D(Song, Hong, Sung, & Lee, 2022). Increased linoleic acid consumption was recommended for the prevention of T2D(Henderson, Crofts, & Schofield, 2018). The uridine is phosphorylated into uracil, which is converted to 2-deoxyuridine. Then 2-deoxyuridine is further converted to thymine with thymidine phosphorylase, the expression of thymidine phosphorylase was lost or considerably reduced when the organism suffered nephropathy and the high concentration of thymidine is a cause of DNA impairment, which is related to diabetes and diabetic nephropathy(Spinazzola et al., 2002; Szabo et al.; Xia, Hu, Liang, Zou, Wang, & Luo, 2010). L-Pipecolic acid are associated with higher incidence of T2D(Razquin et al., 2019). A research showed LysoPC(16:0) and (18:0) may mediated a fast progression of diabetic kidney disease(Yoshioka et al., 2022). Cholesterol sulfate is the most abundant known sterol sulfate in human plasma, and it plays a significant role in the control of glucose metabolism, which contribute to the pathogenesis of insulin resistance and the resultant development of diabetes(Shi et al., 2014; Zhang et al., 2022). L-citrulline supplementation might improve glucose homeostasis, some lipid factors and inflammatory markers in overweight and obese patients with T2D(Azizi, Mahdavi, Mobasseri, Aliasgharzadeh, Abbaszadeh, & Ebrahimi-Mameghani, 2021). T2D mellitus is associated with increased total plasma free fatty acid and modulating its concentration is the mechanism of some fibrates and statins drugs(I. S. Sobczak, A. Blindauer, & J. Stewart, 2019). Most of these metabolites have been reported as causes of T2D or consequences of T2D progress, some have been designed as therapeutic target.

      The serum metabolites were carried out using Agilent 1290 Infinity UHPLC system equipped with a HILIC column. The mobile phase of the optimized method consisted of (A) water with 25 mM ammonium acetate and 25 mM ammonia; and (B) acetonitrile (ACN). The following gradient elution was used: 5% A at 0-1min; 5-35% A at 1-14 min; 35-60% A at 14-16 min; 60% A at 16-18 min ; 60-5% A at 18-18.1 min and 5% A at 18.1-23 min. The flow rate was 0.3 mL/min, injection volume 2 μL, and column temperature was 25 ℃. Triple TOF 5600 mass spectrometer was applied for mass spectrometer analysis. The condition was used as following: Ion Source Gas1:60,Ion Source Gas2:60,Curtain gas:30,source temperature:600℃,IonSapary Voltage Floating ± 5500 V. TOF MS scan m/z range:60-1000 Da,product ion scan m/z range:25-1000 Da,TOF MS scan accumulation time 0.20 s/spectra, product ion scan accumulation time 0.05 s/spectra.MS/MS was gathered by information dependent acquisition (IDA) using high sensitivity mode, Declustering potential:±60 V, Collision Energy:35±15 eV, and IDA was set as Exclude isotope within 4 Da, Candidate ions to monito per cycle: 6. The methods part was complemented.

      Minor comments:

      1) Page1, line56-58 ff

      Please phrase more clearly:

      "This study specified that the transportation of microbiome happened both intra- and inter-species and played a principal role in the formation of progeny gut microflora."

      While the content is mostly comprehensible, there is a need for rephrasing and correction of language also in the following text.

      __Author response: __As suggested by the reviewer, we have rephrased and modified the abstract part.

      2) Page14 line300 ff:

      There is no need to show the OTU numbers in the text, please provide your results as a table in the supplements and refer to it in the text.

      Author response: We deleted OTU numbers in the manuscript and added the corresponding table in supplementary file.

      3) Page15 line328: Please check for typos, it is Shannon index, not Shanno.

      __Author response: __The corresponding correction was applied in the manuscript.

      4) Page16 line334:

      Please mention the number, age and sex of the rats used and how many groups you had in your experiments.

      __Author response: __SPF-grade male rats weighing 180-220 g were used for our related experiments. The detailed information is available in Supplementary Material (Supplementary Table 11-13).

      5) The headlines should logically structure the paper:

      For example, the authors have two very similar sections in the results part: "Composition and changes of rat gut microbiota under the regulation of camel milk" and "Analysis of the composition of gut microbiota in rats". Those can be combined or stated more concise.

      Also, other headlines improvement to make it easier for the reader to follow.

      __Author response: __We adjusted this part in the manuscript according to the reviewer’s suggestion.

      Reviewer #2 (Significance (Required)):

      I do think the study is of broad interest and relevance. However, the presentation of the analysis and data needs major revision. Especially it is lacking clarity on what was done for which samples and how the authors draw their conclusions. Also, I think that abstract and main text have a different focus. I would suggest to the authors to concentrate on their findings in abstract and text and state precisely what was done and what they found.

      __Author response: __Thank you very much for your recognition of our manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      The authors introduce a study assessing the bacterial flora of sour fermented camel milk and its capability to introduce beneficial species into consumer's gut. They further tested the potential of its nutrients and species for beneficial effects on type 2 diabetic (t2d) rats. They claim that t2d rats fed with high-dose camel whey reveal a microbiota closer to that of healthy rats rather than that of other t2d rats not receiving the camel whey treatment. Further they claim that this effect is due to the presence of Eubacterium limnetica that was exclusively found in the gut microflora of rats taking camel milk and producing MtcB protein. They conclude that camel milk may have the potential to be functional food.

      Overall, I think the approach of looking into camel milk and its microbiota is of broad interest, as it is food consumed traditionally by many tribes and in several countries. However, to me the presentation of the findings, the data and the analysis is often unprecise and confusing. For example, the MtcB protein they claim to be the mechanism of reducing the risk for t2d in the abstract is mentioned only once in the whole study and there only as a finding of another study (cited). According to my understanding the abstract should contain the main findings of the study, rather than some side-finding from other studies happens to match with the study results. I assume the authors have plenty of results from their sequencing data and metabolomics that they could mention in the abstract. In the text the authors mention the analysis of the microbial composition and source analysis of camel milk, the analysis of the gut microbiota of young camels, the composition, and changes of rat gut microbiota under the regulation of camel milk, the structure and changes of gut microbiota in people taking camel milk and the analysis of the endophytic flora of camel edible desert plants. And this just quoting the headers in the results section. Why is that not represented/mentioned in the abstract? Instead the authors focus on the t2d rats and the MtcB mechanism they fail to present. Further the authors are sloppy when it comes to typos and preciseness. For example, in the abstract they talk first about sour camel milk, then whey and then milk again.

      I suggest a major restructuring/rewriting and if necessary partial reanalysing of the results and the conclusions.

      It would be good to have an overview figure combining the work done, also stating the number of samples for each experiment.

      Major comments:

      1. Please make sure all raw data (sequences and filtering/assembly results) are deposited in public databases, like NCBI, ENA or else.
      2. Please state briefly for each dataset analysed, which sequencing method was used, how many samples were collected and how many were pooled for the sequencing runs: AmpliAeq, whole metagenome HiSeq, MiSeq?
      3. Page14 line283: F082? What is it? A strain, species or a sample? Please state clearly in the text. Also please avoid using abbreviations where possible and if you have to use them, please define.
      4. Page14 line307: "These evidenced that camel milk was a vector transferring microbes from the female camel to their cubs." Yes, that may be likely, but 16S amplicon-seq cannot provide evidence. Evidence would be strain similarity confirmed by SNP's or the like. So please state that this is speculative or show appropriate evidence.
      5. Page15 line322 ff: "Besides, using raw milk was not effective in type 2 diabetic rat model, so we chose camel whey and bovine whey as the diet of type 2 diabetic rats in follow-up experiments" Data/evidence? How is it different from whey on a nutrient perspective, as whey was more effective? Any explanation for this difference? And the bovine whey, what species did it contain? Can they be transferred regarding the processing of whey prior to application?
      6. Page17 line366ff: "Taking the number of microbes involved in this pathway, 8001 species were noted in the high-dose camel whey group, 3447 in the positive drug group, and only 1467 in the diabetics." How many species were present in the rats initially? Was species abundance different in the first place, or did they get lost, or came from the camel whey?
      7. Page17 line369 ff: "It indicated that these microbes might resist the high glucose environment of the host through the synthesis and metabolism of their amino acids, and the effect of high-dose camel milk was more effective than that of metformin"
      8. How high was the glucose level in the rat gut? Or were there any obvious physiological changes in the t2d model rats that are characteristic for such a high-glucose environment? Please explain.
      9. The resolution/quality of the figures is low and the labelling often small. So not all text is readable.
      10. Page19 line400 ff: What serum metabolites were analysed and why? Please write an intro-sentence to make it easier for the reader. Please write more precise what methods were used. Maybe I missed it, but I didn't find it in the methods part as well (Page40/41).

      Minor comments:

      1. Page1, line56-58 ff Please phrase more clearly: "This study specified that the transportation of microbiome happened both intra- and inter-species and played a principal role in the formation of progeny gut microflora." While the content is mostly comprehensible, there is a need for rephrasing and correction of language also in the following text.
      2. Page14 line300 ff: There is no need to show the OTU numbers in the text, please provide your results as a table in the supplements and refer to it in the text.
      3. Page15 line328: Please check for typos, it is Shannon index, not Shanno.
      4. Page16 line334: Please mention the number, age and sex of the rats used and how many groups you had in your experiments.
      5. The headlines should logically structure the paper: For example, the authors have two very similar sections in the results part: "Composition and changes of rat gut microbiota under the regulation of camel milk" and "Analysis of the composition of gut microbiota in rats". Those can be combined or stated more concise. Also, other headlines improvement to make it easier for the reader to follow.

      Significance

      I do think the the study is of broad interest and relevance. However, the presentation of the analysis and data needs major revision. Especially it is lacking clarity on what was done for which samples and how the authors draw their conclusions. Also I think that abstract and main text have a different focus. I would suggest to the authors to concentrate on their findings in abstract and text and state precisely what was done and what they found.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      DBF4 and DRF1 knockout cells were generated and used to separate DBF4- and CDC7-dependent from DRF1- and CDC7-dependent activities. DBF4- and CDC7-dependent activities at replication forks were independent of DRF1. These include the replication timing pattern, replication fork velocity, DNA damage signaling. DBF4 is required to recruit CDC7 to active replication forks. The study is in large part exceptional.

      The inclusion of quantitation for a modest bandshift on CDC7 in figure 2 (30% vs 50% reduced) is not justified given the abundance of the main band and our knowledge of the lack of linearity of western blot quantitation. This should be removed.

      We thank the reviewer for evaluating our manuscript and for the positive feedback.

      In the revised manuscript we have removed the quantification of the bandshift related to CDC7 autophosphorylation in mitotic cells which was reported in Figure 1E. We recognise that the quantification may not be accurate although performed using semiquantitative near-infrared scanning technology. Importantly the experiment was performed three times with almost identical results.

      The only significant weakness in the paper is the explanation of the replication timing analyses in Figure 3. I don't understand what the differences between the plots equate to in terms of timing. I understand the replication of these regions that diverge is either early or late, but their were only two fractions of cells - 2N-3N and 3N-4N (the cells are "normal"). If this is the case, isn't the readout binary? a sequence either replicates in S phase between 2N and 3N or in S phase between 3N and 4N. Why are the differences so small? Are they only evident in a small population of cells? If that is the case, then what does the difference really mean? I think the description of these data needs to be precise.

      The replication timing experiments were performed with a well-established and reliable protocol (Ryba et al., 2011, https://doi.org/10.1038/nprot.2011.328). Asynchronous cells are labelled with a short pulse of BrdU, and sorted in two fractions, early and late S-phase, as described in Hiratani et al., 2008, Ryba et al., 2010, Hadjadj et al, 2016 and 2020 (https://doi.org/10.1371/journal.pbio.0060245) (https://doi.org/10.1101/gr.099655.109, https://doi.org/10.1016/j.gdata.2016.07.003, https://doi.org/10.1093/nargab/lqaa045).

      This method does not take into account the variation in the DNA copy number (2N vs 4N) between replicated and non-replicated parts of the genome (S/G1 ratio) as in Siefert et al., 2017 (https://doi.org/10.1101/gr.218602.116).

      The profiles depict the average replication timing of a population of 20,000,000 cells; thus, the readout is not binary.

      Replication timing profiles display the log ratio between early and late replicated fractions along the chromosome. Early replicated regions show positive log ratios and late replicated regions show negative ratios. The differential analysis performed with the START-R suite allows the comparison of the profiles (Ctrl vs either CDC7i-treated or DBF4-deficient cells). The genomic regions with altered timing are shown in green or in purple below the profiles, showing advanced and delayed regions, respectively.

      Importantly, the differences in replication timing are expressed with log ratio, that explains why the profiles are varying from -2 (very late replicating regions) and +2 (very early replicating regions). The differences we observed in Figure 3 are representative of two experiments, each composed of two technical replicates that are highly reproducible.

      To better describe the data, we have modified the text in the results section with the words in bold, as below: “These two neo-synthesized DNA fractions were then hybridised on human whole genome microarrays, as previously described. The log ratio between early and late replicated fractions was calculated and visualised for the whole genome.” We also changed the labelling of the replication profiles in Figure 3 and former Figure S3 (now Figure S4) by adding Log2 (Early/Late) to intensity and added two new sentences to the figure legend 3.“____Replication timing profiles display the log ratio between early and late replicated fractions along the chromosome. Positive log ratios correspond to early replicated regions whereas negative ratios correspond to late replicated regions.”

      Reviewer #1 (Significance (Required)):

      I think this paper is a significant advance that should be published. CDC7 is a critical kinase and identifying its co-factor at the replication fork is important both for our understanding of mechanisms of DNA replication and the impact of CDC7 kinase inhibitors in the clinic. I think the majority of the experiments are well designed and the results are unambiguous and precisely described.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      CDC7 is a master cell cycle kinase with essential functions in DNA replication and important roles in the DNA damage response. For its functions, CDC7 relies on a regulatory factor, DBF4, which is essential in many species but not in human cells as a consequence of the presence of a second DBF4-related factor, DRF1. In this work, Göder and colleagues study the relative relevance of these regulatory proteins in CDC7 roles. Their study reveals DBF4 as the major regulatory subunit both in DNA replication, DNA damage checkpoint and fork dynamics. The objective of the study is highly relevant to understand an essential cell cycle kinase with potential applications in cancer therapies, the experiments are well performed and the conclusions are "in principle" sound.

      We thank this reviewer for the time and attention in evaluating the manuscript, for the positive feedback and for indicating key points for improvement and discussion.

      The major handicap of the study is the absence of western blots showing the elimination of DBF4 and DRF1 in the edited cell lines due to the lack of specific antibodies. The authors have generated homozygous mutations that lead to premature stop codons behind critical CDC7 domains. However, as they mention, it is not possible to fully exclude some proteins arising from internal start sites or exon skipping events with residual (functional or altered, and not necessarily residual) activity. This is not unexpected, especially for essential proteins. This would not be a major handicap if the study were focused in a specific factor because it would only question the impact of but not the affected function, but it aims to compare the relative effect of two defective genes. In this case, it is essential to confirm that both genes are eliminated, at least to the same degree.

      We agree with the reviewer that it would be valuable to confirm the effect of the mutations by immunoblotting.

      Over the years we have had multiple attempts at generating sensitive antibodies against both DBF4 and DRF1, using recombinant proteins and synthetic peptides. We also tested several commercially available anti-DBF4 and anti-DRF1 antibodies. While often we were able to detect overexpressed proteins, the detection of endogenous levels has been particularly challenging especially in non-transformed cells, such MCF10A.

      Nevertheless, with an anti-DBF4 serum we obtained from the Diffley lab, which was generated against the C-terminus fragment of hDBF4, we managed to detect endogenous full length DBF4 in parental but not in the DBF4-KO cells (this blot is now included as supplementary Fig S1B). Even with this reagent the detection levels are low and multiple non-specific immunoreactive bands are present, making the detection of DBF4 particularly challenging across the experiments. Interestingly, while DBF4 is no longer detectable in DBF4-11, one the two clones used in this work , we detect a new immunoreactive band of approximately 55kDa in the other clone DBF4-30. We reckon that this may be the result of mRNA translation from the next downstream methionine. In this case this aberrant protein would lack the N domain and most of the M domain, involved in CDC7 binding and activation, and thus this fragment is very likely not functional.

      Importantly, most results in this study were obtained using both DBF4-11 and DBF4-30 clones with indistinguishable results. Only the replication timing experiments were done using a single clone DBF4-11, in which DBF4 protein is not detected.

      We had less success with the direct detection of DRF1. As also suggested by reviewer #3, to screen the clones after genome editing, we originally performed IP-western experiments. We used an anti-DRF1 mAb and unrelated IgG for the immunoprecipitations and an anti-CDC7 antibody as a probe in western blotting. We detected an immunoreactive band above the background at the expected molecular weight for CDC7 when the immunoprecipitation was performed with extracts from parental cells (as well as in a clone obtained with a different sgRNA, targeting DRF1 Exon1 and never used in this study) but not when the immunoprecipitation was performed with extracts from the DRF1- 5 and DRF1-7 clones used in the study. These original co-IPs are credible although not particularly pretty and importantly the result was confirmed in a more convincing experiment in the DRF1-5 clone.

      These new data are now included in the resubmission in Figure S1. So, while the detection of the CDC7 regulatory subunits still remains particularly difficult, we can now provide evidence that their expression is altered in the engineered cell lines used in the study.

      The computational analysis in Figure 1C is consistent with the major conclusion about the primary regulatory role of DBF4 in replication, but it is insufficient to validate the specific phenotypes addressed in the study.

      The figure reports the effects of targeting single genes with multiple sgRNA (4 to 8 according to the library used) on proliferation rate/fitness measured after multiple days in more than 1000 screens across many different human cell types. Loss of fitness can be due either to a direct problem with DNA replication or with other cellular processes.

      We agree with the reviewer that the analysis in Fig 1C is consistent with the phenotypes shown in the study. Particularly it is consistent with the lack of a major defect of DRF1-deficient cells in DNA replication, and it strongly indicates an essential role for CDC7 which was somehow challenged by Suski and co-workers (see also below).

      Indeed, there is a result that is hard to understand if the edited cell lines are defective in the expression of the regulators, specially DRF1. Figure S2D-E shows no synergistic defect in DNA synthesis when the second regulator is knock down with specific siRNAs, not even DRF1 defective cell lines treated with a siDBF4 that reduces its expression 10 times. Also, it is not clear why the defects, specially in DBF4-defective cell lines, are less severe than in cells treated with an inhibitor that causes a partial inhibition of CDC7. If it is due to the expression of DRF4, a siRNA against DRF4 should cause more severe defects.

      Yes, we did not detect synergy or additive effect on the rate of DNA replication when targeting both DBF4 and DRF1 by multiple approaches. This was also for us an unexpected result, that we examined to the best of our capabilities.

      The lack of the expected synergy in the replication assays could be explained in multiple ways and could be of biological or technical nature such as 1) residual low levels of DBF4/DRF1 proteins remaining in the cells upon either CRISPR/Cas9 or siRNA targeting, 2) alternative mechanisms of kinase activation by a different, yet unidentified protein, 3) minimal residual enzymatic activity of hCdc7 kinase not requiring an activating subunit.

      We performed further computational analysis using the dataset of the DepMap project, assessing if the effect of targeting DBF4 on fitness may be dependent on the levels of DRF1 expression. In several instances, when dealing with paralogues the gene effect of knocking out one of the paralogues directly correlates with the expression levels of the second, a phenomenon known as paralogue buffering (De Kegel et al. 2019 https://doi.org/10.1371/journal.pgen.1008466 ).

      In the case of DBF4 and DRF1, this correlation is minimal (plot below: X and Y axes are DRF1 expression levels and DBF4 gene effect respectively, Pearson's correlation = 0.12) so that there are ~ 470 other genes whose expression is more correlated with DBF4 essentiality. Furthermore, by stratifying cell lines according to whether DBF4 was essential or not and then looking at DBF4B (DRF1) expression, we failed to see significant association (graph below).

      Thus, this analysis reinforces the idea that if cooperation between DBF4 and DRF1 exists, it is particularly difficult to demonstrate. To date the interplay between DBF4 and DRF1 is only indicated by the partial impairment on MCM2 phosphorylation and CDC7 autophosphorylation observed in the individual KOs and by the fact that we were unable to obtaining viable double KO mutant clones. We recognise that the latter is a negative result and double KO may be generated in other cellular models or with different strategies.

      We are happy to include the above computational analysis in a revised manuscript and to expand the discussion on the essentiality of CDC7, DBF4 and DRF1.

      The effects of directly inhibiting CDC7 with 10 microM XL413 (concentration used in this study) are indeed stronger than DBF4 KO / depletion on both DNA synthesis (Fig 2A-B) and MCM2 phosphorylation (Fig 4A and Fig 5A).

      We and others have previously shown that CDC7 inhibition by XL413 causes a dose dependent decrease in MCM2 phosphorylation and DNA synthesis. Importantly in the experiments where XL413 was titrated on MCF10A cells from 0.3 microM to 80 microM, we demonstrated that these parameters are uncoupled and that doses that are ~20-fold higher are required to cause a strong impediment of DNA synthesis compared to the dose required to cause full MCM2 dephosphorylation (Rainey et al. 2017 https://doi.org/10.1021/acschembio.7b00117 ).

      DBF4 deficiency only partially affects MCM2 phosphorylation thus it is comparable to very low doses of XL413, that we can estimate to be in the range between 1 and 2 microM.

      Minor points

      • Title in Pag 12. "DBF4 mediates the majority of CDC7 functions in the replication stress response". In this section the authors address only the role of CDC7 in checkpoint signalling but not in other processes related to the replication stress response.

      We agree and we have modified the title of this section accordingly.

      • Figure 2. "EdU incorporation in late S-phase/ per cell" is clearer

      We have modified the label of this figure.

      • Right panels in Figures 3A and 3B are duplicated

      We sincerely apologise for the mistake occurred while assembling the figure. The figure has been corrected, and shows that the changes in the replication timing with the CDC7i or with DBF4-KO are indeed similar but not identical.

      **Referees cross-commenting**

      I am aware of the difficulty to sort out the detection problem, a major handicap of the work. Immunoprecipitation as suggested by rev. 3 might be an interesting possibility. The results should be published, in any case, as they are well performed and try to answer a relevant question. But, if finally the authors fail to detect the proteins, they should make clear in the paper the limitation of their conclusions by the possibility that the expression of the regulators is not completely eliminated or could be altered. Indeed, the apparent contradiction with Suski's results raised by Rev 3 might be discussed in this context.

      We appreciate the reviewer’s recognition of the technical problems we have encountered. We are glad that we now are in a position to provide evidence of impairment of DBF4 and DRF1 expression in the engineered cells (discussed above and reported in new Figure S1 and S2).

      Also, it is important to explain the lack of synergism when combining the edited mutations with siRNAs.

      In a revised manuscript we will explain the potential reasons why lack of synergism either doesn’t exist or is not observed, as discussed above.

      Reviewer #2 (Significance (Required)):

      In summary, the work is relevant and interesting, but the lack of controls about the effect of the edition rises important concerns about the conclusions. It is evident from the acknowledgment section that the authors have tried without success to generate specific antibodies. An alternative possibility would be 1) to get similar results with at least two clones addressing different exons (actually, only one clone was used for DRF1 in most cases) and 2) show synergistic effects for the more important phenotypes in edited cells transfected with efficient siRNAs. This is particularly important for DRF1-defective cells, which show no phenotypes except for an increase in micronuclei. If DBF4 is not essential because the complementary activity of DRF1, impairment of DBF4 expression with siRNAs in DRF1 deficient cells should cause synergistic defects at least in DNA replication and cell viability.

      We hope we have satisfactory addressed this reviewer’s comments, by providing experimental evidence of the impairment of DBF4 and DRF1 expression/function in the engineered cells and several points for discussion addressing the lack of obvious synergy between DBF4 and DRF1.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary Assembly of the CMG helicase during DNA replication initiation is regulated by the DBF-Dependent Kinase known as CDC7 (or DDK), which also plays roles at DNA replication forks during elongation. In vertebrates, DDK has two regulatory subunits called DBF4 and DRF1. Until now, the division of labour between these two activators of CDC7 was poorly understood in mammalian cells. To address this issue, the authors used CRISPR-Cas9 to edit the DBF4 and DRF1 genes in immortalised human breast cells (MCF10A), thereby truncating key domains of the DBF4 and DRF1 proteins. The DBF4-deficient and DRF1-deficient lines are viable, whereas the double mutant was unobtainable and likely inviable, as reported previously by the authors for knockout of CDC7 in MCF10A cells. The authors compare the DBF4-deficient and DRF1-deficient lines with the CDC7 inhibitor XL413, providing evidence that DBF4 has the major role in supporting CDC7 activity in MCF10A cells compared to DRF1, in terms of DNA replication, origin firing, fork progression, and checkpoint activation. Curiously, DRF1 appears to be more important in preventing the formation of micronuclei - another phenotype seen upon inhibition of CDC7 kinase activity.

      Major comments: The data are of high quality and the key conclusions are convincing, although it is unfortunate that the authors were not able to monitor the level of DBF4 and DRF1 by immunoblotting to validate their edited cell lines. The authors previously reported using immunoprecipitation of CDC7, DBF4 and DRF1 (Tenca et al, 2007, 10.1074/jbc.M604457200) to monitor DDK subunits in HeLa cells, which would presumably have been helpful here in MCF10A cells. Nevertheless, the DNA sequence of the edited clones indicates frameshift mutations that lead to premature STOP codons, and the various phenotypes reported in this manuscript are consistent with loss of DBF4 / DRF1 function as described.

      We thank the reviewer the time an effort in carefully assessing the manuscript, and with his/her positive assessment.

      We have now included experimental evidence indicating that DBF4 expression is deficient in the DBF4 KO cells used in this study and that the interaction with DRF1 and CDC7 is deficient in the DRF1-KO cells using the same Co-IP strategy previously reported in Hela cells. Please see also the response to reviewer #2 to the same point.

      Minor comments: 1. The authors should discuss their data in the context of the recent study by Suski et al (https://doi.org/10.1038/s41586-022-04698). The latter study reported that knockout of DBF4 in mouse fibroblasts impairs proliferation but is not lethal, in agreement with the present manuscript, but Suski et al also argue that CDC7 is dispensable for DNA replication in mammalian cells due to redundancy with CDK1.

      The requirement for CDC7 kinase activity for genome duplication in mammalian cells has become a contentious point of debate. CRISPR screens in more than 1000 cell lines indicate that CDC7 is a core essential gene required for proliferation (DepMap.org). Clearly human cells can clearly withstand reduced CDC7 activity, and several proteins contribute both positively and negatively to the effectiveness of CDC7 inhibition in DNA replication and cell proliferation e.g. RIF1 depletion, ATR inhibition, PTBP1 mutation. (Hiraga et al. 2017 https://doi.org/10.15252/embr.201641983 ; Rainey et al. 2020 https://doi.org/10.1016/j.celrep.2020.108096 : Jones et al. 2021 https://doi.org/10.1016/j.molcel.2021.01.004 ; Göder et al. 2023 https://doi.org/10.1016/j.isci.2023.106951).

      Specifically CDK1-phosphporylatyon of RIF1 was shown to disrupt RIF1/PP1 interaction and PP1’s ability to counteract CDC7-dependnet phosphorylation of the MCM complex (Moiseeva et al. 2019 https://doi.org/10.1073/pnas.1903418116 ; Jones et al. 2021 https://doi.org/10.1016/j.molcel.2021.01.004). Thus increased CDK1 activity can be helpful in dealing with low levels of CDC7 kinase.

      Suski et al argue that CDC7 is dispensable for DNA replication in human cells based on acute degradation of CDC7 or by its inhibition using an “Shokat type” analogue sensitive CDC7 allele. However, another study showed that DNA replication is not completed using the same approach and the same analogue sensitive allele (Jones et al. 2021 https://doi.org/10.1016/j.molcel.2021.01.004). In mouse embryonic stem cells, the Masai group had previously shown that CRE-Lox mediated inactivation of mDBF4 leads to a strong decrease of DNA synthesis and that mDBF4, like mCDC7 is essential for cell ES cells viability (Kim et al, 2002 https://doi.org/10.1093/emboj/21.9.2168 and Yamashita 2005 https://doi.org/10.1111/j.1365-2443.2005.00857.x ). Intriguingly mDRF1 has yet not been identified nor characterised. In our opinion, the simplest explanation to reconciliate the different reports is that human and mouse CDC7 are indeed required for DNA replication and for cell proliferation, but the phenotype of the most severe effects of its inhibition requires the complete loss of function of the kinase and may be delayed in time. We are happy to add these considerations in the discussion section of the revised manuscript.

      1. Some discussion of the increased frequency of micronuclei in DRF1-deficient cells compared to DBF4-deficient lines would be useful (c.f. Figure 1F-G).

      In the discussion we have suggested that the increase of micronucleated cells in the DRF1 deficient clones “could be consistent with a (DRF1) specific but not yet identified function in chromosome segregation, in the fine-tuning of DNA replication or the DNA repair process”. Of interest, CDC7 kinase was recently involved in modulating ATR function in cytokinetic abscission, and impairment of this process can lead to increase frequency of micro nucleated cells (Luessing et al. 2023 https://doi.org/10.1016/j.isci.2022.104536 ). It is possible that this new role of CDC7 could be dependent on DRF1, an hypothesis at present purely speculative, that we will be testing in the future. We are happy to add these considerations to the discussion section of the revised manuscript.

      1. It would be helpful to present actual p values in Figure 2, rather than asterisks.

      Asterisks report the range in which the p values fall into, which currently is specified in the legend. These can be substituted with actual numbers in the figures, and we will comply with the requirement of the journal in which the manuscript will be accepted.

      Reviewer #3 (Significance (Required)):

      The main strength of this manuscript is the exploration of the division of labour between DBF4 and DRF1 in human cells, regarding the roles of CDC7 kinase during DNA replication initiation, fork progression and checkpoint control. A limitation would be the failure to monitor the level of DBF4 and DRF1 in the CRISPR-edited cell lines, whilst it is also possible that the relative roles of DBF4 and DRF1 might vary in different cell types.

      Previous studies of DNA replication in Xenopus egg extracts (e.g. Takahashi et al, 2005: doi: 10.1101/gad.1339805) indicated that DRF1 is the dominant activator of CDC7. In contrast, past work from the current authors (Tenca et al, 2007, 10.1074/jbc.M604457200) indicated that DBF4 is the major partner of CDC7 in human HeLa cells, at least at the level of promoting MCM2 phosphorylation (the only parameter monitored in the previous study, whereas the present manuscript goes much deeper into the various roles of CDC7 in DNA replication control and focusses on the role of CDC7 at replication forks and in checkpoint control).

      This study should be of interest to those studying chromosome replication, checkpoints and genome integrity. It should also interest those with a more clinical perspective, due to the potential importance of CDC7 kinase inhibitors as anti-cancer agents.

      My own expertise is in the field of chromosome replication.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study assesses anatomical, behavioral, physiological, and neurochemical effects of early-life seizures in rats, describing a striking astrogliosis and deficits in cognition and electrophysiological parameters. The convincing aspects of the paper are the wide range of convergent techniques used to understand the effects of early-life seizures on behavior as well as hippocampal prefrontal cortical dynamics. While reviewers thought that the scope was impressive, there was criticism of the statistical robustness and number of animals used per study arm, as well as the lack of causal manipulations to determine cause-and-effect relationships. This paper will be of interest to neurobiologists, epileptologists, and behavioral scientists.

      We thank Joseph Gleeson as the Reviewing Editor and Laura Colgin as the Senior Editor for considering this revision of our manuscript for publication in eLife. We appreciate the positive acknowledgment of the study and the critical points raised by the reviewers. We have addressed all the excellent comments of the two reviewers, providing a detailed response for each comment. We believe that these revisions have significantly improved the quality and rigor of our study.

      We want to assure you that our experimental design was meticulously crafted, incorporating adequate control groups, and is grounded in prominent studies in systems neurophysiology focusing into early-life seizures effects, especially for capturing mild effects. We conducted statistical tests adhering to established norms and recommendations, ensuring a thorough and transparent description of the employed statistical methods. We welcome any specific suggestions to further improve this aspect.

      In fact, the concerns raised by the reviewers regarding statistical robustness may stem from a misunderstanding of the rat cohorts used in each experiment. Criticism was directed at the use of only 5 animals without a control group for acute electrophysiological recording. It is essential to clarify that this group served the sole purpose of confirming that the injection of lithium-pilocarpine would induce both behavioral and electrographic seizures. Importantly, this was a descriptive result, and no statistical test or further analysis was conducted with these data. In the revised manuscript, we have made adjustments to this description, aiming to eliminate any ambiguity, particularly addressing the issue of sample size in each experiment.

      Regarding the lack of causal manipulations, we fully agree that this approach would provide a deeper mechanistic understanding of our findings and is an essential next step. Still, developmental brain disturbances are linked to manifold intricate outcomes, so an initial observational exploration would offer insights about particular and nuanced relationships for following studies aimed at targeted interventions. In this context, our objective was to provide a comprehensive characterization of ELS effects to serve as a foundation for future research. While recognizing the relevance of causal manipulations, only a more sophisticated data analyses were able to reveal more complex aspects like specific multivariate associations and non-linear relationships that would not have been revealed by causally perturbing one or another factor at first. In the revised manuscript, we emphasized the limitation of lacking causal manipulations as well as the advantages of our approach. Also, we mentioned some possible targets for following perturbational investigations based on our findings.

      For a more detailed discussion on these matters, we invite you to review our response to reviewers.

      Reviewer 1

      In this paper, Ruggiero, Leite, and colleagues assess the effects of early-life seizures on a large number of anatomical, physiological, behavioral, and neurochemical measures. They find that prolonged early-life seizures do not lead to obvious cell loss, but lead to astrogliosis, working memory deficits on the radial arm maze, increased startle response, decreased paired pulse inhibition, and increased hippocampal-PFC LTP. There was a U-shape relationship between LTP and cognitive deficits. There is increased theta power during the awake state in ELS animals but reduced PFC theta-gamma coupling and reduced theta HPC-PFC coherence. Theta coherence seems to be similar in ACT and REM states in ELS animals while in decreases in active relative REM in controls.

      Strengths:

      The main strength of the paper is the number of convergent techniques used to understand how hippocampal PFC neural dynamics and behavior change after early-life seizures. The sheer scale, breadth, and reach of the experiments are praiseworthy. It is clear that the paper is a major contribution to the field as far as understanding the impact of early-life seizures. The LTP findings are robust and provide an important avenue for future study. The experiments are performed carefully and the analysis is appropriate. The paper is well-written and the figures are clear.

      We express our gratitude to Reviewer #1 for conducting a thoughtful and comprehensive review of our manuscript. We sincerely value both the constructive criticisms provided and your acknowledgment of the manuscript's strengths.

      Weaknesses:

      The main weakness of the paper is the lack of causal manipulations to determine whether prevention or augmentation of any of the findings has any impact on behavior or cognition. Alternatively, if other manipulations would enhance working memory in ELS animals, it would be interesting to see the effects on any of these parameters measured in the paper.

      We sincerely appreciate the insightful comments from Reviewer #1 regarding the potential benefits of including causal manipulations in our study. We wholeheartedly agree that such manipulations can provide a deeper understanding of the mechanistic underpinnings of the observed relationships and represent a crucial next step in our research trajectory.

      Our primary objective in this study was to establish a comprehensive framework through observational examinations, exploring intricate relationships across various neurobiological and behavioral variables in the aftermath of early-life seizures (ELS). By identifying these associations, our work aims to provide a foundation for future investigations that can delve into targeted interventions.

      While we acknowledge the importance of causal manipulations, we would like to underscore the advantages of our initial multivariate correlational study. Importantly, developmental brain disturbances have lasting impacts affecting multiple biological outcomes that may have intricate relationships between themselves. Firstly, although some neurobiological variables stood out from the comparisons of group means, this did not reveal some nuanced relationships within the data. The complexity of the relationships we uncovered, involving behavior, cognition, immunohistochemistry, plasticity, neurochemistry, and network dynamics, required a more elaborate analytical approach. Only through sophisticated data analysis techniques, we were able to dissect important peculiarities, such as the robust multivariate association between brain-wide astrogliosis and sensorimotor impairments, as well as non-linear relationships, such as the inverted-U relationship between plasticity and working memory. These nuances might not have been fully revealed through causal manipulations, since several variables are strongly related and consequently can affect several outcomes, leading to a false conclusion of direct causality.

      Nevertheless, we acknowledge the understatement of the limitation of lacking causal manipulations in our manuscript. To address this, we have included a dedicated section in the discussion highlighting this limitation. We emphasize the advantages of this exploratory phase, supported by a review of the literature on cause-and-effect studies that align with our findings. Additionally, we speculate on promising targets for future cause-and-effect studies based on our findings. For instance, we hypothesize that enhancing plasticity may improve working memory in control subjects, while attenuating plasticity might have a similar effect in ELS subjects. Furthermore, we propose that reactive astrogliosis and concurrent neuroinflammatory processes likely underlie sensorimotor changes in the ELS group. Lastly, we suggest that dopaminergic antagonism in the ELS group could normalize behavioral deficits, prevent the exaggerated LTP induction of the HPC-PFC pathway, reestablish the state-dependent network dynamics, and desensitize the dopaminergic response.

      [...]Also, I find the sections where correlations and dimensionality reduction techniques are used to compare all possible variables to each other less compelling than the rest of the paper (with the exception of the findings of U-shaped relationship of cognition to LTP). In fact, I think these sections take away from the impact of the actual findings.

      We appreciate the reviewer's feedback and would like to emphasize the significance of the multivariate analysis conducted in our study. Multivariate analysis extends beyond bivariate correlations and is the only type of analysis capable of comprehending the relation of data in a multidimensional way, offering a comprehensive approach to understanding complex relationships among multiple variables. By employing techniques such as principal component analysis (PCA), generalized linear models (GLM), and canonical correlation analysis (CCA), we aimed to unravel intricate patterns of covariance that explore how different variables collectively contribute to the observed outcomes and assess the impact of each independent variable (predictor) on the dependent variable (the variable to be predicted or explained). Importantly, it enables us to control for potential confounding factors by keeping all other variables constant.

      While we acknowledge that these sections may appear intricate, their inclusion is indispensable for a comprehensive understanding of the diverse variables associated with SE outcomes. We believe that these analyses offer valuable insights into the intricate dynamics of our study, providing a more holistic perspective on the altered spectrum induced by early-life seizures (ELS).

      Regarding the reviewer's observations about the impact of the U-shaped relationship between cognition and LTP, we have made graphical and textual adjustments to emphasize the significance of these findings, aiming to enhance their clarity and impact within the broader context of our research. We trust that these modifications contribute to a more compelling presentation of our results.

      […]Finally, the apomorphine section seemed to hang separately from the rest of the paper and did not seem to fit well.

      We appreciate the Reviewer #1 feedback on the apomorphine section. In order to address this point, we carefully rewrote our rationale before the results to clarify our hypothesis and chosen methodology. In our work, we performed the apomorphine experiment as a logical next step of previous data. We showed that ELS rats display REM-like oscillatory dynamics during active behavior, similar to genetically and pharmacologically hyperdopaminergic mice (Dzirasa et al., 2006). Furthermore, other results also indicated possible dopamine neurotransmission alterations, such as working memory deficits, hyperlocomotion, PPI deficits, aberrant HPC-PFC LTP, and abnormal PFC gamma coordination. Therefore, we hypothesized that ELS animals would present a state of hyperdopaminergic activity. Among the possible methodologies to investigate the hyperdopaminergic state, we choose the apomorphine sensitivity test, which is classically used and induces unambiguous behavior and neurochemical alterations in hyperdopaminergic rodents (Duval, 2023; Ellenbroek & Cools, 2002).

      Reviewer 1 (Recommendations For The Authors):

      (1) It would be useful to stain for other GABAergic interneuron markers such as somatostatin, VIP, CCK.

      (2) The authors refer to neuroinflammation but they are really referring to reactive astrogliosis. I would also suggest staining for microglial markers.

      (3) The duration of chronic electrographic seizures in ELS animals should also be calculated and presented.

      (4) Word usage: the authors frequently use the word "presents" when "demonstrates" would be more appropriate

      (1) We appreciate your insight into staining for other GABAergic interneuron markers such as somatostatin, VIP, CCK. While investigating additional interneuron types is indeed relevant, it was not the primary focus of this study for several reasons: 1) The overall neuron density, assessed through NeuN immunostaining, revealed no differences between controls and early life seizure (ELS) groups, even in brain regions susceptible to neuron death after SE (i.e., CA1). Therefore, differences in interneurons, which are more resistant to death in SE and constitute approximately 20% of the cells, are unlikely. 2) Among all interneuron subtypes, Parvalbumin-positive (PV+) interneurons represent a substantial population and are susceptible to various stressors. In the hippocampus, 24% of GABAergic neurons are PV+, whereas 14% are SST+, 10% are CCK+, and VIP+ are less than 10% (Freund and Buzsaki, 1996). Consequently, we considered PV+ interneurons to be a more sensitive subpopulation for evaluating the effects of SE. As they showed no significant difference, we do not believe that assessing smaller subtypes, such as VIP+ or CCK+ cells, would yield significant differences.

      (2) While we often see activated microglia in hippocampal sclerosis, these cells are only slightly increased in cases without hippocampal sclerosis (which are similar to our animals), as we previously published (Peixoto-Santos et al., 2012). Astrocytes are a better marker for the epileptogenic zone, as are increased in epileptogenic zones without neuron loss and are also important for controlling neuronal activity by neurotransmitter recycling and ion buffering. In fact, our present model is very similar to the mesial temporal lobe epilepsy patients with gliosis-only, which are characterized by only presenting increased reactive astrogliosis in the hippocampus, without cell loss, and also present changes in innate inflammatory response related to the presence of reactive astrocytes (Grote et al., 2023).

      (3) We have performed these calculations and added this information to the revised manuscript.

      (4) We thank the reviewer for the word usage recommendation. Indeed, we frequently used “present” throughout the manuscript to describe the observations and patterns the groups “exhibited” or “showed”. However, we believe this is truly not the most appropriate usage in the Discussion when we describe the multivariate latent factors, as we did not “present” them, but rather, we “demonstrated” their existence and significance through our analysis. We rewrote these sentences and hope this is the point the reviewer was referring to.

      References:

      Duval F. Systematic review of the apomorphine challenge test in the assessment of dopaminergic activity in schizophrenia. Healthcare. 2023 11 (1487): 1-11. doi: 10.3390/healthcare11101487.

      Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MAL. Dopaminergic control of sleep-wake states. Journal of Neuroscience. 2006 26:10577–10589. doi:10.1523/JNEUROSCI.1767-06.2006.

      Freund TF, Buzsáki G. Interneurons of the hippocampus. Hippocampus. 1996;6(4):347-470. doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I. PMID: 8915675.

      Ellenbroek BA & Cools AR. Apomorphine susceptibility and animal models for psychopathology: genes and environment. Behavior Genetics. 2002 32 (5): 349-361. doi: 10.1023/a:1020214322065.

      Grote A, Heiland DH, Taube J, Helmstaedter C, Ravi VM, Will P, Hattingen E, Schüre JR, Witt JA, Reimers A, Elger C, Schramm J, Becker AJ, Delev D. 'Hippocampal innate inflammatory gliosis only' in pharmacoresistant temporal lobe epilepsy. Brain. 2023 Feb 13;146(2):549-560. doi: 10.1093/brain/awac293. PMID: 35978480; PMCID: PMC9924906.

      Peixoto-Santos JE, Galvis-Alonso OY, Velasco TR, Kandratavicius L, Assirati JA, Carlotti CG, Scandiuzzi RC, Serafini LN, Leite JP. Increased metallothionein I/II expression in patients with temporal lobe epilepsy. PLoS One. 2012;7(9):e44709. doi: 10.1371/journal.pone.0044709. Epub 2012 Sep 18. Erratum in: PLoS One. 2016;11(7):e0159122. PMID: 23028585; PMCID: PMC3445538.

      Reviewer 2

      In this manuscript, the authors employ a multilevel approach to investigate the relationship between the hippocampal-prefrontal (HPC-PFC) network and long-term phenotypes resulting from early-life seizures (ELS). Their research begins by establishing an ELS rat model and conducting behavioral and neuropathological studies in adulthood. Subsequently, the manuscript delves into testing hypotheses concerning HPC-PFC network dysfunction. While the results are intriguing, my enthusiasm is tempered by concerns related to the logical flow

      We thank the reviewer for bringing attention to the logical flow of the manuscript. Given the diverse array of behavioral and neurobiological variables examined in our study obtained through various methods and measures, we utterly recognize the utmost importance of a clear and coherent logical flow to provide a comprehensive understanding of the overall narrative.

      Our goal was to articulate the neurobiological findings in a manner that underscores their convergence of mechanisms, revealing a cohesive relationship between early-life seizure, cognitive deficits, sensorimotor impairments, abnormal network dynamics, aberrant plasticity, neuroinflammation and dysfunctional dopaminergic transmission.

      Briefly, an outline of our narrative could be summarized in the highlights:

      (1) ELS induces sensorimotor alterations and working memory deficits.

      (2) ELS does not induce neuronal loss, so neurobiological underpinnings may be molecular and functional.

      (3) ELS induces brain-wide astrogliosis and exaggerated HPC-PFC long-term plasticity.

      (4) ELS does not induce neuronal loss, so neurobiological underpinnings may be molecular and functional.

      (5) Sensorimotor alterations are more correlated to astrogliosis, while cognitive deficits to altered HPC-PFC plasticity.

      (6) ELS-induced functional alterations may also be observable in freely moving subjects. ELS induces state-dependent alterations in the HPC-PFC network dynamics, such as increased hippocampal theta and abnormal PFC gamma coordination during behavioral activity.

      (7) ELS leads to REM-ACT similarity, previously reported in hyperdopaminergic mice, indicating dopaminergic dysfunction.

      (8) ELS exhibits altered dopaminergic transmission and behavioral sensitivity that mirror the initial sensorimotor findings.

      (9) The literature establishes an inverted-U relationship between dopamine and cognition and PFC plasticity, which may explain our finding of an inverted-U relationship between working memory and HPC-PFC LTP across CTRL and ELS rats.

      To address this concern, we have made revisions to enhance the logical flow, ensuring a more seamless transition between the different sections of the Results by presenting clearer links between observations and following investigations. We hope these changes contribute to a more straightforward rationale and easily understandable presentation of our hypotheses and results.

      Focus on Correlations: The manuscript primarily highlights correlations as the most significant findings. For instance, it demonstrates that ELS induces cognitive and sensorimotor impairments. However, it falls short of elucidating why these deficits are specifically linked to HPC-PFC synaptic plasticity/network. Furthermore, the manuscript mentions the involvement of other brain regions like the thalamus in the long-term outcomes of ELS based on immunohistochemistry data.

      Thank you for your insightful comments, which allowed us to provide further clarification on our study's focus and findings. Our primary goal was to delve into the electrophysiological alterations within the HPC-PFC pathway. The rationale behind this choice lies in the hypothesis that, even in the absence of significant neuronal loss, functional changes in circuits closely linked to the cognitive and behavioral aspects under investigation could be identified.

      While we concentrated our electrophysiological investigation on the HPC-PFC pathway due to its well-established functional correlates in existing literature, it is essential to highlight that our data reveal broader alterations in neural circuitry. Notably, we observed an increase in GFAP in the entorhinal cortex and thalamic reticular nucleus, along with changes in the dopaminergic release within the VTA-NAc pathway. These findings suggest that the impact of early-life seizures extends beyond the HPC-PFC circuit.

      While we recognize the relevance of other brain circuits in the outcomes of ELS, we argue for a specific role of the HPC-PFC circuit in the outcomes of ELS. We will detail the supporting evidence and arguments that specifically link the HPC-PFC function to our ELS-related observations in a later comment regarding the "overinterpretation" of the HPC-PFC role. To better convey these important nuances, we have made specific modifications to the results and in the discussion section to underscore the broader implications of our findings, providing a more comprehensive understanding of the study's scope and outcomes.

      […]This raises questions about the subjective nature and persuasiveness of the statistical studies presented.

      All statistical analyses were carefully applied based on the literature and following well-established precepts and precautions. Specifically, we constructed the experimental design for univariate inferential statistics for the data related to behavioral tests, synaptic plasticity, immunohistochemistry, oscillatory activity, and dopaminergic sensitization. However, we also submitted our data to multivariate statistical analysis, which is recommended in cases with a considerable amount of data, and intend to investigate possible hidden effects. In this situation, multivariate analyses are inherently exploratory due to the possibility of using multiple measurements for each phenomenon investigated. Nevertheless, their application is not subjective and follows the same statistical rigor as univariate analyses. We firmly believe that abstaining from exploring these data, would not reach the full potential of this analytical method in dissecting the multidimensional associations within our dataset. In order to eliminate any doubt regarding the objectivity in the choice and application of statistics, we carefully rewrote the methods, highlighting the details of statistical rigor even more.

      Sample Size Concerns: The manuscript raises concerns about the adequacy of sample sizes in the study. The initial cohort for acute electrophysiology during ELS induction comprised only 5 rats, without a control group. Moreover, the behavioral tests involved 11 control and 14 ELS rats, but these same cohorts were used for over four different experiments. Subsequent electrophysiology and immunohistochemistry experiments used varying numbers of rats (7 to 11). Clarification is needed regarding whether these experiments utilized the same cohort and why the sample sizes differed. A power analysis should have been performed to justify sample sizes, especially given the complexity of the statistical analyses conducted.

      We appreciate the reviewer's thoroughness and considerations regarding the sample sizes used in our study. The concerns raised about statistical robustness seem to stem from a lack of clarity in delineating the rat cohorts used in each experiment. It is encouraging to note that several studies in the field of neurophysiology, employing similar analyses, utilize a sample size similar to what was used in our research. The choice of the sample size was based on a thorough analysis of the existing literature, considering specific experimental demands, the complexity of employed techniques, and the need to achieve statistically robust results. In response to these concerns and to enhance clarity on the sample sizes, we have made several modifications (highlighted in red) in the text. Below, we provide details for each animal cohort utilized:

      Cohort 1 - Acute Electrophysiology

      The decision to use only 5 animals without a control group for acute electrophysiological recording aimed specifically to confirm that the injection of lithium-pilocarpine would induce both behavioral and electrographic seizures. It is crucial to note that this was a descriptive result and a methodological control of the ELS model. Besides, no statistical test or further analysis was conducted on these data. We maintain the belief that a group of 5 animals is sufficient to demonstrate that the protocol induces electrographic seizures, and introducing a control group was considered unnecessary to show that saline injection does not induce electrographic seizures.

      Cohort 2 - Behavior, LTP Recording, and Immunohistochemistry

      Initially, 14 (ELS) and 11 (CTRL) rats were used for behavior assessment. The reduction in sample size for LTP and immunohistochemistry experiments was influenced by practical challenges, including mortality during LTP surgery and issues with immunohistochemical staining that hindered a proper analysis for some animals.

      Cohort 3 - Chronic Freely-Moving Electrophysiology

      A new cohort of animals (n=6 and 9 for CTRL and ELS, respectively) was used specifically for freely-moving electrophysiological data.

      Cohort 4 - Behavioral Sensitization to Psychostimulants

      A fourth cohort was utilized for assessing behavioral sensitization to psychostimulants (CTRL n=15 and ELS n=14). The reduced sample size for neurotransmitter analysis (CTRL n=8 and ELS n=9) was a deliberate selection of a subsample to ensure a sufficient sample for quantification while maintaining statistical validity

      Overinterpretation of HPC-PFC Network Dysfunction: The manuscript potentially overinterprets the role of HPC-PFC network dysfunction based on the results.

      We appreciate the insight from Reviewer #2 regarding the potential overinterpretation of the role of the hippocampal-prefrontal cortex (HPC-PFC) network dysfunction in the various alterations observed after ELS.

      The significance of HPC-PFC plasticity and network function has been extensively documented concerning cognitive, affective, and sensorimotor functions, as well as in models of neuropsychiatric diseases. Our recent review (Ruggiero et al., 2021) compiles these findings. Specifically, the HPC-PFC network has been linked to spatial working memory through a series of causal and correlational studies conducted by Floresco et al. and Gordon et al. These findings make the HPC-PFC pathway a plausible candidate for underlying alterations associated with working memory, consistent with our observation of exaggerated HPC-PFC LTP associated with poorer performance in the ELS group. Regarding the immunohistochemical observations, we concur with Reviewer #2 that these findings suggest broader-scale brain alterations related to sensorimotor dysfunction beyond the HPC-PFC circuitry. Surely, we acknowledge that these large-scale alterations may underlie brain-wide network functional changes.

      In our network dynamics study arm, we investigated HPC-PFC oscillatory activity, allowing us to discuss potential relationships between abnormal plasticity (verified in the second study arm) and network dynamics. It is important to note that while there is some anatomical specificity to the LFPs recorded in the HPC and PFC, these activities may represent larger-scale limbic-cortical dynamics. The intermediate HPC exhibits a significant influence from both dorsal and ventral HPC, and the prelimbic PFC is intricately related to both hippocampal and thalamic oscillations exhibiting under-demand state-dependent synchrony. Additionally, the state maps used in our study were initially described to distinguish states at a global forebrain network level. Even in our past studies, we have described HPC-PFC patterns of network activity (Marques et al., 2022a) that later were found to represent a part of a brain-wide synchrony pattern (Marques et al., 2022b). However, most of our findings on oscillatory dynamics were centered around theta oscillations, a well-established brain-wide activity that originates and spreads from the hippocampus and are present in the HPC-PFC circuit during activity.

      In conclusion, we believe the correlations between HPC-PFC LTP and working memory, as well as the specific alterations of theta coordinated activity, support a particular role of the HPC-PFC network dysfunction in the effects of ELS. However, the brain-wide immunochemical alterations are plausible indications of larger-scale dysfunctional networks. To address this issue, we emphasized in the discussion of network findings that the immunohistochemical and neurochemical findings endorse the need to investigate ELS effects on larger networks.

      Notably, cognitive deficits are described as subtle, with no evidence of learning deficits and only faint working memory impairments. However, sensorimotor deficits show promise. Consequently, it's essential to justify the emphasis on the HPC-PFC network as the primary mechanism underlying ELS-associated outcomes, especially when enhanced LTP is observed. Additionally, the manuscript seems to sideline neuropathological changes in the thalamus and the thalamus-to-PFC connection. The analysis lacks a direct assessment of the causal relationship between HPC-PFC dysfunction and ELS-associated outcomes, leaving a multitude of multilevel analyses yielding potential correlations without easily interpretable results.

      We thank Reviewer #2 for the thorough review and insightful comments. To better grasp the context, it is crucial to consider this characterization within the scope of our experimental design and expected outcomes. Unlike epilepsy models involving adult animals or interventions causing pronounced neuronal loss and structural modifications, our study was intentionally designed to explore moderate behavioral alterations. In fact, the mild behavioral alterations observed in ELS models and the lack of neuronal loss guided our focus on investigating changes in HPC-PFC communication.

      While our observed cognitive deficits may be milder compared to certain models, it is imperative to underscore their robustness and clinical relevance. These findings have been consistently replicated globally across various experimental models, encompassing ELS induced by hyperthermia (Chang et al., 2003; Kloc et al., 2022), kainic acid (Statsfrom et al. 1993), flurothyl (Karnam et al., 2009a; 2009b), and hypoxia (Najafian et al., 2021; Hajipour et al., 2023). Mild cognitive deficits were also evident by other research groups using the pilocarpine model in P12 (Mikulecká et al., 2019; Kubová et al., 2013; Kubová et al., 2002). Furthermore, our group replicated the working memory deficit results using an alternative paradigm (the T-maze) and a different rat strain (Sprague Dawley), enhancing the reliability of our observations (D’Agosta et al., 2023).

      The clinical perspective gains importance, considering that cognitive effects of ELS may be less severe than those in patients with long-term epilepsy. In fact, the majority of patients with childhood epilepsy exhibit mild cognitive impairment as the most common grade of severity - more than two times the rate of severe cognitive impairment (Sorg et al., 2022). Investigating the mechanisms underlying these mild cognitive changes is crucial for shedding light on neurobiological aspects not fully understood, thereby expanding our comprehension of the consequences of ELS.

      We recognize the challenges associated with conducting causal experiments in neuroscience, especially in long-term and chronic alterations as seen in our model. Isolating modifications of specific activities is indeed intricate. However, it's essential to acknowledge that neuroscience progress has not solely relied on causal experiments but has significantly advanced through correlational observations. Our findings serve as a foundational step in comprehending the repercussions of ELS, proposing mechanisms and circuits that necessitate further in-depth dissection and study in the future. We have integrated these considerations into the discussion section of the manuscript to enhance clarity.

      Overall, while the manuscript presents intriguing findings related to the HPC-PFC network and ELS outcomes, it requires a more rigorous experimental design[…]

      We thank the reviewer for acknowledging our intriguing findings. Regarding the experimental design, we are confident that all the manuscript hypotheses, design, and execution of experiments were rigorously based on the literature and carried out with all necessary controls. As stated earlier, we constructed the experimental design for univariate inferential statistics and explored associations between variables using multivariate statistics. Specifically, we achieved a rigorously experimental design following a series of guidelines. First, the planning of the sample size in each experiment and their respective controls were based on mild effects from the ELS literature. As previously indicated, the only experiment with one group was just the description of the behavioral effects and electrographic seizures after the acute injection of lithium-pilocarpine. Given the exhaustive replication of these data in the ELS literature, this result was presented descriptively as a methodological control. Second, detailed descriptions of statistics were made in both methods and results, always indicating positive and negative results. Notably, the experimental designs used in the work do not correspond to any novelty or radicalization, strictly following the literature of the field. However, new indications and references about the experimental accuracy were added to the manuscript to resolve any doubts regarding objectivity.

      References:

      Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC. Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol. 2003 Dec;54(6):706-18. doi: 10.1002/ana.10789. PMID: 14681880.

      D'Agosta R, Prizon T, Zacharias LR, Marques DB, Leite JP, Ruggiero RN. Alterations in hippocampal-prefrontal cortex connectivity are associated with working memory impairments in rats subjected to early-life status epilepticus. In: NEWROSCIENCE INTERNATIONAL SYMPOSIUM, 2023, Ribeirão Preto. Poster.

      Hajipour S, Khombi Shooshtari M, Farbood Y, Ali Mard S, Sarkaki A, Moradi Chameh H, Sistani Karampour N, Ghafouri S. Fingolimod Administration Following Hypoxia Induced Neonatal Seizure Can Restore Impaired Long-term Potentiation and Memory Performance in Adult Rats. Neuroscience. 2023 May 21;519:107-119. doi: 10.1016/j.neuroscience.2023.03.023. Epub 2023 Mar 28. PMID: 36990271.

      Karnam HB, Zhou JL, Huang LT, Zhao Q, Shatskikh T, Holmes GL. Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol. 2009 Jun;217(2):378-87. doi: 10.1016/j.expneurol.2009.03.028. Epub 2009 Apr 2. PMID: 19345685; PMCID: PMC2791529.

      Karnam HB, Zhao Q, Shatskikh T, Holmes GL. Effect of age on cognitive sequelae following early life seizures in rats. Epilepsy Res. 2009 Aug;85(2-3):221-30. doi: 10.1016/j.eplepsyres.2009.03.008. Epub 2009 Apr 22. PMID: 19395239; PMCID: PMC2795326.

      Kubová H, Mareš P. Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience. 2013 Apr 3;235:232-49. doi: 10.1016/j.neuroscience.2012.12.055. Epub 2013 Jan 7. PMID: 23305765.

      Kloc ML, Marchand DH, Holmes GL, Pressman RD, Barry JM. Cognitive impairment following experimental febrile seizures is determined by sex and seizure duration. Epilepsy Behav. 2022 Jan;126:108430. doi: 10.1016/j.yebeh.2021.108430. Epub 2021 Dec 10. PMID: 34902661; PMCID: PMC8748413.

      Kubová H, Mares P, Suchomelová L, Brozek G, Druga R, Pitkänen A. Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur J Neurosci. 2004 Jun;19(12):3255-65. doi: 10.1111/j.0953-816X.2004.03410.x. PMID: 15217382.

      Marques DB, Ruggiero RN, Bueno-Junior LS, Rossignoli MT, and Leite JP. Prediction of Learned Resistance or Helplessness by Hippocampal-Prefrontal Cortical Network Activity during Stress. The Journal of Neuroscience. 2022a 42 (1): 81-96.. https://doi.org/10.1523/jneurosci.0128-21.2021.

      Marques DB, Rossignoli MT, Mesquita BDA, Prizon T, Zacharias LR, Ruggiero RN and Leite JP. Decoding fear or safety and approach or avoidance by brain-wide network dynamics abbreviated. bioRxiv. 2022b https://doi.org/10.1101/2022.10.13.511989.

      Mikulecká A, Druga R, Stuchlík A, Mareš P, Kubová H. Comorbidities of early-onset temporal epilepsy: Cognitive, social, emotional, and morphologic dimensions. Exp Neurol. 2019 Oct;320:113005. doi: 10.1016/j.expneurol.2019.113005. Epub 2019 Jul 3. PMID: 31278943.

      Najafian SA, Farbood Y, Sarkaki A, Ghafouri S. FTY720 administration following hypoxia-induced neonatal seizure reverse cognitive impairments and severity of seizures in male and female adult rats: The role of inflammation. Neurosci Lett. 2021 Mar 23;748:135675. doi: 10.1016/j.neulet.2021.135675. Epub 2021 Jan 28. PMID: 33516800.

      Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C and Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Frontiers in Cellular Neuroscience. 2021 15 (October): 1–23. https://doi.org/10.3389/fncel.2021.732360.

      Sorg AL, von Kries R, Borggraefe I. Cognitive disorders in childhood epilepsy: a comparative longitudinal study using administrative healthcare data. J Neurol. 2022 Jul;269(7):3789-3799. doi: 10.1007/s00415-022-11008-y. Epub 2022 Feb 15. PMID: 35166927; PMCID: PMC9217877.

      Stafstrom CE, Chronopoulos A, Thurber S, Thompson JL, Holmes GL. Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia. 1993 May-Jun;34(3):420-32. doi: 10.1111/j.1528-1157.1993.tb02582.x. PMID: 8504777.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      This is a short but important study. Basically, the authors show that α-synuclein overexpression's negative impact on synaptic vesicle recycling is mediated by its interaction with E-domain containing synapsins. This finding is highly relevant for synuclein function as well as for the pathophysiology of synucleinopathies. While the data is clear, functional analysis is somewhat incomplete.

      (1) The authors should present a clearer dissociation of endocytosis and exocytosis under the various conditions they study. They should quantify the rate of rise and decay of pHluorin signals. 2. In addition, I strongly recommend a few additional experiments with and without a vATPase inhibitor such as bafilomycin to estimate the relative effects on exo- vs. endocytosis. As the authors are aware bafilomycin will mask the re-acidification /endocytosis component, thus revealing pure exocytosis and thus enabling quantification of endocytosis with minimal contamination from exocytosis.

      In the revised version, we analyzed and quantified exocytosis and endocytosis separately, with bafilomycin experiments, as the reviewer suggested (new data, Fig. 1- Fig. Supp. 1A-B). Overexpression of human alpha-synuclein only attenuated exocytosis in neurons that also expressed synapsins (WT neurons and synapsin TKO neurons transduced with synapsin Ia). In parallel, we also examined endocytosis by calculating the time-constant of the decay in the fluorescence of sypHy during the endocytotic phase (Fig. 1- Fig. Supp. 1C-E). Previous studies have shown that after brief stimulus-trains – like those used in our study (20Hz/300AP) – most endocytosis occurs after the cessation of stimulation 1. Expression of human alpha-synuclein did not alter the endocytosis time-constant in any of our experiments. To summarize, the interaction of alpha-synuclein with the synapsin E domain was required for alpha-synuclein induced attenuation of exocytosis, but not endocytosis.

      Reviewer #2

      ...The paper will be improved significantly if additional experiments are added to expand and provide a more mechanistic understanding of the effect of α-syn and the intricate interplay between synapsin, α-syn, and the SV. For an enthusiastic reader, the manuscript as it looks now with only 3 figures, ends prematurely. Some of the experiments above or others could complement, expand and strengthen the current manuscript, moving it from a short communication describing the phenomenon to a coherent textbook topic. Nevertheless, this work provides new and exciting evidence for the regulation of neurotransmitter release and its regulation by synapsin and α-syn.

      (1) Did the authors try to attach E-domain for example to synapsin Ib and restore α-syn inhibition with synapsin Ib-E?

      This is an interesting idea, but in previous studies, we found that synapsin Ib does not associate with synaptic vesicles2, so it will not be present at the right location to be able to restore alpha-synuclein induced synaptic attenuation. We have also seen that this mis-localization alters synaptic properties (unpublished).

      (2) Was the expression level of Synapsin-IaScrE examined and compared to WT Synapsin-Ia in Fig 3?

      Yes, this data is now shown in Fig. 3-Fig. Supp. 1.

      (3) Were SVs dispersed in α-syn overexpression as predicted?

      We interpret the reviewer’s question and reasoning as follows. If alpha-synuclein binds to the E-domain of synapsin, a prediction in the alpha-synuclein over-expression scenario is that the overabundance of alpha-synuclein molecules would bind to and sequester the E-domain synapsins away from synaptic vesicles. In the absence of E-domain synapsins, the synaptic-vesicle clustering effects of synapsins would be lost, and there would be dispersion of synaptic vesicles. We tested this prediction, which is now shown in an additional figure (new data, Fig. 4). Indeed, the AAV-mediated over-expression of alpha-synuclein leads to a dispersion of synaptic vesicles, and this dispersion is dependent on synapsins Ia and Ib, but not IIa and IIb (please see Fig. 4D-E in the revised manuscript). Appropriate text is also added, starting with “Previous studies have shown that loss of all synapsins...” presents this data and interprets it.

      (4) How does this study coincide with the effects of α-syn on fusion pore and endocytosis? This should be at least discussed. It is also possible that the effects of α-syn on endocytosis might affect the results as if endocytosis is affected, SVs number and distribution will be also affected.

      It is difficult to reconcile our data with the idea that alpha-synuclein facilitates fusion-pore opening, as proposed by the Edwards lab 3. In fact, its difficult to reconcile this concept with their own previous data, showing that alpha-synuclein over-expression attenuates SV-recycling 4. As mentioned above, modulation of endocytosis does not seem to be a major factor in our experiments, though this does not rule out a physiologic role for alpha-synuclein in endocytosis, since all our experiments are based on over-expression paradigms. Future experiments looking at phenotypes after acute alpha-synuclein knockdown may provide more clarity. In any case, there are many purported roles of alpha-synuclein, and this is now mentioned in the last paragraph (starting with Additionally, -syn has been implicated…”

      (5) What happened after stimulation when synapsin is detached from SV, does α-syn continues to be linked to it?

      The fate of alpha-synuclein after stimulation is unclear in our experiments. Previous experiments suggest that while both synapsin and alpha-synuclein detach from the SV cluster during stimulation, synapsin returns to synapses while alpha-synuclein does not 5. However, our more recent experiments (unpublished) suggest that the activity-induced dispersion of alpha-synuclein might be phosphorylation-dependent, and that over-expression of alpha-synuclein may not be the best setting to evaluate protein dispersion. We hope to answer this question more rigorously using alpha-synuclein knock-in constructs.

      (6) The experiment with E-domain fused to syPhy assumes that α-syn will still be bound to the SV. So how does α-syn inhibit ST?

      The goal of this experiment was to force the synapsin E-domain to be in a location where it would normally be present – i.e. surface of the synaptic vesicle – by tagging it to sypHy (sypHy-E), and ask if this forced-retention would be sufficient to reinstate the alpha-synuclein mediated attenuation of SV-recycling (as shown in Fig. 3F, it does). Please note that the sypHy-E in these experiments does target to the synapses (new data, Fig. 3-Fig. Supp. 2D). In this context, we are not sure what the reviewer means by “So how does a-syn inhibit synaptic transmission?” We don’t think that alpha-synuclein needs to unbind from the SVs in order to inhibit synaptic transmission. Overall, we think that alpha-synuclein needs to cooperate with synapsins to perform its function, but as mentioned above and in the manuscript, the precise role of alpha-synuclein in this process is still unclear.

      (7) An interesting experiment will be the expression of the isolated E-domain and examining blockage of α-syn inhibition and disruption of synapsin- α-syn interaction. Have the authors examined it as was done in other models?

      We did do the experiment where we only over-expressed the isolated synapsin E-domain in neurons. We were thinking that perhaps the E-domain would have a dominant-negative effect on SV-clustering, as it did in the lamprey and other model-systems, where the E-peptide was directly injected into the axon. However, we found that in cultured hippocampal neurons, the over-expressed E-domain behaves like a soluble protein and is not enriched in synapses (see new data, Fig. 3-Fig. Supp. 2B). Also, the over-expressed E-domain cannot reinstate the synaptic attenuation induced by alpha-synuclein (new data, Fig. 3-Fig. Supp. 2C), likely because the E-domain does not target to synapses. Actually, this is why we did the syPhy-E domain experiment in the first place, to ensure that the E-domain was in the right location to have an effect.

      (8) A schematic model/scheme providing a mechanistic view of the interplay between the proteins is essential and can improve the paper.

      The only model we can confidently make right now would be stick-figures showing the site where alpha-synuclein C-terminus binds to synapsin, which is obviously not very insightful. As noted above (and in the revised version), several different functions have been attributed to alpha-synuclein, and the precise role of alpha-synuclein/synapsin interactions in regulating the SV-cycle is unclear. We hope to create a better model after getting some more data from us and our colleagues working on this challenging problem.

      References

      (1) Kononenko NL & Haucke V. (2015) Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 85, 484-496.

      (2) Gitler D, Xu Y, Kao H-T, Lin D, Lim S, Feng J, Greengard P & Augustine GJ. (2004) Molecular Determinants of Synapsin Targeting to Presynaptic Terminals. J. Neurosci. 24, 3711-3720.

      (3) Logan T, Bendor J, Toupin C, Thorn K & Edwards RH. (2017) α-Synuclein promotes dilation of the exocytotic fusion pore. Nat Neurosci 20, 681-689.

      (4) Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA & Edwards RH. (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66-79.

      (5) Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA & Edwards RH. (2005) Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosci 25, 10913-10921.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors conducted two tasks at 300 days of separation. First, a social perception task, where Ps responded whether a pictured person either deserved or needed help. Second, an altruism task, where Ps are offered monetary allocations for themselves and a partner. Ps decide whether to accept, or a default allocation of 20 dollars each. The partners differed in perceived merit, such that they were highly deserving, undeserving, or unknown. This categorisation was decided on the basis of a prisoner's dilemma game the partner played beforehand. "Need" was also manipulated, by altering the probability that the partner must have their hand in cold water at the end of the experiment and this partner can use the money to buy themselves out. These two tasks were conducted to assess the perception of need/merit in the first instance, and how this relates to social behaviour in the second. fMRI data were collected alongside behavioural.

      The authors present many analyses of behaviour (including DDM results) and fMRI. E.g., they demonstrate that they could decode across the mentalising network whether someone was making a need or deserving judgement vs control judgement but couldn't decode need vs deserving. And that brain responses during merit inferences (merit - control) systematically covaried with participants' merit sensitivity scores in the rTPJ. They also found relationships between behaviour and rTPJ in the altruism task. And that merit sensitivity in the perception task predicted the influence of merit on social behaviour in the altruism task.

      Strengths:

      This manuscript represents a sensible model to predict social perceptions and behaviours, and a tidy study design with interesting findings. The introduction introduced the field especially brilliantly for a general audience.

      Response: We are pleased that the reviewer found the model sensible and the findings interesting! Below, we respond to each of the reviewer’s comments/critiques.

      Weaknesses: (1) The authors do acknowledge right at the end that these are small samples. This is especially the case for the correlational questions. While the limitation is acknowledged at the end, it is not truly acknowledged in the way that the data are interpreted. I.e. much is concluded from absent relationships, where the likelihood of Type II error is high in this scenario. I suggest that throughout the manuscript, authors play down their conclusions about absence of effects.

      Response: We agree with the reviewer that the limitation of small samples should be adequately reflected in the interpretation of the data. We have therefore added cautionary language to the interpretation of the correlational effects in several places of the revised manuscript. For example, we now state: “However, this absence of effects for need ought to be interpreted with caution, given the comparatively small sample size.” (pg. 33) and “As mentioned above, we cannot rule out the possibility that null findings may be due to the comparatively small sample size and should be interpreted cautiously (also see discussion)” (pg. 34-35).

      (2) I found the results section quite a marathon, and due to its length I started to lose the thread concerning the overarching aims - which had been established so neatly in the introduction. I am unsure whether all of these analyses were necessary for addressing the key questions or whether some were more exploratory. E.g. it's unclear to me what one would have predicted upfront about the decoding analyses.

      Response: We acknowledge and share the reviewer’s concern about the length of the results section and potential loss of clarity. Regarding the decoding analyses, we want to clarify that they were conducted as a sanity check to compare against the results of the univariate analysis. We didn’t have apriori hypotheses regarding these supplemental decoding analysis. We have clarified this issue in the revised version of the manuscript and moved the decoding analyses fully to the supplemental material to streamline the main text. The remaining results reported in the manuscript are indeed all based on apriori, key questions (unless specified otherwise, for example, supplemental analyses for other regions of interest for the sake of completeness). The only exception is the final set of results (Neural markers of merit sensitivity predict merit-related behavioral changes during altruistic choice) which represent posthoc tests to clarify the role of activation in the right temporoparietal junction (rTPJ) in merit-related changes in other-regard in altruistic decisions. While we acknowledge that this is a complex paper, after careful consideration we couldn’t identify any other parts of the results section to remove or report in the supplemental material.

      (3) More specifically, the decoding analyses were intriguing to me. If I understand the authors, they are decoding need vs merit, and need+merit vs control, not the content of these inferences. Do they consider that there is a distributed representation of merit that does not relate to its content but is an abstracted version that applies to all merit judgements? I certainly would not have predicted this and think the analyses raise many questions.

      Response: We thank the reviewer for sharing their thoughts on the decoding analyses and agree that this set of analyses are intriguing, yet raise additional questions, such as the neural computations required to assess content. However, we wish to clarify that the way we view our current results is very much analogous to results obtained from studies of perception in other fields. For example, in the face perception literature, it is often observed that the fusiform face area is uniformly more active, not only when a face (as opposed to an object) is on the screen, but when a compound stimulus consistent of features of a face and other features (e.g. of objects) is on the screen, but participants are instructed to attend to and identify solely the face. Moreover, multivariate activity in the FFA (but not univariate activity) is sufficient to decode the identity of the face. We view the results we report in the manuscript as more akin to the former types of analyses, where any region that is involved in the computation is uniformly more active when attention is directed to judgment-specific features. Unfortunately, the present data are not sufficient to properly answer the latter questions, about which areas enable decoding of specific intensity or identity of merit-related content. Follow-up experiments with a more optimized design are needed. Although interesting, we thus refrain from further discussing the decoding analyses in the manuscript to avoid distracting from the main findings based on the univariate comparison of brain responses observed while participants make merit or need inferences in the social perception task.

      Reviewer #2 (Public Review):

      When people help others is an important psychological and neuroscientific question. It has received much attention from the psychological side, but comparatively less from neuroscience. The paper translates some ideas from a social Psychology domain to neuroscience using a neuroeconomically oriented computational approach. In particular, the paper is concerned with the idea that people help others based on perceptions of merit/deservingness, but also because they require/need help. To this end, the authors conduct two experiments with an overlapping participant pool:

      (1) A social perception task in which people see images of people that have previously been rated on merit and need scales by other participants. In a blockwise fashion, people decide whether the depicted person a) deserves help, b) needs help, and c) whether the person uses both hands (== control condition).

      (2) In an altruism task, people make costly helping decisions by deciding between giving a certain amount of money to themselves or another person. How much the other person needs and deserves the money is manipulated.

      The authors use a sound and robust computational modelling approach for both tasks using evidence accumulation models. They analyse behavioural data for both tasks, showing that the behaviour is indeed influenced, as expected, by the deservingness and the need of the shown people. Neurally, the authors use a block-wise analysis approach to find differences in activity levels across conditions of the social perception task (there is no fMRI data for the other task). The authors do find large activation clusters in areas related to the theory of mind. Interestingly, they also find that activity in TPJ that relates to the deservingness condition correlates with people's deservingness ratings while they do the task, but also with computational parameters related to helping others in the second task, the one that was conducted many months later. Also, some behavioural parameters correlate across the two tasks, suggesting that how deserving of help others are perceived reflects a relatively stable feature that translates into concrete helping decisions later-on.

      The conclusions of the paper are overall well supported by the data.

      Response: We thank the reviewer for the positive evaluation of our study and the comprehensive summary of our main findings. We would like to clarify, though, that we did originally collect fMRI data for the independent altruism task. Unfortunately, due to COVID-19-related interruptions, only 25 participants from the sample that performed the social perception task also completed the fMRI altruism task (see pg. 18). Given the limited sample size and noise level of fMRI data, we moved anything related to the neuroimaging data of the altruism task to the supplemental material (see Note S7) and decided to focus solely on the behavior of the altruism task to address our research objectives. We apologize for any confusion.

      (1) I found that the modelling was done very thoroughly for both tasks. Overall, I had the impression that the methods are very solid with many supplementary analyses. The computational modelling is done very well.

      Response: We are pleased that the reviewer found the computational model sensible.

      (2) A slight caveat, however, regarding this aspect, is that, in my view, the tasks are relatively simplistic, so even the complex computational models do not do as much as they can in the case of more complex paradigms. For example, the bias term in the model seems to correspond to the mean response rate in a very direct way (please correct me if I am wrong).

      Response. We agree that the Bias term relates to mean responding (although it is not the sole possibility: thresholds and starting default biases can also produce changes in mean levels of responding that, without the computational model, are not possible to dissociate). However, we think that the primary value of this parameter comes not from the analysis of the social judgment task (where the reviewer is correct that the bias relates in a quite straightforward way to the mean response rate), but in the relationship of this parameter to the un-contextual generosity response in the altruism task. Here, we find that this general bias term relates not to overall generosity, but rather to the overall weight given to others’ outcomes, a finding that makes sense if the tendency to perceive others as deserving overall yields an increase in overall attention/valuation of their outcomes. Thus, a simple finding in one task relates to a more nuanced finding in another. However, we agree it is important to acknowledge the point raised by the reviewer, and now do so on pg. 20: “It is worth noting that the Bias parameters are strongly associated with (though not the sole determinant of) the mean response rate.”

      (3) Related to the simple tasks: The fMRI data is analysed in a simple block-fashion. This is in my view not appropriate to discern the more subtle neural substrates of merit/need-based decision-making or person perception. Correspondingly, the neural activation patterns (merit > control, need > control) are relatively broad and unspecific. They do not seem to differ in the classic theory of mind regions, which are the focus of the analyses.

      Response: The social perception task is modified from a well-established social inference task (Spunt & Adolphs, 2014; 2015) designed to reliably localize the mentalizing network in the brain. As such, we acknowledge that it is not optimally designed to discern the intrinsic complexities of social perception, or the specific appraisals or computations that yield more or less perception (of need or merit) in a given context. Instead, it was designed to highlight regions that are more generally recruited for performing these social perceptions/inferences.

      We heartily agree with the reviewer that it would be interesting and informative to analyze this task in a trial-wise way, with parametric variation in evidence for each image predicting parametric variation in brain activity. Unfortunately, the timing of this task is not optimal for this kind of an analysis, since trials were presented in rapid and blocked fashion. We were also limited in the amount of time we could devote to this task, since it was collected in conjunction with a number of other tasks as part of a larger effort to detail the neural correlates of social inference (reported elsewhere). Thus, we were not able to introduce the kind of jittered spacing between trials that would have enabled such analysis, despite our own wish to do so. We hope that this work will thus be a motivator for future work designed more specifically to address this interesting question, and now include a statement to this effect on pgs. 2223: “Future research may reveal additional distinctions between merit and need appraisals in trial-wise (compared to our block-wise) fMRI designs.”

      References:

      Spunt, R. P. & Adolphs, R. Validating the Why/How contrast for functional MRI studies of Theory of Mind. Neuroimage 99, 301-311, doi:10.1016/j.neuroimage.2014.05.023 (2014).

      Spunt, R. P. & Adolphs, R. Folk explanations of behavior: a specialized use of a domain-general mechanism. Psychological Science 26, 724-736, doi:10.1177/0956797615569002 (2015).

      (4) However, the relationship between neural signal and behavioural merit sensitivity in TPJ is noteworthy.

      Response: We agree with this assessment and thank the reviewer for their positive assessment; we feel that linking individual differences in merit sensitivity with variance in TPJ activity during merit judgments is one of the key findings of the study.

      (5) The latter is even more the case, as the neural signal and aspects of the behaviour are correlated across subjects with the second task that is conducted much later. Such a correlation is very impressive and suggests that the tasks are sensitive for important individual differences in helping perception/behaviour.

      Response: Again, we share the reviewer’s impression that this finding is more noteworthy for appearing in tasks separated both by considerable conceptual/paradigmatic differences, and by such a long temporal distance. These findings make us particularly excited to follow up on these results in future research.

      (6) That being said, the number of participants in the latter analyses are at the lower end of the number of participants that are these days used for across-participant correlations.

      Response: We fully agree with this assessment. Unfortunately, COVID-related disruptions in data collection, as well as the expiration of grant funds due to the delay, severely limited our ability to complete assessments in a larger sample. Future research needs to replicate these results in a larger sample. We comment on this issue in the discussion on pg. 40. If the editor or reviewer has suggestions for other ways in which we could more fully acknowledge this, we would be happy to include them.

      Reviewer #3 (Public Review):

      Summary:

      The paper aims to provide a neurocomputational account of how social perception translates into prosocial behaviors. Participants first completed a novel social perception task during fMRI scanning, in which they were asked to judge the merit or need of people depicted in different situations. Secondly, a separate altruistic choice task was used to examine how the perception of merit and need influences the weights people place on themselves, others, and fairness when deciding to provide help. Finally, a link between perception and action was drawn in those participants who completed both tasks.

      Strengths:

      The paper is overall very well written and presented, leaving the reader at ease when describing complex methods and results. The approach used by the author is very compelling, as it combines computational modeling of behavior and neuroimaging data analyses. Despite not being able to comment on the computational model, I find the approach used (to disentangle sensitivity and biases, for merit and need) very well described and derived from previous theoretical work. Results are also clearly described and interpreted.

      Response: We thank the reviewer for their positive comments regarding presentation, approach, and content.

      Weaknesses:

      My main concern relates to the selection of the social perception task, which to me is the weakest point. Such weakness has been also addressed by the same authors in the limitation section, and related to the fact that merit and need are evaluated by means of very different cues that rely on different cognitive processes (more abstract thinking for merit than need). I wonder whether and how such difference can bias the overall computational model and interpretation of the results (e.g. ideal you vary merit and need to leave all other aspects invariant).

      Response: We agree with the reviewer on the importance of future research to more fully unpack the differences in this task, and develop better ways to manipulate need and merit in more comparable fashion. However, we point out that the issue of differences in abstractness of cues for need and merit does not actually seem to have a strong influence on the parameters retrieved by the computational model. Participants seem to be equally sensitive to BOTH merit and need information, despite that information deriving from different sources, as evidenced by the fact that the magnitude of the sensitivity parameters for need and merit in the social judgment task were nearly identical, and not statistically distinguishable. Nor were other parameters related to non-decision time or threshold statistically different (see Supplemental Table S2). If our results were driven purely by differences in the difficulty or abstractness of these judgments, we would have expected to see some evidence of this in the computational model, in the form of longer non-decision times, higher thresholds, or both. We do not. Likewise, the neural underpinnings evoked by both need and merit perceptions in this task (in the mentalizing brain network) were comparable. This is not to say that there aren’t real differences in the cues that might signal these quantities in our social perception task - just that there is little direct evidence for this difference in computational parameters or evoked brain responses, and thus it is unlikely that our results (which rely on an analysis of computational parameters) are driven solely by computational model biases, or the inability of the model to adequately assess participant sensitivity to need as opposed to merit.

      A second weakness is related to the sample size which is quite small for study 2. I wonder, given that study 2 fRMI data are not analyzed, whether is possible to recover some of the participants' behavioral results, at least the ones excluded because of bad MR image quality.

      Response: We fully agree with the reviewer that increasing the sample size for the cross-task correlations would be desirable. Unfortunately, the current sample size already presents the maximum of ‘usable’ data; the approach suggested by the reviewer won’t affect the sample size. We used all participants whose behavioral data in the altruism task suggested they were performing the task in good faith and conscientiously.

      Finally, on a theoretical note, I would elaborate more on the distinction of merit and need. These concepts tap into very specific aspects of morality, which I suspect have been widely explored. At the moment I am missing a more elaborate account of this.

      Response: Need and merit are predominantly studied in separate lines of research (Molouki & Bartels, 2020) so there is relatively little theoretical research on the distinction between the two. Consequently, Siemoneit (2023) states that the relation between the concepts of need and merit in allocative distributions remains diffuse. To emphasize the distinct concepts of morality in the introduction we have now added to pg. 3: “Need and deservingness (merit) are two distinct principles of morality. The need principle involves distributing resources to those who require them, irrespective of whether they have earned them, while the "merit principle" focuses on allocating resources based on individuals' deservingness, regardless of their actual need (Wilson, 2003).”

      One of the added values of our paper to the research literature is in adding to the clarification of computational and neural underpinnings of broad concepts like merit and need. To highlight the latter point, we have added the following statement on pg. 5 to the manuscript: “Examining need and merit concurrently in this task will also help clarify the computational and neural underpinnings of related, but distinct concepts, distinguishing between them more effectively.”

      References:

      Molouki, S., & Bartels, D. M. (2020). Are future selves treated like others? Comparing determinants and levels of intrapersonal and interpersonal allocations. Cognition, 196, 104150.

      Siemoneit, A. (2023). Merit first, need and equality second: hierarchies of justice. International Review of Economics, 70(4), 537-567.

      Wilson, C. (2003). The role of a merit principle in distributive justice. The Journal of ethics, 7, 277-314.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I acknowledge the difficulty with respect to recruitment, especially in the age of covid, but is it possible for the authors to collect larger samples for their behavioural questions via online testing? Admittedly, I'm sure they don't want to wait 300 days to have the complete dataset, but I would be in favour of collecting a sample in the hundreds on these behavioural tasks, completed at a much shorter separation (if any). I believe this would strengthen the authors' conclusions considerably if they could both replicate the effects they have and check these null effects in a sample where they could draw conclusions from them. Indeed, Bayesian stats to provide evidence for the null would also help here.

      Response: We share the reviewer’s desire to see these results replicated (ideally in a sample of hundreds of participants). We have seriously considered the possibility of trying to replicate our results online, even before submitting the first version of the paper. However, it is difficult to fully replicate this paradigm online, given the elaborate story and context we engaged in to convince participants that they were playing with real others, as well as the usage of physical pain (Cold Pressor Task) for the need manipulation in the altruism task. Moreover, given comments by this reviewer that the results are already a little long, adding a new, behavioral replication would likely only add to the memory burden for the reader. We have thus opted not to include a replication study in the current work. However, we are actively working on a replication that can be completed online, using a modified experimental paradigm and different ways to manipulate need and merit. Because of the differences between that paradigm and the one described here, which would require considerable additional exposition, we have opted not to include the results of this work in the current paper. We hope to be able to publish this work as a separate, replication attempt in the future.

      Given the difficulty of wading through the results section while keeping track of the key question being answered, I would suggest moving any analyses that are less central to the supplementary. And perhaps adding some more guiding sentences at the start and end of each section to remind the reader how each informs the core question.

      Response: We deliberated for quite some time about what results could be removed, but in the end, felt that nearly all results that we already described need to be included in the paper, since each piece of the puzzle contributes to the central finding (relating parameters and behavior to neural and choice data across two separate tasks). However, we did move the decoding analysis results to the supplemental (see point below). We also take the reviewers point that the results can be made clearer. We thus have worked to include some guiding sentences at the start and end of sections to remind the readers how each analysis informs the core questions.

      I think it needs unpacking more for the reader what they should conclude from the significant need+merit vs control decoding analyses, and what they would have expected in terms of cortical representation from the decoding analyses in general.

      Response: We agree with the reviewer that given the decoding results position in the main manuscript it would need unpacking. After considering the reviewer's prior suggestion, we have reevaluated the placement of these supplemental results. Consequently, we have relocated it to the supplemental materials, as it was deemed less relevant to directly addressing the core research questions in the main manuscript. On pg. 23, the main manuscript now only states “We also employed supplemental multivariate decoding analyses (searchlight analysis 85-87), as commonly used in social perception and neuroscience research 7,58,82,88,89, corroborating our univariate findings (see Supplemental Note S6, Supplemental Table S10).”

      Reviewer #2 (Recommendations For The Authors):

      (1) I would suggest moving information on how the computational models were fitted to the main text.

      Response: The computational models are a key element of the paper and we deliberated about the more central exposure of the description of how the models were fitted in the main manuscript. However, we are concerned about the complexity and length of the article, which requires quite a lot from readers to keep in mind (as also commented on by reviewer 1). Those readers who are particularly interested in details of model fitting can still find an extensive discussion of the procedures we followed in the supplements. We thus have opted to retain the streamlined presentation in the main manuscript. However, if the editor feels that including the full and extensive description of model fitting in the main paper would significantly improve the flow and exposition of ideas, we are happy to do so.

      (2) For the fMRI analyses: Could it be worth analysing the choices in the different conditions? They could be modelled as a binary regressor (yes/no) and this one might be different across conditions (merit/need/hands). Maybe this won't work because of the tight trial timeline, but it could be another avenue to discern differences across fMRI conditions.

      Response: We thank the reviewer for this interesting suggestion! Unfortunately, the block design and rapid presentation of stimuli within each condition make it challenging to distinguish the different choices (within or across conditions). While we see the merit in the suggested analytical approach (in fact, we discussed it before the initial submission of the article), it would require some modifications of the task structure (e.g., longer inter-trial-intervals between individual stimuli) and an independent replication fMRI study. We were not able to have such a long inter-trial interval in the original design due to practical constraints on the inclusion of this paradigm in a larger effort to examine a wide variety of social judgment and inference tasks. We hope to investigate this kind of question in greater detail in future fMRI work.

      (3) The merit effects seem to be more stable across time than the need conditions. Would it be worthwhile to test if the tasks entailed a similar amount of merit and need variation? Maybe one variable varied more than the other in the task design, and that is why one type of effect might be stronger than the other?

      Response: We thank the reviewer for drawing attention to this important point. We used extensive pilot testing to select the stimuli for the social perception task, ensuring an overall similar amount of need and merit variation. For example, the social perception ratings of the independent, normative sample suggest that the social perception task entails a similar amount of need and merit variation (normative participant-specific percentage of yes responses for merit (mean ± standard deviation: 53.95 ± 13.87) and need (45.65 ± 11.07)). The results of a supplemental paired t-test (p = 0.122) indicate comparable SD for need and merit judgments. Moreover, regarding the actual fMRI participant sample, Figure S3 illustrates comparable levels of variations in need and merit perceptions (participant-specific percentage of yes responses for merit (56.70 ± 11.91) and need (48.69 ± 10.81) in the social perception task). Matching the results for the normative sample, the results of a paired t-test (p = 0.705) suggest no significant difference in variation between need and merit judgments. With respect to the altruism task, we manipulated the levels of merit and need externally (high vs. low).

      Reviewer #3 (Recommendations For The Authors):

      (1) It would be good to provide the demographics of each remaining sample.

      Response: We appreciate the attention to detail and agree with the reviewer’s suggestion. We have now added the demographics for each remaining sample to the revised manuscript.

      (2) The time range from study 1 to study 2, is quite diverse. Did you use it as a regressor of no interest?

      Response: We thank the reviewer for this interesting suggestion. We have examined this in detail in the context of our cross-task analyses (i.e., via regressions and partial correlations). Interestingly, variance in the temporal delay between both tasks does not account for any meaningful variation, and results don’t qualitatively change controlling for this factor.

      For example, when we controlled for the delay between both separate tasks (partial correlation analysis), we confirmed that variance in merit sensitivity (social perception task) still reflected meritinduced changes in overall generosity (altruism task; p = 0.020). Moreover, we confirmed that variance in merit sensitivity reflected individuals’ other-regard (p = 0.035) and self-regard (p = 0.040), but not fairness considerations (p = 0.764) guiding altruistic choices. Regarding people’s general tendency to perceive others as deserving, we found that the link between merit bias (social perception task) and overall other-regard (p = 0.008) and fairness consideration (p = 0.014) (altruism task) holds when controlling for the time range (no significant relationship between merit bias and self-regard, p = 0.191, matching results of the main paper).

      We refer to these supplemental analyses in the revised manuscript on ps. 33 and 35: “Results were qualitatively similar when statistically controlling for the delay between both tasks (partial correlations).”

      (3) Why in study 1 a dichotomous answer has been used? Would not have been better (also for modeling) a continuous variable (VAS)?

      Response: We appreciate the reviewer's thoughtful feedback. In Study 1, opting for a dichotomous response format in the social perception task (Figure 1a) was a deliberate methodological choice. This decision, driven by the study's model requirements, aligns with the common use of a computational model employing two-alternative forced choices ("yes" and "no") as decision boundaries. While drift– diffusion models for multiple-alternative forced-choice designs exist, our study's novel research questions were effectively addressed without their complexity. Finally, our model cannot accept continuous response variables as input unless they are transformed into categorical variables.

      (4) In the fMRI analyses, when you assess changes in brain activity as a function of merit, I would control for need (and the other way round), to see whether such association is specific.

      Response: Regarding the reviewer’s suggestion on controlling for need when assessing changes in brain activity as a function of merit, and vice versa, we would like to clarify the nature of our fMRI analyses in the social perception task. Our focus is on block-wise assessments (need vs. control, merit vs. control, need vs. merit blocks, following the fMRI task design from which our social perception task was modified from). We don’t assess changes in brain activity as a function of the level of perceived merit or need (i.e., “yes” vs. “no” trials within or across task blocks). Blocks are clearly defined by the task instruction given to participants prior to each block (i.e., need, merit, or control judgments). Thus, unfortunately, given the short inter-stimulus-intervals of each block, the task design is not optimal to implement the suggested approach.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity): Summary:

      This research article describes genetic identification and expression analyses of six Ephrin type-B receptor 4 (EPHB4) variants identified in patients with dilated cardiomyopathy (DCM). Variants were identified Variants were identified in a cohort of 573 patients enrolled through the multicenter DZHK-TORCH (TranslatiOnal Registry for CardiomyopatHies) study and the Institute for Cardiomyopathies Heidelberg registry. Expression of downstream molecules, CAV1 and CD36, was assessed in human cardiac tissues by immunohistochemistry. EPHB4 cardiac expression was assessed using recently published single-cell/nucleus RNA sequencing data (Nicin et al 2022) incorporating siRNA-seq data from two other studies (healthy cardiac tissue, Litvinukova et al 2020) and (hypertrophic/aortic stenosis, Nicin et al. 2020).

      We thank the reviewer for the recommendations that have improved our manuscript.

      Major Comments:

      1. Details of identified truncating RBM20 and TTN variants must be provided. These should be integrated into Table 1 alongside each co-occurring EPHB4 variant. List whether the TTN truncating variant is located in the A-band and whether these variants would be adjudicated as pathogenic/likely pathogenic, variant of uncertain significance by ACMG and/or similarly refined DCM criteria (Morales et al. 2020, Circ-Genom Precis Med).

      Details of the truncating RNM20 and TTN have been provided in the new supplementary table 1. As indicated in the table both mutations are pathogenic, and thus, most probable the cause for the disease in these patients. In case of TTN this is a truncating variant and is located in the M-band in exon 358, which is annotated with a PSI in DCM of 100% in cardiodb.org. The fact that these mutations are most probably the cause for DCM in these patients has been included in the discussion section and reads as follows:

      Although it is most probable that in the case of the patients carrying TNN and RNM20 variants this would be the cause of the disease, this study further supports, the importance of EPHB4 regulating CD36 caveolar trafficking to the membrane, whether this happens in endothelial cells or cardiomyocytes, maintaining cardiac homeostasis in humans and its implication on DCM

      1. Discuss co-occurrence of multiple EPHB4 variants in two patients (DCM1, DCM3) and identification of 2 EPHB4 variants in more than one proband.

      As shown in Figure 1A, the detected variants are found in multiple domains of the protein, hence no clear hotspot is detected. We did not yet investigate on the exact mechanisms of action, however, when we compare the two patients with multiple EPHB4 variants, the average LVEF (echo) is 17.5 compared to 38,67 for the remaining 4 patients with only one EPHB4 variant and 35,17 for the six non-EPHB4 variant-carriers. Although the sample number only allows for a semi-quantitively analysis, it still hints at a possible EPHB4-variant effect, which certainly needs verification in a larger cohort.

      Since we do not postulate the detected variants as independently disease-causing, and we also did not explicitly filter for very rare variants, it is not surprising that we find two variants in multiple patients. As stated above, we did not investigate this further, but evidence is growing that compound heterozygosity is playing a role in heritable diseases. It will be interesting to analyze e.g. phasing (Hofmeister et al., Nature Genetics, 2023) or additive (biallelic) effects, which have come to attention also in cardiomyopathies recently (Lipov et al., Nature Cardiovascular Research, 2023).

      This fact has now been included in the manuscript, both in the results and in the discussion. It reads as follows:

      Interestingly, two of the analysed patients present more than one variant of EPHB4 and we could identify the same variant in more than one patient (Table 1)

      (…)

      Nevertheless, two of the patients carrying one benign or likely benign also carry another variant classified as likely pathogenic or of uncertain significance (Table 1) and interestingly, the average LVEF of the two patients with multiple EPHB4 variants is 17.5 compared to 38,67 for the remaining 4 patients with only one EPHB4 variant and 35,17 for the six non-EPHB4 variant-carriers. Although the sample number only allows for a semi-quantitively analysis, it still hints at a possible EPHB4-variant effect, which certainly needs verification in a larger cohort.

      1. Three of the six variants (p.Lys635Asn, Val113Ile, Glu890Asp) are classified as Clinvar Benign/Likely Benign. Additionally, p.Glu890Asp has been identified in 50 homozygotes in gnomAD non-Finnish European population. These data cast doubt on the pathogenicity of these variants. These classifications, as well as VUS classification of p.Pro79Leu, should be listed in Table 1. The authors should reconcile the benign/likely benign Clinvar classifications with their presented evidence for pathogenicity in the discussion.

      We have now included the ACMG classification in Table 1. Similar to the Clinvar classification, some of the variants are classified benign or likely benign. Still, the fact that the patients that carry them also carry another variant and that the histological findings are similar among the patients carrying an EPHB4 variant and different to those that don’t and the enriched presence of EPHB4 variants in the DCM population support our hypothesis that the Eph-ephrin signalling pathway plays a role in the development of DCM.

      Nevertheless, we agree with the reviewer that the fact that some of these variants have been classified as benign, and the presence of mutations in other genes already related to DCM like TNN or RMM20 may suggest that the EPHB4 mutations may not be the only cause for the disease but rather have an additive effect. As a consequence, we have toned down our conclusions and the discussion reads now as follows:

      Finally, although not as the main disease cause, this study not only supports the role of EPHB4 in the heart, but it also corroborates the importance of CD36 and CAV1 for the cardiac health, and has the potential to improve diagnosis and risk stratification tools for DCM. In addition, as other genes crucial for fatty acid transport may be involved in cardiac disease, this study may help identify new diagnostic or therapeutic targets.

      1. CD36 and CAV1 expression are not quantified. Qualitatively, it is difficult to confirm CD36 reduction in DCM and disruption in EPHB4 variant samples as imaging parameters are not specified and do not appear to be standardized across treatments. Clearly state (either in the figure legend or in the methods) whether identical imaging parameters were used across panels 1C-1E. Note any differences in these parameters.

      We have now quantified the two IHC. It is very clear that the total CD36 is significantly reduced in both groups when compared to the healthy donor (Figure for the reviewer 1A). In case of CAV1 this is not so evident, although the signal seems reduced this is not significant (Figure for the reviewer 1B). These new data have been included in the figure of the manuscript.

      Figure for the reviewer 1. Quantification of (A) CD36 and (B) CAV1 in the immunohistochemistry analysis of patients biopsies. Data shown as mean ± SEM. (A) P value was calculated using one sample one sample Wilcoxon test for DCM and one sample t test for DCM EPHB4. Both cohorts where compared to the mean of HD. P value < 0.05 was considered significant. (B) P value was calculated with one sample t test for both cohorts. P value < 0.05 was considered significant.

      All the images have been taken in the same conditions. The observed difference in the background is due to the disease conditions of the DCM samples. Furthermore, the apparent reduced number of capillaries observed in the DCM patients are caused by the hypertrophic state of the cardiomyocytes in the diseased state. These are bigger and thus, less cells and capillaries appear per picture. The parameters have been included in the methods and read as follow:

      Immunohistochemistry was imaged in a Leica Stellaris confocal microscope. All images were obtained with 63x magnification and the same laser and gain intensities. Images were acquired using the software LAS X (Leica, version 4.4) and quantified using the Volocity Software (Quorum Technologies, version 6.5.1)

      1. Why was EPHB4 membrane localization not assessed or reported?

      We agree with the reviewer that this would be a very interesting point. Unfortunately, we had very limited amount of material and we did not have a proper working antibody.

      1. A key finding of the manuscript is that all six variants produce similar histological impacts on CAV1 and CD36 expression, denoting downstream impacts of EPHB4 genetic disruption. There is no granular data presented to support this claim. Additional discussion is also required to address how the authors anticipate variants in functionally distinct domains on either side of the plasma membrane to similarly impact downstream expression of CAV1/CD36. Mapping to available crystal structures in the Protein Data Bank (PDB) may be insightful to determine which variants may be most likely to have an impact on heterotetramer formation or to exert dominant negative effects on receptor function.

      As an appendix to this revision we have included a figure with representation images of all biopsies analysed to support our claim.

      The whole protein structure is not solved and only some individual domains are present in the Protein Data Bank making difficult to analyse the effect on the tetramer without crystallising the whole protein.

      1. Study limitations are not discussed and are significant. 5 of the 6 samples were from male patients, there are limitations to analyses of non-diverse patient ancestry, there is uncertainty regarding pathogenic contributions of variants in established DCM genes in 2/6 patients, data is limited to expression-only analyses highlighting need for additional functional modeling in cell or animal based systems.

      We have now included a limitation sections that includes all the points raised by the reviewer. It reads as follows:

      Although this study offers valuable insights to the potential implication of the Eph-ephrin signalling pathway in the development of DCM it has some limitations that need to be discussed. Despite finding increased presence of EPHB4 variants in the DCM population when compared to the healthy population, analysis of the identified variants in using different classifications (CADD and ACMG) not always predicted pathogenicity for these variants. For this reason, further experiments should be performed to determine the effect of every variant.

      It is also important to note that given the lower number of patients analysed these are not age and gender matched. The EPHB4 carrying DCM patients were younger than the DCM patients carrying a wild type EPHB4 sequence and mainly male. Finally, no biomaterial nor genetic testing from family related patients is available.

      1. Language used in conclusions overstates study findings ["our results confirm a crucial role of the Eph-ephrin signaling pathway in DCM" (page 3), "this study not only confirms the crucial role of EPHB4 in the heart..." (page 8)]. Change to "suggest" or "support".

      We have revised our discussion according to the limitations discussed in the previous remark and these words have been corrected.

      Major Methods Comments:

      1. DCM diagnostic criteria (clinical and imaging) for inclusion in the DZHK-TORCH study and the Institute for Cardiomyopathies Heidelberg registry should be stated or referenced. Likewise, describe and/or reference DCM exclusion criteria. State any relevant differences in DCM enrolment criteria for the two registries.

      We have now included our inclusion criteria in the methods and include two references to support this. The paragraph reads as follows:

      The criteria to be included in the study was reduced left ventricular ejection fraction (LVEF) <50% validated either with two independent image techniques or at two different time points with the same imaging technique. Furthermore, patients should include left ventricular dilation (LVEDD) >117% corrected with age and body surface according to the Henry-Formel formula (LVEDD= 45,3 * BSA1/3 – 0,03*Age –7,2). In both cases the heart were analysed either by echocardiography or magnetic resonance tomography (MRT)

      1. Describe how the final cohort of 573 DCM patients was reached. (All patients with DCM in the DZHK-TORCH study/Heidelberg registry? All patients with available exome data meeting QC standards and having available cardiac tissue?).

      From the 573 DCM patients, 100 have been recruited as part of the DZHK-TORCH registry and have been genome sequenced. Further 62 genomes and 411 exomes have been sequenced from patients of the cohort from the Institute for Cardiomyopathies (ICH) at the Heidelberg University Hospital.

      From this cohort, we selected 6 patients with and 6 without an EPHB4 variant and received heart tissue slides from the pathology department.

      1. State whether any family/segregation data is available for these patients.

      DCM4 has a mother and aunt (mother’s sister) who are also affected by CMP. In case of DCM6, the mother was also diagnosed with CMP. Unfortunately, no further biomaterial nor genetic testing of those individuals is available. This has been included in the new limitation sections as described above.

      1. Description of genetic testing methods are inadequate. Describe how genetic analyses were completed for each study/registry and how results were filtered/quality controlled. If sequencing methods were different across registries, state which patients were tested by which methods. If any testing was gene-targeted rather than whole exome/genome, list the specific DCM genes tested.

      All data has been sequenced using Illumina paired-end technology with either 2x100bp or 2x150bp. Exome enrichment was achieved using SureSelect Human All Exon V6 Target Enrichment (Agilent Genomics) was used. Bioinformatics analysis pipeline was based on “Best Practices Guideline” from the Genome Analysis Toolkit (GATK) (https://gatk.broadinstitute.org/hc/en-us). Besides the analysis for EPHB4, we assessed further genes associated with cardiomyopathies (ACTC1, ACTN2, ALPK3, BAG3, CRYAB, CSRP3, DES, DMD, DSC2, DSG2, DSP, FLNC, GLA, HCN4, HRAS, JPH2, JUP, KRAS, LAMP2, LDB3, LMNA, MIB1, MYBPC3, MYH7, MYL2, MYL3, MYPN, NEXN, PKP2, PLN, PRDM16, PRKAG2, PTPN11, RAF1, RBM20, RYR2, SCN5A, SHOC2, TAZ, TMEM43, TNNC1, TNNI3, TNNT2, TPM1,TTN, TTR, VCL).

      This is information has been included in the methods section.

      1. Provide additional detail for human cardiac biopsies. Was the same chamber/tissue biopsied in all samples? Is an endomyocardial biopsy available for all 573 patients included in this study? If not, were additional EPHB4 variants identified in patients without biopsy samples?

      All biopsies investigated are from left-ventricular tissue, accessed during cardiac catheterization.

      We did find additional, mainly non-coding variants in the cohort. However, as the focus on the study was on the histological analysis of the CD36 and CAV1 expression, we did restrict our analysis to our selected samples as described in the response to comment 2.

      1. Describe the source of the healthy control biopsy, alongside brief clinical detail establishing suitability as a control. Did DCM controls carry variants in known DCM genes (including truncating variants in RBM20 or TTN)? How were DCM controls selected?

      The healthy control biopsy was kindly donated by Prof. Dettmeyer from the University Gießen. This is a postmortem sample with unrelated cause of death. Cardiac biopsy was examined to discard any pathological alterations. This sample originates from a 27 years old female, and thus ideal as a healthy sample. This information has been included in the methods.

      1. List statistical analyses and associated experiments. (Page 5).

      Statistical tests have been included in the figure legend of each experiment. This reads as follows:

      (B) EPHB4 variant allelle frequency analysis. Each variant is compared in a paired wise manner between the two population. P value was calculated with a paired one-tailed Student’s t test comparing the frequencies of the different variants in the two populations.

      And

      (F) Quantification of CD36 and CAV1 expression in the immunohistochemistry analysis of patients biopsies. Data shown as mean ± SEM. In the case of CD36, P value was calculated using one sample one sample Wilcoxon test for DCM and one sample t test for DCM EPHB4. P value < 0.05 was considered significant. In the case of CAV1, P value was calculated with one sample t test for both cohorts. P value < 0.05 was considered significant. In both cases, the cohorts where compared to the mean of HD.

      1. List microscopes/equipment and software used to complete immunohistochemistry experiments. Describe imaging parameters to facilitate comparisons between treatments in Figure 1C-E.

      Immunohistochemistry was imaged in a Leica Stellaris confocal microscope. All images were obtained with 63x magnification and the same laser and gain intensities. Images were acquired using the software LAS X (Leica, version 4.4) and quantified using the Volocity Software (Quorum Technologies, version 6.5.1)

      This paragraph has now been included in the methods section.

      1. Please reword the following passage, which is almost verbatim to the same passage in Nicin et al. 2022.

      Page 4

      **"In brief, a combination of two human snRNA-seq datasets was used. Data from healthy cardiac tissue from the septum of 14 individuals in the Litvinukova et al. study and data from location-matched hypertrophic cardiac tissues from five patients with aortic stenosis."

      Nicin et al. 2022 (https://doi.org/10.1038/s44161-022-00019-7)**

      "Two human snRNA-seq datasets were used: data from healthy cardiac tissue from the septum of 14 individuals in the Litvinukova et al. study and data from location-matched hypertrophic cardiac tissues from five patients with aortic stenosis."

      We have reworded the paragraph in the methods sections. Now it reads as follows:

      Healthy cardiac tissue data was derived from the cardiac septum of 14 individuals 15. Subsequently, it was integrated with data from the septum of hypertrophc cardiac tissue from 5 patients with aortic stenosis 16.

      Minor Comments:

      1. Results: List source for Non-Finnish European Control cohort (gnomAD) (Page 5).

      The Non-Finnish European Control cohort (gnomAD) was obtained from https://gnomad.broadinstitute.org/. This information has been included in the methods section.

      1. Discussion: "all DCM patients" (page 6) requires clarification.

      We have made clear that this refers to the patients analysed in this study. The new sentence reads as follows:

      Furthermore, our results stress the importance of the endothelial CD36 in the onset of cardiac disease as all DCM patients analysed by immunohistochemistry show a downregulation of CD36 in the endothelium and warrant a more detailed assessment of genes involved in vascular function20

      1. Discussion: Define acronyms. CSF, IL4, LPS (Page 7)

      We have defined the acronyms in the discussion. The new sentence reads as follows:

      CD36 expression is upregulated by the nuclear hormone transcription factor Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ), cerebrospinal fluid (CSF) cytokines and Interleukin-4 (IL4). In the other hand, lipopolysaccharides (LPS) and dexamethasone downregulate its expression In microvascular endothelial cells, CD36 is downregulated by lysophosphatidic acid.

      1. Table 1. Table is confusingly arranged. It would make more sense to organize the table by cDNA/AAchange to better correspond to Figure 1A. List the impacted protein domain for each variant in a separate column. It is also unclear how DCM allele frequencies were calculated as the reported number of patients (DCM1-6) carrying each variant do not universally correspond to the listed allele frequencies (see AFs of 0.0052 and 0.0208). Clarification should be added to the legend so it is clear to the reader how these frequencies were determined

      In case of the EPHB4 variants table, we agree with the reviewer and to make the table more understandable we have removed the first three columns, which are the same for all variants. This information has been included in the table legend. Nevertheless, this information has been kept in the new Supplementary table 1 that contains the variants on the other DCM causing genes.

      Regarding the calculation of the allele frequency we made by dividing the number of alleles found in the population by the total number of alleles in the population. This information has been included in the methods.

      We want to note that we performed a mistake in the original table. We had calculated the frequencies by dividing the number of alleles by the number of individuals in the population. We have now corrected both Table 1 and Figure 1B.

      1. Figure 1B. Add variant labels. Indicate relevant p-values for each variant. It is unclear to which comparison the p = 0.024 belongs. State in legend that 2 variants were omitted (presumably due to absence from gnomAD)

      No variants were omitted in the representation of Figure 1B. Some of them have the same allele frequency in the DCM population and thus, the individual data points appear overlapping. The variants that were not detected in the genomAD population were considered as 0 for the representation and for the analysis.

      For the comparison with P=0.024 (now corrected to 0.0011) between the two groups we have performed a one tail paired t test comparing the frequencies in both populations. The information regarding the test has been included in the figure legend and included in the methods section as indicated above.

      1. Figure 1E. Add label to indicate which EPHB4 variant is depicted.

      The DCM sample from which the images originates is now indicated in Figure 1E.

      <br /> Referees cross-commenting****

      As is, this manuscript is not ready for publication. Our comments are in complete alignment. Like the other reviewer, I also emphasize the need for other DCM genes tested to be listed. I also reiterate that any similarly worded passages to other published material must be corrected

      Reviewer #1 (Significance): This study presents genetic and expression data on a novel DCM gene candidate (EPHB4) from a European cohort of 573 DCM patients. This work is of interest as much of genetic DCM remains unexplained and identification of novel genes and pathways will be critical to advance understanding of the disease and to develop novel treatments. Reported data will be of greatest interest to cardiovascular practitioners and translational/basic researchers working with genetic heart disease/DCM. The fact that cardiac tissue was available for histological analyses for all six patients is an asset. There are considerable weaknesses to the paper, as written. There is a lack of detail in the included genetic methods and results. While the premise of the study is intriguing, additional detail is required for identified TTN and RBM20 truncating variants and additional discussion is needed to resolve confusion regarding reported allele frequencies and benign/likely benign Clinvar classifications. Because study design is restricted to genetic and expression analyses, reported data do not address possible pathogenic mechanisms. Overall, there is insufficient data presented to confirm a role for EPHB4 in causing DCM. Manuscript-specific (as-opposed to study specific) weaknesses include insufficient methods detail, a lack of clarity in the presented genetic and expression data (particularly Figure 1), insufficiently described study limitations, and overstated study conclusions. These scientific and manuscript issues will need to be addressed for the manuscript to be suitable for publication.

      Reviewer fields of expertise: cardiovascular genetics, DCM.

      Insufficient expertise to evaluate statistical methods.

      Reviewer #2 (Evidence, reproducibility and clarity):<br /> I reviewed a paper by Luxan et al. describing EPHB4 variants as a novel disease gene for dilated cardiomyopathy (DCM).

      The short report is interesting, however, not enough evidence is given to convince me EPHB4 is indeed a novel disease gene for DCM. More work is needed before this can be published.

      Major points:

      1. Genetics: two individuals have EPHB4 variants together with DCM causing TTN tv or RBM20 variants. Which other DCM genes were excluded for the remaining four cases? GnomAD MAF of 0.008748404 suspiciously high.

      So overall the small case number makes it hard to judge whether these are truly pathogenic variants.<br /> Could the authors attempt co-segregation of DCM with EPHB4 variant in families?

      Unfortunately we do not have family information from these patients. We have included this in the new limitation sections in the discussion that reads as follows:

      Although this study offers valuable insights to the potential implication of the Eph-ephrin signalling pathway in the development of DCM it has some limitations that need to be discussed. Despite finding increased presence of EPHB4 variants in the DCM population when compared to the healthy population, analysis of the identified variants in using different classifications (CADD and ACMG) not always predicted pathogenicity for these variants. For this reason, further experiments should be performed to determine the effect of every variant.

      It is also important to note that given the lower number of patients analysed these are not age and gender matched. The EPHB4 carrying DCM patients were younger than the DCM patients carrying a wild type EPHB4 sequence and mainly male. Finally, no biomaterial nor genetic testing from family related patients is available.

      1. Only CADD tools was used for pathogenicity, several tools should be used. Is the structure solved? Structural predictions on the consequences of the variants should be done.

      We have now included the ACMG classification in Table 1. As discussed above in the comments of Reviewer 1, some of the variants are classified as benign or likely benign. For this reason we have now toned down our conclusion suggesting that the EPHB4 may not be sufficient to trigger DCM but act as modifiers. This is supported by the fact that the histological analysis revealed that the patients carrying EPHB4 variants are similar among themselves and different to the other patients. Furthermore, our hypothesis is also supported by the fact that those patients carrying benign or potentially benign variants also carry another variant and the fact that they even have lower LVEF. The new classification has been included in the results and discussion sections and it reads as follows:

      Nevertheless, the classification of the variants according to the American College of Medical Genetics (ACMG) 25 suggests that two of the variants are benign, two likely benign, one likely pathogenic and one variant of uncertain significance (Table1). Nevertheless, two of the patients carrying one benign or likely benign also carry another variant classified as likely pathogenic or of uncertain significance (Table 1) and interestingly, the average LVEF of the two patients with multiple EPHB4 variants is 17.5 compared to 38,67 for the remaining 4 patients with only one EPHB4 variant and 35,17 for the six non-EPHB4 variant-carriers. Although the sample number only allows for a semi-quantitively analysis, it still hints at a possible EPHB4-variant effect, which certainly needs verification in a larger cohort.

      And

      Our analysis identified several variants in EPHB4 enriched in a cohort of DCM patients. According to the CADD score prediction, all these variants have a deleterious potential. Nevertheless, the ACMG classified some of the variants as benign or potentially benign. Also the fact, that one variant has identified in two non-related patients suggests that this variant may be benign for the protein. Nevertheless, two of the patients carrying a benign or potentially benign variant also carried another potentially pathogenic or of uncertain significance. During Eph-ephrin signalling, the binding of the ligand induces Eph receptor heterotetramers to initiate the signalling via Eph–Eph cis interactions30. Thus, variant EPHB4 molecules could have a dominant negative effect on these heterotetramers, and while maybe not completely abrogating its function, reducing the functionality of the heterotetramers. This observation could explain why the presence of one variant copy in the DCM patients of our cohort would be sufficient to reduce the activity of the Eph-ephrin signalling pathway. Although this shows that some of the variants may indeed not be the sole cause for DCM it shows that the Eph-ephrin signalling pathway, and in particular EPHB4 may be important for the development of DCM.

      Only parts of the protein have been resolved and present in the Protein Data Base.

      1. The microscopy Figure 1C-E is not convicing. Only one sample shown while 6 were available/investigated. I would not be comfortable to identify cardiomyocytes/endothelial cells from these sections

      As an appendix to this document, we included figures with images obtained from all the analysed patients. These were not included on the original figure for space reasons.

      These sections are perfect to identify cardiomyocytes and endothelial cells in cardiac tissue. First, endothelial cells, that form the microvasculature are labelled with ULEX, a well known marker of endothelial cells. Secondly, cardiomyocytes are really big cells easy to score for their size and location between the capillaries in the heart. Other cells present in the heart, like fibroblasts, macrophages, or pericytes would also be located in the space left in between cardiomyocytes but would need to be labelled for visualization. We believe that our interpretation of the immunohistochemistry pictures is correct.

      1. Functional work is needed to understand the interplay between EPHB4, CAV1 and CD36. Such as transfecting mutant EPHB4 into cells and probing for altered localisation/attachment of binding partners, most likely in endothelial - cardiomyocyte co-culture systems.

      Our study is based in our previous murine study in which we showed that the deletion of EphB4 or its ligand ephrinB2 would induce a phenotype similar to DCM in mice. At the molecular level, defects in the Ephb4 are linked to compromised caveolar function and reduced CAV1 phosphorylation, which involves the kinase Src, a known mediator of Eph receptor signalling. In the healthy heart, caveolar transport is required for the membrane translocation and correct function of fatty acid translocase FAT/CD36, which mediates the uptake of fatty acids. The objective of this follow up study was to study whether we could identify EPHB4 mutations in DCM patients. As seen in the results we have observed that there is an enrichment of EPHB4 variants in the DCM population. We think that the previous study supports our conclusions and hope that the reviewer agrees with us. Nevertheless, we agree with the reviewer that functional assays could be performed with every variant. We have included this in the new limitation sections of the manuscript described above.

      Minor points:

      1. Figure 1B does not make sense

      Figure 1B confirms the enrichment of EPHB4 mutations in the DCM population. We have corrected the labelling to make this clearer. We have now labelled the figure “EPHB4 variant allele frequency in control and DCM population”.

      1. Statistics: Which tests were performed, if normality tests were applied, which one was used?

      The tests used for every comparison are included in the figure legend. In case of EPHB4 variant allele frequency, we performed a paired one-tailed Student’s t test comparing the frequencies of the different variants in the two populations. In case of the CD36 and CAV1 quantifications, we performed a two-tailed one sample t test. In this case, we compare the expression of CD36 and CAV1 to an hypothetical healthy population with mean equal 1 as que have used this value for normalization.

      1. Please do not use contractions, e.g. 'can't' in discussion section

      Contractions have been removed from the manuscript.

      <br /> Referees cross-commenting****

      Overall I agree with the other reviewer on the points raised.

      Reviewer #2 (Significance): Description of EPHB4 as a novel DCM gene is of interest, but the current data are not convincing enough to make this statement.

      Mechanistic work on the interplay of endothelial cells and cardiomyocytes and consequences of EPHB4 variants would make it a very compelling story.

      Reviewer #3 (Evidence, reproducibility and clarity): Summary:

      The authors of this manuscript studied the prevalence of a population of Ephrin type-B receptor 4 (EPHB4) in a cohort of 573 DCM patients and found six new EPHB4 variants, possibly pathogenic based on the Combined Annotation Dependent Depletion (CADD) score and population frequency. Moreover, the authors perform immunofluorescence (IF) and histologic analysis on 6 EPHB4 variant carrying DCM patients, 6 DCM patients with wild type EPHB4 and one healthy control biopsy and found dysregulation of Caveolin 1 (CAV1) and CD36 (which are implicated in fatty acid transport in endothelial cells and cardiomyocytes) in both groups of DCM patients.

      Major comments:

      • Additional experiments are necessary to prove the hypothesis: for example, co-IF staining with endothelial markers should be provided. IF should be supported by western blots and qPCR.

      The objective of this study was to explore whether we could identify EPHB4 mutants in a DCM cohort. Interestingly we have shown that EPHB4 mutations are enriched in the DCM population when compared to the general population. Nevertheless, we agree with the reviewer that a more in depth mechanistic study would improve the significance of the study. We have included a limitations section that reads as follows:

      Although this study offers valuable insights to the potential implication of the Eph-ephrin signalling pathway in the development of DCM it has some limitations that need to be discussed. Despite finding increased presence of EPHB4 variants in the DCM population when compared to the healthy population, analysis of the identified variants in using different classifications (CADD and ACMG) not always predicted pathogenicity for these variants. For this reason, further experiments should be performed to determine the effect of every variant.

      It is also important to note that given the lower number of patients analysed these are not age and gender matched. The EPHB4 carrying DCM patients were younger than the DCM patients carrying a wild type EPHB4 sequence and mainly male. Finally, no biomaterial nor genetic testing from family related patients is available.

      • The DCM samples with wild type EPHB4, have no CD36: the mechanism by which a mutation in another gene could affect the Eph-ephrin signaling pathway should be at least discussed.

      These patients do not have any mutation on EPHB4. Based in the literature and the previous murine study show that the Eph-ephrin signaling pathway is upstream of CD36. For these reasons we believe that our observation that shows that CD36 expression is reduced in all DCM patients confirms the important role of CD36 in cardiac homeostasis and the development of DCM. We further, as indicated in the discussion, other genes crucial for fatty acid transport may be involved in cardiac disease and thus, this study may help identify new diagnostic or therapeutic targets.

      • The authors should discuss and possibly prove the correlation between mutant EPHB4 and CD36 and CAV1 expression and localization in endothelial cells vs cardiomyocytes and explain the mechanistic implications of co-localization of CAV1 with CD36.

      In a previous study we showed that the deletion of EphB4 or its ligand ephrinB2 would induce a phenotype similar to DCM in mice. At the molecular level, defects in the Ephb4 are linked to compromised caveolar function and reduced CAV1 phosphorylation, which involves the kinase Src, a known mediator of Eph receptor signalling. In the healthy heart, caveolar transport is required for the membrane translocation and correct function of fatty acid translocase FAT/CD36, which mediates the uptake of fatty acids. We have expanded the introduction to explain the relationship between these molecules. It reads as follows:

      Mechanistically, EPHB4 deficient endothelial cells are characterized by compromised caveolar function and reduced Caveolin 1 (CAV1) phosphorylation. EPHB4 is required for the phosphorylation of CAV1 at Tyr-149. The phosphorylation of CAV1 promotes the release of caveolae from the plasma membrane10. Caveolae are required for the correct membrane translocation of the fatty acid translocase FAT/CD3611 and fatty acids are used by cardiomyocytes to obtain about 50% to 70% of their energy12. Absence of CD36 in cardiomyocytes reduces fatty acid uptake by the cardiac muscle cells13 and accelerates the progression from compensated hypertrophy to heart failure14. Finally, some cardiomyopathies a causally related to defects in the synthesis of the proteins required for fatty acid uptake in the heart15.

      • The available snRNAseq raw data are from normal subjects and aortic stenosis patients who are different from DCM patients. A better dataset would be the one from Reichart D, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 2022.

      The single nucleus RNA sequencing data was used in an exploratory manner to study whether EPHB4 would also be expressed in cardiomyocytes. We did not perform any study on gene expression comparing the two groups. We believe that the use of this dataset is justified. We hope that the reviewer agrees with us.

      • Furthermore, the link between the analysis done on the published snRNA seq datasets and the authors' own data is not clearly explained.

      As we stated above and in the methods, we have used the single nucleus RNA sequencing to explore whether cardiomyocytes express EPHB4. The sentence in the methods reads as follows:

      The single-nucleus-RNA-sequencing data set generated in the paper by Nicin et al.14 was used to explore EPHB4 expression in human cardiac cells

      • DCM1 and DCM 3 carry 2 EPHB4 variants: please describe if the phenotype was more severe.

      As discussed above in the response to reviewer 1, the two patients with multiple EPHB4 variants present an average LVEF (echo) of 17.5 compared to 38,67 for the remaining 4 patients with only one EPHB4 variant and 35,17 for the six non-EPHB4 variant-carriers. Although the sample number only allows for a semi-quantitively analysis, it still hints at a possible EPHB4-variant effect, which certainly needs verification in a larger cohort.

      This information has been included in the manuscript and reads as follows:

      and interestingly, the average LVEF of the two patients with multiple EPHB4 variants is 17.5 compared to 38,67 for the remaining 4 patients with only one EPHB4 variant and 35,17 for the six non-EPHB4 variant-carriers. Although the sample number only allows for a semi-quantitively analysis, it still hints at a possible EPHB4-variant effect, which certainly needs verification in a larger cohort.

      • Provide p values on suppl table 1. The 2 groups are not matched by age and maybe gender, and this could affect the histological findings.

      We have not performed any comparison between the two groups in the characteristics shown in supplementary table 1. Nevertheless, we agree with the reviewers that the fact that the patients are not matched in age and gender is a limitation to our study. We have acknowledged this in the new included limitations section that is mentioned above.

      • Please discuss why in the DCM population the EPHB4 variant is enriched as compared with controls. Causal role? Modifiers?

      The deletion of EphB4 and its ligand ephrin-B2 induce DCM in mouse. The objective of this study was to determine whether there would be mutations in EPHB4 associated to DCM. We agree with the reviewer that in depth mechanistic studies both in vivo and in vitro would be required to determine the exact role of the here identified mutations in the development of DCM. This has been acknowledged in the new limitations sections and indicated in the discussion of the results as follows:

      Finally, this study not only supports the crucial role of EPHB4 in the heart, but it also corroborates the importance of CD36 and CAV1 for the cardiac health, and has the potential to improve diagnosis and risk stratification tools for DCM. Nevertheless, whether mutations in EPHB4 are causative or modifiers of the disease should be further studied. In addition, as other genes crucial for fatty acid transport may be involved in cardiac disease, this study may help identify new diagnostic or therapeutic targets.

      • The data and the methods are presented in such a way that they could be reproduced however,

      We thank the reviewer for the positive comment on our methods section.

      • At least 2 more healthy controls should be included, and the DCM groups should be matched by gender and age.

      Healthy donor biopsies are very rare and difficult to obtain. Although we agree with the reviewer that this could strengthen our study, we cannot add more healthy biopsies. We hope the reviewer understands this.

      As stated above, we have included a limitation section in the manuscript discussing the issue with the gender and age.

      • The causal mutation of the DCM patients should be provided.

      Only 35% of DCM cases have been related to mutations in genes encoding cytoskeletal, sarcomere or nuclear envelope proteins. In our case, the DCM patients that we use do not carry a variant in any of the DCM known genes. We have now expanded the methods sections explaining the inclusion criteria for the DCM patients including this issue:

      The criteria to be included in the study was reduced left ventricular ejection fraction (LVEF) <50% validated either with two independent image techniques or at two different time points with the same imaging technique. Furthermore, patients should include left ventricular dilation (LVEDD) >117% corrected with age and body surface according to the Henry-Formel formula (LVEDD= 45,3 * BSA1/3 – 0,03*Age –7,2). In both cases the heart were analysed either by echocardiography or magnetic resonance tomography (MRT).

      Minor comments:

      • I would explain in more detail the interactions among EPHB4, CD36 and CAV1 in the introduction, as the readers may not be familiar with this pathway.

      We have completed the introduction expanding the paragraph where the relationship between EPHB4, CD36 and CAV1 is presented. It now reads as follows:

      Mechanistically, EPHB4 deficient endothelial cells are characterized by compromised caveolar function and reduced Caveolin 1 (CAV1) phosphorylation. EPHB4 is required for the phosphorylation of CAV1 at Tyr-149. The phosphorylation of CAV1 promotes the release of caveolae from the plasma membrane10. Caveolae are required for the correct membrane translocation of the fatty acid translocase FAT/CD3611 and fatty acids are used by cardiomyocytes to obtain about 50% to 70% of their energy12. Absence of CD36 in cardiomyocytes reduces fatty acid uptake by the cardiac muscle cells13 and accelerates the progression from compensated hypertrophy to heart failure14. Finally, some cardiomyopathies a causally related to defects in the synthesis of the proteins required for fatty acid uptake in the heart15.

      • Panel B in Fig 1 shows 4 variants and not 6.

      All variants are shown in the panel As stated in the response to reviewer 1, it the fact that some variants have the same value that induces to think that only four are shown. The variants that do not appear in the genomAD have been considered 0 for this analysis.

      • IF in Fig 1: make sure that control and DCM are at the same magnification.

      Both control and DCM are at the same magnification. The reason why it looks different is the DCM phenotype. Cardiomyocytes are hypertrophic in the in the disease samples giving the impression that they are shown in a higher magnification.

      • The authors analyze snRNA seq data from available datasets and not from their own patients: so, the paragraph title in the method section should be changed as it is misleading.

      We have changed the title of this section of the methods. We have labelled it now “Analysis of single-nucleus-RNA-sequencing”.

      Reviewer #3 (Significance): Despite the main focus of the manuscript is EPHB4, dysregulation of CD36 and its interaction with CAV1 seem to be a common mechanism in the pathogenesis of all DCM. The significance of these findings is higher than the role of EPHB4 alone and should be improved.<br /> Metabolic abnormalities, mainly affecting the fatty acid metabolism, have been described as causes or modifiers of DCM pathogenesis but in my knowledge the role of EPHDB4, CD36 and CAV 1 have not been studied in human tissues. The discovery of the mechanisms through which dysregulation of metabolism is induced by DCM genetic mutations would be an advance in the field. However, the paper in the present form is not going to have a significant impact. There is no clear connection between the sets of experiments and more mechanistic experiments should be provided to prove causality. This may take months or even years depending on the availability of human tissues and resources.

      The type of audience interested in this research are mainly translational scientists mainly in the field of genetic cardiomyopathies. Furthermore, the elucidation of the metabolic effects of genetic mutations on DCM evolution may be of interest in the field of heart failure in general.

      The focus of my research is genetic and molecular pathogenesis of cardiomyopathies.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision summary.

      Additional new data.

      • CYPA expression levels in Scrm Vs KO Vs R55A isogenic cell lines as new Fig 1C.
      • ATR signaling: western blot analysis of HU-induced p-CHK1 (S345) in Scrm, KO and R55A isogenic cell lines as new Suppl Fig 1B.
      • MRN expression: western blot analysis of expression of NBS1, MRE11, RAD50 and MCM2 is Scrm, KO and R55A isogenic cell lines as new Suppl Fig 7A.
      • NBS1 subcellular fractionation: western blot analysis of NBS1 from whole cell extract Vs cytoplasmic extract Vs nuclear extract comparing expression/distribution in Scrm, KO and R55A isogenic cell lines, as new Suppl Fig 7B.
      • CYPA immunofluorescence (IF) staining on untreated and HU treated U2OS, as new Suppl Fig 7C.
      • CYPA immunofluorescence (IF) staining on untreated and HU treated U2OS following pre-extraction, as new Suppl Fig 7D.
      • DepMap Project Score Cancer Gene Dependency cell survival (“fitness”) following PPIA/CYPA-KO in breast carcinoma cell lines mapped against BRCA2 status, as a new Suppl Table 5.
      • DepMap Project Score Cancer Gene Dependency cell fitness following PPIA/CYPA-KO in Neuroblastoma cell lines, as a new Suppl Spreadsheet 4.
      • DepMap Project Score Cancer Gene Dependency cell fitness following PPIA/CYPA-KO in Multiple Myeloma cell lines, as a new Suppl Spreadsheet 4.
      • DepMap Project Score Cancer Gene Dependency cell fitness following PPIA/CYPA-KO in Chronic Myelogenous Leukaemia cell lines, as a new Suppl Spreadsheet 4.

      Revised and/or additional text.

      The Abstract, Introduction, Materials & Methods, Results and Discussion have been amended as necessary, to facilitate the issues raised by the Reviewers.

      Reviewer #1: We thank this reviewer for their understanding and appreciation of our CYPA study as espoused by their comprehensive summary of the content, importance, and potential implications of our work; “The manuscript presents clear and comprehensive data, demonstrating the profound impact of CYPA on DNA repair.” Furthermore, we very much appreciate their robust and complementary words regarding the significance of our work and its wide appeal; “The significance of this study is twofold: it adds a new layer to our understanding of DNA repair mechanisms and, importantly, it could point the way to novel therapeutic strategies for cancer. It will spark interest from molecular biologists to clinicians and pharmaceutical researchers.”

      Query:

      It's surprising to find that the loss of CYPA abolished HU-induced NBS1 foci, as the MRE11 interactive domain of NBS1 should remain intact in CYPA deficient conditions and the N-terminus of NBS1 is dispensable for ATM activation (Kim et al., 2017; Stracker and Petrini, 2011). A more detailed mechanistic explanation of this phenotype would be appreciated. The authors should check the subcellular localization of NBS1 and the stability of MRN in wildtype and CYPA KO cells. Additionally, including the kinetics of NBS1 foci formation using multiple timepoints in wildtype and CYPA KO cells after damage will further support the observation.

      RESPONSE:

      Regarding NBS1 foci formation, we note that rather than abolish HU-induced NBS1 foci formation, CYPA loss (through KO) and/or inhibition (through p.R55A) in fact results in a “…spontaneously elevated yet unresponsive amount of NBS1 foci/cells when compared to scrambled” (see original Fig 9A legend and associated Results section text). We have reinforced this observation in the revised Results section entitled ‘CYPA influences NBS1 and MDC1 foci formation’ and in the Discussion section. We do describe a kinetic impairment of RAD51 foci formation in the CYPA-engineered lines up to 16hrs post HU-treatment (Fig 6D). Our mechanistic working model is that CYPA interacts directly with NBS1 via a Pro residue within the short linking peptide between the FHA and BRCT1, and that this likely influences the relative dynamic positioning of the FHA with BRCA1-BRCT2, at least following acute HU treatment; replication fork stalling, likely biased towards ATR-dependent signaling initially, rather than that of ATM. The relative positioning of these functional domains can impact MRN function, and we discuss this possible mechanism in the section entitled ‘CYPA and the MRN complex’, with reference to the detailed structure-function analyses and complementary DDR activation models described by<br /> - Williams, R.S., et al., Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell, 2009. 139(1): p. 87-99.<br /> and<br /> - Lloyd, J., et al., A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell, 2009. 139(1): p. 100-11.<br /> and<br /> - Rotheneder, M., et al., Cryo-EM structure of the Mre11-Rad50-Nbs1 complex reveals the molecular mechanism of scaffolding functions. Mol Cell, 2023. 83(2): p. 167-185.e9.

      The N-terminal FHA-BRCT region of NBS1 does indeed influence MRN recruitment and HRR execution, a point we highlight in the section entitled ‘CYPA influences NBS1 and MDC1 foci formation’, with reference to the seminal original observations of<br /> - Sakamoto, S., et al., Homologous recombination repair is regulated by domains at the N-<br /> and C-terminus of NBS1 and is dissociated with ATM functions. Oncogene, 2007. 26(41): p.6002-6009<br /> and<br /> - Tauchi, H., et al., The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50-hMRE11-NBS1 complex<br /> DNA repair activity. J Biol Chem, 2001. 276(1): p. 12-15.<br /> and<br /> - Zhao, S., W. Renthal, and E.Y. Lee, Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res, 2002. 30(22): p. 4815-22.<br /> and<br /> - Cerosaletti, K.M. and P. Concannon, Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J Biol Chem, 2003.<br /> 278(24): p. 21944-21951.

      HU-unresponsive NBS foci (indicative of MRN dysfunction) and MDC1 foci formation are consistent with the DNA-R (i.e., DR-GFP reporter systems: Fig 3A-C and impaired RAD51 foci formation: Fig 6D) and resection-related phenotypes (Fig 6A-B) we report here and are also consistent with the relative resistance to HU-induced killing we report for CYPA-KO and CYPA-R55A cells (Fig 11A and as reported by Manthey, K.C., et al., NBS1 mediates ATR-dependent RPA hyperphosphorylation following replication-fork stall and collapse. J Cell Sci, 2007. 120(Pt 23): p. 4221-9).

      At the reviewer’s request we include additional novel experimental data showing that MRN expression is stable and equivalent in control, CYPA-KO and CYPA-R55A cells (Suppl Fig 7A). We also provide evidence that NBS1 subcellular distribution (via extract fractionation) is not altered upon CYPA loss and/or inhibition (Suppl Fig 7B).

      Query:

      The authors showed that the interaction between CYPA and MRN didn't change after HU treatment. The authors should also include co-localization analysis of CYPA and NBS1 after HU.

      RESPONSE:

      At the reviewer’s suggestion we undertook a series of IF analyses concerning endogenous CYPA (i.e., +/- HU, +/- pre-extraction). We found that endogenous CYPA failed to form foci following HU thereby precluding CYPA-NBS1 foci co-localization analysis (Suppl Fig 7C-D).

      Query:

      The paper demonstrated that BRCA2 knockdown cells were sensitive to CsA. The authors should also examine CsA sensitivity in BRCA2 deficient cancer cells. In addition, the authors could elaborate more on their criteria for selecting cancers for CYPA inhibition, whether it is based on high genomic instability or an addiction to HRR for survival.

      RESPONSE:

      Despite repeated attempts we have been unable to successfully routinely culture the TNBC suspension line HCC1599 (BRCA2 c.4154_5572del1419 and p.K1517fs*23), consistent with its reported ~5 days population doubling time. Although not a tumour line per se, we also failed to effectively culture the FANC-D1 patient FB line HSC62 (BRCA2 c.8488-1 G>A (IVS19-1G>A)) to enable survival analysis. We provide new quantification analysis of the CsA survival on the H1299 conditional shBRCA2 line (Fig 11E). Additionally, we include a comprehensive new analysis of cell survival (“fitness”) of a range of breast carcinoma cell lines following PPIA/CYPA-KO, extracted from DepMap Project Score Cancer Gene Dependency portal (https://score.depmap.sanger.ac.uk/), and also specify the BRCA2 status of each line. Interestingly, we find that reduced BRCA2 copy number is more commonly associated with loss of fitness following PPIA/CYPA loss (Suppl Table 5). We also include similar cell line fitness datasets for each of the cancers for whom we demonstrate elevated sensitivity to CYPAi (i.e., Neuroblastoma, Multiple Myeloma and CML) (Suppl Spreadsheet 4). Fascinatingly, PPIA/CYPA loss clearly results in loss of fitness in most of these cancer cell lines. Collectively, these new independent comprehensive datasets support our argument that targeting CYPA in select cancer scenarios shows impact in the preclinical setting and may represent an effective new strategy.

      The unifying features of the cancers showing elevated sensitivity to CYPAi are indeed high genomic instability, denoted by elevated RS and hence a dependency upon replication fork protection machinery. This would be consistent with the observed lethality of our CYPA-panel to shBRCA2, siXRCC3 and siRAD51C. The cancers are additionally characterised by aberrantly elevated HRR (i.e. an addiction to/dependency on HRR). This would be consistent with the observed lethality of our CYPA-panel to siCtIP, siRAD52, siXRCC3, and siRAD51C. At the Reviewer’s request we have reinforced and better clarified this point in the section Potential rational applications of CYPA inhibition in select cancers and in the Discussion.

      Reviewer #2:

      We thank this reviewer for their positive and supportive comments concerning our work; “Authors have quite conclusively explored the interaction between NBS1 and cyclophilinA as well as the putative proline residue important for this interaction.” We appreciate the constructive feedback concerning the range of consequences/impacts of CYPA impairment and we concur with their contention that “This manuscript will have broad interest from groups working on genomic stability, immunology as well as cancer therapy.”; a general view also voiced by Reviewer #1.

      We do stress that whilst other prolyl isomerases have previously been linked to DNA repair (e.g., most notably the Parvulin family member PIN1), this is the first time that CYPA has been directly implicated in DNA repair, and the first time CYPA has been shown to directly interact with a known DNA-R protein (i.e. NBS1).

      We believe that the comprehensive CYPA-BioID we describe is worthy of report and should serve as a very useful starting point for additional studies concerning CYPA biology, which is undoubtedly complex. The interactome will also function as a useful tool in helping dissect the clinically significant wider biological consequences of CYPA inhibition. Our interactome findings demonstrate that CYPA may influence DNA-R via multiple, and not necessarily mutually exclusive, routes. We do not argue that CYPA’s role in DNA-R is exclusively via NBS1/MRN. This is clearly demonstrated by our validation of CYPA interactions via co-IP with endogenous CYPA with proteins including PCNA, 53BP1, CHAMP1 and ILF2-3 complex (Fig 5). These are completely novel observations that furthermore reinforce the validity and efficacy of our experimental approach in leveraging the CYPA-BioID to provide new biological insight into this druggable prolyl cis-trans isomerase.

      Query:

      Authors show delayed S-phase transit along with reduced replication speed indicating replication stall. However, authors have not discussed how cyclophilinA might regulate replication (other than hypothesizing regarding altered dynamism of FHA-BRCT). It is conceivable that it could be an indirect effect on cellular metabolism or if authors believe it could be due to direct disruption to core replication machinery or signaling. In this regard, it will be helpful to see if there is shortening of (premature entry) G1 phase and comment on the status of the associated G1/S checkpoint.

      RESPONSE:

      The reviewer makes a very interesting and astute observation concerning the DNA replication phenotypes we report following CYPA loss and/or inhibition. The bases of these phenotypes are likely multifactorial, and we have revised the associated Discussion text to reflect this. Specifically, we highlight the elevated and unresponsive NBS1 and MDC1 foci seen in the CYPA-KO lines (Fig 9. i.e., persistent protein-DNA complexes) and dependence upon fork protection factors (XRCC3, RAD51C, BRCA2: Fig 11). We also report that a range of DNA replication factors are found in the CYPA-BioID (Fig 5A). Untangling the functional significance of these putative interactions would involve further study. Are they direct/indirect interactors? If direct, are they prolyl isomerase substrates or chaperone clients or regulated by liquid-liquid phase separation (LLPS)? Similarly, the CYPA-BioID throws-up an extensive set of RNA binding factors (Suppl Table 2), many of whom may conceivably contribute to the replication–transcription fork conflicts/collisions under conditions of CYPA-dysfunction. As this is the first comprehensive report of the cellular impacts of CYPA loss and inhibition, we thought it worth reporting the DNA replication associated phenotypes specifically to demonstrate the pleiotropic impact of loss and inhibition of this particular prolyl isomerase, to underscore its significance/importance. Although we have indeed found cell cycle phase transition impairments in our CYPA-KO and CYPA-R55A cells (for both G1-S and G2-M), these constitute additional studies requiring more thorough molecular-mechanistic characterization. We chose to focus on DNA repair for this first manuscript, as the CYPA-NBS1 interaction was the physical relationship for which we have assembled the most detailed and interconnected datasets, to-date. We do intend to pursue the cell cycle work as it too is derived from our CYPA-BioID (Suppl Spreadsheet 1), and we have already validated some of those relevant interactions by CYPA co-IP, but this is very much a work-in-progress. With this manuscript we’re endeavoring to tread a fine line by showcasing a wide range of cellular phenotypes resultant from CYPA loss and inhibition, but then also showing a deeper level of characterisation with at least one relevant interactor known to function in a range of DNA-R pathways wherein we’ve found impairments and dependencies.

      Query:

      In connection to this, it will also be interesting to see if the ATR/Chk1 signaling axis is intact in CYPA KO cells with or without additional DNA damage compared to WT.

      RESPONSE:

      At the reviewer’s request we include new data showing that HU-induced ATR-dependent CHK1 phosphorylation is normal in CYPA-KO and CYPA-R55A cells, and that ATR does not appear to be spontaneously activated in the absence of replication stress in these cells (Suppl Fig 1B).

      Query:

      Authors show that the P112 residue of NBS1 is important for the binding of cyclophilinA. What is the status of interaction among components of the MRN complex in CYPAKO cells and P112G NBS1? Further, what are the authors' thoughts on rescue experiments and whether P112G containing NBS1 to perform resection function.

      RESPONSE:

      We include new data showing normal expression of MRN components and normal subcellular localisation of NBS1 in the CYPA-KO and CYPA-R55A cells (Suppl Fig 7A-B). Regarding the interaction status of P112G, we show that this fails to co-IP endogenous CYPA when transiently expressed in HEK293 cells, in marked contrast to WT-NBS1 (Fig 8A). Furthermore, we show that ablation of another FHA Pro residue (P64) does not impair co-IP with endogenous CYPA under similar conditions, suggesting P112G is unique in this regard. Our recombinant protein interaction work demonstrates that CYPA-Step directly interacts with a HIS-(FHA-BRCT1) peptide and that P112G abolishes this interaction (Fig 8B). Regarding rescue experiments, we’ve found that stable overexpression of NBS1 can be neomorphic, resulting in resistance to certain DNA damaging agents, thereby complicating cell-based rescue analyses. We stress that along with our engineered KO and R55A (isomerase-dead) lines we have employed the well-known CYPAi Cyclosporin A (CsA) to reproduce several of the DNA-R related phenotypes (e.g., Fig 1, Fig 3, Fig 6, Fig 10, Fig 11). To further examine impacts upon resection specifically, a logical approach would be to engineer P112G into a full-length recombinant (baculoviral produced) human MRN complex for in vitro kinetic assessment using various labelled DNA substrates. But we think that this specialist and not insignificant undertaking is outside the scope of our report of the extensive cellular consequences of CYPA loss and dysfunction and it’s potential (pre)clinical significance with regards CYPAi repurposing.

      Query:

      What are the protein levels of MRN, RAD51 etc. in CYPAKO cells? It will be important control to delineate the effects of CYPA on global transcription and translation vs specific and direct effect on end-resection. Can overexpression of NBS1 rescue the observed resection and focus phenotypes?

      RESPONSE:

      Basal levels of RAD51 foci/cell are comparable between Scrm and both CYPA-KO and R55A cells (Fig 6D). We also find comparable levels of MRN components between these lines (Suppl Fig 7A). Importantly, we observe the pRPA/resection defect following an acute (up to 3hrs) treatment with CsA; conditions unlikely to grossly impair translation to an extent that would result in reduced expression of the relevant DNA-R proteins. Furthermore, microarray based transcriptomic analyses of these isogenic lines did not show evidence of a global impact upon transcription following CYPA-KO or R55A, nor was there evidence of reduced expression of any genome stability/DNA-R genes. We did not include this negative data so as to maintain the focus on the functional link with DNA repair.

      Reviewer #3: This critically negative review is myopic, unbalanced, self-contradictory and frustratingly mis-represents some of our key findings. The dismissive tone of the text unnecessarily and unprofessionally crosses into the pejorative (“Either evidence is lacking or experiments were not performed in a convincing way”). The stark contrast between this review and the summations of Reviewer #1 and Reviewer #2 serve to highlight this hyper-negative approach.

      It is very frustrating that this reviewer describes our findings as “…an interesting story…”, that “…the identification of NBS1 as a novel substrate of CYPA is significant” , that the “..manuscript may provide new insight…”, and that “…the role of CYPA in DNA repair is fairly well described using its inhibitor or KO cells”, and yet then concludes by stating “… the current manuscript suffers lack of evidence to support the main conclusion”. This is self-contradictory and unbalanced. Again, the contrast with Reviewer #1 and Reviewer #2 in this regard is stark.

      Major critical theme no. 1.

      Expression of CYPA-R55A: “…vastly different…”

      RESPONSE.

      This reviewer dismisses the entirety of the R55A model cell line work based upon the apparent “…vastly different…” expression levels of the reconstituted lines. This is an overstatement of the situation and notably not an issue for either Reviewer #1 or Reviewer #2. Nonetheless, we have replaced the original CYPA blot in Fig 1C with a clearer and more representative depiction of expression levels between the engineered lines and control. Importantly, the pRPA/resection work, siRAD52 and siXRCC3 dependency work were all corroborated/reproduced using the CYPA PPI inhibitor Cyclopsorine A (CsA). The plurality of our complementary approaches showing the influence of CYPA upon DNA-R is minimised and/or ignored by this Reviewer. Although not shown in this study, we find that the R55A cells are selectively sensitive to DNA cross-linker melphalan, in contrast to the CYPA-KO cells. Although we don’t yet understand the basis of this observation, this clearly indicates that R55A expression is a valid model in our hands and is not a like-for-like mimic of CYPA-KO simply because of reduced expression. We appreciate the reviewer could not know this.

      Major critical theme no. 2.

      CYPA-NBS1 work: “Another major concern is that the evidence to support that NBS1 is the major substrate of CYPA is lacking since all the experiments were performed with the CYPA mutant or CsA treatment.”

      RESPONSE:

      We do not claim that NBS1 is ”… the major substrate of CYPA.” . We do not claim that all the DNA-R deficits we have identified are specifically a consequence of impaired NBS1 function. These are misrepresentations of our findings and how we’ve presented and discussed them. This Reviewer ignores our comprehensive CYPA-BioID, and specifically our discussion pertaining to the DNA-R and Replication factors found therein (section entitled ‘CYPA Interacting protein partners’ and Fig 5A). We explicitly discuss the fact that “A recurring theme amongst these CYPA interactors is that all are involved in end-resection” whilst also demonstrating CYPA co-IP with 53BP1, CHAMP1 and ILF2-3 (Fig 5C-E). In the ‘Discussion’ section we describe a “homesostatic role for CYPA in genome stability”, including possible contributions to controlling LLPS of well-known DNA-R factors and the fact that several mitotic, kinetochore, centrosomal and spindle proteins are found in the CYPA-BioID.

      Major critical theme no. 3.

      A major repeated criticism levelled by this reviewer as a basis for dismissing the entirety our findings is that we have failed to demonstrate that the catalytic activity of CYPA is required for DSB repair.

      • Their conclusion should be supported by additional key experiments to prove that the catalytic activity of CYPA is indeed required for DSB repair…

      • Another major concern is that the evidence to support that NBS1 is the major substrate of CYPA is lacking since all the experiments were performed with the CYPA mutant or CsA treatment.

      • One major weakness of this study is that it focuses on characterizing the interaction between CYPA and NBS1, then jumps into a conclusion that the catalytic activity of CYPA is required for DSB repair based on its direct interaction with NBS1

      RESPONSE:

      As this criticism is repeated, the impression created, and no doubt intended, is that the manuscript is irreparably flawed (“…major weakness…”). This is an over-simplification and a misdirection. It’s notable that this critique isn’t raised in such a manner by either Reviewer #1 or Reviewer #2. This is likely because any modest inferences we made concerning the possible role of CYPA catalytic isomerase activity were based on a combination of differing but complementary approaches. Firstly, we routinely used the p.R55A engineered CYPA variant, although this Reviewer regards our use of this as invalid. This longstanding peptidyl prolyl isomerase (PPI)-dead mutant model has frequently been employed to invoke the catalytic function of CYPA. The mutant was originally proposed and characterized as catalytically-dead using the in vitro chymotrypsin-coupled prolyl isomerase assay using N-succinyl-AAPF-p-nitroanilide as a substrate as far back as 1992 (Zydowsky, L.D., et al., Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition. Protein Science, 1992. 1(9): p.1092-1099). In addition, we routinely use Cyclopsorin A (CsA), the longstanding clinically relevant CYPA PPI inhibitor, and we also use a different and more potent CYPA PPI inhibitor, namely NIM811 (N-methyl-4-isoleucine-cyclosporine) for the DR-GFP reporter assays of individual DNA-R pathway function (i.e.’ NHEJ, HRR and SSA).

      With regards to our findings concerning CYPA-NBS1 interaction, in the Discussion section we clearly state that mechanistic analyses of prolyl isomerase on the dynamism of NBS1 FHA-BRCT would require specialist approaches outside the scope of this manuscript, as the manuscript is firmly within the realm of cellular biology. This is ignored by this Reviewer. Specifically, we state that “A regulated cis-trans isomerisation of the E111-P112 peptide bond could conceivably dynamically alter the relative positioning of the FHA domain with the tandem BRCTs of NBS1 (Fig 7C-D). This may then impact on these domains’ abilities to dynamically interact with their respective phospho-threonine (for FHA) and phospho-serine (BRCT) containing targets, consequently likely shaping/impacting NBS1 recruitment dynamics and/or plasticity of its interactome [120-122]. Demonstrating this hypothesis would require additional structural analysis using techniques such as 2D-NMR which is outside the scope of this manuscript.”

      Minor comments: 1.

      Fig. 1E; is the survival between KO and R55A statistically significant? If so, do the authors have an explanation? Why is the reconstitution of R55A more toxic than KO alone?

      RESPONSE:

      Yes, R55A is slightly more sensitive compared to KO for this endpoint. The irony that this observation runs contrary to the Reviewer’s dismissal of the R55A model line is not lost on us (Major critical theme no. 1). As is well-known for PARP1, inhibition is not equivalent to absence. A possible speculative explanation is that the R55A isomerase-dead could have additional dominant impacts compared to the KO situation. Nonetheless, we suspect this Reviewer would object to such speculation in the absence of ever more data.

      Minor comments: 2.

      In Fig. 3D, the NHEJ activity of CsA- or NIM811-treated cells is significantly downregulated in comparison to control, which raises the possibility of the pleiotropic effect of CYPA inhibition. The authors should discuss this issue.

      RESPONSE:

      Not necessarily indicative of a pleiotropic effect if one accepts that absence of a protein is not always biologically equivalent to the presence of an inhibited version the same protein. Of note, we do see somewhat reduced NHEJ following siCYPA (Fig 3A), something not mentioned by this Reviewer. Furthermore, we explicitly discuss and show interaction between CYPA and 53BP1, CHAMP1 and ILF2-3 complex, all players in NHEJ and in the intricate balance between NHEJ and resection-mediated recombination directed repair pathways.

      Minor comments: 3.

      In Figure 8A, since the expressions of Flag-NBS1 WT, P112G, and P64G are very different, the conclusion that the isomerization of CYPA is essential for NBS1 cannot be supported. Given the variation of input levels, it appears that the P64G mutation actually enhances the interaction with endogenous CYPA. Is this reproducible? This co-IP result may need to be quantified from independent sets for statistical analysis.

      RESPONSE:

      We do not claim that “…isomerization of CYPA is essential for NBS1…”. Fig 8A data is derived from a transient transfection. Whilst there is some variation in expression, we do not make any precise quantitative conclusions from these co-IPs. Nonetheless, FLAG-NBS1-P112G clearly interacts less with endogenous CYPA in this system. Importantly, and ignored by this Reviewer, the associated recombinant protein work shown in Fig 8B clearly confirms that NBS1-P112G is profoundly compromised in its ability to interact with CYPA.

      Minor comments: 4.

      A defect in DSB repair generally hypersensitizes cells to DNA replication stress, including HU. In this regard, resistance of the CYPA KO (or R55A cells) to HU is interesting, but it may be due to the nonspecific effect of the CYPA loss in multiple DNA damage signaling and repair processes. Alternatively, cell cycle may be affected nonspecifically, rendering cells resistant to replication-associated genotoxic stress. This needs to be addressed further. Analysis of overall cell cycle profile may be required.

      RESPONSE:

      Resistance to HU is likely multifactorial and cell cycle transition kinetics may be relevant here. That is why we linked the DNA replications phenotypes to this discussion in the section entitled “Impaired CYPA function reveals novel genetic dependencies/vulnerabilities”. A comprehensive analysis of cell cycle profile and phase transits is outside the scope of the current manuscript (see response to Reviewer #2).<br /> Impaired HU-induced pRPA has been linked to HU-resistance via NBS1 previously: Manthey, K.C., et al., NBS1 mediates ATR-dependent RPA hyperphosphorylation following replication-fork stall and collapse. J Cell Sci, 2007. 120(Pt 23): p. 4221-9.

      Minor comments: 5.

      Text not to mention Abstract is too dense. The manuscript will benefit a lot from extensive editing and rearrangement of figures to make the story more succinct for journal submission.

      RESPONSE:

      The Reviewer’s view concerning a lack of succinctness is not shared by Reviewer #1 and Reviewer #2. We have endeavored to draft a concise and accessible manuscript, the main body of which comes in at just over 23x sides of A4 (including Materials & Methods). Considering we guide the reader through 12x multipart figures, 5x supplementary tables and 8x supplementary figure, we believe we have achieved succinctness. Nonetheless, we will of course take direction from the appropriate journal editorial team regarding house style and format.

    1. Authors’ response (3 January 2024)

      GENERAL ASSESSMENT

      The TMEM16 protein family is composed of ten members in mammals, and fewer in lower eukaryotes. Members within this protein family play remarkably different roles: some serve as Ca<sup>2+</sup>-activated ion channels, others work as lipid scramblases in a Ca<sup>2+</sup>-dependent manner, and some combine the two functions. The molecular determinants responsible for lipid transport in TMEM16 scramblases are not fully defined. The current view of lipid scrambling is that, in presence of Ca<sup>2+</sup>, TMEM16 scramblases change their conformation to expose a hydrophilic ‘groove’ to the membrane. This destabilizes the lipid bilayer, enabling translocation of lipids (e.g. phosphatidylserine) from the inner to outer leaflet of the membrane. However, recent evidence suggests that scrambling can occur even when the hydrophilic groove is closed.

      The new study by Feng and colleagues aims to investigate the molecular basis of closed-groove scrambling using the fungal scramblase, nhTMEM16. This protein was previously reported to maintain closed groove conformations even in the presence of Ca<sup>2+</sup>. The authors resolved a series of WT nhTMEM16 structures in two different nanodisc scaffolds, as well as several mutants with impaired scrambling. Strikingly, the conformational landscape of nhTMEM16 was found to rely on the lipid composition and scaffold used: the smaller E3D1 scaffold favored closed groove states and the larger 2N2 scaffold permitted intermediate and open-groove conformations. A high-resolution closed-groove structure obtained in E3D1 allowed the identification of a continuous file of lipid molecules around the catalytic groove region, providing a structural basis for lipid interaction with the closed groove. This complements prior work from this group involving a closely-related homolog, afTMEM16, in which the authors were able to visualize lipid molecules around the open groove. Furthermore, the authors succeeded in capturing three novel states of nhTMEM16 (Ca<sup>2+</sup>-free closed, Ca<sup>2+</sup>-bound intermediate-open and Ca<sup>2+</sup>-bound wider open states), completing the picture of conformational transitions that this protein undergoes upon activation.

      Mutation of key residues interacting with outer leaflet lipids selectively impaired scrambling in the absence of Ca<sup>2+</sup>. Residues involved in groove opening (E313-R432) were also identified and a mutation at this site (R432A) locked the nhTMEM16 scramblase in a closed-groove conformation, providing new insights into residues critical for groove opening. Furthermore, the authors tested the activity of nhTMEM16 mutants in several lipid compositions and reported striking differences, clarifying discrepancies from the authors’ prior work on nhTMEM16 using different lipid compositions and consolidating some of the observations from other TMEM16 homologs. It is noteworthy that the authors probed the effect of nanodisc size and lipid composition on nhTMEM16 conformation, providing thought-provoking insights for the membrane protein field. This approach is particularly valuable for closed-groove mutant structures, to ensure that the observed conformation is not dictated by scaffold size.

      Overall, this is a piece of carefully executed experimental work. The results are interpreted carefully in the context of the published literature, and the work provides important insight into plasma membrane lipid homeostasis. While the study does not have technical weaknesses, it could be improved in its presentation in order to make it more accessible to readers who are not experts in the TMEM16 field.

      We wish to thank the Colab editor and reviewers for their insightful comments, helpful suggestions, and appreciation of our work. We have extensively revised our manuscript to address their comments and suggestions. Below is a detailed point-by-point response to their suggestions.

      RECOMMENDATIONS

      Essential revisions:

      1. For readers not familiar with the field, some technical details might need to be explained in greater detail. For example:

      - In the section “Residues coordinating outer leaflet lipids are important in closed groove scrambling”, please indicate the method of measuring scrambling (liposome-based activity assay etc.) and refer to some of your prior work where the method is described for readers not familiar with the TMEM16 field. Additionally, it needs to be stated clearly what is considered a significant change in scrambling, as liposome assays are usually quite variable.

      We thank the reviewers for this suggestion. We edited the text to indicate the use of the well-established in vitro assay and added the relevant references (Lines 236-238).

      We illustrate the reproducibility of the experimental results by reporting in the bar charts the mean ± St. Dev of the scrambling rate constants, and by showing the values obtained from individual experiments (red dots superimposed to the bar charts). Additionally, we evaluated the statistical significance of the reported changes using Student’s t-test with Bonferroni correction. Finally, we added text discussing the limitations of our assay in lines 318-322.

      - Since prior work done by the group indicates that membrane thinning is a determinant of scrambling, and an open groove further thins the membrane to potentiate scrambling, it is not intuitive why the R432A mutant scrambles with WT-like rates in the presence of Ca<sup>2+</sup>. If this is due to the limitation of the assay (e.g. rate of NBD lipids bleaching), this should be stated more explicitly. Do the authors have insights from their structures regarding membrane thinning by R432A with/without Ca<sup>2+</sup> and how that compares to WT protein?

      We thank the reviewers for raising this important point. In the presence of Ca2+ the fluorescence decay of N-NBD-PE in nhTMEM16 vesicles occurs with kinetics that are slightly slower than those of the chemical reduction step by dithionite. Therefore, while we can resolve two exponential components, it is possible we are underestimating the scrambling rate constants α and β. However, we note that a large slowing effect would be well resolved in our experimental conditions. In contrast, in the absence of Ca2+, which is the focus of our current analyses, scrambling is much slower than the chemical step and is well resolved. Finally, we note that the triple mutant Y327A/F330A/Y439A alone has no effect on scrambling in 0.5 mM Ca2+ but induces a ~8 fold reduction in the scrambling rate constants in 0 Ca2+. When this mutant is combined with R432A, which favors the closed groove conformation, we now see in the presence of Ca2+ the same ~8-fold reduction in the scrambling rate constants. This suggests that our assay can resolve effects even in the presence of Ca2+. This is discussed in Lines 318-322.

      We only determined the structure of R432A in the presence of Ca2+, therefore we cannot evaluate how Ca2+ binding affects membrane thinning in this mutant.

      - It is difficult to follow the reasoning for the R432A+Y327A/F330A/Y439A mutant phenotype. Is the assumption that Y327A/F330A/Y439A is in the open conformation with Ca<sup>2+</sup>, and therefore adding a mutation stabilizing the closed groove impairs scrambling in presence of Ca<sup>2+</sup>?

      We have expanded the rationale for this experiment in lines 307-315.

      - What the authors believe about the lipid pathway when the groove is open should be discussed in more detail and with reference to Alvadia et al 2019.

      We thank the reviewers for this important suggestion. We now explicitly state that: “With a closed groove, thinning is less pronounced, and scrambling is slower than when the groove is open, rationalizing the Ca2+ dependence of this process (Extended Data Fig. 10d-f).” (Lines 432-434) Since the present work is focused on the mechanism of closed groove scrambling, we prefer to refrain from adding more speculations on what happens when the groove is open, especially since this topic was the focus of a paper we recently published (Falzone, Feng et al., Nat Comms, 2022).

      2. A more detailed account of the physiological significance of the findings should be presented in the Discussion to offer reader the authors’ view on the broader implications of the work. Relevant points include:

      - Do the authors believe that conformational bias in nhTMEM16 in various cryo-EM conditions may be reflective of physiological regulation? Is it likely to happen in cells in vivo?

      This is an excellent point. We do hypothesize that the various observed conformation are physiological and indeed we explicitly state “…that the 7 observed conformations represent intermediates along the transition from apo closed to Ca2+ bound open” (Lines 444-445). Beyond this, we cannot speculate on whether the environmental dependent bias on nhTMEM16 can happen in a physiological context. We imagine that subtle changes in membrane composition can affect TMEM16 function, and indeed we see quite dramatic effects of lipid composition of scrambling activity, however whether these changes are reflective of shifts in the conformational landscape of groove opening, of effects of membrane properties, or both, it remains to be seen. Gaining definitive insights into this would require extensive additional structural experiments in unbounded membranes (i.e., from reconstituted liposomes of different composition or native vesicles, cell membranes) that are outside of the scope of the present work.

      - Do the authors believe that such regulation may also apply to mammalian TMEM16 scramblases or even channels?

      We consider this is a definite possibility, and now added a sentence stating that “This raises the possibility that unbounded membranes, such as those of liposomes, might perturb less the conformational landscape of the imaged proteins.” (Lines 499-501) However, without direct evidence we prefer to avoid speculating on this fascinating topic.

      - What implications do these findings have for our understanding of lipid scrambling mechanisms by TMEM16 scramblases that work in intracellular (thinner) membranes (such as TMEM16K)?

      We agree this is an important point. We now added a sentence stating “The strong dependence of closed groove scrambling on membrane properties could provide a mode of regulation of TMEM16 activity in cellular membranes, such as the cholesterol rich plasma membrane or the thinner ER membrane.” (Lines 434-436)

      - What implications might the knowledge of residues involved in lipid scrambling of closed scramblases potentially have for medicine and therapy? Can the authors speculate as to whether the identified residues have the potential to be tackled pharmacologically and what use could this have?

      We do not know whether the residues we identified as important for closed groove scrambling could provide a pathway to pharmacological manipulation of TMEM16 scramblase activity. This is a fascinating topic, especially in light of the very poor availability of pharmacological tools to manipulate TMEM16 scramblase activity. However, at present it remains speculative and outside the scope of the present manuscript.

      More generally, what is the physiological role of lipid transport in the absence of Ca<sup>2+</sup>? Does this constitute a lipid "leak”?

      This is an excellent question. One possibility is that scramblases have a basal activity, that in cellular homeostasis is counteracted by the activity of flippases and floppases. Alternatively (or complementarily), it is possible that in the context of an unperturbed native membrane the basal activity is negligible. However, we do not have data addressing the present point and therefore our hypotheses remain limited to pure speculations, therefore we prefer to maintain the focus of the present manuscript on the mechanism of closed groove scrambling and on the potential effects that the environment can have on the interpretation cryoEM imaging experiments.

      Optional suggestions:

      1. Regarding residues involved in groove opening (E313-R432), it would be very interesting to expand the work by studying additional mutants and investigating more fully the role of E313 in DOPC:DOPG lipids, since at present only a mutation in R432 was tested experimentally in this lipid composition.

      We agree with the reviewers that expanding the analysis to other residues, such as E313, would be interesting. However, initial functional experiments suggested this mutant behaves similarly to R432A, and thus we did not think it would provide much additional mechanistically insights to what we already have.

      2. Measurements of ion transport in nhTMEM16 would also be useful to further validate the closed groove conformation of R432A. This could shed new light onto whether ion transport and lipid transport are coupled in TMEM16 proteins.

      This is an excellent suggestion, one that indeed we considered at length during this project. Ultimately, we decided not to pursue this avenue of investigations because of the limitations of the flux assay for non-specific ion channels. While flux assays can provide quantitative measures of effects for anion or cation selective channels, for non-selective channels these assays only provide very coarse yes/no answers (i.e., whether the construct mediates any channel activity or not). Since we expected these mutants might have intermediate phenotypes, rather than completely ablating channel activity, we were concerned that the experiments would be inconclusive at best or, at worst, misleading. These limitations are extensively discussed in our previous manuscripts (Lee et al., Nat Comms, 2018; Falzone and Accardi, Methods Mol Biol, 2020).

      3. Since the authors found significant differences in their new structures with previously reported, how do Ca<sup>2+</sup>-bound closed structures of nhTMEM16 in POPC/POPG (previously published) and DOPC/DOPG (obtained in this study) compare to each other?

      We thank the reviewers for this suggestion. In Lines 167-168 we now state: “The Ca2+ bound closed conformations in MSP1E3 DOPC/DOPG (PDBID: 6QMB) and MSP2N2 POPC/POPG are nearly identical (Cα r.m.s.d ~0.50 Å).”

      4. The purpose of creating composite symmetric maps from symmetry expanded monomers is questionable – if it is not possible to isolate this symmetric state by classification approaches, it is probably very transient, or not present at all. However, there are no strict guidelines, and it is acceptable as long as everything is described in MM and all the maps deposited. Are composite and monomer E3D1 apo maps deposited alongside the main map as EMD-41477?

      We agree with the reviewers that depositing the maps of the unexpanded dimers is appropriate and opportune, and indeed we did so

      i. the combined dimer map which was primarily used for model building is deposited as EMDB: 41453 and the model as PDB: 8TOI;

      ii. the local refined monomer map was deposited as EMDB: 41458

      iii. the dimer consensus map used for map combination was deposited as EMDB: 41457

      The rationale to generate a combined dimer map is that this allows for a better visualization of the protein-bilayer interface and the ensuing distortions. When viewing the map of a single monomer it is difficult to appreciate these effects.

      5. The authors show that Ca<sup>2+</sup>-dependent α6 straightening is important for closed-groove scrambling. This is directly relevant for TMEM16F, for which this is the only conformational change observed. The authors note that extracellular α4 is more mobile in R432A mutant, is this in any way similar to the conformations reported for more active TMEM16F mutants (Arndt et al., 2022)?

      What we see is that the density for the top of TM4 becomes very weak. This is quite different from what Arndt et al. reported, where they see a significant and defined movement of both TM4 and TM3. While we think many of the basic mechanisms of closed-groove scrambling we and many others are beginning to unravel are likely conserved across TMEM16 homologues, it is very likely that differences will exist between homologues. We now make this important point in Lines 432-434.

      (This is a response to peer review conducted by Biophysics Colab on version 1 of this preprint.)

    1. Authors’ response (11 February 2024)

      GENERAL ASSESSMENT

      Ionotropic glutamate receptors mediate the large majority of excitatory synaptic transmission in the brain. These receptors consist of four classes: AMPA, kainate, NMDA and delta receptors. NMDA receptors are obligate tetramers composed of two GluN1 and two GluN2 (or GluN3) subunits. Compared to other iGluRs, they have the particularity of requiring two different agonists for their channel to open: glycine binding on GluN1 and glutamate on GluN2.

      Seljeset et al. investigate the molecular determinants controlling ligand potency and NMDAR activity at the level of the ligand-binding domains (LBDs), where the agonists bind. They identify a specific position, D732, whose mutation to either leucine or phenylalanine leads to a constitutively active GluN1 subunit, and thus to NMDARs activated solely by glutamate. This aspartate is well known in the field, since it is a highly conserved, signature residue in iGluRs that binds amino acid ligands, together with an arginine in the LBD upper lobe. Surprisingly, although glycine cannot further activate GluN1-D732L/GluN2Awt receptors, glycine site antagonists like 5,7-DCKA or CGP-78608 can still bind and inhibit NMDAR activity. This study is therefore very intriguing, as it raises new questions about something that was previously thought to be understood. By using a combination of unnatural amino acids and conventional mutagenesis, the authors propose that D732 contributes to glycine-mediated effects by changing local interactions with nearby residues. In addition, they show that this behavior is specific for the GluN1 subunit, since mutation of the equivalent aspartate in the GluN2 subunit does not yield constitutively activated GluN2 subunits. Finally, the authors identify a homomeric iGluR from the placozoan Trichoplax adhaerens, Trichoplax AKDF<sup>19383</sup>, in which this conserved aspartate is replaced by a tyrosine. When expressed in Xenopus oocytes, the channel shows constitutive activity. Mutation of the tyrosine into an aspartate, to convert Trichoplax AKDF<sup>19383</sup> into a “classical” iGluR, decreases Trichoplax AKDF<sup>19383</sup> constitutive current and allows this channel to be activated by glycine and D-serine. Interestingly, an adjacent residue that is a serine in most mammalian subunits is also a tyrosine in Trichoplax AKDF<sup>19383</sup>, and mutation of both tyrosines yields a glutamate-gated ion channel comparable to mammalian receptors. All of this suggests that the nature of the residue at position 732 influences not only ligand binding but also channel gating.

      The study is technically sound, with appropriate controls, and uncovers intriguing properties of a position in GluN1 LBD at which specific side chain mutations can lock the subunit in an active state. Investigation of Trichoplast iGluR further reinforces these findings. This study should lead to a better understanding of how LBDs prime channel opening in iGluRs in the absence of agonists. In addition, co-agonist insensitive GluN1-D732L containing NMDARs could be used as tools to investigate the physiological consequences of NMDAR regulation by their co-agonist site. In contrast to previously engineered NMDARs activated solely by glutamate, which rely on the LBD being locked in its active state by cysteine bridges (Blanke and VanDongen, J Biol Chem 2008), GluN1-D37L/GluN2A NMDARs remain druggable (i.e. they can still be inhibited by glycine-site competitive antagonists). This is a great advantage when investigating the function of these receptors in a native context. The study identifies a few gaps that remain in our mechanistic understanding of D732’s role in channel gating. Particularly, it is unclear how subtle modification of residue side chains at position D732 lead to such drastic changes in function and why these effects are specific to GluN1 LBD. Also, why does mutation of D732 into isoleucine lead to a constitutively active GluN1 subunit, while mutation of a closely related leucine residue prevents activation of the receptor by glycine? The idea of a “hydrophobic plug” formed by D732L or D732F sidechains leading to constitutive activation would benefit from further validation since other hydrophobic substitutions (A, V, I, Y, and W) do not produce similar effects. Finally, it would be interesting to carry out further investigations of the role of the interaction between D732 and Q536 in open conformation stability. Thus, this paper puts forth interesting questions that could be addressed by future studies, for example molecular dynamics simulations and exploration of the LBD free energy landscapes (as in Yao et al., Structure 2013), to understand the impact of the GluN1-D732L mutation on GluN1 LBD conformational mobility.

      RECOMMENDATIONS

      Essential revisions:

      1. Page 2, “These data show that essentially all substitutions at the GluN1-732 position decrease glycine potency, but leucine and phenylalanine substitutions also remove the requirement for glycine co-agonism in GluN1/GluN2A NMDA receptors”: One other hypothesis for the lack of glycine dependence of GluN1-D732I and D732Y + GluN2A receptors could be that the mutated receptors have a glycine potency so high that GluN1 LBD is already saturated by contaminating, ambient glycine. At this point in the paper, the authors cannot distinguish between one hypothesis or the other, therefore we suggest that this sentence be rephrased. Later in the text, control experiments with GluN1-R523K mutations that kill glycine binding and competition with 5,7-DCKA show that glycine-independent activation of GluN1-D732L/GluN2A mutants is not due to constitutive occupancy of GluN1 LBD by contaminating glycine.

      ER1) We have now changed this to (page 4): “These data show that most substitutions at the GluN1-732 position decrease glycine potency, but leucine and phenylalanine substitutions alter GluN1 activity in such a way that leads to single-mutant NMDA receptors activated solely by glutamate.”

      1. Does glycine insensitivity in GluN1-D732L/GluN2A NMDARs reflect a constitutively active GluN1 subunit or is this subunit locked in another conformational state that cannot be further modified by glycine? This could be answered by estimating the maximum open probability of GluN1-D732L/GluN2A NMDARs compared to their wt counterparts. To estimate Po, the authors could measure the kinetics of NMDA receptor current inhibition by MK801 (the slower MK801 inhibition, the lower the Po; see Chen et al., J. Neurosci 1999; Blanke and VanDongen, JBC 2008) in the presence of saturating agonist concentrations (100 μM Glu, 100 μM Gly for wt and only 100 μM Glu for mutant).

      ER2) We have now assessed the rate of MK-801 block in glutamate-gated mutant and glycine + glutamate-gated WT receptors, and reshuffled text/figures, as this ties in well with ER4) below. MK-801 results now in Figure 3 on page 6, and main text on page 5: “In order to understand whether the glycine-insensitive GluN1-D732L subunit is in a constantly activated state or occupies a different conformation that may reflect an alternative to typical channel gating, we compared the kinetics of WT receptor and GluN1-D732L-containing receptor inhibition by the open-channel blocker MK-801, which can be used to evaluate maximum open probability of NMDARs <sup>26,30</sup>. We observed very similar kinetics of inhibition of WT and mutant receptors (Fig. 3A), indicating similar open probability in solely glutamate-gated GluN1-D732L-containing receptors and glutamate and glycine-gated WT receptors. This reflects unchanged maximum open probability in solely glutamate-gated NMDARs with disulfide-locked GluN1 LBDs assayed by single channel recordings <sup>27</sup>. This suggests that the GluN1-D732L subunit is in a constantly activated state.”

      When viewed alongside high sensitivity of mutant subunits to DCKA - OS1) below - it’s difficult to conclude what sort of active state the mutant subunit adopts. We’ve assessed the best we can at the moment, and in this paper we’ll have to leave it at “here is the observation; here is some evidence ruling out various possibilities; and here is a receptor from another family that shows something remarkably consistent”. Future studies will have to establish exactly what state the mutant subunit adopts.

      1. Page 4: The term “hydrophobic plug” is not fully justified since other hydrophobic residues do not lock GluN1 LBD in its active state.

      ER3) We have replaced nearly all use of this term, in the title and in the main text, to e.g. “certain hydrophobic substitutions” or “L/F substitutions”.

      1. Figure 2, redox sensitivity of GluN1-D732L/GluN2Awt: It would be helpful to explain the point of this experiment – maybe to investigate if the D732L mutation has an impact on the receptor gate rather than on the LBD? In any case, the authors should investigate the effect of DTT on the activity of wt GluN1/GluN2A receptors to determine whether there is an absence of an effect of the D732L mutant on redox sensitivity.

      ER4) Indeed we were curious if D732L affected the gate via this allosteric route, rather than by just altering LBD conformation. And we have now shown the effect of DTT on WT receptors.

      In addition to re-writing to better explain the point, as suggested, we have also re-written to follow on from new data/text on the whether the D732L mutation affects LBD, gating, etc: “We next questioned if D732L/F substitutions affect channel gating, rather than simply altering the LBD conformation. The gating machinery is complex, but it includes the peptide segment linking the C-terminal end of the LBD to membrane-spanning helix 4 (LBD-M4 linker, (11)). The LBD and LBD-M4 linker are confined by a C744—C798 disulfide, just four helical turns after D732, whose disruption by reduction enhances channel gating (28)). We considered that if the D732L/F substitution is coupled to channel gating via this route, then removal of the C744—C798 disulfide via the C744A mutation might alter glutamate-gated currents in GluN1-D732L-containing receptors. Alternatively, the typical enhancement by the reducing agent dithiothreitol (DTT) might differ in GluN1-D732L compared to WT receptors.”

      And new Figure 3 now includes DTT effects on WT receptors.

      1. Page 6: The authors find that mutation of Q536 decreases glycine potency and conclude there is an interaction between D732 and Q536. However, the effects of D732 and Q536 mutations could be independent, therefore the authors should consider mutating both residues together to look at the additive/non-additive effects of the mutations. Or perhaps, note in the Discussion that some sort of mutant cycle analysis or molecular dynamics simulation would be needed to rigorously test these ideas.

      ER5) We have now made and tested a double mutant combining D732E and Q536N and performed mutant cycle analysis.

      (We also tried to do this for Q536 side chain (regular mutations) and A734 main chain (non-canonical substitutions), but double mutants involving non-canonical amino acids at A734 were not successful – Figure S1.)

      As is now shown in Figure 4D, the effects of the mutations are decidedly non-additive, yielding an Ω value of 0.05, corresponding to a reasonably high energetic coupling of ~7 kJ/mol. We have now added to the relevant section of the Results on page 8: “If an interaction between Q536 and D732 were energetically important for receptor activation, the effects of their mutations should be non-additive <sup>31</sup>. We therefore tested glycine potency at double-mutant GluN1-Q536N/D732E-containing receptors and observed non-additive changes in EC<sub>50</sub>, with a strong coupling value, Ω, of 0.05 (Fig. 4D). This deviation of Ω from unity, corresponding to an interaction energy of 7.4 kJ/mol is relatively high <sup>31</sup>, confirming that Q536 and D732 are energetically coupled. We tried to analyse energetic coupling between Q536 and A734 via double mutants incorporating nonsense suppression at the A734 position, but unfortunately, attempts to incorporate Aah into such double mutants via nonsense suppression were unsuccessful (Fig. S1B).”

      1. Page 6, “A hydrophobic plug does not cause constitutive activity in all NMDA receptor subtypes”: This title is misleading as it raises the expectation that the effect of GluN1-D732L has been investigated in the context of GluN1/GluN2A, GluN1/GluN2B, etc NMDARs. Instead, the equivalent mutation is made in the GluN2 subunit. We suggest using the word “subunit” rather than “subtype”.

      ER6) We have changed this Results section title (page 8) to: “L/F substitutions do not cause constitutive activity in all NMDA receptor subunits”

      1. Page 7, effect of GluN1-D732L in the context of GluN1/GluN3 NMDARs: We would not expect current to be observed with GluN1-D732L/GluN3 NMDARs, since locking GluN1 LBD in its active state desensitizes the receptors. The effect of the D732L mutation seems therefore conserved between GluN1/GluN2 and GluN1/GluN3 NMDARs. In addition, when using CGP, please cite Grand et al., Nat. Commun. 2018 since they were the first to use CGP as a tool to record GluN1/GluN3 currents.

      ER7) We have now cited that paper specifically here (page 8) and inserted the following (page 8/9): “While this seems like inactivity of the mutant GluN1 subunit in GluN1(4a)/GluN3A, it could yet reflect the activity of constitutively active mutant GluN1 subunits in GluN1/GluN2A receptors, as GluN1 activity in GluN1/GluN3A receptors is known to cause more desensitization than activation (Grand et al 2018).”

      1. Figure 5C: It is stated in the text that the aspartate position is “highly” conserved. However, no actual number or percentages are given for this statement. How does it compare to the residues in the highly conserved SYTANLAAF motif or other conserved positions? This sort of analysis does not need to be done for the entire receptor, but perhaps for glycine and glutamate binding residues and SYTANLAAF motif, to give a quantitative feel for statements about conservation. In addition, what other types of residues occupy this position in other species? And what was the number of species/subunits included in the analysis?

      ER8) To clarify the level of conservation, we have added Table 1 (page 10) listing the % conservation of amino acids at selected positions.

      In analyzing % conservation, we noticed that several iGluR sequences with gaps in the ligand-binding domain or channel-forming helices had escaped our filtering out incomplete sequences in our phylogenetic analysis. We therefore revisited our phylogenetic analysis, removed several incomplete sequences, and replaced Crassostrea gigas (a mollusc spiralian) iGluR sequences with Schmidtea mediterranea (a flatworm spiralian) sequences. This (1) means less sequences with gaps in the ligand-binding domain in our alignment/tree and (2) better covers the diversity of the lineage Spiralia now that we have sequences of Lingula anatina and Schmidtea mediterranea, which are more distantly related than Lingula anatina and Crassosttrea gigas (Laumer et al 2019, PMID:31690235; Marlétaz et al., 2019, PMID:30639106).

      The result is a phylogenetic and amino acid sequence analysis of 204 iGluR genes (previous version had 212 genes) with the same overall topology as the previous version, including lambda, NDMA, epsilon, and AKDF iGluR families (Fig. 5B, page 9).

      The number of subunits/genes used is stated in the Figure legend. The number of and reasoning behind the number of species used is described under Methods, Bioinformatic analyses: in exploring the conservation of the D732 residue, we have not tried to use as many iGluR sequences as possible; rather we have tried to assess this residue in a broad sample covering all (animal) iGluR families and from a careful selection of different animal lineages, while also avoiding fast-evolving species like Drosophila, which complicate tree topology. Hence our description of “two ctenophores, one poriferan, etc” under Methods, Bioinformatic analyses. In the main text (Results, page 9), we retain our original description: “We assembled diverse iGluR sequences, covering all animal lineages and animal iGluR families (Fig. 6A,B)…”

      1. Figure 5, panel F: From what we understand, the authors created dose-response curves for wt Trichoplast AKDF<sup>193863</sup> based on steady-state currents and for Y742D/Y743S mutants based on peak currents. If this is the case, one cannot compare the two dose-response curves since peak current potentiation and steady-state inhibition likely reflect different conformational transitions.

      ER9) We acknowledge this issue and that we can’t really say that ligand-activated D742 channels bind D-serine better than ligand-deactivated Y742 channels. But we think it’s fair to point out that mutant D742 channels react (by conducting current) to micromolar ligand concentrations whereas wildtype Y742 channels react (with decreased current) only to millimolar concentrations, and we have re-written to acknowledge the issue raised for this comparison (page 11): “Finally, we tried to assess whether position 742 determines ligand potency in addition to channel activity in AKDF<sup>19383</sup> receptors. For these experiments we employed D-serine, as recovery from glycine-induced deactivation (Fig. 6C, far-left) and activation/desensitization (Fig. 6C, far-right) was very slow. Substantial deactivation of WT receptors was only induced by millimolar D-serine concentrations, whereas Y742D-containing mutants were activated by micromolar concentrations (Fig. 6D,E), with an EC<sub>50</sub> of 490 ± 120 µM at Y742D/Y743S (n = 4; Y742D EC<sub>50</sub> not assessed due to slow recovery from desensitization). Our measure of potency is confounded by the fact that deactivation (in WT channels) and activation (in mutant channels) are presumably coupled to D-serine binding via different conformational transitions. Nonetheless, we observe that a naturally occurring large hydrophobic side chain at the top of the β-strand preceding the αI helix leads to an AKDF homo-tetramer that shows constitutive activity and responds only to millimolar concentrations of D-serine. In contrast, “re-introducing” an aspartate to this position reinstates more typical ligand-dependent activation and sensitivity to micromolar concentrations of D-serine.”

      Optional suggestions:

      1. Figure 2, glycine/DCKA competition: It is difficult to understand how a GluN1 LBD-locked closed (active state) could still bind DCKA. If the open-to-close equilibrium of GluN1 LBD is displaced towards its closed state, then DCKA Ki should be shifted to the right compared to wt receptors. Additionally, DCKA inhibition kinetics should be slower if DCKA needs to “wait” for rare resting-like conformational changes to bind. Did the authors investigate DCKA potency and inhibition kinetics?

      OS1) We have now investigated DCKA potency. DCKA capably inhibits GluN1-D732L/GluN2A-WT activity, and perhaps surprisingly, potency of DCKA at the mutant is greater than at wildtype. We suspect this is due to (1) the introduction of a hydrophobic leucine residue right next to an aryl group of DCKA, increasing DCKA affinity directly, (2) the absence of glycine binding to this site, so no need for competition, and (3) potentially other mechanisms such as cooperativity between subunits. Again, establishing the precise nature of our mutant LBD conformation here is for future structural and molecular dynamics studies. But we have described the results, along with our following interpretation, (page 4): “Whether increased DCKA potency in GluN1-D732L subunits derives from the now non-competitive nature of the inhibition in mutant receptors or from the introduction of a favourable hydrophobic interaction with the dichlorobenzene moiety of the inhibitor is unclear. But the high DCKA potency would suggest that the constitutively active GluN1-D732L subunit is, unexpectedly, not due to a permanently clamshell-closed LBD in the mutant. This may reflect the fact that extent of LBD closure is poorly correlated with agonist efficacy in GluN1 subunits, in contrast to AMPA receptor GluA2 subunits <sup>21</sup>.”

      1. The authors show in many panels that GluN1/GluN2A currents desensitize (e.g. Fig.1B, 3C, 4A). In Xenopus oocytes, NMDAR currents do not normally desensitize. We fear this desensitization might stem from contamination of the NMDA current by calcium-activated chloride channels, which can be activated by high quantities of barium when large NMDAR currents are measured. To avoid this problem, we advise that NMDA currents above 2 µA are avoided.

      OS2) We have moved forward presuming that potential changes in current amplitude due to a small chloride flux doesn’t affect our measures of potency or ligand-selectivity. But in our new experiments, we’ve especially tried to avoid large currents.

      1. Page 5, investigation of D732 state-dependent interactions: Mutation of residues near D732 to unnatural amino acids to replace the peptidic NH do not bring much information about the mechanisms of D732 action. The fact that the 734Aah and 735Vah cannot mimic the effect of the D732L mutation could be due to many factors, including the fact that changing the peptide bond probably changes the local structure of the LBD. Perhaps mention this in the discussion.

      OS3) We have now acknowledged this possibility in the Results, right after we describe the decrease in glycine potency caused by the 734Aah mutation (page 7): “Although this may be due to local conformational changes due to altered main chain structure,…”

      1. It is intriguing that the D732L mutation locks an active conformation of the GluN1 subunit but not the GluN2 subunit, suggesting two different mechanisms of LBD closure by glutamate and glycine. It would be interesting to look at the effect of the equivalent mutation on the GluN3 subunit to investigate if this locking effect is specific to glycine-binding LBDs or just to the GluN1 subunit.

      OS4) We have now made and tested mutant GluN3A subunits D485L and D485F. Simply decreases glycine activity altogether (reflecting the effects of the mutations in GluN2A). Described on page 9: “Similarly, at oocytes injected with GluN1(4a)-WT and GluN3A-D845L or -D845F mRNAs, we saw no response to glycine alone or glycine in the presence of CGP 78608 (Fig 5D). Together, these results indicate that the induction of a constitutively active state by the D732L/F substitution is an exclusive feature of the GluN1 subunit, and the only conserved feature of the mutation in different subunits is a decrease in agonist potency.”

      1. Page 9: Discussing the position of residue side chains from structures with 4 Å resolution does not seem relevant and would benefit from a caveat.

      OS5) We want to retain our comparison of experiments with available structural data, so we have kept this but re-written to more openly acknowledge the caveat (page 12): “Indeed, in a cryo-electron microscopy (cryo-EM) study of GluN1/GluN2B receptors, D732 has only swung toward the ligand and away from A734 in a second of two putative pre-gating step structural models, although this is speculative considering the poor resolution of D732 side chains in those cryo-EM maps (12).”

      1. Page 10: We don’t understand the point that the authors want to make with the activation of Aplysia californica. Please clarify.

      OS6) He we were trying to say that “not much is required to change NMDARs from requisite co-agonism to single-ligand agonism”, either (a) in the lab via the D732L mutation or (b) naturally, as invertebrate NMDA receptors apparently show single-ligand agonism (results on invertebrate NDMARs in the literature). Further, we want to say that “by extension, we wonder if (c) in certain physiological situations, vertebrate NMDARs might indeed need only a single ligand.” We acknowledge this was unclear and – although it’s still speculative – we have now changed to (page 13): “Our work shows that only small changes in the GluN1 LBD are required for solely glutamate-gated currents in vertebrate GluN1/GluN2 receptors, and previous work suggests that invertebrate Drosophila melanogaster and Aplysia californica GluN1/GluN2 receptors can be activated by single ligands <sup>50,51</sup>. This suggests that NMDA receptors’ requirement of co-agonism is easily alleviated by certain mutations or conditions. As iGluR-modulatory proteins vary across cell types or even across neuronal compartments <sup>52,53</sup> and NMDA receptor sequence varies across animals, it is foreseeable that in certain physiological settings, certain NMDA receptors might be activated by glutamate alone. But in most settings, certainly in vertebrates, it seems that glutamate-induced activation of NMDA receptors relies on a system of ambient glycine or D-serine <sup>54,55</sup>.”

      1. In iGluRs, constitutive currents are often induced by mutations in the gate region, near the SYTANLAAF motif (e.g. lurcher mutations). Does the sequence around the gate of Trichoplast AKDF<sup>193863</sup> predict channel constitutive activity?

      OS7) Our results with WT, single mutant Y742D, and double mutant Y742D/Y743S Trichoplax AKDF<sup>19383</sup> receptors already show convincing evidence that the constitutive activity is via the Y742 and Y743 position: the tyrosine residues are unique to this leaky channel, and their mutation to more typical residues removes the leak current (Fig. 7B, page 11, revised manuscript).

      But a look at upper M3 is warranted. As shown in Fig. 6C, AKDF<sup>19383</sup> (YTANMAAFL) is quite similar to typical iGluRs (e.g. GluA2 YTANLAAFL). But one might ask about the single M/L difference in that motif, and we have therefore made and tested the M657L AKDF<sup>19383</sup> mutant, comparing it with WT. Results show that this small M3 difference has little effect on channel activity. We have added this data in new Figure 7D and described it (page 11): “As channel activity of iGluRs also relies on the upper segment of the third membrane-spanning helix (M3, (34)), we also examined this segment in AKDF<sup>19383</sup>. AKDF<sup>19383</sup> differs only subtly from most iGluRs with a methionine residue (M657) instead of leucine here (Fig. 6C), but we tested potential effects of this difference by mutating M657 to leucine. M657L activity was much like WT (Fig. 7D), however, confirming that divergence at Y742/Y743 and not the upper M3 segment determines the unique activity of AKDF<sup>19383</sup>.”

      1. D-serine is another co-agonist that binds the GluN1 subunit. Compared to glycine, D-serine can make additional interactions with the lower lobe of GluN1 LBD. It would be interesting to look at D-serine dose-response curves in GluN1-D732L/GluN2A receptors: are these receptors also D-serine insensitive or can they be further activated by D-serine?

      OS8) We have now measured the effects of D-serine on GluN1-D732L/GluN2A-WT receptors. As we now show in Figure 1B (green symbols), D-serine at increasing concentrations (100 nM through 100 μM) activates no additional current on top of the glutamate-gated current in mutant receptors. We have added to the end of the first Results paragraph (page 3): “Similarly, large currents were activated in mutant GluN1-D732L/GluN2A-WT receptors when 100 nM through 100 μM D-Serine was applied the presence of 100 µM glutamate (green in Fig. 1B).”

      (This is a response to peer review conducted by Biophysics Colab on version 1 of this preprint.)

    1. Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors compared four types of hiPSCs and four types of hESCs at the proteome level to elucidate the differences between hiPSCs and hESCs. Semi-quantitative calculations of protein copy numbers revealed increased protein content in iPSCs. Particularly in iPSCs, proteins related to mitochondrial and cytoplasmic were suggested to reflect the state of the original differentiated cells to some extent. However, the most important result of this study is the calculation of the protein copy numbers per cell, and the validity of this result is problematic. In addition, several experiments need to be improved, such as using cells of different genders (iPSC: female, ESC: male) in mitochondrial metabolism experiments.

      Strengths:

      The focus on the number of copies of proteins is exciting and appreciated if the estimated calculation result is correct and biologically reproducible.

      Weaknesses:

      The proteome results in this study were likely obtained by simply looking at differences between clones, and the proteome data need to be validated. First, there were only a few clones for comparison, and the gender and number of cells did not match between ESCs and iPSCs. Second, no data show the accuracy of the protein copy number per cell obtained by the proteome data.

      We agree with the reviewer in their assessment that more independent stem cell clones and an equal gender balance would be preferable. We will mention these considerations as limitations of our study and encourage a larger-scale follow-up.

      Regarding the estimated copy numbers, we would like to highlight that they have been extensively in the field, with direct validation of the differences in copy numbers with orthogonal methods like FACS2-4,7,10. Furthermore, the original paper directly compared the copy numbers estimated using the “proteomic ruler” to spike-in protein epitope signature tags and found remarkable concordance. This was performed with a much older generation mass spectrometer with reduced peptide coverage, and the author predicted that higher coverage would increase the quantitative performance.

      Reviewer #2 (Public Review):

      Summary:

      Pluripotent stem cells are powerful tools for understanding development, differentiation, and disease modeling. The capacity of stem cells to differentiate into various cell types holds great promise for therapeutic applications. However, ethical concerns restrict the use of human embryonic stem cells (hESCs). Consequently, induced human pluripotent stem cells (ihPSCs) offer an attractive alternative for modeling rare diseases, drug screening, and regenerative medicine.

      A comprehensive understanding of ihPSCs is crucial to establish their similarities and differences compared to hESCs.

      This work demonstrates systematic differences in the reprogramming of nuclear and non-nuclear proteomes in ihPSCs.

      We thank the reviewer for the positive assessment.

      Strengths:

      The authors employed quantitative mass spectrometry to compare protein expression differences between independently derived ihPSC and hESC cell lines. Qualitatively, protein expression profiles in ihPSC and hESC were found to be very similar. However, when comparing protein concentration at a cellular level, it became evident that ihPSCs express higher levels of proteins in the cytoplasm, mitochondria, and plasma membrane, while the expression of nuclear proteins is similar between ihPSCs and hESCs. A higher expression of proteins in ihPSCs was verified by an independent approach, and flow cytometry confirmed that ihPSCs had larger cell sizes than hESCs. The differences in protein expression were reflected in functional distinctions. For instance, the higher expression of mitochondrial metabolic enzymes, glutamine transporters, and lipid biosynthesis enzymes in ihPSCs was associated with enhanced mitochondrial potential, increased ability to uptake glutamine, and increased ability to form lipid droplets.

      Weaknesses:

      While this finding is intriguing and interesting, the study falls short of explaining the mechanistic reasons for the observed quantitative proteome differences. It remains unclear whether the increased expression of proteins in ihPSCs is due to enhanced transcription of the genes encoding this group of proteins or due to other reasons, for example, differences in mRNA translation efficiency. Another unresolved question pertains to how the cell type origin influences ihPSC proteomes. For instance, whether ihPSCs derived from fibroblasts, lymphocytes, and other cell types all exhibit differences in their cell size and increased expression of cytoplasmic and mitochondrial proteins. Analyzing ihPSCs derived from different cell types and by different investigators would be necessary to address these questions.

      We agree with the Reviewer that our study does not provide a mechanistic reason for the quantitative differences between the two cell types. However, we will include an expanded section in the discussion where we discuss the potential causes.<br /> We also agree studying hiPSCs reprogrammed from different cell types, such as blood lymphocytes, would be of great interest and will include a section about this within the discussion to encourage further research into the area.

      Reviewer #3 (Public Review):

      Summary:

      In this study, Brenes and colleagues carried out proteomic analysis of several human induced pluripotent (hiPSC) and human embryonic stem cell (hESC) lines. The authors found quantitative differences in the expression of several groups of cytoplasmic and mitochondrial proteins. Overall, hiPSC expressed higher levels of proteins such as glutamine transporters, mitochondrial metabolism proteins, and proteins related to lipid synthesis. Based on the protein expression differences, the authors propose that hiPSC lines differ from hESC in their growth and metabolism.

      Strengths:

      The number of generated hiPSC and hESC lines continues to grow, but potential differences between hiPSC and hESC lines remain to be quantified and explained. This study is a promising step forward in understanding of the differences between different hiPSC and hESC lines.

      Weaknesses:

      It is unclear whether changes in protein levels relate to any phenotypic features of cell lines used. For example, the authors highlight that increased protein expression in hiPSC lines is consistent with the requirement to sustain high growth rates, but there is no data to demonstrate whether hiPSC lines used indeed have higher growth rates.

      We respectfully disagree with the reviewer on this point. Our data shows that hESCs and hiPSCs show significant differences in protein mass and cell size, validated by the EZQ assay and FACS, while having no significant differences in their cell cycle profiles. Thus increased size and protein content would require higher growth rates to sustain the increased mass, which is what we show.

      The authors claim that the cell cycle of the lines is unchanged. However, no details of the method for assessing the cell cycle were included so it is difficult to appreciate if this assessment was appropriately carried out and controlled for.<br /> We apologise for this omission; the details will be included in the revised version of the document.

      Details and characterisation of iPSC and ESC lines used in this study were overall lacking. The lines used are merely listed in methods, but no references are included for published lines, how lines were obtained, what passage they were used at, their karyotype status, etc. For details of basic characterisation, the authors should refer to the ISSC Standards for the use of human stem cells in research. In particular, the authors should consider whether any of the changes they see may be attributed to copy number variants in different lines.

      We agree with the reviewer on this. The hiPSC lines were generated by the HipSci consortium in the Wellcome Sanger Centre as described in the flagship HipSci paper13. We cite the flagship paper which specifies in great detail the reprogramming protocols and quality control measures, including looking at copy number variations13. However, we agree that we did not make this information easily accessible for readers. We also believe it is relevant to also explicitly include this information on our manuscript instead of expecting readers to look at the flagship paper. These details will be added to the revised version.

      The expression data for markers of undifferentiated state in Figure 1a would ideally be shown by immunocytochemistry or flow cytometry as it is impossible to tell whether cultures are heterogeneous for marker expression.

      We agree with the reviewer on this. FACS is indeed much more quantitative and a better method to study heterogeneity. However, we did not have protocols to study these markers using FACS.

      TEM analysis should ideally be quantified.

      We agree with the reviewer that it would be nice to have a quantitative measure.

      All figure legends should explicitly state what graphs are representing (e.g. average/mean; how many replicates (biological or technical), which lines)? Some data is included in Methods (e.g. glutamine uptake), but not for all of the data (e.g. TEM).

      We agree with the reviewer completely. These points will be remediated in the revised version of the manuscript.

      Validation experiments were performed typically on one or two cell lines, but the lines used were not consistent (e.g. wibj_2 versus H1 for respirometry and wibj_2, oaqd_3 versus SA121 and SA181 for glutamine uptake). Can the authors explain how the lines were chosen?

      We will include these details within the updated manuscript.

      The authors should acknowledge the need for further functional validation of the results related to immunosuppressive proteins.

      We agree with the reviewer and will add a clear sentence in the discussion making this point explicitly.

      Differences in H1 histone abundance were highlighted. Can the authors speculate as to the meaning of these differences?

      Regarding H1 histones, our study of the literature as well as interaction with chromatin and histone experts both within our institute and externally have not shed light into what the differences could imply. We think this is an interesting result that merits further study, but we don’t have a clear hypothesis on the consequences.

      In summary, we thank the reviewers for their comments and will prepare a revised version that addresses their suggestions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study uses a multi-pronged empirical and theoretical approach to advance our understanding of how differences in learning relate to differences in the ways that male versus female animals cope with urban environments, and more generally how reversal learning may benefit animals in urban habitats. The work makes an important contribution and parts of the data and analyses are solid, although several of the main claims are only partially supported or overstated and require additional support.

      Public Reviews:

      We thank the Editor and both Reviewers for their time and for their constructive evaluation of our manuscript. We worked to address each comment and suggestion offered by the Reviewers in our revision—please see our point-by-point responses below.

      Reviewer #1 (Public Review):

      Summary:

      In this highly ambitious paper, Breen and Deffner used a multi-pronged approach to generate novel insights on how differences between male and female birds in their learning strategies might relate to patterns of invasion and spread into new geographic and urban areas.

      The empirical results, drawn from data available in online archives, showed that while males and females are similar in their initial efficiency of learning a standard color-food association (e.g., color X = food; color Y = no food) scenario when the associations are switched (now, color Y = food, X= no food), males are more efficient than females at adjusting to the new situation (i.e., faster at 'reversal learning'). Clearly, if animals live in an unstable world, where associations between cues (e.g., color) and what is good versus bad might change unpredictably, it is important to be good at reversal learning. In these grackles, males tend to disperse into new areas before females. It is thus fascinating that males appear to be better than females at reversal learning. Importantly, to gain a better understanding of underlying learning mechanisms, the authors use a Bayesian learning model to assess the relative role of two mechanisms (each governed by a single parameter) that might contribute to differences in learning. They find that what they term 'risk sensitive' learning is the key to explaining the differences in reversal learning. Males tend to exhibit higher risk sensitivity which explains their faster reversal learning. The authors then tested the validity of their empirical results by running agent-based simulations where 10,000 computersimulated 'birds' were asked to make feeding choices using the learning parameters estimated from real birds. Perhaps not surprisingly, the computer birds exhibited learning patterns that were strikingly similar to the real birds. Finally, the authors ran evolutionary algorithms that simulate evolution by natural selection where the key traits that can evolve are the two learning parameters. They find that under conditions that might be common in urban environments, high-risk sensitivity is indeed favored.

      Strengths:

      The paper addresses a critically important issue in the modern world. Clearly, some organisms (some species, some individuals) are adjusting well and thriving in the modern, human-altered world, while others are doing poorly. Understanding how organisms cope with human-induced environmental change, and why some are particularly good at adjusting to change is thus an important question.

      The comparison of male versus female reversal learning across three populations that differ in years since they were first invaded by grackles is one of few, perhaps the first in any species, to address this important issue experimentally.

      Using a combination of experimental results, statistical simulations, and evolutionary modeling is a powerful method for elucidating novel insights.

      Thank you—we are delighted to receive this positive feedback, especially regarding the inferential power of our analytical approach.

      Weaknesses:

      The match between the broader conceptual background involving range expansion, urbanization, and sex-biased dispersal and learning, and the actual comparison of three urban populations along a range expansion gradient was somewhat confusing. The fact that three populations were compared along a range expansion gradient implies an expectation that they might differ because they are at very different points in a range expansion. Indeed, the predicted differences between males and females are largely couched in terms of population differences based on their 'location' along the rangeexpansion gradient. However, the fact that they are all urban areas suggests that one might not expect the populations to differ. In addition, the evolutionary model suggests that all animals, male or female, living in urban environments (that the authors suggest are stable but unpredictable) should exhibit high-risk sensitivity. Given that all grackles, male and female, in all populations, are both living in urban environments and likely come from an urban background, should males and females differ in their learning behavior? Clarification would be useful.

      Thank you for highlighting a gap in clarity in our conceptual framework. To answer the Reviewer’s question—yes, even with this shared urban ‘history’, it seems plausible that males and females could differ in their learning. For example, irrespective of population membership, such sex differences could come about via differential reliance on learning strategies mediated by an interaction between grackles’ polygynous mating system and malebiased dispersal system, as we discuss in L254–265 (now L295–306). Population membership might, in turn, differentially moderate the magnitude of any such sex-effect since an edge population, even though urban, could still pose novel challenges—for example, by requiring grackles to learn novel daily temporal foraging patterns such as when and where garbage is collected (grackles appear to track this food resource: Rodrigo et al. 2021 [DOI: 10.1101/2021.06.14.448443]). We now introduce this important conceptual information— please see L89–96.

      Reinforcement learning mechanisms:

      Although the authors' title, abstract, and conclusions emphasize the importance of variation in 'risk sensitivity', most readers in this field will very possibly misunderstand what this means biologically. Both the authors' use of the term 'risk sensitivity' and their statistical methods for measuring this concept have potential problems.

      Please see our below responses concerning our risk-sensitivity term.

      First, most behavioral ecologists think of risk as predation risk which is not considered in this paper. Secondarily, some might think of risk as uncertainty. Here, as discussed in more detail below, the 'risk sensitivity' parameter basically influences how strongly an option's attractiveness affects the animal's choice of that option. They say that this is in line with foraging theory (Stephens and Krebs 2019) where sensitivity means seeking higher expected payoffs based on prior experience. To me, this sounds like 'reward sensitivity', but not what most think of as 'risk sensitivity'. This problem can be easily fixed by changing the name of the term.

      We apologise for not clearly introducing the field of risk-sensitive foraging, which focuses on how animals evaluate and choose between distinct food options, and how such foraging decisions are influenced by pay-off variance i.e., risk associated with alternative foraging options (seminal reviews: Bateson 2002 [DOI: 10.1079/PNS2002181]; Kacelnik & Bateson 1996 [DOI: 10.1093/ICB/36.4.402]). We have added this information to our manuscript in L494–497. We further apologise for not clearly explaining how our lambda parameter estimates such risk-sensitive foraging. To do so here, we need to consider our Bayesian reinforcement learning model in full. This model uses observed choice-behaviour during reinforcement learning to infer our phi (information-updating) and lambda (risksensitivity) learning parameters. Thus, payoffs incurred through choice simultaneously influence estimation of each learning parameter—that is, in a sense, they are both sensitive to rewards. But phi and lambda differentially direct any reward sensitivity back on choicebehaviour due to their distinct definitions. Glossing over the mathematics, for phi, stronger reward sensitivity (bigger phi values) means faster internal updating about stimulus-reward pairings, which translates behaviourally into faster learning about ‘what to choose’. For lambda, stronger reward sensitivity (bigger lambda values) means stronger internal determinism about seeking the non-risk foraging option (i.e., the one with the higher expected payoffs based on prior experience), which translates behaviourally into less choice-option switching i.e., ‘playing it safe’. We hope this information, which we have incorporated into our revised manuscript (please see L153–161), clarifies the rationale and mechanics of our reinforcement learning model, and why lamba measures risk-sensitivity.

      In addition, however, the parameter does not measure sensitivity to rewards per se - rewards are not in equation 2. As noted above, instead, equation 2 addresses the sensitivity of choice to the attraction score which can be sensitive to rewards, though in complex ways depending on the updating parameter. Second, equations 1 and 2 involve one specific assumption about how sensitivity to rewards vs. to attraction influences the probability of choosing an option. In essence, the authors split the translation from rewards to behavioral choices into 2 steps. Step 1 is how strongly rewards influence an option's attractiveness and step 2 is how strongly attractiveness influences the actual choice to use that option. The equation for step 1 is linear whereas the equation for step 2 has an exponential component. Whether a relationship is linear or exponential can clearly have a major effect on how parameter values influence outcomes. Is there a justification for the form of these equations? The analyses suggest that the exponential component provides a better explanation than the linear component for the difference between males and females in the sequence of choices made by birds, but translating that to the concepts of information updating versus reward sensitivity is unclear. As noted above, the authors' equation for reward sensitivity does not actually include rewards explicitly, but instead only responds to rewards if the rewards influence attraction scores. The more strongly recent rewards drive an update of attraction scores, the more strongly they also influence food choices. While this is intuitively reasonable, I am skeptical about the authors' biological/cognitive conclusions that are couched in terms of words (updating rate and risk sensitivity) that readers will likely interpret as concepts that, in my view, do not actually concur with what the models and analyses address.

      To answer the Reviewer’s question—yes, these equations are very much standard and the canonical way of analysing individual reinforcement learning (see: Ch. 15.2 in Computational Modeling of Cognition and Behavior by Farrell & Lewandowsky 2018 [DOI: 10.1017/CBO9781316272503]; McElreath et al. 2008 [DOI: 10.1098/rstb/2008/0131]; Reinforcement Learning by Sutton & Barto 2018). To provide a “justification for the form of these equations'', equation 1 describes a convex combination of previous values and recent payoffs. Latent values are updated as a linear combination of both factors, there is no simple linear mapping between payoffs and behaviour as suggested by the reviewer. Equation 2 describes the standard softmax link function. It converts a vector of real numbers (here latent values) into a simplex vector (i.e., a vector summing to 1) which represents the probabilities of different outcomes. Similar to the logit link in logistic regression, the softmax simply maps the model space of latent values onto the outcome space of choice probabilities which enter the categorial likelihood distribution. We can appreciate how we did not make this clear in our manuscript by not highlighting the standard nature of our analytical approach—we now do so in our revised manuscript (please see L148–149). As far as what our reinforcement learning model measures, and how it relates cognition and behaviour, please see our previous response.

      To emphasize, while the authors imply that their analyses separate the updating rate from 'risk sensitivity', both the 'updating parameter' and the 'risk sensitivity' parameter influence both the strength of updating and the sensitivity to reward payoffs in the sense of altering the tendency to prefer an option based on recent experience with payoffs. As noted in the previous paragraph, the main difference between the two parameters is whether they relate to behaviour linearly versus with an exponential component.

      Please see our two earlier responses on the mechanics of our reinforcement learning model.

      Overall, while the statistical analyses based on equations (1) and (2) seem to have identified something interesting about two steps underlying learning patterns, to maximize the valuable conceptual impact that these analyses have for the field, more thinking is required to better understand the biological meaning of how these two parameters relate to observed behaviours, and the 'risk sensitivity' parameter needs to be re-named.

      Please see our earlier response to these suggestions.

      Agent-based simulations:

      The authors estimated two learning parameters based on the behaviour of real birds, and then ran simulations to see whether computer 'birds' that base their choices on those learning parameters return behaviours that, on average, mirror the behaviour of the real birds. This exercise is clearly circular. In old-style, statistical terms, I suppose this means that the R-square of the statistical model is good. A more insightful use of the simulations would be to identify situations where the simulation does not do as well in mirroring behaviour that it is designed to mirror.

      Based on the Reviewer’s summary of agent-based forward simulation, we can see we did a poor job explaining the inferential value of this method—we apologise. Agent-based forward simulations are posterior predictions, and they provide insight into the implied model dynamics and overall usefulness of our reinforcement learning model. R-squared calculations are retrodictive, and they say nothing about the causal dynamics of a model. Specifically, agent-based forward simulation allows us to ask—what would a ‘new’ grackle ‘do’, given our reinforcement learning model parameter estimates? It is important to ask this question because, in parameterising our model, we may have overlooked a critical contributing mechanism to grackles’ reinforcement learning. Such an omission is invisible in the raw parameter estimates; it is only betrayed by the parameters in actu. Agent-based forward simulation is ‘designed’ to facilitate this call to action—not to mirror behavioural results. The simulation has no apriori ‘opinion’ about computer ‘birds’ behavioural outcomes; rather, it simply assigns these agents random phi and lambda draws (whilst maintaining their correlation structure), and tracks their reinforcement learning. The exercise only appears circular if no critical contributing mechanism(s) went overlooked—in this case computer ‘birds’ should behave similar to real birds. A disparate mapping between computer ‘birds’ and real birds, however, would mean more work is needed with respect to model parameterisation that captures the causal, mechanistic dynamics behind real birds’ reinforcement learning (for an example of this happening in the human reinforcement learning literature, see Deffner et al. 2020 [DOI: 10.1098/rsos.200734]). In sum, agent-based forward simulation does not access goodness-of-fit—we assessed the fit of our model apriori in our preregistration (https://osf.io/v3wxb)—but it does assess whether one did a comprehensive job of uncovering the mechanistic basis of target behaviour(s). We have worked to make the above points on the method and the insight afforded by agent-based forward simulation explicitly clear in our revision—please see L192–207 and L534–537.

      Reviewer #2 (Public Review):

      Summary:

      The study is titled "Leading an urban invasion: risk-sensitive learning is a winning strategy", and consists of three different parts. First, the authors analyse data on initial and reversal learning in Grackles confronted with a foraging task, derived from three populations labeled as "core", "middle" and "edge" in relation to the invasion front. The suggested difference between study populations does not surface, but the authors do find moderate support for a difference between male and female individuals. Secondly, the authors confirm that the proposed mechanism can actually generate patterns such as those observed in the Grackle data. In the third part, the authors present an evolutionary model, in which they show that learning strategies as observed in male Grackles do evolve in what they regard as conditions present in urban environments.

      Strengths:

      The manuscript's strength is that it combines real learning data collected across different populations of the Great-tailed grackle (Quiscalus mexicanus) with theoretical approaches to better understand the processes with which grackles learn and how such learning processes might be advantageous during range expansion. Furthermore, the authors also take sex into account revealing that males, the dispersing sex, show moderately better reversal learning through higher reward-payoff sensitivity. I also find it refreshing to see that the authors took the time to preregister their study to improve transparency, especially regarding data analysis.

      Thank you—we are pleased to receive this positive evaluation, particularly concerning our efforts to improve scientific transparency via our study’s preregistration (https://osf.io/v3wxb).

      Weaknesses:

      One major weakness of this manuscript is the fact that the authors are working with quite low sample sizes when we look at the different populations of edge (11 males & 8 females), middle (4 males & 4 females), and core (17 males & 5 females) expansion range. Although I think that when all populations are pooled together, the sample size is sufficient to answer the questions regarding sex differences in learning performance and which learning processes might be used by grackles but insufficient when taking the different populations into account.

      In Bayesian statistics, there is no strict lower limit of required sample size as the inferences do not rely on asymptotic assumptions. With inferences remaining valid in principle, low sample size will of course be reflected in rather uncertain posterior estimates. We note all of our multilevel models use partial pooling on individuals (the random-effects structure), which is a regularisation technique that generally reduces the inference constraint imposed by a low sample size (see Ch. 13 in Statistical Rethinking by Richard McElreath [PDF: https://bit.ly/3RXCy8c]). We further note that, in our study preregistration (https://osf.io/v3wxb), we formally tested our reinforcement learning model for different effect sizes of sex on learning for both target parameters (phi and lambda) across populations, using a similarly modest N (edge: 10 M, 5 F; middle: 22 M, 5 F ; core: 3 M, 4 F) to our actual final N, that we anticipated to be our final N at that time. This apriori analysis shows our reinforcement learning model: (i) detects sex differences in phi values >= 0.03 and lambda values >= 1; and (ii) infers a null effect for phi values < 0.03 and lambda values < 1 i.e., very weak simulated sex differences (see Figure 4 in https://osf.io/v3wxb). Thus, both of these points together highlight how our reinforcement learning model allows us to say that across-population null results are not just due to small sample size. Nevertheless the Reviewer is not wrong to wonder whether a bigger N might change our population-level results (it might; so might muchneeded population replicates—see L310), but our Bayesian models still allow us to learn a lot from our current data. We now explain this in our revised manuscript—please see L452–457.

      Another weakness of this manuscript is that it does not set up the background well in the introduction. Firstly, are grackles urban dwellers in their natural range and expand by colonising urban habitats because they are adapted to it? The introduction also fails to mention why urban habitats are special and why we expect them to be more challenging for animals to inhabit. If we consider that one of their main questions is related to how learning processes might help individuals deal with a challenging urban habitat, then this should be properly introduced.

      In L74–75 (previously L53–56) we introduce that the estimated historical niche of grackles is urban environments, and that shifts in habitat breadth—e.g., moving into more arid, agricultural environments—is the estimated driver of their rapid North American colonisation. We hope this included information sufficiently answers the Reviewer’s question. We have worked towards flushing out how urban-imposed challenges faced by grackles, such as the wildlife management efforts introduced in L64–65 (now L85–86), may apply to animals inhabiting urban environments more broadly; for example, we now include an entire paragraph in our Introduction detailing how urban environments may be characterised differently to nonurban environments, and thus why they are perhaps more challenging for animals to inhabit— please see L56–71.

      Also, the authors provide a single example of how learning can differ between populations from more urban and more natural habitats. The authors also label the urban dwellers as the invaders, which might be the case for grackles but is not necessarily true for other species, such as the Indian rock agama in the example which are native to the area of study. Also, the authors need to be aware that only male lizards were tested in this study. I suggest being a bit more clear about what has been found across different studies looking at: (1) differences across individuals from invasive and native populations of invasive species and (2) differences across individuals from natural and urban populations.

      We apologise for not including more examples of such learning differences. We now include three examples (please see L43–49), and we are careful to call attention to the fact that these data cover both resident urban and non-urban species as well as urban invasive species (please see L49–50). We also revised our labelling of the lizard species (please see L44). We are aware only male lizards were tested but this information is not relevant to substantiating our use of this study; that is, to highlight that learning can differ between urbandwelling and non-urban counterparts. We hope the changes we did make to our manuscript satisfy the Reviewer’s general suggestion to add biological clarity.

      Finally, the introduction is very much written with regard to the interaction between learning and dispersal, i.e. the 'invasion front' theme. The authors lay out four predictions, the most important of which is No. 4: "Such sex-mediated differences in learning to be more pronounced in grackles living at the edge, rather than the intermediate and/or core region of their range." The authors, however, never return to this prediction, at least not in a transparent way that clearly pronounces this pattern not being found. The model looking at the evolution of risk-sensitive learning in urban environments is based on the assumption that urban and natural environments "differ along two key ecological axes: environmental stability 𝑢 (How often does optimal behaviour change?) and environmental stochasticity 𝑠 (How often does optimal behaviour fail to pay off?). Urban environments are generally characterised as both stable (lower 𝑢) and stochastic (higher 𝑠)". Even though it is generally assumed that urban environments differ from natural environments the authors' assumption is just one way of looking at the differences which have generally not been confirmed and are highly debated. Additionally, it is not clear how this result relates to the rest of the paper: The three populations are distinguished according to their relation to the invasion front, not with respect to a gradient of urbanization, and further do not show a meaningful difference in learning behaviour possibly due to low sample sizes as mentioned above.

      Thank you for highlighting a gap in our reporting clarity. We now take care to transparently report our null result regarding our fourth prediction; more specifically, that we did not detect credible population-level differences in grackles’ learning (please see L130). Regarding our evolutionary model, we agree with the Reviewer that this analysis is only one way of looking at the interaction between learning phenotype and apparent urban environmental characteristics. Indeed, in L282–288 (now L325–329) we state: “Admittedly, our evolutionary model is not a complete representation of urban ecology dynamics. Relevant factors—e.g., spatial dynamics and realistic life histories—are missed out. These omissions are tactical ones. Our evolutionary model solely focuses on the response of reinforcement learning parameters to two core urban-like (or not) environmental statistics, providing a baseline for future study to build on”. But we can see now that ‘core’ is too strong a word, and instead ‘supposed’, ‘purported’ or ‘theorised’ would be more accurate—we have revised our wording throughout our manuscript to say as much (please see, for example, L24; L56; L328). We also further highlight the preliminary nature of our evolutionary model, in terms of allowing a narrow but useful first-look at urban eco-evolutionary dynamics—please see L228–232. Finally, we now detail the theorised characteristics of urban environments in our Introduction (rather than in our Results; please see L56–71), and we hope that by doing so, how our evolutionary results relate to the rest of our paper is now better set up and clear.

      In conclusion, the manuscript was well written and for the most part easy to follow. The format of eLife having the results before the methods makes it a bit harder to follow because the reader is not fully aware of the methods at the time the results are presented. It would, therefore, be important to more clearly delineate the different parts and purposes. Is this article about the interaction between urban invasion, dispersal, and learning? Or about the correct identification of learning mechanisms? Or about how learning mechanisms evolve in urban and natural environments? Maybe this article can harbor all three, but the borders need to be clear. The authors need to be transparent about what has and especially what has not been found, and be careful to not overstate their case.

      Thank you, we are pleased to read that the Reviewer found our manuscript to be generally digestible. We have worked to add further clarity, and to tempter our tone (please see our above and below responses).

      Reviewer #1 (Recommendations For The Authors):

      Several of the results are based on CIs that overlap zero. Tone these down somewhat.

      We apologise for overstating our results, which we have worked to tone down in our revision. For instance, in L185–186 we now differentiate between estimates that did or did not overlap zero (please also see our response to Reviewer 2 on this tonal change). We note we do not report confidence intervals (i.e., the range of values expected to contain the true estimate if one redoes the study/analysis many times). Rather, we report 89% highest posterior density intervals (i.e., the most likely values of our parameters over this range). We have added this definition in L459, to improve clarity.

      The literature review suggesting that urban environments are more unpredictable is not convincing. Yes, they have more noise and light pollution and more cars and planes, but does this actually relate to the unpredictability of getting a food reward when you choose an option that usually yields rewards?

      To answer the Reviewer’s question—yes. But we can see that by not including empirical examples from the literature, we did a poor job of arguing such links. In L43–49 we now give three empirical examples; more specifically, we state: “[...] experimental data show the more variable are traffic noise and pedestrian presence, the more negative are such human-driven effects on birds' sleep (Grunst et al., 2021), mating (Blickley et al., 2012), and foraging behaviour (Fernández-Juricic, 2000).” We note we now detail such apparently stable but stochastic urban environmental characteristics in our Introduction rather than our Results section, to hopefully improve the clarity of our manuscript (please see L56–71). We further note that we cite three literature reviews—not one—suggesting urban environments are stable in certain characteristics and more unpredictable in others (please see L59–60). Finally, we appreciate such characterisation is not certain, and so in our revision we have qualified all writing about this potential dynamic with words such as “apparent”, “supposed”, “theorised”, “hypothesised” etc.

      It would be interesting to see if other individual traits besides sex affect their learning/reversal learning ability and/or their learning parameters. Do you have data on age, size, condition, or personality? Or, the habitat where they were captured?

      We do not have these data. But we agree with the Reviewer that examining the potential influence of such covariates on grackles’ reinforcement learning would be interesting in future study, especially habitat characteristics (please see L306–309).

      For most levels of environmental noise, there appears to be an intermediate maximum for the relationship between environmental stability and the risk sensitivity parameter. What does this mean?

      There is indeed an intermediate maximum for certain values of environmental stochasticity (although the differences are rather small). The most plausible reason for this is that for very stable environments, simulated birds essentially always “know” the rewarded solution and never need to “relearn” behaviour. In this case, differences in latent values will tend to be large (because they consistently get rewarded for the same option), and different lambda values (in the upper range) will produce the same choice behaviour, which results in very weak selection. While in very unstable environments, optimal choice behaviour should be more exploratory, allowing learners to track frequently-changing environments. We now note this pattern in L240–248.

      Reviewer #2 (Recommendations For The Authors):

      L2: I'd encourage the authors to reconsider the term "risk-sensitive learning", at least in the title. It's not apparent to me how 'risk' relates to the investigated foraging behaviour. Elsewhere, risk-reward sensitivity is used which may be a better term.

      We apologise for not clearly introducing the field of risk-sensitive foraging, which focuses on how animals evaluate and choose between distinct food options, and how such foraging decisions are influenced by pay-off variance i.e., risk associated with alternative foraging options (seminal reviews: Bateson 2002 [DOI: 10.1079/PNS2002181]; Kacelnik & Bateson 1996 [DOI: 10.1093/ICB/36.4.402]). We have added this information to our manuscript in L494–497. In explaining our reinforcement model, we also now detail how risk relates to foraging behaviour. Specifically, in L153–161 we now state: “Both learning parameters capture individual-level internal response to incurred reward-payoffs, but they differentially direct any reward sensitivity back on choice-behaviour due to their distinct definitions (full mathematical details in Materials and methods). For 𝜙, stronger reward sensitivity (bigger values) means faster internal updating about stimulus-reward pairings, which translates behaviourally into faster learning about ‘what to choose’. For 𝜆, stronger reward sensitivity (bigger values) means stronger internal determinism about seeking the nonrisk foraging option (i.e., the one with the higher expected payoffs based on prior experience), which translates behaviourally into less choice-option switching i.e., ‘playing it safe’.” We hope this information clarifies why lamba measures risk-sensitivity, and why we continue to use this term.

      L1-3: The title is a bit misleading with regard to the empirical data. From the data, all that can be said is that male grackles relearn faster than females. Any difference between populations actually runs the other way, with the core population exhibiting a larger difference between males and females than the mid and edge populations.

      It is customary for a manuscript title to describe the full scope of the study. In our study, we have empirical data, cognitive modelling, and evolutionary simulations of the background theory all together. And together these analytical approaches show: (1) across three populations, male grackles—the dispersing sex in this historically urban-dwelling and currently urban-invading species—outperform female counterparts in reversal learning; (2) they do this via risk-sensitive learning, so they’re more sensitive to relative differences in reward payoffs and choose to stick with the ‘safe’ i.e., rewarding option, rather than continuing to ‘gamble’ on an alternative option; and (3) risk-sensitive learning should be favoured in statistical environments characterised by purported urban dynamics. So, we do not feel our title “Leading an urban invasion: risk-sensitive learning is a winning strategy” is misleading with regard to our empirical data; it just doesn’t summarise only our empirical data. Finally, as we now state in L312–313, we caution against speculating about any between-population variation, as we did not infer any meaningful behavioural or mechanistic population-level differences.

      L13: "Assayed", is that correctly put, given that the authors did not collect the data?

      Merrian-Webster defines assay as “to analyse” or “examination or determination as to characteristics”, and so to answer the Reviewer’s question—yes, we feel this is correctly put. We note we explicitly introduce in L102–103 that we did not collect the data, and we have an explicit “Data provenance” section in our methods (please see L342–347).

      L42-46: The authors provide a single example of how learning can differ between populations from more urban and more natural habitats. I would like to point out that many of these studies do not directly confirm that the ability in question has indeed led to the success of the species tested (e.g. show fitness consequences). Then the authors could combine these insights to form a solid prediction for the grackles. As of now, this looks like cherry-picking supportive literature without considering negative results.

      Here are some references that might be helpful in identifying relevant literature to cite:

      Szabo, B., Damas-Moreira, I., & Whiting, M. J. (2020). Can cognitive ability give invasive species the means to succeed? A review of the evidence. Frontiers in Ecology and Evolution, 8, 187.

      Griffin AS, Tebbich S, Bugnyar T, 2017. Animal cognition in a human-dominated world. Anim Cogn 20(1):1-6.

      Kark, S., Iwaniuk, A., Schalimtzek, A., & Banker, E. (2007). Living in the city: Can anyone become an "urban exploiter"? Journal of Biogeography, 34(4), 638-651.

      We apologise for not including more examples of such learning differences. We now include three examples (please see L43–49). We are aware that direct evidence of fitness consequences is entirely lacking in the scientific literature on cognition and successful urban invasion; hence why such data is not present in our paper. But we now explicitly point out a role for likely fitness-affecting anthropogenic disturbances on sleep, mate, and foraging behaviour on animals inhabiting urban environments (please see L63–68). We hope these new data bolster our predictions for our grackles. Finally, the Reviewer paints a (in our view) inaccurate picture of our use of available literature. Nevertheless, to address their comment, we now highlight a recent meta-analysis advocating for further research to confirm apparent ‘positive’ trends between animal ‘smarts’ and successful ‘city living’ (please see L43).

      L64: Is their niche historically urban, or have they recently moved into urban areas?

      In L74–75 (previously L53–56) we introduce that the estimated historical niche of grackles is urban environments, and that shifts in habitat breadth—e.g., moving into more arid, agricultural environments—is the estimated driver of their rapid North American colonisation. We hope this included information sufficiently answers the Reviewer’s question.

      L66-67: This is an important point that is however altogether missing from the discussion.

      We thank the Reviewer for highlighting a gap in our discussion regarding populationlevel differences in grackles’ reinforcement learning. In L310–312 we now state: “The lack of spatial replicates in the existing data set used herein inherently poses limitations on inference. Nevertheless, the currently available data do not show meaningful population-level behavioural or mechanistic differences in grackles’ reinforcement learning, and we should thus be cautious about speculating on between-population variation”.

      L68-71: The paper focuses on cognitive ability. The whole paragraph sets up the prediction of why male grackles should be better learners due to their dispersal behaviour. This example, however, focuses on aggression, not cognition. Here is a study showing differences in learning in male and female mynas that might be better suited:

      Federspiel IG, Garland A, Guez D, Bugnyar T, Healy SD, Güntürkün O, Griffin AS, 2017. Adjusting foraging strategies: a comparison of rural and urban common mynas (Acridotheres tristis). Anim Cogn 20(1):65-74.

      We thank the Reviewer for suggesting this paper. We feel it is better suited to substantiating our point in the Discussion about reversal learning not being indicative of cognitive ability—please see L276–277.

      L73: Generally, I suggest not writing "for the first time" as this is not a valid argument for why a study should be conducted. Furthermore, except for replication studies, most studies investigate questions that are novel and have not been investigated before.

      The Reviewer makes a fair point—we have removed this statement.

      L80-81: Here again, this is left undiscussed later on.

      By ‘this’ we assume the Reviewer is referring to our hypothesis, which is that sex differences in dispersal are related to sex differences in learning in an urban invader— grackles. At the beginning of our Discussion, we state how we found support for this hypothesis (please see L250–261); and in our ‘Ideas and speculation’ section, we discuss how these hypothesis-supporting data fit into the literature more broadly (please see L294–331). We feel this is therefore sufficiently discussed.

      L77-81: This sentence is very long and therefore hard to read. I suggest trying to split it into at least 2 separate sentences which would improve readability.

      Per the Reviewer’s useful suggestion, we have split this sentence into two separate sentences—please see L97–115.

      L83: Please explain choice-option switches. I am not aware of what that is and it should be explained at first mention.

      We apologise for this operational oversight. We now include a working definition of speed and choice-option switches at first mention. Specifically, in L107–108 we state: “[...] we expect male and female grackles to differ across at least two reinforcement learning behaviours: speed (trials to criterion) and choice-option switches (times alternating between available stimuli)”.

      L83-87: Again, a very long sentence. Please split.

      We thank the Reviewer for their suggestion. In this case we feel it is important to not change our sentence structure because we want our prediction statements to match between our manuscript and our preregistration.

      L96-97: Important to not overstate this. It merely demonstrates the potential of the proposed (not detected) mechanism to generate the observed data.

      As in any empirical analysis, our drawn conclusions depend on causal assumptions about the mechanisms generating behaviour (Pearl, J. (2009). Causality). Therefore, we “detected” specific learning mechanisms assuming a certain generative model, namely reinforcement learning. As there is overwhelming evidence for the widespread importance of value-based decision making and Rescorla-Wagner updating rules across numerous different animals (Sutton & Barto (2018) Reinforcement Learning), we would argue that this assumed model is highly plausible in our case. Still, we changed the text to “inferred” instead of “detected” learning mechanisms to account for this concern—please see L123–124.

      L99: "urban-like settings" again a bit confusing. The authors talk about invasion fronts, but now also about an urbanisation gradient. Is the main difference between the size and the date of establishment, or is there additionally a gradient in urbanisation to be considered?

      We now include a paragraph in our Introduction detailing apparent urban environmental characteristics (please see 56–71), and we now refer to this dynamic specifically when we define urban-like settings (please see L126–127). To answer the Reviewer’s question—we consider both differences. Specifically, we consider the time since population establishment in our paper (with respect to our behavioural and mechanistic modelling), as well as how statistical environments that vary in how similar they are to apparently characteristically urban-like environments, might favour particular learning phenotypes (with respect to our evolutionary modelling). We hope the edits to our Introduction as a whole now make both of the aims clear.

      L11-112: Above the authors talk about a comparable number of switches (10.5/15=0.7), and here of fewer number of switches (25/35=0.71), even though the magnitude of the difference is almost identical and actually runs the other way. The authors are probably misled by their conservative priors, which makes the difference appear greater in the second case than in the first. Using flat priors would avoid this particular issue.

      Mathematically, the number of trials-to-finish and the number of choice-optionswitches are both a Poisson distributed outcome with rate λ (we note lambda here is not our risk-sensitivity parameter; just standard notation). As such, our Poisson models infer the rate of these outcomes by sex and phase—not the ratio of these outcomes by sex and phase. So comparing the magnitude of divided medians of choice-option-switches between the sexes by phase is not a meaningful metric with respect to the distribution of our data, as the Reviewer does above. For perspective, 1 vs. 2 switches provides much less information about the difference in rates of a Poisson distribution than 50 vs 100 (for the former, no difference would be inferred; for the latter, it would), but both exhibit a 1:2 ratio. To hopefully prevent any such further confusion, and to focus on the fact that our Poisson models estimate the expected value i.e., the mean, we now report and graph (please see Fig. 2) mean and not median trialsto-finish and total-switch-counts. Finally, we can see that our use of the word “conservative” to describe our weakly informative priors is confusing, because conservative could mean either strong priors with respect to expected effect size (not our parameterisation) or weak priors with respect to such assumptions (our parameterisation). To address this lack of clarity, we now state that we use “weakly informative priors” in L457–458.

      L126: It is not clear what risk sensitivity means in the context of these experiments.

      Thank you for pointing out our lack of clarity. In L153–161 we now state: “Both learning parameters capture individual-level internal response to incurred reward-payoffs, but they differentially direct any reward sensitivity back on choice-behaviour due to their distinct definitions (full mathematical details in Materials and methods). For 𝜙, stronger reward sensitivity (bigger values) means faster internal updating about stimulus-reward pairings, which translates behaviourally into faster learning about ‘what to choose’. For 𝜆, stronger reward sensitivity (bigger values) means stronger internal determinism about seeking the nonrisk foraging option (i.e., the one with the higher expected payoffs based on prior experience), which translates behaviourally into less choice-option switching i.e., ‘playing it safe’.” We hope this information clarifies what risk sensitivity means and measures, with respect to our behavioural experiments.

      L128-129: I find this statement too strong. A plethora of other mechanisms could produce similar patterns, and you cannot exclude these by way of your method. All you can show is whether the mechanism is capable of producing broadly similar outcomes as observed

      In describing the inferential value of our reinforcement learning model, we now qualify that the insight provided is of course conditional on the model, which is tonally accurate. Please see L161.

      L144: As I have already mentioned above, here is the first time we hear about unpredictability related to urban environments. I suggest clearly explaining in the introduction how urban and natural environments are assumed to be different which leads to animals needing different cognitive abilities to survive in them which should explain why some species thrive and some species die out in urbanised habitats.

      Thank you for this suggestion. We now include a paragraph in our Introduction detailing as much—please see L56–71.

      L162: "almost entirely above zero" again, this is worded too strongly.

      In reporting our lambda across-population 89% HPDI contrasts in L185–186, we now state: “[...] across-population contrasts that lie mostly above zero in initial learning, and entirely above zero in reversal learning”. Our previous wording stated: ““[...] across-population contrasts that lie almost entirely above zero”. The Reviewer was correct to point out that this previous wording was too strong if we considered the contrasts together, as, indeed, we find the range of the contrast in initial learning does minimally overlap zero (L: -0.77; U: 5.61), while the range of the contrast in reversal learning does not (L: 0.14; U: 4.26). This rephrasing is thus tonally accurate.

      L178-179: I think it should be said instead that the model accounts well for the observed data.

      We have rephrased in line with the Reviewer’s suggestion, now stating in L217–218 that “Such quantitative replication confirms our reinforcement learning model results sufficiently explain our behavioural sex-difference data.”

      L188-190: I am not convinced this is a general pattern. It is quite a bold claim that I don't find to be supported by the citations. Why should biotic and abiotic factors differ in how they affect behavioural outcomes? Also, events in urban environments such as weekend/weekday could lead to highly regular optimal behaviour changes.

      Please see our response to Reviewer 1 on this point. We note we now touch on such regular events in L94–96.

      L209-211: The first sentence is misleading. The authors have found that males and females differ in 'risk sensitivity', that their learning model can fit the data rather well, and that under certain, not necessarily realistic assumptions, the male learning type is favoured by natural selection in urban environments. A difference between core, middle, and edge habitats however is barely found, and in fact seems to run the other way than expected.

      In our study, we found: (1) across three populations, male grackles—the dispersing sex in this historically urban-dwelling and currently urban-invading species—outperform female counterparts in reversal learning; (2) they do this via risk-sensitive learning, so they’re more sensitive to relative differences in reward payoffs and choose to stick with the ‘safe’ i.e., rewarding option, rather than continuing to ‘gamble’ on an alternative option; (3) we are sufficiently certain risk-sensitive learning generates our sex-difference data, as our agentbased forward simulations replicate our behavioural results (not because our model ‘fits’ the data, but because we inferred meaningful mechanistic differences—see our response to Reviewer 1 on this point); and (4) under theorised dynamics of urban environments, natural selection should favour risk-sensitive learning. We therefore do not feel it is misleading to say that we mapped a full pathway from behaviour to mechanisms through to selection and adaptation. Again, as we now state in L311–313, we caution against speculating about any between-population variation, as we did not infer any meaningful behavioural or mechanistic population-level differences. And we note the Reviewer is wrong to assume an interaction between learning, dispersal, and sex requires population-level differences on the outcome scale—please see our discussion on phenotypic plasticity and inherent species trait(s) in L313–324.

      L216: "indeed explain" again worded too strongly.

      We have tempered our wording. Specifically, we now state in L218: “sufficiently explain”. This wording is tonally accurate with respect to the inferential value of agent-based forward simulations—please see L192–207 on this point.

      L234: "reward-payoff sensitivity" might be a better term than risk-sensitivity?

      Please see our earlier response to this suggestion. We note we have changed this text to state “risk-sensitive learning” rather than “reward-payoff sensitivity”, to hopefully prevent the reader from concluding only our lambda term is sensitive to rewards—a point we now include in L153–154.

      L234-237: I think these points may be valuable, but come too much out of the blue. Many readers will not have a detailed knowledge of the experimental assays. It therefore also does not become clear how they measure the wrong thing, what this study does to demonstrate this, or whether a better alternative is presented herein. It almost seems like this should be a separate paper by itself.

      We apologise for this lack of context. We now explicitly state in L275 that we are discussing reversal learning assays, to give all readers this knowledge. In doing so, we hope the logic of our argument is now clear: reversal learning assays do not measure behavioural flexibility, whatever that even is. The Reviewer’s suggestion of a separate paper focused on what reversal learning assays actually measure, in terms of mechanism(s), is an interesting one, and we would welcome this discussion. But any such paper should build on the points we make here.

      L270-288: Somewhere here the authors have to explain how they have not found differences between populations, or that in so far as they found them, they run against the originally stated hypothesis.

      We thank the Reviewer for these suggestions. In L310—313 we now state: “The lack of spatial replicates in the existing data set used herein inherently poses limitations on inference. Nevertheless, the currently available data do not show meaningful population-level behavioural or mechanistic differences in grackles’ reinforcement learning, and we should thus be cautious about speculating on between-population variation”.

      L284: should be "missing" not "missed out"

      We have made this change.

      L290-291: It is unclear what "robust interactive links" were found. A pattern of sexbiased learning was found, which can potentially be attributed to evolutionary pressures in urban environments. An interaction e.g. between learning, dispersal, and sex can only be tentatively suggested (no differences between populations). Also "fully replicable" is a bit misleading. The analysis may be replicable, but the more relevant question of whether the findings are replicable we cannot presently answer.

      We apologise for our lack of clarity. By “robust” we mean “across population”, which we now state in L333. We again note the Reviewer is wrong to assume an interaction between learning, dispersal, and sex requires population-level differences on the outcome scale— please see our discussion on phenotypic plasticity and inherent species trait(s) in L313–324. Finally, the Reviewer makes a good point about our analyses but not our findings being replicable. In L334 we now make this distinction by stating “analytically replicable”.

      L306-315: I think you have a bit of a sample size issue not so much when populations are pooled but when separated. This might also factor in the fact that you do not really find differences across the populations in your analysis. When we look at the results presented in Figure 2 (and table d), we can see a trend towards males having better risk sensitivity in core (HPDI above 0) and middle populations (HPDI barely crossing 0) but the difference is very small. Especially the results on females are based on the performance of only 8 and 4 females respectively. I suggest making this clear in the manuscript.

      In Bayesian statistics, there is no strict lower limit of required sample size as the inferences do not rely on asymptotic assumptions. With inferences remaining valid in principle, low sample size will of course be reflected in rather uncertain posterior estimates. We note all of our multilevel models use partial pooling on individuals (the random-effects structure), which is a regularisation technique that generally reduces the inference constraint imposed by a low sample size (see Ch. 13 in Statistical Rethinking by Richard McElreath [PDF: https://bit.ly/3RXCy8c]). We further note that, in our study preregistration (https://osf.io/v3wxb), we formally tested our reinforcement learning model for different effect sizes of sex on learning for both target parameters (phi and lambda) across populations, using a similarly modest N (edge: 10 M, 5 F; middle: 22 M, 5 F ; core: 3 M, 4 F) to our actual final N, that we anticipated to be our final N at that time. This apriori analysis shows our reinforcement learning model: (i) detects sex differences in phi values >= 0.03 and lambda values >= 1; and (ii) infers a null effect for phi values < 0.03 and lambda values < 1 i.e., very weak simulated sex differences (see Figure 4 in https://osf.io/v3wxb). Thus, both of these points together highlight how our reinforcement learning model allows us to say that across-population null results are not just due to small sample size. Nevertheless the Reviewer is not wrong to wonder whether a bigger N might change our population-level results; it might; so might muchneeded population replicates—see L310. But our Bayesian models still allow us to learn a lot from our current data, and, at present, we infer no meaningful population-level behavioural or mechanistic differences in grackles’ behaviour. To make clear the inferential sufficiency of our analytical approach, we now include some of the above points in our Statistical analyses section in L452–457. Finally, we caution against speculating on any between-population variation, as we now highlight in L311—313 of our Discussion.

      Figure 2: I think the authors should rethink their usage of colour in this graph. It is not colour-blind friendly or well-readable when printed in black and white.

      We used the yellow (hex code: #fde725) and green (hex code: #5ec962) colours from the viridis package. As outlined in the viridis package vignette (https://cran.rproject.org/web/packages/viridis/index.html), this colour package is “designed to improve graph readability for readers with common forms of color blindness and/or color vision deficiency. The color maps are also perceptually-uniform, both in regular form and also when converted to black-and-white for printing”.

      Figure 3B: Could the authors turn around the x-axis and the colour code? It would be easier to read this way.

      We appreciate that aesthetic preferences may vary. In this case, we prefer to have the numbers on the x-axis run the standard way i.e., from small to large. We note we did remove the word ‘Key’ from this Figure, in line with the Reviewer’s point about these characteristics not being totally certain.

      I also had a look at the preregistration. I do think that there are parts in the preregistration that would be worth adding to the manuscript:

      L36-40: This is much easier to read here than in the manuscript.

      We changed this text generally in the Introduction in our revision, so we hope the Reviewer will again find this easier to read.

      L49-56: This is important information that I would also like to see in the manuscript.

      We no longer have confidence in these findings, as our cleaning of only one part of these data revealed considerable experimenter oversight (see ‘Learning criterion’).

      L176: Why did you remove the random effect study site from the model? It is not part of the model in the manuscript anymore.

      The population variable is part of the RL_Comp_Full.stan model that we used in our manuscript to assess population differences in grackles’ reinforcement learning, the estimates from which we report in Table C and D (please note we never coded this variable as “study cite”). But rather than being specified as a random effect, in our RL_Comp_Full.stan model we index phi and lambda by population as a predictor variable, to explicitly model population-level effects. Please see our code:

      https://github.com/alexisbreen/Sex-differences-in-grackles- learning/blob/main/Models/Reinforcement%20learning/RL_Comp_Full.stan

      L190-228: I am wondering if the model validation should also be part of the manuscript as well, rather than just being in the preregistration?

      We are not sure how the files were presented to the Reviewer for review, but our study preregistration, which includes our model validation, should be part of our manuscript as a supplementary file.

    1. how do we educate our children so they have a sense of cultural identity and so that we can pass on the cultural genes of our 00:00:53 communities while being part of the process of globalization how do you square that circle the problem is they're trying to meet the future by doing what they did in the past

      I think it is important to know your culture. In my opinion it's important because it's where I came from and where my family comes from. It also may provide reasoning as to why some things are the way they are in your life.

    1. Let’s face it, very few people read the “terms and conditions,” or the “terms of use” agreements prior to installing an application (app). These agreements are legally binding, and clicking “I agree” may permit apps (the companies that own them) to access your: calendar, camera, contacts, location, microphone, phone, or storage, as well as details and information about your friends.

      This is so important it's not something I ever considered or worried about when thinking of privacy and security. I never read the "terms and conditions" when getting on to new apps or websites. I didn't think about how I could be agreeing to things that I would never agree to if someone asked me directly. This could not only be harmful to me, but to family and friends too because their information could be embedded into what I allowed access to. This caused me to think about how I can say something or see something and an ad for that specific thing pops up on my social media or google account right after. I'm agreeing for social media accounts to listen and look at everything on my device and share it with people. This is scary to think about, especially for young children. Anyone could hack into these accounts and get information about everything dealing with a child's life. As educators, we need to be cautious about reading the terms and conditions and we need to teach our students to be cautious of them too for their safety.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1.1) This work introduces a new method of imaging the reaction forces generated by small crawling organisms and applies this method to understanding locomotion of Drosophila larva, an important model organism. The force and displacement data generated by this method are a qualitative improvement on what was previously available for studying the larva, improving simultaneously the spatial, temporal, and force resolution, in many cases by an order of magnitude. The resulting images and movies are quite impressive.

      We thank the reviewer for their recognition of the achievements our work presents and for their feedback with regard to what they consider our most important findings and the points raised in their review. We will address these points individually below.

      (1.2) As it shows the novel application of recent technological innovations, the work would benefit from more detail in the explanation of the new technologies, of the rationales underlying the choice of technology and certain idiosyncratic experimental details, and of the limitations of the various techniques. In the methods, the authors need to be sure to provide sufficient detail that the work can be understood and replicated. The description of the results and the theory of motion developed here focus only on forces generated when the larva pushes against the substrate and ignores the equally strong adhesive forces pulling the larva onto the substrate.

      As the reviewer correctly points out, our present work adapts a recently developed set of methods (namely, ERISM and WARP) for use with small soft-bodied animals. The foundational methods have been described in detail in previous publications (refs, 23 and 26). However, upon reflection, we agree that more information can be provided to ensure our work is more accessible and reproducible. We also agree that some additional clarifying information on our approach could be helpful. We have addressed this in the following ways:

      (1) We have included a detailed Key Resources table in the methods section to allow for maximum transparency on equipment and reagent sourcing. This can now be found on Pages 16-19.

      (2) We have modified the ‘Freely behaving animals force imaging’ section of the Materials and Methods section to include more detailed information on practical aspects of conducting experiments. These changes can be found on page 23-24 (lines 566–567, 571-577).

      (3) We have re-ordered the Materials and Methods section, such that microcavity fabrication and microcavity characterisation occur prior to the description of ERISM and WARP experiments - this change should hopefully aid replication. Details regarding the application of a silicone well to the surface of microcavities have also been added (lines 472-474).

      (4) We have added additional text in the Introduction and Results (Pages 3-4 and 7, lines 56-86, and 152-153) to explain our rationale for using ERISM/WARP and additional text in the discussion that discusses the potential role(s) of adhesive forces in larval locomotion (Page 12, lines 301307).

      (1.3) The substrate applies upward, downward, and horizontal forces on the larva, but only upward and downward forces are measured, and only upward forces are considered in the discussions of "Ground Reactive Forces." An apparent weakness of the WARP technique for the study of locomotion is that it only measures forces perpendicular to the substrate surface ("vertical forces" in Meek et al.), while locomotion requires the generation of forces parallel to the substrate ("horizontal forces"). It should be clarified that only vertical forces are studied and that no direct information is provided about the forces that actually move the larva forward (or about the forces which impede this motion and are also generated by the substrate). Along with this clarification, it would be helpful to include a discussion of other techniques, especially micropillar arrays and traction force microscopy, that directly measure horizontal forces and of why these techniques are inappropriate for the motions studied here.

      We attempted to provide a streamlined Introduction in our initial submission and then compared ERISM/WARP to other methods in our discussion. We are happy to provide a brief overview of substrate force measurement methods in the introduction to help set the stage for readers. The Introduction section of our revised manuscript now contains the following comparison of different mechanobiological imaging techniques on pages 3-4 lines 56-86:

      ‘However, in the field of cellular mechanobiology, many new force measuring techniques have been developed which allow measurement of comparatively small forces from soft structures exhibiting low inertia (15–17) often with relatively high spatial-resolution. Early methods such as atomic force microscopy required the use of laser-entrained silicon probes to make contact with a cell of interest (15). This approach is problematic for studying animal behaviour due to the risk of the laser and probe influencing behaviour. Subsequently, techniques have been developed which allow indirect measurement of substrate interactions. One such approach is Traction Force Microscopy (TFM) in which the displacement of fluorescent markers suspended in a material with known mechanical properties relative to a zero-force reference allows for indirect measurement of horizontally aligned traction forces (17–19). This technique allows for probe-free measurement of forces, but the need to obtain a precise zero-force reference would make time-lapse measurements on behaving animals challenging; further, depending on the version used, it has insufficient temporal resolution for the measurement of forces produced by many behaving animals, despite recent improvements (20). A second approach revolves around the use of micropillar arrays; in this technique, horizontally-aligned traction forces are measured by observing the deflection of pillars made of an elastic material with known mechanical properties. This approach can be limited in spatial resolution and introduces a non-physiological substrate that may influence animal behavior (21,22).

      Recently we have introduced a technique named Elastic Resonator Interference Stress Microscopy (ERISM) which allows for the optical mapping of vertically aligned GRFs in the pico and nanonewton ranges with micrometre spatial resolution by monitoring local changes in optical resonances of soft and deformable microcavities. This technique allows reference-free mapping of substrate deformations and calculation of vertically directed GRFs; it has been used to study a range of questions related to exertion of cellular forces (23–25). Until recently, this technique was limited by its low temporal resolution (~10s), making it unsuitable for recording substrate interaction during fast animal movements, but a further development of ERISM known as wavelength alternating resonance pressure microscopy (WARP), has been demonstrated to achieve down to 10 ms temporal resolution (26). Given ERISM/WARP allows for probe-free measurement of vertical ground reaction forces with high spatial and temporal resolution, it becomes an attractive method for animal-scale mechanobiology.’

      (1.4) The larvae studied are about 1 mm long and 0.1 mm in cross-section. Their volumes are therefore on order 0.01 microliter, their masses about 0.01 mg, and their weights in the range of 0.1 micronewton. This contrasts with the force reported for a single protpodium of 1 - 7 micronewtons. This is not to say that the force measurements are incorrect. Larvae crawl easily on an inverted surface, showing gravitational forces are smaller than other forces binding the larva to the substrate. The forces measured in this work are also of the same magnitude as the horizontal forces reported by Khare et al. (ref 32) using micropillar arrays.

      I suspect that the forces adhering the larva to the substrate are due to the surface tension of a water layer. This would be consistent with the ring of upward stress around the perimeter of the larva visible in S4D, E and in video SV3. The authors remark that upward deflection of the substrate may be due to the Poisson's ratio of the elastomer, but the calibration figure S5 shows that these upward deflections and forces are much smaller than the applied downward force. In any case, there must be a downward force on the larva to balance the measured upward forces and this force must be due to interaction with the substrate. It should be verified that the sum of downward minus upward forces on the gel equals the larva's weight (given the weight is neglible compared to the forces involved, this implies that the upward and downward forces should sum to 0).

      We have carefully calculated the forces exerted by protopodia and are confident in the accuracy of our measurements as reported. We further agree with the reviewer’s suggestion that gravitational forces can be largely neglected.

      As the reviewer points out, one would expect forces due to upward and downward deflections to cancel when considering the entire system. However, we see indications that the counteracting / balancing force often acts over a much larger area than the acting force, e.g. a sharp indentation by a protopodium might be counteracted by an upward deflection over a 10-20 fold larger radius and hence 100 to 400-fold larger area, thereby reducing the absolute value of the upward deflection at any given pixel surrounding the indentation. This in turn increases error in determining the integrated upward deformation, making it difficult to perform an absolute comparison of acting and counteracting force. Further, recording the entire counteracting force induced deformation would require acquiring data with a prohibitively large field of view.

      We agree that in some situations, water surface tension may be adhering animals to the substrate. Importantly, this is a challenge that the animal faces outside the lab in its natural environment of moist rotting fruit and yeast. The intricate force patterns seen in our study in the presence of water surface tension are therefore ecologically relevant. In other situations (e.g. preparing for pupation), larvae are able to stick to dry surfaces, suggesting that other adhesive forces such as mucoid adhesion can also come into play in certain behavioural contexts. A full characterization of the effects of water tension and mucoid adhesion are beyond the scope of this study. However, we have now added a sentence on pages 8 and 12 commenting on these other biomechanical forces at play:

      ‘We also observed that the animals travel surrounded by a relatively large water droplet (lines 189-190).’

      ‘We observed that larvae travel surrounded by moisture from a water droplet, which produces a relatively large upwardly directed force in a ring around the animal. The surface tension produced by such a water droplet likely serves a role in adhering the animal to the substrate. However, during forward waves, we found that protopodia detached completely during SwP, suggesting this surface tensionrelated adhesion force can be easily overcome by the behaving animal. (lines 301-307) .’

      (1.5) Much of the discussion and the model imply that the sites where the larva exerts downward force on the gel are the sites where horizontal propulsion is generated. This assumption should be justified. Can the authors rule out that the larva 'pulls' itself forward using surface tension instead of 'pushing' itself forward using protopodia?

      Determining the exact ‘sites’ where horizontal propulsion is generated is challenging. In our conceptual model, movement is not initiated by protopodia per se, but rather by a constellation of muscle contractions, which act upon the hydrostatic skeleton, which in turn causes visceral pistoning that heaves larvae forward. This is based on previous findings in Ref 31. While there are indeed downward protopodial ‘vaulting’ forces prior to initiation of swing, we propose that the main function of protopodia is not to push the larvae forward, but rather to provide anchoring to counteract opposing forces generated by muscles. We agree that water surface tension could also be sculpting biomechanical interactions; however, a full characterization of how water surface tension shapes larval locomotion is beyond the scope of this study.

      Since we have observed larvae move over dry terrain (e.g. glass) without an encasing water bubble, we do not believe that an encasing water bubble is strictly required for locomotion. We have also seen no obvious locomotion related modulations in the pulling forces created by water bubbles encasing larva, which would be expected if animals were somehow using water tension to pull themselves forward. Overall, the most likely explanation is that larvae use a mixture of biomechanical tactics to suit the moment in a given environment. This represents a challenge but also an opportunity for future research.

      We have now added additional text in the ‘Functional subdivisions within protopodia’ subsection to discuss these nuances (page 14, lines 382-387):

      ‘This increased force transmitted into the substrate is unexpected as the forces generated for the initiation of movement should arise from the contraction of the somatic muscles. We propose that the contraction of the musculature responsible for sequestration acts to move haemolymph into the protopodia thus exerting an increased pressure onto the substrate while the contact area decreases as a consequence of the initiation of sequestration.’

      and (page 15, lines 398-399):

      ‘Water surface films appear to facilitate larval locomotion in general but the biomechanical mechanisms by which they do this remain unclear.’

      (1.6) More detail should be provided about the methods, their limitations, and the rationale behind certain experimental choices.

      We thank the reviewer for this comment. As this significantly overlaps with a point raised earlier, we kindly direct them to our answer to comment #1.2 above.

      (1.7) Three techniques are introduced here to study how a crawling larva interacts with the substrate: standard brightfield microscopy of a larva crawling in an agarose capillary, ERISM imaging of an immobilized larva, and WARP imaging of a crawling larva. The authors should make clear why each technique was chosen for a particular study - e.g. could the measurements using brightfield microscopy also be accomplished using WARP? They should also clarify how these techniques relate to and possibly improve on existing techniques for measuring forces organisms exert on a substrate, particularly micropillar arrays and Traction Force Microscopy.

      Indeed, each of the three methods used has a specific merit. The brightfield microscopy was selected to track features on the animal’s body and to provide a basic control for the later measurements. However, this technique cannot directly measure the substrate interaction, it only allows inferences to be made from tracked features at the substrate interface. ERISM provides high resolution maps of the indentation induced by the larva; it is also extensively validated for mapping cell forces and the data analysis is robust against defects on the substrate (refs 23, 24 and 25). However, as we explain in the manuscript, ERISM lacks the temporal resolution needed to monitor mechanical activity of behaving larva. Its use was therefore limited to the study of anaesthetised animals. For mapping forces exerted by behaving larva, we used WARP which is a further development of ERISM that offers higher frame rates but at the cost of requiring more extensive calibration (Supplementary Figure S4). The streamlined introduction of the different methods in our original manuscript originates from our attempt to be as concise as possible. However, as state in response to comment #1.2, we agree that additional explanation and discussion will be helpful for readers and that it will helpful to briefly refer to other methods for force mapping. We have now added references to a variety of techniques in the Introduction (Page 3-4, lines 56-86) as stated in a prior response.

      (1.8) As written, "(ERISM) (19) and a variant, Wavelength Alternating Resonance Pressure microscopy (WARP) (20) enable optical mapping of GRFs in the nanonewton range with micrometre and millisecond precision..." (lines 53-55) may generate confusion. ERISM as described in this work has a much lower temporal resolution (requires the animal to be still for 5 seconds - lines 474-5); In this work, WARP does not appear to have nanonewton precision (judging by noise on calibration figures) and it is not clear that it has millisecond precision (the camera used and its frame rate should be specified in the methods).

      Previous studies have demonstrated the capabilities and limitations of ERISM and WARP. Upon reflection, we agree that our wording here could be more precise. To clarify our claim, we now separate the statements on ERISM and WARP in the introduction as follows (page 4, lines 78-83):

      “Until recently, this technique was limited by its low temporal resolution (~10s) making it unsuitable for use in recording substrate interaction during fast animal movements, but a further development of ERISM known as wavelength alternating resonance pressure microscopy (WARP), has been demonstrated to achieve down to 10 ms temporal resolution (26)”

      While WARP can achieve comparable force resolution as ERISM when used in a cellular context (c.f. Ref 26), we agree that for the present study, the resolution was in the 10s of nanonewton range, due to the need to use stiffer substrates and larger fields of view.

      The camera used in our work was specified in the appropriate subsection of the Materials and Methods (“All WARP and ERISM images were acquired using an Andor Zyla 4.2 sCMOS camera (Andor Technology, Belfast, UK)”). We apologise that the exact frame rate used in our current work was not mentioned in our original manuscript; this has now been added to the ‘Freely behaving animals force imaging’ section of the Materials and Methods (page 23, lines 574-577).

      (1.9) It would be helpful to have a discussion of the limits of the techniques presented and tradeoffs that might be involved in overcoming them. For instance, what is the field of view of the WARP microscope, and could it be increased by choosing a lower power objective? What would be required to allow WARP microscopy to measure horizontal forces? Can a crawling larva be imaged over many strides by recentering it in the field of view, or are there only particular regions of the elastomer where a measurement may be made?

      We agree with the reviewer that some discussion of the limitations of our technique will allow readers to have a more informed appreciation of what we are capable of measuring using WARP. However, as this is the first work to ever demonstrate such measurements, the limitations and tradeoffs cannot all be known with certainty at the present stage.

      To answer your individual questions:

      (1) There is a trade-off between numerical aperture and the ability to resolve individual interference fringes. Since our approach to calculate displacement from reflection maps relies upon counting of individual fringe transitions, going to a lower powered objective risks having these fringes blend and thus the identification of the individual transitions becoming impossible. The minimum numerical aperture of the objective will therefore generally depend on the steepness of indentations produced by the animals; the steeper an indentation, the closer the neighbouring fringes and thus the higher the required magnification to resolve them.

      (2) From WARP and ERISM data, one can make inferences about horizontal forces, as is described in detail in our earlier publications about ERISM (ref, 23). However, quantitation of horizontal forces at sufficient temporal resolution to allow the investigation of behaving Drosophila larva is currently not possible.

      (3) Many strides can indeed be imaged using our technique, however, this comes with additional technical challenges. Whether or not the animal itself can be recentred is an ongoing challenge. We have found that the animals are amenable to recentring themselves within the field of view if chasing an attractive odorant. However, manual recentering using a paintbrush risks destroying the top surface of the soft elastic resonator and recentering the microscope stage would require real-time object tracking which has been outside the scope of this original work, given the other challenging requirements on hardware and optics for obtaining high quality force maps.

      To provide more information on limitations of our technique, we have added the following text into the discussion (pages 13-14, lines 356-370).

      ‘Despite the substantial advances they have provided, the use of WARP and ERISM also brings challenges and has several technical limitations. For example, fabrication of resonators is much more challenging than preparation of the agarose substrates conventionally used for studying locomotion of Drosophila. This problem is compounded by the fragility of the devices owing to the fragility of the thin gold top mirror. This becomes problematic when placing animals onto the microcavities, as often the area local to the initial placement of the animal is damaged by the paintbrush used to move the animals. Further, as a result of the combining of the two wavelengths, the effective framerate of the resultant displacement and stress maps is equal to half of the recorded framerate of the interference maps. To be able to monitor fast movements, recording at very high framerates is therefore necessary which, depending on hardware, might require imaging at reduced image size, but this in turn reduces the number of peristaltic waves that can be recorded before the animal escapes the field of view. A further limitation is that WARP and ERISM are sensitive mainly to forces in the vertical direction; this is complementary to TFM, which is sensitive to forces in horizontal directions. Using WARP in conjunction with high speed TFM (possibly using the tuneable elastomers presented here) could provide a fully integrated picture of underlying vertical and horizontal traction forces during larval locomotion.’ And further on page 13, lines 337-341:

      ‘More detailed characterisation of this behaviour remains a challenge owing to the changing position of the mouth hooks. Due to their rigid structure and the relatively large forces produced in planting, mouth hooks produce substrate interaction patterns which our technique struggles to map accurately due to overlapping interference fringes ambiguating the fringe transitions.’

      We trust that the above discussion and our modifications to our manuscript resulting from these will address the reviewer’s concerns.

      Reviewer #2 (Public Review):

      (2.1) With a much higher spatiotemporal resolution of ground dynamics than any previous study, the authors uncover new "rules" of locomotory motor sequences during peristalsis and turning behaviors. These new motor sequences will interest the broad neuroscience community that is interested in the mechanisms of locomotion in this highly tractable model. The authors uncover new and intricate patterns of denticle movements and planting that seem to solve the problem of net motion under conditions of force-balance. Simply put, the denticulated "feet" or tail of the Drosophila larva are able to form transient and dynamic anchors that allow other movements to occur.

      We thank the reviewer for their feedback and the information regarding which of our results is likely to resonate most impactfully with readers from a biological background.

      The biology and dynamics are well-described. The physics is elementary and becomes distracting when occasionally overblown. For example, one doesn't need to invoke Newton's third law, per se, to understand why anchors are needed so that peristalsis can generate forward displacements. This is intuitively obvious.

      We are sorry to hear that the reviewer found some of the physics details distracting. To address this concern, we have simplified some of the language while still attempting to keep the core arguments intact. For context and analogy, we still believe that including a brief reference to the laws of motion is helpful for some readers to explain some of our results and highlight their general implications, especially with regard to anchoring against reaction forces.

      One of our objectives is to make this article accessible and interesting for biologists and physicists at all levels. We feel it is important to reach out to both communities and try to be inclusive as possible in our writing. Newton’s 3rd law is clearly relevant for our study and it is a common point of reference for anyone with a highschool education, and so we feel it is appropriate to mention it as a way to help readers across disciplines understand the biophysical challenges faced by the animals we study.

      (2.2) Another distracting allusion to "physics" is correlating deformation areas with displaced volume, finding that "volume is a consequence of mass in a 2nd order polynomial relationship". I have no idea what this "physics" means or what relevance this relationship has to the biology of locomotion.

      Upon reflection, we agree that this language may be overly complex and distracts from what is, at its core, a simple, but important principle governing how Drosophila larvae interact with their substrates. The point we are trying to make is that our data show that forces exerted by an animal are proportional in a non-linear way to contact area. This suggests that to increase force exerted on the substrate, an animal must increase contact area. We do not observe contact area remaining constant while force increases, or vice versa. To make this result more clear, we have made several changes in our revised manuscript. Figure 5B no longer shows the relationship between the protopodial contact area and the displaced volume of the elastic resonator, but instead now shows the protopodial contact area and recorded force transmitted into the substrate. This then shows that in order to increase force transmitted into the substrate, these animals must increase their contact area. We have made changes to the figure legend of Figure 5 and the statements in the Results section accordingly (Page 9, lines 220-222).

      2.3 The ERISM and WARP methods are state-of-the-art, but aside from generally estimating force magnitudes, the detailed force maps are not used. The most important new information is the highly accurate and detailed maps of displacement itself, not their estimates of applied force using finite element calculations. In fact, comparing displacements to stress maps, they are pretty similar (e.g., Fig 4), suggesting that all experiments are performed in a largely linear regime. It should also be noted that the stress maps are assumed to be normal stresses (perpendicular to the plane), not the horizontal stresses that are the ones that actually balance forces in the plane of animal locomotion.

      We largely agree with the statement made by the reviewer here. However, we have found that in many contexts, audiences appreciate having the absolute number of the forces and stresses involved reported. Therefore, where possible, we have used stress maps, rather than displacement maps. We also observe that while stress and displacement maps show similar patterns, features sometimes appear sharper in the stress map, which is a result of the finite element algorithm being able to attribute a broad indentation to a somewhat more localised downward force. We have thus opted to keep to original stress maps. We have been more explicit about WARP and ERISM being more tuned to recording vertically directed forces throughout the revised manuscript (lines 75, 78, 86, 162, 301, 305, 336).

      We have also modified our Discussion section to encourage further investigation of our proposed model using a technique more tuned to horizontal stresses (pages 12-13, lines 324-328):

      ‘However, WARP microscopy is best suited to measurements of forces in the vertical direction, and though we can make inferences such as this as they are a consequence of fundamental laws of physics, we present this conclusion as a testable prediction which could be confirmed using a force measurement technique more tuned to horizontally directed forces relative to the substrate.’

      (2.4) But none of this matters. The real achievements are the new locomotory dynamics uncovered with these amazing displacement measurements. I'm only asking the authors to be precise and down-to-earth about the nature of their measurements.

      We thank the reviewer for their perceptiveness in finding that though the forces are interesting, the interactions themselves are the most noteworthy result here. We trust that with the changes made in our revised manuscript, the description is now more “down-to-earth”, more concise where appropriate, and accurate as to which results are particularly important and novel.

      (2.5) It would be good to highlight the strength of the paper -- the discovery of new locomotion dynamics with high-resolution microscopy -- by describing it in simple qualitative language. One key discovery is the broad but shallow anchoring of the posterior body when the anterior body undertakes a "head sweep". Another discovery is the tripod indentation at the tail at the beginning of peristalsis cycles.

      We thank the reviewer for this recommendation. We agree that including a more explicit statement of some of our findings, especially with regards to these new posterior tripod structures and the whole-abdomen preparatory anchoring prior to head sweeps, would make the paper more impactful. As a result, we have modified the discussion section to include a statement for each new result and have also amended our abstract as a result (lines 407-416):

      “Here we have provided new insights into the behaviour of Drosophila larval locomotion. We have provided new quantitative details regarding the GRFs produced by locomoting larvae with high spatiotemporal resolution. This mapping allowed the first detailed observations of how these animals mitigate friction at the substrate interface and thus provide new rules by which locomotion is achieved. Further, we have ascribed new locomotor function to appendages not previously implicated in locomotion in the form of tripod papillae, providing a new working hypothesis of how these animals initiate movement. These new principles underlying the locomotion outlined here may serve as useful biomechanical constraints as called for by the wider modelling community (39).”

      (2.6) As far as I know, these anchoring behaviors are new. It is intuitively obvious that anchoring has to occur, but this paper describes the detailed dynamics of anchoring for the first time. Anchoring behavior now has to be included in the motor sequence for Drosophila larva locomotion in any comprehensive biomechanical or neural model.

      We agree with the reviewer on this. We think it is best to let our colleagues reflect on our findings and then decide how best to include them in future models.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Please be sure to describe in a figure caption or in the methods the details of the optical setup, especially the focal lengths of all the lenses, including the objective, and part numbers of the LEDs and filters. It would be helpful to have a figure in the main paper explaining the principles of ERISM/WARP microscopy along with the calibration measurements and computational pipeline (this would mainly combine elements already in the supplement). Such a figure should also include details of the setup that are alluded to in the methods but not fully explained (for instance, a "silicone well" is referred to in the methods but never described). The calibration of elastomer stiffness that now appears in the main text could be made a supplementary figure, unless there is some new art in the fabrication of the elastomers that should be highlighted as an advance in the main text.

      We appreciate the importance of explaining our methods to readers.

      In response to the public comments, we have added further details in our methods section to clarify practical aspects and ensure that readers will be able to reproduce our work.

      In Supplemental Figure 2, we show the full optical light path for ERISM and WARP along with named components. In addition, the principles of ERISM and WARP microscopy have already been extensively described in previous publications (See Refs 23-26). In light of this, we feel that the best approach in this paper is to direct readers to those publications.

      We feel that it is appropriate to present the calibration of elastomer stiffness in the main text because this is indeed a new innovation that is not just about making the elastomers but making force sensors based on these different materials. This is really important because it shows how researchers can tune the stiffness of an ERISM/WARP elastomer to match the type of tissue or organism under study. This is really the key technical advance that enables whole animal biomechanics across a range of animal sizes, so we think it is appropriate to keep it in the main text.

      We want to make sure that we do not oversell this point, and we feel that we make it sufficiently clear in the main text of our manuscript that making elastomer based force sensors of appropriate stiffness is important, when we state

      “First, we developed optical microcavities with mechanical stiffnesses in the range found in hydrogel substrates commonly used for studying Drosophila larval behaviour, i.e. Young’s modulus (E) of 10-30kPa (36–38).” (p. 5, ll. 124) and later

      “Here we used Drosophila larvae as a test case, but our methods now allow elastic optical resonators to be tuned to a wide range of animal sizes and thus create new possibilities for studying principles of neuro-biomechanics across an array of animals.” (p. 12, ll. 337)

      I would appreciate a description of the "why" behind some experimental choices, as understanding the motivation would be helpful for other researchers looking to adopt these techniques.

      We have now added additional text in the introduction and discussion that explains the rationale behind our experimental choices. in more detail. Please see our response to Reviewer 1’s public comments on the same point.

      (1) The WARP and ERISM experiments were conducted on a collagen coated gold surface rather than agarose. Why? EG does agarose not adhere to the gold, or would its thickness interfere with the measurement?

      The gold layer is applied above the elastomer and the collagen on top of the gold layer makes the gold a more natural biological surface for the animals. Agarose is unsuitable as an elastomer because it would dry during the vacuum based deposition of the gold. It is also unsuitable as a surface coating on top of the gold as the coating on the gold needs to very thin to preserve the spatial and mechanical resolution of our sensors. Further, processing of agarose generally requires temperatures of 60°C and higher which we find can damage the elastomer / gold films.

      (2) The ERISM measurements are made on a cold anesthetized animal right as it starts to wake up (visible mouth-hooks movement), which presents some difficulty. Why not start imaging while the animal is still completely immobile? Or why not use a dead larva?

      This approach allowed us to get measurements of forces exerted by denticles that are physiologically and biomechanically accurate. In dead or fully anesthetized animals, one cannot be sure that the forces exerted by denticles and denticle bands are representative of the forces exerted by an animal with active hydrostatic control.

      (3) In the ERISM setup the monochromator is spatially filtered by focusing through pinhole, while in the WARP setup, the LEDs are not.

      Yes that’s correct. The LED light sources used in WARP have better spatial homogeneity than the tungsten filament used in ERISM and so a pinhole is not required in WARP.

      (4) SV4 shows the interference image of a turning larva (presumably from one illumination wavelength) rather than a reconstruction of the displacement or stresses. Why?

      We felt that in this particular case the interference images provided a clearer representation of the behavioural sequence, showing both the small indentations generated by individual denticles and the larger indentations of the animal overall.

      Lines 49-50 "a lack of methods with sufficient spatiotemporal resolution for measuring GRFs in freely behaving animals has limited progress." This needs a discussion of what sufficient spatial and temporal resolutions would be and how existing methods fall short of these goals.

      We have now rewritten the introduction to include an overview of other alternative approaches and of what we see as the requirements here. See our response to the public comments.

      Figure caption 1B (line 789) refers to "concave areas of naked cuticle (black line) which generally do not interact with the substrate" While I think this might be supported by later WARP images, it's not clear how the technique of figure 1 measures interaction, which could e.g. be mediated by surface tension of a transparent fluid.

      The technique of Figure 1 provides qualitative information which as the reviewer points out is validated by WARP measurements later.

      Lines 184-189 "However, unexpectedly, we observed an additional force on the substrate when protopodia leave the substrate (SI) and when they are replanted (ST). To investigate whether this force was due to an active behaviour or due to shifting body mass, we plotted integrated displacement (i.e. displaced volume) against the contact area for each protopodium, combining data from multiple forwards waves (Figure 5B). Area is correlated with displaced volume for most time points, indicating that volume is a consequence of mass in a 2nd order polynomial relationship." I couldn't follow this argument at all.

      We have now reworded this section and explained our rationale. Also see our response to a similar critique in Reviewer 2’s public comments.

      Generally the authors might reconsider their use of acronyms. e.g. (244-246) "SI latencies were much more strongly correlated with wave duration across most segments than ST latencies. SIs scale with SwP and this could be mediated by proprioceptor activity in the periphery" is made more difficult to parse by the abbreviations.

      As we need to refer to these terms multiple times throughout the manuscript, we feel the use of acronyms is appropriate here.

      The video captions are inadequate. Please expand on them to explain clearly what is shown, and also describe in the methods how the data were acquired and processed. For instance, it seems that in SV3 a motion correction algorithm is applied so that the larva appears stationary even as it crawls forward. I think "fourier filtered" means that the images were processed with a spatial high pass filter - this should be explained and the parameters noted.

      We have revisited the video captions provided in the supplementary information document and conclude that these contain the important information. The mode of acquisition are described in the methods, e.g. Video 1 and 2 see section in Methods on “Denticle band kinematic imaging” and Videos 3 and 4 see section in Methods on WARP. Supplementary Video 3 does not make use of motion correction; indeed, one can see the larvae moving upwards/forwards in the field of view. We apologize for not explaining the Fourier filtering process for Video 3. We have now modified the video caption to read as follows:

      Video SV3. WARP imaging during forwards peristalses.

      Video showing high frame rate displacement maps produced by a freely behaving Drosophila larva. Displacement maps were Fourier filtered to make denticulated cuticle more readily visible and projected in 3D to show the effects of substrate interaction. Details of the Fourier filtering procedure were described elsewhere [Kronenberg et al, Nat Cell Biol 19, 864–872 (2017)].

      What were the reflectances of the bottom (10 nm Au/Cr) and top (15nm Au) metal layers at the wavelengths used? I imagine the bottom layer should be less than 38%, the top layer higher, and the product of the square of the bottom transmission and the top reflectance coefficients equal to the bottom reflectance (to make the two paths of the interferometer contribute equal intensity), but none of this is stated.

      The reflectance of the gold mirrors was studied in detail in prior work on ERISM. See Kronenberg et al, Nat Cell Biol 19, 864–872 (2017). We therefore refrained from adding a complete optical characterization of the ERISM sensors again here. In brief, we found that a reflectance >13% at each Au mirror is required for reliable ERISM measurements.

      The description of the gold coated elastomer as a microcavity is confusing to me. Does the light really make multiple round trips between the plates before returning to the detector? The loss of light on each round trip would depend on the reflectance and parallelism of the top and bottom mirrors. From the WARP calculation it's appears that there is only one round trip - a pi/2 phase shift results from the calculation for one round trip: 2pi*2nL 5nm/(630nm)^2, with n = 1.4 and L = 8 microns - if there were two round trips, the phase shift would be pi etc. Would this better be described as a mostly common path interferometer?

      The physics of our devices is best described within the framework of thin film interference and (weak) microcavity optics. Indeed, light can make multiple roundtrips, though it gets attenuated with each reflection. The complete calculation of the multiple roundtrips is only required to obtain quantitative information on the amount of light that is reflected. The spectral position of minima in reflectance can also be obtained from assuming one roundtrip which is what is done in the description of the WARP calculations.

      Figure 2 e,f: the line fits appear to be dominated by the data points at 2 s. If these are removed, do the fits change? To support the argument that 2e shows a correlation and 2f does not, some kind of statistical test, ideally a hierarchical bootstrap, should be conducted to compare between the two measurements.

      If we remove the data points at 2 s, then R^2’s for swing initiation latencies change as follows: A2: 0.35 to 0.005; A4: 0.78 to 0.31; A6: 0.61 to 0.01. The data in 2e,f are the averages from 3 waves in each animal and so the data points at 2 s are not simply the result of single ‘rogue’ waves but rather averages of several trials. Further, if all individual waves are plotted, we can see that the overall trends are still visible.

      We don’t think it is appropriate to remove the data at 2 s from our analysis, but we take the point regarding statements about presence or absence of correlation in a formal sense. We have therefore changed the wording in the description of 2e,f to refer simply to the fact that wave duration can ‘largely determine' latencies in some instances, but is less able to in other instances, as is suggested by the R^2 (coefficient of determination) data. In discussion, we have also adjusted our wording.

      Figure 4 - please provide in the main figure or as a supplement the full images (i.e. not cropped to the assumed shape of the larva)

      We do not feel that it is necessary or helpful to provide the full images given that the focus of the analysis is on dynamics of protopodia movements.

      Figure 5e top: single data points around wave duration 0.6s appear to dominate fit lines. Does removing these points alter the fits? To support the argument that 5e top shows a correlation and 5e bottom does not, some kind of statistical test, ideally a hierarchical bootstrap, should be conducted to compare between the two measurements.

      In Figure 5e, we are showing all waves analysed across animals. If we remove the datapoints at 0.6 s, A2 R^2 changes from 0.24 to 0.05, A4 R^2 changes from 0.48 to 0.11, A6 R^2 changes from 0.69 to 0.34; however we don’t feel it is appropriate to remove these data from our analysis. We take the point about needing to be cautious about making claims about correlation versus no correlation and have now reworded description of these results along same lines as Figure 4.

      It appears from the methods (467-489) that animals were kept wet for warp imaging but not for ERISM imaging. Please confirm or explain further the presence or absence of a water layer in these two sets of measurements, as this could affect the adhesion forces.

      In each case, the animals were transferred onto experimental substrates with a moistened paintbrush. We have added text explicitly stating this in the methods section.

      Kim et al. Nature Methods 2017 (10.1038/nmeth.4429) describes recording two images separated by less than 60 microseconds using a scientific CMOS camera with a frame rate of 200 Hz. This is accomplished by triggering a pulsed LED once at the end of one frame's capture window and then a second time at the beginning of the next frame's window (see Supplementary Figure 10). I'm not sure if this trick is widely known, but it's worth considering if the authors are running into a problem with movement between the two wavelength exposures in their WARP setup.

      Thank you for this tip. We will take this under consideration for future work.

      Is the setup compatible with optogenetics? (EG is the red light dim enough that it wouldn't activate CsChrimson, or could a longer wavelength led be used for interferometry?) If so, activation of mooncrawler descending neuron (MDN) could be used to study backward crawling (or thermogenetic activation of MDN), e.g. to contrast the sites and order of "anchoring" between the two directions of crawling.

      The set-up is potentially compatible with optogenetics. We are in the process of exploring this in current ongoing work.

      Reviewer #2 (Recommendations For The Authors):

      Simplify/reduce the commentary about force measurements, and highlight the clear, qualitative descriptions of the novel locomotion patterns that they have observed. The microscopy and movements seem to matter more than the ground force estimations.

      We have addressed these issues in our responses to Reviewer 2’s public comments.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We thank the reviewers for their valuable feedback which has improved this work greatly from its original form, and are elated to have such glowing reviews of the revised work published alongside the revised preprint. Reviewer 3 raises some final salient points, which deserve a brief address here.

      Teeth: We thank the reviewer for clarifying their points. We do make the assumption that the ecological parameter space of toothed and beaked organisms will be comparable. Both are governed by the same set of physical principles and have the jaw bone as the most likely point of failure (teeth are harder than bone, and keratinous rhamphothecae are malleable and can be regrown with relative ease when deformed). Differences in stress/strain distribution between toothed and beaked organisms will occur but are already accounted for in our methods as we model both the teeth and rhamphotheca and will observe these different effects. We have added an explicit statement of this hypothesis to the Methods section of the manuscript.

      Cranial kinesis: In our opinion, it is a safe assumption that the lower jaws of extant birds and enantiornithines are comparable. We do not see why the acquisition of kinesis in the upper jaw would generally affect the functional role of or constraints on the lower jaw. One possibility we discussed is that a quickly-moving kinetic premaxilla could let the lower jaw move a shorter distance during effective prey capture and lower the selection for speed (i.e. allow jaw-closing MA to remain higher). While we have added this possibility to our call for the investigation of cranial kinesis, we consider it too speculative to begin altering interpretations of fossil taxa. All raw measurement data remains available so that, if evidence is found for cranial kinesis having predictable effects on our measured parameters, future researchers can re-analyse our data and update any ecological predictions accordingly.

      Organization: To our knowledge eLife format incorporates what one would think of as a Conclusions section into the Discussion. Our Discussion section currently contains 18 subheadings which should guide a reader to any specific topic of interest. The Discussion also progresses from a more narrow to broad focus which we and several colleagues find intuitive.

      We thank all three reviewers once again for their feedback that has improved this work and their kind words throughout the process.


      The following is the authors’ response to the original reviews.

      We thank all three reviewers for their detailed reviews, and generally agree with their feedback. To accompany the reviewed preprint of this manuscript, we wished to respond to comments from the reviewers so that they (and the public) will know what we are planning to incorporate in the revised manuscript we are currently preparing. If there are any comments on our plans in the meantime, please let us know.

      • Reviewer 1, on concerns regarding identification of ontogenetic stage and comparison of taxa from different ontogenetic stages: It is fair to say that enantiornithine ontogeny is still poorly understood, though we believe all current evidence points to each specimen used in this study to being adequately mature for comparison to the extant birds used in the study. Stages of skeletal fusion are the standard method of assessing enantiornithine ontogeny (Hu and O'Connor 2017), and our comparison of histological work (Atterholt, Poust et al. 2021) to skeletal stages in Table S4 suggests a transition from juvenile to subadult in stage 0 or 1 and from subadult to adult within stage 3. Thus, the specimens we quantitatively examine in this study, all at stages 2 or 3 (Figure S10), are advanced subadults or adults. It is well-known that many living animals considered “adults” would be considered subadults or even juveniles to a palaeontologist (Hone, Farke et al. 2016). So, even if some individuals in this study are not fully skeletally mature, they should have obtained the morphology which they would possess for most of their lives and thus the morphology which undergoes selective pressure. We will add this context to the “Bohaiornithid Ontogeny” section and thank the reviewer for seeking more detail for this point.

      • Reviewer 2, on need of a context figure: We have an artistic life reconstruction of a bohaiornithid in preparation, and can include that in the revised manuscript as a figure.

      • Reviewer 2, on raptor claw categories: We explain these categories in-depth in a previous work (Miller, Pittman et al. 2023). However, we will now add a short summary of that explanation to this work so that this manuscript will become self-contained in this regard. In short, the “large raptor” category includes extant birds with records of regularly taking prey which cannot be encircled with the pes, while birds in the “small raptor” have no such records. As Reviewer 2 points out this does often follow phylogenetic lines, but not always. E.g. most owls specialise in taking small prey, but the great horned owl Bubo virginianus regularly takes mammals and birds larger than its pes (Artuso, Houston et al. 2020); and conversely we can only find reports of the common black hawk Buteogallus anthracinus taking prey samll enough for the pes to encircle (Schnell 2020) despite other accipiters frequently taking large prey. In both cases these taxa plot in PCA nearer to other large or small raptors (respectively) than to their phylogenetic relatives.

      • Reviewer 3, on teeth vs beaks: We are not aware of any foods which are exclusive to toothed or beaked animals. There are some aspects of extant bird biology that may affect the way a certain diet may need to be adapted to which we do comment on, e.g. discussion of alternatives to the crop and ventriculus for processing plant matter in the Bohaiornithid Ecology and Evolution section. For functional studies, e.g. FEA, we have included the rhamphotheca in toothless models which serves the same role as teeth, to be a feeding surface. It should not matter, in theory, if the feeding surface is hard or soft as mechanical failure occurs in high stress/strain states regardless of the medium. If having teeth necessarily increases or decreses overall stress/strain relative to a beak (and from our work this does not appear to be the case), this would in turn necessarily limit dietary options. So, all models in our work should be directly comparable.

      As an additional note on this topic, we address tooth shape in bohaiornithids at the end of the Bohaiornithid Ecology and Evolution section. We specifically note that their tooth shape is likley controlled by phylogeny in the current version, though we will add a note in the upcoming version that the morphospace of bohaiorntihid teeth overlaps that of many other clades with purportedly diverse diets, which is consistent with a hypothesis of diverse diets within the clade.

      • Reviewer 3, on cranial kinesis: Our FE models should be unaffected by cranial kinesis, as these are two-dimensional and model the akinetic lower jaw only. Some mediolateral kinesis may be relevant in the mandible in the form of “wishboning” in different taxa, but its prevalence in extant birds is currently unknown. The preservation of enantiornithines (two-dimensionally and typically in lateral view) limits the ability to capture any mediolateral function regardless.

      Our models of mechanical advantage do not account for any cranial kinesis. This is a necessary simplifcation. The nature of cranial kinesis in extant birds, and the role that it plays in feeding, is poorly understood. Cranial kinesis will increase gape, but we don’t yet know how/if it affects jaw closing force and speed (moreover, given the variation in quadrate and hinge morphology present in extant birds, this is also something that is likely to be highly diverse). We have therefore modelled the extant birds’ jaw closing systems as having one, akinetic out lever (the jaw joint to the bite point), to match the situation in our fossil taxa. This is a common simplification that has been used previously with success (Corbin, Lowenberger et al. 2015, Olsen 2017). However, we acknowledge that this simplification may introduce some error. Unfortunately, until the mechanics of cranial kinesis – and the variation in the anatomy and performance of kinetic structures in extant birds – are better understood, we cannot determine exactly what that error looks like. We therefore have greater confidence in the inter-species comparability this conservative, akinetic approach (in other words, we may not be making assumptions that are 100% accurate, but we are at least making the same assumption across all taxa, so it should be comparable in its error). We will add a section in the Mechanical Advantage and Functional Indices discussion calling for further research into the mechanics of cranial kinesis so future mechanical advantage work in birds can take this matter into account.

      • Reviewer 3, on skull reconstruction: This issue is partly addressed in the Bohaiornithid Skull Reconstruction section, though we agree that adding more mentions of it in the MA and FEA Discussion sections and the Bohaiornithid Ecology and Evolution sections will benefit the manuscript. Most notably Shenqiornis and Sulcavis have similar ecological interpretations, but much of the Shenqiornis skull reconstruction uses Sulcavis bones. Longusunguis is the only other taxon which takes more than two bones from a different taxon, and in this case all but the quadrate are not used in any quanitative measurements. We have ensured that the skull reconstructions presented in Figure 2 show what portions of the skull come from what specimen so that as new material is discovered and phylogenetic relationships are updated it will be clear to future readers which parts of reconstructions will need to be updated.

      • Reviewer 3, on data availability: All data including FEA models and raw measurement data are included in the same repository as the scripts, which we will make clear in the manuscript. Good catch on the data link being dead, we will publish it now.

      As a final note, it was brought to our attention by another colleague that the original manuscript’s ancestral state reconstrction lacked an outgroup. An updated reconstruction using Sapeornis as an outgroup will be included in the revised manuscript. The addition of the outgroup does not change any conclusions of the manuscript.

      We once again thank our reviewers for their valuable feedback and will submit a revised version of this manuscript for publication shortly. Please let us know if you have any additional comments after reading our response that we can take onboard in our revision.

      References

      Artuso, C., C. S. Houston, D. G. Smith and C. Rohner (2020). Great Horned Owl (Bubo virginianus), version 1.0. Birds of the World. A. F. Poole. Ithaca, NY, USA, Cornell Lab of Ornithology.

      Atterholt, J., A. W. Poust, G. M. Erickson and J. K. O'Connor (2021). "Intraskeletal osteohistovariability reveals complex growth strategies in a Late Cretaceous enantiornithine." Frontiers in Earth Science 9: 640220.

      Corbin, C. E., L. K. Lowenberger and B. L. Gray (2015). "Linkage and trade‐off in trophic morphology and behavioural performance of birds." Functional ecology 29(6): 808-815.

      Hone, D. W. E., A. A. Farke and M. J. Wedel (2016). "Ontogeny and the fossil record: what, if anything, is an adult dinosaur?" Biology letters 12(2): 20150947.

      Hu, H. and J. K. O'Connor (2017). "First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines." Journal of Systematic Palaeontology 15(11): 909-926.

      Miller, C. V., M. Pittman, X. Wang, X. Zheng and J. A. Bright (2023). "Quantitative investigation of Mesozoic toothed birds (Pengornithidae) diet reveals earliest evidence of macrocarnivory in birds." iScience 26(3): 106211.

      Olsen, A. M. (2017). "Feeding ecology is the primary driver of beak shape diversification in waterfowl." Functional Ecology 31(10): 1985-1995.

      Schnell, J. H. (2020). Common Black Hawk (Buteogallus anthracinus), version 1.0. Birds of the World. A. F. Poole and F. B. Gill. Ithaca, NY, USA, Cornell Lab of Ornithology.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The current work by Kulich et al. examines the dynamic relocalization of NGR1 (LAZY2) a member of the LAZY protein family which is key for auxin redistribution during gravitropic responses. After gravistimulation of the triple mutant ngr123 (lazy234), the PIN3 activating kinase D6PK is not polarized in the columella cells.

      Strengths:

      The authors show a thorough characterization of NGR1 relocalization dynamics after gravistimulation.

      Weaknesses:

      Genetically the relocalization of D6PK depends on the LAZY protein family, but some essential details are missing in this study. On the one hand, NGR1-GFP does not associate with the BFA compartments and maintains its association with the PM and amyloplasts. On the other hand, D6PK relies on GNOM, via vesicle trafficking sensitive to BFA, suggesting that D6PK follows a different relocalization route than NGR1 which is BFA-insensitive. Based on these observations, D6PK relocalization requires the LAZY proteins, but D6PK and NGR1 relocalize through independent routes. How can this be interpreted or reconciled?

      Response: Since we demonstrated that D6PK does not relocalize in the absence of NGR proteins, we conclude that NGR1 acts upstream of D6PK. The molecular mechanism driving this interaction is not fully understood; however, it is evident that NGR1 triggers the mobilization of D6PK. Despite previous investigations into D6PK mobility, the underlying mechanisms remain elusive. Notably, despite its sensitivity to BFA, D6PK does not localize to BFA bodies and does not undergo conventional endocytosis (https://doi.org/10.1016/j.devcel.2014.05.006). We fully acknowledge the importance and interest in gaining a better understanding of these processes, and it will be a focal point of our future research.

      Two other works (now published) provide valuable and fundamental findings related to the mechanism examined in the current manuscript and display complementary and similar results to the ones shown in the current manuscript. Given the similarities in the examined mechanisms, these preprints should be referenced, recognized, and discussed in the manuscript under review. It is assumed that the three projects were independently developed, but the results of these previous works should be addressed and taken into account at least during the discussion and when drawing any conclusions. This does not mean that this work is less relevant. On the contrary, some of the observations that seem to be redundant are more solid, and firm conclusions can now be drawn from them.

      Response: We have included and discussed these works in the revised discussion

      Reviewer #2 (Public Review):

      Summary:

      This manuscript addresses what rapid molecular events underly the earliest responses after gravity-sensing via the sedimentation of starch-enriched amyloplasts in columella cells of the plant root cap. The LAZY or NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR) protein family is involved in this process and localizes to both the amyloplast and to the plasma membrane (PM) of columella cells.

      The current manuscript complements and extends Nishimura et al., Science, 2023. Kulich and colleagues describe the role of the LZY2 protein, also called NGR1, during this process, imaging its fast relocation and addressing additional novel points such as molecular mechanisms underlying NGR1 plasma membrane association as well as revealing the requirement of NGR1/LZY2, 3,4 for the polar localization of the AGCVIII D6 protein kinase at the PM of columella cells, in which NGR1/LZY2 acts redundantly with LZY3 and LZY4.

      The authors initially monitored relocalization of functional NGR1-GFP in columella cells of the ngr1 ngr2 ngr3 triple mutant after 180-degree reorientation of the roots. Within 10 -15 min NGR1-GFP signal disappeared from the upper PM after reorientation and reappeared at the lower PM of the reoriented cells in close proximity to the sedimented amyloplasts. Reorientation of NGR1-GFP occurred substantially faster than PIN3-GFP reorientation, at about the same time or slightly later than a rise in a calcium sensor (GCaMP3) just preceding a change in D2-Venus auxin sensor alterations. Reorientation of NGR1-GFP proved to be fast and not dependent on a brefeldin A-sensitive ARF GEF-mediated vesicle trafficking, unlike the trafficking of PIN proteins, like PIN3, or the AGCVIII D6 protein kinase. Strikingly, the PM association of NGR1-GFP was highly sensitive to pharmacological interference with sterol composition or concentration and phosphatidylinositol (4)kinase inhibition as well as dithiothreitol (DTT) treatment interfering with thioester bond formation e.g. during S-acylation. Indeed, combined mutation of a palmitoylation site and polybasic regions of NRG1 abolished its PM but not its amyloplast localization and rendered the protein non-functional during the gravitropic response, suggesting NRG1 PM localization is essential for the gravitropic response. Targeting the protein to the PM via an artificially introduced N-terminal myristoylation and an ROP2-derived polybasic region and geranylgeranylation site partially restored its functionality in the gravitropic response.

      Strengths:

      This timely work should be of broad interest to plant, cell and developmental biologists across the field as gravity sensing and signaling may well be of general interest. The point that NGR1 is rapidly responsive to gravistimulation, polarizes at the PM in the vicinity to amyloplast and that this is required for repolarization of D6 protein kinase, prior to PIN relocation is really compelling. The manuscript is generally well-written and accessible to a general readership. The figures are clear and of high quality, and the methods are sufficiently explained for reproduction of the experiments.

      Weaknesses:

      Statistical analysis has been performed for some figures but is lacking for most of the quantitative analyses in the figure legends.

      Response: We added this information to the figure legends

      The title claims a bit more than what is actually shown in the manuscript: While auxin response reporter alterations are monitored, "rapid redirection of auxin fluxes" are not really directly addressed and, while D6PK can activate PIN proteins in other contexts, it is not explicitly shown in the manuscript that PIN3 is a target in the context of columella cells in vivo. A title such as "Rapid redirection of D6 protein kinase during Arabidopsis root gravitropism relies on plasma membrane translocation of NGR proteins" would reflect the results better.

      Response: We modified the title to Rapid translocation of NGR proteins driving polarization of PIN-activating D6 protein kinase during root gravitropism

      Fig. 4: The point that D6PK is transcytosed cannot be made here based on the data of these authors. They should have used a photoswitchable version of NGR1 to show that the same molecules observed at the upper PM are translocated to the lower PM. Nishimura and colleagues actually did that for NGR4. However, this is a lot of work and maybe for NGR1 that fusion would have too low fluorescence intensity (as it was the case for NGR3). So, I think a rewording would be sufficient such as NGR-dependent reorientation of D6PK plasma membrane localization" as this does not say, from where it comes to the lower PM. Theoretically, the signal could also be amyloplast-derived or newly synthesized (or just folded) NGR1-GFP.

      Response: We fully agree and rephrased the text using translocation instead of transcytosis

      The authors make a model in which D6PK AGCVIII kinase-dependent on NGRs activates PIN3 to drive auxin fluxes. However, alterations in auxin responses are observed prior to PIN3 reorientation. They should explain this discrepancy better and clearly describe that this is a working hypothesis for the future rather than explicitly proven, yet.

      Reviewer #3 (Public Review):

      The mechanism controlling plant gravity sensing has fascinated researchers for centuries. It has been clear for at least the past decade that starch-filled plastids (termed statoliths) in specialised gravity-sensing columella cells sense changes in root orientation, triggering an asymmetric auxin gradient that alters root growth direction. Nevertheless, exactly how statolith movement triggers PIN auxin efflux carrier activation and auxin gradient formation has remained unclear until very recently. A series of new papers (in Science and Cell) and this manuscript report how LAZY proteins (also referred to as NEGATIVE GRAVITROPIC 50 RESPONSE OF ROOTS; NGR) play a pivotal role in regulating root gravitropism. In terms of their overall significance, their collective findings provide seminal insights into the very earliest steps for how plant roots sense gravity which are arguably the most important papers about root gravitropism in the past decade.

      In the current manuscript, Kulich et al initially report (through creating a functional NGR1-GFP reporter) that "NGR1-GFP displayed a highly specific columella expression, which was most prominent at the PM and the statolith periphery." Is NGR1-GFP expressed in shoot tissues? If yes, is it in starch sheath (the gravity-sensing equivalent of root columella cells)? The authors also note "NGR1-GFP signal from the PM was not evenly distributed, but rather polarized to the lower side of the columella cells in the vicinity of the sedimented statoliths (Fig. 1A)." and (when overexpressing NGR-GFP) "chloroplasts in the vicinity of the PM strongly correlated with NGR1 accumulating at the PM nearby, similar to the scenario in columella" suggesting that NGR1 does not require additional tissue-specific factors (i.e. trafficking proteins or lipids) to assist in its intracellular movement from plastid to PM.

      Response: Yes, NGR1, also called LAZY2 is expressed in the inner hypocotyl tissues, according to https://doi.org/10.1104/pp.17.00942. Unfortunately, we saw very little signal with our NGR-GFP construct, possibly due to NGR1-GFP weak signal and/or NGR1 being expressed only exclusively in the inner tissues.

      Next, the authors study the spatiotemporal dynamics of NGR1-GFP re-localisation with other early gravitropic signals and/or components Calcium, auxin, and PIN3. The temporal data presented in Figure 1 illustrates how the GCaMP calcium reporter (in panel E) revealed "the first signaling event in the root gravitropic bending is the statolith removal from the top membrane, rather than its arrival at the bottom" It appeared that the auxin DII-VENUS reporter was also changing rapidly (panel G) - was this detectable BEFORE statolith re-sedimentation?

      Response: In our data (Figure 1G), we observe that the increase in signal at the top side begins prior to starch sedimentation, in contrast to the bottom side, where the decrease starts only after starch grains land on the bottom membrane. While this observation aligns with our hypothesis and other data, we refrained from commenting on it due to the small differences between the first 2-3 timepoints, which are obscured by noise. This phenomenon arises because the DII response relies on protein degradation and is relatively slow. Hence, for rapid tracking of the auxin response, we utilized auxin-induced calcium as a proxy, with NPA treatment serving as a negative control.

      Please can the authors explain their NPA result in Fig 1E? Why would treatment with the auxin transport inhibitor NPA block Ca signalling (unless the latter was dependent on the former)?

      Response: Auxin induces rapid calcium transients (e.g., http://dx.doi.org/10.1016/j.cub.2015.10.025). Consequently, when auxin reaches the bottom elongation zone approximately 5-6 minutes after rotation, we observe an increased GCaMP signal at this location. Notably, when we inhibit PIN function using NPA, the GCaMP signal persists, but the difference between the top and bottom diminishes. This validates that the calcium transients at the bottom side can be interpreted as monitoring increase in auxin accumulation as a result of auxin transport.

      They go on to note "This initial auxin asymmetry is mediated by PIN-dependent auxin transport, despite visible polarization of PIN3 can be detected only later" which suggests that PIN activity was being modified prior to PIN polarisation.

      In contrast to other proteins involved in gravity response like RLDs and PINs, NGR1 localization and gravity-induced polarization does not undergo BFA-sensitive endocytic recycling by ARF-GEF GNOM. This makes sense given NGR1 is initially targeted to plastids, THEN the PM. Does NGR1 contain a cleavable plastid targeting signal? The authors go on to elegantly demonstrate that NGR1 PM targeting relies on palmitoylation through imaging and mutagenesis-based transgenic ngr rescue assays.

      Response: Yes, there is weakly conserved plastid targeting signal on NGR1. Although we also started researching in this direction, we quickly realized, that two other groups showed very comprehensive data regarding NGR plastid localization.

      Finally, the authors demonstrate that gravitropic-induced auxin gradient formation is initially dependent on PIN3 auxin efflux activation (prior to PIN3 re-localisation). This early PIN3 activation process is dependent on NGR1 re-targeting D6PK (a PIN3 activating kinase). This elegant molecular mechanism integrates all the regulatory components described in the paper into a comprehensive root gravity sensing model.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor comments:

      Line 83: This construct fully rescued the agravitropic bending phenotype of the ngr1/2/3 triple mutant (see further).

      What does it mean the see further in this context?

      Response: It is a reference to the second part of the manuscript (Fig. 3, Supplementary Fig S3, Fig S4), where we extensively address the complementation with wild type and point mutated versions of NGR. There we show that the construct we are using is functional. This does not prove, but strongly imply that the GFP signal we obtain is relevant. We updated the text to point this out.

      Line 101: Timing of events during the gravitropic response

      When describing the equipment employed and the rotation applied to the samples, "the vertical stage microscope and minimized the time required for rotating the sample. 180{degree sign} rotation..."

      The authors mentioned a travel time of 5 minutes first and later of 15 minutes for the relocalization of NGR1. Are these two different experiments? Were there two different rotation angles or degrees applied? Could the authors please rephrase this part of the description to answer these questions and help the reader understand how the assay performed?

      Response: We added this explanation to the text.

      Figure 1 E, F, and G.

      Could the authors please provide pictures and/or videos for the PIN3 localization dynamics, intracellular calcium transients, and auxin reporter DII-Venus? In other words, show the complementing images for Figure 1E, 1F, and 1G as the authors did for Figure 2D where authors presented the pictures and the corresponding quantification plots.

      Response: We wanted to avoid overcrowding the figure, but we would also love to show the videos. Therefore, we did additional supplementary movie 3, where we put all the additional observations.

      Line 194: This implies the existence of posttranslational modifications such as S-acylation to associate with PM.

      Why is this specific modification suggested/examined and no other modification? What is the criteria to select this kind of modification? Based on what premises? Could the authors elaborate on that? Could the authors please include references?

      Response: Thank you for this comment. We of course first checked the prediction tools which have shown very strongly conserved S-acylation side. We now clarified this in the text and added other modifications as an example. Later on, we rule out myristoylation (that happens on the glycins) and prenylation (it happens only at the C-terminus CAAX box).

      Line 255: NGR1 PM localization is synergistically mediated by polybasic regions and a palmitoylation site

      Similarly to the previous commentary, How and why are these regions examined/analyzed? Likewise, why is the palmitoylation site selected? Please provide some background, criteria, and references.

      Response: Here, we clearly state that the prediction of the palmitoylation site is made based on the GPS lipid prediction tool.

      As for the polybasic region, these can be seen upon manual inspection of the primary protein sequence. We simply looked at the protein and saw it there. We rephrased the text so that it is more clear.

      Reviewer #2 (Recommendations For The Authors):

      Please, proofread the manuscript for style and minor language errors.

      Statistical analysis has been performed for some figures but is lacking for most of the quantitative analyses in the figure legends. Where it has been performed it is not given what "n" number of roots, cells, or plasma membranes were analyzed NGR1-GFP and no information is given whether the data is derived from a representative experiment or several or pooled data from several experiments. This certainly requires revision in Fig. 1D-G, Fig. 2B-D, Fig. S2 B,E, Fig. 3B,D, F-H, Fig. S.3 B,D, Fig. S. 4 ,E-H, Fig. 4 D.

      Response: Thank you, we added this information to the figure legends.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We appreciate the care and the detail shown by the Reviewers. Their comments have made our article more focused and more accessible to a general audience.

      We would like to begin with a comment about the last sentence of the “eLife assessment”. The evolution of metamorphosis in insects was a major triumph in animal evolution that subsequently impacted almost every aspect of plant and animal evolution in the terrestrial and freshwater aquatic biospheres. Unlike the metamorphoses of most other groups, whose evolutions are lost in time, insect evolution arose relatively recently (~400 mya) and insect orders have branched off at various points in this evolution and have persisted to modern times. Although these “relic” groups also have undergone millions of years of evolution and specialization, they still provide us with windows into how this progression may have come about. The study of these groups provides a unique opportunity to explore the mechanisms that underlie major life history shifts and should be of interest to anyone interested in evolution – not just entomologists.

      Reviewer #1 (Public Review):

      Summary:

      This paper provides strong evidence for the roles of JH in an ametabolous insect species. In particular, it demonstrates that:

      • JH shifts embryogenesis from a growth mode to a differentiation mode and is responsible for terminal differentiation during embryogenesis. This, and other JH roles, are first suggested as correlations, based on the timing of JH peaks, but then experimentally demonstrated using JH antagonists and rescue thereof with JH mimic. This is a robust approach and the experimental results are very convincing.

      • JH redirects ecdysone-induced molting to direct formation of a more mature cuticle

      • Kr-h1 is downstream of JH in Thermobia, as it is in other insects, and is a likely mediator of many JH effects

      • The results support the proposed model that an ancestral role of JH in promoting and maintaining differentiation was coopted during insect radiations to drive the evolution of metamorphosis. However, alternate evolutionary scenarios should also be considered.

      Strengths:

      Overall, this is a beautiful, in-depth student. The paper is well-written and clear. The background places the work in a broad context and shows its importance in understanding fundamental questions about insect biology. The researchers are leaders in the field, and a strength of this manuscript is their use of a variety of different approaches (enzymatic assays, gene expression, agonists & antagonists, analysis of morphology using different types of microscopy and detection, and more) to attack their research questions. The experimental data is clearly presented and carefully executed with appropriate controls and attention to detail. The 'multi-pronged' approach provides support for the conclusions from different angles, strengthening conclusions. In sum, the data presented are convincing and the conclusions about experimental outcomes are well-justified based on the results obtained.

      Weaknesses:

      This paper provides more detail than is likely needed for readers outside the field but also provides sufficient depth for those in the field. This is both a strength and a weakness. I would suggest the authors shorten some aspects of their text to make it more accessible to a broader audience. In particular, the discussion is very long and accompanied by two model figures. The discussion could be tightened up and much of the text used for a separate review article (perhaps along with Figure 11) that would bring more attention to the proposed evolution of JH roles.

      We appreciate the comments about the strengths and weaknesses of the paper. To deal with the weaknesses, we have condensed some of the Results to make them less cumbersome and the Discussion has been completely revised, keeping a sharp focus on the actions of JH in Thermobia embryos and how these actions relate to the status quo functions of JH in insects with metamorphosis. As part of the revision of the Discussion, we have replaced Figures 10 and 11.

      Reviewer #1 (Recommendations For The Authors):

      In keeping with my public review, this paper is very strong and I have very few suggestions for improvement. They are:

      (1) Thermobia are extant insects and are not ancestral insects. It is likely that they retain features found in an insect ancestor. However, these insects have been evolving for a very long time, and for any one feature, many changes may have occurred, both gain and loss of gene function and morphology. Further, even for morphological features present in an extant species that are the same as an ancestor, genetic pathways regulating this feature may have changed over time (see for examples papers from the Haag and Pick labs). Although I realize this is a small, possibly almost semantic point, I feel it is important to be precise here. For example, in the title, "before" is speculative as there could have been a different role in the ancestor with the role in embryogenesis arising in lineages leading to Thermobia; similarly in the abstract, "this ancestral role of JH' is an overstatement since we cannot actually measure the ancestral role.

      Since the title has already been cited in a Perspectives review, we decided to keep the title as is.

      (2) I don't understand the results in Met and myo in Fig. 3B. Perhaps include them in the explanation of Fig.3 and not after the description of Fig. 4 and explain them in more detail (or perhaps not include them at all?). I don't really understand the statistical analysis of these panels either.

      We have revised the figure legends to explain the statistics.

      (3) Another point regarding language - talking about the embryo being "able" to go through a developmental stage implies decision-making. I would suggest dropping that wording (e.g, in the description of Fig. 5C). Similarly, in explaining Fig. 6B, it would be more correct to say "JH treatment no longer inhibited" than as written "could no longer inhibit" (implying 'no matter how hard it tried, it still couldn't do it')

      We have removed the “can’t” wording. Figure 6 has been revised

      Reviewer #2 (Public Review):

      The authors have studied in detail the embryogenesis of the ametabolan insect Thermobia domestica. They have also measured the levels of the two most important hormones in insect development: juvenile hormone (JH) and ecdysteroids. The work then focuses on JH, whose occurrence concentrates in the final part (between 70 and 100%) of embryo development. Then, the authors used a precocene compound (7-ethoxyprecocene, or 7EP) to destroy the JH producing tissues in the embryo of the firebrat T. domestica, which allowed to unveil that this hormone is critically involved in the last steps of embryogenesis. The 7EP-treated embryos failed to resorb the extraembryonic fluid and did not hatch. More detailed observations showed that processes like the maturational growth of the eye, the lengthening of the foregut and posterior displacement of the midgut, and the detachment of the E2 cuticle, were impaired after the 7EP treatment. Importantly, a treatment with a JH mimic subsequent to the 7EP treatment restored the correct maturation of both the eye and the gut. It is worth noting that the timing of JH mimic application was essential for correcting the defects triggered by the treatment with 7EP.

      This is a relevant result in itself since the role of JH in insect embryogenesis is a controversial topic. It seems to have an important role in hemimetabolan embryogenesis, but not so much in holometabolans. Intriguingly, it appears important for hatching, an observation made in hemimetabolan and in holometabolan embryos. Knowing that this role was already present in ametabolans is relevant from an evolutionary point of view, and knowing exactly why embryos do not hatch in the absence of JH, is relevant from the point of view of developmental biology.

      The unique and intriguing aspect of juvenile hormone is its status quo action in the control of metamorphosis. Our reason for dealing with an insect group that branched off from the line of insects that eventually evolved metamorphosis, was to gain insight into the ancestral functions of this hormone. Our data from Thermobia as well as that from grasshoppers and crickets indicate that the developmental actions of JH were originally confined to embryogenesis where it promoted the terminal differentiation of the embryo. Its actions in promoting differentiation also included suppressing morphogenesis. This latter function was not pronounced during embryogenesis because JH only appeared after morphogenesis was essentially completed. However, it was a preadaptation that proved useful in more derived insects that delayed aspects of morphogenesis into the postembryonic realm. JH was then used postembryonically to inhibit morphogenesis until late in juvenile growth when JH disappears, and this inhibition is released.

      Then, the authors describe a series of experiments applying the JH mimic in early embryogenesis, before the natural peak of JH occurs, and its effects on embryo development. Observations were made under different doses of JHm, and under different temporal windows of treatment. Higher doses triggered more severe effects, as expected, and different windows of application produced different effects. The most used combination was 1 ng JHm applied 1.5 days AEL, checking the effects 3 days later. Of note, 1.5 days AEL is about 15% embryonic development, whereas the natural peak of JH occurs around 85% embryonic development. In general, the ectopic application of JHm triggered a diversity of effects, generally leading to an arrest of development. Intriguingly, however, a number of embryos treated with 1 ng of JHm at 1.5 days AEL showed a precocious formation of myofibrils in the longitudinal muscles. Also, a number of embryos treated in the same way showed enhanced chitin deposition in the E1 procuticle and showed an advancement of at least a day in the deposition of the E2 cuticle.

      While the experiments and observations are done with great care and are very exhaustive, I am not sure that the results reveal genuine JH functions. The effects triggered by a significant pulse of ectopic JHm when the embryo is 15% of the development will depend on the context: the transcriptome existing at that time, especially the cocktail of transcription factors. This explains why different application times produce different effects. This also explains why the timing of JHm application was essential for correcting the effects of 7EP treatment. In this reasoning, we must consider that the context at 85% development, when the JH peaks in natural conditions and plays its genuine functions, must be very different from the context at 15% development, when the JHm was applied in most of the experiments. In summary, I believe that the observations after the application of JHm reveal effects of the ectopic JHm, but not necessarily functions of the JH. If so, then the subsequent inferences made from the premise that these ectopic treatments with JHm revealed JH functions are uncertain and should be interpreted with caution.

      We disagree with the reviewer. An analogous situation would be in exploring gene function in which both gain-of-function and loss-of-function experiments often provide complementary insights into how a gene functions. We see JH effects only when its receptor, Met, is present and JH can induce its main effector protein, Kr-h1. The latter gives us confidence that we are looking at bona fide JH effects. We have also kept in mind, though, that the nature of the responding tissues is changing through time. Nevertheless, we see a consistent pattern of responses in the embryo and these can be related to its postembryonic effects in metamorphic insects.

      Those inferences affect not only the "JH and the progressive nature of embryonic molts" section, but also, the "Modifications in JH function during the evolution of hemimetabolous and holometabolous life histories" section, and the entire "Discussion". In addition to inferences built on uncertain functions, the sections mentioned, especially the Discussion, I think suffer from too many poorly justified speculations. I love speculation in science, it is necessary and fruitful. But it must be practiced within limits of reasonableness, especially when expressed in a formal journal.

      We have tried to dial back the speculation.

      Finally, In the section "Modifications in JH function during the evolution of hemimetabolous and holometabolous life", it is not clear the bridge that connects the observations on the embryo of Thermobia and the evolution of modified life cycles, hemimetabolan and holometabolan.

      Our Figure 12 should put this into perspective.

      Reviewer #2 (Recommendations For The Authors):

      Main points

      (1) Please, reduce the level of overinterpretation of ectopic treatment experiments with JHm, since the resulting observations represent effects, but not necessarily functions of JH.

      We have revised this section to indicate that the “effects” of ectopic treatments provide insights into the function of JH. Using a genetic analogy, both “loss-of-function” and “gain-of-function” experiments provide insights into a given gene. (see response to Public Comments)

      (2) Especially in the sections "JH and the progressive nature of embryonic molts" and "Modifications in JH function during the evolution of hemimetabolous and holometabolous life histories", and the entire "Discussion", please keep the level of speculation within reasonable limits, avoiding especially the inference of conclusions on the basis of speculation, itself based on previous speculation.

      We have toned down some of the speculation and provided reasons why it is worth suggesting.

      (3) Please revisit the argued roles of myoglianin in the story, in light of its effects as an inhibitor of JH production, repressing the expression of JHAMT, as has been reliably demonstrated in hemimetabolan species (DOI: 10.1073/pnas.1600612113 and DOI: 10.1096/ fj.201801511R).

      Our appreciation to the reviewer. We are more explicit about the relationship between JH and myo.

      Minor points

      (4) Please keep the consistency of the scientific binomial nomenclature for the species mentioned. For example, read "Manduca sexta" (in italics) at the first mention, and then "M. sexta" (in italics) in successive mentions (instead of reading "Manduca" on page 17, and then "Manduca sexta" on page 18, for example). The same for "Drosophila" ("Drosophila melanogaster" first, and then "D. melanogaster"), "Thermobia" ("Thermobia domestica" first, and then "T. domestica"), etc. In the figure legends, I recommend using the complete name: Thermobia domestica, in the main heading.

      Where there is no possibility of confusion, we intend to use Thermobia, rather than T. domestica, etc. We think that it is easier for a non-specialist to read and it is commonly done in endocrine papers.

      (5) There is no purpose in evolution and biological processes. Thus, I suggest avoiding expressions that have a teleological aftertaste. For example (capitals are mine), on p. 3 "appears to have been extended into postembryonic life where it acts TO antagonize morphogenic and allow the maintenance of a juvenile state".

      We have tried to avoid teleological wording.

      (6) The title "The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis" contains a redundancy ("role" and "function"), and an apparent obviousness ("before its involvement in metamorphosis"). I suggest a more straightforward title. Something like "Juvenile hormone plays developmental functions in the embryo of the firebrat Thermobia domestica, which predate its status quo action in metamorphosis".

      As noted above, we are retaining the title since it has already been cited.

      (7) Page 2. "The transition from larva to adult then occurred through a transitional stage, the pupa, thereby providing the three-part life history diagnostic of the "complete metamorphosis" exhibited by holometabolous insects (reviews: Jindra, 2019; Truman & Riddiford, 2002, 2019)". I suggest adding the reference ISBN: 9780128130209 9 7 8 - 0 - 1 2 - 8 1 3 0 2 0 - 9, as the most comprehensive and recent review on complete metamorphosis.

      Done

      (8) Page 3. "These severe developmental effects suggest that the developmental role of JH in insects was initially CONFINED to the embryonic domain" (capitals are mine). This appears contradictory with the observations of Watson, 1967, on the relationships between the apparition of scales and JH, mentioned shortly before by the authors.

      This is explained in the Discussion. Although JH can suppress scale appearance in the J4 stage, we have not been able to show that scales appearance is caused by changes in the juvenile JH titer.

      (9) Page 4. "we measured JH III levels during Thermobia embryogenesis at daily intervals starting at 5 d AEL". Why not before, like in the case of ecdysteroids? The authors might perhaps argue that the levels of Kr-h1 expression are consistently low from the very beginning, according to Fernandez-Nicolas et al, 2022 (reference cited later in the manuscript).

      (10) Page 4. "Ecdysteroid titers through embryogenesis and the early juvenile instars were measured using the enzyme immunoassay method (Porcheron et al., 1989) that is optimized for detecting 20-hydroxyecdysone (20E)". The antibody generated by Porcheron (and now sold by Cayman) recognizes ecdysone and 20-hydroxyecdysone alike. But that's not relevant here. I would refer to "ecdysteroids" when mentioning measurements. Also in figure 2B (and "juvenile hormone III" without the formula, in Panel A, for harmonization). And I would not expand on specifications, like those at the beginning of page 5, or towards the end of page

      We thank the reviewer for this important correction.

      (12) ("the fact that we detected only a slight rise in ecdysteroids at this time (Fig 2B) is likely due to the assay that we used being designed to detect 20E rather than ecdysone").

      Omitted.

      (11) Page 5. "Low levels of Kr-h1 transcripts were present at 12 hr after egg deposition, but then were not detected until about 6 d AEL when JH-III first appeared". There is a very precise Kr-h1 pattern in Fernandez-Nicolas et al. 2023 (reference mentioned later in the manuscript).

      (12) Page 5. "notably myoglianin (myo), have become prominent as agents that promote the competence and execution of metamorphosis in holometabolous and hemimetabolous insects (He et al., 2020; Awasaki et al., 2011)". See my note 3 above.

      The myoglianin issue has been revised.

      (13) Page 5. "a drug that suppresses JH production". Rather, "a drug that destroys the JH producing tissues". Why the way, do the authors know when the CA are formed in T. domestica embryo development?

      We prefer to keep our original wording. There have been some cases in which precocene has blocked JH production but did not kill the CA cells. We do not have observations that show that 7EP kills the CA cells in Thermobia embryos.

      (14) Page 5. "subsequent treatment with a JHm". I would say here that the JHm is pyriproxyfen, not on page 6 or page 7. Thus, to be consistent, after the first mention of "pyriproxyfen (JHm)" on page 5, I'd consistently use the abbreviation "JHm".

      (15) Page 9. "Limb loss in such embryos was often STOCHASTIC, i.e., in a given embryo some limbs were completely lost while others were maintained in a reduced state" (capitals are mine). The meaning of "stochastic" is random, involving a random variable; it is a concept usually associated to probability theory and related fields. I suggest using the less specialized word "variable", since to ascertain that the values are really stochastic would require specific mathematical approaches.

      We are still using stochastic because the loss is random.

      (16) Page 10. "9E). Indeed, the JH treatment redirects the molt to be more like that to the J2 stage, rather than to the E2 (= J1) stage". Probably too assertive given the evidence available (see my points 1 and 2 above).

      We do not see a problem with our conclusion. In response to the JHm treatment, the embryo produced a smooth, rather than a “pebbly” cuticle, failed to make the J1-specific egg tooth, and attempted to make cuticular lenses (a J2 feature). This ability of premature JH exposure to cause embryos to “skip” a stage is also seen in locusts (Truman & Riddiford, 1999) and crickets (Erezyilmaz et al., 2004). The JHm treatment resulted in the production of smooth cuticle, lack of a hatching tooth, and an attempt to make cuticular lenses.

      (17) Page 11. "early JHM treatment", read "early JHm treatment".

      Corrected

      (18) Page 11. "likely. A target of JH, and likely Kr-h1, in Thermobia is myoglianin...". Please see my notes 1, 2, and especially 3, above.

      This has been revised

      (19) Page 13. "the locust, Locusta americana (Aboulafia-Baginshy et al.,1984)". Please read "the locust, Locusta migratoria (Aboulafia-Baginshy et al.,1984)".

      Corrected

      (20) Page 13 "Acheta domesticus" three times. The correct name now is "Acheta domestica", after harmonizing the declension of the specific name with the generic one. See additionally my note 4 above.

      Acheta domesticus has been used in hundreds (thousands?) of papers since it was originally named by Linnaeus. We will continue to use it.

      (21) Page 15, "(also called the vermiform larva (Bernays, 1971) redirects embryonic development to form an embryo with proportions, cuticular pigmentation, cuticular sculpturing and bristles characteristic of a nymph, while pronymph modifications, such as the cuticular surface sculpturing (Bernays, 1971)". The reference "Bernays, 1971" is indeed "Bergot et al., 1971".

      There was a mistake in the references. The Bernays reference was omitted from the revised Discussion

      (22) Page 16. "Since JH also induces Kr-h1 in embryos of many insects, including Thermobia". I'm not sure that this has been studied in many insects. In any case, any reference would be useful.

      (23) Page 17. "Tribolium casteneum". Please read "Tribolium castaneum".

      Changed

      (24) Page 17. "...results in a permanent larva that continues to molt well after it has surpassed its critical weight (He et al., 2019)". The paper of He et al., 2019 is preceded by two key papers that previously demonstrate (and in hemimetabolan insects) that myoglianin is a determining factor in the preparation for metamorphosis: DOI: 10.1073/pnas.1600612113 and DOI: 10.1096/ fj.201801511R). See my note 3 above.

      Corrected in revision

      (25) Page 18. "These persisting embryonic primordia join the wing primordia in delaying their morphogenesis into postembryonic life". This reader does not understand this sentence.

      Made clearer in the revision.

      (26) Page 18. "is first possible in the commercial silkworm (Daimon et al., 2015)". Please mention the scientific Latin name of the species, Bombyx mori.

      (27) Page 19. "The functioning of farnesol derivatives in growth versus differentiation control extends deep into the eukaryotes.../... this capacity was eventually exploited by the insects to provide the hormonal system that regulates their metamorphosis". This information appears quite out of place.

      We have retained this point.

      (28) Page 21. Heading "Hormones". I suggest using the heading "Bioactive compounds", as neither pyriproxyfen nor 7-ethoxyprecocene are hormones.

      Done

      (29) Page 29, legend of figure 1. "Photomicrographs" is somewhat redundant. The technical word is "micrographs". "Thermobia domestica" appears in the explanation of panel C, but this is not necessary, as the name appears in the main heading of the legend.

      Done

      (30) Page 30, legend of figure 2. Panel B, see my comment 10 above. Why embryonic age is expressed in % embryo development in panel C (and in days in panels A and B)?

      All have been converted to days AEL

      (31) Page 35, legend of figure 5. "Photomicrograph" see my note 28 above.

      Done

      (32) Page 40, figure 10. In panel A, the indication of the properties of JH is misleading. The arrow going to promoting differentiation and maturation is OK, but the repression sign that indicates suppression of morphogenetic growth and cell determination seems to suggest that JH has retroactive effects. In panel B, I suggest to label "Flies" instead of "Higher Diptera", which is an old-fashioned term. In any case, see my general comments 1 and 2, above, about speculation.

      Figure has been completely revised

      (33) Figure 11. See my general comments 1 and 2, above, about speculation.

      Figure has been revised

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors use inhibitors and mimetics of juvenile hormone (JH) to demonstrate that JH has a key role in late embryonic development in Thermobia, specifically in gut and eye development but also resorption of the extraembryonic fluid and hatching. They then exogenously apply JH early in development (when it is not normally present) to examine the biological effects of JH at these stages. This causes a plethora of defects including developmental arrest, deposition of chitin, limb development, and enhanced muscle differentiation. The authors interpret these early effects on development as JH being important for the shift from morphogenetic growth to differentiation - a role that they speculate may have facilitated the evolution of metamorphosis (hemi- and holo-metaboly). This paper will be of interest to insect evo-devo researchers, particularly those with interests in the evolution of metamorphosis.

      Strengths:

      The experiments are generally conducted very well with appropriate controls and the authors have included a very detailed analysis of the phenotypes.

      The manuscript significantly advances our understanding of Thermobia development and the role of JH in Thermobia development.

      The authors interpret this data to present some hypotheses regarding the role of JH in the evolution of metamorphosis, some aspects of which can be addressed by future studies.

      Weaknesses:

      The results are based on using inhibitors and mimetics of JH and there was no attempt to discern immediate effects of JH from downstream effects. The authors show, for instance, that the transcription of myoglianin is responsive to JH levels, it would have been interesting to see if any of the phenotypic effects are due to myoglianin upregulation/suppression (using RNAi for example). These kinds of experiments will be necessary to fully work out if and how the JH regulatory network has been co-opted into metamorphosis.

      We agree completely and should be a feature of future work.

      The results generally support the authors' conclusions. However, the discussion contains a lot of speculation and some far-reaching conclusions are made about the role of JH and how it became co-opted into controlling metamorphosis. There are some interesting hypotheses presented and the author's speculations are consistent with the data presented. However, it is difficult to make evolutionary inferences from a single data point as although Thermobia is a basally branching insect, the lineage giving rise to Thermobia diverged from the lineages giving rise to the holo- and hemimetabolous insects approx.. 400 mya and it is possible that the effects of JH seen in Thermobia reflect lineage-specific effects rather than the 'ancestral state'. The authors ignore the possibility that there has been substantial rewiring of the networks that are JH responsive across these 400 my. I would encourage the authors to temper some of the discussion of these hypotheses and include some of the limitations of their inferences regarding the role of JH in the evolution of metamorphosis in their discussion.

      We have tried to be less all-encompassing in the Discussion. The strongest comparisons can be made between ametabolous and hemimetabolous insects and we have focused most of the Discussion on the role of JH in that transition. We still include some discussion of holometabolous insects because the ancestral embryonic functions of JH may be somehow related to the unusual reappearance of JH in the prepupal period. We have reduced this discussion to only a few sentences.

      Reviewer #3 (Recommendations For The Authors):

      (1) The overall manuscript is very long (especially the discussion), and the main messages of the manuscript get lost in some of the details. I would suggest that the authors move some of the results to the supplementary material (e.g. it might be possible to put a lot of the detail of Thermobia embryogenesis into the supplementary text if the authors feel it is appropriate). The discussion contains a lot of speculation and I suggest the authors make this more concise. One example: At the moment there is a large section on the modification in JH function during the evolution of holo and hemi-metabolous life history strategies. There are some interesting ideas in this section and the authors do a good job of integrating their findings with the literature - but I would encourage the authors to limit the bulk of their discussion to the specific things that their results demonstrate. E.g. The first half of p17 contains too much detail, and the focus should be on the relationship with Thermobia (as at the bottom of p17).

      Section has been revised and is more focused

      (2) I would also suggest a thorough proofread of the manuscript, I have highlighted some of the errors/points of confusion that I found in the list below - but this list is unlikely to be exhaustive . We appreciate catching the errors. Hopefully the final version is better proofed.

      (3) It might be me, but I found the wording in the second half of the abstract a bit confusing. Particularly the statement about the redeployment of morphogen systems - could this be stated more clearly?

      Abstract has been revised.

      (4) Introduction

      a. "powered flight" rather than 'power flight'

      Done

      b. 'brought about a hemimetabolous lifecycle' implies causality which hasn't been shown and directionality to evolution - suggest 'facilitated the evolution of a hemi...". Similar comment for 'subsequent step to complete metamorphosis'.

      c. Bottom of p2 - unclear whether you are referring to hemi- holo- or both

      d. Suggest removing sentence beginning "besides its effects..." as the relevance of the role of JH in caste isn't clear.

      Kept sentence but removed initial clause

      e. State that Thermoia is a Zygentoma.

      Done

      f. Throughout - full species names on first usage only, T. domestica on subsequent usages.

      We will continue to use genus names for the reason given above.

      Gene names e.g. kr-h1 in italics.

      g. 'antagonise morphogens"? rather than 'antagonise morphoentic'.

      Done

      (5) Results

      a. Unclear why drawings are provided rather than embryonic images in Fig. 1A

      We think that the points can be made better with diagrams.

      b. Top of p4, is 'slot' the correct word?

      Corrected

      c. Unclear why the measurements of JHIII weren't measured before 5 days AEL, especially given that many of the manipulative experiments are at earlier time points than this. I appreciate that, based on kr-h1, levels that JHIII is also likely to be low.

      d. Reference for the late embryonic peak of 20E being responsible for the J2 cuticle?

      Clarified that this is an assumption

      e. Clarify "some endocrine related transcripts" why were these ones in particular picked? Kr-h1 is a good transcriptional proxy for JH and Met is the JH-receptor, why myoglianin and not some of the other transcriptional proxies of neuroendocrine signalling?

      Hopefully, the choice is clearer.

      f. Fig 2C rather than % embryo development for the gene expression data please represent this in days (to be consistent with your other figures).

      It is now consistent with other parts of figure.

      g. In Fig. 3 the authors do t-tests, because there are three groups there needs to be some correction for multiple testing (e.g. Bonferroni) can the authors add this to the relevant methods section?

      We think that pair-wise comparisons are appropriate.

      h. Fig. 3 legend: you note that you treat stage 2 juveniles with 7EP - I couldn't tell what AEL this corresponded to.

      This is after hatching so AEL does not apply.

      i. Top of p7 'deformities' rather than 'derangements'?

      Done

      j. Regarding the dosage effects of embryonic abnormalities - it would be good to include these in the supp material, as it convinces the reader that the effects you have seen aren't just due to toxicity.

      It is not clear what the objection is.

      k. Bottom of p7 'problematic' not 'problematical'

      Done

      l. P8 Why are the clusters of Its important? - provide a bit more interpretation for the reader here.

      This is clear in the revised version.

      m. P9 Why is the modulation of transcription of kr-h1, met, and myo important in this context

      Explained

      n. P9 'fig. 7F'? there is no Fig. 5F

      Thanks for catching the typo.

      o. Fig. 7B add to the legend which treatment the dark and light points correspond to.

      We think it is obvious from the labeling on Fig 7B.

      (6) Discussion:

      a. What do we know about how terminal differentiation is controlled in non-insect arthropods? Most of the discussion is focused on insects (which makes sense as JH is an insect-specific molecule), but if the authors are arguing the ancestral role of JH it would be useful to know how their findings relate to non-insect arthropods.

      We have not been able to find any information about systemic signals being involved in non-insect arthropods.

      b. There is no Fig. 5E (are they referring to 7E?)

      Yes, it should have been Fig. 7E.

      c. Is myoglianin a direct target of JH in other species?

      Other reports are in postembryonic stages and show that myoglianin suppresses JH production. Our paper is the first examination in embryos and we find that the opposite is true – i.e., that JH treatment suppresses myoglianin production. We suspect that these two signaling systems are mutually inhibitory. It would be interesting to see whether treatment of a post-critical weight larva with JH (which would induce a supernumerary larval molt) would also suppress myoglianin production (as we see in Thermobia embryos).

      d. P12 What is the evidence that JH interacts with the first 20E peak to alter the embryonic cuticle?

      We are not sure what the issue is. The experimental fact is that treatment with JH before the E1 ecdysteroid peak causes the production of an altered E1 cuticle. We are faced with the question of why is this molt sensitive to JH when the latter will not appear until 3 or 4 days later? A possible answer is that the ecdysone response pathway has a component that has inherent JH sensitivity. The mosquito data suggest that Taiman provides another link between JH and ecdysone action

      e. Top of p13 - this paragraph can be cut down substantially. Although this is evidence that JH can alter ecdysteriods - it is in a species that is 400 my derived from the target species. Is it likely to be the exact same mechanism? I would encourage the authors to distil and retain the most important points.

      This paragraph has been shortened and focused.

      f. Bottom of p13 - what does this study add to this knowledge?

      The response of Thermobia embryos to JH treatment is qualitatively the same as seen in other short germband embryos. This similarity supports the assumption that the same responses would have been seen in their last common ancestor.

      g. P19 the last paragraph in the conclusions is really peripherally relevant to the paper and is a bit of a stretch, I would encourage the authors to leave this section out.

      We agree that it is a stretch. JH and its precursor MF are the only sesquiterpene hormones. How did they come about to acquire this function? We think it is worth pointing out the farnesol metabolites have been associated with promoting differentiation in various eukaryotes. An ancient feature of these molecules in promoting (maintaining?) differentiation may have been exploited by the insects to develop a unique class of hormones. It is worth putting the idea out to be considered.

      h. P19 "conclusions" rather than 'concluding speculations'.

      Changed as suggested.

      Methods:

      It is standard practice to include at least two genes as reference genes for RT-qPCR analysis (https://doi.org/10.1186/gb-2002-3-7-research0034, https://doi.org/10.1373/clinchem.2008.112797) If there are large-scale differences in the tissues being compared (e.g. as there are here during development) then more than two reference genes may be required and a reference gene study (such as https://doi.org/10.3390%2Fgenes12010021) is appropriate. Have the authors confirmed that rp49 is stably expressed during the stages of Thermobia development that they assay here?

      We have explained our choice in the Methods.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This work describes a new method for sequence-based remote homology detection. Such methods are essential for the annotation of uncharacterized proteins and for studies of protein evolution.

      Strengths:

      The main strength and novelty of the proposed approach lies in the idea of combining stateof-the-art sequence-based (HHpred and HMMER) and structure-based (Foldseek) homology detection methods with recent developments in the field of protein language models (the ESM2 model was used). The authors show that features extracted from high-dimensional, information-rich ESM2 sequence embeddings can be suitable for efficient use with the aforementioned tools.

      The reduced features take the form of amino acid occurrence probability matrices estimated from ESM2 masked-token predictions, or structural descriptors predicted by a modified variant of the ESM2 model. However, we believe that these should not be called "embeddings" or "representations". This is because they don't come directly from any layer of these networks, but rather from their final predictions.

      We agree that there is some room for discussion about whether the amino acid probabilities returned by pre-trained ESM-2 and the 3Di sequences returned by ESM-2 3B 3Di can be properly referred to as “embeddings”. The term “embedding” doesn’t have a formal definition, other than some kind of alternative vector representation of the input data which, preferably, makes the input data more suitable for some downstream task. In that simple sense of the word “embedding”, amino acid probabilities and 3Di sequences output by our models are, indeed, types of embeddings. We posed the question on Twitter (https://twitter.com/TrichomeDoctor/status/1715051012162220340) and nobody responded, so we are left to conclude that the community is largely ambivalent about the precise definition of “embedding”.

      We’ve added language in our introduction to make it more clear that this is our working definition of an “embedding”, and why that definition can apply to profile HMMs and 3Di sequences.

      The benchmarks presented suggest that the approach improves sensitivity even at very low sequence identities <20%. The method is also expected to be faster because it does not require the computation of multiple sequence alignments (MSAs) for profile calculation or structure prediction.

      Weaknesses:

      The benchmarking of the method is very limited and lacks comparison with other methods. Without additional benchmarks, it is impossible to say whether the proposed approach really allows remote homology detection and how much improvement the discussed method brings over tools that are currently considered state-of-the-art.

      We thank the reviewer for the comment. To address the question, we’ve expanded the results by adding a new benchmark and added a new figure, Figure 4. In this new content, we use the SCOPe40 benchmark, originally proposed in the Foldseek paper (van Kempen et al., 2023), to compare our best method, ESM-2 3B 3Di coupled to Foldseek, with several other recent methods. We find our method to be competitive with the other methods.

      We are hesitant to claim that any of our proposed methods are state-of-the-art because of the lack of a widely accepted standard benchmark for remote homology detection, and because of the rapid pace of advancement of the field in recent years, with many groups finding innovative uses of pLMs and other neural-network models for protein annotation and homology detection.

      Reviewer #2 (Public Review):

      Summary:

      The authors present a number of exploratory applications of current protein representations for remote homology search. They first fine-tune a language model to predict structural alphabets from sequence and demonstrate using these predicted structural alphabets for fast remote homology search both on their own and by building HMM profiles from them. They also demonstrate the use of residue-level language model amino acid predicted probabilities to build HMM profiles. These three implementations are compared to traditional profile-based remote homology search.

      Strengths:

      • Predicting structural alphabets from a sequence is novel and valuable, with another approach (ProstT5) also released in the same time frame further demonstrating its application for the remote homology search task.

      • Using these new representations in established and battle-tested workflows such as MMSeqs, HMMER, and HHBlits is a great way to allow researchers to have access to the state-of-the-art methods for their task.

      • Given the exponential growth of data in a number of protein resources, approaches that allow for the preparation of searchable datasets and enable fast search is of high relevance.

      Weaknesses:

      • The authors fine-tuned ESM-2 3B to predict 3Di sequences and presented the fine-tuned model ESM-2 3B 3Di with a claimed accuracy of 64% compared to a test set of 3Di sequences derived from AlphaFold2 predicted structures. However, the description of this test set is missing, and I would expect repeating some of the benchmarking efforts described in the Foldseek manuscript as this accuracy value is hard to interpret on its own.

      The preparation of training and test sets are described in the methods under the heading “Fine tuning ESM-2 3B to convert amino acid sequences into 3Di sequences”. Furthermore, there is code in our github repository to reproduce the splits, and the entire model training process: https://github.com/seanrjohnson/esmologs#train-esm-2-3b-3di-starting-from-the-esm-2-3bpre-trained-weights

      We didn’t include the training/validation/test splits in the Zenodo repository because they are very large: train 33,924,764; validation 1,884,709; test 1,884,710 sequences, times 2 because there are both amino acid and 3Di sequences. It comes out to about 30 Gb total, and is easily rebuilt from the same sources we built it from.

      We’ve added the following sentence to the main text to clarify:

      “Training and test sets were derived from a random split of the Foldseek AlphaFold2 UniProt50 dataset (Jumper et al., 2021; van Kempen et al., 2023; Varadi et al., 2022), a reducedredundancy subset of the UniProt AlphaFold2 structures (see Methods for details).”

      To address the concern about comparing to Foldseek using the same benchmark, we’ve expanded the results section and added a new figure, Figure 4 using the SCOPe40 benchmark originally presented in the Foldseek paper, and subsequently in the ProstT5 paper to compare Foldseek with ESM-2 3B 3Di to Foldseek with ProstT5, AlphaFold2, and experimental structures.

      • Given the availability of predicted structure data in AFDB, I would expect to see a comparison between the searches of predicted 3Di sequences and the "true" 3Di sequences derived from these predicted structures. This comparison would substantiate the innovation claimed in the manuscript, demonstrating the potential of conducting new searches solely based on sequence data on a structural database.

      See response above. We’ve now benchmarked against both ProstT5 and AF2.

      • The profile HMMs built from predicted 3Di appear to perform sub-optimally, and those from the ESM-2 3B predicted probabilities also don't seem to improve traditional HMM results significantly. The HHBlits results depicted in lines 5 and 6 in the figure are not discussed at all, and a comparison with traditional HHBlits is missing. With these results and presentation, the advantages of pLM profile-based searches are not clear, and more justification over traditional methods is needed.

      We thank the reviewer for pointing out the lack of clarity in the discussion of lines 5 and 6.

      We’ve re-written that section of the discussion, and reformatted Figure 3 to enhance clarity.

      We agree, a comparison to traditional HHBlits could be interesting, but we don’t expect to see stronger performance from the pLM-predicted profiles than from traditional HHBlits, just as we don’t see stronger performance from pLM-hmmscan or pLM-Foldseek than from the traditional variants. We think that the advantages of pLM based amino acid hmm searches are primarily speed. There are many variables that can influence speed of generating an MSA and HMM profile, but in general we expect that it will be much slower than generating an HMM profile from a pLM.

      We don’t know why making profiles of 3Di sequences doesn’t improve search sensitivity, we just think it’s an interesting result that is worth presenting to the community. Perhaps someone can figure out how to make it work better.

      • Figure 3 and its associated text are hard to follow due to the abundance of colors and abbreviations used. One figure attempting to explain multiple distinct points adds to the confusion. Suggestion: Splitting the figure into two panels comparing (A) Foldseek-derived searches (lines 7-10) and (B) language-model derived searches (line 3-6) to traditional methods could enhance clarity. Different scatter markers could also help follow the plots more easily.

      We thank the reviewer for this helpful comment. We’ve reformatted Figure 3 as suggested, and we think it is much easier to read now.

      • The justification for using Foldseek without amino acids (3Di-only mode) is not clear. Its utility should be described, or it should be omitted for clarity.

      To us, the use of 3Di-only mode is of great theoretical interest. From our perspective, this is one of our most significant results. Previous methods, such as pLM-BLAST and related methods, have made use of very large positional embeddings to achieve sensitive remote homology search. We show that with the right embedding, you don’t need very many bits per position to get dramatically improved search sensitivity from Smith-Waterman, compared to amino acid searches. We also doubt that predicted 3Di sequences are the optimal small encoding for remote homology detection. This result and observation opens up an exciting avenue for future research in developing small, learned positional embeddings that are optimal for remote homology detection and amenable to SIMD-optimized pre-filtering and Smith-Waterman alignment steps.

      We’ve expanded the discussion, explaining why we are excited about this result.

      • Figure 2 is not described, unclear what to read from it.

      It's just showing that ESM-2-derived amino acid probabilities closely resemble amino acid frequencies in MSAs. We think it gives readers some visual intuition about why predicted profile HMMs perform as well as they do. We’ve added some additional explanation of it in the text.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The paper would mainly benefit from a more comprehensive benchmark:

      We suggest that the authors extend the benchmark by including the reference methods (HHpred and Foldseek) run with their original representations, i.e., MSAs obtained with 2-3 iterations of hhblits (for HHpred) and experimental or predicted structures (for Foldseek). HHpred profile-profile comparisons and Foldseek structure-structure comparisons would be important reference points for assessing the applicability of the proposed approach in distant homology detection. It is also essential to compare the method with other emerging tools such as EBA (DOI: 10.1101/2022.12.13.520313), pLM-BLAST (DOI: 10.1101/2022.11.24.517862), DEDAL (DOI: 10.1038/s41592-022-01700-2), etc.

      We also suggest using an evolutionary-oriented database for the benchmark, such as ECOD or CATH (these databases classify protein domains with known structures, which is important in the context of including Foldseek in the benchmark). We ran a cursory benchmark using the ECOD database and generated HH-suite .hhm files (using the single_seq_to_hmm.py and hhsearch_multiple.py scripts). Precision and recall appear to be significantly lower compared to "vanilla" hhsearch runs with MSA-derived profiles. It would also be interesting to see benchmarks for speed and alignment quality.

      The pLM-based methods for homology detection are an emerging field, and it would be important to evaluate them in the context of distinguishing between homology and analogy. In particular, the predicted Foldseek representations may be more likely to capture structural similarity than homology. This could be investigated, for example, using the ECOD classification (do structurally similar proteins from different homology groups produce significant matches?) and/or resources such as MALISAM that catalog examples of analogy.

      We’ve added the SCOPe40 benchmark, which we think at least partially addresses these comments, adding a comparison to pLM-BLAST, ProstT5, and AF2 followed by Foldseek. The question of Analogy vs homology is an interesting one. It could be argued that the SCOPe40 benchmark addresses this in the difference between Superfamily (distant homology) and Fold (analogy, or very distant homology).

      Our focus is on remote homology detection applications rather than alignment quality, so we don’t benchmark alignment quality, although we agree that those benchmarks would be interesting.

      Page 2, lines 60-67. This paragraph would benefit from additional citations and explanations to support the superiority of the proposed approach. The fact that flattened embeddings are not suitable for annotating multidomain proteins seems obvious. Also, the claim that "current search implementations are slow compared to other methods" should be supported (tools such as EBA or pLM-BLAST have been shown to be faster than standard MSA-based methods). Also, as we mentioned in the main review, we believe that the generated pseudo-profiles and fine-tuned ESM2 predictions should not be called "smaller positional embeddings".

      Discriminating subdomains was a major limitation of the influential and widely-cited PfamN paper (Bileschi et al., 2022), we’ve added a citation to that paper in that paragraph for readers interested in diving deeper.

      To address the question of speed, we’ve included data preparation and search benchmarks as part of our presentation of the SCOPe40 benchmark.

      Finally, we were not sure why exactly every 7th residue is masked in a single forward pass. Traditionally, pseudo-log likelihoods are generated by masking every single token and predicting probabilities from logits given the full context - e.g. https://arxiv.org/pdf/1910.14659.pdf. Since this procedure is crucial in the next steps of the pipeline, it would be important to either experiment with this hyperparameter or explain the logic used to choose the mask spacing.

      We’ve added discussion of the masking distance to the Methods section.

      Reviewer #2 (Recommendations For The Authors):

      • While the code and data for the benchmark are available, the generation of searchable databases using the methods described for a popular resource such as Pfam, AFDB, SCOP/CATH which can be used by the community would greatly boost the impact of this work.

      3Di sequences predicted by ESM-2 3B 3Di can easily be used as queries against any Foldseek database, such as PDB, AFDB, etc. We’ve added Figure 4E to demonstrate this possibility, and added some related discussion.

      • Minor: In line 114, the text should likely read "compare lines 7 and 8" instead of "compare lines 6 and 7."

      We’ve clarified the discussion of Figure 3.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Redhardt and colleagues describe a structure of the voltage and Ca-activated Slo1 channel in complex with an auxiliary subunit, γ1. In complex with γ1, Slo1 adopts an open state that closely resembles previous open state structures. Of γ1, only the single membrane-spanning helix, which binds to the periphery of the Slo1 VSD, is resolved. There, it establishes several interactions with Slo1 that authors propose may favor adoption of the open state, potentially explaining how γ1 can shift I-V profile of Slo1 to be activated at more negative membrane potentials. The interactions described fit well with existing mutagenesis analyses.

      While this report provides a first glimpse of how γ1 can bind to Slo1, its impact will be minimal. It describes a single structural snapshot and there are no functional analyses presented. Additional analyses would be helpful in understanding of how γ1 can regulate Slo1 channels.

      We thank the reviewer for their honest judgment. We agree that validating the structure by biochemical and/or functional data would have significantly strengthened the manuscript. However, we are convinced that our structural data alone already provides significant novel understanding of the assembly of the Slo1-γ1 complex and regulation of Slo1 by γ1. Thus, we feel that publication of this manuscript is justified by the high importance of Slo channels and our data will have an impact in the field.

      __Major comments: __ 1. The authors propose several models for how γ1 regulates Slo1, yet none of them are experimentally evaluated. For example, on page 8, it is written that "we propose that the combination of three different principles, namely shape complementarity, covalent anchoring and lowering the resting state potential by a positively charged intracellular stretch, act in concert to stabilize an active VSD conformation in the Slo1-γ1 complex." This is a testable hypothesis and one that should be experimentally evaluated to better understand regulation by γ1.

      We agree with the reviewer that experimental validation of this hypothesis would have been an asset. Nevertheless, we think that our structural data in context of previous functional data e.g. from Li et al. 2015,2016) and also in comparison with the other two manuscripts on the same topic which have been published while this manuscript was under review, allows us to draw conclusions about the mechanism of γ1-mediated activation of Slo1. We have now, however, toned down some of the earlier statements and changed parts of our interpretations in light of the novel findings by Yamanouchi et al. and Kallure et al.

      The authors analysis of the extracellular domain of γ1 is incomplete. The only presented structure was performed with C4 symmetry imposed, in which extracellular domains were largely lost. The authors propose that these domains are dynamic and that their dynamism would enable simultaneous binding of both γ and b subunits, as occurs in cells. A more thorough analysis of the dynamics and well as potential asymmetric conformations should be performed to better understand how these domains interact with Slo1.

      We completely agree with the reviewer that a thorough analysis of the extracellular domain is important and thank the reviewer for their valuable suggestions. We had attempted such analysis already from the beginning, but were not successful. More specifically, we have attempted reconstructions with lower symmetry (C2 and C1) from the beginning or by symmetry relaxation after initial C4 reconstruction. Also, we tested different masking and signal subtraction strategies in combination with different global and local refinements, as well as symmetry expansion and 3D classification. Unfortunately, none of these strategies led to a better resolved LRR module.

      We now think that in comparison with Kallure et al. and Yamanouchi et al., the ice in our sample was thinner, which allowed us to reach higher resolution in the core particle (Slo1 and γ1 TM helix), but at the cost of the γ1 LRRs being denatured or at least distorted by the air-water interface.

      The refinement statistics suggest that the model was incompletely refined. This reviewer was not provided with the map or models, but the validation report lists a clashscore of 9 and 5.7% of the rotamers as being outliers, both of which are high for the reported resolution of the structure. It is also strange that the Q-score varied between different γ1 protomers. Why are the four protomers not identical when the map is 4-fold symmetric? The authors should carefully inspect their model to insure that it is as correct as possible.

      We thank the reviewer for pointing this out, and while the values for clashscores and rotamers were not outside the range of values typically found in many other cryo-EM structures, we agree that there was still some room for improvement. We have worked on this and could lower the values to a clashscore of 7.0 and 1.8 % rotamer outliers.

      The difference in Q-score is also something not too uncommon since, while the map is indeed C4-symmetric, during model refinement the NCS restraints are not completely preventing small deviations between the protomers. We have now also successfully attempted to minimize these differences further.

      Reviewer #1 (Significance (Required)):

      The impact of this report is limited. Functional analyses will be necessary to uncover precisely how gamma subunits regulate Slo1 channels.

      We thank the reviewer for this honest statement, but respectfully disagree. While additional functional analyses would have certainly boosted the impact, we are certain that our structural data and their interpretation will be very valuable for the field, because they provide (as stated by Reviewer 3) new insights into the regulation of Slo channel activity by the γ subunits and suggest (as stated by reviewer 2) a novel mechanism of activation of voltage-gated ion channels..

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary This study presents a high resolution cryo-EM study of a voltage-gated Ca++-dependent K+ channel in the presence of a gamma1 subunit. Analysis of the structure and sequence alignments suggest a novel mechanism of activation of voltage-gated ion channels.

      __Major comments __ The major issue in this paper is that it is only a structural biology paper. There is no structure-function relationship study, no functional studies of mutants that could validate -or not- the inferred underlying mechanism. Even though the authors have identified good candidates for mutations (e.g. p. 6) they have not attempted to validate their importance experimentally. As a result, reading their discussion is somewhat frustrating and full of assumptions, as indicated by sentences (p.7) like

      "a possible mechanism... might be... which would make... more likely".

      "... which might act ... seems important... might indicate... might lower... likely most pronounced... could be responsible..."

      "... might play an important role... does not allow a certain conclusion..."

      We completely agree with the reviewer that the paper would have been much stronger if we would have been able to perform biochemical or functional assays testing mutations in the binding interface. However, this would have unfortunately been beyond the scope of the project. We are nevertheless confident that our structural data will be of value for the field, also in context of the two structure-function papers that have been published since which confirm and validate our data and provide the link to function.

      __Minor comments which could be confidently addressed __ The Introduction contains no description of the state-of-the-art in the field concerning the available structures in the same system or similar ones. Hence, it is difficult to judge for people outside the field if the novelty. is incremental or significant.

      We have adjusted the introduction to explicitly mention previously published structural data on the Slo channels.

      References 10 and 42 (eLife) lacj some details.

      We have adjusted said references accordingly.

      __Reviewer #2 (Significance (Required)): ______


      Significance general assessment As it turns out, at least two papers in exactly the same field just appeared: -one in Molecular Cell by a Japanese group, which is much more developed and contains functional tests and structure-function relationships, in addition to beautiful structures (available on-line early December) https://www.sciencedirect.com/science/article/pii/S1097276523009218

      -one in biorxiv, deposited yesterday https://www.biorxiv.org/content/biorxiv/early/2023/12/20/2023.12.20.572542.full.pdf

      Advances wrt known results See above. As a result of these new papers in Mol Cell and biorxiv, I think the authors should reconsider submitting their article elsewhere, perhaps for a more specialized audience.

      We agree with the reviewer that in light of the other two publications which both were published a while after we deposited our preprint on biorxiv and while the manuscript was under review, the uniqueness of our data is somewhat lowered. However, since our data is overall in large agreement with these two other publications, but we report a structure at significantly higher resolution and from a different species (indeed the first Slo1 structure from rabbit, a model organism of BK channel characterization in the last decades), we are confident that our data are still very valuable for the field and qualify for publication in one of the affiliate journals of Review Commons. After all, the fact that three papers reporting very similar data were published within a few weeks (plus another preprint reporting structures of a Slo channel, but unrelated to γ subunits) illustrates the importance for understanding the regulation of this essential ion channel and the impact of all structural data enhancing this understanding, and independent confirmation by three different labs is something very valuable to the community.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      "This manuscript by Redhardt et al. presents the cryo-EM structure of the Slo K+ channel from rabbits in conjunction with its auxiliary subunit, γ1, and proposes a mechanistic model for regulating channel activation. "This manuscript by Redhardt et al. presents the cryo-EM structure of the Slo K+ channel from rabbits in conjunction with its auxiliary subunit, γ1, and proposes a mechanistic model for regulating channel activation. The Slo channel, also known as the large-conductance calcium-activated potassium channel or BK channel, is an ion channel type found in various cell membranes, including neurons, muscle cells, and other tissue types. Its key features encompass Ca2+ activation, voltage dependence, and regulation by auxiliary subunits. Different auxiliary subunits have been shown to modulate channel functions distinctly; notably, the γ1 subunit enables channel activation at lower voltages compared to the wild-type channel. This manuscript offers a structural-functional framework that enhances our comprehension of how Slo channels are regulated by auxiliary subunits, such as gamma and beta subunits. While the structure of Slo channels in complex with the beta subunit is understood, the binding and interaction of the gamma subunit with the channels remain elusive due to the absence of corresponding structures. Along these lines, the presented structure here indeed provides new insights into the regulation of Slo channel activity by the gamma subunit. However, there are some important questions below that should be addressed."

      1. In Figure 1D panel, the calcium ions appear to be indistinct, likely due to the figure's low resolution. The authors are recommended to enhance the figure quality and consider a better positioning to effectively illustrate the ions.

      We have adjusted the coloring of calcium ions Fig. 1D to increase their visibility.

      It would be beneficial for the readers if the authors provided detailed methodology explaining how they arrived at the 7% and 11% coexpression, aiding in the complex formation. Additionally, it would be informative to know the observed shift in the size exclusion chromatography (SEC) profile of Slo1-Y1 compared to apo Slo1.

      We have arrived at these concentrations of the respective viruses by empirically testing ranges between 3 % and 15 %. We have now added a sentence to the manuscript to explain this.

      Is there any rationale behind initially purifying using strep affinity followed by His affinity?

      The idea behind using a dual-affinity protocol is to ensure that all purified complexes contain at least one copy of Slo1 and one copy of γ1. Using the Strep tag first allows to remove most contaminants already in the first step, due to its higher specificity compared to the His tag. We have added a sentence to the methods section to explain this.

      Regarding the Slo1 tetramer with gamma subunit binding, are there other classes where one, two, or three gamma subunits are bound to Slo1? Or is there only one class where all protomers of Slo1 are occupied by the gamma subunit? How do these classes appear when refined in C1 symmetry? Are there classes displaying C1 or C2 symmetry, or is the four-fold symmetry preserved across all refined classes?"

      We exclusively observe complexes with four γ1 subunits. This is also in agreement with the other two recent publications reporting Slo1-γ1 complex structures, but could in principle be an artifact of artificial overexpression. Also when we refine the particles in C1, we retain C4 symmetry and do not observe any classes with C2 or C1 symmetry.

      The authors utilized nearly 1.9 million particles to reconstruct the final class, resulting in a high resolution. Is such a large number of particles truly necessary to achieve high resolution in this context?

      The large number of particles is not strictly necessary, i.e. we could obtain similar quality by using fewer particles. In the end, we have now further classified down to ~827k particles, which very slightly improved the resolution and quality of the map.

      Authros mentioned that F273 of γ1 forms pi-stacking interactions, it remains unclear with which components of the channel these interactions occur.

      F273 forms (slightly distorted) T stacking interactions with F164 in S2 and F187 in S3. We now changed the sentence in the manuscript to mention the residues that line the hydrophobic pocket to make it more clear which elements contribute to the interaction with F273.

      The authors propose that the disulfide bond between the γ subunit and Slo1 could play a crucial role in their interaction. Was there any observation of a covalent linkage in SDS page analysis? Furthermore, how would this interaction be affected if either cysteine C253 of gamma1 or C141 on the channel were mutated or neutralized?"

      We have run all our SDS-PAGE experiments under reducing conditions, thus destroying any disulfide bridges that might have been present in the complex. We have now, however obtained a slightly better defined reconstruction (as pointed out in our answer to point 5 raised by this reviewer) where we do not see as clear continuous density anymore between the two cysteine side chains. Thus, we have removed the cystine bond from the final model and have adjusted text and figures accordingly. We still think that it might be more than coincidence that those two side chains come into such close proximity, though, and still discuss the possibility of a cystine bridge in the manuscript.

      Author's state that "The presence of several immobile positive charges on the intracellular side in close proximity to the VSD as in the case of the Slo1-γ1 complex is likely to locally lower the resting state potential and repulse the gating charges, thereby reducing the energy to overcome for the VSD to transition to the active conformation." Authors need to be little more elaborative here as it is not clear what authors mean repulse of gating charges.

      We have expanded our description of the proposed repulsive effect of the positive charges in the manuscript and in addition also discuss the additional role of the charges in stabilizing the Ca2+-bound conformation of the gating ring as proposed by Yamanouchi et al.

      Probably beyond this study but I was wondering whether it is possible that Beta and gamma subunit can together assemble as heteromers to form a cage-like structure with contribution from both.

      We agree with the reviewer that this is an interesting question which we have also thought about and one which should be tested, but as the reviewer already mentioned, this would go beyond the present study and should be subject to an independent follow-up investigation.

      Are there any specific lipids observed within the structure that could potentially contribute to the functional conformation or stability of the complex?"

      Given the high resolution of our structure, we observe a number of ordered lipid and detergent molecules, most of which were located at similar positions as in previous structures of Slo channels. Besides those molecules clustering in the deep cleft between neighboring voltage-sensor domains, we also observe lipid densities close to the binding site of γ1 on the distal side of the VSD. However, as their relevance for γ1 binding is unclear, we don’t discuss them in the manuscript. In general, of course, we agree with the reviewer that lipids can have a large impact on the function of membrane proteins.

      It would be interesting to see if the kink in the gamma subunit is entirely neutralized through mutations of proline and glycine, how these alteration might impact the assembly of the mutated gamma subunit with the channel. The authors should provide insights into whether this mutated form of the gamma subunit assembles effectively with the channel and whether there are functional consequences associated with this alteration.

      As shown by Kallure et al., substituting P270 in the kink by serine (the native residue at this position in γ3) strongly diminished the ability of γ1 to associate with Slo1 in vitro, demonstrating the importance of the kink and providing a rationale for the observed differences in the potency of the TM helices of γ1 and γ3 in Slo1 activation.

      It would be generally beneficial for the authors to provide functional insights that can support the physiological relevance of this kink in the gamma subunit. Understanding the potential consequences of this mutation and its implications for the assembly and function of the channel complex will offer valuable insights into the physiological role of the kink.

      We absolutely agree with the reviewer that functional insights on the relevance of the kink would be very valuable, but we think that the available experimental data together with the natural sequence differences in γ1-γ4 and the correlation with their physiological activity are very clear indications that the kink is relevant. However, future follow-up studies that prove this beyond any doubt would be valuable.

      Is it known that binding of beta or gamma subunit can impact the subsequent binding of beta and gamma to channels. If it is, it need to be discussed briefly in the discussion part.

      This is, to the best of our knowledge, not known. The only existing data that suggests co-presence of beta and gamma subunits on Slo1, reported in Gonzalez-Perez et al., 2015, stems from electrophysiological experiments and does not reveal anything about hierarchy and temporal order of binding events.

      Reviewer #3 (Significance (Required)):

      The Slo channel, also known as the large-conductance calcium-activated potassium channel or BK channel, is an ion channel type found in various cell membranes, including neurons, muscle cells, and other tissue types. Its key features encompass Ca2+ activation, voltage dependence, and regulation by auxiliary subunits. Different auxiliary subunits have been shown to modulate channel functions distinctly; notably, the γ1 subunit enables channel activation at lower voltages compared to the wild-type channel. This manuscript offers a structural-functional framework that enhances our comprehension of how Slo channels are regulated by auxiliary subunits, such as gamma and beta subunits. While the structure of Slo channels in complex with the beta subunit is understood, the binding and interaction of the gamma subunit with the channels remain elusive due to the absence of corresponding structures. Along these lines, the presented structure here indeed provides new insights into the regulation of Slo channel activity by the gamma subunit.

      We thank the reviewer for this positive assessment of the data and agree that our structural data, also when regarded together with the complementary manuscripts by Kallure et al. and Yamanouchi et al., provides significant new insight into the assembly and activity of γ subunits.

    1. We may characterize this process with reference to thechanges which it brings about in the familiar instinctual dispositions of human beings, to satisfy which is,after all, the economic task of our lives. A few of these instincts are used up in such a manner thatsomething appears in their place which, in an individual, we describe as a character-trait.

      You can see this within different generations. For example, how boomers and gen z do not think the same as society has changed and so has different norms. It is more normal for gen Z to stay with their parents as long as they can because of factors that have changed from the boomer generation.

    1. Before we talk about public criticism and shaming and adults, let’s look at the role of shame in childhood. In at least some views about shame and childhood1, shame and guilt hold different roles in childhood development: Shame is the feeling that “I am bad,” and the natural response to shame is for the individual to hide, or the community to ostracize the person. Guilt is the feeling that “This specific action I did was bad.” The natural response to feeling guilt is for the guilty person to want to repair the harm of their action. In this view, a good parent might see their child doing something bad or dangerous, and tell them to stop. The child may feel shame (they might not be developmentally able to separate their identity from the momentary rejection). The parent may then comfort the child to let the child know that they are not being rejected as a person, it was just their action that was a problem. The child’s relationship with the parent is repaired, and over time the child will learn to feel guilt instead of shame and seek to repair harm instead of hide.

      I think whats important is supporting children's emotional well-being, social growth, and moral knowledge during childhood requires an awareness of and appropriate response to the subtle differences between shame and guilt. It makes it possible for adults to help kids respond constructively to errors and setbacks, establishing the foundation for them to grow into emotionally strong, socially proficient, and morally aware adults.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The coupling between cell polarity and cell cycle progression is an important aspect of symmetric and asymmetric cell division. Although there are several examples of cell cycle kinases phosphorylating polarity proteins, it has been difficult to assess the importance of these on cell division due to the strong and pleiotropic effects of manipulating these kinases. Here, the authors generate an analogue-sensitive allele of cdk1 in flies to tackle this question in neuroblasts (NBs) and sensory organ precursors (SOPs), two well characterised examples of asymmetric cell divisions. They show that partial Cdk1 inhibition (which still allows cell cycle progression) does not block Bazooka (PARD3 in mammals) polarization in NBs, but prevents coalescence of the Baz crescent, which has previously been shown to be an actomyosin-based process. They further identify a Cdk1 consensus site on Baz (S180) for which they generate a phospho-specific antibody, allowing them to show that this site is specifically phosphorylated in dividing NBs and SOPs. Although mutations at this site do not recapitulate the effect of Cdk1 on Baz coalescence, they do delay Miranda polarization in NBs and affect lateral inhibition and asymmetric cell division of SOPs. Finally, the authors show that human PARD3 can also be phosphorylated by Cyclin B/Cdk1 in vitro.

      Major comments:

      • Figure 2A: it would be good to show that polarization of Baz::GFP in consecutive divisions is maintained in cdk1as2 animals in the absence of 1-NA-PP1. We now show in Fig S2B a panel with two consecutive divisions of a cdk1as2 neuroblast in the absence of 1-NAP-PP1, followed by a third division in the presence of 1-NAP-PP1. The neuroblast shows high levels of Baz polarization in the two first divisions.

      • The interpretation of the observed SOP phenotypes is complicated by the uneven expression of the pnr-GAL4 driver and the fact that it is expressed in epithelial cells rather than just SOPs. The authors could express their control and mutant Baz constructs under the control of neurP72-GAL4. It is not likely they would be able to deplete endogenous Baz as they have done in NBs, as neurP72-GAL4 is expressed too late to deplete most proteins before SOP division, but they could at least look at localization of the mutants and any possible gain-of-function phenotypes.

      Following this suggestion, we have recombined Neur-GAL4 with UAS-delta RNAi to attempt to deplete both endogenous Baz::mScarlet and Delta while expressing our Baz::GFP constructs specifically in SOPs. Baz::mScarlet depletion was surprisingly efficient considering, as the reviewer points out, the late timing of Neur-GAL4 expression. However, the adult flies did not present any sensory organs transformations, perhaps because Delta might not be as efficiently depleted. We can at least rule out dominant-negative effects.

      We thank the reviewer for his constructive feedback and as suggested, we now extensively analysed the localisation of the Baz-S180 mutants in SOPs and found significant defects. We describe these observations in a new Figure 6. Briefly, we observed that the Baz phosphomutants have localisation defects during the pIIa cell division but not the pI cell division. We also observed a very surprising mosaicism of expression of our UASz-driven constructs within the SOP lineage that allowed us to make a few interesting observations which should be of interest to SOP specialists. Briefly, mosaic expression of Baz::GFP within the SOP lineage allowed to analyse the relative contributions of pIIa and pIIb/pIIIb to different Baz cortical pools and revealed an unexpected cell non-autonomous mechanism controlling pIIb division orientation. We describe these findings in a new associated supplemental figure.

      The authors speculate that Baz phosphorylation during lateral inhibition may be the reason for the observed excess specification of SOPs in the S180 mutants. This could easily be tested by looking at their antibody staining at earlier stages in the notum. Following this suggestion (also coming from Reviewer #2), we have stained nota between around 8h APF. We observed that patches of cells of the early notum display a strong Baz-pS180 phospho-signal. These patches partially overlap with the Delta-positive stripes in which lateral inhibition occurs (as described for example in (Corson et al., 2017), consistent with the possibility that Baz-S180 phosphorylation does somehow regulate lateral inhibition.

      These new experiments clearly show that Baz can be phosphorylated on S180 in cells that do not divide asymmetrically. This led us to change the title.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Cell polarization in dividing cells, including stem cells, is typically coupled such that polarity can inform the architecture, orientation, and/or asymmetry during cell division. In Drosophila neural stem cells (neuroblasts/SOP), Par polarity is coupled to the cell cycle, but the nature of this coupling remains unclear. In this work, Loyer and colleagues report on impacts of CDK1 inhibition on Bazooka/Par3 localization and basal fate determinant localization. They provide evidence for a novel phosphorylation site that appears unique to asymmetrically dividing cells and may be involved in regulation of asymmetric division. Finally, they show that CDK1 can, at least in principle, phosphorylate human Par3 in vitro.

      Overall, the major claims of the abstract appear supported by the experimental work; however, we think the title overstates the overall conclusions that can be drawn from the work.

      Major comments:

      • The major claim of the paper is the role of specific phosphorylation of S180 in asymmetrically dividing cells in polarization and sensory organ formation, which relies heavily on interpretation of S180A/D phosphomutants. The experiments are carefully performed and quantified, and are consistent with the conclusions drawn. However, we wondered if it possible that the phenotypes are not linked to phosphorylation (the authors acknowledge this in the Discussion)? In other words could the A/D mutants simply be weak Baz mutants? This could this potentially explain the extra-SOP phenotype if Baz function is generally altered, especially given that it is difficult to rationalise a role for SOP-specific phosphorylation in the processes that specify SOP cells in the precursor epithelial cells. The authors speculate that these early precursors may exhibit also phosphorylation, but this isn't examined. Chasing this down seems key to support the core titular claim of the paper. Following this suggestion (also coming from Reviewer #1), we have stained nota around 8h APF. We observed that patches of cells of the early notum display a strong Baz-pS180 phospho-signal. These patches partially overlap with the Delta-positive stripes in which lateral inhibition occurs (as described for example in Corson et al., 2017). This result is presented in Fig. 5H. As would be the case for any phosphomutant, this does not strictly rule out that the S180A and S180D could simply be weak Baz mutants, but it strongly supports the possibility that the lateral inhibition defects observed in these mutants result from defective Baz-S180 phosphorylation.

      • Implicit in the core message of the paper is the elucidation of CDK1 regulation of polarity and specifically Baz. However, the connection between CDK1 and S180 (and Baz regulation overall) is relatively tenuous in this work. First, the S180A mutant does not phenocopy CDK1 inhibition with respect to basal determinant phenotypes, though obviously CDK1 may be more pleiotropic. Second, whether the CDK1 inhibition phenotype is linked to any effect on Baz/PAR behaviour is not really explored. Third, they do not test whether S180 phosphorylation is CDK1-dependent. We fully agree with these comments. We cannot think of any way of addressing the first two points, which would require fully inhibiting CDK1 and somehow maintaining neuroblasts in mitosis to examine how it impacts Baz localisation. We tried to arrest neuroblasts in mitosis and block the proteasome as this at least in HeLa cells led to persistence of mitosis when CDK1 was inhibited (Skoufias et al., 2007). However, neuroblasts arrested in mitosis by proteasome inhibition slipped out of mitosis.

      However, concerning the third point, we now provide evidence showing that, at least in vitro, Drosophila BazS180 is phosphorylated by CDK1 (see below).

      The method for quantifying domain signal only references prior work and should be described in this work. From our search of the cited reference, it appears to be peak signal intensity at a user specified point on the cortex. While this does not undermine the core findings as presented, it may not capture additional features that may be informative (domain size, fluorescence distribution, total signal etc.). For example domain coalescence would imply smaller, brighter domains, but similar total protein amounts, which appears to be the case from images, but isn't quantified per se. We now describe our method for quantifying average signal intensity in the middle of the Baz crescents. We agree that quantifying additional features to check whether they are affected by partial CDK1 inhibition would be interesting. However, doing so requires determining exactly where Baz crescents start and end. As Baz crescent edges in neuroblasts often end in a gradient rather than a sharp edge (Hannaford et al., 2018), we are not sure to be able to confidently do so in every case with the image quality of our dataset: we prioritised limiting photobleaching to accurately quantify the levels of endogenously expressed Baz rather than obtaining very sharp and high contrast images. This is further complicated by the fact that, depending on the depth of neuroblasts within the tissue and the orientation of their division relative to the imaging plane, the signal intensity of Baz crescents is quite variable, preventing a simple thresholding approach to arbitrarily determine the limits of crescents based on signal intensity. In short, accurately determining the size of crescents is very challenging.

      The phosphospecific antibody signal is relatively weak, leading to relatively low signal to noise, which could compromise the ability to detect phospho-S180 in non-asymmetrically dividing cells or generally in cells in which Baz is not polarised and thus signal would be diffused around the cell rather than concentrated. Similar caveats could also apply to the lack of signal in interphase cells, where Baz may be less enriched at the cortex and not polarized. We are inclined to believe the authors conclusions, particularly given their examination of multiple cell types and tissues. However, it is a potential caveat as it may be most visible in polarised cells where it is asymmetrically enriched. We thank the reviewer for pointing this out. Given the fact that Baz levels at the neuroepithelial cells adherens junctions are similar, we are confident that Baz-S180 is phosphorylated in dividing neuroblasts but not in non-mitotic epithelial cells, which is at least consistent with our new finding that CDK1 phosphorylates Baz-S180 in vitro. However, we agree that we cannot strictly rule out that Baz-S180 is phosphorylated but below a detection threshold in mitotic neuroepithelial cells as cortical Baz levels decrease in these cells.

      We have also gathered new data showing that, in the early notum, Baz-S180 is detected in epithelial cells that are not dividing asymmetrically, definitely ruling out the notion that Baz-S180 is strictly ACD-specific. We have changed the title of the paper accordingly, toned down the mention of apparently ACD-specific Baz-S180 phosphorylation in the abstract and now describe and discuss the fact that the apparent ACD-specificity of Baz-S180 phosphorylation is context-specific.

      Examination of in vitro phosphorylation of human Par3D (Figure 6) seems out of place and does not add much. It is human, not Bazooka. They reveal 30 sites, 18 of which in both replicates, but most are not obvious CDK sites and the S180 equivalent site is missing. None of these sites is validated in vivo, at least in this work.

      We fully agree with these comments. We initially attempted to purify both full length Baz and human PARD3 but only managed to purify small amounts of PARD3, which is why our analysis was limited to human PARD3. To circumvent these difficulties, we instead purified a smaller N-terminal fragment of Baz and PARD3, which was successful for both proteins and gave us much higher quantities of sample for analysis. Using two different approaches (Western blot with our phospho-specific antibody on Baz and targeted mass spectrometry on Baz and PARD3), we now show in a new Figure 7 that CDK1 phosphorylates Baz-S180 and PARD3-S187 in vitro.

      Minor comments: Figure 1: Uses metaphase arrested cells, presumably colcemid, but colcemid is only noted in Figure 2. We now mention Colcemid in the legend of Figure 1. - Figure 2A: Scale bar is truncated. We have corrected this. - Figure 2A: Example images of control neuroblasts could be useful to readers. We now show control neuroblasts in Figure 2A. - Figure 2G' vs H': Because G' has two panels and H' has only one, we often confused the PKC and Mira box plots when comparing to Numb. Perhaps Mira could be in a separate sub panel or be more closely juxtaposed with Numb? The quantification of the Mira signal is now right next to Numb. - Whereas both Numb/Mira were examined in CDK1(as), only Mira is reported for the S180A/D experiments. Is there a Numb phenotype as well?

      We actually co-stained Numb and Miranda in the dataset that we analysed in the S180A/D experiments shown in Fig 4E, F. We did not analyse Numb localisation in the first version we submitted because of a penetration issue of the Numb antibody: the Numb signal fades extremely fast as we image deeper in the tissue, causing large difference of signal intensity even within a single cell. This prevents us from performing any meaningful quantitative measurement of the Numb signal like the one we did in Fig. 2H, K, for which we did not encounter this issue. All our further immunostaining experiments with this antibody have had the same problem since then, even after using Triton concentrations up to 4% for permeabilization.

      Nonetheless, following the reviewer’s question, we have at least performed a simple qualitative analysis of Numb localisation in this experiment. We observed that Numb localised to the basal pole in most cases in controls and Baz phosphomutants, but localised uniformly at the cortex in half the cases where Miranda showed very low levels of polarisation in metaphase in BazS180D mutants. This Numb localisation defect suggests a loss of function of the PAR complex whereas, intriguingly, the Miranda localisation defect suggests a gain of function of the PAR complex. These new observations are described in Fig. 4G-H’.

      • The discussion of the notch / Baz phenotypes (Figure 5) is rather complicated and a bit difficult to follow. We agree with this, we have rewritten this part. This is further simplified by our new observation that Baz-S180 is phosphorylated in the early notum during lateral inhibition.

      • Figure 5A: captions should indicate that RFP RNAi is depleting Baz. We have modified the figure accordingly.

      • Box plots are used, but not described. i.e. outliers seem to be marked, but criteria unclear. Mean vs median, etc. We now describe boxplots in the legend in the first instance they are used (Fig 2A’), and in the material and methods
      • Some grammatical mistakes:
      • Title: neuroblast (no 's'),
      • Page 1: Cell fate difference(s?) in the resulting daughter cells
      • Page 4: (As) CDK1 inhibition with 10 μM 1-NA-PP1 prevents neuroblasts from cycling and causes metaphase- arrested neuroblasts to slip out of mitosis. (Reword)
      • Page 6: increased levels of basal fate(no 's') determinants

      We have corrected these mistakes.

      Reviewer #2 (Significance (Required)):

      The links between cell cycle and cell polarity are clearly important and remain poorly understood. Hence, the work addresses key conceptual/mechanistic questions relevant to our fundamental understanding of stem cell biology and regulation of polarity and asymmetric cell division. In our opinion, there are clearly some interesting observations in the manuscript, the experiments are performed carefully, and the data are generally well described. That said, overall, the work seems somewhat premature.

      The direct impact of CDK1 on Baz behaviour remains somewhat unclear. The authors do a good job of limiting the concentration of inhibitor to decouple effects of cell cycle progression from CDK1 levels per se, but this does potentially impact the strength of the phenotypes they can detect and hence the observed phenotypes are relatively minor. Note that driving cells out of mitosis with stronger CDK1 inhibition clearly impacts Baz localization, so the 'real' effect of CDK1 inhibition on Baz could be stronger than reported here. It is also unclear whether the phenotypes observed are directly linked to CDK1 regulation of PAR polarity or an indirect effect of cell cycle control of other processes. The authors' suggestion that it could be related to defects in cortical actin organization, which is known to be cell cycle controlled, seems most likely, but neither this or other models are explored further. We agree but are not aware of any experiment that would allow testing full inhibition of CDK1 on membrane-bound Baz in mitotic neuroblasts. As mentioned above in our response to reviewer #1 we tried to arrest neuroblasts in mitosis and block the proteasome as this at least in HeLa cells led to persistence of mitosis when CDK1 was inhibited (Skoufias et al., 2007). However, neuroblasts arrested in mitosis by proteasome or Colcemid or both slipped out of mitosis upon inhibition of CDK1.

      We agree it would be interesting to study how CDK1 affects the actomyosin network in neuroblasts but feel that this is somewhat beyond the scope of the manuscript.

      Using phosphospecific antibodies, they report on a novel putative CDK1 phosphorylation site, but aside from looking like a consensus CDK1 site, whether this site is CDK1 dependent is not examined. Notably, the corresponding phosphomutants have modest effects and don't obviously account for the CDK1 inhibition phenotype, leaving it somewhat unclear whether it is under cell cycle regulation. We now provide a new figure 7 to address this point. As mentioned already above, using two different approaches (Western blot with our phospho-specific antibody on Baz and targeted mass spectrometry on Baz and PARD3 using), we now show in a new Figure 7 that CDK1 phosphorylates Baz-S180 and PARD3-S187 in vitro. Again, we cannot identify any experiment that would allow us testing whether S180 Baz is a direct target of CDK1 in vivo. The fact that we now report significant defects on Baz localisation in pIIa divisions, strongly suggests functional relevance and CDK1 seems a plausible kinase based on the new in vitro results.

      The observation that S180 phosphorylation appears unique to asymmetrically dividing cells is very curious, but this observation is not followed up extensively. Again phenotypes of phosphomutants are quite modest, and while one can propose models to rationalise the phenotypes observed, these models are not fully explored. As mentioned above, we now show that Baz-S180 phoshorylation is not strictly ACD-specific and changed the title accordingly. We also have new data showing that the S180 phosphomutants of Baz have localisation defects in mitotic pIIa divisions (new figure 6). Therefore, this phosphorylation event on Baz can be linked to Baz’s cortical localisation and interestingly shows context dependency.

      The findings that human Par3D can be phosphorylated by CDK1 in vitro do not add much particularly as they obtain a very large number of putative sites raising questions of specificity, the sites are not validated, and an S180 equivalent site was not identified. We agree that this has been a weakness which we feel we have addressed. We paste here the answer already provided above when replying to reviewer #1.

      We initially attempted to purify both full length Baz and human PARD3 but only managed to purify small amounts of PARD3, which is why our phospho-proteomics analysis was limited to human PARD3. To circumvent these difficulties, we instead purified a smaller N-terminal fragment of Baz and PARD3, which was successful for both proteins and gave us much higher quantities of sample for analysis. Using two different approaches (Western blot with our phospho-specific antibody on Baz and phosphor proteomics on Baz and PARD3 using mass spectrometry), we now show in a new Figure 7 that CDK1 phosphorylates Baz-S180 and PARD3-S187 in vitro.

      References

      CORSON, F., COUTURIER, L., ROUAULT, H., MAZOUNI, K. & SCHWEISGUTH, F. 2017. Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science, 356.

      HANNAFORD, M. R., RAMAT, A., LOYER, N. & JANUSCHKE, J. 2018. aPKC-mediated displacement and actomyosin-mediated retention polarize Miranda inDrosophilaneuroblasts. eLife, 7__,__ 166.

      SKOUFIAS, D. A., INDORATO, R. L., LACROIX, F., PANOPOULOS, A. & MARGOLIS, R. L. 2007. Mitosis persists in the absence of Cdk1 activity when proteolysis or protein phosphatase activity is suppressed. J Cell Biol, 179__,__ 671-85.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Cell polarization in dividing cells, including stem cells, is typically coupled such that polarity can inform the architecture, orientation, and/or asymmetry during cell division. In Drosophila neural stem cells (neuroblasts/SOP), Par polarity is coupled to the cell cycle, but the nature of this coupling remains unclear. In this work, Loyer and colleagues report on impacts of CDK1 inhibition on Bazooka/Par3 localization and basal fate determinant localization. They provide evidence for a novel phosphorylation site that appears unique to asymmetrically dividing cells and may be involved in regulation of asymmetric division. Finally, they show that CDK1 can, at least in principle, phosphorylate human Par3 in vitro.

      Overall, the major claims of the abstract appear supported by the experimental work; however, we think the title overstates the overall conclusions that can be drawn from the work.

      Major comments:

      1. The major claim of the paper is the role of specific phosphorylation of S180 in asymmetrically dividing cells in polarization and sensory organ formation, which relies heavily on interpretation of S180A/D phosphomutants. The experiments are carefully performed and quantified, and are consistent with the conclusions drawn. However, we wondered if it possible that the phenotypes are not linked to phosphorylation (the authors acknowledge this in the Discussion)? In other words could the A/D mutants simply be weak Baz mutants? This could this potentially explain the extra-SOP phenotype if Baz function is generally altered, especially given that it is difficult to rationalise a role for SOP-specific phosphorylation in the processes that specify SOP cells in the precursor epithelial cells. The authors speculate that these early precursors may exhibit also phosphorylation, but this isn't examined. Chasing this down seems key to support the core titular claim of the paper.
      2. Implicit in the core message of the paper is the elucidation of CDK1 regulation of polarity and specifically Baz. However, the connection between CDK1 and S180 (and Baz regulation overall) is relatively tenuous in this work. First, the S180A mutant does not phenocopy CDK1 inhibition with respect to basal determinant phenotypes, though obviously CDK1 may be more pleiotropic. Second, whether the CDK1 inhibition phenotype is linked to any effect on Baz/PAR behaviour is not really explored. Third, they do not test whether S180 phosphorylation is CDK1-dependent.
      3. The method for quantifying domain signal only references prior work and should be described in this work. From our search of the cited reference, it appears to be peak signal intensity at a user specified point on the cortex. While this does not undermine the core findings as presented, it may not capture additional features that may be informative (domain size, fluorescence distribution, total signal etc.). For example domain coalescence would imply smaller, brighter domains, but similar total protein amounts, which appears to be the case from images, but isn't quantified per se.
      4. The phosphospecific antibody signal is relatively weak, leading to relatively low signal to noise, which could compromise the ability to detect phospho-S180 in non-asymmetrically dividing cells or generally in cells in which Baz is not polarised and thus signal would be diffused around the cell rather than concentrated. Similar caveats could also apply to the lack of signal in interphase cells, where Baz may be less enriched at the cortex and not polarized. We are inclined to believe the authors conclusions, particularly given their examination of multiple cell types and tissues. However, it is a potential caveat as it may be most visible in polarised cells where it is asymmetrically enriched.
      5. Examination of in vitro phosphorylation of human Par3D (Figure 6) seems out of place and does not add much. It is human, not Bazooka. They reveal 30 sites, 18 of which in both replicates, but most are not obvious CDK sites and the S180 equivalent site is missing. None of these sites is validated in vivo, at least in this work.

      Minor comments:

      • Figure 1: Uses metaphase arrested cells, presumably colcemid, but colcemid is only noted in Figure 2.
      • Figure 2A: Scale bar is truncated
      • Figure 2A: Example images of control neuroblasts could be useful to readers.
      • Figure 2G' vs H': Because G' has two panels and H' has only one, we often confused the PKC and Mira box plots when comparing to Numb. Perhaps Mira could be in a separate sub panel or be more closely juxtaposed with Numb?
      • Whereas both Numb/Mira were examined in CDK1(as), only Mira is reported for the S180A/D experiments. Is there a Numb phenotype as well?
      • The discussion of the notch / Baz phenotypes (Figure 5) is rather complicated and a bit difficult to follow.
      • Figure 5A: captions should indicate that RFP RNAi is depleting Baz.
      • Box plots are used, but not described. i.e. outliers seem to be marked, but criteria unclear. Mean vs median, etc.

      Some grammatical mistakes:

      • Title: neuroblast (no 's'),
      • Page 1: Cell fate difference(s?) in the resulting daughter cells
      • Page 4: (As) CDK1 inhibition with 10 μM 1-NA-PP1 prevents neuroblasts from cycling and causes metaphase- arrested neuroblasts to slip out of mitosis. (Reword)
      • Page 6: increased levels of basal fate(no 's') determinants

      Significance

      The links between cell cycle and cell polarity are clearly important and remain poorly understood. Hence, the work addresses key conceptual/mechanistic questions relevant to our fundamental understanding of stem cell biology and regulation of polarity and asymmetric cell division. In our opinion, there are clearly some interesting observations in the manuscript, the experiments are performed carefully, and the data are generally well described. That said, overall, the work seems somewhat premature.

      1. The direct impact of CDK1 on Baz behaviour remains somewhat unclear. The authors do a good job of limiting the concentration of inhibitor to decouple effects of cell cycle progression from CDK1 levels per se, but this does potentially impact the strength of the phenotypes they can detect and hence the observed phenotypes are relatively minor. Note that driving cells out of mitosis with stronger CDK1 inhibition clearly impacts Baz localization, so the 'real' effect of CDK1 inhibition on Baz could be stronger than reported here. It is also unclear whether the phenotypes observed are directly linked to CDK1 regulation of PAR polarity or an indirect effect of cell cycle control of other processes. The authors' suggestion that it could be related to defects in cortical actin organization, which is known to be cell cycle controlled, seems most likely, but neither this or other models are explored further.
      2. Using phosphospecific antibodies, they report on a novel putative CDK1 phosphorylation site, but aside from looking like a consensus CDK1 site, whether this site is CDK1 dependent is not examined. Notably, the corresponding phosphomutants have modest effects and don't obviously account for the CDK1 inhibition phenotype, leaving it somewhat unclear whether it is under cell cycle regulation.
      3. The observation that S180 phosphorylation appears unique to asymmetrically dividing cells is very curious, but this observation is not followed up extensively. Again phenotypes of phosphomutants are quite modest, and while one can propose models to rationalise the phenotypes observed, these models are not fully explored.
      4. The findings that human Par3D can be phosphorylated by CDK1 in vitro do not add much paritcularly as they obtain a very large number of putative sites raising questions of specificity, the sites are not validated, and an S180 equivalent site was not identified.

      In summary, the individual findings of this work are interesting and generally solid. Each could be followed up to provide mechanistic insight into cell cycle- or cell type-dependent regulation of Par polarity. However, in their current state, the results seem more like a loosely connected set of observations.

      Expertise: Cell polarity and asymmetric cell division

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thorough reading and helpful comments which has allowed us to further improve the manuscript. Following the suggestions of the reviewers we have run a number of new simulations including mutations of the PIP binding residues and with an elastic network allowing more mobility of the linker. Together these excellent ideas have allowed us to strengthen the conclusions of the study. Below, we provide point-by-point responses to their suggestions.

      Reviewer #1 (Public Review):

      Summary:

      Here, the authors were attempting to use molecular simulation or probe the nature of how lipids, especially PIP lipids, bind to a medically-important ion channel. In particular, they look at how this binding impact the function of the channel.

      Strengths:

      The study is very well written and composed. The techniques are used appropriately, with plenty of sampling and analysis. The findings are compelling and provide clear insights into the biology of the system.

      Weaknesses:

      A few of the analyses are hard to understand/follow, and rely on "in house" scripts. This is particularly the case for the lipid binding events, which can be difficult to compute accurately. Additionally, a lack of experimental validation, or coupling to existing experimental data, limits the study.

      Our analysis scripts have now been made publicly accessible as a Jupyter notebook on Github https://github.com/etaoster/etaoster.github.io/tree/main/nav_pip_project

      It is my view that the authors have achieved their aims, and their findings are compelling and believable. Their findings should have impacts on how researchers understand the functioning of the Nav1.4 channel, as well as on the study of other ion channels and how they interact with membrane lipids.

      Reviewer #2 (Public Review):

      Summary:

      Y., Tao E., et al. used multiscale MD simulations to show that PI(4,5)P2 binds stably to an inactivated state of Nav channels at a conserved site within the DIV S4-S5 linker, which couples the voltage sensing domain (VSD) to the pore. The authors hypothesized that PI(4,5)P2 prolongs inactivation by binding to the same site where the C-terminal tail is proposed to bind during recovery from inactivation. They convincingly showed that PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, thus slowing the conformational changes required for the channel to recover to the resting state. They also conducted MD simulations to show that phosphoinositides bind to VSD gating charges in the resting state of Nav channels. These interactions may anchor VDS at the resting state and impede its activation. Their results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the recovery rate from inactivation, an important step for developing novel therapies to treat Nav-related diseases. However, the study is incomplete and lacks the expected confirmatory studies which are relevant to such proposals.

      Strengths:

      The authors identified a novel binding between phosphoinositides and the VSD of Nav and showed that the strength of this interaction is state-dependent. Based on their work, the affinity of PIPs to the inactivated state is higher than the resting state. This work will help pave the way for designing novel therapeutics that may help relieve pain or treat diseases like arrhythmia, which may result from a leftward shift of the channel's activation.

      Weaknesses:

      However, the study lacks the expected confirmatory studies which are relevant to such proposals. For example, one would expect that the authors would mutate the positive residues that they claim to make interactions with phosphoinositides to show that there are much fewer interactions once they make these mutations. Another point is that the authors found that the main interaction site of PIPs with Nav1.4 is the VSD-DIV and DIII-DIV linker, an interaction that is expected to delay fast inactivation if it happens at the resting state. The authors should make a resting state model of the Nav1.4 channel to explain the recent experimental data showing that PIP2 delays the activation of Nav1.4, with almost no effect on the voltage dependence of fast inactivation.

      Following the reviewers suggestion we have conducted new simulations demonstrating that there are many fewer protein-PIP interactions after mutating the positive residues as shown in the new Supplementary Fig S6.

      The reviewer mentions that if PIPs interact with the VSD-DIV and DIII-DIV linker in the resting state that it could delay fast inactivation. However, as described in the original manuscript and depicted in the schematic (Fig 7) the C-terminal domain impeded PIP binding at the position in the resting state (but not the inactivated state), meaning that PIP does not bind in the resting state to delay fast inactivation. We have clarified this statement in the text on page 14 lines 1-2.

      Following the reviewer’s suggestion we have examined PIP binding to a model of the resting state of Nav1.4 (in addition to the resting state of Nav1.7 described in the original manuscript) as described on page 12 lines 28-30 (and in Fig S12). Similar to what we saw for Nav1.7, PIP binding to VSDI-III can impair activation of the channel.

      Major concern:

      (1) Lack of confirmatory experiments, e.g., mutating the positive residues that show a high affinity towards PIPs to a neutral and negative residue and assessing the effect of mutagenesis on binding.

      Done as described above

      (2) Nav1.4 is the only channel that has been studied in terms of the effect of PIPs on it, therefore the authors should build a resting state model of Nav1.4 and study the effect of PIPs on it.

      Done as described above

      Minor points:

      There are a lot of wrong statements in many areas, e.g., "These diseases 335 are associated with accelerated rates of channel recovery from inactivation, consistent with our observations that an interaction between PI(4,5)P2 and the residue corresponding to R1469 in other Nav 337 subtypes could be important for prolonging the fast-inactivated state." Prolonging the fast inactivated state would actually reduce recovery from inactivation and not accelerate it.

      We disagree with this statement from the reviewer which may have come from a misreading of the mentioned sentence. Our statement in the original manuscript is consistent with the original experiments that show that the presence of PIP prolongs the time spent in the fast inactivated state. Mutations at the PIP binding site are likely to reduce PIP binding, and with less PIP bound the channel is expected to recover from inactivation more quickly. We have reworded this sentence for clarity on page 13 line 27-30.

      Reviewer #3 (Public Review):

      Summary:

      This work uses multiscale molecular dynamics simulations to demonstrate molecular mechanism(s) for phosphatidylinositol regulation of voltage gated sodium channel (Nav1.4) gating. Recent experimental work by Gada et al. JGP 2023 showed altered Nav1.4 gating when Nav1.4 current was recorded with simultaneous application of PI(4,5)P2 dephosphorylate. Here the authors revealed probable molecular mechanism that can explain PI(4,5)P2 modulation of Nav1.4 gating. They found PIP lipids interacting with the gating charges - potentially making it harder to move the voltage sensor domain and altering the channels voltage sensitivity. They also found a stable PIP binding site that reaches the D_IV S4-S5 linker, reducing the mobility of the linker and potentially competing with the C-terminal domain.

      Strengths:

      Using multiscale simulations with course-grained simulations to capture lipid-protein interactions and the overall protein lipid fingerprint and then all-atom simulations to verify atomistic details for specific lipidprotein interactions is extremely appropriate for the question at hand. Overall, the types of simulation and their length are suitable for the questions the authors pose and a thorough set of analysis was done which illustrates the observed PIP-protein interactions.

      Weaknesses:

      Although the set of current simulations and analysis supports the conclusions drawn nicely, there are some limitations imposed by the authors on the course-grained simulations. If those were not imposed, it would have allowed for an even richer set and more thorough exploration of the protein-lipid interactions. The Martini 2 force field indeed cannot change secondary structure but if run with a properly tuned elastic network instead of backbone restraints, the change in protein configuration can be sampled and/or some adaptation of the protein to the specific protein environment can be observed. Additionally, with the 4to1 heavy atoms to a bead mapping some detailed chemical specificity is averaged out but parameters for different PIP family members do exist - including specific PIP(4,5)P2 vs PIP(3,4)P2, and could have been explored.

      We thank the reviewer for their excellent suggestions and have run new simulations with an elastic network instead of backbone restraints which have generated new insights. Indeed, as shown in the new panel Fig 4E, the new data allows us to demonstrate that the presence of PIP in the proposed binding site stabilises binding of the DIII-DIV linker to the inactivation receptor site, strengthening the conclusions of the paper.

      We thank the reviewer for pointing out that there do exist parameters for different PIP sub-species and have corrected our statement on page 14 line 16 to reflect this. We have not run additional CG simulations with each of these parameters but use the all-atom simulations to examine the interactions of phosphates at specific positions.

      In our atomistic simulations, we backmapped both PI(4,5)P2 and PI(4)P in the binding site to study their specific interactions. We chose to focus on PI(4,5)P2 given its physiological significance. However, we agree that differences in binding with PI(3,4)P2 would be interesting and warrants future investigation. We also note that the newer Martini3 forcefield would be useful in further work to differentiate between PIP subspecies interactions.

      Detailed Comments

      We thank the reviewers for their thorough reading and helpful comments which has allowed us to further strengthen the manuscript. Below, we provide point-by-point responses to their suggestions.

      Reviewer #1 (Recommendations For The Authors):

      I don't have many suggestions for the manuscript, just a few text edits. Of course, experimental analysis would bolster the claims made in the text, but I don't believe that this is necessary, given the quality of the data.

      I understand the focus on the PIP lipids, but it's a shame that the high binding likelihood of glycosphingolipid isn't considered or analysed in any way. This is an especially interesting lipid from the point-of-view of raftlike membrane domains. Given the potential role of raft-like domains in sodium channel function, I feel this would be worth a paragraph or two in the discussion.

      We thank the reviewer for bringing our attention to this interesting point. Glycolipids accumulate around Nav1.4 in our complex membrane simulations, however, given reports that carbohydrates tend to interact too strongly in the Martini2.2 forcefield (Grünewald et al. 2022, Schmalhorst et al. 2017) and there are no specific residues on Nav1.4 that interact preferentially with glycolipid species, we chose not to focus on this. However, we have noted that interactions with other lipids deserve further attention in our revised discussion.

      The analyses have been run using Martini 2. I don't suggest the authors repeat using the Martini 3 force field, but some mention of this in the discussion would be good.

      We have added the following statement to the discussion: “Our coarse grain simulations were carried out using the Martini2.2 forcefield, for which lipid parameters for many plasma membrane lipids have been developed. We expect that future investigations of lipid-protein interactions will benefit from use of the newer, refined Martini 3 forcefield (Souza et al. 2021) as parameters become available for more lipid types.

      This might just be an oversight, but no mention is made of an elastic network applied to the backbone beads.

      Lack of a network has been known to cause the protein to collapse, so if this is missing, I'd like to see an RMSD to show that the protein dynamics are not compromised.

      While no elastic network was used in our original CG simulations, weak protein backbone restraints (10 kJ mol-1 nm-2) used in our simulations allowed us to maintain the structure while allowing some protein movement. However, following the suggestion of reviewer 3, we conducted additional simulations with an elastic instead of backbone restraints as described in the results on page 9 line 30-37 (and in Fig 4E) of the revised manuscript.

      Minor

      •In Fig 3B, are these lipids binding to the channel at the same time? And therefore do the authors see cooperativity?

      The Fig 3B caption has been amended in the revised manuscript to read “Representative snapshots from the five longest binding events from different replicates, showing the three different PIP species (PIP1 in blue, PIP2 in purple and PIP3 in pink) binding to VSD-IV and the DIII-IV linker.” We cannot comment on PIP cooperativity based on these simulations shown in Fig 3, due to the artificially high concentrations used here; however, in model complex membrane simulations we see co-binding of PIPs at the binding site. This is likely due to PIP’s ability to accumulate together and the high density of positively charged residues in the region, attracting and supporting multiple PIP bindings.

      •What charges were used for the atomistic PIP lipids? Does this match the CG lipids?

      We used the CHARMM-GUI PIP parameters for the atomistic simulations. SAPI24 (PIP2) has a headgroup charge of –4e which is one less negative charge than the CG PIP2; whereas SAPI14 (PIP1) has a charge of –3e which is the same as the CG PIP1. We have explicitly included this charge information in the updated Methods of the manuscript (on page 15-16).

      •Line 259-260: "we performed embedded three structures"

      Corrected in the revised manuscript.

      •Line 272: "us" should be "µs"

      Corrected in the revised manuscript.

      •Line 434: kJ/mol should probably also have 'nm-2' included

      Corrected in the revised manuscript.

      •What charge state titratable residues were set to, and were pKa analyses done to decide this?

      Charge states were assigned to default values at neutral pH. We appreciate that future studies could examine this more carefully using constant pH simulations or similar.

      •It's stated that anisotropic scaling is used the AT sims - is this correct? If so, is there a reason this was chosen over semi-isotropic scaling?

      Anisotropic scaling was used for the atomistic simulations allowing all box dimensions to change independently.

      •I would recommend in-house analysis scripts are made available on GitHub or similar, just so the details can be seen.

      Per the reviewer’s request, the Jupyter notebooks used for analysis has been made available on GitHub (https://github.com/etaoster/etaoster.github.io/tree/main/nav_pip_project ).<br /> -One coarse grained notebook:

      • Lipid DE

      • Contact occupancy + outlier plots

      • Binding duration plots

      • Minimum distance plots

      • Number of ARG/LYS plots

      • PIP Occupancy, binding duration, gating charge residues

      • One atomistic notebook:

      • RMSD, RMSF and distance between IFM and its binding pocket (using MDAnalysis)

      • Atomistic PIP headgroup interaction analyses and plots (using ProLIF)

      As a final note, I am NOT saying this needs to be done for the current study, but I recommend the authors try the PyLipID package (https://github.com/wlsong/PyLipID) if they haven't yet, as it might be useful for similar projects they run in the future (i.e. for binding site identification, accurate binding kinetics calculations, lipid pose generation etc.).

      We thank the reviewer for this suggestion and will keep this in mind for future projects.

      Reviewer #2 (Recommendations For The Authors):

      Lin Y., Tao E., et al. used multiscale MD simulations to show that PI(4,5)P2 binds stably to an inactivated state of Nav channels at a conserved site within the DIV S4-S5 linker, which couples the voltage sensing domain (VSD) to the pore. The authors hypothesized that PI(4,5)P2 prolongs inactivation by binding to the same site where the C-terminal tail is proposed to bind during recovery from inactivation. They convincingly showed that PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, thus slowing the conformational changes required for the channel to recover to the resting state. They also conducted MD simulations to show that phosphoinositides bind to VSD gating charges in the resting state of Nav channels. These interactions may anchor VDS at the resting state and impede its activation. Their results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the recovery rate from inactivation, an important step for developing novel therapies to treat Nav-related diseases. However, the study is incomplete lacks the expected confirmatory studies which are relevant to such proposals.

      The authors identified a novel binding between phosphoinositides and the VSD of Nav and showed that the strength of this interaction is state-dependent. Based on their work, the affinity of PIPs to the inactivated state is higher than the resting state. This work will help pave the way for designing novel therapeutics that may help relieve pain or treat diseases like arrhythmia, which may result from a leftward shift of the channel's activation. However, the study lacks the expected confirmatory studies which are relevant to such proposals. For example, one would expect that the authors would mutate the positive residues that they claim to make interactions with phosphoinositides to show that there are much fewer interactions once they make these mutations. Another point is that the authors found that the main interaction site of PIPs with Nav1.4 is the VSD-DIV and DIII-DIV linker, an interaction that is expected to delay fast inactivation if it happens at the resting state. The authors should make a resting state model of the Nav1.4 channel to explain the recent experimental data showing that PIP2 delays the activation of Nav1.4, with almost no effect on the voltage dependence of fast inactivation.

      Major concern:

      (1) Lack of confirmatory experiments, e.g., mutating the positive residues that show a high affinity towards PIPs to a neutral and negative residue and assessing the effect of mutagenesis on binding.

      (2) Nav1.4 is the only channel that has been studied in terms of the effect of PIPs on it, therefore the authors should build a resting state model of Nav1.4 and study the effect of PIPs on it. Minor points:

      Following the reviewer’s suggestion we have conducted new simulations demonstrating that there are notably fewer protein-PIP interactions after performing charge neutralizing and charge reversal mutations to the positive residues as shown in the new Fig S6.

      The reviewer mentions that if PIPs interact with the VSD-DIV and DIII-DIV linker in the resting state that it could delay fast inactivation. However as described in the original manuscript and depicted in the schematic (Fig 7) the C-terminal domain impeded PIP binding at the position in the resting state (but not the inactivated state), meaning that PIP does not bind in the resting state to delay fast inactivation. We have clarified this statement in the text on page 14 lines 1-2.

      Following the reviewers suggestion we have examined PIP binding to a model of the resting state of Nav1.4 (in addition to the resting state of Nav1.7 described in the original manuscript) as described on page 12 lines 28-30 (and in Fig S12). Similar to what we saw for Nav1.7 PIP binding to VSDI-III can impair activation of the channel.

      There are a lot of wrong statements in many areas, e.g., "These diseases 335 are associated with accelerated rates of channel recovery from inactivation, consistent with our observations that an interaction between PI(4,5)P2 and the residue corresponding to R1469 in other Nav 337 subtypes could be important for prolonging the fast-inactivated state." Prolonging the fast inactivated state would actually reduce recovery from inactivation and not accelerate it.

      We disagree with this statement from the reviewer which may have come from a misreading of the mentioned sentence. Our statement in the original manuscript is consistent with the the original experiments that show that the presence of PIP prolongs the time spent in the fast inactivated state. Mutations at the PIP binding site are likely to reduce PIP binding, and with less PIP present the channel will recover from inactivation more quickly. We have reworded this sentence for clarity on page 13 line 27-30.

      Reviewer #3 (Recommendations For The Authors):

      As mentioned in the public review, overall, I am impressed with the manuscript and do think the conclusions are supported. There are, however, quite a few mistakes, mostly minor (listed below). Additionally, I do have a few questions and several extensions that could be done and I mention a few but fully realize many of those could be outside of the scope of the current manuscript.

      We greatly appreciate the time taken by Reviewer 3 to carefully review our manuscript and provide detailed comments. We believe their suggestions have helped to improve our manuscript.

      First comments are in general about the PIP subtype.

      • In the paper you claim:

      L196, "However, this loss of resolution prevents distinction between phosphate positions on the inositol group and does not permit analysis of protein conformational changes induced by PIP binding"

      L367, "it does not distinguish between phosphate positions within each charge state (e.g. PI(3,4)P2 vs PI(4,5)P2)."

      This is not true the PIP2 most commonly used in Martini 2 is from dx.doi.org/10.1021/ct3009655 and is a PI(3,4)P2 subtype. Also other extensions and alternative parameters exist for PIPs in Martini 2 e.g. http://cgmartini.nl/index.php/tools2/other-tools - Martini lipid .itp generator has all three main variants of both PIP1 and PIP2.

      As described in the response to the public review we are grateful for the reviewer for pointing out that there do exist parameters for different PIP sub-species and have corrected our statement on page 14 to reflect this, and clarified the parameters chosen in the methods section (page 16 line 2-3). We have not run additional CG simulations with each of these parameters in the current work but use the all-atom simulations to examine the interactions of phosphates at specific positions.

      • One detail that is missing in the manuscript is some mention of the charge state of the PIPs e.g. Fig.1D does not specify and Fig.4D PIP2 looks like -2 on position 5 and -1 on position 4. Which I think fits the used SAPI24, please specify. Also, what if you use SAPI25 with the flipped charges would that significantly alter the results?

      The charge state of PIP2 is -2e on the 5’ phosphate and -1e on the 4’ phosphate, using the SAPI24 CHARMM lipid parameters. We have ensured that this charge information is stated clearly in the revised manuscript in the methods section on page 16 (line 21). We considered looking at SAPI25, however we expected that it would behave quite similarly, given that the PIP headgroup can adopt slightly different poses and orientations within the binding site across replicates and does fluctuate over simulations (Fig S8). We have noted this in the revised discussion on page 14 line 15-17.

      • I was very intrigued and puzzled by the lower binding of PIP3 vs PIP2 in the Martini simulations. Could it be that PIP3 has a harder time fully entering the binding site, or maybe just sampling? i.e. and its lower number of binding events is a sampling issue.

      We agree with the reviewer that PIP3 is less able to access the binding site than PIP2, likely because of its larger size. This might also be why we see PIP1 binding at the location via a more buried route (since it has the smallest headgroup size). However, PIP1 does not have enough negative charge to keep it in the binding site. It seems to be a Goldilocks-like situation where PIP2 has the optimal size and charge to allow access and stable binding at the site. We also see that when PIP3 enters the binding site it leaves before the end of the simulations. While it is hard to prove statistical significance given the number of binding and dissociation events even with the high and equal concentrations of all three PIP species in the enriched PIP membrane CG simulations, the data strongly suggests preferential binding of PIP2 over PIP3.

      Also the same L196 sentence as above "However, this loss of resolution prevents distinction between phosphate positions on the inositol group and does not permit analysis of protein conformational changes induced by PIP binding". The later part is also wrong, there are no conformational changes due to the restraints on the protein backbone, from methods "backbone beads were weakly restrained to their starting coordinates using a force constant of 10 kJ mol−1nm−2". Martini in general might have a hard time with some conformational changes and definitely cannot sample changes in secondary structure, but conformational changes can, and have on many occasions, been successfully sampled (even full ion channel opening and closing).

      On a similar note, in L179 you mention "owing to the flexibility of the linker." Hose does this fit with simulation with position restraints on all backbone atoms?

      We applied fairly weak restraints to the backbone only – therefore we still observe some flexibility in the highly flexible loop portion of the linker, where sidechains are able to flip between membrane-facing and cytosol-facing orientations.

      However, after reading the comments from the reviewer we have run additional simulations with an elastic network rather than backbone restraints on the DIII-DIV linker which have given further insight. As seen in Fig 4E and described in the results paragraph on page 9 line 30-37 of the revised manuscript, we can see that the presence of PIP does stabilise the linker in its receptor site. To accentuate this effect, we also ran simulation of the ‘IQM’ mutant known to have a less stable fast inactivated state due to weaker binding to the receptor. Without backbone restraints we can see partial dissociation of the DIII-DIV linker from the receptor that is partially rescued by the presence of PIP.

      I know the paper focuses on PIPs, also very nicely in Fig.2B and Fig. S1-2 the lipid enrichment is shown for other lipids, but why show all lipid classes except cholesterol? And, for the left-hand panels in Fig. S1-2 those really should be leaflet specific - as both the membrane and protein are asymmetric.

      The depletion/enrichment of Cholesterol is shown in Fig 2B and as are the Lipid Z-Density maps and contact occupancy structures a (in row 5 of Fig S2, labeled as CL in yellow). The Z-density maps are meant to provide an overall summary of lipid distribution. The contact occupancy structures showing the transverse views and intracellular/ extracellular views provide a better indication of the occupancy across the different leaflets.

      In L237 for the comparison of Cav2.2 and Kv7.1 bound to PI(4,5)P2 structures: They do agree well with the PIP1 simulations but not as much for the main PIP2 binding site. If you look in the CG simulations, is there another (not the main) PIP2 binding site at that same location (which might also be stable in AA simulations)?

      In some replicates of the CG simulations, we identify stable PIP1 binding via the other orientation (i.e. the one that overlaps with the Cav2.2 and Kv7.1 structures). Since we did not directly observe any PIP2 binding events from the other orientation, we did not run any backmapped atomistic simulations with PIP2 at this position. However, the binding site residues that the PIP1/2 headgroup binds to are the same regardless of which side PIP1/2 approaches from. We would expect that PIP2 bound from the alterative position is also stable.

      Two references I want to put for consideration to the authors, for potential inclusion if the authors find their inclusion would strengthen the manuscript. This one gives a good demonstration of using the same PM mixture to define lipid protein fingerprints with Martini:

      https://pubs.acs.org/doi/10.1021/acscentsci.8b00143.

      And this one https://pubmed.ncbi.nlm.nih.gov/33836525/ shows how Nav1.4 function could also be affected by general changes in bilayer properties (in addition to the specific lipid interactions explored here).

      We thank the reviewer for bringing to our attention these two relevant references that will help to respectively substantiate the use Martini to study membrane protein-lipid interactions, as well as, why Nav channels are interesting to study in the context of their membrane environment (and also the potential implications with drugs that can bind from within the membrane). We have added these citations to the introduction and discussion.

      Minor comments and fixes:

      L2, Title: A binding site for phosphoinositide modulation of voltage-gated sodium channels described by multiscale simulations

      The title reads very strangely to me, should it be "A binding site for phosphoinositide" ; "modulation". We thank the reviewer for this comment - title has been updated to: A binding site for phosphoinositides described by multiscale simulations explains their modulation of voltage gated sodium channels.

      L25, Abstract, "The phosphoinositide PI(4,5)P2 decreases Nav1.4 activity by increasing the difficulty of channel opening, accelerating fast activation and slowing recovery from fast inactivation." Assuming this is referring to results from Gada et al JGP, 2023 should this not be "accelerating fast inactivation"?

      Corrected in the revised manuscript.

      L71 maybe good to write the longer version of IFM on first use e.g. Ile-Phe-Met (IFM), as to not mistake it for some random three letter acronym.

      Corrected in the revised manuscript.

      L109, Fig.2. Maybe change the upper and lower leaflet to intracellular and cytoplasmic leaflets (or outer / inner). In D "(D) Distribution of PIP binding occupancies (left)" something missing can I assume, for/over all lipids exposed residues. Also, for D I am a little confused how occupancy is defined as the total occupancy per residue dose not add up to 100.

      The figure has been updated with intracellular and cytoplasmic leaflet labels. The binding occupancy distribution boxplot shows binding occupancies for all lipid exposed residues. In our analysis, we define contact occupancy as the proportion of simulation time in which a lipid type is within 0.7 nm of a given residue. It is possible for more than one lipid to be within this cut in any given frame – that is, both a PIP and PE can be simultaneously bound.

      L160 "occurring the identified site" in the

      Corrected in the revised manuscript.

      L170 "PIP3 (headgroup charge: -7e) has interacts similarly to PIP1," - remove has Corrected in the revised manuscript.

      L194, "reducing system size" the size does not change, I am assuming you want to say reducing the number of particles?

      Corrected in the revised manuscript.

      L252, Fig.6 "(B) Occupancy of all PIPs (PIP1, PIP2, PIP3) at binding site residues in the three systems" A little confusing, initially was expecting 3x3 data points per residue, maybe change to, Combined occupancy of all PIPs...

      Corrected in the revised manuscript.

      L253, Fig.6 D, I don't really have a good suggestion for improvement here, so this is just a FYI that this panel was very confusing for me and took some time to figure out what is shown.

      We have added to the caption of Fig. 6D to try to clarify this panel.

      L257, Fig.6 (F) not in bold

      Corrected in the revised manuscript.

      L259 "PIP binding, we performed embedded three structures of Nav1.7" something missing?

      Corrected in the revised manuscript.

      L272, "In triplicate 50 us coarse-grained simulations" us instead of (micro_greek)s

      Corrected in the revised manuscript.

      L272, that paragraph how long/many simulations only reported for the inactivated Nav1.7 system not the Nav1.7-NavPas chimera, which I am assuming is the same?

      Corrected in the revised manuscript.

      L297, "marked by both shortened inactivation times", can I assume this is: shortened times to inactivation (i.e. to get inactivated not times in the inactivated states)?

      Corrected in the revised manuscript.

      L331, "are conserved in Nav1.1-1.9 (Fig. 5D)," Fig.5C Corrected in the revised manuscript.

      L353, "channel opening []" [] maybe a missing reference?

      Thank you for pointing out this oversight - Goldschen-Ohm et al. has been cited here.

      L394, "The composition of the complex mammalian membrane is as reported in Ingólfsson, et al. (38)." Ref 38 is the "Computational lipidomics of the neuronal plasma membrane" which indeed uses the 63 component PM but the original reference for the average 63 lipid mixture PM is dx.doi.org/10.1021/ja507832e.

      Corrected in the revised manuscript.

      L404, "Additionally, a model Nav1.7 with all four VSDs in the deactivated state using Modeller (40)." Something missing, e.g. was also built and simulated for ...

      Corrected in the revised manuscript.

      Table S1 "Disease information", I am guessing this should be Disease information; mechanism? Of the x5 entries two have mechanism, one has "; unknown significance ", one has "; unknown" maybe clarify in title and make same if unknown.

      Corrected in the revised manuscript.

      Table S1 and S2 have different styles.

      The tables have been amended to have the same style.

      Fig. S3 "for all 12 lipid types in the mammalian membrane " there are many more lipid types in a typical PM (hundreds) and 63 in the PM mixture simulated here, so maybe write: 12 lipid classes?

      Corrected in the revised manuscript.

      Fig.S6 PIP headgroup, can I assume that is for the bound PIP only, please specify.

      Only a single PIP at the identified binding site was backmapped into all cases of atomistic simulations. We have now clarified this point in the methods, results and the FigS6 caption.

      Writing of PI(4,5)P2 and PI(4)P1 most of the time use 1 and 2 as subscripts but not always (at least not in SI), also the same with Nav vs Na_v (v subscript) and even NAV (in Table S1).

      Subscripts have been implemented in the updated Supplementary Information (as well as within various figures and throughout the manuscript).

    1. O now in danger tri'd, now known in Armes Not to be overpowerd, Companions deare, Found worthy not of Libertie alone, [ 420 ] Too mean pretense, but what we more affect, Honour, Dominion, Glorie, and renowne, Who have sustaind one day in doubtful fight (And if one day, why not Eternal dayes?) What Heavens Lord had powerfullest to send [ 425 ] Against us from about his Throne, and judg'd Sufficient to subdue us to his will, But proves not so: then fallible, it seems, Of future we may deem him, though till now Omniscient thought. True is, less firmly arm'd, [ 430 ] Some disadvantage we endur'd and paine, Till now not known, but known as soon contemnd, Since now we find this our Empyreal form Incapable of mortal injurie Imperishable, and though pierc'd with wound, [ 435 ] Soon closing, and by native vigour heal'd. Of evil then so small as easie think The remedie; perhaps more valid Armes, Weapons more violent, when next we meet, May serve to better us, and worse our foes, [ 440 ] Or equal what between us made the odds, In Nature none: if other hidden cause Left them Superiour, while we can preserve Unhurt our mindes, and understanding sound, Due search and consultation will disclose. [ 445 ]

      In this section Satan is attempting to boost the confidence of his council. The speaker says that they will gain more than they have suffered, that it's not all for loss (ll. 429-45). The speaker goes on to say that the council must prepare with "weapons more violent" (6.439) than before. The speaker seems to be describing his plans for revenge in hopes to boost the council's confidence. Sadly, knowing that one cannot win fighting fire with fire, this could foreshadow Satan and all of Hell's population to continue to suffer eternally.

    2. Whom the grand foe with scornful eye askance Thus answerd. Ill for thee, but in wisht houre [ 150 ] Of my revenge, first sought for thou returnst From flight, seditious Angel, to receave Thy merited reward, the first assay Of this right hand provok't, since first that tongue Inspir'd with contradiction durst oppose [ 155 ] A third part of the Gods, in Synod met Thir Deities to assert, who while they feel Vigour Divine within them, can allow Omnipotence to none. But well thou comst Before thy fellows, ambitious to win [ 160 ] From me som Plume, that thy success may show Destruction to the rest: this pause between (Unanswerd least thou boast) to let thee know; At first I thought that Libertie and Heav'n To heav'nly Soules had bin all one; but now [ 165 ] I see that most through sloth had rather serve, Ministring Spirits, traind up in Feast and Song; Such hast thou arm'd, the Minstrelsie of Heav'n, Servilitie with freedom to contend, As both thir deeds compar'd this day shall prove. [ 170 ]

      Lines 149-170 are Satan speaking to the seraph Abdiel. The passage begins with Satan telling Abdiel that he will be the first to face his wrath, saying he will be victim to "the first assay / of this right hand provok'd" (6.153-154). As we discussed earlier in class, before Christ, Satan was God's right hand, so the use of "right hand provok'd" works both physically with the image of an attack, as well as in the sense of his former title. Satan then goes on to reference a group or "Synod" of gods who agreed that "while they feel / Vigor divine within them, can allow / Omnipotence to none" (6.158-159). This is an important part of Satan's speech, both because of his rejection of singular omnipotence, as well as his assertion of multiple gods. This reminded me of a key pillar of Christianity: a singular God. It is important to note, though, the biblical quote "Thou shalt have no other gods before me" (Exodus 20:3), which can be interpreted as there being multiple gods, but a more powerful, singular God. So, when Satan mentions other gods rejecting omnipotence and implies that God embraced it, his portrayal of a more sinister, power-hungry God can be understood.

      Further in this section, Satan says that Abdiel has only confronted him out of a desire to be praised by God. He states, "But well thou com'st / Before thy fellows, ambitious to win / From me some Plume, that thy success may show / Destruction to the rest" (6.159-162). According to the OED, "Plume" in this instance refers to an adornment received for an accomplishment or merit (as opposed to the modern definition of colourful feathers). Following his assertion about Abdiel's motivations, Satan explains that he used to think that freedom could exist in Heaven, but that he realized that servitude to God removes the possibility for true freedom. He mocks those who have remained faithful to God, saying "Minist'ring Spirits, train'd up in Feast and Song; / Such hast thou arm'd, the Minstrelsy of Heav'n, / Servility with freedom to contend" (6.167-169). These lines serve the dual purpose of mocking the power of God's army, and making Satan's followers represent the positive attribute of freedom, as opposed to the [generally] negative attribute of servitude.

    1. To whom the Angel. Therefore what he gives (Whose praise be ever sung) to man in part [ 405 ] Spiritual, may of purest Spirits be found No ingrateful food: and food alike those pure Intelligential substances require As doth your Rational; and both contain Within them every lower facultie [ 410 ] Of sense, whereby they hear, see, smell, touch, taste, Tasting concoct, digest, assimilate, And corporeal to incorporeal turn. For know, whatever was created, needs To be sustaind and fed; of Elements [ 415 ] The grosser feeds the purer, Earth the Sea, Earth and the Sea feed Air, the Air those Fires Ethereal, and as lowest first the Moon; Whence in her visage round those spots, unpurg'd Vapours not yet into her substance turnd. [ 420 ] Nor doth the Moon no nourishment exhale From her moist Continent to higher Orbes. The Sun that light imparts to all, receives From all his alimental recompence In humid exhalations, and at Even [ 425 ] Sups with the Ocean: though in Heav'n the Trees Of life ambrosial frutage bear, and vines Yield Nectar, though from off the boughs each Morn We brush mellifluous Dewes, and find the ground Cover'd with pearly grain: yet God hath here [ 430 ] Varied his bounty so with new delights, As may compare with Heaven; and to taste Think not I shall be nice. So down they sat,

      the speaker is describing the hierarchy of Earth, starting with humans, then animals, and then slowly moving down the line to the inanimate, "Corporeal to incorporeal" (413) as the poem says. The speaker goes on to say that there needs to be some type of food chain in the world and relates the chain to the elements as it lists which element feeds another as the cycle continues. They then compare the moon and the sun and state how the moon does not give or take from anything, "unpurg'd / Vapors not yet into her substance turn'd. / Nor doth the Moon no nourishment exhale" (419-421), while the sun both gives and takes from the world, "The Sun that light imparts to all, receives / From all his alimental recompense / In humid exhalations" (423-425). In the last bit of the passage the speaker describes the food in heaven and is comparing them with the new foods that God has created on earth.

    1. He urges that men of science should then turn to the massive task of making more accessible our bewildering store of knowledge. For years inventions have extended man's physical powers rather than the powers of his mind.

      Interesting to read this after just watching Oppenheimer on the plane to London.

    2. an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility.

      Definitely my activity page!

    1. 2019 the company Facebook (now called Meta) presented an internal study that found that Instagram was bad for the mental health of teenage girls, and yet they still allowed teenage girls to use Instagram. So, what does social media do to the mental health of teenage girls, and to all its other users? The answer is of course complicated and varies. Some have argued that Facebook’s own data is not as conclusive as you think about teens and mental health. Many have anecdotal experiences with their own mental health and those they talk to. For example, cosmetic surgeons have seen how photo manipulation on social media has influenced people’s views of their appearance: People historically came to cosmetic surgeons with photos of celebrities whose features they hoped to emulate. Now, they’re coming with edited selfies. They want to bring to life the version of themselves that they curate through apps like FaceTune and Snapchat. Selfies, Filters, and Snapchat Dysmorphia: How Photo-Editing Harms Body Image Comedian and director Bo Burnham has his own observations about how social media is influencing mental health: “If [social media] was just bad, I’d just tell all the kids to throw their phone in the ocean, and it’d be really easy. The problem is it - we are hyper-connected, and we’re lonely. We’re overstimulated, and we’re numb. We’re expressing our self, and we’re objectifying ourselves. So I think it just sort of widens and deepens the experiences of what kids are going through. But in regards to social anxiety, social anxiety - there’s a part of social anxiety I think that feels like you’re a little bit disassociated from yourself. And it’s sort of like you’re in a situation, but you’re also floating above yourself, watching yourself in that situation, judging it. And social media literally is that. You know, it forces kids to not just live their experience but be nostalgic for their experience while they’re living it, watch people watch them, watch people watch them watch them. My sort of impulse is like when the 13 year olds of today grow up to be social scientists, I’ll be very curious to hear what they have to say about it. But until then, it just feels like we just need to gather the data.” Director Bo Burnham On Growing Up With Anxiety — And An Audience - NPR Fresh Air (10:15-11:20) It can be difficult to measure the effects of social media on mental health since there are so many types of social media, and it permeates our cultures even of people who don’t use it directly. Some researchers have found that people using social media may enter a dissociation state, where they lose track of time (like what happens when someone is reading a good book). Researchers at Facebook decided to try to measure how their recommendation algorithm was influencing people’s mental health. So they changed their recommendation algorithm to show some people more negative posts and some people more positive posts. They found that people who were given more negative posts tended to post more negatively themselves. Now, this experiment was done without informing users that they were part of an experiment, and when people found out that they might be part of a secret mood manipulation experiment, they were upset. 13.1.1. Digital Detox?# Some people view internet-based social media (and other online activities) as inherently toxic and therefore encourage a digital detox, where people take some form of a break from social media platforms and digital devices. While taking a break from parts or all of social media can be good for someone’s mental health (e.g., doomscrolling is making them feel more anxious, or they are currently getting harassed online), viewing internet-based social media as inherently toxic and trying to return to an idyllic time from before the Internet is not a realistic or honest view of the matter. In her essay “The Great Offline,” Lauren Collee argues that this is just a repeat of earlier views of city living and the “wilderness.” As white Americans were colonizing the American continent, they began idealizing “wilderness” as being uninhabited land (ignoring the Indigenous people who already lived there, or kicking them out or killing them). In the 19th century, as wilderness tourism was taking off as an industry, natural landscapes were figured as an antidote to the social pressures of urban living, offering truth in place of artifice, interiority in place of exteriority, solitude in place of small talk. Similarly, advocates for digital detox build an idealized “offline” separate from the complications of modern life: Sherry Turkle, author of Alone Together, characterizes the offline world as a physical place, a kind of Edenic paradise. “Not too long ago,” she writes, “people walked with their heads up, looking at the water, the sky, the sand” — now, “they often walk with their heads down, typing.” […] Gone are the happy days when families would gather around a weekly televised program like our ancestors around the campfire! But Lauren Collee argues that by placing the blame on the use of technology itself and making not using technology (a digital detox) the solution, we lose our ability to deal with the nuances of how we use technology and how it is designed: I’m no stranger to apps that help me curb my screen time, and I’ll admit I’ve often felt better for using them. But on a more communal level, I suspect that cultures of digital detox — in suggesting that the online world is inherently corrupting and cannot be improved — discourage us from seeking alternative models for what the internet could look like. I don’t want to be trapped in cycles of connection and disconnection, deleting my social media profiles for weeks at a time, feeling calmer but isolated, re-downloading them, feeling worse but connected again. For as long as we keep dumping our hopes into the conceptual pit of “the offline world,” those hopes will cease to exist as forces that might generate change in the worlds we actually live in together. So in this chapter, we will not consider internet-based social media as inherently toxic or beneficial for mental health. We will be looking for more nuance and where things go well, where they do not, and why. { requestKernel: true, binderOptions: { repo: "binder-examples/jupyter-stacks-datascience", ref: "master", }, codeMirrorConfig: { theme: "abcdef", mode: "python" }, kernelOptions: { kernelName: "python3", path: "./ch13_mental_health" }, predefinedOutput: true } kernelName = 'python3' previous 13. Mental Health next 13.2. Unhealthy Activities on Social Media By Kyle Thayer and Susan Notess © Copyright 2022.

      This paragraph talks about how social media, especially Instagram, might affect mental health, especially for teenage girls. It mentions different opinions, a study by Meta, anecdotes from cosmetic surgeons, and thoughts from comedian Bo Burnham. The passage acknowledges the complexity of measuring social media's impact and mentions a "digital detox." It doesn't label social media as entirely good or bad, aiming for a more nuanced view. I find it interesting, but the whole social media and mental health issue is really complicated.

    2. 13.1. Social Media Influence on Mental Health# In 2019 the company Facebook (now called Meta) presented an internal study that found that Instagram was bad for the mental health of teenage girls, and yet they still allowed teenage girls to use Instagram. So, what does social media do to the mental health of teenage girls, and to all its other users? The answer is of course complicated and varies. Some have argued that Facebook’s own data is not as conclusive as you think about teens and mental health. Many have anecdotal experiences with their own mental health and those they talk to. For example, cosmetic surgeons have seen how photo manipulation on social media has influenced people’s views of their appearance: People historically came to cosmetic surgeons with photos of celebrities whose features they hoped to emulate. Now, they’re coming with edited selfies. They want to bring to life the version of themselves that they curate through apps like FaceTune and Snapchat. Selfies, Filters, and Snapchat Dysmorphia: How Photo-Editing Harms Body Image Comedian and director Bo Burnham has his own observations about how social media is influencing mental health: “If [social media] was just bad, I’d just tell all the kids to throw their phone in the ocean, and it’d be really easy. The problem is it - we are hyper-connected, and we’re lonely. We’re overstimulated, and we’re numb. We’re expressing our self, and we’re objectifying ourselves. So I think it just sort of widens and deepens the experiences of what kids are going through. But in regards to social anxiety, social anxiety - there’s a part of social anxiety I think that feels like you’re a little bit disassociated from yourself. And it’s sort of like you’re in a situation, but you’re also floating above yourself, watching yourself in that situation, judging it. And social media literally is that. You know, it forces kids to not just live their experience but be nostalgic for their experience while they’re living it, watch people watch them, watch people watch them watch them. My sort of impulse is like when the 13 year olds of today grow up to be social scientists, I’ll be very curious to hear what they have to say about it. But until then, it just feels like we just need to gather the data.” Director Bo Burnham On Growing Up With Anxiety — And An Audience - NPR Fresh Air (10:15-11:20) It can be difficult to measure the effects of social media on mental health since there are so many types of social media, and it permeates our cultures even of people who don’t use it directly. Some researchers have found that people using social media may enter a dissociation state, where they lose track of time (like what happens when someone is reading a good book). Researchers at Facebook decided to try to measure how their recommendation algorithm was influencing people’s mental health. So they changed their recommendation algorithm to show some people more negative posts and some people more positive posts. They found that people who were given more negative posts tended to post more negatively themselves. Now, this experiment was done without informing users that they were part of an experiment, and when people found out that they might be part of a secret mood manipulation experiment, they were upset.

      The examination of social media's impact, particularly its detrimental effects on the mental health of teenage girls, highlights a critical area of concern within the digital age's societal framework. The revelation from Meta's internal study about Instagram underscores the ethical dilemma faced by social media corporations: the responsibility to safeguard the mental health of their users while balancing the inherent drive for engagement and growth. This conundrum is further complicated by the rising trend of individuals seeking to emulate digitally altered self-images, which distorts perceptions of body image and exacerbates mental health issues.

    3. 13.1. Social Media Influence on Mental Health# In 2019 the company Facebook (now called Meta) presented an internal study that found that Instagram was bad for the mental health of teenage girls, and yet they still allowed teenage girls to use Instagram. So, what does social media do to the mental health of teenage girls, and to all its other users? The answer is of course complicated and varies. Some have argued that Facebook’s own data is not as conclusive as you think about teens and mental health. Many have anecdotal experiences with their own mental health and those they talk to. For example, cosmetic surgeons have seen how photo manipulation on social media has influenced people’s views of their appearance: People historically came to cosmetic surgeons with photos of celebrities whose features they hoped to emulate. Now, they’re coming with edited selfies. They want to bring to life the version of themselves that they curate through apps like FaceTune and Snapchat. Selfies, Filters, and Snapchat Dysmorphia: How Photo-Editing Harms Body Image Comedian and director Bo Burnham has his own observations about how social media is influencing mental health: “If [social media] was just bad, I’d just tell all the kids to throw their phone in the ocean, and it’d be really easy. The problem is it - we are hyper-connected, and we’re lonely. We’re overstimulated, and we’re numb. We’re expressing our self, and we’re objectifying ourselves. So I think it just sort of widens and deepens the experiences of what kids are going through. But in regards to social anxiety, social anxiety - there’s a part of social anxiety I think that feels like you’re a little bit disassociated from yourself. And it’s sort of like you’re in a situation, but you’re also floating above yourself, watching yourself in that situation, judging it. And social media literally is that. You know, it forces kids to not just live their experience but be nostalgic for their experience while they’re living it, watch people watch them, watch people watch them watch them. My sort of impulse is like when the 13 year olds of today grow up to be social scientists, I’ll be very curious to hear what they have to say about it. But until then, it just feels like we just need to gather the data.” Director Bo Burnham On Growing Up With Anxiety — And An Audience - NPR Fresh Air (10:15-11:20) It can be difficult to measure the effects of social media on mental health since there are so many types of social media, and it permeates our cultures even of people who don’t use it directly. Some researchers have found that people using social media may enter a dissociation state, where they lose track of time (like what happens when someone is reading a good book). Researchers at Facebook decided to try to measure how their recommendation algorithm was influencing people’s mental health. So they changed their recommendation algorithm to show some people more negative posts and some people more positive posts. They found that people who were given more negative posts tended to post more negatively themselves. Now, this experiment was done without informing users that they were part of an experiment, and when people found out that they might be part of a secret mood manipulation experiment, they were upset. 13.1.1. Digital Detox?# Some people view internet-based social media (and other online activities) as inherently toxic and therefore encourage a digital detox, where people take some form of a break from social media platforms and digital devices. While taking a break from parts or all of social media can be good for someone’s mental health (e.g., doomscrolling is making them feel more anxious, or they are currently getting harassed online), viewing internet-based social media as inherently toxic and trying to return to an idyllic time from before the Internet is not a realistic or honest view of the matter. In her essay “The Great Offline,” Lauren Collee argues that this is just a repeat of earlier views of city living and the “wilderness.” As white Americans were colonizing the American continent, they began idealizing “wilderness” as being uninhabited land (ignoring the Indigenous people who already lived there, or kicking them out or killing them). In the 19th century, as wilderness tourism was taking off as an industry, natural landscapes were figured as an antidote to the social pressures of urban living, offering truth in place of artifice, interiority in place of exteriority, solitude in place of small talk. Similarly, advocates for digital detox build an idealized “offline” separate from the complications of modern life: Sherry Turkle, author of Alone Together, characterizes the offline world as a physical place, a kind of Edenic paradise. “Not too long ago,” she writes, “people walked with their heads up, looking at the water, the sky, the sand” — now, “they often walk with their heads down, typing.” […] Gone are the happy days when families would gather around a weekly televised program like our ancestors around the campfire! But Lauren Collee argues that by placing the blame on the use of technology itself and making not using technology (a digital detox) the solution, we lose our ability to deal with the nuances of how we use technology and how it is designed: I’m no stranger to apps that help me curb my screen time, and I’ll admit I’ve often felt better for using them. But on a more communal level, I suspect that cultures of digital detox — in suggesting that the online world is inherently corrupting and cannot be improved — discourage us from seeking alternative models for what the internet could look like. I don’t want to be trapped in cycles of connection and disconnection, deleting my social media profiles for weeks at a time, feeling calmer but isolated, re-downloading them, feeling worse but connected again. For as long as we keep dumping our hopes into the conceptual pit of “the offline world,” those hopes will cease to exist as forces that might generate change in the worlds we actually live in together. So in this chapter, we will not consider internet-based social media as inherently toxic or beneficial for mental health. We will be looking for more nuance and where things go well, where they do not, and why.

      I think the discussion concerning social media and mental health is not about deciding between blatant rejection and unquestioning acceptance. It is about achieving a balanced relationship with digital technology, in which the advantages are maximized while the hazards are actively addressed through informed use, supporting communities, and responsible platform administration.

    1. Facial expressions can help bring a speech to life when used by a speaker to communicate emotions and demonstrate enthusiasm for the speech. As with vocal variety, we tend to use facial expressions naturally and without conscious effort when engaging in day-to-day conversations. Yet I see many speakers’ expressive faces turn “deadpan” when they stand in front of an audience. Some people naturally have more expressive faces than others—think about the actor Jim Carey’s ability to contort his face as an example.

      When you have an animated face, it conveys that you take interest in what you are saying, even if that may not be the case. It also makes it easier to connect with your audience. Jim Carey is a good exaggerated example of this. In a speech, it's easy to get so caught up in what you have to say. How you present yourself is just as important in getting your message across.

    1. Author Response

      Public reviews:

      Reviewer 1:

      Weaknesses:

      While I generally agree with the author's interpretations, the idea of Saccorhytida as a divergent, simplified off-shot is slightly contradictory with a probably non-vermiform ecdysozoan ancestor. The author's analyses do not discard the possibility of a vermiform ecdysozoan ancestor (importantly, Supplementary Table 4 does not reconstruct that character),

      Reply: Thanks for the comments. Saccorhytids are only known from the early Cambrian and their unique morphology has no equivalent among any extinct or extant ecdysozoan groups. This prompted us to consider them as a possible dead-end evolutionary off-shot. The nature of the last common ancestor of ecdysozoan (i.e. a vermiform or non-vermiform animal with capacities to renew its cuticle by molting) remains hypothetical. At present, palaeontological data do not allow us to resolve this question. The animal in Fig. 4b at the base of the tree is supposed to represent an ancestral soft-bodied form with no cuticle from which ecdysozoan evolved via major innovations (cuticular secretion and ecdysis). Its shape is hypothetical as indicated by a question mark. Our evolutionary model is clearly intended to be tested by further studies and hopefully new fossil discoveries.

      and outgroup comparison with Spiralia (and even Deuterostomia for Protostomia as a whole) indicates that a more or less anteroposteriorly elongated (i.e., vermiform) body is likely common and ancestral to all major bilaterian groups, including Ecdysozoa. Indeed, Figure 4b depicts the potential ancestor as a "worm". The authors argue that the simplification of Saccorhytida from a vermiform ancestor is unlikely "because it would involve considerable anatomical transformations such as the loss of vermiform organization, introvert, and pharynx in addition to that of the digestive system". However, their data support the introvert as a specialisation of Scalidophora (Figure 4a and Supplementary Table 4), and a pharyngeal structure cannot be ruled out in Saccorhytida. Likewise, loss of an anus is not uncommon in Bilateria. Moreover, this can easily become a semantics discussion (to what extent can an animal be defined as "vermiform"? Where is the limit?).

      Reply: We agree with you that “vermiform” is an ill-defined term that should be avoided. “Elongated” might be a better term to designate the elongation of the body along the antero-posterior axis. Changes have been made in the text to solve this semantic problem. Priapulid worms or annelids are examples of extremely elongated, tubular animals. In saccorhytids, the antero-posterior elongation is present (as it is in the vast majority of bilaterians) but extremely reduced, Saccorhytus and Beretella having a sac-like or beret-shape, respectively. That such forms may have derived from elongated, tubular ancestors (e.g. comparable with scalidophoran worms) would require major anatomical transformations that have no equivalent among modern animals. We agree that further speculation about the nature of these transformations is unnecessary and should be deleted simply because the nature of these ancestors is purely hypothetical. We also agree that the loss of anus and the extreme simplification of the digestive system is common among extant bilaterians. The single opening seen in Saccorhytus and possibly Beretella may result from a comparable simplification process. In Figure 4b, the hypothetical pre-ecdysozoan animal is slightly elongated (antero-posterior axis and polarity) but in no way comparable with a very elongated and cylindrical ecdysozoan worm (e.g. extant or extinct priapulid).

      Therefore, I suggest to leave the evolutionary scenario more open. Supporting Saccorhytida as a true group at the early steps of Ecdysozoa evolution is important and demonstrates that animal body plans are more plastic than previously appreciated. However, with the current data, it is unlikely that Saccorhytida represents the ancestral state for Ecdysozoa (as the authors admit), and a vermiform nature is not ruled out (and even likely) in this animal group. Suggesting that the ancestral Ecdysozoan might have been small and meiobenthic is perhaps more interesting and supported by the current data (phylogeny and outgroup comparison with Spiralia).

      Reply: We agree the evolutionary scenario should be more open, especially the evolutionary process that gave rise to Saccorhytida. Again, we know nothing about the morphology of the ancestral ecdysozoan (typically the degree of body elongation, whether it had a differentiated introvert or not, whether it had a through gut or not). Simplification appears as one possible option, but which assumes that the ancestral ecdysozoan was an elongated animal with a through gut. Changes will be made in Fig.4A accordingly. Alternatively, the ancestral ecdysozoan might have been small and meiobenthic.

      Reviewer 2:

      Weaknesses:

      The preservations of the specimens, in particular on the putative ventral side, are not good, and the interpretation of the anatomical features needs to be tested with additional specimens in the future. The monophyly of Cycloneuralia (Nematoida + Scalidophora) was not necessarily well-supported by cladistic analyses, and the evolutionary scenario (Figure 4) also needs to be tested in future works.

      Reply: Yes, we agree that our MS is the first report on an enigmatic ecdysozoan. Whereas the dorsal side of the animal is well documented (sclerites), uncertainties remain concerning its ventral anatomy (typically the mouth location and shape). Additional better-preserved specimens will hopefully provide the missing information. Concerning Cycloneuralia, their monophyly is generally better supported by analyses based on morphological characters than in molecular phylogenies. I

      Reviewer 3:

      Weaknesses: I, as a paleontology non-expert, experienced several difficulties in reading the manuscript. This should be taken into consideration when assuming a wide range of readers including non-experts.

      Reply: We have ensured that the text is comprehensible to biologists. Our main results are summarized in relatively simple diagrams (e.g. Fig. 4). We are aware that technical descriptive terms may appear obscure to non-specialists. However, we think that our text-figures help the reader to understand the morphology of these ancient animals.

    1. Author Response

      eLife assessment

      The manuscript explores the ways in which the genetic code evolves, specifically how stop codons are reassigned to become sense codons. The authors present phylogenetic data showing that mutations at position 67 of the termination factor are present in organisms that nevertheless use the UGA codon as a stop codon, thereby questioning the importance of this position in the reassignment of stop codons. Alternative models on the role of eRF1 would reflect a more balanced view of the data. Overall, the data are solid and these findings will be valuable to the genomic/evolution fields.

      Public Reviews:

      Reviewer #1 (Public Review):

      The issue:

      The ciliates are a zoo of genetic codes, where there have been many reassignments of stop codons, sometimes with conditional meanings which include retention of termination function, and thus > 1 meaning. Thus ciliate coding provides a hotspot for the study of genetic code reassignments.

      The particular issue here is the suggestion that translation of a stop (UGA) in Blastocritihidia has been attributed to a joint change in the protein release factor that reads UGA's and also breaking a base pair at the top of the anticodon stem of tRNATrp (Nature 613, 751, 2023).

      The work:

      However, Swart, et al have looked into this suggestion, and find that the recently suggested mechanism is overly complicated.

      The broken pairing at the top of the anticodon stem of tRNATrp indeed accompanies the reading of UGA as Trp as previously suggested. It changes the codon translated even though the anticodon remains CCA, complementary to UGG. A compelling point is that this misreading matches previous mutational studies of E coli tRNA's, in which breaking the same base pair in a mutant tRNATrp suppressor tRNA stimulated the same kind of miscoding.

      This is a fair characterization, and we would also note the additional positive aspect: that we observed there is consistency in the presence of 4 bp tRNA-Trp anticodon stems in those ciliates which translate UGA as tryptophan, and generally 5 bp anticodon stems in those that do not (including Euplotes with UGA=Cys).

      But the amino acid change in release factor eRF1, the protein that catalyzes termination of protein biosynthesis at UGA is broadly distributed. There are about 9 organisms where this mutation can be compared with the meaning of UGA, and the changes are not highly correlated with a change in the meaning of the codon. Therefore, because UGA can be translated as Trp with or without the eRF1 mutation, Swart et al suggest that the tRNA anticodon stem change is the principal cause of the coding change.

      We do think multiple lines of evidence support the shorter tRNA anticodon stem promoting UGA translation, but also think other changes in the translation system may be important. For instance, structural studies suggest interaction of ribosomal RNA with extended stop codons (particularly the base downstream of the triplet) during translation termination (Brown et al. 2015, Nature). As we noted, previous studies have sought to correlate individual eRF1 substitutions with genetic code changes, but the proposed correlations have invariably disappeared once new tranches of eRF1 sequences and alternative genetic codes for different species became available. This is why we concluded that there needs to be more focus on obtaining and understanding molecular structures during translation termination, particularly in the organisms with alternative codes.

      The review:

      Swart et al have a good argument. I would only add that eRF1 participation is not ruled out, because finding that UGA encodes Trp does not distinguish between encoding Trp 90% of the time and encoding it 99% of the time. The release factor could still play a measurable quantitative role, but the major inference here seems convincing.

      We agree that eRF1 may participate and compete with the tRNA, but we question the hypothesis that the particular amino acid position/substitution proposed by Kachale et al. 2023 is the key. There is experimental evidence in the form of Ribo-seq for the ciliate Condylostoma magnum (A67), which does appear to efficiently translate UGA sense codons (Swart et al. 2016, Figure S3: https://doi.org/10.1016/j.cell.2016.06.020): we observed no dip in ribosome footprints downstream of these codons, as there would be in the case of classical translational readthrough in standard genetic code organisms (which is usually relatively inefficient - certainly well below 50% of upstream translation from our reading of the literature). Ribo-seq also supports efficient termination at those Condylostoma UGA codons that are stops.

      Of course, the entire translation system may have evolved to be as efficient as what we currently observe, and it is not unreasonable to consider that it may have been less efficient in the past. However, not so inefficient that the error rate incurred would have been strongly deleterious. Importantly also, we believe the role of multiple eRF1 paralogs in translation termination in the ciliates really needs to be investigated, given that translation is inherently probabilistic with any of these proteins potentially being incorporated into the ribosome.

      Reviewer #2 (Public Review):

      The manuscript raises interesting observations about the potential evolution of release factors and tRNA to readdress the meaning of stop codons. The manuscript is divided into two parts: The first consists of revealing that the presence of a trp tRNA with an AS of 5bp in Condylostoma magnum is probably linked to contamination in the databases by sequences from bacteria. This is an interesting point which seems to be well supported by the data provided. It highlights the difficulty of identifying active tRNA genes from poorly annotated or incompletely assembled genomes.

      We will consider adding subheadings in revising the manuscript to make the structure more explicit, as it really has three parts to it, with the third largely in the supplement. The “good” was that there is a range of support for the 4 bp AS stem, with new evidence we supplied from ciliates and older studies with E. coli tRNAs. The “bad” is that scrutiny of eRF1 sequences, with the addition of ones we provided, contradicts the hypothesis by Kachale et al. that a S67A/G substitution is necessary for genetic code evolution in Blastocrithidia and certain ciliates. The “ugly” is that a tRNA shown in a main figure in Kachale et al. 2023, and which was investigated in a number of subsequent experiments, is almost certainly a bacterial contaminant.

      Proper scrutiny of the bacterial tRNA should have led to its immediate recognition and rejection, as one of us did years ago in searches of tRNAs in a preliminary Condylostoma genome assembly (only predicted 4 bp AS tRNA secondary structures were shown in Swart et al. 2016, Fig S4B and C). Evidence for the bacterial nature of this tRNA was placed in the supplement of the present manuscript, as the meat of the critique was the consideration of the evidence for and against its good and bad aspects. The bacterial tRNA secondary structure has been removed from the main figure by Kachale et al. 2023, and downstream experiments based on synthetic constructs for this tRNA have also been revised (https://www.nature.com/articles/s41586-024-07065-0).

      Much of the rest of the supplement served to correct multiple errors in genetic codes in public sequence databases that led to additional errors and difficulties in interpreting the eRF1 substitutions in Kachale et al. 2023. It is important that these codes get corrected. If not they create multiple headaches for users besides those investigating genetic codes, as we found out in communications with authors and a colleague of Kachale et al. 2023 (in particular, leading to thousands of missing genes in the macronuclear genome of the standard code ciliate Stentor coeruleus that were removed in automated GenBank processing due to incorrectly having an alternative genetic code specified).

      Recently the NCBI Genetic Codes curators reinstated a genetic code incorrectly attributed to the ciliate Blepharisma (“Blepharisma nuclear genetic code”) (https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG15), despite us requesting a reasonable fix years ago. This would be very confusing for those that are not in the know. We have explained this confusion in our supplement too. Thus we also hope that this paper will aid in communication with the genetic code database curators and in correcting such issues.

      The second part criticises the fact that a mutation at position S67 of eRF1 is required to allow the UGA codon to be reassigned as a sense codon. As supporting evidence, they provide a phylogenetic study of the eRF1 factor showing that there are numerous ciliates in which this position is mutated, whereas the organism shows no trace of the reassignment of the UGA codon into a sense codon. While this criticism seems valid at first glance, it suffers from the lack of information on the level of translation of UGA codons in the organisms considered.

      Firstly, we not only showed that there are organisms with the S67 substitution but no UGA reassignment, but also provided evidence for the converse: organisms with a UGA=Trp reassignment but without the S67 substitution (both ciliates and a non-ciliate). So, two related lines of substitutions were not consistent with the eRF1 substitution hypothesis proposed.

      Secondly, we disagree that there is a “lack of information about UGA translation in the organisms considered”. Evolution has already supplied information as to whether UGA codons are translated at an appreciable level in the organisms of interest, in the form of codon frequencies within their protein-coding sequences and those ending them. If UGA was translated at appreciable levels, it would be found at a corresponding frequency in coding sequences. In genomes with thousands of genes, if not predicted as amino acids, they likely primarily serve as stops. Low levels of potential readthrough of actual stops would not change the arguments. With the exception of selenocysteine translation (which is restricted to a limited number of genes by the condition of requiring a specific mRNA secondary structure) there is no expectation of meaningful levels of UGA translation when this codon is missing from the bulk of coding sequences (CDSs).

      This is well illustrated by the heterotrichs, a clade of ciliates that use a variety of genetic codes. In heterotrichs that use the standard code, UGA is virtually absent from coding sequences, only appearing at the 3’ end of transcripts in the predicted stop codon and 3’-UTR (Seah et al. 2022, Figure 5). This contrasts notably with other genera like Blepharisma where appreciable levels of UGA codons occur throughout coding sequences, upstream of the predicted UAA and UAG stops (Seah et al. 2022, Figure 5: https://www.biorxiv.org/content/biorxiv/early/2022/07/12/2022.04.12.488043/F5.large.jpg). The difference in the UGA, UAG and UAA codon frequencies in 3’ UTRs compared to the upstream frequencies in CDSs of standard genetic code heterotrichs is stark. Frequencies of all three codons are elevated in the 3’ UTRs of all heterotrich ciliates, irrespective of their genetic codes (Seah et al. 2022, Figure 5), according with these codons not being deleterious in this region and strongly selected against upstream, within CDSs.

      The reviewer raises the possibility that UGA may appear to be a stop codon but still have biologically significant translational readthrough. We think that this is unlikely in the heterotrich ciliate species discussed here, which have extremely short (median 21-26 bp) and AU-rich 3’-UTRs compared to yeast and animals (Seah et al. 2022). Therefore, in heterotrichs where UGA is predicted to be a stop, translational readthrough would lead to extensions of only a few amino acids and be relatively inconsequential, as there are plenty of secondary UAA, UAG and UGA codons downstream of the typical stop.

      If one were to consistently pursue the reviewer’s line of argumentation, one would also have to argue against the very reasoning used in Kachale et al. 2023 about all the stop codon predictions/reassignments in protists for which experiments were not conducted in S. cerevisiae or other translation systems, as well as decades of prior work using sequence conservation in multiple sequence alignments to infer alternative genetic codes.

      Furthermore, experimental information for UGA translation levels is available for the ciliate Condylostoma magnum, predominantly in the form of Ribo-seq (Swart et al. 2016). Similarly to Condylostoma’s UAA and UAG codons, Ribo-seq shows that the UGA codons are generally either efficiently translated when present in the bodies of CDSs or terminate translation as actual stops close to mRNA 3’ termini/poly(A) tails (Swart et al. 2016). Thus, irrespective of the presence of the hypothesized eRF1 substitution there is an example of relatively discrete reading of UGA codons in ciliates as either stops or amino acids. This contrasts with Kachale et al 2023’s experiments in yeast with yeast eRF1 S67G or Blastocrithida eRF1 which also has glycine at the equivalent position that appear to lead to modest readthrough. In addition, efficient reading of codons in either of two ways also occurs in the ciliate genus Euplotes in which “stop” codons can either serve as frameshift sites during translation within coding sequences or be actual stops when they are close to 3’ mRNA termini (Lobanov et al. 2017), as verified by Ribo-seq and protein mass spectrometry.

      It has been clearly shown that S67G or S67A mutations allow a strong increase in the reading of UGA codons by tRNAs, so this point is not in doubt. However, this has been demonstrated in model organisms, and we now need to determine whether other changes in the translational apparatus could accompany this mutation by modifying its impact on the UGA codon. This is a point partly raised at the end of the manuscript.

      There is no doubt that S67G or S67A mutations lead to increased translational readthrough, but this is restricted to experiments with or in baker’s yeast or other standard genetic code surrogate model organisms. Experiments introducing eRF1 sequences from alternative genetic code eukaryotes into translation systems of such standard genetic code eukaryotes are not compelling because the rest of the associated translation system has also evolved tremendously. As far as we are aware, no in vivo experiments with ciliate eRF1s have been conducted to determine if position 67 or other substitutions have any effect. These considerations are critical given the vast evolutionary distances between yeasts, Blastocrithidia, the ciliates and Amoebophrya sp. ex Karlodinium veneficum. On the other hand, the evolutionary information presented contradicts the importance of this substitution in the Amoebophyra species and ciliates. We will consider how to incorporate these ideas in the revised version of the manuscript.

      Indeed, it is quite possible that in these organisms the UGA codon is both used to complete translation and is subject to a high level of readthrough. Actually, in the presence of a mutation at position 67 (or elsewhere), the reading of the UGA can be tolerated under specific stress conditions (nutrient deficiency, oxidative stress, etc.), so the presence of this mutation could allow translational control of the expression of certain genes.

      As explained a couple replies above, it is not constructive to invoke the additional complexity of conditional translation or any other kinds of factors that lead to enhanced readthrough, because the translation of UGA sense codons in the ciliate Condylostoma, where we have supporting experimental evidence, does not resemble translational readthrough. These codons occur in constitutively expressed single-copy genes, like a tryptophan tRNA synthetase and an eRF1 protein (Swart et al. 2016), not ones that might be expected to be conditionally translated.

      On the other hand, it seems obvious to me that there are other ways of reading through a stop codon without mutating eRF1 at position S67. So the absence of a mutation at this position is not really indicative of a level of reading of the UGA codon.

      It may seem obvious to the reviewer, but that is neither what Kachale et al. originally proposed nor what we questioned. Kachale et al. hypothesized that mutation of S67 to A or G is necessary for UGA=Trp translation, but we provided evidence that it is not: multiple organisms with S67 or C67 that translate UGA as tryptophan. Kachale et al. also originally suggested that the S67 to A/G substitution is also necessary in Condylostoma for UGA translation as tryptophan by weakening its recognition of this codon as a stop (from their abstract: “Virtually the same strategy has been adopted by the ciliate Condylostoma magnum.”). However, as we have stated, Condylostoma (A67) is both able to efficiently terminate at UGA stop codons and to efficiently translate (other) UGA sense codons, which does not fit this hypothesis.

      Before writing such a strong assertion as that found on page 3, experiments should be carried out. The authors should therefore moderate their assertion.

      Experiments should be carried out in the organisms in which stop codon reassignments have readily occurred and their close relatives that have not, not distantly related ones where they rarely, if ever, occur, like yeasts. We made this point in the conclusion. There is too much emphasis on models for investigation of genetic code evolution via stop codon reassignments in questionable models and too little investigation in the really good ones, particularly the ciliates. This clade has genera that are amenable to molecular experiments including Paramecium, Tetrahymena and Oxytricha. We plan to add some text about these considerations in revision.

      To make a definitive conclusion, we would need to be able to measure the level of termination and readthrough in these organisms. So, from my point of view, all the arguments seem rather weak.

      We reiterate: there is experimental information about translation and termination in two ciliate species worth considering, including one that translates UGA codons depending on their context. If one chooses to ignore the evolutionary information presented, this not only ignores all prior approaches to infer genetic codes, but also the fact that there is experimental verification and other lines of evidence supporting these approaches.

      Moreover, the authors themselves indicate that the conjunction between a Trp tRNA that is efficient at reading the UGA codon and an eRF1 factor that is not efficient at recognising this stop codon could be the key to reassignment.

      This does not convey well what we wrote, since the main consideration was overall eRF1 structure, rather than individual amino acid substitutions. Here are the key sentences:

      “Instead, in a transitional evolutionary phase, codons may be interpreted in two ways, with potential eRF1-tRNA competition. With time, beneficial mutations or modifications in either the tRNA or eRF1 (or other components of translation) that reduce competition may be selected.

      Instead of focusing on individual eRF1 substitutions, we propose future investigations should more generally explore the structure of non-standard genetic code eRF1’s captured in translation termination in the context of their own ribosomes.”

    1. When social media users work together, we can consider what problem they are solving. For example, for some of the Tiktok Duet videos from the virality chapter, the “problem” would be something like “how do we create music out of this source video” and the different musicians contribute their own piece to the solution.

      I think this collaborative problem-solving dynamic not only fosters a sense of community but also demonstrates the versatility of social media platforms as spaces for collective creativity. It goes beyond mere individual expression and taps into the collective intelligence of the user base. By identifying a problem or challenge, users can come together to contribute unique perspectives, skills, or talents, ultimately leading to the co-creation of content that may not have been possible without the collaborative efforts of the community.

    1. Author Response

      The authors' responses to the public reviews can be found here


      The following is the authors’ response to the most recent recommendations.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      I appreciate the effort that the authors have put into this revised version of the manuscript. Before going into details, I would suggest that, in the future, the authors include enough information in their response to allow reviewers to follow the changes made. Not simply "Fixed", but instead "we have modified the description of these results and now state on lines XXX to XXX (revised text)".

      We greatly apologize, we certainly did not wish to cause more work for the reviewer to find the necessary changes. We will list the line number and our changes in the following response.

      The authors' response to my comments was confined to the minor points, with no attention to more important questions regarding speculations about mechanism which were (and still are) presented as factual conclusions. I do not consider the responses adequate.

      We responded to each of your comments and where we disagree, we have explained in detail.

      With respect to the meaning of "above" and "below" in the context of an intracellular organelle, I think that referring to up and down in a figure is fine, provided that the cytoplasmic and luminal sides are indicated in that figure. I think that labeling to that effect in each figure would be immensely helpful for the reader.

      We agree with this point and have updated all the figures to include these labels.

      The statement on lines 333-335 about non-competitive inhibition is a bit naïve. The only thing ruled out by this type of inhibition is that substrate and TBZ binding do not share the same binding process, in which case they would compete. It doesn't show that TBZ gets to its binding site from the lumen or from the bilayer, or by any other process that isn't shared with substrate. It also doesn't rule out kinetic effects, such as slow inhibitor dissociation, that result in non-competitive kinetics. Please rewrite this sentence to indicate that one explanation of the non-competitive nature of TBZ inhibition would be that TBZ diffuses into the vesicle and binds from the lumen. It's not the only explanation.

      We have changed this sentence lines 334-336 to be more speculative and not include any statement about non-competitive inhibition. Please see, “Studies have proposed that TBZ first enters VMAT2 from the lumenal side, binding to a lumenal-open conformation.”

      The revised version integrates the MD simulations into a plausible mechanism for luminal release of substrate. A key element in this mechanism is the protonation of D33, E312 and D399, which allows substrate to leave following water entry into the binding site. The acidic interior of synaptic vesicles should facilitate such protonation, but the fate of those protons needs to be considered. Are any of them predicted to dissociate prior to the return to a cytoplasm-facing conformation? If so, are all 3 released in that conformation? Postulating protonation events at one point in the reaction cycle requires some accounting for those protons - or at least recognition of the problem of reconciling their binding with the known stoichiometry of VMAT.

      We completely agree with this point and while we cannot account for all protons with a single structure and simulation of neurotransmitter release, some discussion of the fate of the protons is warranted. We have included a highly speculative statement in the discussion on this point, see lines 462-465, “Given the known transport stoichiometry of two protons per neurotransmitter, we speculate that two protons may dissociate back into the lumen, perhaps driven by the formation of salt bridges between D33 and K138 or R189 and E312 for example in an cytosol-facing state.”

      Reviewer #3 (Recommendations For The Authors):

      On page 13, line 238, the statement "The protonation states of titratable residues D33, E312, D399, D426, K138 and R189, which are in close proximity to TBZ, also impact its binding stability (Table 4)" is misleading. Table 4 only shows that D426 is charged and what the pKa values are. This should be rephrased to separate out which residues are in close proximity from what is known about how their protonation states affect TBZ stability.

      We agree with this statement and have rephrased this on line 290-294 on page 13 to read, “Several titratable residues, including D33, E312, D399, D426, K138, and R189, line the central cavity of VMAT2 and impact TBZ binding stability (Table 4). We found that maintaining an overall neutral charge within the TBZ binding pocket, as observed in system TBZ_1, most effectively preserves the TBZ-bound occluded state of VMAT2. Residues R189 and E312 in particular are within close proximity of TBZ and participate directly in binding.” We note that given the acidic pH of the vesicle lumen (5.5), it is likely all four residues may be protonated to a significant degree in this state.

      Typos:

      • luminal is another name for the drug generically known as phenobarbital, lumenal means in the lumen. (This typo seems to have crept into the published literature now too).

      Thank you for pointing this out. Indeed, we had considered carefully whether to use ‘lumenal’ or ‘luminal’ in our revised text. In fact, both are used interchangeably throughout the scientific literature and luminal is the more commonly used term. Please also see: https://www.merriam-webster.com/medical/luminal we do agree that there may be confusion because ‘Luminal’ is a trademark of phenobarbital. Therefore, we have changed the text to read ‘lumenal’ throughout.


      The following is the authors’ response to the original recommendations.

      Reviewer #1 (Recommendations For The Authors):

      I congratulate the authors on this study, which I enjoyed reading. Overall, the study reports a novel and exciting new structure for a member of the SLC18 family of vesicular monoamine transporters. Associated MD, binding and transport assays provide support for the hypothesis and firm up the modelled pose for the TBZ drug. The main strengths of the study largely sit with the structure, which, as the authors say, provides additional and essential insights above those available from AF2. The structures also reveal several potentially interesting observations concerning the mechanism of gating and proton-driven transport. The main weakness lies in the limited mutational data and studies into the role of pH in regulating ligand binding. As detailed below, my main comment would be to spend a little extra time expanding the mutational data (perhaps already done during the review?) to enable more evidence-based conclusions to be drawn.

      We thank reviewer #1 for their helpful comments and suggestions. We agree that mutational analysis specifically of neurotransmitter transport would strengthen the mechanistic conclusions of the work. We also agree with reviewer #1 and #3 that the role of pH and the protonation state of charged residues was a weakness in the first version of the manuscript. Therefore, we have expanded our mutational and computational data as detailed below and we believe that this has further solidified our findings.

      Specific comments & suggestions:

      It is an interesting strategy to fuse the mVenus and anti-GFP nanobody to the N-/C-termini. The authors should also include in SI Fig. 1 a full model for the features observed in these maps and deposit this in the PDB.

      Great point, we have made a main text panel describing the construct. Figure S1 includes a full description of the construct. The reviewer will note that the PDB entry contains the entire amino acid sequence of the construct and while the GFP and GFP-Nb cannot be well modeled into the density, we have included all of the relevant information for the reader.

      Difficult to make out the ligand in Fig. 2b, I would suggest changing the color of the carbon atoms.

      Fixed.

      It is difficult to make out the side chains in ED Fig. 5d.

      This is now its own supplemental figure and is presented larger.

      ED Figures are called out of order in the manuscript. For example, in line 143 ED Fig.6 is called before ED Fig. 5d (line 152), and then ED 5d is called before ED 5a. This makes it rather confusing to follow the description, analysis, and data when reading the paper. Although there are other examples. I would suggest trying to order the figure callouts to flow with the narrative of the study.

      Agreed. Fixed.

      It wasn't clear to me what the result was produced by just imaging the ligand-free chimaera protein. It would be useful to say whether this resulted in low-resolution maps and whether the presence of the TBZ compound was essential for high-resolution structure determination.

      The ligand is likely required for structure determination. We have not, however, made such a statement largely because we have yet to determine an apo reconstruction.

      The role of E127 and W318 on EL1 in gating the luminal side of the transporter is very intriguing. As the authors suggest, this may represent an atypical gating mechanism for the MFS (line 182). I did wonder if the authors had considered providing more insight into this potentially novel mechanism. Additional experiments would be further mutations of W318 to F, Y, V, and I to see if they can identify a non-dead variant that could be analysed kinetically. They may have more luck with variants of E127, as they suggest this stabilises W318. If these side chains are important for gating and transport regulation, one might expect to see interesting effects on the transport kinetics.

      This is a fantastic suggestion. We have done this, and we think that the reviewer will find the results to be quite interesting. Some VMAT2 sequences have an R or an H at position 318 while VPAT has an F at the equivalent position. We have made these mutants including the E127A mutant and analyzed them using TBZ binding and transport experiments. Interestingly the W318R, H, and F mutants preserve activity in varying degrees with the R mutant closely resembling wild type. W318A has no transport activity. Only the W318F mutant retains some TBZ binding. The E127A mutant also has little transport activity but nearly wild type like TBZ binding which we believe suggests a role for this residue also in stabilizing W318.

      The authors identify an interesting polar network, which is described in detail and shown in Fig. 2d. However, the authors present no experimental data to shed further mechanistic insight into how these side chains contribute to monoamine transport or ligand binding. Additional experiments that would be helpful here might include repeating the binding and competition assays shown in Fig. 1c under different pH conditions for the WT and different mutations of this polar network. At present, this section of the manuscript is very descriptive without providing much novel insight into the mechanism of VMAT transport. I did wonder whether a similar analysis of pH effects on DTBZ binding might also provide insight into the role of E312 and the role of protons in the mechanism.

      Thank you, we have addressed this point in several different ways. The first is that many of these residues have already been characterized in several earlier studies, see refs 31, 32, and 42 and we have incorporated this into our discussion where appropriate. With respect to E312, the reviewers’ comments are again very appropriate. We have addressed this using computational experiments exploring the protonation status of E312 and other residues as well as TBZ. Our simulations and Propka calculations clearly show that E312 must be protonated and TBZ must be deprotonated to maintain TBZ binding. We have also extended these computational studies toward understanding the protonation status of residues which orchestrate dopamine binding and release.

      The authors then describe the binding pose for TBZ. This section also provides some biochemical characterisation of the binding site, in the form of the binding assay introduced in Fig. 1. However, the insights are again somewhat reduced as the mutants were chosen to show reduced binding. Could the authors return to this assay and try more conservative mutations of the key side chains to illuminate more detail? For example, does an R189K mutant still show binding but not transport? Similarly, what properties does an E312D have? The authors speculate that K138 might play a role in coupling ligand binding/transport to the protonation, possibly through an interaction with D426 and D33 (line 236). Given the presence of D33 in the polar network described previously, I was left wondering how this might occur. I feel that some of the experiments with pH and conservative mutants might shed some light on this important aspect. Please label the data points in Fig. 3d.

      Indeed, alanine mutants at these positions while valuable do not provide the level of detailed insight into mechanism that we also would have liked to obtain. Thus, we have made more conservative and targeted mutants like the R189K mutant and various mutants at N34 for example and tested them in both transport and binding assays. We have also made a mutant at K138 and found that it is not transport competent or able to bind TBZ to a significant degree. With respect to labels and color codes, we have made the color codes consistent between the bar graphs and the curves. We have also labeled the data points in the figure legends.

      The manuscript currently doesn't present a hypothesis for how TBZ induces the 'dead-end' complex compared to physiological ligands. Does the MD shed any light on this aspect of the study? If the authors place the physiological ligand in the same location as the TBZ and run the simulation for 500ns, what do they observe? 100ns is also a very short time window. I appreciate the comment about N34 in line 303, but is this really the answer? It would be very interesting to provide more evidence on this important aspect of VMAT pharmacology.

      MD with a natural ligand (dopamine) provides substantial insight into why TBZ is a dead-end complex. Since water cannot penetrate into the binding site in the TBZ bound complex, this does not allow for substantial luminal release. In contrast, simulations conducted in the presence of DA bound to the occluded VMAT2 show the propensity of that structure to accommodate an influx of water molecules that promote the release of DA to the lumen. The new results are illustrated in Figure 5 (main text) as well as supplemental figure 8 panels d-h. The new simulations further emphasized the importance of the protonation state of acidic residues near the substrate-binding pocket.

      Reviewer #2 (Recommendations For The Authors):

      Line 68, "both sides of the membrane" -> "alternately to either side of the membrane".

      Fixed. Thanks.

      Transmembrane proteins in intracellular organelles present unique issues of nomenclature. I suggest the authors refer to cytoplasmic and luminal faces of the protein (not intracellular or extracellular (line 124)) and adhere to these names to avoid confusion. This creates problems for loops called IL and EL, but they could be defined on first use.

      We agree with this point and had initially gone with the conventional definitions used in the literature. We have now changed this throughout the text to be luminal and cytosolic.

      Lines 135-6, are these residue numbers correct? The pdb file lists 126 as Asp and 333 as Ala.

      Thank you. This is fixed.

      ED Fig. 6 is not clear. A higher-resolution figure is needed.

      We have updated this figure and hope that the reviewer will find it to be much clearer.

      Lines 158-9, Is there any data to support effects on dynamics or folding? If not, please indicate that this is speculation.

      Fixed.

      Line 174, Should "I315" be "L315"?

      Fixed.

      Line 179, Please indicate what is meant by "inner" and "below" (also lines 183 and 258).

      We have added Figure calls here where needed.

      Line 192, S197 is listed as part of polar network 1, but not discussed further. Is it actually involved, or just in the neighborhood?

      It is part of the network, but we did not discuss in further detail because we do not have data indicating its precise function and thus have left this as a description.

      Line 199, E312, and N388 are fairly distant from each other. Do you want to clarify why they represent a network?

      While they are not within hydrogen bonding distance, we nevertheless include them as part of the same network because they may come into closer proximity in a different conformational state.

      Line 206, Protonation of all 3? VMAT2 doesn't transport 3 protons per cycle. Please clarify.

      We believe that these residues may be protonated, but they may not necessarily all be involved in proton transport.

      Line 219, Do you mean the aspartate unique to DAT, NET, and SERT? This is Gly in all the amino acid transporters in the NSS family. Please be specific.

      Fixed. Thank you.

      Line 224, "mutation of E312 to Q" or "mutation of Glu312 to Gln".

      Fixed. Thank you.

      Fig. 3d, Normally, one would expect full saturation curves for each mutant. How can a reader distinguish between low affinity or a decrease in the number of binding sites? Would full binding curves be prohibitive for the mutants because of the cost or availability of the ligand? These points should be addressed. A couple of the curves are not visible. Would an expanded scale inset show them more clearly? Also, would it be possible to include chemical structures for all ligands discussed?

      Many if not most of these mutants bind TBZ with such low affinity that it is not possible to measure a full saturation curve either because of ligand availability (radioactive ligand concentration is only in µM) or due to technical issues with being able to measure such low affinity binding. We have changed the presentation of the curves and have split the gating and binding site mutants into their own figures. We feel this improves the readability of these curves. We have also included a table with the respective Kd values determined for each of the mutants where possible.

      Line 235, The distances are long for a direct interaction between K138 and the TBZ methoxy groups. The unusual distances should be mentioned if an interaction is being proposed.

      We do not think that K138 is directly involved in TBZ binding, however this was written in a confusing way and has been now changed.

      Line 243, Please give a quantitative estimate of the affinity difference. "modestly" is vague.

      It is an approximately 2-fold difference. Fixed in the text.

      Line 248, 150 nM is, at best, a Kd, not an affinity.

      Agreed, this is changed.

      Reviewer #3 (Recommendations For The Authors):

      The (3 x ~100ns-long) molecular dynamics simulations provided suggest some instability of the pose identified by cryo-EM. While it is not unreasonable that ligands shift around and adopt multiple conformations within a single binding site (in a reversible manner), the present results do raise questions about the assumptions made when starting the simulations, in particular (1) the protonation states of charged residues in the TBZ binding sites; (2) the parameters used for tetrabenazine; (3) the conformations of acidic side chains that are notoriously difficult to resolve in cryoEM maps; and (4) any contributions of the truncated regions truncated in the simulated structure, namely the cysteine cross-linked loop and the terminal domains. The authors should examine and/or discuss these contributions before attributing mechanistic insights into the newly observed binding orientation.

      In order to estimate the effects of protonation states on TBZ binding, we now added three new systems with altered protonation on TBZ and binding pocket lining residues (see Table 3 in the revised vision); and for each system, we performed multiple MD runs to address the question and concerns raised by reviewer.

      Regarding the protonation states: Propka3.0 was used to determine the protonation states, finding that E312 and D399 should be protonated. If I am not mistaken, this version of ProPka cannot account for non-protein ligands (https://github.com/jensengroup/propka). Given their proximity to the binding site, these protonation states will be critical factors for the stability of the simulations. The authors could test their assumption by repeating the calculations with Propka 3.1 or higher, to establish sensitivity to the ligand. Beyond this, showing the resultant hydrogen bond networks will help to reassure the reader that the dynamics in the lumenal gates do not arise from an artifact.

      We thank the reviewer for suggestion of using higher version of Propka. We used the most recent Propka3.5 and carried out protonation calculations in the presence and absence of TBZ. The new calculations are presented in Table 4 and SI Figure 8c of the revised version.

      It should be possible to assess whether waters penetrate the ligand binding site during the simulations if that is of concern.

      We now added the number of waters within the ligand binding pockets for all MD simulations we performed, which are presented in Table 3 and Table 5 of the revised version.

      Finally, I didn't fully understand the conclusion based on the simulations and the "binding affinity" calculations: do they imply that the pose identified in the EM map is not stable? What is the value of the binding affinity histogram?

      We apologize for this confusion. For each MD snapshot, we calculated TBZ binding affinity using PRODIGY-LIG (Vangone et al., Bioinformatics 2019), which is a contact-based tool for computing ligand binding affinity. The binding affinity histogram shown in the original submission was the histogram of those binding affinities calculated for MD snapshots. In the revision, we replaced binding affinity histogram by time evolution of binding affinity changes (SI Fig 6c in the revision). The simulations confirmed that the pose identified in the EM map is stable, with a flattened binding affinity of -9.4 ± 0.3 kcal/mol in all three runs.

      Recommendations regarding writing/presentation:

      The authors use active tense terminology in attributing forces to elements of structure (cinching, packing tightly, locking). While appealing and commonplace in structural biology, this style frequently overstates the understanding obtained from a static structure and can give a rather misleading picture, so I encourage rephrasing.

      We appreciate this point; the use of these words is not meant to overstate or provide a misleading picture but rather to aid the reader in mechanistic understanding of the proposed processes.

      I would also recommend replacing the terms "above" and "below" for identifying aspects of the structure; the protein's location in the vesicular membrane makes these terms particularly difficult to follow.

      These terms refer specifically to the Figures themselves which we have always oriented with the luminal side at the top of the page and the cytosolic on the bottom. We have indicated in Figure 1 the orientation of VMAT2. The Figures are the point of reference which we refer to, and the ‘above’ and ‘below’ terms have been used to assist the reader to make the manuscript easier for a more casual or non-expert reader to follow.

      Minor corrections:

      • the legend in Figure 2 lacks details, e.g. how many simulation frames are shown, how were the electrostatic maps calculated?

      We revised Figure 2 and moved simulation frames to SI figure 6e. A total of 503 simulation frames are shown.

      • how were the TBZ RMSDs calculated? using all atoms or just the non-hydrogen atoms?

      For TBZ RMSDs, we used non-hydrogen atoms. This information is presented in the Methods section.

      MD simulation snapshots and input files can be provided via zenodo or another website.

      We will upload snapshots and input files to Zenodo upon acceptance of the manuscript.

      Reviewing editor specific points:

      Specific points

      L.97: Remove "readily available"

      Fixed.

      L.99: The authors are not measuring competition binding. It is well known that reserpine and substrates inhibit TBZ binding only at concentrations 100 times higher than their respective KD and KM values. It is, therefore, surprising that the authors use this isotherm and refrain from commenting on the significance of the finding. Moreover, the presentation of results as "Normalized Counts" does not provide any information about the fraction of VMAT molecules binding the ligand. At least, the authors should provide the specific activity of the ligand, and the number of moles bound per mole of protein should be calculated.

      The point was not to infer any details about the conformations that TBZ and reserpine bind but merely to point out that both constructs have a similar behavior with respect to their Ki for reserpine. We have added a sentence to say that reserpine binding stabilizes cytoplasmic-open so the reader is aware of the significance of this competition experiment.

      L.102: The characterization of serotonin transport activity needs to be more satisfactory. The Km in rVMAT2 is 100-200 nM, so why are the experiments done at 1 and 10 micromolar? Is the Km of this construct very different? The results provided (counts per minute at the steady state) need to give more information.

      The Km of human VMAT2 varies somewhat according to the source but has generally been reported to be between 0.6 to 1.4 µM for serotonin according to these references.

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019297/ https://www.cell.com/cell/pdf/0092-8674(92)90425-C.pdf https://www.pnas.org/doi/abs/10.1073/pnas.93.10.5166

      Fig 1B could be more informative. I suggest adding a cartoon model with TMs labeled, similar to ED Fig6a.

      This panel is to aid the reader in accessing the overall map quality and thus we do not wish to add additional labels/fits which would distract from that point. Instead, we have added overall views of the model in Figs 2,3.

      L.179: The authors claim that the inner gate is located "below" (whatever this could mean) the TBZ ligand. In L.214, they claim that TBZ adopts a pose.....just "below" the location of the luminal gating residues. Please clarify and use appropriate terminology.

      This refers to the position of these residues in the Figures themselves. We have added figure calls where appropriate here.

      Fig. 4: The cartoon could be more informative.

      We have added more information to the mechanism cartoon which is now Figure 6. This incorporates some of our new data and we believe it will be more informative.

      L. 213: The paragraph describes residues involved in TBZ binding. Mutagenesis is used to validate the structural information. However, the results (ED fig. 5B) must be corrected for protein expression levels. In the Methods section, the authors state (L.444), "Mutants were evaluated similarly from cell lysates of transfected cells." Without normalization of protein expression levels, the results are meaningless even if they agree with predictions.

      In fact, we have normalized the concentrations of protein in our binding experiments. This was noted in the methods section. And to account for these differences, experiments were conducted using 2.5 nM of VMAT2 protein as assessed by FSEC.

      L.220: The referral to ED Fig.7 is not appropriate here. The figure shows docking-predicted poses of dopamine and serotonin.

      Figure call has been changed.

      L.226: The referral to Fig. 3b needs to be corrected. The figure shows TBZ and not the neurotransmitter.

      This has been corrected.

      L. 337: "The neurotransmitter substrate is bound at the central site." What do the authors mean in this cartoon? Do they have evidence for this? Tetrabenazine is not a substrate.

      This cartoon drawing is meant to illustrate the elements of structure. Similar drawings are presented throughout the literature such as here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940252/ Figure 3 and here: https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00983 Figure 2.

      The same compound is mentioned with different names: 3H-dihydrotetrabenazine and 3H-labeled DTBZ.

      Fixed.

      ED fig 1d is illegible.

      The high-resolution figure is completely legible. We will provide this to the journal upon publication.

      Figure 2d: A side view would be more visual.

      We have updated this figure and believe that it is much easier to understand now.

      L. 179: The inner gate is located 'below' the TBZ ligand

      Please see above response, this refers to the figures themselves. The figures are our point of reference.

      L. 213-215: Tetrabenazine binding site just 'below' the location of the luminal gating residues.

      See above.

      Throughout the paper, results are given as cpm or counts. The reader can only estimate the magnitude of the binding/transport by knowing the specific activity of the radiolabel. I recommend switching to nano/picomoles or supplying enough information to understand what the given cpm values could mean.

      Binding experiments were done using scintillation proximity assays and therefore converting the CPMs to values in pmol of bound ligand is simply not possible. For the transport experiments (now Fig 1d) the point was to show that the wild type was similar in activity to the chimera. In our new transport experiments we have presented for the mutants, many experiments were combined together and therefore, we have normalized the counts to the relative activity of wild type VMAT2.

    1. When the focus is shifted from leadership as individual direction to leadership as freely chosen collective work, the shared moral purpose of that work becomes prominent, and it is work to which all may contribute regardless of role or positional status.

      I believe my very first school held true to this. We had our principal and five teachers. That was the whole staff and we truly worked as a team. Not once did my principal ever feel like a "boss" and the team of teachers I was a part of really steered the school. And I like to think that that model was for the better. The students were at the heart of every decision made and many of the things we engaged in came from a collective decision we made as a team rather than an order given from the top down. I felt as if being a first year teacher, I had just as much respect from my principal and colleagues as the veteran teacher of twenty-five years had. Unfortunately, I have since learned that this is not the culture of many schools and is very hard to achieve. Why? I'm not quite sure. I think the small nature of the school is what kept the team so close and respectful.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The manuscript from Richter et al. is a very thorough anatomical description of the external sensory organs in Drosophila larvae. It represents an important tool for investigating the relationship between the structure and function of sensory organs. Using improved electron microscopy analysis and digital modeling, the authors provide compelling evidence offering the basis for molecular and functional studies to decipher the sensory strategies of larvae to navigate through their environment.

      Public Reviews:

      Summary

      This is a very meticulous and precise anatomical description of the external sensory organs (sensillia) in Drosophila larvae. Extending on their previous study (Rist and Thum 2017) that analyzed the anatomy of the terminal organ, a major external taste organ of fruit fly larva, the authors examined the anatomy of the remaining head sensory organs - the dorsal organ, the ventral organ, and the labial organ-also described the sensory organs of the thoracic and abdominal segments. Improved serial electron microscopy and digital modeling are used to the fullest to provide a definitive and clear picture of the sensory organs, the sensillia, and adjacent ganglia, providing an integral and accurate map, which is dearly needed in the field. The authors revise all the data for the abdominal and thoracic segments and describe in detail, for the first time, the head and tail segments and construct a complete structural and neuronal map of the external larval sensilla.

      Strengths

      It is a very thorough anatomical description of the external sensory organs of the genetically amenable fruitfly. This study represents a very useful tool for the research community that will definitely use it as a reference paper. In addition to the classification and nomenclature of the different types of sensilla throughout the larval body, the wealth of data presented here will be valuable to the scientific community. It will allow for investigating sensory processing in depth. Serial electron microscopy and digital modeling are used to the fullest to provide a comprehensive, definitive, and clear picture of the sensory organs. The discussion places the anatomical data into a functional and developmental frame. The study offers fundamental anatomical insights, which will be helpful for future functional studies and to understand the sensory strategies of Drosophila larvae in response to the external environment. By analyzing different larval stages (L1 and L3), this work offers some insights into the developmental aspects of the larval sense organs and their corresponding sensory cells.

      Weaknesses

      There are no apparent weaknesses, although it is not a complete novel anatomical study. It revisits many data that already existed, adding new information. However, the repetitiveness of some data and prior studies may be avoided for easy readability.

      We would like to thank the reviewers for their respective reviews. The detailed comments and efforts have helped us to improve our manuscript. In the following, we have listed the comments one by one and provide the respective information on how we addressed the concerns.

      Recommendations for the authors:

      We have tried to address every single comment as far as possible. In order to structure our response a little better, we have listed the relevant page number and the original comments once again. Directly following this you will find our response and a description of what we have changed in the manuscript.

      REVIEWER #1 (Recommendations For The Authors):

      I have a few comments that will help the reader navigate this long and detailed paper.

      REVIEWER 1.1. page 4

      The final section of "the Structural organization of Drosophila larvae" needs some reorganization.

      Specifically:

      "The DO and the TO are prominently located on the tip of the head lobes" Can the authors rewrite the sentence in a way that it is clear that there is one DO and one VO on each side of the head? Check at the beginning of each section, please. There is a mention about hemi-segments but it is still confusing.

      Done – replaced with “The largest sense organs of Drosophila larvae are arranged in pairs on the right and left side of the head.”

      REVIEWER 1.2. page 5

      "The sequence of sensilla is always similar for and different between T1, T2-T3, and A1-A7" This sentence is not clear, please break it into two sentences.

      Done – replaced with: “We noticed varying arrangements for T1, T2-T3, and A1-A7, with a consistent sequence of sensilla in each configuration.”

      REVIEWER 1.3. figures page 4

      Double hair can't be found in Figure 1B or C (is it h3, h4?) - please clarify.

      Done - changed to double hair organ in page 11, included double hair sketch in legend in figure 1B. We changed the name of the structure to double hair organ, to clarify that this is a compound sensillum consisting of two individual sensilla.

      REVIEWER 1.4. page 5

      The authors go back and forth in their descriptions of the different sensory organs. Knob sensilla and then papilla sensilla are discussed and then a few lines later a further description is done. Please unify the description of each separately.

      Done – we restructured the whole section.

      REVIEWER 1.5. figures page 6

      "We found three hair sensilla on T1-T3, and "two" on A1-A7" - in the figure there seem to be "four" on A1-A7.

      Done – we included the two hair sensilla of the double hair organ

      REVIEWER 1.6. figures page 6

      DORSAL ORGAN:

      Can the authors explain the colour map meaning in Figure 2A? It is explained in 2C but the image already has colours. Add your sentence "Color code in A applies to all micrographs in this Figure".

      Done – we added a sentence to explain that the color code in A applies to the whole figure.

      REVIEWER 1.7. page 6

      Page 10: which comprises seven olfactory sensilla "composing" three dendrites each: replace this with"with". At the end, we want to think 7 X 3= 21 ORNs.

      Done – replaced.

      REVIEWER 1.8. page 9

      CHORDOTONAL ORGANS:

      "We find these these DO associated ChO (doChO).. .". Please remove one "these"

      Done – removed.

      REVIEWER 1.9. page 8

      Is the DO associated ChO part of the dorsal ganglion???? It does not look like it. Could you clarify?

      Done – we added a sentence that clarifies that the ChO neuron is not iside the DOG.

      REVIEWER 1.10. page 9 VENTRAL ORGAN: A figures page 12

      Please add to the Figure 8 legend the description of 8c' and 8c'?

      Done – added description in figure legend.

      B page 9

      8H, what are the *, arrows? Please clarify - it is hard to interpret the figure.

      Done – we added parentheses in the figure legend that state which structures the asterisks and arrows indicate.

      C page 9

      "Three of them are innervated by a single neuron () and one by two neurons () (Figure 8F-I). Please add which are innervated by 1 (VO1, VO2-VO4) and which by 2 (VO3).

      Done – we added parentheses that clarify which sensilla are innervated by 1 or 2 neurons.

      REVIEWER 1.11. page 9

      Can you add something (or speculate) about the difference in sensory processing of the different types of sensilla?

      Done – new sentence in discussion:

      ‘Their different size and microtubule organization likely correlate with processing of different stimulus intesities applied to the mechanotransduction apparatus (Bechstedt et al. 2010).’

      REVIEWER 1.12. figures page 16

      PAPILLA AND HAIR SENSILLA:

      FIGURE 10a, please add the name of each sensillum from p1, p2, px py, etc... (if not we have to go back to figure 1 when you describe specific ps.)

      Thanks for the comment, it really makes it a lot easier for the reader.

      REVIEWER 1.13. figures page 18 Figure 11, can you add the name of each hair, please?

      Done – updated figure.

      REVIEWER 1.14. figures pages 16, 18, 20

      In Figures 10, 11, and 12 you clearly draw an area on the internal side that I assume is what you call the "electron-dense sheath". It is wider in papilla sensilla than in hair sensilla, most likely due to the difference in stimuli sensed that you explain in detail in the discussion. Can you say in the figure what this "internal" thing is? Can you add this difference to your list "Apart from the difference in outer appearance and structure of the tubular body"?

      This is the basal septum, but it is not certain that it is wider in the papillae sensillae, at least we could not observe this in our data sets. The impression could have been created by different scales in the 3D reconstructions and a perspective view. Therefore, we do not want to list this as a difference here, as we are not sure.

      However, we have now specified the socket septum in the figure legends and in Figures 10A, 11A and 12A.

      REVIEWER 1.15. page 11

      KNOB SENSILLA:

      Page 25;" Knob sensilla have been described under "vaious" names such as": add various.

      Done

      REVIEWER 1.16. page 12

      "reveals that the three hair and the two papilla sensilla are associated with a single dendrite." Can you write that "reveals THAT EACH OF the three hair and the two papilla sensilla" if not it seems that there is only one dendrite.

      Done

      REVIEWER 1.17. figures page 25 TERMINAL SENSORY CONES:

      Please name the t1-t7 cones in Figure 15A.

      Done – we updated the figure.

      REVIEWER 1.18. page 13

      The spiracle sense organ deserves a new paragraph. As does the papilla sensillum of the anal plate.

      Done – we added subtitles before the prargraphs.

      Discussion:

      REVIEWER 1.19. page 15

      Page 38: "v'entral" correct typo

      PAGE 15

      Done – we have updated the nomenclature  ventral 1 (v), ventral 2 (v’) and ventral 3 (v’’)

      REVIEWER #2 (Recommendations For The Authors):

      I have only a few comments:

      REVIEWER 2.1. page 5

      p.5, right column, middle: the use of trichoid, campaniform, and basiconical (sensilla) in previous works were based on even older papers and reviews that attempted to link EM architecture to function (e.g., KEIL, T. A. & STEINBRECHT, R. A. (1986). Mechanosensitive and olfactory sensilla of insects. In Insect Ultrastructure, vol. 2. (ed. R. C. King & H. Akai), pp. 477-516. New York/London: Plenum Press). Trichoid sensilla can be mechano-sensitive, olfactory, or gustatory; trichoid simply refers to the shape (hair). The same applies to basiconical sensilla. The use of "campaniform", which Ghysen et al called "papilla sensilla", was the only really problematic case, because these (Drosophila larval) sensilla did not really resemble closely the classical campaniform sensilla (e.g., adult haltere). The only reason we called them campaniform is because they were not more similar to any other type of (previously named) sensillum.

      Thank you for the explanation. The nomenclature of structures is generally always a complex topic with often different approaches and principles. We are aware of this and have therefore tried to be as careful as possible. We were not sure from this comment whether you were suggesting to change the text or whether you wanted to explain how these names were assigned to the sensilla in the past. However, we hope that the current version is in line with your understanding, but could of course make changes if necessary (see also comments of reviewer 1).

      REVIEWER 2.2. page 9

      p.21, Labial Organ: the ventral lip is the labium; the dorsal one is the labrum.

      Done – replaced labrum with labium.

      REVIEWER 2.3. page 9

      p.20/21, Ventral organ and labial organ: here, the projection of the axons could be mentioned as an ordering principle. In the previous literature, for larva and embryo, a labial organ (lbo) was described that most likely corresponds to the labial organ presented here. This (previously mentioned) lbo characteristically projects along the labial nerve to the labial segment (hence the name). It fasciculates with axons of another sensory complex, also generated by the labial segment, namely the ventral pharyngeal sensory organ (VPS). Does the labial organ described here share this axonal path?

      Yes, it has the same axonal pathway and is the same organ as the lbo. We have tried to standardise the nomenclature for all important external head organs (DO, TO, VO, LO) and have therefore used abbreviations with two letters. However, to avoid confusion, we have now added that the LO was also called lbo in the past.

      For the ventral organ, the segmental origin (to my knowledge) was never clarified. The axons of the ventral organ project along the maxillary nerve (which carries axons of the terminal=maxillary organ). This nerve, closely before entering the VNC, splits into a main branch to the maxillary segment (TO axons) and a thinner branch that appears to target the mandibular segment. This branch could contain the axons of the ventral organ (as described previously and in this paper). Could the authors confirm this axonal projection of the VO?

      In this work, we did not focus on the axonal projections into the SEZ. This is also not a simple and fast process, as in the entire larval dataset, the large head nerves unfortunately exhibit a highly variable quality of representation. Therefore, the reconstruction of nerves and individual neurons within it is often challenging and very time-consuming. The research question is, of course, very intriguing, and one could also attempt to match each sensory neuron of the periphery with the existing map of the brain connectome. However, this is a project in itself, exceeding the scope of this work, and is therefore more feasible as a subsequent project.

      REVIEWER #3 (Recommendations For The Authors):

      Minor suggestions that the authors might consider:

      REVIEWER 3.1. figures all

      Recheck the scale bar in figures and figure legends. Missing in a few places.

      Done – we replaced or added some (missing) scale bars in figures and figure legends (see annotated figure document).

      REVIEWER 3.2. figures page 4

      The color schematic in Figure 1 can be improved for readability.

      Done – we changed the color schematic, especially for the head region to improve readability.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript titled "Coevolution due to physical interactions is not a major driving force behind evolutionary rate covariation" by Little et al., explores the potential contribution of physical interaction between correlated evolutionary rates among gene pairs. The authors find that physical interaction is not the main driving of evolutionary rate covariation (ECR). This finding is similar to a previous report by Clark et al. (2012), Genome Research, wherein the authors stated that "direct physical interaction is not required to produce ERC." The previous study used 18 Saccharomycotina yeast species, whereas the present study used 332 Saccharomycotina yeast species and 11 outgroup taxa. As a result, the present study is better positioned to evaluate the interplay between physical interaction and ECR more robustly.

      Strengths & Weaknesses:

      Various analyses nicely support the authors' claims. Accordingly, I have only one significant comment and several minor comments that focus on wordsmithing - e.g., clarifying the interpretation of statistical results and requesting additional citations to support claims in the introduction.

      We are pleased the reviewer found the analyses to support the claims. We have addressed comments related to clarifying interpretations as suggested in the Recommendations to the Authors. For example, we have added discussion and clarification on the other parameters that could affect the strength of ERC correlations.

      Reviewer #2 (Public Review):

      Summary:

      The authors address an important outstanding question: what forces are the primary drivers of evolutionary rate covariation? Exploration of this topic is important because it is currently difficult to interpret the functional/mechanistic implications of evolutionary covariation. These analyses also speak to the predictive power (and limits) of evolutionary rate covariation. This study reinforces the existing paradigm that covariation is driven by a varied/mixed set of interaction types that all fall under the umbrella explanation of 'co-functional interactions'.

      Strengths:

      Very smart experimental design that leverages individual protein domains for increased resolution.

      Weaknesses:

      Nuanced and sometimes inconclusive results that are difficult to capture in a short title/abstract statement.

      We appreciate the reviewer’s acknowledgement of the experimental design. We have addressed the nuance of the results by changing the title and clarifying other statements throughout the manuscript as suggested in the reviewer’s recommendations. We have also addressed reviewer comments asking for further explanation on using Fisher transformations when normalizing the Pearson correlations for branch counts.

      Reviewer #3 (Public Review):

      Summary:

      The paper makes a convincing argument that physical interactions of proteins do not cause substantial evolutionary co-variation.

      Strengths:

      The presented analyses are reasonable and look correct and the conclusions make sense.

      Weaknesses:

      The overall problem of the analysis is that nobody who has followed the literature on evolutionary rate variation over the last 20 years would think that physical interactions are a major cause of evolutionary rate variation. First, there have been probably hundreds of studies showing that gene expression level is the primary driver of evolutionary rate variation (see, for example, [1]). The present study doesn't mention this once. People can argue the causes or the strength of the effect, but entirely ignoring this body of literature is a serious lack of scholarship. Second, interacting proteins will likely be co-expressed, so the obvious null hypothesis would be to ask whether their observed rates are higher or lower than expected given their respective gene expression levels. Third, protein-protein interfaces exert a relatively weak selection pressure so I wouldn't expect them to play much role in the overall evolutionary rate of a protein.

      We thank the reviewer for their comments and suggestions. A point to immediately clarify is that the methods studied in this manuscript deal with rate variation of individual proteins over time, and if that variation correlates with that of another protein.. The numerous studies the reviewer refers to deal with explaining the differences in average rate between proteins. These are different sources of variation. It has not, to our knowledge, been shown that variation in the expression level of a single protein over time is responsible for its variation in evolutionary rate over time, let alone to a degree that allows its variation to correlate with that of a functionally related protein. That question interests us, but it is not the focus of this study.

      In our study, we sought to test for a contribution of physical interaction to the correlation of evolutionary rate changes as they vary over time, i.e. between branches. We made many changes to clarify this distinction in our revisions.

      We agree that the manuscript would be more clear to define the forces proposed to lead to difference in rate in general, which includes expression levels. We had generally considered expression level as one of the many potential non-physical forces, but failed to make that explicit and instead focused on selection pressure. In our revision we describe expression level as another potential driver of evolutionary rate variation over time. References to previous literature have been made in the introduction. We also added a more explicit explanation of the rate covariation over time that we are measuring in contrast with the association between expression level and rate differences between proteins that was studied in previous literature.

      On point 3, the authors seem confused though, as they claim a co-evolving interface would evolve faster than the rest of the protein (Figure 1, caption). Instead, the observation is they evolve slower (see, for example, [2]). This makes sense: A binding interface adds additional constraint that reduces the rate at which mutations accumulate. However, the effect is rather weak.

      The values in Fig 1B are a measure of correlation, specifically a Fisher transformed correlation coefficient. They are not evolutionary rates, so they are not reflecting faster or slower evolution, rather more or less covariation of evolutionary rates over time. We are not predicting that physically interacting interfaces evolve faster than the rest of the protein, but rather that if physical interaction drives covariation in evolutionary rates over time, their correlation would be stronger between pairs of physically interacting domains. In response, we have used clearer language in the figure caption and reorganized labels in Figure 1B to clearly show that the values are correlations. Revised Figure 1 Legend:

      “Overview of experimental schema and hypotheses. Proteins that share functional/physical relationships have similar relative rates of evolution across the phylogeny, as shown in (A) with SMC5 and SMC6. The color scale along the bottom indicates the relative evolutionary rate (RER) of the specific protein for that species compared to the genome-wide average. A higher (red) RER indicates that the protein is evolving at a faster rate than the genome average for that branch. Conversely, a lower (blue) RER indicates that protein is evolving at a slower rate than the genome average. The ERC (right) is a Pearson correlation of the RERs for each shared branch of the gene pair. (B) Suppose the correlation in relative evolutionary rates between two proteins is due to compensatory coevolution and physical interactions. In that case, the correlation of their rates (ie. ERC value) would be higher for just the amino acids in the physically interacting domain. (C) Outline of experimental design. Created with Biorender.com

      All in all, I'm fine with the analysis the authors perform, and I think the conclusions make sense, but the authors have to put some serious effort into reading the relevant literature and then reassess whether they are actually asking a meaningful question and, if so, whether they're doing the best analysis they could do or whether alternative hypotheses or analyses would make more sense.

      [1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523088/

      [2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854464/

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major comments

      (1) Numerous parameters influence ECR calculation. The authors note that their use of a large dataset of budding yeast provides sufficient statistical power to calculate ECR. I agree with that. However, a discussion of other parameters needs to be improved, especially when comparing the present study to others like Kann et al., Hakes et al., and Jothi et al.. For example, what is the evolutionary breadth and depth used in the Kann, Hakes, Jothi and other studies? How does that compare to the present study? Budding yeast evolve rapidly with gene presence/absence polymorphisms observed in genes otherwise considered universally conserved. Is there any reason to expect different results in a younger, slower-evolving clade such as mammals? There is potential to acknowledge and discuss other parameters that may influence ECR, such as codon optimization and gene/complex "essentiality," among others.

      More discussion of these parameters is a good idea. We have added the number and phylogeny of species used in the previous studies in the discussion paragraph starting with “Previous studies attributed varying degrees of evolutionary rate covariation signal to physical interactions between proteins.” We also like the idea of studying the effect of younger and more slowly evolving clades as opposed to the contrary, but currently we lack the required number of datasets to do this.

      We have also added more discussion and clarification of potential non-physical forces leading to ERC correlations in the introduction.

      Minor comments

      (1) It would be good to add a citation to the second sentence of the first paragraph, which reads, "It has been observed that some genes have rates that covary with those of other genes and that they tend to be functionally related."

      Added citation to Clark et al. 2012

      (2) In the last sentence of the first paragraph of the introduction, ERC is discussed in the context of only amino acid divergence, however, there is no reason that DNA sequences can't be used, especially if ERC is being calculated among species that are less ancient than, for example, Saccharomycotina yeasts. Thus, it may be more accurate to suggest that ERC measures how correlated branch-specific rates of sequence divergence are with those of another gene.

      Nice suggestion to generalize. We have made this change.

      (3) ERC was not calculated in reference #2. For the sentence "Protein pairs that have high ERC values (i.e., high rate covariation) are often found to participate in shared cellular functions, such as in a metabolic pathway2 or meiosis3 or being in a protein complex together," I think more appropriate citations (including inspiring work by the corresponding author) would be

      a) Coevolution of Interacting Fertilization Proteins (https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000570)

      b) Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila (https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007720)

      c) An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function (https://www.science.org/doi/10.1126/sciadv.abn0105)

      d) PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data (https://academic.oup.com/bioinformatics/article/37/16/2325/6131675)

      Thank you for pointing out these works. We agree that there are more appropriate citations and we have referenced your suggested b-d.

      (4) The dataset of 343 yeast species also includes outgroup taxa. Therefore, indicating that 332 species are Saccharomycotina yeast and 11 are closely related outgroup taxa may be more accurate.

      Thank you for the suggestion, the following sentence has been added, citing the Shen et. al 2018 paper that the dataset was derived from:

      “To investigate the discrepancy between contributions to ERC signal from co-function and physical interaction, we used a dataset of 343 evolutionarily distant yeast species. 332 of the species are Saccharomycotina with 11 closely related outgroup species providing as much evolutionary divergence as humans to roundworms3”

      (5) Are there statistics/figures to support the claim that "Almost all complexes and pathways had mean ERC values significantly greater than a null distribution consisting of random protein pairs"?

      This is shown in supplementary figure 1. A reference to this figure was added as well as quantification within the text.

      (6)Similar to the previous comment, can quantitative values be added to the statement "While protein complexes appear to have higher mean ERC scores than the pathways..."?

      The median of the mean ERC scores for protein complexes is 5.366 while the median for the mean ERC score in pathways is 4.597. This quantification has been included in the text: “While protein complexes have higher mean ERC scores (median 5.366) than the pathways (median 4.597), the members of a given complex are also co-functional, making interpretation of the relative contribution of physical interactions to the average ERC score difficult”

      These quantifications are were also added to the figure caption for figure 2A

      (7) A semantic point: In the sentence "The lack of significance in the global permutation test shows that the...", I recommend saying that the analysis suggests, not shows, because there is potential for a type II error.

      Good suggestion, we have made this change.

      (8) The authors suggest that shared evolutionary pressures, "and hence shared levels of constraint," drive signatures of coevolution. The manuscript does not delve into selection measures (e.g., dN/dS). Perhaps it would be more representative to remove any implication of selection.

      We have added better language to clarify that discussion of selection is purely a hypothesis and that selection is not probed in our analyses.

      “Previous work finds evidence that relaxation of selective constraint can lead to drastic rate variation and hence covariation6. Rather, the greater and consistent contribution comes from non-physical interaction drivers that could include variation in essentiality, expression level, codon adaptation, and network connectivity. These non-physical forces would be under shared selective pressures and hence shared levels of constraint, the result of which was elevated ERC between non-interacting proteins, as visible in our study of genetic pathways that do not physically interact (Figure 2).”

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      -Title: In my opinion, the title of the manuscript is a somewhat misleading summary of the results of this paper. In the majority of the analyses in this paper, physical interactions do account for a significantly outsized portion of the ERC signature. The current title downplays the consistent (although sometimes small effect-sized) result that physically interacting domains do show higher ERC than non-physically interacting domains by every statistical measure employed in this paper to compare physical vs non-physical interactions. The authors' interpretation of their results within the manuscript body is that the effect of physical interactions is an inconsistent, weak, and non-generalizable driver of ERC. I generally agree with the authors' interpretations, but the nuance of these interpretations is lost in the title of the paper. I would suggest rewording the title to try to capture the nuance or at least be subjectively accurate. For example, stating that "...physical interactions are not the sole driving force.." is inarguably accurate based on these results.

      As an alternative title, I would suggest focusing on an important takeaway from the paper: ERC is a reliable predictor of co-functional interactions but not necessarily physical interactions. I agree with the statement that "there is not a strong enough signal to confidently call an interaction physical or not and would be of little value to an experimentalist wanting to infer interacting domains" and I think that a title that emphasizes this idea would be more accurate and impactful.

      Great suggestion. We agree that the current title is downplaying the minutiae of the method and the signal we capture with it, we have used your suggested title.

      There are an outsized number of complexes that had ROC-AUCs greater than 0.5 which is why we performed the permutation tests to determine how significant each of the individual ROC-AUCs were given the differing number of protein/domain pairs in each complex. Between the statistical methods used only 3 of the 17 complexes ranked physical interactions significantly higher than non-physically interacting domains in every analysis. Even among the 3 that were statistically significant some of the physically interacting domains still fell among the bottom portion of the ERC scores for that complex (Figure 5: MCM and CUL8 complexes) This is why we concluded that physical interactions are not the sole driving force of the signal captured by ERC.

      -Abstract: related to my preceding comment, the word "negligible" in the abstract is misleading. If physical interactions were truly entirely negligible, the comparisons of physically interacting vs non-physically interacting domains would yield 0.5. Instead, these comparisons always yielded results greater than 0.5. Consider rewording.

      Thank you for the suggestion this phrasing has been changed to “Therefore, we conclude that coevolution due to physical interaction is weak, but present in the signal captured by ERC”

      We agree that “negligible” may be too strong of a word, however, the comparisons do not always yield results greater than 0.5.

      5 of the 17 complexes do not reach the 0.5 threshold for the initial ROC analysis and even among those that do, only 4 had significantly high ROC-AUCs. You are correct that the signal is not completely negligible which is why we continued by determining if the physical interaction was driving high ERC only within proteins (Figure 5)

      -Figure 3: I think there may be an error in the domain labeling in Figure 3. The comparison between OKP1_2 and AME1_3 is the highest ERC value in the matrix. From the complex structure, it appears that OKP1_2 and AME1_3 are two helix domains that appear to physically interact. However, in the ERC matrix, they are not shaded to indicate they are a physical interaction pair. Please double-check that the interacting domains are properly annotated, since mis-annotation would have a large impact on the interpretation of this figure with respect to the overall question the paper addresses.

      Thank you for catching this - fixed.

      Minor comments:

      -Methods: "The full ERC pipeline can be found at (Github)." Provide github URL here? Thanks for the catch, fixed

      -Discussion: "Evidence for physical coevolution however was tempered by a global permutation test, which did not reach significance, indicating that this inference is sensitive to approach and further underlines the relatively weak contribution of physical coevolution." The word "relatively" may not be a good choice of words. In comparison to what? As is, the phrasing could be interpreted as implying "in comparison to non-physical interactions". This would not be accurate, because the results show that in general, physical interactions are a stronger contributor to ERC (consistent trend but varied significance, depending on methodology) than non-physical interactions.

      Thank you for your help with clarification. The word relatively was removed.

      However, we do not agree that in general physical interactions are a stronger contributor to ERC than non-physical interactions (such as gene expression, codon adaptation, etc.). In all of our statistical tests a maximum of 5 of the 17 complexes ranked physical interactions significantly higher than non-physical interactions. While the ROC-AUC is greater than 0.5 for 12 of the 17 complexes only 4 of those were significant.

      -I have not seen Fisher-transformed correlation coefficients used in the context of ERC. I understand that it's helpful in normalizing the results so that they are comparable between ERC comparisons with differing numbers of overlapping branches (i.e. points on a linear correlation plot). A reference of where the authors got this idea or a little more verbiage to describe the rationale would be helpful. On a related note, I would expect that using linear correlation p-value instead of R-squared would account for differences in overlapping branches, eliminating the need to apply fisher-transformation. It would be helpful for the authors to outline their rationale for using a correlation coefficient rather than a P-value.

      We agree that this method could be made clearer. We made a methodological choice to use Fisher transformation over linear correlation p-value. Both methods should achieve the same end result by taking the number of branches into consideration. We have added additional explanation to the results section “Both protein pathways and complexes have elevated ERC”:

      “ERC was calculated for all pairs of the 12,552 genes. For each pair the correlation is Fisher transformed to normalize for the number of shared branches that contribute to the correlation. This normalization is necessary to reduce false positives that have high correlation solely due to a small number of data points. This normalization also allows for direct comparison of ERC between gene pairs that have differing numbers of branches contributing to the score.”

      We also added additional explanation in the methods section including the formula used to calculate the Fisher transformation

      -Did the authors use Pearson or Spearman correlation coefficient?

      Pearson. We clarified this in the methods section, “Calculating evolutionary rate covariation” : “Evolutionary rate covariation is calculated by correlating relative evolutionary rates (RERs) between two gene trees using a Pearson correlation.”

      -Did the authors explore ERC between domains within a single protein? Do domains within a protein exhibit ERC? I would expect that they do. If they do, this could likely be attributed to linkage/genetic hitchhiking, representing a new angle/factor beyond physical interaction that could lead to ERC. This is just an idea for a future analysis, not necessarily a request within the scope of the present paper.

      We did calculate the ERC between domains of a single protein but did not include them in the analysis since they didn’t address the specific question we posed. As expected they are highly correlated, and past unpublished studies in the lab do find a very weak, but detectable genome-wide, signature of rate covariation between neighboring colinear genes on a chromosome. That signal was however so weak as to be eclipsed by true functional relationships, when present.

      Reviewer #3 (Recommendations For The Authors):

      Please read the literature and revise accordingly.

      We understand the confusion surrounding previous literature on the relationship between expression levels and evolutionary rates when comparing between different proteins. Those studies clearly showed how expression level is highly predictive of a given protein’s average evolutionary rate. However, we are studying the change in evolutionary rate over branches for single proteins. This is inherently different because we’re following rate fluctuations in the same protein over time. To our knowledge it has not yet been shown that expression level commonly varies enough over time to produce large rate variations over time in the same protein, and if it is responsible for the correlations of rate we observe between co-functional proteins. It is however reasonable to expect that what governs between-protein differences in rate could also contribute to between-branch differences (over time for a single protein). In fact, our earlier study approached this (Clark et al. Genome Research 2012). We expect expression level could influence rate over time and lump its effect together with general non-physical forces, such as selection pressures. We recognize we could do better in defining more of the non-physical forces and the past literature. We added the following section to the introduction and many other clarifying statements throughout the manuscript:

      “For the purposes of this study, the forces that contribute to correlated evolutionary rates are grouped into two bins, physical and non-physical. The physical force is coevolution occurring at physical interaction interfaces. Non-physical forces include gene co-expression, codon adaptation, selective pressures, and gene essentiality. There is a well accepted negative relationship between gene expression and rate of protein evolution where genes that are highly expressed generally have slower rates of evolution14,15. However, Cope et al.16 found that there is a weak relationship between both gene expression and the number of interactions a protein has with the coevolution of expression level. Conversely, they found a strong relationship between proteins that physically interact and the coevolution of gene expression. These findings illuminate the difference between the strong relationship of gene expression level on the average evolutionary rate of a protein and the weak contribution of gene expression level to correlated evolutionary rates of proteins across branches. The finding that physically interacting proteins have strong expression level coevolution brings to question how much coevolution of physically interacting proteins contributes to overall covariation in protein evolutionary rates.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      In this study, Yan et al. investigate the molecular bases underlying mating type recognition in Tetrahymena thermophila. This model protist possesses a total of 7 mating types/sexes and mating occurs only between individuals expressing different mating types. The authors aimed to characterize the function of mating type proteins (MTA and MTB) in the process of self- and non-self recognition, using a combination of elegant phenotypic assays, protein studies, and imaging. They showed that the presence of MTA and MTB in the same cell is required for the expression of concavalin-A receptors and for tip transformation - two processes that are characteristic of the costimulation phase that precedes cell fusion. Using protein studies, the authors identify a set of additional proteins of varied functions that interact with MTA and MTB and are likely responsible for the downstream signaling processes required for mating. This is a description of a fascinating self- and non-self-recognition system and, as the authors point out, it is a rare example of a system with numerous mating types/sexes. This work opens the door for the further understanding of the molecular bases and evolution of these complex recognition systems within and outside protists.

      The results shown in this study point to the unequivocal requirement of MTA and MTB proteins for mating. Nevertheless, some of the conclusions regarding the mode of functioning of these proteins are not fully supported and require additional investigation.

      Strengths:

      (1) The authors have established a set of very useful knock-out and reporter lines for MT proteins and extensively used them in sophisticated and well-designed phenotypic assays that allowed them to test the role of these proteins in vivo.

      (2) Despite their apparent low abundance, the authors took advantage of a varied set of protein isolation and characterization techniques to pinpoint the localization of MT proteins to the cell membrane, and their interaction with multiple other proteins that could be downstream effectors. This opens the door for the future characterization of these proteins and further elucidation of the mating type recognition cascade.

      Weaknesses:

      The manuscript is structured and written in a very clear and easy-to-follow manner. However, several conclusions and discussion points fall short of highlighting possible models and mechanisms through which MT proteins control mating type recognition:

      (1) The authors dismiss the possibility of a "simple receptor-ligand system", even though the data does not exclude this possibility. The model presented in Figure 2 S1, and on which the authors based their hypothesis, assumes the independence of MTA and MTB proteins in the generation of the intracellular cascade. However, the results presented in Figure 2 show that both proteins are required to be active in the same cell. Coupled with the fact that MTA and MTB proteins interact, this is compatible with a model where MTA would be a ligand and MTB a receptor (or vice-versa), and could thus form a receptor-ligand complex that could potentially be activated by a non-cognate MTA-MTB receptor-ligand complex, leading to an intracellular cascade mediated by the identified MRC proteins. As it stands, it is not clear what is the proposed working model, and it would be very beneficial for the reader for this to be clarified by having the point of view of the authors on this or other types of models.

      We are very grateful that Reviewer #1 proposed the possibility that MTA and MTB form a receptor-ligand complex in which one acting as the ligand and the other as the receptor. We considered this hypothesis when asking how dose MTRC function, too. However, our current results do not support this idea. For instance, if MTA were a ligand and MTB a receptor, we would expect a mating signal upon treatment with MTAxc protein, but not with MTBxc. Contrary to this expectation, our experiments revealed that both MTAxc and MTBxc exhibit very similar effects (Figure 5, green and blue), and their combined treatment produces a stronger effect (Figure 5, teal). This suggests a mixed function for both proteins. (We incorporated this discussion into the revised version [line 120-121, 240-244].) It is pity that our current knowledge does not provide a detailed molecular mechanism for this intricate system. We are actively investigating the protein structures of MTA, MTB, and the entire MTRC, hoping to gain deeper insights into the molecular functions of MTA and MTB.

      Additionally, we also realized that the expression we used in the previous version, “simple receptor-ligand model”, is not clearly defined. As Reviewer #1 pointed out, in this section, we examined whether the individual proteins of MTA and MTB act as a couple of receptor and ligand. We think this is the simplest possibility as a null hypothesis for Tetrahymena mating-type recognition. We have clarified it in the revised version (line 90-91, 104-106). According to this section, we proposed that MTA and MTB may form a complex that serves as a recognizer (functioning as both ligand and receptor) (line 117-118).

      (2) The presence of MTA/MTB proteins is required for costimulation (Figure 2), and supplementation with non-cognate extracellular fragments of these proteins (MTAxc, or MTBxc) is a positive stimulator of pairing. However, alone, these fragments do not have the ability to induce costimulation (Figure 5). Based on the results in Figures 5 and 6 the authors suggest that MT proteins mediate both self and non-self recognition. Why do MTAxc and MTBxc not induce costimulation alone? Are any other components required? How to reconcile this with the results of Figure 2? A more in-depth interpretation of these results would be very helpful, since these questions remain unanswered, making it difficult for the reader to extract a clear hypothesis on how MT proteins mediate self- and non-self-recognition.

      Several factors could contribute to the inability of MTA/Bxc to induce costimulation. It is highly likely that additional components are necessary, given that MTA/B form a protein complex with other proteins. Moreover, the expression of MTA/Bxc in insect cells, compared with Tetrahymena, might result in differences in post-translational modifications. Additionally, there are variations in protein conditions; on the Tetrahymena membrane, these proteins are arranged regularly and concentrated in a small area, while MTA/Bxc is randomly dispersed in the medium. The former condition could be more efficient. If there is a threshold required to stimulate a costimulation marker, MTA/Bxc may fail to meet this requirement. Much more studies are needed to fully answer this question. We acknowledged this limitation in the revised version (line 244-248).

      Reviewer #2:

      This manuscript reports the discovery and analysis of a large protein complex that controls mating type and sexual reproduction of the model ciliate Tetrahymena thermophila. In contrast to many organisms that have two mating types or two sexes, Tetrahymena is multi-sexual with 7 distinct mating types. Previous studies identified the mating type locus, which encodes two transmembrane proteins called MTA and MTB that determine the specificity of mating type interactions. In this study, mutants are generated in the MTA and MTB genes and mutant isolates are studied for mating properties. Cells missing either MTA or MTB failed to co-stimulate wild-type cells of different mating types. Moreover, a mixture of mutants lacking MTA or MTB also failed to stimulate. These observations support the conclusion that MTA and MTB may form a complex that directs mating-type identity. To address this, the proteins were epitope-tagged and subjected to IP-MS analysis. This revealed that MTA and MTB are in a physical complex, and also revealed a series of 6 other proteins (MRC1-6) that together with MTA/B form the mating type recognition complex (MTRC). All 8 proteins feature predicted transmembrane domains, three feature GFR domains, and two are predicted to function as calcium transporters. The authors went on to demonstrate that components of the MTRC are localized on the cell surface but not in the cilia. They also presented findings that support the conclusion that the mating type-specific region of the MTA and MTB genes can influence both self- and non-self-recognition in mating.

      Taken together, the findings presented are interesting and extend our understanding of how organisms with more than two mating types/sexes may be specified. The identification of the six-protein MRC complex is quite intriguing. It would seem important that the function of at least one of these subunits be analyzed by gene deletion and phenotyping, similar to the findings presented here for the MTA and MTB mutants. A straightforward prediction might be that a deletion of any subunit of the MRC complex would result in a sterile phenotype. The manuscript was very well written and a pleasure to read.

      Thanks for the valuable comments and suggestions. We are currently in the process of constructing deletion strains for these genes. As of now, we have successfully obtained ΔMRC1-3 and MRC4-6 knockdown strains. Our preliminary observations indicate that ΔMRC1-3 strains are unable to undergo mating. However, we prefer not to include these results in the current manuscript, as we believe that more comprehensive studies are still needed.

      Reviewer #3:

      The authors describe the role, location, and function of the MTA and MTB mating type genes in the multi-mating-type species T. thermophila. The ciliate is an important group of organisms to study the evolution of mating types, as it is one of the few groups in which more than two mating types evolved independently. In the study, the authors use deletion strains of the species to show that both mating types genes located in each allele are required in both mating individuals for successful matings to occur. They show that the proteins are localized in the cell membrane, not the cilia, and that they interact in a complex (MTRC) with a set of 6 associated (non-mating type-allelic) genes. This complex is furthermore likely to interact with a cyclin-dependent kinase complex. It is intriguing that T. thermophila has two genes that are allelic and that are both required for successful mating. This coevolved double recognition has to my knowledge not been described for any other mating-type recognition system. I am not familiar with experimental research on ciliates, but as far as I can judge, the experiments appear well performed and mostly support the interpretation of the authors with appropriate controls and statistical analyses.

      The results show clearly that the mating type genes regulate non-self-recognition, however, I am not convinced that self-recognition occurs leading to the suppression of mating. An alternative explanation could be that the MTA and MTB proteins form a complex and that the two extracellular regions together interact with the MTA+MTB proteins from different mating types. This alternative hypothesis fits with the coevolution of MTA and MTB genes observed in the phylogenetic subgroups as described by Yan et al. (2021 iScience). Adding MTAxc and/or MTBxc to the cells can lead to the occupation of the external parts of the full proteins thereby inhibiting the formation of the complex, which in turn reduces non-self interactions. Self-recognition as explained in Figure 2S1 suggests an active response, which should be measurable in expression data for example. This is in my opinion not essential, but a claim of self-recognition through the MTA and MTB should not be made.

      We express our gratitude to Reviewer #3 for proposing the occupation model and have incorporated this possibility into the manuscript. We believe it is possible that occupation may serve as the molecular mechanism through which self-recognition negatively regulates mating. If there is a physical interaction between mating-type proteins of the same type, but this interaction blocks the recognition machinery rather than initiating mating, it can be considered a form of self-recognition. This aligns with the observation that strains expressing MTA/B6 and MTB2 mate normally with WT cells of all mating types except for VI and II (line 203-204). A concise discussion on this topic is included in the manuscript (line 288-293, 659-661). We are actively investigating the downstream aspects of mating-type recognition, and we hope to provide further insights into this question soon.

      The authors discuss that T. thermophila has special mating-type proteins that are large, while those of other groups are generally small (lines 157-160 and discussion). The complex formed is very large and in the discussion, they argue that this might be due to the "highly complex process, given that there are seven mating types in all". There is no argument given why large is more complex, if this is complex, and whether more mating types require more complexity. In basidiomycete fungi, many more mating types than 7 exist, and the homeodomain genes involved in mating types are relatively small but highly diverse (Luo et al. 1994 PMID: 7914671). The mating types associated with GPCR receptors in fungi are arguably larger, but again their function is not that complex, and mating-type specific variations appear to evolve easily (Fowler et al 2004 PMID: 14643262; Seike et al. 2015 PMID: 25831518). The large protein complex formed is reminiscent of the fusion patches that develop in budding or fission yeasts. In these species, the mating type receptors are activated by ligand pheromones from the opposite mating type that induce polarity patch formation (see Sieber et al. 2023 PMID: 35148940 for a recent review). At these patches, growth (shmooing) and fusion occur, which is reminiscent (in a different order) of the tip transformation in T. thermophilia. The fusion of two cells is in all taxa a dangerous and complex event that requires the evolution of very strict regulation and the existence of a system like the MTRC and cyclin-dependent complex to regulate this process is therefore not unexpected. The existence of multiple mating types should not greatly complicate the process, as most of the machinery (except for the MTA and MTB) is identical among all mating types.

      We are very grateful that Reviewer #3 provide this insightful view and relevant papers. In response to the feedback, we removed the sentences regarding “multiple mating types greatly complicate the process” in the revised version. Instead, we have introduced a discussion section comparing the mating systems of yeasts and Tetrahymena (line 279-286).

      The Tetrahymena/ciliate genetics and lifecycle could be better explained. For a general audience, the system is not easy to follow. For example, the ploidy of the somatic nucleus with regards to the mating type is not clear to me. The MAC is generally considered "polyploid", but how does this work for the mating type? I assume only a single copy of the mating type locus is available in the MAC to avoid self-recognition in the cells. Is it known how the diploid origin reduces to a single mating type? This does not become apparent from Cervantes et al. 2013.

      In T. thermophila, the MIC (diploid) contains several mating-type gene pairs (mtGP, i.e., MTA and MTB) organized in a tandem array at the mat locus on each chromosome. In sexual reproduction, the new MAC of the progeny develops from the fertilized MIC through a series of genome editing events, and its ploidy increases to ~90 by endoreduplication. During this process, mtGP loss occurs, resulting in only one mtGP remaining on the MAC chromosome. The mating-type specificity of mtGPs on each chromosome within one nucleus becomes relatively pure through intranuclear coordination. After multiple assortments (possibly caused by MAC amitosis during cell fission), only mtGPs of one mating-type specificity exist in each cell, determining the cell’s mating type.

      It is pity that the exact mechanisms involved in this complicated process remain a black box. The loss of mating-type gene pairs is hypothesized to involve a series of homologous recombination events, but this has not been completely proven. Furthermore, there is no clear understanding of how intranuclear coordination and assortment are achieved. While we have made observations confirming these events, a breakthrough in understanding the molecular mechanism is yet to be achieved.

      We included more information in the revised version (line 672-683). Given the complexity of these unusual processes, we recommend an excellent review by Prof. Eduardo Orias (PMID: 28715961), which offers detailed explanations of the process and related concepts (line 685-686).

      Also, the explanation of co-stimulation is not completely clear (lines 49-60). Initially, direct cell-cell contact is mentioned, but later it is mentioned that "all cells become fully stimulated", even when unequal ratios are used. Is physical contact necessary? Or is this due to the "secrete mating-essential factors" (line 601)? These details are essential, for interpretation of the results and need to be explained better.

      Sorry that we didn’t realize the term “contact” is not precise enough. In Tetrahymena, physical contact is indeed necessary, but it can refer to temporary interactions. Unlike yeast, Tetrahymena cells exhibit rapid movement, swimming randomly in the medium. Occasionally, two cells may come into contact, but they quickly separate instead of sticking together. Even newly formed loose pairs often become separated. As a result, one cell can come into contact with numerous others and stimulate them. We have clarified this aspect in the revised version (line 50-51, 57).

      Abstract and introduction: Sexes are not mating types. In general, mating types refer to systems in which there is no obvious asymmetry between the gametes, beyond the compatibility system. When there is a physiological difference such as size or motility, sexes are used. This distinction is of importance because in many species mating types and sexes can occur together, with each sex being able to have either (when two) or multiple mating types. An example are SI in angiosperms as used as an example by the authors or mating types in filamentous fungi. See Billiard et al. 2011 [PMID: 21489122] for a good explanation and argumentation for the importance of making this distinction.

      We have clarified the expression in the revised version (line 20, 38, 40, 45).

      Recommendations for the authors:

      Reviewer #1:

      I really enjoyed reading this manuscript and I think a few tweaks in the writing/data presentation could greatly improve the experience for the reader:

      (1) The information about your previous work in identifying downstream proteins CDK19, CYC9, and CIP1 (lines 170-173) could be directly presented in the introduction.

      We have moved this information in the introduction in the revised version (line 74-77).

      (2) For a reader who is not familiar with Tetrahymena, a few more details on how reporter and knock-out lines are generated would be beneficial.

      We introduced the knock-out method in Figure 2 – figure supplement 1B, HA-tag method in Figure 3A, and MTB2-eGFP construction method in Figure 4E. In addition, we introduced how co-stimulation markers observed in Materials and Methods (line 404-410)

      (3) Figures 5 and 6: clarify the types of pairing and treatments that were done directly in the figure (eg. adding additional labels). As of now, it is necessary to go through the text and legend to try and understand in detail what was done.

      Cell types and treatments were directly introduced in the revised figure (Figure 5 and 6).

      (4) The logical transition in lines 136-142 is hard to follow.

      We rewrote this paragraph in the revised version (lines 143-156). Additionally, we added a figure to illustrate the theoretical mating-type recognition model between WT cells and ΔCDK19, ΔCYC9 cells, MTAxc, MTBxc proteins, and ΔMTA, ΔMTB cells (Figure 2 – figure supplement 1D-G).

      (5) Lines 191-196: the fact that cells expressing multiple mating types can self goes against an active self-rejection system - if this is the case there should be self-rejection among all expressed mating types. Unless non-self recognition is an active process and self-recognition is simply the absence of non-self recognition. The authors briefly mention this in lines 263-265, but it would be interesting to expand and clarify this.

      We appreciate that Reviewer #1 notice the interesting selfing phenotype of the MTB2-eGFP (MTVI background) strain. We further discussed it in the revised manuscript (line 298-306).

      (6) The authors briefly mention the possibility of different mating types using different recognition mechanisms (lines 255-260), based on the big differences in the size of the mating-specific region of MT proteins. Following this and the weakness nr. 2, I think it would be pertinent to gather and present more information on the properties and structures of the mating-type specific regions of MT proteins. Simple in silico analysis of motifs, structure, etc. could help clarify the role of these regions. It seems more parsimonious that MT proteins would have variable mating type specific regions that account for the recognition of the different mating types, and conserved cytoplasmic functions that could trigger a single downstream signaling cascade. It would be interesting to know the authors' opinion on this.

      We are very grateful for this suggestion. Actually, we are currently working on determining the 3D structure of MTRC. The Alphafold2 prediction indicates that the MT-specific region is comprised of seven global β-sheets, resembling the structure of immunoglobulins (Ig). Our most recent cryo-EM results have revealed a ~15Å structure, aligning well with the prediction. However, the main challenge lies in the low expression levels, both in Tetrahymena and insect/mammal cells. We anticipate obtaining more detailed results soon. Therefore, we prefer to present the MT recognition model with robust experimental evidence in the future, and didn’t discuss too much on this aspect in the current manuscript.

      (7) Adding a figure including a proposed model, as well as expanding the discussion on the points presented as "weaknesses" would help clarify the ideas/hypothesis on how the mating recognition works. I think this would really elevate the paper and help highlight the results.

      We added a figure to introduce the model and the weaknesses in the revised version (Figure 7, line 656-665).

      (8) Line 202-203: It is far-fetched to infer subcellular localization based on the data presented here, couterstaining with other dyes and antibodies specific to certain cell components, as well as negative control images, are required.

      Thanks for the suggestion. We attempted to stain cell components using various dyes and antibodies. Unfortunately, we found that cell surface and cilia (especially oral cilia) is very easy to give a false positive signal. We think this issue seriously affects the credibility of the results. It may seem like splitting hairs, but we are trying to be precise.

      Meanwhile, we still believe the mating-type proteins localizes to cell surface because MTA-HA is identified in the isolated cell surface proteins.

      Regarding negative control, as shown in Fig. 4G, where a MTB2-eGFP cell is pairing with a WT cell, no GFP signal is observed in the WT cell.

      (9) Lines 131: clarify the sentence - expression of Con-A receptors requires both MTA and MTB (MTA to receive the signal).

      We modified the sentence in the revised version (line 139-140).

      Reviewer #2:

      Minor points.

      (1) Line 194-196. Why are these cells able to self?

      These cells able to self may because the MTRC contain heterotypic mating-type proteins (MTA6 and MTB2), which activate mating when they interact with another heterotypic MTRC (line 207-208).

      (2) Line 232. What do the authors mean by the term synergistic effect here? Definition and statistics?

      Sorry about the confusion. The synergistic effect refers to the effect of MTAxc and MTBxc become stronger when using together. We clarified it in the revised version (line 232).

      (3) For Figure 4 panel D, are there antibodies that are available as a control for cilia? If so, then blotting this membrane would show that cilia-associated proteins are in the cilia preparation, which is a standard control for sub-cellular fractionation.

      Thanks for the suggestion. Unfortunately, we didn’t find a suitable cilia-specific antibody yet. Instead, we employed MS analysis to confirm the presence of cilia proteins in this sample (line 195-196, Figure 4–Source data 1). We also observed the sample under the microscope, which directly revealed the presence of cilia (Figure 4C).

      (4) At least one reference cited in the text was not present in the reference list. The authors should go through the references cited to ensure that all have made it into the reference list.

      We have checked all the references.

      Some minor edits:

      (1) MTA and MTB are presented in both roman and italics (e.g. line 209) in the manuscript. Maybe all should be in italics? Or is this a distinction between the gene and the protein?

      The italics word (MTA) refers to gene, and non-italics word (MTA) refers to protein.

      (2) Line 251. Change "achieving" to "achieve".

      We have corrected this word (line 266).

      Reviewer #3:

      Line 101. It would help to explain this expectation earlier in this paragraph.

      We explained the expectation in the revised version (line 92-97, 104-106).

      Line 109. How is a co-receptor different from the MTRC complex?

      We have rewritten the relevant sentences to enhance clarity (line 116-119). The molecular function of the MTRC complex could involve acting as a co-receptor or recognizer (functioning as both ligand and receptor). Based on the results presented in this section, we propose that MTA and MTB may function as a complex, but the confirmation of this hypothesis (MTRC) is provided in a later section. Therefore, we did not use the term “MTRC” here. These sentences briefly discuss the molecular function of this complex and explain why MTRC does not appear to function as a co-receptor.

      Line 251: which "dual approach" is referred to?

      Dual approach is referred to both self and non-self recognition. We explained it in the revised version (line 265-266).

      Line 258: what "different mechanisms" do the authors have in mind? Why would a different mechanism be expected? The different sizes could have evolved for (coevolutionary?) selection on the same mechanism.

      Sorry about the confusion. We clarified it in the revised version (line 269-278).

      What we intended to express is that we are uncertain whether the mating-type recognition model we discovered in T. thermophila is applicable to all Tetrahymena species due to significant differences in the length of the mating-type-specific region. We believe it is important to highlight this distinction to avoid potential misinterpretations in future studies involving other Tetrahymena species. At the same time, we look forward to future research that may provide insights into this question.

      Fig 2 C&D. Is it correct that these figures show the strains only after 'preincubation'? This is not apparent from the caption of the text. Additionally, the order of the images is very confusing. Write in the figures (so not just in the caption) what the sub-script means.

      These panels are re-organized in the revised version (Fig. 2C&D). There are three kinds of pictures: “not incubated”, “WT pre-incubated by mutant” and “mutant pre-incubated by WT”.

      The methods used to generate Figure 5 are not clearly described. I understand that the obtained xc proteins were added to the cells, and then washed, after which a test was performed mixing WT-VI and WT-VII cells. Were both cells treated? Or only one of the strains? The explanation for the reused washing medium is not clear and the method is not indicated.

      Both cells are treated. More details are provided in the revised manuscript (line 230-231, 633-634, 637-639, Fig. 5). To prepare the starvation medium containing mating-essential factors, cells were starved in fresh starvation medium for ~16 hours. Subsequently, cells were removed by three rounds of centrifugation (1000 g, 3 min) (line 330-332).

      In general, the figures are difficult to understand without repeated inquiries in the captions. Give more information in the figures themselves.

      More information is introduced in the figure (Fig. 2C, Fig. 3B, Fig. 4A, B, D, Fig. 5 and Fig. 6).

  3. mail-attachment.googleusercontent.com mail-attachment.googleusercontent.com
    1. Similarly, it is a constitutive featureof the concept 'correct' that, if you judge that it is correct for you to disbelieveq and not correct for you to believe q, you are thereby committed to not believ?ing q

      Given the author's thesis, I was wondering if it is a reasonable task to determine/ define the correctness of a belief in such a sense, since many people hold beliefs to be deeply personal and private. Not all beliefs that a person has may necessarily be true, and this knowledge may be possessed by the person themselves as well, but that does not make the belied any less of one. A belief is not fact, and facts are not beliefs--normatively too, when we speak of beliefs, there is an aspect of the personal attached to it. We do not use "believes" as a placeholder for "knows", nor is it a moniker for fact--and i think that inherently suggests that the nature of the correctness of a belief is more subjective, and thus cannot really be said to be determined through the truth value of its propositions. A belief may seem irrational on the surface, but if it holds great value for the person who upholds said belief, it seems uncharitable to suspend judgement on the correctness of it--especially if it a belief that does not have to do with how things are in the world.

    1. Activity: Value statements in what goes viral# 12.7.1. Choose three scenarios# When content goes viral there may be many people with a stake in it’s going viral, such as: The person (or people) whose content or actions are going viral, who might want attention, or get financial gain, or might be embarrassed or might get criticism or harassment, etc. Different people involved might have different interests. Some may not have awareness of it happening at all (like a video of an infant). Different audiences might have interests such as curiosity or desire to bring justice to a situation or desire to get attention for themselves or their ideas based on engaging the viral content, or desire to troll or harass others. Social networking platforms might have interests such as increased attention to their platform or increased advertising, or increased or decreased reputation (in views of different audiences). List at least three different scenarios of content going viral and list out the interests of different groups and people in the content going viral. 12.7.2. Create value statements# Social media platforms have some ability to influence what goes viral and how (e.g., recommendation algorithms, what actions are available, what data is displayed, etc.), though they only have partial control, since human interaction and organization also play a large role. Still, regardless of whether we can force any particular outcome, we can still consider of what you think would be best for what content should go viral, how much, and in what ways. Create a set of value statements for when and how you ideally would want content to go viral. Try to come up with at least 10 value statements. We encourage you to consider different ethics frameworks as you try to come up with ideas.

      As we engage with viral content, whether as creators, participants, or observers, these value statements require us to reflect on the broader implications of online interactions. Behind every viral phenomenon lies a complex web of human stories, aspirations and responsibilities that deserve our thoughtful consideration.

    1. What does the individual badger‘hear’ as a result of the changing pressures on its tympanum that we choose to calla sound?

      Its interesting how he put the word hear in quotes because it shows that we have no way of knowing if badgers perceive sound the way that we do and process it in the way that we can. What we think of as hearing may not be the same process for animals. Even though we can scientifically know the hearing levels of a badger, we can't ever really know what hearing is like for them

    Annotators

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: #RC-2023-02281

      Corresponding author(s): Maurizio Molinari

      Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript from Fasana et al., the authors present data that investigates potential compensatory degradation pathways for misfolded glycoproteins in the ER - postulating that the ER-to-lysosome associated degradation (ERLAD) pathway becomes employed in the absence of a path for substrates to reach the ER-associated degradation (ERAD) mechanism. Using the classic ERAD substrate alpha1-antitrypsin NHK variant (NHK), the authors first demonstrate that pharmacologically preventing access of NHK to ERAD either with KIF (early) or PS-341 (late) elevates the number of LAMP-1 positive endolysosomes also immunoreactive for NHK (via HA), similar to what is observed for the ATZ variant that forms polymers in the ER (Fig 2). The authors next use shRNAs that silence essential ERAD factors (EDEM1, OS-9) involved in glycan recognition to demonstrate comparable enrichment of NHK in endolysosomes through genetic disruption (Fig 3). Next, the authors employ FAM134B-deficient MEFs to demonstrate the requirement for this ER-phagy receptor when ERAD is unavailable (Fig 4). Reconstituting FAM134B-/- MEFs treated with KIF/PS-341 + Baf, with a full length FAM134B rescue plasmid restores endolysosomal accumulation of NHK while a FAM134B-∆LIR does not, providing supporting evidence for substrate rerouting to ERLAD. Finally, the authors use knockouts of Atg7 and Atg13 to demonstrate dependence on LC3 lipidation and independence from macro-ERphagy (Fig 6), that points towards a pathway that is like that used to remove ATZ polymers. From these data, the authors conclude that ERLAD is increasingly engaged for substrate degradation when ERAD is impaired.

      MAJOR COMMENTS 1. All assays rely on quantification of the NHK-HA substrates by microscopy. Would it be possible for the authors to also include biochemical analysis of NHK - potentially including data assessing its changing abundance and glycosylation state?

      To consider this, and other comments, the new submission includes biochemical data (pulse-chase analyses) on NHK (new panels A-D in Fig. 2) and on BACE457delta, an additional ERAD substrate (new Fig. 6). Please also refer to Comment 3.

      In Figure 3D, the knockdown of OS-9.1/2 is modest compared to that of EDEM1 (Fig 3A). Moreover, there is only data from single shRNAs presented. Could the authors please at least include another shRNA to confirm and demonstrate whether the targeting to ERLAD is accordingly scaled to loss of access to ERAD (based on the degree of OS-9 or EDEM1 remaining)?

      __The reviewer is right. The phenotype (i.e., lysosomal delivery of NHK, Figs. 3B, 3C) is quite modest upon EDEM1 silencing. However, one has to consider that in contrast to OS9 lectins, EDEM1 is an enzyme, and residual protein may partially facilitate NHK de-mannosylation and access to the ERAD pathways and therefore reduce the ERLAD contribution for NHK clearance in these cells. Moreover, cells also express EDEM2 and 3 that may partially compensate the loss of EDEM1. __

      While degradation is implied, it is not specifically demonstrated at any point in the manuscript. Perhaps the authors might include some demonstration of NHK stabilization in one of the figures via a translational shutoff or pulse-chase assay.


      __In the new submission, we show biochemical analyses (pulse-chase) that reveal the decay of radiolabeled NHK (Fig. 2A, lanes 1-3) and BACE457delta (Fig. 6A, lanes 1-3), the inhibition by PS341 (lanes 4, 5) and by KIF (lanes 8, 9), and the intervention of lysosomal enzymes when ERAD is inhibited (lanes 6, 7 and 10, 11). Moreover, we confirm that the protein delivered to the endolysosome is eventually degraded by performing a Bafilomycin washout experiment (new Fig. 2J-2O). __

      10-30% of NHK-HA positive endolysosomes are detected even with Baf alone (e.g. Fig 2E)? Does this mean that Baf impairs ERAD to some extent since or is it evidence for continuous ERLAD involvement when ERAD is intact? If so, how much is its contribution?

      Pulse-chase analyses (new Fig. 2D) and published data show that BafA1 or chloroquine do not inhibit clearance of the ERAD substrates NHK and BACE457delta (e.g., Liu et al 1999, Molinari et al 2002, references in the manuscript). A basal level of endolysosomal delivery between the 20 and 30% as quantified with LysoQuant is observed in all experiments (Figs. 2I, 2O, 3C, 3F, 4C, 4K, 5H, 6G, 6O), which have been performed in 3 different cell lines (3T3, HEK293, MEF). We measure similar basal levels also when ER-phagy is monitored on quantification of lysosomal delivery of endogenous ER marker proteins (e.g., CNX), possibly to be ascribed to constitutive ER phagy that controls physiologic ER turnover.


      An accounting of how much ERLAD is contributing to NHK degradation with or without ERAD impairment is not really present.. Effectively, how much degradation capacity is ERLAD making up? These would be interesting data to include if possible as they would speak to the "division of labour" for ER substrate degradation its potentially dynamic nature.

      The biochemical analyses show the contribution of ERLAD on NHK (new Figs 2B, 2C, grey zones) and BACE457delta (new Figs. 6B,C, grey zones) clearance, when ERAD is dysfunctional.

      MINOR COMMENTS 1. In Figure 4, an increase is observed for the rescue of FAM134B-/-MEFs with WT FAM134B that is 50% greater that of WT MEFs, suggesting that its availability might be rate limiting. Could the authors compare the relative levels of FAM134B for the WT and KO-rescue MEFs to address this possibility?

      __The referee is right in assuming that FAM134B, expressed at low levels in these cells, is limiting. We now show the levels of endogenous FAM134B and of recombinant FAM134B in WB (new Fig. 4A). __

      In Figures 1 and 6, the terms siOS9 and siEDEM1 are used but Figure 3 shows data from shRNAs and not siRNAs.

      We apologize for the mistake. We have corrected this in the new Figures 1 and 7.

      Samples from Figure 3 treated with Baf but this is not indicated in the figure or figure legend.


      We have corrected this, thank you.

      VCP/p97 inhibitors typically stabilize ERAD glycoprotein substrates better than proteasome inhibitors do. Is the same degree of endolysosomal targeting present ?


      __For the convenience of the reviewer (we did not put these data in the new manuscript). In our experiments, the p97 inhibitor DBeQ is less efficient in deviating NHK to the endolysosomal degradative compartments, if compared with KIF (see below). At higher doses, DBeQ also inhibits other AAA-ATPases (e.g., VPS4, which plays a role in certain types of autophagy). This, or other cross-reactivities of DBeQ could explain the moderate capacity to activate ERLAD pathways as a response of ERAD inhibition, if compared with the phenotypes observed when ERAD is inhibited with KIF or PS341. __

      Reviewer #1 (Significance (Required)):

      Deconvolution of the different pathways taken by misfolded proteins to escape the ER is of great interest not only to the ER community but also represents consequences to consider for those interested in therapeutics involving UPS inhibition. While concise, this manuscript does a good job of trying to demonstrate the principal of substrate rerouting and the prioritisation of degradation pathways. Overall, the manuscript is well written, the experiments presented are performed to a sufficient standard, the data are lean but of good quality, and the appropriate statistical analyses have mostly been included where necessary and are described. The Methods and Materials is brief but describes the experiments that have been performed. The manuscript is brief in its results and would obviously benefit from additional complementary assays that would strengthen and broaden the authors arguments for rerouting. But too their credit, the authors do not grossly overstate their findings and merely present the culmination of a set of experiments to answer a single question - what happens to a misfolded glycoprotein substrate when ERAD is impaired. This is a key question with broad implications.

      While their limited data clearly demonstrates an acquired dependence on ERLAD, one can't help but wonder how broadly these findings hold true, as only a single glycoprotein substrate example is used.

      We have now added a complete set of experiments (imaging + biochemical to monitor clearance of the model polypeptides by pulse-chase analyses) performed with a second ERAD substrate (BACE457delta, Fig. 6). These data fully recapitulate the results obtained with NHK.


      Moreover, it is not clear what percentage ERLAD contributes to overall NHK degradation (with or without ERAD) as the total NHK amount remaining is not assessed or measured.


      Pulse-chase analyses (new Fig. 2D) and published data (e.g., Liu et al 1999, Molinari et al 2002, references in the manuscript) show that BafA1 or chloroquine do not inhibit clearance of the ERAD substrates NHK and BACE457delta. The biochemical analyses now show the contribution of ERLAD on NHK (new Figs 2B, 2C, grey zones) and BACE457delta (new Figs. 6B,C, grey zones) clearance, when ERAD is dysfunctional.

      Nevertheless, the manuscript is an advancement of understanding of the fate of substrates unable to access ERAD and raises many future questions of interdependency between the ERAD and ERLAD pathways. The data just need a bit of shoring up.

      Expertise - ERAD, UPS, protein quality control

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The endoplasmic reticulum (ER) is a crucial site for protein synthesis and folding within the cell, and strict protein quality control is essential for maintaining ER homeostasis. In this context, ER-associated degradation (ERAD) and the unfolded protein response (UPR) play pivotal roles. Recent researches have highlighted the significance of ER-phagy in protein quality control. In this manuscript, the authors demonstrate the role of FAM134B in degrading misfolded proteins such as ATZ through the ER-phagy pathway when the ERAD pathway is obstructed. This work partially addresses a prominent issue in the field, unveiling the interconnections between different regulatory pathways in maintaining ER homeostasis.

      Major issues: 1: In a multitude of experiments, the authors employed Bafilomycin A1 (BafA1) to block the fusion between autophagosomes and lysosomes, attempting to demonstrate that the clearance of misfolded proteins mediated by FAM134B is independent of autolysosomes. However, in Figure 4, the lack of rescue of FAM134B knockout by overexpressing FAM134B△LIR suggests a dependence on the interaction between FAM134B and LC3. The conclusions drawn before and after appear contradictory.

      We apologize if our explanations were unclear. We have now modified the text and performed new experiments to clarify these issues.

      __The inhibitor of the V-ATPase BafA1 is used here to inhibit the activity of lysosomal hydrolases and to accumulate undegraded material in the LAMP1-endolysosomes (note that these endolysosomes also display RAB7 at their limiting membrane) (Fregno et al 2018, Forrester et al 2019, Fregno et al 2021, …). __

      __In Figs. 2A-2D, we now monitor the lack of NHK stabilization by cell exposure to BafA1 (Fig. 2D), which correlates with lack of accumulation of NHK in the LAMP1-positive compartment (e.g., Fig. 2F, 2J, and quantifications in 2I and 2O). The biochemical data also show that BafA1 stabilizes NHK in cells where ERAD has been inactivated with PS341 or KIF (Fig. 2A, lanes 6, 7, 10, 11 and grey zones in Figs. 2B and 2C), which correlates with accumulation of NHK in LAMP1-positive organelles (Figs. 2G, 2H, 2I, 2K, 2M, 2O). __

      __In Figs. 2J-2O, we have now added panels showing that NHK clearance from the LAMP1-positive endolysosome lumen is restored upon BafA1 washout. __

      Importantly, the involvement of the lipidation machinery, of the ER-phagy receptor FAM134B and of the LC3-binding function of FAM134B (the LIR), does not necessarily imply the involvement of autophagosomes in the process under investigation, as the comment by the referee seems to suggest. For example, both the clearance from the ER of ATZ polymers and of mutant forms of procollagen rely on the LC3 lipidation machinery and on the LC3-binding function of FAM134B, but ERLAD of ATZ polymers does not rely on autophagosomes intervention (new Fig. 1B, arrow 1 and Fregno et al 2018), whereas ERLAD of procollagen relies on intervention of autophagosomes (new Fig. 1B, arrow 2 and Forrester et al 2019).

      2: Some Western blot data are insufficient to substantiate the author's conclusions. For instance, in Figure 5D, the ATG7 KO line is inadequately supported

      The WB show____s the absence of ATG7 in the ATG7-KO cells (a well-established cell line generated in the lab of Masaaki Komatsu (____Komatsu M, et al. J Cell Biol 169: 425-434_) and used in many_ laboratories, including our lab in Fumagalli et al 2016, Fregno et al 2018, Fregno et al 2021, Loi et al 2019, Kucinska et al 2023). We agree with the reviewer that the anti-Atg7 shows cross-reactions. We have now added a WB showing the lack of LC3 lipidation in the Atg7-KO cells exposed to nutrient deprivation (new Fig. 5D).

      3: The author employed Lamp1 antibody for lysosomal staining in cells and observed a significant abundance of lysosomes in some experiments, as depicted in Figure 2C, 2D, 4I, etc. Is the phenomenon of lysosomes extensively filling the entire cell a common occurrence? Is it indicative of a normal physiological state?

      There may be variations depending on the cell type used for the experiments. In the new version of the manuscript, we now present imaging data for 3 cell lines (NIH 3T3 with stable expression of NHK and ATZ (Figs. 2E-2H), MEF (Figs. 2J-2N, 4, 5, 6) and HEK293 with transient expression of ERAD clients (Figs. 3).

      Minor issues: 1: Some immunofluorescence experimental data are unclear. Please request the authors to replace these with more distinct images, as seen in Figure 3B and 3E.


      We hope that the quality of the new images will be considered sufficient for publication.

      2: Some expressions appear to be questionable. For instance, the necessity of utilizing endolysosomes requires clarification.

      For the use of endolysosomes (lysosome would be incorrect in our opinion to indicate these LAMP1/RAB7-positive degradative organelles), we now refer to the papers by Bright et al ____Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity_ Curr Biol 2016, and the original definition by Huotari and Helenius _Endosome maturation EMBO J 2011 (Introduction, page 2).

      3: Some writing lacks precision, such as referring to FAM134B as FAM134.

      __Corrected, thank you____ __ Reviewer #2 (Significance (Required)):

      o General assessment: o Advance: provide an meaningful evidence that how two degradative pathways are coordinated in maintaining ER homeostasis. o Audience: cell biologist o Reviewer's expertise: autophagy, vesicle trafficking, organelle biolgy Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In their study, Fasana and colleagues investigate protein quality control in the ER. Specifically, they test whether folding-incompetent proteins that are normally cleared by ER-associated degradation (ERAD) can also be targeted for degradation by direct vesicular transport from the ER to lysosomes in case ERAD is blocked. They show that blocking ERAD pharamacologically or genetically indeed leads to re-rerouting of an ERAD model substrate (the NHK variant of alpha-antitrypsin) to lysosomes and that this pathway requires the reticulon-like protein FAM134B, the ability of FAM134B to interact with the ubiquitin-like protein LC3 and the machinery for LC3 lipidation.

      The paper is, for the most part, easy to follow. There are, however, a few minor issues and I think the authors could do more to connect their work with similar studies in the literature. Accordingly, I have some general and specific suggestions to make the manuscript more accessible for the reader.

      General suggestions

      1. To avoid confusion, it would be helpful to more clearly distinguish between vesicular transport to endolysosomes and autophagy. Previous work by the authors has defined a trafficking pathway from the ER to endolysosomes that appears to rely on conventional vesicle-mediated transport (Fregno et al, EMBO J 2018). This pathway delivers material from the ER lumen to the lumen of endolysosomes, which are both topologically equivalent to the extracellular space. Hence, this pathway is distinct from autophagy, which is the transport of cytoplasmic components to endolysosomes and thus the transport of material from intracellular to extracellular space. This distinction is particularly important as both vesicular ER-to-lysosome transport and autophagy of the ER involve LC3 and FAM134B, which is typically referred to as an ER-phagy receptor. To make this less confusing, it may be helpful to explain that FAM134B appears to be a multifunctional molecule that can function as a receptor for macroautophagy but also in the vesicular transport pathway studied here. In addition, it would be helpful to point out that LC3 appears to also have roles unrelated to autophagosome formation.

      The reviewer is referring to the original definition of ERLAD to describe the mechanisms of clearance of ATZ polymers (Fregno et al 2018). The definition of ERLAD has now been expanded and is given, for example, in Klionsky DJ, et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17: 1-382 and is explained in detail in our recent review Rudinskiy M, Molinari M (2023) ER-to-lysosome-associated degradation in a nutshell: mammalian, yeast, and plant ER-phagy as induced by misfolded proteins. Febs Letters: 1928-1945.

      __Notably, the acronym ERAD for ER-associated degradation has originally been used to describe ____the proteasomal clearance from the ER of misfolded pro-alpha factor in a reconstituted yeast system in McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. The Journal of cell biology 132: 291-298. Only later on, the acronym has been used as an umbrella term that now covers all the pathways that control proteasomal clearance of misfolded proteins from the ER. A short historical excursus is presented in the new introduction to better explain these issues. __

      It is well established that LC3 and the LC3 lipidation machinery have functions that go beyond macroautophagy (which involves double membrane autophagosomes). Micro-autophagy (or micro-ER-phagy to remain on the topic of our paper) is an example of autophagic pathway relying on ER-phagy receptor that engage LC3, on the LC3 lipidation machinery, without involving autophagosomes. This is schematically represented in the new Fig. 1B.

      Several recent papers that appear relevant to the present study are not mentioned. In particular, Sun et al., Dev Cell 2023 (PMID: 37922908) appears worthy of discussion, as does Gonzalez et al., Nature 2023 (PMID: 37225996).

      Thank you. Both papers are not directly linked to our study addressing the intervention of ERLAD pathways when ERAD activity is impaired. In particular the work of Gonzales et al describes post-translational modification of ER-phagy receptors for their activation. The Sun et al paper is not really related to the topic covered in our manuscript, but we cite it as an alternative pathway that removes ATZ from the ER (page 8).

      Specific suggestions

      1. Abstract: The abstract begins with "About 40% of the eukaryotic cell's proteome is synthesized ... in the ER." Similar statements can be found in many papers and purportedly reflect common knowledge. However, it is unclear where the figure of 'about 40%' comes from. It would be proper to provide a reference and demonstrate that giving such a fairly precise estimate is supported by experimental data. Alternatively, the statement could be modified to avoid being precise than is justified.

      No reference is allowed in the abstract. We therefore modified the sentence as suggested by the reviewer.

      1. p2: "The ER is site of gene expression in nucleated cells and ... native proteins to be delivered at their site of activity ...". There is something missing at the beginning of this sentence. Also, it should be 'delivered to their site of activity', not 'delivered at'.

      Thank you

      1. p2: "... by mechanistically distinct ER-phagy pathways collectively defined as ER-to-lysosome-associated degradation ERLAD." This statement suggests that all pathways subsumed under the term ERLAD are ER-phagy pathways, which I believe is misleading (see comment above on the distinction between autophagy and vesicular transport pathway).

      See point 1.

      1. p2: "KIF selectively ...". Please spell out KIF and explain what kind of compound it is.

      Thank you, we changed to “_The alkaloid kifunensine (KIF) is a cell permeable selective inhibitor of the members of the glycosyl hydrolase 47 family of a____1,2-mannosidases_”____ __ 5. p3: "Notably, ERAD inhibition delays, rather than blocking degradation of ERAD clients ...". Please correct, for example: Notably, ERAD inhibition delays rather than blocks degradation of ERAD clients ...

      Thank you

      Figures 2 - 5: The number of quantified cells is given but it is not clear if experiments were done once or in biological replicates. Please indicate this in the figure legends.

      __N is now given for all panels in the corresponding figure legends.____ __ 7. p4: "To verify if ERAD inactivation ..." sounds odd. Less ambiguous would be 'To test whether' or 'To ask if'.

      Thank you

      1. p7, beginning of discussion: Please correct "delivered at" to 'delivered to'.

      Thank you

      Reviewer #3 (Significance (Required)):

      This is a concise and convincing manuscript with a clear message. The idea that proteins that cannot be processed by ERAD can be eliminated by other means, for instance by autophagy, is not new. Similarly, the FAM134B- and LC3-dependent pathway for ER-to-lysosome transport has been described by the authors before (Fregno et al, EMBO J 2018). Furthermore, the study exclusively relies on microscopy and does not attempt to tackle new mechanistic questions. Still, this study presents a definite functional advance in our understanding of the interplay of various ER quality control pathways.

      The findings presented here will be of interest mainly to molecular cell biologists working on protein quality control and organelle homeostasis. However, given the disease-relevance of misfolded proteins, and alpha-antitrypsin in particular, the impact of this study may eventually go beyond basic research and may also interest translational researchers.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      This is significant work, and you should certainly make the best case you can on the weaknesses discussed.

      We thank reviewer for this positive comment on the significance of our work. The referee indicates as weaknesses (i) that the force involving the bent or straight αI-helix is not readily apparent, (ii) the residue types were not varied in the helix mutations, and (iii) that the chemical shift perturbations are indirect observations.

      We think we have tried to address a large part of these questions by being very careful in our analysis and by the discussion in the manuscript. The following remarks may help to clarify this further:

      (i) The force emanating from the helix is e.g. visualized in the PC2 loadings in Figure 6E of the PCA carried on all observed SH3-SH2-KD resonances for all apo forms of the helix mutants. The SH2 residues identified by these loadings are in direct vicinity to the αI-helix. The respective PC2 scores correlate to 98% with the vmax of the catalytic reaction and to 94 % with the PC1 scores found for imatinib-induced opening. Importantly, the structure of the KD with the straight αI-helix indicates that mostly residues F516, Q517, S520, and I521 would clash with the SH2 domain in a closed core (Figure 6F). Thus, the expected clashes are in direct vicinity of the SH2 residues identified by the PC2 loadings as correlated to vmax and imatinib-induced opening. These data are completely orthogonal and show that most of the force is coming from residues F516, Q517, S520, and I521 in the αI-αI’ turn.

      (ii) We agree that we mainly used truncations of the αI-helix to study its involvement in activation. Point (i) makes it clear that a larger part of the αI-helix effects is caused by steric clashes of the residues in the αI-αI’ turn. In the latter region, we don’t expect strong amino acid type-specific effects besides excluded volume. Due to expression problems, we could not vary the helix length between residues 519 and 534. However, in this region we introduced the amino acid type mutation E528K. The latter showed a clear specific effect. Further amino acid type-specific effects may be possible in this region. However, we expect that the identified electrostatic E528-R479 interaction is one of the most important interactions in this region.

      (iii) We agree that chemical shift changes of individual resonances are often hard to interpret. However, we want to stress that our conclusions are all drawn from principal component analyses, which in all cases had as input well over 100 if not over 200 1H-15H resonances. The first two principal components of these analyses are robust averages over many residues, which reveal general correlated structural trends.

      We assume that chemical shift deposition etc will be pursued.

      We are currently depositing a larger collection of our Abl data to the “Biological Magnetic Resonance Data Bank (BMRB)”, which includes the NMR chemical shift data of the present work. A ‘collection’ will be a new feature of the BMRB, and we are in discussion with their staff. We will provide the accession codes as soon as possible (probably within the next month) to be included into the final version of the manuscript. We have amended the Data Availability Section accordingly.

      Reviewer #2 (Recommendations For The Authors):

      1) The overall discussion of the implications of the described allostery on kinase activation is provided through lenses of imatinib binding, which is used as an experimental trigger to disassemble the autoinhibited core. Can the authors elaborate in the Discussion on what event would play this role in the kinase catalytic cycle, communicating to helix I? Would dissociation of the myristate from the active site be hypothesized to be the first step in kinase activation? While I understand that certainty may be challenging to attain, it would be good to introduce some ideas into the Discussion.

      We appreciate the reviewer’s suggestions for the discussion and added the following text to the Conclusion section:

      "We have used here imatinib binding to the ATP-pocket as an experimental tool to disassemble the Abl regulatory core. Our previous analysis (Sonti et al., 2018) of the high-resolution Abl transition-state structure (Levinson et al., 2006) indicated that due to the extremely tight packing of the catalytic pocket, binding and release of the ATP and tyrosine peptide substrates is only possible if the P-loop and thereby the N-lobe move towards the SH3 domain by about 1–2 Å. This motion is of similar size and direction as the motion of the N-lobe observed in complexes with imatinib and other type II inhibitors (Sonti et al., 2018). From this we concluded that substrate binding opens the Abl core in a similar way as imatinib. The present NMR and activity data now clearly establish the essential role of the αI-helix both in the imatinib- and substrate-induced opening of the core, thereby further corroborating the similarity of both disassembly processes.

      Notably, the used regulatory core construct Abl83-534 lacks the myristoylated N-cap. Although we have previously demonstrated that the latter construct is predominantly assembled (Skora et al., 2013), the addition of the myristoyl moiety is expected to further stabilize the assembled conformation in a similar way as asciminib.

      Considering this mechanism, dissociation of myristoyl from the native Abl 1b core may be a first step during activation. However, it should be kept in mind that the Abl 1a isoform lacks the N-terminal myristoylation, and it is presently unclear whether other moieties bind to the myristoyl pocket of Abl 1a during cellular processes."

      2) Can the authors comment more on the differentiation between assembled conformations induced by type I inhibitor binding vs apo forms (or AMP-PNP and allosteric inhibitor) reported in Figure 3B? The differences are clearly identified by PCA but not sufficiently discussed.

      As indicated in the text, we think two structural effects are intermingled within PC2. Due to this admixture, it is hard to draw strong conclusions and we don’t want to expand on this too much. We have slightly modified the respective paragraph (p.7) as follows):

      "As the affected residues react differently to perturbations by type I inhibitors and truncation of the αI’-helix (Figure 3A, right), we attribute this behavior to two effects intermixed into the PC2 detection: (i) a minor rearrangement of the SH3/KD N-lobe interface caused by filling of the ATP pocket with type I inhibitors, which in contrast to the stronger N-lobe motion induced by type II inhibitors does not yet lead to core disassembly and (ii) a small rearrangement of the SH2/KD C-lobe interface caused by shortening and mutations of the αI-helix."

      3) The allosteric connection between active site inhibitor binding and the myristate/allosteric inhibitor binding has been observed in the past and noted before, in papers such as Zhang et al, Nature 2010. While the authors reference this paper, they do not acknowledge its specific findings or engage in a broader discussion of how their conclusions relate to this work.

      We have modified the beginning of the Conclusion section:

      "The allosteric connection between Abl ATP site and myristate site inhibitor binding has been noted before, albeit specific settings such as construct boundaries and the control of phosphorylation vary in published experiments. Positive and negative binding cooperativity of certain ATP-pocket and allosteric inhibitors has been observed in cellular assays and in vitro (Kim et al., 2023; Zhang et al., 2010). Furthermore, hydrogen exchange mass spectrometry has indicated changes around the unliganded ATP pocket upon binding of the allosteric inhibitor GNF-5 (Zhang et al., 2010). Here, we present a detailed high-resolution explanation of these allosteric effects via a mechanical connection between the kinase domain N- and C-lobes that is mediated by the regulatory SH2 and SH3 domains and involves the αI helix as a crucial element.

      Specifically, we have established a firm correlation between the kinase activity of the Abl regulatory core, the imatinib (type II inhibitor)-induced disassembly of the core, which is caused by a force FKD–N,SH3 between the KD N-lobe and the SH3 domain, and a force FαI,SH2 exerted by the αI-helix towards the SH2 domain. The FαI,SH2 force is mainly caused by a clash of the αI-αI’ loop with the SH2 domain. Both the FKD–N,SH3 and FαI,SH2 force act on the KD/SH2SH3 interface and may lead to the disassembly of the core, which is in a delicate equilibrium between assembled and disassembled forms. As disassembly is required for kinase activity, the modulation of both forces constitutes a very sensitive regulation mechanism. Allosteric inhibitors such as asciminib and also myristoyl, the natural allosteric pocket binder, pull the αI-αI’ loop away from the SH2 interface, and thereby reduce the FαI,SH2 force and activity. Notably, all observations described here were obtained under nonphosphorylated conditions, as phosphorylation will lead to additional strong activating effects."

      4) Figure 6 could do a better job of providing an illustration of steric clashes.

      We have revised Figure 6, panel F, in order to better illustrate the steric clashes, and modified the legend accordingly.

      5) There is a typo in line 5 from the top on page 11 (dash missing from "83534" superscript).

      Thank you. This was fixed.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors utilize fluid-structure interaction analyses to simulation fluid flow within and around the Cambrian cnidarian Quadrapyrgites to reconstruct feeding/respiration dynamics. Based on vorticity and velocity flow patterns, the authors suggest that the polyp expansion and contraction ultimately develop vortices around the organism that are like what modern jellyfish employ for movement and feeding. Lastly, the authors suggest that this behavior is likely a prerequisite transitional form to swimming medusae.

      Strengths:<br /> While fluid-structure-interaction analyses are common in engineering, physics, and biomedical fields, they are underutilized in the biological and paleobiological sciences. Zhang et al. provide a strong approach to integrating active feeding dynamics into fluid flow simulations of ancient life. Based on their data, it is entirely likely the described vortices would have been produced by benthic cnidarians feeding/respiring under similar mechanisms. However, some of the broader conclusions require additional justification.

      Weaknesses:

      1. The claim that olivooid-type feeding was most likely a prerequisite transitional form to jet-propelled swimming needs much more support or needs to be tailored to olivooids. This suggests that such behavior is absent (or must be convergent) before olivooids, which is at odds with the increasing quantities of pelagic life (whose modes of swimming are admittedly unconstrained) documented from Cambrian and Neoproterozoic deposits. Even among just medusozoans, ancestral state reconstruction suggests that they would have been swimming during the Neoproterozoic (Kayal et al., 2018; BMC Evolutionary Biology) with no knowledge of the mechanics due to absent preservation.<br /> 2. While the lack of ambient flow made these simulations computationally easier, these organisms likely did not live in stagnant waters even within the benthic boundary layer. The absence of ambient unidirectional laminar current or oscillating current (such as would be found naturally) biases the results.<br /> 3. There is no explanation for how this work could be a breakthrough in simulation gregarious feeding as is stated in the manuscript.

      Despite these weaknesses the authors dynamic fluid simulations convincingly reconstruct the feeding/respiration dynamics of the Cambrian Quadrapyrgites, though the large claims of transitionary stages for this behavior are not adequately justified. Regardless, the approach the authors use will be informative for future studies attempting to simulate similar feeding and respiration dynamics.

      The following text is directly in response to the revised version of the manuscript.<br /> Dynamic simulations of feeding and respiration of the early Cambrian periderm-bearing cnidarian polyps

      Revision 1

      I think this manuscript has been improved by the authors, and I appreciate their time and effort in considering my earlier comments. While most of my line by line comments have been incorporated, I do feel that some of my larger points have been insufficiently addressed. Those are repeated with additional clarifications below.

      Original comment: The claim that olivooid-type feeding was most likely a prerequisite transitional form to jet-propelled swimming needs much more support or needs to be tailored to olivooids. This suggests that such behavior is absent (or must be convergent) before olivooids, which is at odds with the increasing quantities of pelagic life (whose modes of swimming are admittedly unconstrained) documented from Cambrian and Neoproterozoic deposits. Even among just medusozoans, ancestral state reconstruction suggests that they would have been swimming during the Neoproterozoic (Kayal et al., 2018; BMC Evolutionary Biology) with no knowledge of the mechanics due to absent preservation.

      Author response: Thanks for your suggestions. Yes, we agree with you that the ancestral swimming medusae may appear before the early Cambrian, even at the Neoproterozoic deposits. However, discussions on the affinities of Ediacaran cnidarians are severely limited because of the lack of information concerning their soft anatomy. So, it is hard to detect the mechanics due to absent preservation. Olivooids found from the basal Cambrian Kuanchuanpu Formation can be reasonably considered as cnidarians based on their radial symmetry, external features, and especially the internal anatomies (Bengtson and Yue 1997; Dong et al. 2013; 2016; Han et al. 2013; 2016; Liu et al. 2014; Wang et al. 2017; 2020; 2022). The valid simulation experiment here was based on the soft tissue preserved in olivooids.

      Reviewer response: This response does not sufficiently address my earlier comment. While the authors are correct that individual Ediacaran affinities are an area of active research and that Olivooids can reasonably be considered cnidarians, this doesn't address the actual critique in my comment. Most (not all) Ediacaran soft-bodied fossils are considered to have been benthic, but pelagic cnidarian life is widely acknowledged to at least be present during later White Sea and Nama assemblages (and earlier depending on molecular clock interpretations). The authors have certainly provided support for the mechanics of this type of feeding being co-opted for eventual jet-propulsion swimming in Olivooids. They have not provided sufficient justifications within the manuscript for this to be broadened beyond this group.

      Original comment: There is no explanation for how this work could be a breakthrough in simulation gregarious feeding as is stated in the manuscript.

      Author response: Thanks for your suggestion. We revised the section "Perspectives for future work and improvements" (lines 396-404 in our revised version of MS). Conducting simulations of gregarious active feeding behavior generally need to model multi (or clustered) organisms, which is beyond the present computational capability. However, exploiting the simulation result and thus building a simplified model can be possible to realize that, as we may apply an inlet or outlet boundary condition to the peridermal aperture of Quadrapyrgites with corresponding exhale or inhale flow velocity profiles collected in this work. By doing this we can obtain a simplified version of an active feeding Quadrapyrgites model without using computational expensive moving mesh feature. Such a model can be used solely or in cluster to investigate gregarious feeding behavior incorporated with ambient current. Those above are explicit explanations for how this work could be a "breakthrough" in simulation gregarious feeding. However, we modified the corresponding description in section "Perspectives for future work and improvements" to make it more appropriate.

      Reviewer response: I think I understand where the authors are trying to take this next step. If the authors were to follow up on this study with the proposed implementation of inhalant/exhalent velocities profiles (or more preferably velocity/pressure fields), then that study would be a breakthrough in simulating such gregarious feeding. Based on what has been done within the present study, I think the term "breakthrough" is instead overly emphatic.<br /> An additional note on this. The authors are correct that incorporating additional models could be used to simulation a population (as has been successfully done for several Ediacaran taxa despite computational limitations), but it's not the only way. The authors might explore using periodic boundary conditions on the external faces of the flow domain. This could require only a single Olivooid model to assess gregarious impacts - see the abundant literature of modeling flow through solar array fields.

      Original comment: L446: two layers of hexahedral elements is a very low number for meshing boundary layer flow

      Author response: Many thanks for your question. We agree that an appropriate hexahedral elements mesh for boundary layer is essential to recover boundary flow, especially in cases where turbulence model incorporated with wall function is adopted such as the standard k-epsilon model. In this case, the boundary flow is not the main point since the velocity profile was collected above periderm aperture rather than near no-slip wall region. What else, we do not need drag (related to sheer stress and pressure difference) computations in this case, which requires a more accurate flow velocity reconstruction near no-slip walls as what previous palaeontological CFD simulations have done. Thus, we think two layers of hexahedral elements are enough. What else, hexahedral elements added to periderm aperture domain, as illustrated in figure below, can let the velocity near wall vary smoothly and thus can benefit the convergency of simulations.

      Reviewer response: As the authors point out in the main text, these organisms are small (millimeters in scale) and certainly lived within the boundary layer range of the ocean. While the boundary layer is not the main point, it still needs to be accurately resolved as it should certainly affect the flow further towards the far field at this scale. I'm not suggesting the authors need to perfectly resolve the boundary layer or focus on using turbulence models more tailored to boundary layer flows (such as k-w), but the flow field still needs sufficient realism for a boundary bounded flow. The authors really should consider quantitatively assessing the number of hexahedral elements within their mesh refinement study.

    1. Reviewer #1 (Public Review):

      Questions and concerns:

      The abstract is hard to follow. The authors there refer to a previous experiment showing that "overnight fasting diminishes excessive avoidance and speeds up fear extinction by decreasing subjective relief during threat omissions" (L26). They go on to say that "relief tracks the reward prediction error signal that governs safety learning" (L28). This is puzzling. While getting less relief/safety from avoidance actions will surely diminish avoidance (because avoidance actions are less reinforced), getting less relief/safety from omissions of an unconditioned stimulus (US) in fear extinction should slow down (not speed up) fear extinction. In the same vein, why are "lower activations [in fMRI] in the ventromedial prefrontal cortex and nucleus accumbens in response to threat omissions signaled by a safe cue" (L34) associated with "increased effective avoidance and sped up fear extinction" (L33)? This clearly goes against the existing literature on reward prediction errors (PEs) in fear learning paradigms, where these PEs in the mesolimbic dopamine system drive extinction, that is, they are associated with better extinction (and should therefore also be associated with more avoidance). For instance, in the rodent, Luo et al., 2018 (DOI: 10.1038/s41467-018-04784-7) and Salinas-Hernandez et al., 2018 (DOI: https://doi.org/10.7554/eLife.388181 of 25RESEARCH ARTICLE) and 2023 (https://doi.org/10.1016/j.neuron.2023.08.025ll) have in various constellations optogenetically enhanced and diminished, respectively, the PE signal at the time of US omission in extinction in either VTA or nucleus accumbens and thereby sped up and slowed down, respectively, extinction learning. If the results of the current experiment contradict established knowledge, the reader must be clearly informed about this. By contrast, the abstract gives the impressions as if the current results were to be expected and in line with the literature ("since relief tracks the reward prediction error signal ..., we hypothesized ...").

      It would also help the reader if it was clarified that the finding of "increased effective avoidance" (L33) went counter to the hypothesis, e.g., by saying "Contrary to our hypothesis, we observed ...".

      Introduction:

      L51: The presentation of exposure therapy is a bit misleading and may create confusion. While it is probably correct that exposure works by "promoting safety learning", this is generally thought to be the case only for Pavlovian associations (CS-US), that is, for extinction (where safety learning creates the new association of CS and "no US"). It is, however, not generally considered to be the case for the instrumental action-outcome associations that underlie avoidance learning ("I do this or that, then I do not have to experience the feared object or situation"). Therapists try to prevent this type of learning from happening, exactly by promoting the confrontation with fear objects or situations in the absence of any avoidance action.

      Generally, I think the introduction suffers from the absence of a short explanation of what avoidance and extinction learning are, behaviorally, and what types of mechanisms are believed to drive them, and that the one (avoidance) is thought to contribute to the maintenance of fears whereas the other (extinction) reduces fear. The non-specialist reader is somehow left in the dark.

      In the same vein, on L63, presenting the results of their previous fasting study that serves as a discovery study for the present experiment, the authors make a distinction between "unnecessary avoidance during a signal of safety" and "effective avoidance during a signal of upcoming threat". It is really expecting too much from the reader that they will understand at this stage that a CS can become a signal of safety through extinction or that a CS not paired with a US during conditioning (a "CS-") is a safety signal and that it is not necessary to avoid such a signal, whereas a non-extinguished CS (signaling threat) may well be avoided. (At least, this is how I understood the distinction.)

      I was then really confused by the following statement (L65) that "the decrease in unnecessary avoidance was mediated by lower levels of relief ... during omissions of threat". If a CS is already extinguished (has no remaining or only little threat value, that is, is a safety stimulus), there is no longer threat omission when the US does not occur, and no relief. There should also be no relief to US omission after a CS-. More importantly even, if fasted participants reported lower levels of relief from threat omission, why did they not also show less effective avoidance (which is driven by the reinforcement provided by the relief that occurs when a successful avoidance action has prevented a US from occurring after or during the CS)?

      L69: Also the statement "a faster decline in relief ... ratings during ... extinction, suggesting faster decrease of threat expectancies" can only be understood by the reader if they already know what a PE is and by what rules PE-driven learning is governed (that is, essentially, if they know Rescorla-Wagner). I think the authors must explain, in order to allow a non-specialist reader to follow their text, that the PE (supposed to be indexed by the relief rating) reflects the discrepancy between the magnitude of an outcome expectation (e.g., here, expectation of the US) and the obtained outcome (here, US or not); that, therefore, a PE is generated when a subject expects a US (as a result of prior conditioning) but does not get it; that this leads to a proportional update (reduction) of the US expectation in the next trial; and that this in turn leads to a diminished PE when the US again does not occur. Notably, the reader must be made aware that the higher the PE, the higher the reduction and the faster the extinction (proportionality).

      The reader must also be made aware that the update is additionally determined by some multiplicatory "transmission" function or constant (e.g., learning rate in Rescorla-Wagner) that defines the size of the relationship between the magnitude of the PE and the magnitude of the update (reduction). Hence, in two individuals, even if the magnitude of the PE is identical, the magnitude of the update may differ because of individual differences in the learning rate (to take the Rescorla-Wagner implementation). The authors, however, seem to ignore the possibility that fasting changes the learning rate.

      Both the dynamics of the PE and the learning rate, of course, add complexity to the interpretation of the past and present data. But I think the authors cannot avoid this when they want to make sense of a treatment (fasting) that they believe affects safety learning. Speaking of "lower levels of relief" (L66) must be qualified by whether these lower ratings were observed initially (when the first PEs were registered at initial threat omissions, meaning that safety learning should be relatively slowed down by fasting) or on average or later during a safety learning experiment (which could indicate that learning under fasting was relatively quicker/more successful).

      Following upon this, in L74, the conclusion from observations of lower levels of relief during avoidance and faster decline in relief during extinction in the previous study that "overnight fasting decreased the reward value of safety (less relief pleasantness)" may be wrong if the faster decline and the resulting lower average levels of relief were the consequence of a higher initial PE in the fasting group, as would be expected from the Rescorla-Wagner rule. If the latter were the case, this would suggest that subjects actually registered more safety (a higher discrepancy to their threat expectation) in early trials. This could also explain why fasting sped up extinction in that study (see Abstract). It might also explain why "effective avoidance" (L64) was at least maintained (although it should actually also be sped up). It might make less parsimonious explanations ("fasting biases .. to focus on food at the expense of safety", L79), requiring the presence of a food source and a utility function of accepting a threat in the obtainment of food, unnecessary.

      All this, however, rests on whether I think I have understood what the authors want to say about their relief measurements and the way the operationalized avoidance in the previous study.

      More unclarities due to not giving full information: L91: "... extinction and avoidance learning. Accordingly, human fMRI studies have found ... activations in the ventral striatum and the VTA during threat omissions that might contribute to establishing a new safety CS-->noUS memory that reduces the initial fear response." However, in avoidance, it is an action that is reinforced by the US omission and hence an action-->noUS memory that is being formed. The CS keeps its threat value acquired during the preceding conditioning phase, and the reduction of fear during CS presentations is contingent upon the exertion of the avoidance action.

      L99: "Because overnight fasting decreased relief rating particularly during omissions after safety signals". Again, if a US is omitted after a safety signal (an extinguished CS or a CS-), there should be no PE and no relief. If there were still relief ratings at US omission after a safety signal, this would suggest extinction did not fully work or differential conditioning was not successful. In any case, it is not clear at all why relief was specifically decreased during omissions after safety signals and not (and much more so) during omissions after threat signals, where there is clearly a PE. If this was not the case, one has to wonder if something went wrong in the discovery study.

      The paragraph starting L103 and the associated figure 1 could be a bit more precise and give a bit more information in order to provide the reader a proper understanding of key experimental manipulations, in particular the ART task. Please define abbreviations "CS+unav", "CS+av". L108 ff.: One gets the impression there is only one CS+, whereas there are two. Say explicitly that one CS+ remains unavoidable during the Avoidance phase (CS+unav). What is the purpose of this stimulus? Do participants learn during the Avoidance phase that the CS+unav is unavoidable and the CS+av is avoidable or is this instructed? Do participants have to press the button within a certain time after CS+unav onset in order to avoid the US, or with a certain force? Is avoidance in case of successful button pressing deterministic or probabilistic? Say that the frame with the non-lit lamp is the ITI.

      Relief ratings (Figure 1b): The rating says "How pleasant was the relief that you felt?". That is, the experimenter insinuates that the participant will have felt relief and only wants to know how pleasant that relief was. The subjects has no chance to indicate there was no relief. This may be the reason why, in the discovery study, subjects indicated relief to safe stimuli, see above. Why did the authors not simply ask about the degree of relief felt, which would give a subject the chance to say there was no relief? I think this is a major flaw.

      L119: "We previously found that overnight fasting reduces avoidance and relief mostly to a safe CS-." If this is really the only thing that the authors found, then the fasting manipulation in their previous study failed to modulate avoidance of CS+s and the PE signaling at the time of US omissions after CS+s, that is, after actual threat stimuli. The procedure then clearly is not suited to study influences of fasting on avoidance learning. Whatever it does manipulate, it is not relief-based avoidance learning.

      L130: It makes absolutely no sense to hypothesize that a manipulation reducing relief in extinction learning will decrease activation in the neural PE circuitry at the time of US omission more after the CS- than after the CS+. Of course, the PE is highest when the US is not given after the CS+, and this is where any relief manipulation should have an effect. As said above, the authors must also specify their hypothesis with respect of timing (early or late extinction? See the animal papers cited above.)

    1. Author Response

      We would like to thank the editor and the reviewers for their constructive comments and the chance to revise the manuscript. The suggestions have allowed us to improve our manuscript. We have been able to fulfil all reviewer comments and added new statistical analyses to examine associations for subsets of data. Whilst suggested by a reviewer, we did not perform large-scale experiments to confirm the viability of low sporozoite densities at different time-points post salivary gland colonization. For these assays there are currently no satisfactory in vitro models for sporozoites harvested from single mosquitoes and setting up and validating such experiments could be a PhD project in itself. We do consider this suggestion very relevant but beyond the scope of the current work.

      Relevantly, during the time the manuscript was under review at eLife, we have been able to examine the multiplicity of infection in our field experiments. This was, as written in the original manuscript, a key reason to also perform experiments in the field where there is a greater diversity of parasite lines. We have successfully performed AMA-1 amplicon deep sequencing on infected mosquito salivary glands and infected skins. Although this does not change the key messages of the manuscript and is secondary to our main hypothesis, we do consider it a relevant addition since we were able to demonstrate that for some infected mosquitoes from the Burkina Faso study, multiple clones were expelled by mosquitoes during probing on a single piece of artificial skin. We have added a short paragraph to our revised manuscript and updated the acknowledgement section to include the supporting researcher who conducted those experiments.

      Reviewer #1 (Public Review):

      Summary: There is a long-believed dogma in the malaria field; a mosquito infected with a single oocyst is equally infectious to humans as another mosquito with many oocysts. This belief has been used for goal setting (and modelling) of malaria transmission-blocking interventions. While recent studies using rodent malaria suggest that the dogma may not be true, there was no such study with human P. falciparum parasites. In this study, the numbers of oocysts and sporozoite in the mosquitoes and the number of expelled sporozoites into artificial skin from the infected mosquito was quantified individually. There was a significant correlation between sporozoite burden in the mosquitoes and expelled sporozoites. In addition, this study showed that highly infected mosquitoes expelled sporozoites sooner.

      Strengths:

      • The study was conducted using two different parasite-mosquito combinations; one was lab-adapted parasites with Anopheles stephensi and the other was parasites, which were circulated in infected patients, with An. coluzzii. Both combinations showed statistically significant correlations between sporozoite burden in mosquitoes and the number of expelled sporozoites.

      • Usually, this type of study has been done in group bases (e.g., count oocysts and sporozoites at different time points using different mosquitoes from the same group). However, this study determined the numbers in individual bases after multiple optimization and validation of the approach. This individual approach significantly increases the power of correlation analysis.

      Weaknesses:

      • In a natural setting, most mosquitoes have less than 5 oocysts. Thus, the conclusion is more convincing if the authors perform additional analysis for the key correlations (Fig 3C and 4D) excluding mosquitoes with very high total sporozoite load (e.g., more than 5-oocyst equivalent load).

      In the revised manuscript, we have also performed our analysis including only the subset of mosquitoes with low oocyst burden. In our Burkina Faso experiments, where we could not control oocyst density, 48% (15/31) of skins were from mosquitoes with <5 oocyst sheets. Whilst low oocyst densities were thus not very uncommon, we acknowledge that this may have rendered some comparisons underpowered. At the same time, we observe a strong positive trend between oocyst density and sporozoite density and between salivary gland sporozoite density and mosquito inoculum. This makes it very likely that this trend is also present at lower oocyst densities, an association where sporozoite inoculation saturates at high densities is plausible and has been observed before for rodent malaria (DOI: 10.1371/journal.ppat.1008181) whilst we consider it less likely that sporozoite expelling would be more efficient at low (unmeasured) sporozoite densities.

      • As written as the second limitation of the study, this study did not investigate whether all expelled sporozoites were equally infectious. For example, Day 9 expelled sporozoites may be less infectious than Day 11 sporozoites, or expelled sporozoites from high-burden mosquitoes may be less infectious because they experience low nutrient conditions in a mosquito. Ideally, it is nice to test the infectivity by ex vivo assays, such as hepatocyte invasion assay, and gliding assay at least for salivary sporozoites. But are there any preceding studies where the infectivity of sporozoites from different conditions was evaluated? Citing such studies would strengthen the argument.

      We appreciate this thought and can see the value of these experiments. We are not aware of any studies that examined sporozoite viability in relation to the day of salivary gland colonization or sporozoite density.

      One previous study assessed the NF54 sporozoite infectivity on different days post infection (days 12-13-14-15-16-18) and observed no clear differences in ‘per sporozoite hepatocyte invasion capacity’ over this period (DOI: 10.1111/cmi.12745). We nevertheless agree that it is conceivable that sporozoites require maturation in the salivary glands and might not all be equally infectious. While hepatocyte invasion experiments are conducted with bulk harvesting of all the sporozoites that are present in the salivary glands, it would even be more interesting to assess the invasion capacity of the smaller population of sporozoites that migrate to the proboscis to be expelled. This would, as the reviewer will appreciate, be a major endeavour. To do this well the expelled sporozoites would need to be harvested from the salivary glands/proboscis and used in the best and most natural environment for invasion. The suggested work would thus depend on the availability of primary hepatocytes since conventional cell-lines like HC-04 are likely to underestimate sporozoite invasion. Importantly, there are currently no opportunities to include the barrier of the skin environment in invasion assays whilst this may be highly important in determining the likelihood that sporozoites manage to achieve invasion and give rise to secondary infections. In short, we agree with the reviewer that these experiments are of interest but consider these well beyond the scope of the current work. We have added a section to the Discussion section to highlight these future avenues for research. ‘Of note, our assessments of EIP and of sporozoite expelling did not confirm the viability of sporozoites. Whilst the infectivity of sporozoites at different time-points post infection has been examine previously (https://doi.org/10.1111/cmi.12745), these experiments have never been conducted with individual mosquito salivary glands. To add to this complexity, such experiments would ideally retain the skin barrier that may be a relevant determinant for invasion capacity and primary hepatocytes.’

      • Since correlation analyses are the main points of this paper, it is important to show 95% CI of Spearman rank coefficient (not only p-value). By doing so, readers will understand the strengths/weaknesses of the correlations. The p-value only shows whether the observed correlation is significantly different from no correlation or not. In other words, if there are many data points, the p-value could be very small even if the correlation is weak.

      We appreciate this comment and agree that this is indeed insightful. We have added the 95% confidence intervals to all figure legends and main text. We also provide them below.

      Fig 3b: 95% CI: 0.74, 0.85

      Fig 3c: 95% CI: 0.17, 0.50

      Fig 4c: 95% CI: 0.80, 0.95

      Fig 4d: 95% CI: 0.52, 0.82

      Supp Fig 5a: 95% CI: 0.74, 0.85

      Supp Fig 5b: 95% CI: 0.73, 0.93

      Supp Fig 6: 95% CI: 0.11, 0.48

      Supp Fig 7: 95% CI: -0.12, 0.16

      Reviewer #2 (Public Review):

      Summary: The malaria parasite Plasmodium develops into oocysts and sporozoites inside Anopheles mosquitoes, in a process called sporogony. Sporozoites invade the insect salivary glands in order to be transmitted during a blood meal. An important question regarding malaria transmission is whether all mosquitoes harbouring Plasmodium parasites are equally infectious. In this paper, the authors investigated the progression of P. falciparum sporozoite development in Anopheles mosquitoes, using a sensitive qPCR method to quantify sporozoites and an artificial skin system to probe for parasite expelling. They assessed the association between oocyst burden, salivary gland infection intensity, and sporozoites expelled.

      The data show that higher sporozoite loads are associated with earlier colonization of salivary glands and a higher prevalence of sporozoite-positive salivary glands and that higher salivary gland sporozoite burdens are associated with higher numbers of expelled sporozoites. Intriguingly, there is no clear association between salivary gland burdens and the prevalence of expelling, suggesting that most infections reach a sufficient threshold to allow parasite expelling during a mosquito bite. This important observation suggests that low-density gametocyte carriers, although less likely to infect mosquitoes, could nevertheless contribute to malaria transmission.

      Strengths: The paper is well written and the work is well conducted. The authors used two experimental models, one using cultured P. falciparum gametocytes and An. stephensi mosquitoes, and the other one using natural gametocyte infections in a field setup with An. coluzzii mosquitoes. Both studies gave similar results, reinforcing the validity of the observations. Parasite quantification relies on a robust and sensitive qPCR method, and parasite expelling was assessed using an innovative experimental setup based on artificial skin.

      Weaknesses: There is no clear association between the prevalence of sporozoite expelling and the parasite burden. However, high total sporozoite burdens are associated with earlier and more efficient colonization of the salivary glands, and higher salivary gland burdens are associated with higher numbers of expelled sporozoites. While these observations suggest that highly infected mosquitoes could transmit/expel parasites earlier, this is not directly addressed in the study. In addition, whether all expelled sporozoites are equally infectious is unknown. The central question, i.e. whether all infected mosquitoes are equally infectious, therefore remains open.

      We agree that the manuscript provides important steps forward in our understanding of what makes an infectious mosquito but does not conclusively demonstrate that highly infected mosquitoes are more likely to initiate a secondary infection. We consider this to be beyond the scope of the current work although the current work lays the foundation for these important future studies. For human Plasmodium infections the most satisfactory answer on the infectiousness of low versus high infected mosquitoes comes from controlled human infection models. In response to reviewer comments, we have extended our Discussion section to highlight this importance. To accommodate the (very fair) reviewer comments, we have avoided any phrasings that suggest that our findings demonstrate differences in transmission.

      Reviewer #3 (Public Review):

      Summary: This study uses a state-of-the-art artificial skin assay to determine the quantity of P. falciparum sporozoites expelled during feeding using mosquito infection (by standardised membrane feeding assay SMFA) using both cultured gametocytes and natural infection. Sporozoite densities in salivary glands and expelled into the skin are quantified using a well-validated molecular assay. These studies show clear positive correlations between mosquito infection levels (as determined by oocyst numbers), sporozoite numbers in salivary glands, and sporozoites expelled during feeding. This indicates potentially significant heterogeneity in infectiousness between mosquitoes with different infection loads and thus challenges the often-made assumption that all infected mosquitoes are equally infectious.

      Strengths: Very rigorously designed studies using very well validated, state-of-the-art methods for studying malaria infections in the mosquito and quantifying load of expelled sporozoites. This resulted in very high-quality data that was well-analyzed and presented. Both sources of gametocytes (cultures vs. natural infection) show consistent results further strengthening the quality of the results obtained.

      Weaknesses: As is generally the case when using SMFAs, the mosquito infections levels are often relatively high compared to wild-caught mosquitoes (e.g. Bombard et al 2020 IJP: median 3-4 ), and the strength of the observed correlations between oocyst sheet and salivary gland sporozoite load even more so between salivary gland sporozoite load and expelled sporozoite number may be dominated by results from mosquitoes with infection levels rarely observed in wild-caught mosquitoes. This could result in an overestimation of the importance of these well-observed positive relationships under natural transmission conditions. The results obtained from these excellently designed and executed studies very well supported their conclusion - with a slight caveat regarding their application to natural transmission scenarios

      For efficiency and financial reasons, we have worked with an approach to enhance mosquito infection rates. If we had worked with gametocytes at physiological concentrations and a small number of donors, we probably have had considerably lower mosquito infection rates. Whilst this would indeed result in lower infection burdens in the sparse infected mosquitoes, addressing the reviewer concern, it would have made the experiments highly inefficient and expensive. The skin mimic was initially provided free of charge when the matrix was close to the expiry date but for the experiments in Burkina Faso we had to purchase the product at market value. Whilst we consider the biological question sufficiently important to justify this investment – and think our findings prove us right – it remained important to avoid using skins for uninfected mosquitoes. Since oocyst prevalence and density are strongly correlated (doi: 10.1016/j.ijpara.2012.09.002; doi: 10.7554/eLife.34463), a low oocyst density in natural infections typically coincides with a high proportion of negative mosquitoes.

      Of note, our approach did result in the inclusion of 15 skins from infected mosquitoes with 1-4 oocysts. This number may be modest but we did include observations from this low oocyst range which is, we agree, highly important for better understanding malaria epidemiology.

      This work very convincingly highlights the potential for significant heterogeneity in the infectiousness between individual P. falciparum-infected mosquitoes. Such heterogeneity needs to be further investigated and if again confirmed taken into account both when modelling malaria transmission and when evaluating the importance of low-density infections in sustaining malaria transmission.

      Reviewer #4 (Public Review):

      Summary: The study compares the number of sporozoites expelled by mosquitoes with different Plasmodium infection burden. To my knowledge this is the first report comparing the number of expelled P. falciparum sporozoites and their relation to oocyst burden (intact and ruptured) and residual sporozoites in salivary glands. The study provides important evidence on malaria transmission biology although conclusions cannot be drawn on direct impact on transmission.

      Strengths: Although there is some evidence from malaria challenge studies that the burden of sporozoites injected into a host is directly correlated with the likelihood of infection, this has been done using experimental infection models which administer sporozoites intravenously. It is unclear whether the same correlation occurs with natural infections and what the actual threshold for infection may be. Host immunity and other host related factors also play a critical role in transmission and need to be taken into consideration; these have not been mentioned by the authors. This is of particular importance as host immunity is decreasing with reduction in transmission intensity.

      Weaknesses: The natural infections reported in the study were not natural as the authors described. Gametocyte enrichment was done to attain high oocyst infection numbers. Studying natural infections would have been better without the enrichment step. The infected mosquitoes have much larger infection burden than what occurs in the wild.

      Nevertheless, the findings support the same results as in the experiments conducted in the Netherlands and therefore are of interest. I suggest the authors change the wording. Rather than calling these "natural" infections, they could be called, for example, "experimental infections with wild parasite strains".

      We have addressed these concerns and, in the process, also changed our manuscript title. The following sentences have been changed:

      “It is currently unknown whether all Plasmodium falciparum infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and natural infections in Burkina Faso”.

      Now reads: “It is currently unknown whether all Plasmodium falciparum infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and experimental infections with naturally circulating parasite strains in Burkina Faso”. 226-228 “Experimental infections with naturally circulating parasite strains show comparable correlation between oocyst density, salivary gland density and sporozoite inoculum”.

      Has now replaced the original phrasing: “Natural infected mosquitoes by gametocyte carriers in Burkina Faso show comparable correlation between oocyst density, salivary gland density and sporozoite inoculum”.

      I do not believe the study results generate sufficient evidence to conclude that lower infection burden in mosquitoes is likely to result in changes to transmission potential in the field. In study limitations section, the authors say "In addition, our quantification of sporozoite inoculum size is informative for comparisons between groups of high and low-infected mosquitoes but does not provide conclusive evidence on the likelihood of achieving secondary infections. Given striking differences in sporozoite burden between different Plasmodium species - low sporozoite densities appear considerably more common in mosquitoes infected with P. yoelii and P. berghei the association between sporozoite inoculum and the likelihood of achieving secondary infections may be best examined in controlled human infection studies. However, in the abstract conclusion the authors state "Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is associated with the number of expelled sporozoites and may need to be considered in estimations of transmission potential." Kindly consider ending the sentence at "expelled sporozoites." Future studies on CHMI can be recommended as a conclusion if authors feel fit.

      We agree that we need to be very cautious with conclusions on the impact of our findings for the infectious reservoir. We have rephrased parts of our abstract and have updated the Discussion section following the reviewer suggestions. We agree with the reviewer that CHMI studies are recommended and have expanded the Discussion section to make this clearer. The sentence in the abstract now ends as:

      "Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential."

      Reviewer #1 (Recommendations For The Authors):

      • Prevalence data shown in Fig 2A and Table S1 are different. For example, >50K at Day 11, Fig 2A shows ~85% prevalence, but Table S1 says 100%. If the prevalence in Table S1 shows a proportion of observations with positive expelled sporozoites (instead of a proportion of positive mosquitoes shown in Fig 2A), then the prevalence for <1K at Day 11 cannot be 6.7% (either 0 or 20% as there were a total of 5 observations). So in either case, it is not clear why the numbers shown in Fig 2A and Table S1 are different.

      Figure 2A and Table S2 are estimated prevalence and odds ratios from an additive logistic regression model (i.e. excluding the interaction between day and sporozoite categories). Table S1 includes this interaction when estimating prevalence and odds ratios and as we can see some categories in the interaction were extremely small resulting in blown up confidence intervals especially in day 11. So Table S1 and Fig 2A are the results from two different models. Whilst our results are thus correct, we can understand the confusion and have added a sentence to explain the model used in the figure/table legends.

      Figure. 2 Extrinsic Incubation Period in high versus low infected mosquitoes. A. Total sporozoites (SPZ) per mosquito in body plus salivary glands (x-axis) were binned by infection load <1k; 1k-10k; 10k-50k; >50k and plotted against the proportion of mosquitoes (%) that were sporozoite positive (y-axis) as estimated from an additive logistic regression model with factors day and SPZ categories. Supplementary Table S1. The extrinsic incubation period of P. falciparum in An. stephensi estimated by quantification of sporozoites on day 9, 10, 11 by qPCR. Based on infection intensity mosquitoes were binned into four categories (<1k, 1k-10k, 10k-50k, >50) that was assessed by combining sporozoite densities in the mosquito body and salivary gland. Prevalences and odds ratios were estimated from a logistic regression model with factors day, SPZ category and their interaction.

      There are 3 typos in the paper. Please fix them.

      Line 464; ...were counted using a using an incident....

      Line 473; Supplementary Figure 7 should be Fig S8.

      Line 508: ...between days 9 and 10 using a (t=-2.0467)....

      We appreciate the rigour in reviewing our text and have corrected all typos.

      Reviewer #2 (Recommendations For The Authors):

      High infection burdens may result in earlier expelling capacity in mosquitoes, which would reflect more accurately the EIP. The fact that earlier colonization of SG and correlation between SG burden and numbers expelled suggest it could be the case, but it would be interesting to directly measure the prevalence of expelling over time to directly assess the effect of the sporozoite burden (not just at day 15 but before). This could reveal how the parasite burden in mosquitoes is a determinant of transmission.

      We appreciate this suggestion and will consider this for future experiments. It adds another variable that is highly relevant but will also complicate comparisons where sporozoite expelling is related to both time since infectious blood meal and salivary gland sporozoite density (that is also dependent on time since infectious bloodmeal). Moreover, we then consider it important to measure this over the entire duration of sporozoite expelling, including late time-points post infectious bloodmeal. This may form part of a follow-up study.

      Another question is whether all sporozoites (among expelled parasites) are equally infective, i.e. susceptible to induce secondary infection. If not, this could reconcile the data of this study and previous results in the rodent model where high burdens were associated with an increased probability to transmit.

      As also indicated above, we are aware of a single study that assessed NF54 sporozoite infectivity on different days post infection (days 12-13-14-15-16-18) and observed no clear differences in ‘per sporozoite hepatocyte invasion capacity’ over this period (DOI: 10.1111/cmi.12745). We nevertheless agree that it is conceivable that sporozoites require maturation in the salivary glands and might not all be equally infectious. While hepatocyte invasion experiments are conducted with bulk harvesting of all the sporozoites that are present in the salivary glands, it would even be more interesting to assess the invasion capacity of the smaller population of sporozoites that migrate to the proboscis to be expelled. This would, as the reviewer will appreciate, be a major endeavour. To do this well the expelled sporozoites would need to be harvested from the salivary glands/proboscis and used in the best and most natural environment for invasion. The suggested work would thus depend on the availability of primary hepatocytes since conventional cell-lines like HC-04 are likely to underestimate sporozoite invasion. Importantly, there are currently no opportunities to include the barrier of the skin environment in invasion assays whilst this may be highly important in determining the likelihood that sporozoites manage to achieve invasion and give rise to secondary infections. In short, we agree with the reviewer that these experiments are of interest but consider these well beyond the scope of the current work. We have added a section to the Discussion section to highlight these future avenues for research. ‘Of note, our assessments of EIP and of sporozoite expelling did not confirm the viability of sporozoites. Whilst the infectivity of sporozoites at different time-points post infection has been examine previously (ref), these experiments have never been conducted with individual mosquito salivary glands. To add to this complexity, such experiments would ideally retain the skin barrier that may be a relevant determinant for invasion capacity and primary hepatocytes.’

      The authors evaluated oocyst rupture at day 18, i.e. 3 days after feeding experiments (performed at day 15). Did they check in control experiments that the prevalence of rupture oocysts does not vary between day 15 and day 18?

      We did not do this and consider it very unlikely that there is a noticeable increase in the number of ruptured oocysts between days 15 and 18. We observe that salivary gland invasion plateaus around day 12 and the provision of a second bloodmeal that is known to accelerate oocyst maturation and rupture (doi: 10.1371/journal.ppat.1009131) makes it even less likely that a relevant fraction of oocysts ruptures very late. Perhaps most compellingly, the time of oocyst rupture will depend on nutrient availability and rupture could thus occur later for oocysts from a heavily infected gut compared to oocysts from mosquitoes with a low infection burden. We observe a very strong association between salivary gland sporozoite density (day 15) and oocyst density (assessed at day 18) without any evidence for change in the number of sporozoites per oocyst for different oocyst densities. In our revised manuscript we have also assessed correlations for different ranges of oocyst intensities and see highly consistent correlation coefficients and find no evidence for a change in ‘slope’. If oocyst rupture would regularly happen between days 15 and 18 and this late rupture would be more common in heavily infected mosquitoes, we would expect this to affect the associations presented in figures 3B and 4C This is not the case.

      The authors report higher sporozoite numbers per oocyst and a higher proportion of SG invasion as compared to previous studies (30-50% rather than 20%). How do they explain these differences? Is it due to the detection method and/or second blood meal? Or parasite species?

      We were also intrigued by these findings in light of existing literature. To address potential discrepancies, it is indeed possible that the 2nd bloodmeal made a difference. In addition, NF54 is known to be a highly efficient parasite in terms of gametocyte formation and transmission. And there are marked differences in these performances between NF54 isolates and definitely between NF54 and its clone 3D7 that is regularly used. We also used a molecular assay to detect and quantify sporozoites but consider it less likely that this is a major factor in terms of explaining SG invasion since sporozoite densities were typically within the range that would be detected by microscopy. We can only hypothesize that the 2nd bloodmeal may have contributed to these findings and acknowledge this in the revised Discussion section.

      The median numbers of expelled sporozoites seem to be higher in the natural gametocyte infection experiments as compared to the cultures. Is it due to the mosquito species (An. coluzzii versus An. stephensi?).

      The added value of our field experiments, a more relevant mosquito species and more relevant parasite isolates, is also a weakness in terms of understanding possible differences between in vitro experiments and field experiments with naturally circulating parasite strains. We only conclude that our in vitro experiments do not over-estimate sporozoite expelling by using a highly receptive mosquito source and artificially high gametocyte densities. We have clarified this in the revised Discussion.

      39% of sporozoite-positive mosquitoes failed to expel, irrespective of infection densities. Could the authors discuss possible explanations for this observation?

      In paragraph 304-307 we now write that:” This finding broadly aligns with an earlier study of Medica and Sinnis that reported that 22% of P. yoelii infected mosquitoes failed to expel sporozoites. For highly infected mosquitoes, this inefficient expelling has been related to a decrease of apyrase in the mosquito saliva”.

      In Figure 3, it would be interesting to zoom in the 0-1k window, below the apparent threshold for successful expelling.

      We have generated correlation estimates for different ranges of oocyst and sporozoite densities and added these in Supplementary Table 5. We agree that this helps the reader to appreciate the contribution of different ranges of parasite burden to the observed associations.

      In Fig S8. Did they observe intact oocysts with fixed samples? These could be shown as well in the figure.

      We have incorporated this comment. An intact oocyst from fixed samples was now added to Fig S10.

      Minor points

      -line 119: LOD and LOQ could be defined here.

      We agree that this should have been defined. We changed line 119 to explain LOD and LOQ to: …“the limit of detection (LOD) and limit of quantification (LOQ)”….

      • line 126: the title does not reflect the content of this paragraph.

      We have changed the title: “Immunolabeling allows quantification of ruptured oocysts ”into: A comparative analysis of oocyst densities using mercurochrome staining and anti-CSP immunostaining.

      -line 269: infectivity is not appropriate. The data show colonization of SG.

      Line 269: infectivity has been changed with colonization of salivary glands.

      There seems to be a problem with Fig S6. The graph seems to be the same as Fig 3C. Please check whether the graph and legends are correct.

      Supplementary Figure 6 shows the sporozoite expelling density in relation to infection burden with a threshold set at > 20 sporozoites while Fig 3C shows the total sporozoite density (residual salivary gland sporozoites + sporozoites expelled, X-axis) in relation to the number of expelled sporozoites (Y-axis) by COX-1qPCR without any threshold density. We have explained this in more detail in the revised supplemental figure where we now state

      “Of note, this figure differs from Figure 3C in the main text in the following manner. This figure presents sporozoite expelling density in relation to infection burden with a threshold set at > 20 sporozoites to conclude sporozoite positivity while Figure 3C shows the total sporozoite density (residual salivary gland sporozoites + sporozoites expelled, X-axis) in relation to the number of expelled sporozoites (Y-axis) by COX-1 qPCR without any threshold density and thus includes all observations with a qPCR signal”

      Reviewer #3 (Recommendations For The Authors):

      Congratulations to the authors for the really excellently designed and rigorously conducted studies.

      My main concern is in regards to the relatively high oocyst numbers in their experimental mosquitoes (from both sources of gametocytes) compared to what has been reported from wild-caught mosquitoes in previous studies in Burkina Faso.

      We have addressed this concern above. For completeness, we include the main points here again. We enriched gametocytes for efficiency reasons, experiments on gametocytes at physiological concentrations would have resulted in a lower oocyst density (and thus more ‘natural’ although a minority of individuals achieves very high oocyst densities in all studies that included a broad range of oocyst densities (e.g. doi: 10.1016/j.exppara.2014.12.010; doi: 10.1016/S1473-3099(18)30044-6). Of note, we did include 15 skins from low oocyst densities (1-4 oocysts). Whilst low oocyst densities were thus not very uncommon in our sample set, we acknowledge that this may have rendered some comparisons underpowered. At the same time, we observe a strong positive trend between oocyst density and sporozoite density and between salivary gland sporozoite density and mosquito inoculum. This makes it very likely that this trend is also present at lower oocyst densities, an association where sporozoite inoculation saturates at high densities is plausible and has been observed before for rodent malaria (DOI: 10.1371/journal.ppat.1008181) whilst we consider it less likely that sporozoite expelling would be more efficient at low (unmeasured) sporozoite densities. In the revised manuscript we have also performed our analysis including only the subset of mosquitoes with low oocyst burden.

      The best way to address this would be to do comparable artificial skin-feeding experiments on such wild-caught mosquitoes, but I appreciate that this is very difficult to do.

      This would indeed by difficult to do. Mostly because infection status can only be examined post-hoc and it is likely that >95% of mosquitoes are sporozoite negative at the moment experiments are conducted (in many settings this will even be >99%). Importantly, also in wild-caught mosquitoes very high oocyst burdens are observed in a small but relevant subset of mosquitoes (doi: 10.1016/j.ijpara.2020.05.012).

      Instead, I would suggest the authors conduct addition analysis of their data using different cut-offs for maximum oocyst numbers (e.g. <5, <10, <20) to determine if these correlations hold across the entire range of observed oocyst sheets and salivary gland sporozoite load.

      We have provided these calculations for the proposed range of oocyst numbers. In addition, we also provided them for a range of sporozoite densities. These findings are now provided in

      Entire range of observed oocyst sheets and salivary gland sporozoite load. A minor point on the regression lines in Figures 3 & 4: both variables in these plots have inherent variation (measurement & natural), but regression techniques such as reduced major exit regression (MAR) that allow error in both x and y variables may be preferable to a standard lines regression. Also, as it is implausible that mosquitoes with zero sporozoite in salivary glands expel several hundred sporozoites at feeding, the regression should probably also be constrained to pass through the 0,0 point.

      Since the main priority of the analyses is the correlation, and not the fit of the regression line – which is only for indication, and also because of the availability of software, we did not change the type of regression. We have however added a disclaimer to the legend, and we have also forced the intercept to 0 – which does indeed better reflect the biological association. Additionally we added 95% confidence intervals to all Spearman’s correlation coefficients in the legends.

    1. Author Response

      Responses to public reviews

      Reviewer 1

      We thank the reviewer for the valuable and constructive comments and are pleased that the re-viewer finds our study timely and our behavioral results clear.

      1) The RSA basically asks on the lowest level, whether neural activation patterns (as measured by EEG) are more similar between linked events compared to non-linked events. At least this is the first question that should be asked. However, on page 11 the authors state: "We ex-amined insight-induced effects on neural representations for linked events [...]". Hence, the critical analysis reported in the manuscript fully ignores the non-linked events and their neu-ral activation patterns. However, the non-linked events are a critical control. If the reported effects do not differ between linked and non-linked events, there is no way to claim that the effects are due to experimental manipulation - neither imagination nor observation. Hence, instead of immediately reporting on group differences (sham vs. control) in a two-way in-teraction (pre vs. post X imagination vs. observation), the authors should check (and re-port) first, whether the critical experimental manipulation had any effect on the similarity of neural activation patterns in the first place.

      We completely agree that the non-link items are a critical control. Therefore, we had reported not only the results for linked but also for non-linked events on page 15, lines 336-350. We clarified this important point now on page 12 lines 283-286:

      “Subsequently, we examined insight-induced effects on neural representations for linked (vs. non-linked) events by comparing the change from pre- to post-insight (post-pre) and the difference between imagination and observation (imagination - observation) between cTBS and sham groups using an independent cluster-based permutation t-test.”

      Moreover, to directly compare linked and non-linked events we performed a four-way in-teraction including link vs. non-link. This analysis yielded a significant four-way interaction, showing that the interaction of time (pre vs. post), mode of insight (imagination vs. obser-vation) and cTBS differed for linked vs. non-linked items. We then report the follow-up analyses, separately for linked and non-linked events. Please see pages 12-13, lines 287-294:

      “First, we included the within-subject factors time (pre vs. post), mode of insight (imagina-tion vs. observation) and link (vs. non-link) by calculating the difference waves. Subse-quently we conducted a cluster-based permutation test comparing the cTBS and the sham groups. This analysis yielded a four-way interaction within a negative cluster in a fronto-temporal region (electrode: FT7; p = 0.007, ci-range = 0.00, SD = 0.00). This result indicates that the impact of cTBS over the angular gyrus on the neural pattern reconfiguration follow-ing imagination- vs. observation-based insight may differ between linked and non-linked events. For linked events, this analysis yielded a […]”

      2) Overall, the focus on the targeted three-way interaction is poorly motivated. Also, a func-tional interpretation is largely missing.

      In order to better explain our motivation for the three-way interaction, we em-phasized in the introduction the importance of disentangling potential differences due to the mode of insight, given the known role of the angular gyrus in imagination on pages 4-5, lines 107-115:

      “Considering this involvement of the angular gyrus in imaginative processes, we expected that the effect of cTBS on the change in representational similarity from pre- to post-insight will differ based on the mode of insight – whether this insight was gained via imagination or observation. Specifically, we expected a more pronounced impairment in the neural recon-figurations when insight is gained via imagination, as this function may depend more on an-gular gyrus recruitment than insight gained via observation. Additionally, we expected cTBS to the left angular gyrus to interfere with the increase in neural similarity for linked events and with the decrease of neural similarity for non-linked event.”

      As discussed on page 21 (starting from line 478; see also the intro on page 4), we expected that the angular gyrus would be particularly implicated in imagination-based insight, given its known role in imagination (e.g.: Thakral et al., 2017). Moreover, given the angular gyrus’s strong connectivity with other regions, the results observed may not be driven by this re-gion alone but also by interconnected regions, such as the hippocampus. We clarified these important points at the very end of the discussion on pages 23-24, lines 543-560:

      “Furthermore, the differential impact of cTBS to the angular gyrus on neural reconfigura-tions between events linked via imagination and those linked via observation may be at-tributed to its crucial role in imaginative processes (Ramanan et al., 2018; Thakral et al., 2017). Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Uddin et al., 2010). This stronger connectivity between the ventral angular gyrus and the hippocampus may shed light on the greater impact of cTBS to the angular gyrus on im-agination-based insight. Given the angular gyrus’s robust connectivity with other brain re-gions, including the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also origi-nate from these interconnected regions. This notion may bear particular importance given the required accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the an-gular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gy-rus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014).”

      3) "Interestingly, we observed a different pattern of insight-related representational pattern changes for non-linked events." It is not sufficient to demonstrate that a given effect is pre-sent in one condition (linked events) but not the other (non-linked events). To claim that there are actually different patterns, the authors would need to compare the critical condi-tions directly (Nieuwenhuis et al., 2011).

      We completely agree and now compared the two conditions directly. Specifical-ly, we now report the significant four-way interaction, including the factor link vs. non-link, before delving into separate analyses for linked and non-linked events on pages 12-13, lines 287-294:

      “First, we included the within-subject factors time (pre vs. post), mode of insight (imagina-tion vs. observation) and link (vs. non-link) by calculating the difference waves. Subse-quently we conducted a cluster-based permutation test comparing the cTBS and the sham groups. This analysis yielded a four-way interaction within a negative cluster in a fronto-temporal region (electrode: FT7; p = 0.007, ci-range = 0.00, SD = 0.00). This result indicates that the impact of cTBS over the angular gyrus on the neural pattern reconfiguration follow-ing imagination- vs. observation-based insight may differ between linked and non-linked events. For linked events, this analysis yielded a […]”

      4) "This analysis yielded a negative cluster (p = 0.032, ci-range = 0.00, SD = 0.00) in the parieto-temporal region (electrodes: T7, Tp7, P7; Fig. 3B)." (p. 11). The authors report results with specificity for certain topographical locations. However, this is in stark contrast to the fact that the authors derived time X time RSA maps.

      We did derive time × time similarity maps for each electrode within each partic-ipant, which allowed us to find a cluster consisting of specific electrodes. We apologize for not making this aspect clear enough and have, therefore, modified the respective part of our methods section on page 38, lines 951-952:

      “In total, this analysis produced eight Representational Dissimilarity Matrices (RDMs) for each electrode and each participant.”

      5) "These theta power values were then combined to create representational feature vectors, which consisted of the power values for four frequencies (4-7 Hz) × 41 time points (0-2 sec-onds) × 64 electrodes. We then calculated Pearson's correlations to compare the power pat-terns across theta frequency between the time points of linked events (A with B), as well as between the time points of non-linked events (A with X) for the pre- and the post-phase separately, separately for stories linked via imagination and via observation. To ensure un-biased results, we took precautions not to correlate the same combination of stories twice, which prevented potential inflation of the data. To facilitate statistical comparisons, we ap-plied a Fisher z-transform to the Pearson's rho values at each time point. This yielded a global measure of similarity on each electrode site. We, thus, obtained time × time similarity maps for the linked events (A and B) and the non-linked events (A and X) in the pre- and post-phases, separately for the insight gained through imagination and observation." (p. 34+35).

      If RSA values were calculated at each time point and electrode, the Pearson correlations would have been computed effectively between four samples only, which is by far not enough to derive reliable estimates (Schönbrodt & Perugini, 2013). The problem is aggra-vated by the fact that due to the time and frequency smoothing inherent in the time-frequency decomposition of the EEG data, nearby power values across neighboring theta frequencies are highly similar to start with. (e.g., Schönauer et al., 2017; Sommer et al., 2022).

      Alternative approaches would be to run the correlations across time for each electrode (re-sulting in the elimination of the time dimension) or to run the correlations at each time point across electrodes (resulting in the elimination of topographic specificity).

      At least, the authors should show raw RSA maps for linked and non-linked events in the pre- and post-phases separately for the insight gained through imagination and observa-tion in each group, to allow for assessing the suitability of the input data (in the supple-ments?) before progressing to reporting the results of three-way interactions.

      Although we do see the reviewer’s point, we think that an RSA specific to the theta range yielding electrode specific time × time similarity maps must be run this way, otherwise, as you pointed out, one or the other dimension is compromised. Running an RSA across time for each electrode will lead to computing a similarity measure between the events without information on when these stimuli become more or less similar, thereby ig-noring the temporal dynamics crucial to EEG data and not taking advantage of the high temporal resolution. Conversely, conducting an RSA across electrodes might result in an overall similarity measure per participant, disregarding the spatial distribution and potential variations among electrodes. Although EEG has limited spatial resolution, different elec-trodes can capture differences that may aid in understanding neural processing. However, as suggested by the reviewer, we included the raw RSA maps for linked and non-linked events separately for pre- and post-phases, imagination and observation and link and non-link in the supplement and refer to these data in the results section on pages 12-13, lines 293-295:

      “For linked events, this analysis yielded a negative cluster (p = 0.032, ci-range = 0.00, SD = 0.00) in the parieto-temporal region (electrodes: T7, Tp7, P7; Fig. 3B; Figure 3 – Figure sup-plement 1).”

      And on page 15, lines 339-341:

      “This analysis yielded a positive cluster (p = 0.035, ci-range = 0.00, SD = 0.00) in a fronto-temporal region (electrode: FT7; Fig. 3C; Figure 3 – Figure supplement 2).”

      Reviewer 2

      We thank the reviewer for the very helpful and constructive comments and appreciate that the reviewer finds our study relevant to all areas of cognitive research.

      1) While the observed memory reconfiguration/changes are attributed to the angular gyrus in this study, it remains unclear whether these effects are solely a result of the AG's role in re-configuration processes or to what extent the hippocampus might also mediate these memory effects (e.g., Tambini et al., 2018; Hermiller et al., 2019).

      We agree that, in addition to the critical role of the angular gyrus, there may be an involvement of the hippocampus. We point now explicitly to the modulatory capacities of angular gyrus stimulation on the hippocampus. Please see page 4, lines 81-88:

      “One promising candidate that may contribute to insight-driven memory reconfiguration is the angular gyrus. The angular gyrus has extensive structural and functional connections to many other brain regions (Petit et al., 2023), including the hippocampus (Coughlan et al., 2023; Uddin et al., 2010). Accordingly, previous studies have shown that stimulation of the angular gyrus resulted in altered hippocampal activity (Thakral et al., 2020; Wang et al., 2014). Furthermore, the angular gyrus has been implicated in a myriad of cognitive func-tions, including mental arithmetic, visuospatial processing, inhibitory control, and theory-of-mind (Cattaneo et al., 2009; Grabner et al., 2009; Lewis et al., 2019; Schurz et al., 2014).”

      We further added a new paragraph to the discussion pointing at the possibility that not solely the angular gyrus but another brain region, such as the hippocampus, may have me-diated the changes observed in our study on pages 23-24, lines 546-562:

      “Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Ud-din et al., 2010). This stronger connectivity between the ventral angular gyrus and the hip-pocampus may shed light on the greater impact of cTBS to the angular gyrus on imagination-based insight. Given the angular gyrus’s robust connectivity with other brain regions, includ-ing the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also originate from these interconnected regions. This notion may bear particular importance given the re-quired accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the angular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus.”

      2) Another weakness in this manuscript is the use of different groups of participants for the key TMS intervention, along with underspecified or incomplete hypotheses/predictions.

      In our view, the chosen between-subjects design is to be preferred over a crossover design for several reasons. First, our choice aimed to eliminate potential se-quence effects that may have adversely affected performance in the narrative-insight task (NIT). Second, this approach ensured consistency in expectations regarding the story links while also mitigating potential differences induced by fatigue. Additionally, we accounted for the potential advantage of a within-subject design – the stimulation of the same brain – by utilizing neuro-navigated TMS for targeting the stimulation coordinate. Finally, it is im-portant to note that we measured the event representations pre- and post-insight and that also the mode of insight was manipulated within-subject. Thus, our design did include a within-subject component and we are convinced that the chosen paradigm balances the different strengths and weaknesses of within-subject and between-subjects designs in the best possible manner. We specified our rationale for choosing a between-subjects ap-proach in the introduction on page 5, lines 122-126:

      “We intentionally adopted a mixed design, combining both between-subjects and within-subject methodologies. The between-subjects approach was chosen to minimize the risk of carry-over effects and sequence biases. Simultaneously, we capitalized on the advantages of a within-subject design by altering the pre- to post-insight comparison and the mode of insight (imagination vs. observation) within each participant.”

      Moreover, to provide a comprehensive portrayal of the two groups, we incorporated de-scriptions concerning trait and state variables alongside age and motor thresholds and in-cluded t-test comparisons between these variables on page 7, lines 157-160:

      “Notably, the groups did not differ on levels of subjective chronic stress (TICS), state and trait anxiety (STAI-S, STAI-T), depressive mood (BDI), imaginative capacities (FFIS), person-ality dimensions (BFI), age, and motor thresholds (for descriptive statistics see Table 1; all p > 0.053).”

      And further included age and motor thresholds as control variables in Table 1 on page 18, lines 402-404:

      “Overall, levels of subjective chronic stress, anxiety, and depressive mood were relatively low and not different between groups. The groups did further not differ in terms of per-sonality traits, imagination capacity, age or motor thresholds (all p > 0.053; see Table 1).”

      For greater precision in outlining our hypotheses, we specified these at the end of the in-troduction on pages 4-55, lines 107-118:

      “Considering this involvement of the angular gyrus in imaginative processes, we expected that the effect of cTBS on the change in representational similarity from pre- to post-insight will differ based on the mode of insight – whether this insight was gained via imagination or observation. Specifically, we expected a more pronounced impairment in the neural recon-figurations when insight is gained via imagination, as this function may depend more on an-gular gyrus recruitment than insight gained via observation. Additionally, we expected cTBS to the left angular gyrus to interfere with the increase in neural similarity for linked events and with the decrease of neural similarity for non-linked events. We further predicted that cTBS to the left angular gyrus would reduce the impact of (imagination-based) insight into the link of initially unrelated events on memory performance during free recall, given its higher variability compared to other memory measures.”

      3) Furthermore, in some instances, the types of analyses used do not appear to be suitable for addressing the questions posed by the current study, and there is limited explanation pro-vided for the choice of analyses and questionnaires.

      We addressed this concern by inserting a new section “control variables” in the methods explaining our rationale for employing the different questionnaires as control var-iables on pages 40-41, lines 1003-1019:

      “Control variables In order to ensure that the observed effects were solely attributable to the TMS manipula-tion and not influenced by other factors, we comprehensively evaluated several trait and state variables. To account for potential variations in anxiety levels that could impact our re-sults, we specifically measured state and trait anxiety using STAI-S and STAI-T (Laux et al., 1981), thus minimizing the potential confounding effects of anxiety on our findings (Char-pentier et al., 2021). Additionally, we evaluated participants’ chronic stress levels using the TICS (Schulz & Schlotz, 1999) to exclude any group variations that might explain the effect on memory, cosidering the well-established impact of stress on memory (Sandi & Pinelo-Nava, 2007; Schwabe et al., 2012). Moreover, we assessed participants’ depressive symp-toms employing the BDI (Hautzinger et al., 2006), to guarantee group comparability on this clinical measure. We further assessed fundamental personality dimensions using the BFI-2 (Danner et al., 2016) to exclude any potential group discrepancies that could account for dif-ferences observed. Lastly, we assessed participants’ imaginative capacities using the FFIS (Zabelina & Condon, 2019), to ensure uniformity across groups regarding this central varia-ble, considering the significant role of imagination in relation to the cTBS-targeted angular gyrus (Thakral et al., 2017).”

      We further specified why we chose to analyze our behavioral data using LMMs on page 34, lines 849-85:

      “For our behavioral analyses we opted to employ linear-mixed models (LMM), given their high robustness regarding the underlying distribution and high sensitivity to individual varia-tion (Pinheiro & Bates, 2000; Schielzeth et al., 2020).”

      Moreover, we added an explanation on why we opted for the RSA approach in the meth-ods section on page 37, lines 920-923:

      “This method is ideally suited to measure neural representation changes and was specifical-ly chosen as it has been previously identified as the preferred approach for quantifying in-sight-induced neural changes (Grob et al., 2023b; Milivojevic et al., 2015).”

      To clarify on the rationale behind our coherence analysis, we incorporated an explanatory sentence in the methods section on page 39, lines 966-967:

      “Due to the robust connectivity between the angular gyrus and other brain regions (Petit et al., 2023; Seghier, 2013), we proceeded with a connectivity analysis as a next step.”

      Reviewer 3

      We thank the reviewer for the constructive and very helpful comments. We are pleased that the reviewer considered our experimental design to be strong and our behavioral results to be striking.

      1) My major criticism relates to the main claim of the paper regarding causality between the angular gyrus and the authors' behavior of interest. Specifically, I am not convinced by the evidence that the effects of stimulation noted in the paper are attributable specifically to the angular gyrus, and not other regions/networks.

      While our results showed specific changes after cTBS over the angular gyrus, demonstrating a causal involvement of the angular gyrus in these effects, we completely agree that this does not rule out an involvement of additional areas. In particular, there is evidence suggesting that cTBS over parietal regions, such as the angular gyrus, could poten-tially influence hippocampal functioning. We address this issue now in a new paragraph that we have added to the discussion, on pages 23-24, lines 546-564:

      “Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Ud-din et al., 2010). This stronger connectivity between the ventral angular gyrus and the hip-pocampus may shed light on the greater impact of cTBS to the angular gyrus on imagination-based insight. Given the angular gyrus’s robust connectivity with other brain regions, includ-ing the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also originate from these interconnected regions. This notion may bear particular importance given the re-quired accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the angular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus. Expanding upon this idea, it is conceivable that targeting a more dorsal segment of the angular gyrus might exert a stronger influence on observation-based linking – an aspect that warrants future in-vestigations.”

      Responses to reviewer recommendations

      Reviewer 1

      1) On page 26, the authors write: "[...] different video events (A, B, and X) were recalled from day one [...]". I may have missed this point, but I had the impression that the task was con-ducted within one day.

      Indeed, this study was conducted within a single day. We rephrased the respec-tive statement accordingly. Please see page 7, lines 149-153:

      “To test this hypothesis and the causal role of the angular gyrus in insight-related memory reconfigurations, we combined the life-like video-based narrative-insight task (NIT) with representational similarity analysis of EEG data and (double-blind) neuro-navigated TMS over the left angular gyrus in a comprehensive investigation within a single day.”

      We further included this information in the methods section on page 27, lines 634-635:

      “In total, the experiment took about 4.5 hours per participant and was completed within a single day. ”

      Reviewer 2

      1) There is a substantial disconnection between the introduction and the methods/results sec-tion. One reason is that there is not sufficient detail regarding the hypotheses/predictions and the specific types of analyses chosen to test these hypotheses/predictions. Additionally, it is not explained what comparisons and outcomes would be informative/expected. This should be made clear. Second and related to the above, the rationale for conducting certain types of analyses (correlation, coherence, see below) sometimes is not specified.

      To address this concern, we elaborated on our hypotheses incorporating specif-ic predictions for the free recall, given its higher variability than the other memory measures, and for imagination vs. observation at the end of the introduction on pages 4-5, lines 107-122:

      “Considering this involvement of the angular gyrus in imaginative processes, we expected that the effect of cTBS on the change in representational similarity from pre- to post-insight will differ based on the mode of insight – whether this insight was gained via imagination or observation. Specifically, we expected a more pronounced impairment in the neural recon-figurations when insight is gained via imagination, as this function may depend more on an-gular gyrus recruitment than insight gained via observation. Additionally, we expected cTBS to the left angular gyrus to interfere with the increase in neural similarity for linked events and with the decrease of neural similarity for non-linked events. We further predicted that cTBS to the left angular gyrus would reduce the impact of (imagination-based) insight into the link of initially unrelated events on memory performance during free recall, given its higher variability compared to other memory measures. Considering the high connectivity profile of the angular gyrus within the brain (Seghier, 2013), we conducted an EEG connec-tivity analysis building upon prior findings concerning alterations in neural reconfigurations. To establish a link between neural and behavioral findings, we chose a correlational ap-proach to relate observations from these two domains.”

      Moreover, we made our rationale for the employed analyses more explicit and specified why we chose to analyze our behavioral data using LMMs on page 34, lines 849-851:

      “For our behavioral analyses we opted to employ linear-mixed models (LMM), given their high robustness regarding the underlying distribution and high sensitivity to individual varia-tion (Pinheiro & Bates, 2000; Schielzeth et al., 2020).”

      Moreover, we added an explanation on why we opted for the RSA approach in the meth-ods section on page 37, lines 920-923:

      “This method is ideally suited to measure neural representation changes and was specifical-ly chosen as it has been previously identified as the preferred approach for quantifying in-sight-induced neural changes (Grob et al., 2023b; Milivojevic et al., 2015).”

      To clarify on the rationale behind our coherence analysis, we incorporated an explanatory sentence in the methods section on page 39, lines 966-967:

      “Due to the robust connectivity between the angular gyrus and other brain regions (Petit et al., 2023; Seghier, 2013), we proceeded with a connectivity analysis as a next step.”

      2) The authors suggest that besides Branzi et al. (2021), this is one of the first studies showing that memory update is linked to the AG. I suggest having a look at work from Tambini, Nee, & D'Esposito, 2018, JoCN, and other papers from Joel Voss' group that target a similar re-gion of AG/Inferior parietal cortex. Many studies, using multiple TMS protocols, have now shown this brain region is causally involved in episodic and associative memory encoding.

      As mentioned above, further consideration of this literature is important as it delves into the region's hippocampal connectivity (and other network properties), and how that mediates the memory effects. Indeed because of the nature of the methods employed in this study, we do not know if the memory-related behavioural effects are due to TMS-changes induced at the AG's versus the hippocampal' s level, or both. How do the current findings square with the existing TMS effects from this region? Can the connectivity profile of the target re-gion highlighted by previous studies provide further insight into how the current behaviour-al effect arises? Some comments on this could be added to the discussion.

      We completely agree that the other studies showing enhanced associative memory after TMS to parietal regions need to be addressed. Therefore, we updated the discussion on page 20, lines 449-453:

      “Interestingly, recent work has additionally indicated that targeting parietal regions with TMS led to alterations in hippocampal functional connectivity, thereby enhancing associa-tive memory (Nilakantan et al., 2017; Tambini et al., 2018; Wang et al., 2014), potentially shedding light on the underlying mechanisms involved.”

      Moreover, we included a section specifically addressing the possibility that the effects ob-served may pertain to having modulated other regions via the targeted region and updated the discussion on pages 23-24, lines 543-562:

      “Furthermore, the differential impact of cTBS to the angular gyrus on neural reconfigura-tions between events linked via imagination and those linked via observation may be at-tributed to its crucial role in imaginative processes (Ramanan et al., 2018; Thakral et al., 2017). Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Uddin et al., 2010). This stronger connectivity between the ventral angular gyrus and the hippocampus may shed light on the greater impact of cTBS to the angular gyrus on im-agination-based insight. Given the angular gyrus’s robust connectivity with other brain re-gions, including the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also origi-nate from these interconnected regions. This notion may bear particular importance given the required accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the an-gular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gy-rus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus.”

      3) Another comment I have regards the results observed for the observation vs imagination insight conditions. The authors mention that the 'changes in representational similarity for the observation condition should be interpreted with caution, as these seemingly opposite changes appeared to be at least in part driven by group differences already in the pre-phase before participants gained insight.' I wonder what these group differences are and whether the authors have any hypothesis about what factors determined them.

      We could only speculate about the basis of the observed pre-insight phase dif-ferences. However, we provide now the raw RSA data as supplemental material to make the pattern of the (raw) RSA findings in the pre- and post-insight phases more transparent. We refer the interested reader to this material on pages 12-13, lines 293 to 295:

      “For linked events, this analysis yielded a negative cluster (p = 0.032, ci-range = 0.00, SD = 0.00) in the parieto-temporal region (electrodes: T7, Tp7, P7; Fig. 3B; Figure 3 – Figure sup-plement 1).”

      And on page 15, lines 339-341:

      “This analysis yielded a positive cluster (p = 0.035, ci-range = 0.00, SD = 0.00) in a fronto-temporal region (electrode: FT7; Fig. 3C; Figure 3 – Figure supplement 2).”

      Furthermore, the age of participants is not reported separately for the two groups (cTBS to AG vs Sham), I think. This should be reported including a t-test showing that the two groups have the same age.

      We agree and report now explicitly that groups did not significantly differ in rel-evant control variables including age. Please see page 7, lines 157-160:

      “Notably, the groups did not differ on levels of subjective chronic stress (TICS), state and trait anxiety (STAI-S, STAI-T), depressive mood (BDI), imaginative capacities (FFIS), person-ality dimensions (BFI), age, and motor thresholds (for descriptive statistics see Table 1; all p > 0.053).”

      And further included age and motor thresholds as control variables in Table 1 on page 18, lines 402-412:

      “Overall, levels of subjective chronic stress, anxiety, and depressive mood were relatively low and not different between groups. The groups did further not differ in terms of per-sonality traits, imagination capacity, age or motor thresholds (all p > 0.053; see Table 1).”

      The fact this study is not a within-subject design makes difficult the interpretation of the results and this should be recognised as an important limitation of the study.

      As outlined above, a within-subject design would in our view come with several disadvantages, such as significant sequence/carry-over effects. Moreover, the neural rep-resentation change was measured in a pre-post design, enabling us to measure the insight-driven neural reconfiguration at the individual level.

      We clarify our rationale for the between-subjects factor TMS in the introduction on page 5, lines 122-126:

      “We intentionally adopted a mixed design, combining both between-subjects and within-subject methodologies. The between-subjects approach was chosen to minimize the risk of carry-over effects and sequence biases. Simultaneously, we capitalized on the advantages of a within-subject design by altering the pre- to post-insight comparison and the mode of insight (imagination vs. observation) within each participant.”

      Furthermore, we included our rationale for choosing a between-subjects approach for the crucial TMS manipulation in the methods section on page 25, lines 601-604:

      “We implemented a mixed-design including the within-subject factors link (linked vs. non-linked events), session (pre- vs. post-link), and mode (imagination vs. observation) as well as the between-subjects factor group (cTBS to the angular gyrus vs. sham) to mitigate the risk of carry-over effects and sequence biases of the crucial cTBS manipulation.”

      4) The angular gyrus is a heterogeneous region with multiple graded subregions. The one tar-geted in the present study is the ventral AG which has strong connections with the episodic-hippocampal memory system. I was wondering if this might explain why the AG TMS ef-fects on representational changes have been observed for events linked via imagination but not direct observation. Perhaps the stimulation of a more 'visual' AG subregion (see Hum-phreys et al., 2020, Cerebral Cortex) would have resulted in a different (opposite) pattern of results. It would be good to add some comments on this in the discussion.

      We appreciate this interesting perspective offered regarding the potential out-comes of our study, particularly in relation to the activation of a more ventral sub region of the angular gyrus. We incorporated this idea into our discussion, alongside considerations regarding the potential effects of a more dorsal angular gyrus stimulation on observation-based linking. However, caution is warranted recognizing the inherent limitations posed by the precision of TMS manipulations, which is further underscored by our electric field simu-lations, utilizing a 10 mm radius. We included this section in the discussion on pages 23-24, lines 546-569:

      “Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Ud-din et al., 2010). This stronger connectivity between the ventral angular gyrus and the hip-pocampus may shed light on the greater impact of cTBS to the angular gyrus on imagina-tion-based insight. Given the angular gyrus’s robust connectivity with other brain regions, including the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also originate from these interconnected regions. This notion may bear particular importance given the re-quired accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the angular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus. Expanding upon this idea, it is conceivable that targeting a more dorsal segment of the angular gyrus might exert a stronger influence on observation-based linking – an aspect that warrants future in-vestigations. Yet, while acknowledging the functional heterogeneity within the angular gy-rus (Humphreys et al., 2020), pinpointing specific sub regions via TMS remains challenging due to its limited focal precision at the millimeter level (Deng et al., 2013; Thielscher & Kammer, 2004), as reinforced by our electric field simulations utilizing a 10 mm radius. Hence, drawing definitive conclusions regarding distinct angular gyrus sub regions requires future research employing rigorous checks to assess the focality of their stimulation.”

      5) Regarding the methods section, I have the following specific queries. It is unclear what is the purpose of the coherence and correlation analyses (pages 35, 36). Could the authors pro-vide further clarification on this? These analyses seem not to be mentioned anywhere in the introduction. This should be clarified briefly in the introduction and then in the methods sec-tion. The same for the questionnaires (anxiety, stress, etc): It is unclear the reason for col-lecting this type of data. This should be clarified in the introduction as well.

      We agree, and have updated the introduction as follows on page 5, lines 118-122:

      “Considering the high connectivity profile of the angular gyrus within the brain (Seghier, 2013), we conducted an EEG connectivity analysis building upon findings from the RSA anal-yses concerning alterations in neural reconfigurations. To establish a link between neural and behavioral findings, we chose a correlational approach to relate observations from these two domains.”

      We additionally provided an explanation for including these questionnaires in the introduc-tion on page 5, lines 126-129:

      “To control for any group differences beyond the TMS manipulation, we gathered various control variables through questionnaires, including trait- and state-anxiety, depressive symptoms, chronic stress levels, personality dimensions, and imaginative capacities.”

      Moreover, we elaborated on the underlying rationale guiding our chosen analytical ap-proaches. Therefore, we specified why we chose to analyze our behavioral data using LMMs on page 34, lines 849-851:

      “For our behavioral analyses we opted to employ linear-mixed models (LMM), given their high robustness regarding the underlying distribution and high sensitivity to individual varia-tion (Pinheiro & Bates, 2000; Schielzeth et al., 2020).”

      Furthermore, we added an explanation on why we opted for the RSA approach in the methods section on page 37, lines 920-923:

      “This method is ideally suited to measure neural representation changes and was specifical-ly chosen as it has been previously identified as the preferred approach for quantifying in-sight-induced neural changes (Grob et al., 2023b; Milivojevic et al., 2015).”

      To clarify on the rationale behind our coherence analysis, we incorporated an explanatory sentence in the methods section on page 39, lines 966-967:

      “Due to the robust connectivity between the angular gyrus and other brain regions (Petit et al., 2023; Seghier, 2013), we proceeded with a connectivity analysis as a next step.”

      6) The preregistration webpage is in German. This is not ideal as it means that the information is available only to German speakers.

      This webpage can easily be switched to English by changing the settings in the top right corner:

      To address this issue, we included a description of how to set the webpage to English in the methods section on page 25, lines 581-582:

      “For translation to English, please adjust the page settings located in the top right corner.”

      7) Page 18. 'NIT' and 'MAT' - avoid abbreviations when possible.

      We included the full name for the narrative-insight task (NIT) on page 7, line 151, line 153, and line 165, page 8 lines 177-178 and line 187, page 19 on line 427, page 26 on line 615, line 629 and line 632, page 27, line 653, page 30, lines 730-731, page 31, line 754, page 35, line 870, line 873, and page 36 and line 885.

      We further included the full name for the multi-arrangements task (MAT) on page 19, lines 428-429.

      8) Line 21....we further observed DECREASED...should be replaced with INCREASED, if I am not wrong.

      We checked the sentence again and it looks correct to us, since it describes the change for observation-based insight, not imagination-based insight. We clarified that this finding pertains to observation-based linking by modifying the sentence on page 23, lines 525-528, as follows:

      “Following cTBS to the angular gyrus, we further observed decreased pattern similarity for non-linked events in the observation-based condition, resembling the pattern change ob-served in the sham group for linked events, which may highlight the role of the angular gy-rus in representational separation during observation-based linking”

      Reviewer 3

      1) The major claim of the paper is that the angular gyrus is causally involved in insight-driven memory reconfiguration. To the authors' credit, they localized stimulation to the angular gyrus using an anatomical scan, the strength of the estimated electromagnetic field in the angular gyrus correlated with their behavioral results, and there were also brain-behavior correlations involving sensors located in the parietal lobe. However, the minimum evidence needed to claim causality is 1) evidence of a behavioral change (which the authors found) and 2) evidence of target engagement in the angular gyrus. It is also important to show brain-behavior correlations between target engagement and behavior. Although the au-thors stimulated the angular gyrus, that does not mean that rTMS specifically affected this region or that the behavioral results can be attributed to rTMS effects on the angular gyrus. As the authors point out, the angular gyrus has dense connections with other regions such as the hippocampus. In fact, several studies have shown that angular gyrus (or near AG) stimulation affects the hippocampal network (Wang et al., 2014, Science; Freedberg et al. 2019, eNeuro; Thakral et al., 2020, PNAS). EEG also has a poor spatial resolution, so even though the results were attributable to parieto-temporal sensors, this is not sufficient evi-dence to claim that the angular gyrus was modulated. Source localization would be re-quired to reconstruct the signal specifically from the AG. Thus, with the manuscript written as is, the authors can claim that "cTBS to the angular gyrus modulates insight-driven memory reconfiguration," but the current claim is not sufficiently substantiated.

      While acknowledging the potential role of the angular gyrus in driving the ob-served changes, we recognize that the available evidence may not be sufficient. Conse-quently, we have introduced several modifications within our manuscript to address this concern.

      In the revised Introduction, we now explicitly address the possibility of a stimulation of the hippocampus via the angular gyrus on page 4, lines 84-85:

      “Accordingly, previous studies have shown that stimulation of the angular gyrus resulted in altered hippocampal activity (Thakral et al., 2020; Wang et al., 2014).”

      Additionally, we included relevant evidence demonstrating previous instances of targeted stimulation of the angular gyrus, which led to alterations in hippocampal connectivity and associative memory. These insights have been included in the discussion on page 20, lines 449-453:

      “Interestingly, recent work has additionally indicated that targeting parietal regions with TMS led to alterations in hippocampal functional connectivity, thereby enhancing associa-tive memory (Nilakantan et al., 2017; Tambini et al., 2018; Wang et al., 2014), potentially shedding light on the underlying mechanisms involved.”

      Next, we have integrated crucial modifications essential for establishing a conclusive infer-ence of causality in our study. Moreover, we now explore the potential mediation of the effects observed from angular gyrus stimulation through other brain regions, like the hip-pocampus. In addition, we have highlighted prior work where such stimulation coincided with alterations in associative memory. For the updated discussion section, please see pag-es 23-24, lines 538-562:

      “Although our study provided evidence suggesting a causal role of the angular gyrus in in-sight-driven memory reconfigurations – highlighted by behavioral changes after cTBS to the angular gyrus, neural changes in left parietal regions, and relevant brain-behavior associa-tions – it is important to acknowledge the limitations imposed by the spatial resolution of EEG. Consequently, the precise source of the observed signal changes in the parietal re-gions remains uncertain, potentially tempering the definitive nature of these findings. Fur-thermore, the differential impact of cTBS to the angular gyrus on neural reconfigurations between events linked via imagination and those linked via observation may be attributed to its crucial role in imaginative processes (Ramanan et al., 2018; Thakral et al., 2017). An-other intriguing aspect to consider is that the stimulated site was situated in the more ven-tral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Ud-din et al., 2010). This stronger connectivity between the ventral angular gyrus and the hip-pocampus may shed light on the greater impact of cTBS to the angular gyrus on imagina-tion-based insight. Given the angular gyrus’s robust connectivity with other brain regions, including the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also originate from these interconnected regions. This notion may bear particular importance given the re-quired accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the angular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus.”

      We further replaced terms that imply inhibition of the angular gyrus with a more operation-ally descriptive phrase:

      “cTBS to the angular gyrus”

      2) The authors frequently claim that cTBS is "inhibitory stimulation" and that inhibition of the angular gyrus caused their effects. There is a common misconception within the cognitive neuroscience literature that stimulation is either "inhibitory" or "excitatory," but there is no such thing as either. The effects of rTMS are dependent on many physiological, state, and trait-specific variables and the location of stimulation. For example, while cTBS does repro-ducibly inhibit behavior supported by the motor cortex (Wilkinson et al., 2010, Cortex; Rosenthal et al., 2009, J Neurosci), cTBS of the posterior parietal cortex reproducibly en-hances hippocampal network functional connectivity and episodic memory (Hermiller et al., 2019, Hippocampus; Hermiller et al., 2020, J Neurosci). The authors reference the Huang et al. (2005) paper as evidence of its inhibitory effects but work in this paper is not sufficient to broadly categorize cTBS as inhibitory. First, Huang et al. stimulated the motor cortex and measured the effects on corticospinal excitability, which is significantly different from what the current authors are measuring. Furthermore, this oft-cited study only included 9 sub-jects. Other studies have found that the effects of theta-burst are significantly more varia-ble when more subjects are used. For example, intermittent theta-burst, which is assumed to be excitatory based on the Huang paper, was found to produce unreliable excitatory ef-fects when more subjects were examined (Lopez-Alonso, 2014, Brain Stimulation). Thus, the a priori assumption that stimulation would be inhibitory is weak and cTBS should not be dis-cussed as "inhibitory."

      We agree and included now a statement in the methods section that explicitly states that cTBS effects may be region-specific on page 33, lines 817-819:

      “Nonetheless, the effects of cTBS appear to vary based on the targeted region, with cTBS to parietal regions demonstrating the capability to enhance hippocampal connectivity (Hermiller et al., 2019, 2020).”

      We further substituted all terminology suggestive of an inhibitory effect with the phrase:

      “cTBS to the angular gyrus”.

      However, it is important to note, that while other studies (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014) found increased hippocampal connectivity after rTMS to a parie-tal region as well as enhanced associative memory, we observed impaired memory for the linked events. We included this clarification in the discussion on page 24, lines 558-562:

      “In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus.”

      3) The hypothesis at the end of the introduction did not strike me as entirely clear. From this hypothesis, it seems that the authors are just comparing the differences in memory and re-configuration during imagination-based insight links. However, the authors also include ob-servation-based links and a non-linking condition, which seem ancillary to the main hy-pothesis. Thus, I am confused about why these extra factors were included and exactly what statistical results would confirm the authors' hypothesis.

      We agree, and have clarified our hypotheses on pages 4-5, lines 107-115:

      “Considering this involvement of the angular gyrus in imaginative processes, we expected that the effect of cTBS on the change in representational similarity from pre- to post-insight will differ based on the mode of insight – whether this insight was gained via imagination or observation. Specifically, we expected a more pronounced impairment in the neural recon-figurations when insight is gained via imagination, as this function may depend more on an-gular gyrus recruitment than insight gained via observation. Additionally, we expected cTBS to the left angular gyrus to reduce the increase in neural similarity for linked events and in-crease of neural dissimilarity for non-linked events.”

      4) Many of the distributions throughout the paper do not look normal. Was normality checked? Are non-parametric stats warranted?

      We evaluated and reported the normality assumption in our behavioral anal-yses. Despite the non-normal distribution of our data, we chose to utilize linear-mixed models due to their robust performance even in case of deviations from normal distribu-tions. This update in our methods section can be found on page 36, lines 890-896:

      “After outlier correction, we identified non-normality in our data using a Shapiro-Wilk test (narrative-insight task: W = 0.92, p < 0.001; multi-arrangements task: W = 0.94, p < 0.001; forced-choice recognition: W = 0.50, p < 0.001; free recall details: W = 0.85, p < 0.001; free recall naming of linking events: W = 0.94, p < 0.001). However, we mitigated this by employ-ing linear-mixed models (LMMs), recognized for their robustness even with non-normally distributed data (Schielzeth et al., 2020).”

      We recalculated the correlational analysis between the RSA data and the behavioral recall of linking events by using the Spearman method on page 13, lines 306-308:

      “Furthermore, to address a deviation from the normality assumption, the correlational analysis was repeated using the Spearman method, which indicated an even stronger cor-relation (r(59) = 0.32, p = 0.012).”

      We further recalculated the correlation between the change in coherence for linked events and the recall of details for events linked via imagination on page 16, lines 376-378:

      “Please note that for addressing a deviation from the normality assumption, the correla-tional analysis was repeated using the Spearman method, which yielded a significant corre-lation of similar strength (r(59) = 0.31, p = 0.015).”

      Our EEG analyses , including RSA and coherence analyses, utilized a cluster-based permuta-tion test (Fieldtrip; Oostenveld et al., 2011). These tests do not assume a normal distribu-tion by utilizing empirical sampling for statistical inference. This approach ensures robust-ness without constraints imposed by specific distributional assumptions. Subsequent t-tests, stemming from significant clusters identified in the initial non-parametric analyses, were extensions of the robust non-parametric approach and did not require additional normality testing.

      5) Can the authors include more detail about the sham coil? Was it subthreshold? Did the EMF cross the skull?

      The sham coil, also obtained from MAG & More GmbH, München, Germany, provided a similar sensory experience; however, the company did not specify any field strength (n.a.) as this coil was purposefully designed to prevent the induction of an elec-tromagnetic field (EMF) capable of penetrating the skull, thereby ensuring it had no impact on the brain. We clarified on this point in the methods section on pages 31-32, lines 772-778:

      “Two identically looking but different 70 mm figure-of-eight-shaped coils were used de-pending on the TMS condition: The PMD70-pCool coil (MAG & More GmbH, München, Germany) with a 2T maximum field strength was used for cTBS, while the PMD70-pCool-SHAM coil (MAG & More GmbH, München, Germany), with minimal magnetic field strength, was employed for sham, providing a similar sensory experience, with stimulation pulses being scattered over the scalp and not penetrating the skull.”

      6) There are differences between exclusion criteria in pre-registration and report. For example, BMI is an exclusion factor in the report, but not in the pre-registration. Can the authors provide a reason for this deviation?

      This discrepancy is due to (partial) participant recruitment from previous fMRI studies conducted in our lab that involved a stress induction protocol (as a structural MRI image was needed for the ‘neuronavigated’ TMS). Owing to the distinct cortisol stress reac-tivity observed in individuals with varying body mass indices (BMIs), participants with a BMI below 19 or above 26 kg/m² were excluded from these studies. To maintain consistency within our sample, only participants meeting these criteria were included. We elaborated on this point in the methods section on page 25, lines 586-592:

      “Participants were screened using a standardized interview for exclusion criteria that com-prised a history of neurological and psychiatric disease, medication use and substance abuse, cardiovascular, thyroid, or renal disease, evidence of COVID-19 infection or expo-sure, and any contraindications to MRI examination or TMS. Additionally, participants with a body mass index (BMI) below 19 or above 26 kg/m² were excluded. This decision stemmed from recruiting some participants from prior studies that incorporated stress induction pro-tocols, which imposed this specific criterion (Herhaus & Petrowski, 2018; Schmalbach et al., 2020).”

      7) Were impedances monitored and minimized during EEG?

      Yes, they were monitored. We clarified this point in the methods section on page 34, lines 845-847:

      “We maintained impedances within a range of ± 20 μV using the common mode sense (CMS) and driven right leg (DRL) electrodes, serving as active reference and ground, re-spectively”

      8) I think there may be a typo related to the Thakral coordinates. I believe Thakral used MNI coordinates -48,-64, 30, whereas the authors stated they used -48,-67,30. Is this a mistake?

      Upon reevaluation of our study coordinates, we identified a slight deviation in our stimulation coordinates compared to those reported by Thakral et al. (2017; +3mm on the y-axis). This variance resulted from the required MNI to Talairach (TAL) transformations necessary for utilizing the neuronavigation software Powermag View! (MAG & More GmbH, München, Germany). Notably, this deviation was consistent across all participants in our study. While TMS is more precise than tDCS, its focality is not as fine-grained down to the millimeter level. Despite this, our electric field simulations, adopting a 10mm radius, ef-fectively encompassed the original coordinates specified by Thakral et al. (2017). This radius ensured coverage over the intended target area, mitigating the impact of this minor devia-tion on the overall study outcomes. We updated the methods section accordingly on page 33, lines 800-806:

      “Based on the individual T1 MR images, we created 3D reconstructions of the participants' heads, allowing us to precisely locate the left angular gyrus coordinate (MNI: -48, -67, 30), initially derived from previous work (Thakral et al., 2017), for TMS stimulation. Despite a mi-nor deviation in coordinates due to necessary MNI to Talairach transformations for soft-ware compatibility (Powermag View! by MAG & More GmbH, München, Germany), our methodology ensured precise localization of the angular gyrus target area.”

      9) How was the tail of the coil positioned during stimulation? Was it individualized so that the lobes of the coil are perpendicular to the nearest gyrus, as is commonly done?

      The coil handle always pointed upwards to maintain optimal positioning with the coil holder. We followed the positioning procedure in the neuronavigation software Powermag View!, which did not indicate any positioning of the coil handle but specified the position and angle of the coil itself. To incorporate this aspect, we updated the legend of figure 2 on page 11, lines 260-261:

      “Please note that in the study, the coil handle was oriented upwards; however, in this illus-tration, it has been intentionally depicted as pointing downwards for better visibility pur-poses.”

      We further updated the method section on page 33, lines 723-824:

      “The coil was positioned tangentially on the head and mechanically fixed in a coil holder, with its handle pointing upwards to maintain its position”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      This work describes a new and powerful approach to a central question in ecology: what are the relative contributions of resource utilisation vs interactions between individuals in the shaping of an ecosystem? This approach relies on a very original quantitative experimental set-up whose power lies in its simplicity, allowing an exceptional level of control over ecological parameters and of measurement accuracy.

      In this experimental system, the shared resource corresponds to 10^12 copies of a fixed single-stranded target DNA molecule to which 10^15 random single-stranded DNA molecules (the individuals populating the ecosystem) can bind. The binding process is cycled, with a 1000x-PCR amplification step between successive binding steps. The composition of the population is monitored via high-throughput DNA sequencing. Sequence data analysis describes the change in population diversity over cycles. The results are interpreted using estimated binding interactions of individuals with the target resource, as well as estimated binding interactions between individuals and also self-interactions (that can all be directly predicted as they correspond to DNA-DNA interactions). A simple model provides a framework to account for ecosystem dynamics over cycles. Finally, the trajectory of some individuals with high frequency in late cycles is traced back to the earliest cycles at which they are detected by sequencing. Their propensities to bind the resource, to form hairpins, or to form homodimers suggest how different interaction modes shape the composition of the population over cycles.

      The authors report a shift from selection for binding to the resource to interactions between individuals and self-interactions over the course of cycles as the main drivers of their ecosystem. The outcome of the experiment is far from trivial as the individual resource binding energy initially determines the relative enrichment of individuals, and then seems to saturate. The richness of the population dynamics observed with this simple system is thus comparable to that found in some natural ecosystems. The findings obtained with this new approach will likely guide the exploration of natural ecosystems in which parameters and observables are much less accessible.

      My review focuses mainly on the experimental aspects of this work given my own expertise. The introduction exposes very convincingly the scientific context of this work, justifying the need for such an approach to address questions pertaining to ecology. The manuscript describes very clearly and rigorously the experimental setup. The main strengths of this work are (i) the outstanding originality of the experimental approach and (ii) its simplicity. With this setup, central questions in ecology can be addressed in a quantitative manner, including the possibility of running trajectories in parallel to generalize the findings, as reported here. Technical aspects have been carefully implemented, from the design of random individuals bearing flanking regions for PCR amplification, binding selection and (low error) amplification protocols, and sequencing read-out whose depth is sufficient to capture the relevant dynamics.<br /> :<br /> We thank the reviewer for summarizing our work and the main findings in a very clear and effective manner.

      One missing aspect in the data analysis is the quantification of the effect of PCR amplification steps in shaping the ecosystem (to be modeled if significant). In addition, as it stands the current work does not fully harness the power of the approach. For instance, with this setup, one can tune the relative contributions of binding selection vs amplification for instance (to disentangle forces that shape the ecosystem). One can also run cycles with new DNA individuals, designed with arbitrarily chosen resource binding vs self-binding, that are predicted to dominate depending on chosen ecological parameters. I have three main recommendations to the authors:

      1) PCR amplification steps (and not only binding selection steps) should be taken into account when interpreting the outcome of experiments.

      2) More generally, a systematic analysis of the possible modes of propagation of a DNA molecule from one cycle to the next, including those considered as experimental noise, would help with interpreting the results.

      3) Testing experimentally the predictions from the analysis and the modelling of results would strengthen the case for this approach.

      Despite its conceptual simplicity, our approach has indeed a few experimental handles that enable exploring a relevant variety of conditions much beyond those described in this paper, of which we are very aware. These involve selection vs. amplification or set the stage to explore competition, parasitism or cooperation among specific species, as the reviewer points out, but also introduce mutations and explore the kinetics of evolution in static or dynamic environments. Ongoing experiments are considering some of these conditions. We modified the text to mention more explicitly these possibilities, which are now mentioned in p11 lines 376-378 and lines 416-417. The three points raised by the reviewer helped us to further improve and clarify strengths and limitations of our work, as detailed below.

      Regarding the first point, here are my suggestions :

      • Run one cycle of just amplification vs 'binding + amplification', or simply increase the number of PCR cycles (and subsample the product) to check whether it impacts the population composition, in particular for sequences with predictions derived from the current analysis.

      The point raised by the reviewer is indeed very relevant and not discussed in our manuscript. Prompted by the reviewer’s comment, we performed two new experiments to distinguish resource-binding selection from PCR amplification effects.

      First, we performed a negative control experiment in which we performed the “selection step” with bear beads, i.e. beads without with no DNA grafted on them. We then compared the results with the corresponding results of the original experiments on Oligo 1 and 2.

      After 6 cycles, the most abundant sequence in the negative dataset has a relative occurrence of 0.05%, whereas the dominant strand in Oligo 1 and Oligo 2 has an abundance of 8% and 16%, respectively, i.e. 40-80 times larger.

      This indicates that the drift due to non-specific binding + PCR amplification is at least two orders of magnitude smaller than the selection induced by the affinity with the resource.

      This results are now cited in p14 lines 468-470, and described in Appendix 1, Experimental controls.

      Second, we tested the effect of PCR amplification on the selection process. We exploited the fact that we have aliquots for each generation of our evolution experiment, which we sampled and saved after PCR and before sequencing. We thus chose a specific generation - specifically generation 9 from Oligo 1 experiments - and performed another PCR round we proceeded directly to sequencing with no beadsselection step. We then compared the ensemble of oligos obtained in this way, which we named Oligo 1 “cycle 9 replica”, with both the original Oligo1 cycle 9, and with Oligo1 cycle 10.

      We sampled 20 times 4 x 10^5 sequences from the cycle 9 dataset, from cycle 9 replica and from cycle 10 with a bootstrap approach. To compare the three systems we extracted the fraction of the population of each covered by the 10 most abundant individuals. The results are shown in Figure 2 - Figure Supplement 4. In the figure caption further details on the analysis can be found. The similarity between cycle 9 and cycle 9 replica and the marked difference between cycle 9 replica and cycle 10

      indicates that the relevant part of the selection is indeed performed by the resourcebinding mechanism, while drifts induced by PCR play a secondary role.

      As a further check, we compared the specific sequences across the 20 samples in cycle 9 and cycle 9 replica datasets and found that the 10 most abundant sequences are almost always the same. In particular, the first 8/9 are always the same, possibly shuffled.

      These new pieces of evidence are now cited in p14 lines 483-484 and described in Appendix 1, Experimental controls.

      • Sequencing read-out includes the same PCR protocol as the one used for amplification steps, so read-out potentially has an effect on the composition of the ecosystem. Again, varying the number of PCR cycles is a direct way to test this.

      The PCR amplification involved in the read-out might have a minor effect on the sequencing outcome but not on the composition of the ecosystem. In fact, the sample that undergoes sequencing is taken from the pool at each cycle, and not inserted back into it. Thus, it does not participate in the following selection steps. This is specified in the text at p3 line 104

      • Could self-interactions (hairpins of homodimers) benefit individuals during amplification steps? The role of self-interactions during binding selection steps could also be tested directly over one cycle (again varying the relative weight of the binding vs amplification to disentangle both).

      Our choice of conditions for PCR amplification were thought to minimize effects of this type. PCR amplification is carried out at 68 C, a temperature at which, given the level of self and mutual complementarity in the sequences analyzed in the text, hairpins or homodimers should be melted and thus have no effect. This is specified in the text at p. 14 lines 479-480 However, if an effect is present, it gives a disadvantage (rather than an advantage) to self-interacting individuals. For the amplification step we used Q5® Hot Start HighFidelity DNA Polymerase, which does not possess strand displacement activity. Therefore, in theory, if during amplification the polymerase encounters a double strand portion, it stops and synthesizes only a truncated product, which will be then lost during the purification step. In other words, sequences with secondary and/or tertiary structures are less likely to be amplified during the polymerization step. As a consequence, a DNAi that is characterized by this kind of structures, will be negatively selected even in the case of optimal binding to the resource, and will be underrepresented in the pool.

      About the second point:

      • Regarding the effect of sampling (sequencing read-out), PCR amplification errors: explicitly check the consistency of observations with the expected outcome, in the methods section (right now these aspects are only briefly mentioned in the main text), which would highlight again the level of control and accuracy of the system.

      Hoping to have well interpreted the request, we performed a technical replicate sequencing Oligo 1 cycle 9 again and analyzed the sequences that have at least 100 reads (corresponding to 27.42% of the total reads). We find that among the 800 DNA species that have at least 100 reads, 93.6% are found in both replicates. All the nonoverlapping sequences have very low abundance, close to 100.

      Moreover, we compare the population size of each DNA species between the two replicas, after having equalized the database sizes. The results are now cited in p14 lines 509-510, In Appendix 1, Experimental Controls and shown in Figure 2-figure supplement 3, where we plot the ratio of the number of reads in the two replicates for each sequence as a function of the number of reads in one. We found an average of 0.965 with a standard deviation of 0.119. High fluctuations are found in the most rare species, as expected.

      We think this evaluation indeed strengthens the solidity of our results.

      • I have a small concern about target resource accessibility: is there any spacer between the ssDNA and the bead? The methods section does not mention any, and I would expect such a proximity between the target DNA and the bead to yield steric repulsion that impedes interactions with random DNA individuals.

      Yes, there is a 12-carbon spacer between the bead and the resource, which was inserted exactly to make the resource more accessible. This information is now available in Table 1 of Supplementary Information detailing the sequences used in the experiment. However, as now described in the text (p8 lines 284-286), we observe that the interaction with the resource is always shifted to the 3', the terminal furthest from the bead, indicating some residual issue of accessibility to the resource sections closest to the bead.

      • Regardless of the existence of a spacer, binding of random DNA molecules to beads instead of the target DNA constitutes a potential source of noise (described for now as '1-x' in the IBEE model), which can be probed by swapping targets, selecting without target etc.

      This issue is addressed by the test with bare beads described above, in which we found little effects, corresponding to small 1−𝑥 value.

      • Is there any recombination potentially occurring during amplification steps? This could be tested with a set of known molecules amplified over 24 amplification steps in a row (no binding step).

      It is possible for recombination to occur during the amplification steps. In Appendix 2, the section "By-Product Formation from PCR Amplification", discusses PCR byproducts as aberrant forms of amplification, such as recombination events. We adopted several strategies to limit by-product formation, such as: i) use of “blockers” characterized by a phosphate group at 3’ end (thus inhibiting their usage during the amplification and allowing a better control of the reaction conditions over the PCR cycles), ii) a high annealing temperature (to limit the possibility of a spurious primer annealing to the random region), iii) fewer PCR cycles, iv) a high primer concentration, v) a very short elongation step (all these strategies have been implemented to avoid a possible mispriming event between different DNAi, and the formation of concatemers). However, the formation of by-products is a problem inherent to the technique: in fact, it is a known issue for classical SELEX technology (Tolle et al. 2014), mainly due to the random region within the DNAi. Q5® Hot Start High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA) has an error rate of <0.44 x 10-6/base.

      In classic SELEX technology, the average number of selection cycles is 10. This limitation is partly due to the increase in PCR by-products. As we can see from Figure 2 Supplementary Figure 1, the percentage of PCR by-products is less than 20% at cycle 12, and then increases dramatically in the following cycles. We are performing a series of experiments with known and limited sequences to verify and better understand the phenomenon for future applications of the SEDES platform. On this issue we decided not to modify the manuscript since we think it is already well discussed in Appendix 1.

      And the third point:

      • Perform one cycle (or a few cycles) with random DNA individuals, the most frequent individuals at the end of the current experiment, newly designed individuals with higher binding affinity to the target than currently dominating individuals, newly designed individuals with higher propensity to form hairpins or to form homodimers. Such experimental testing of predictions from the data analysis/modeling, typical of a physics approach, would illustrate the level of understanding one can reach with a simple yet powerful experimental setup.

      We perfectly agree that the approach we propose and the set of results we obtained call for further investigations that could strengthen analysis and modeling. The final aim we envisage is the understanding, within this simplified approach, of key evolutionary factors such as fitness. Indeed, becoming able to write an explicit fitness function would be a significant new contribution to the understanding of evolutionary processes, even within the limited settings of the ADSE approach, as discussed in the conclusions of the manuscript.

      However, undergoing such an analysis is a long and expensive job, which we have started and will be completed in a not immediate future. For this reason, given the already significant body of results we are presenting here, we prefer to keep this paper confined to the study of the evolution of a random DNAi population and discuss in a future contribution the behavior of smaller designed sets of competing, collaborating or parasitic individuals.

      Looking ahead, additional stages of investigations will also include mutations - to investigate the kinetics of speciation, and, in an even further stage, the interplay between evolution kinetics and dynamical mutation of resources.

      I have a few smaller points:

      • It would be very useful to provide the expected dynamic range of binding free energies (in terms of DeltaG and omega): what is the maximum binding free energy for the perfect complement?

      The NUPACK-computed binding free energy of a 20 basis-long oligomer complementary to the resource (𝜔=20) is -24.36 Kcal/mol for Oligo1 and -23.08 Kcal/mol for oligo 2. This is the best answer we can offer to the reviewer’s request, since the maximum binding free energy of DNAi individuals (much longer than the target strand) would include contributions from the unpaired bases. Indeed, the values give above are approached by the left tail of the distribution of Fig. 3a, which however includes DNAi self-energies.<br /> The perfect complement binding free energy is now cited in the text as a reference for the dynamical range of DeltaG (p4 lines 151-152).

      • How is the number of captured DNA molecules quantified? Is 10^12 measured, estimated, or hypothesized?

      The number of sequences was calculated from data obtained from 260 nm absorbance quantification. We have now added this information in the Methods, Selection Phase” section.

      Reviewer #2:

      Summary:

      In this manuscript, the authors introduced ADSE, a SELEX-based protocol to explore the mechanism of emergency of species. They used DNA hybridization (to the bait pool, "resources") as the driving force for selection and quantitatively investigated the factors that may contribute to the survival during generation evolution (progress of SELEX cycle), revealing that besides individual-resource binding, the inter- and intra-individual interactions were also important features along with mutualism and parasitism.

      Strengths:

      The design of using pure biochemical affinity assay to study eco-evolution is interesting, providing an important viewpoint to partly explain the molecular mechanism of evolution.

      Weaknesses:

      Though the evidence of the study is somewhat convincing, some aspects still need to be improved, mostly technical issues.

      Major:

      1) There are a few technical issues that the authors should clarify in the manuscript to make the analysis more transparent:

      1.1) To my understanding, it is difficult to guarantee the even distribution of different species (individuals) in the initial individual pool. Even though the authors have shown in Fig. 2a that the top 10 sequences take up ~ 0% in the pool, it remains unclear how abundant these top and bottom representative sequences are, given the huge number of the pool (10E15). Can the author show the absolute number of these sequences in different quantiles? Please show both Oligo sets.<br /> : First, we thank the reviewer for both positive and critical comments that have guided us in reformulating or clarifying some messages of our work.

      As for this specific point: 10E15 is a small number compared to 4^50 = 10E30, the number of possible sequences of length 30. Thus, we don’t expect more than one individual per sequence in the initial pool. However, sequencing requires a preparation amplification, which may lead to detecting a few sequences with more than one individual.

      Specifically, in the initial pool of Oligo 1, the most abundant individual (of sequence GAACTAAAGGGGCGGTGTCCACTTGCCTGTAGTGGTTATCAGTCCGGTTG)has 3 copies. The 0.7% of the sequences has 2 copies, while the vast majority of strings (99.3% on a sample of about 1.5 x 10E6 sequenced DNAi) is present in one copy only. A similar situation holds for Oligo 2, with 4 DNAi present in 3 copies and the 0.8% of the sequences (in a pool of 2 x 10E6 DNAi) in 2 copies.

      It is worth noticing that none of the 10 most abundant species in the last cycle is present in the sample. Indeed, the fraction of the pool which is sequenced is removed from the population that undergoes evolution (as now specified in p2, line 104). We specified in the text (p2, lines 69-70, p3 lines 94-96) the fact that in the initial pool no sequence is expected to be present in more than one individual.

      1.2) The author claimed that they used two different oligo sets (Oligo1 and Oligo2) in this study. It is unclear which data was used in the presentation. How reproducible are they? Similar to this concern, how reproducible if the same oligo set was used to repeat the experiment?

      The oligo used in the main text was declared in Methods, Replica section. It is now declared also in the main text (p3 lines 106-108 and in the captions of Figure 2, Figure 3 and Figure 4). Reproducibility is addressed in: Figure 2-figure supplement 5; Figure 2-figure supplement 6; Appendix 2: Results of the experimental replica.

      It should also be noted that two starting pools of random 50mers are necessarily disjoint sets for the same reason discussed in the previous answer: the probability of common sequences in two 10E15 selections from a 10E30 is negligibly small. Thus, it is expected that each time a new evolution experiment is started, different dominant sequences are found. However, the statistical properties of the DNAi pool during the evolution process of Oligo1 and Oligo2 are similar as discussed in Appendix 2 of the paper.

      1.3) PCR and illumina sequencing itself introduced selection bias. How would the analysis eliminate them? The authors only discussed the errors created during PCR cycles (page 3, lines 115-122). However the PCR itself would prefer to amplify some sequences over the others (e.g. with high GC content). Similarly, the illumina sequencing would be difficult to sequence the low complexity sequences. How would this be circumvented?

      Yes, both PCR and Illumina sequencing have some known biases in the amplification process (e.g. sequencing of homopolymers or amplification of GC-rich sequences) that are intrinsic to the used techniques. Regarding PCR, we implemented a thermal protocol optimized for our chosen experimental setup, characterized by very short denaturation, annealing and amplification steps performed at high temperatures. Regarding Illumina sequencing, we can’t rule out a bias against specific sequences (e.g, homopolymers), which however should not be captured during the selection step, due to the design of the resource. Also, the libraries subjected to sequencing are characterized by a low complexity: according to the experimental design, the first and last 25 nucleotides are the same for all DNAi, the only differences being in the central 50 nt-long sequence. It is known that a low complexity library might encounter problems during sequencing due to the design of Illumina instruments: nucleotide diversity, especially in the first sequencing cycles, is critical for cluster filtering, optimal run performance and high-quality data generation. To overcome this limitation, the obtained libraries were run together with more complex and diverse library preparations: the ADSE sequences were about 1-2% of the total reads per run, corresponding to only a few million reads.

      This discussion is now in Appendix 1, Intrinsic limitations of the molecular approach.

      1.4) Some DNA sequences would bind to the beads instead of the resource sequence coated on them. Should the author run the experiment using bead alone as a control?<br /> : We performed a negative control experiment in which we performed the “selection step” with bear beads, i.e. beads without with no DNA grafted on them. We then compared the results with the corresponding results of the original experiments on Oligo 1 and 2.

      After 6 cycles, the most abundant sequence in the negative dataset has a relative occurrence of 0.05%, whereas the dominant strand in Oligo 1 and Oligo 2 has an abundance of 8% and 16%, respectively, i.e. 40-80 times larger.

      This indicates that the drift due to non-specific binding (+ PCR amplification) is at least two orders of magnitude smaller than the selection induced by the affinity with the resource.<br /> This part is now discussed in Appendix 1, Experimental controls.

      2) It would be interesting to study the impact of environmental factors, for example, changing pH, salt concentration, and detergent. Would these factors accelerate/decelerate the evolution?

      We agree that the approach we propose and the set of results we obtained call for further investigations. However, performing these additional experiments, which would require a minimum of 6 generations each, is a long and expensive job, which we have started and will not be completed in the near future. For this reason, given the already significant body of results we are presenting here, we prefer to keep this paper confined to the study of the evolution of a random DNAi population in the selected conditions and leave the exploration of new conditions, potentially opening new evolutionary scenarios, to a future contribution. In fact, our aim was to show that through our platform we can indeed observe fundamental elements of evolution in a non-biological system, which, in the set of chosen parameters, we do.

      3) The concentration of individual oligo is apparently one of the most important factors in determining the interactions. In later cycles, some oligos become dominant, namely with extremely higher concentrations compared to their concentration in earlier cycles. This would definitely affect its interaction with resources, or self-interaction, or interaction with other oligos in the pool. However, the authors failed to discuss this factor, which may explain the exponential enrichment in later cycles.

      We agree with the reviewer that this is an important point, but we disagree that we have not discussed it. We introduce the topic at the end of the “Null Model and Eco-evolutionary Algorithm”, where we comment on the change of the gamma parameter by saying that there must be a shift in the evolution process, first dominated by the interactions with the resources, and in later stages by some other factors (lines 227230) that we then discuss in “Self and mutual DNAi interactions are evolutionary drivers”. In this latter chapter and in the following, we indeed discussed the effects of mutual and self interactions between DNAi.

      Indeed, a key point in our paper is the change in the gamma parameter necessary to match the IBEE model to experiments, as it is now more openly stated (p5 lines 217218 where we also mention figure 2-supplement 8 which clearly shows the necessity of a variable gamma). The two regimes enlightened by the gamma value must reflect a change in the competition for the resources and interactions among species. In the first generations, where the diversity of species is large (there are few strings for each species) and binding to the resources generally very week (small <omega>), the affinity with the resource is the main driving force (fast growth of <omega>), while mutual interactions remain too random to favor any species in particular. In the later cycles instead, when <omega> becomes large enough to provide a significant stability to the resource-binding of the majority of species, the dominating species compete more intensively on the basis of their structure and capacity of self-defense, parasitism and mutualism, a condition in which evolution affects more modifications in sequences than in <omega>.

      Certainly, our understanding of this shift is based on statistical behavior and it is inferential, based on the study of specific DNAi described in the last part of the manuscript. For a better molecular model, more experiments with selected DNAi competing, cooperating or being parasitic would be necessary, with the final aim of defining a predictive fitness function. Alas, this requires months of further investigation. :

      4) The author observed the different behaviors of medium 𝜔 in early and late cycles, referring to Fig 2h. Using the IBEE model, they found out it is the change of gamma. However, the authors did not further discuss the molecular mechanism. It could be very interesting to understand the evolutionary change of these individuals.

      This comment might be related to the previous one. It is true that our discussion and understanding of the whole process is statistical, and misses a molecular model to predict the value of gamma.

      However, the specific behavior that the reviewer asks about (those in Fig. 2h) is not related to the change in gamma. Even if gamma remains as in the first part of the evolution (gamma = 3), the species with overlap between 6 and 10 would first grow in number and later decrease. Indeed, during the first cycles they have an advantage with respect to the majority of species with lower maximum overlap, a condition that favors their amplification. However, in the second stage of the evolution dominant species with a larger affinity emerge and outcompete the individuals of this class. We added a sentence in the text to clarify this point (p7 lines 227-229).

      5) In Figure 2f, some high w become quite missing. Should the authors give some interpretation? It is not observed in cycle 12 though (panel e).

      Such an effect is just due to under-sampling. In a pool of 10^n oligomers, any sequence with a given 𝜔 with P(omega) < 10E-n will have a vanishing probability to appear in that sample.<br /> At cycle 12 the overall number of sequenced strands is larger than at cycle 24, due to the growing presence of PCR by-products. Thus, the right tail of the cyan distribution at the last cycle is sampled with less accuracy than at cycle 12. We have added a sentence in the revised manuscript (p5 lines 177-178) to clarify this point.

      6) It would be interesting to further explore if another type of selection resource is used, for example protein that binds to particular sequences, i.e. transcription factors. Previous studies have used a large amount of sequence-specific transcription factors to run SELELX. Since the data have existed there, why not explore?

      This is an interesting suggestion: can we use data from “ordinary” SELEX favoring specific sequences to explore sequence evolution? Two limitations make us a bit skeptical on this path: first, the consensus sequences of DNA-binding proteins are rather short and typically target dsDNA rather than ssDNA; second, the free energy of interaction is known only for the consensus sequence but not for sequences with all possible mutations with respect to the consensus sequence, making very hard to develop any molecular understanding of the process.

      Minor:

      1) There is no figure legend or in-text citation of Figure 2b.

      2) Please correct "⁃C" with "{degree sign}C" in lines 470, 471, 472, 477 et al.

      3) Typos and grammar issues should be corrected. Examples are shown below (but not limited to these only):

      • mixed use of past and present tense.

      • Line 152, "basis" should be "bases".

      • Line 277, "a impediment" should be "an impediment"

      • Line 278, "a major deadly threats" should be "major deadly threats"<br /> :<br /> We are sorry for the mistakes, and we have corrected them. Many thanks to the reviewer!

    1. Author Response

      Reviewer #1 (Public Review):

      The goal of the current study was to evaluate the effect of neuronal activity on blood-brain barrier permeability in the healthy brain, and to determine whether changes in BBB dynamics play a role in cortical plasticity. The authors used a variety of well-validated approaches to first demonstrate that limb stimulation increases BBB permeability. Using in vivo-electrophysiology and pharmacological approaches, the authors demonstrate that albumin is sufficient to induce cortical potentiation and that BBB transporters are necessary for stimulus-induced potentiation. The authors include a transcriptional analysis and differential expression of genes associated with plasticity, TGF-beta signaling, and extracellular matrix were observed following stimulation. Overall, the results obtained in rodents are compelling and support the authors' conclusions that neuronal activity modulates the BBB in the healthy brain and that mechanisms downstream of BBB permeability changes play a role in stimulus-evoked plasticity. These findings were further supported with fMRI and BBB permeability measurements performed in healthy human subjects performing a simple sensorimotor task. While there are many strengths in this study, there is literature to suggest that there are sex differences in BBB dysfunction in pathophysiological conditions. The authors only used males in this study and do not discuss whether they would also expect to sex differences in stimulation-evoked BBB changes in the healthy brain. Another minor limitation is the authors did not address the potential impact of anesthesia which can impact neurovascular coupling in rodent studies. The authors could have also better integrated the RNAseq findings into mechanistic experiments, including testing whether the upregulation of OAT3 plays a role in cortical plasticity observed following stimulation. Overall, this study provides novel insights into how neurovascular coupling, BBB permeability, and plasticity interact in the healthy brain.

      While there are many strengths in this study, there is literature to suggest that there are sex differences in BBB dysfunction in pathophysiological conditions. The authors only used males in this study and do not discuss whether they would also expect to sex differences in stimulation-evoked BBB changes in the healthy brain.

      We agree with the reviewer regarding the importance of examining sex differences on stimulation-evoked BBB changes. To address this issue we have: (1) clarified in the methods section that the human study involved both males and females; (2) added a section to the discussion highlighting the male bias as a key limitation of our animal experiments; and (3) stated that future work should examine whether stimulation-evoked BBB changes differ between makes and females.

      Another minor limitation is the authors did not address the potential impact of anesthesia which can impact neurovascular coupling in rodent studies.

      We are grateful for this comment and agree with the reviewer that the potential effects of anesthesia should be discussed. We have added the following discussion paragraph:

      “A key limitation of our animal experiments is the fact they were performed under anesthesia, due to the complex nature of the experimental setup (i.e., simultaneous cortical imaging and electrophysiological recordings). Anesthetic agents can affect various receptors within the NVU, potentially altering neuronal activity, SEPs, CBF, and vascular responses (Aksenov et al., 2015; Lindauer et al., 1993; Masamoto & Kanno, 2012). To minimize these effects, we used ketamine-xylazine anesthesia, which unlike other anesthetics, was shown to generate robust BOLD and SEP responses to neuronal activation (Franceschini et al., 2010; Shim et al., 2018).”

      Reviewer #2 (Public Review):

      Summary:

      This study builds upon previous work that demonstrated that brain injury results in leakage of albumin across the bloodbrain barrier, resulting in activation of TGF-beta in astrocytes. Consequently, this leads to decreased glutamate uptake, reduced buffering of extracellular potassium, and hyperexcitability. This study asks whether such a process can play a physiological role in cortical plasticity. They first show that stimulation of a forelimb for 30 minutes in a rat results in leakage of the blood-brain barrier and extravasation of albumin on the contralateral but not ipsilateral cortex. The authors propose that the leakage is dependent upon neuronal excitability and is associated with an enhancement of excitatory transmission. Inhibiting the transport of albumin or the activation of TGF-beta prevents the enhancement of excitatory transmission. In addition, gene expression associated with TGF-beta activation, synaptic plasticity, and extracellular matrix are enhanced on the "stimulated" hemisphere. That this may translate to humans is demonstrated by a breakdown in the blood-brain barrier following activation of brain areas through a motor task.

      Strengths:

      This study is novel and the results are potentially important as they demonstrate an unexpected breakdown of the blood-brain barrier with physiological activity and this may serve a physiological purpose, affecting synaptic plasticity.

      The strengths of the study are:

      1) The use of an in vivo model with multiple methods to investigate the blood-brain barrier response to a forelimb stimulation.

      2) The determination of a potential functional role for the observed leakage of the blood-brain barrier from both a genetic and electrophysiological viewpoint.

      3) The demonstration that inhibiting different points in the putative pathway from activation of the cortex to transport of albumin and activation of the TGF-beta pathway, the effect on synaptic enhancement could be prevented.

      4) Preliminary experiments demonstrating a similar observation of activity-dependent breakdown of the blood-brain barrier in humans.

      Weaknesses:

      There are both conceptual and experimental weaknesses.

      1) The stimulation is in an animal anesthetized with ketamine, which can affect critical receptors (ie NMDA receptors) in synaptic plasticity.

      We agree that the potential effects of anesthesia should be considered. The Discussion was revised to address this point: “A key limitation of our animal experiments is the fact they were performed under anesthesia, due to the complex nature of the experimental setup (i.e., simultaneous cortical imaging and electrophysiological recordings). Anesthetic agents can affect various receptors within the NVU, potentially altering neuronal activity, SEPs, CBF, and vascular responses (Aksenov et al., 2015; Lindauer et al., 1993; Masamoto & Kanno, 2012). To minimize these effects, we used ketamine-xylazine anesthesia, which unlike other anesthetics, was shown to generate robust BOLD and SEP responses to neuronal activation (Franceschini et al., 2010; Shim et al., 2018)”

      2) The stimulation protocol is prolonged and it would be helpful to know if briefer stimulations have the same effect or if longer stimulations have a greater effect ie does the leakage give a "readout" of the stimulation intensity/length.

      Thank you for this important comment. We are also very curious about the potential relationship between stimulation magnitude/duration and subsequent leakage and have added the following statement to the discussion:

      “Future studies should also explore the effects of stimulation magnitude/duration on BBB modulation, as well as the stimulation threshold between physiological and pathological increase in BBB permeability.”

      Our current findings indicate that a one-minute stimulation does not affect vascular permeability or SEP and we aim to test additional stimulation paradigms in future studies.

      3) For some of the experiments (see below), the numbers of animals are low and the statistical tests used may not be the most appropriate, making the results less clear cut.

      We appreciate this comment and have revised the statistical analysis of Figure 1J,K. We now use a nested t-test to test for differences between rats (as opposed to sections). The differences remain significant (EB, p=0.0296; Alexa, p=0.0229). The text was modified accordingly.

      4) The experimental paradigms are not entirely clear, especially the length of time of drug application and the authors seem to try to detect enhancement of a blocked SEP.

      Thank you for pointing this out. Figures 2&3 were revised for clarification and a ‘Drug Application’ subsection was added to the methods section.

      5) It is not clear how long the enhancement lasts. There is a remark that it lasts longer than 5 hours but there is no presentation of data to support this.

      Thank you for this comment. As the length of experiments differed between animals, the exact length could not be specifically stated. To clarify this point, we revised the text to indicate that LTP was recorded until the end of each experiment (between 1.5-5 hours, depending on the condition the animal was in). We also added a panel to figure 2 (Figure 2d) with exemplary data showing potentiation 60, 90, and 120 min post stimulation.

      6) The spatial and temporal specificity of this effect is unclear (other than hemispheric in rats) and even less clear in humans.

      Our animal experiments (using both in vivo imaging and histological analysis) showed no evidence of BBB modulation outside the cortical somatosensory area corresponding to the limbs. We looked at the entirety of the coronal section of the brain and found enhancement solely in the somatosensory area corresponding to limb. The right side of panels h and i in Figure 1 show an x20 magnification of the section, focusing on the enhanced area. The whole section was not shown, as no fluorescence was found outside the magnified area. Moreover, our quantification showed that the enhancement was specific to the contralateral and not ipsilateral somatosensory cortex (Figure 1 j-k).

      We agree that temporal specificity needs to be further explored, and we have now stated that in the discussion: “Future studies are needed to explore the BBB modulating effects of additional stimulation protocols – with varying durations, frequencies, and magnitudes. Such studies may also elucidate the temporal and ultrastructural characteristics that may differentiate between physiological and pathological BBB modulation.”

      We also agree that larger studies are needed to better understand the specificity of the observed effect in humans, and to account for potential inter-human variability in vascular integrity and brain function due to different schedules, diets, exercise habits, etc.

      8) The experimenters rightly use separate controls for most of the experiments but this is not always the case, also raising the possibility that the application of drugs was not done randomly or interleaved, but possibly performed in blocks of animals, which can also affect results.

      Thank you for pointing out this lack of clarity. We have now highlighted that drug application was done randomly.

      9) Methyl-beta-cyclodextrin clears cholesterol so the effect on albumin transport is not specific, it could be mediating its effect through some other pathway.

      We agree that the effect of mβCD may not be specific. To mitigate this issue, we used a very low mβCD concentration (10uM). Notably, this is markedly lower than the concentrations reported by Koudinov et al, showing that cholesterol depletion is observed at 5mM mβCD and not at 2.5mM/5mM (Koudinov & Koudinova, 2001). This point was added to the discussion.

      10) Since the breakdown of the blood-brain barrier can be inhibited by a TGF-beta inhibitor, then this implies that TGFbeta is necessary for the breakdown of the blood-brain barrier. This does not sit well with the hypothesis that TGF-beta activation depends upon blood-brain barrier leakage.

      Thank you for pointing out this lack of clarity. We have added a discussion paragraph that clarifies our hypothesis: “As mentioned above, albumin is a known activator of TGF-β signaling, and TGF-β has a well-established role in neuroplasticity. Interestingly, emerging evidence suggests that TGF-β also increases cross-BBB transcytosis (Betterton et al., 2022; Kaplan et al., 2020; McMillin et al., 2015; Schumacher et al., 2023). Hence, we propose the following two-part hypothesis for the TGF-β/BBB-mediated synaptic potentiation observed in our experiments: (1) prolonged stimulation triggers TGF-β signaling and increased caveolae-mediated transcytosis of albumin; and (2) extravasated albumin induces further TGF-β signaling, leading to synaptogenesis and additional cross-BBB transport – in a self-reinforcing positive feedback loop. Future research is needed to examine the validity of this hypothesis.

      Reviewer #3 (Public Review):

      Summary:

      This study used prolonged stimulation of a limb to examine possible plasticity in somatosensory evoked potentials induced by the stimulation. They also studied the extent that the blood-brain barrier (BBB) was opened by prolonged stimulation and whether that played a role in the plasticity. They found that there was potentiation of the amplitude and area under the curve of the evoked potential after prolonged stimulation and this was long-lasting (>5 hrs). They also implicated extravasation of serum albumin, caveolae-mediated transcytosis, and TGFb signalling, as well as neuronal activity and upregulation of PSD95. Transcriptomics was done and implicated plasticity-related genes in the changes after prolonged stimulation, but not proteins associated with the BBB or inflammation. Next, they address the application to humans using a squeeze ball task. They imaged the brain and suggested that the hand activity led to an increased permeability of the vessels, suggesting modulation of the BBB.

      Strengths:

      The strengths of the paper are the novelty of the idea that stimulation of the limb can induce cortical plasticity in a normal condition, and it involves the opening of the BBB with albumin entry. In addition, there are many datasets and both rat and human data.

      Weaknesses:

      The conclusions are not compelling however because of a lack of explanation of methods and quantification. It also is not clear whether the prolonged stimulation in the rat was normal conditions. To their credit, the authors recorded the neuronal activity during stimulation, but it seemed excessive excitation. Since seizures open the BBB this result calls into question one of the conclusions. that the results reflect a normal brain. The authors could either conduct studies with stimulation that is more physiological or discuss the caveats of using a supraphysiological stimulus to infer healthy brain function.

      The conclusions are not compelling however because of a lack of explanation of methods and quantification.

      Thank you for this comment. In the revised paper, we expanded the Methods section to better describe the procedures and approaches we used for data analysis.

      It also is not clear whether the prolonged stimulation in the rat was normal conditions.

      We believe that the used stimulation protocol is within the physiological range (and relevant to plasticity, learning and memory) for the following reasons:

      1) In our continuous electrophysiological recordings, we did not observe any form of epileptiform or otherwise pathological activity.

      2) Memory/training/skill acquisition experiments in humans often involve similar training duration or longer (Bengtsson et al., 2005), e.g., a 30 min thumb training session performed by (Classen et al., 1998).

      3) The levels of SEP potentiation we observed are similar to those reported in:

      a) Rats following a 10-minute whisker stimulation (one hour post stimulation, (Mégevand et al., 2009)).

      b) Humans following a 15 min task (McGregor et al., 2016).

      This important point is now presented in the discussion.

      Reviewer #1 (Recommendations For The Authors):

      The discussion would benefit from additional discussion of the potential impacts of sex and anesthesia in their findings.

      We agree with the reviewer and have added the following paragraph to the discussion:

      “A key limitation of our animal experiments is the fact they were performed under anesthesia, due to the complex nature of the experimental setup (i.e., simultaneous cortical imaging and electrophysiological recordings). Anesthetic agents can potentially alter neuronal activity, SEPs, CBF, and vascular responses (Aksenov et al., 2015; Lindauer et al., 1993; Masamoto & Kanno, 2012). To minimize these effects, we used ketaminexylazine anesthesia, which unlike other anesthetics, was shown to maintain robust BOLD and SEP responses to neuronal activation (Franceschini et al., 2010; Shim et al., 2018). Another limitation of our animal study is the potentially non-specific effect of mβCD – an agent that disrupts caveola transport but may also lead to cholesterol depletion (Keller & Simons, 1998). To mitigate this issue, we used a very low mβCD concentration (10uM), orders of magnitude below the concentration reported to deplete cholesterol (Koudinov et al). Lastly, our animal study is limited by the inclusion of solely male rats. While our findings in humans did not point to sex-related differences in stimulation-evoked BBB modulation, larger animals and human studies are needed to examine this question.”

      The figure text is quite small.

      Thank you for pointing this out, we revised all figures and increased font size for clarity.

      Including pharmacological concentrations within the figure legends would improve the readability of the manuscript.

      Thank you for this suggestion, the figure legends were modified accordingly.

      In methods for immunoassays the 5 groups could be more clear by stating that there are 3 timepoints for stimulation experiments. There is a typo in this section where the 24-hour post is stated twice in the same sentence.

      Thank you for pointing this out, the text was modified accordingly.

      Reviewer #2 (Recommendations For The Authors):

      1) In Figure 1, J and K seem to indicate that in these experiments the statisitics were done per slice and not per animal. This is not a reasonable approach, a repeat measure ANOVA or averaging for each animal are more appropriate statistical approaches.

      We thank the reviewer for pointing this out. The statistical analysis for Figure 1j,k was modified. We now use a nested ttest to test for differences between rats and not sections. The differences are still significant (EB, p=0.0296; Alexa, p=0.0229). The manuscript was modified accordingly.

      2) In Figure 2, the protocol does not seem to give much idea about time course. There was a stimulation test for 1 minute before and then 1 minute after the 30-minute stimulation train. How was potentiation assessed for the next 5 hours and where are the data?

      Potentiation was assessed by repeating 1min test stim every 30 min for the duration of the experiment, we added a panel to show late potentiation, see response above.

      3) In Figure 2, there is a notable lack of controls eg the effect of sham stimulation and application of saline. These are important as the drift of response magnitude can be a problem in long experiments.

      We did test for the potential presence of response drift, by examining whether SEPs of non-stimulated animals change over time (at baseline, 30 or 60 minutes of recording; n=6). No statistical differences were found. Our analysis focused on using each animal as its own control (i.e., comparing baseline SEP to SEP post albumin perfusion), because SEP studies highlight the importance of comparing each animal to its own baseline, due to the large inter-animal variability (All et al., 2010; Mégevand et al., 2009; Zandieh et al., 2003).

      4) Figure 3 a is not clear – were the drugs applied throughout?

      Thank you for pointing this out. We have revised Figure 3 a to show that the drugs were applied for 50 min before the stimulation.

      5) In Figure 3 panel d is repeated in panel j. This needs correcting

      Thank you. This mistake was fixed.

      6) In LTP-type experiments usually the antagonist is applied during the stimulation and then washed out. This avoids the problem in this figure in which CNQX effectively blocks transmission and so it is not possible to detect any enhancement if it were there. Eg in panel e, CNQX block transmission, and then the assessment is performed when the AMPA receptors are blocked after 30 minutes of stimulation. If receptors are blocked no enhancement will be detectable. Moreover, surely the question is the ratio of the effect of 30-minute stimulation on the SEP in the presence of CNQX and so the statistics should be done on the fold change in the SEP following 30-minute stimulation in the presence of CNQX.

      Thank you. The protocol might have been misrepresented in the original figure. We modified Fig 3a to clarify that the antagonists were indeed washed out upon stimulation start to make sure the receptors are not blocked during the test stimulation following the 30 min stimulation. In addition, we tested for the difference in fold change between 30 min stim, and 30 min stimulation following antagonists wash-in (Fig 3f and Fig S2a).

      7) Interesting in Figure f, stimulation, albumin, and AP5 all seem to have the same enhancement of the SEP. Is the lack of effect of 30-minute stimulation in the presence of AP5, a ceiling effect ie AP5 has enhanced the SEP, and no further enhancement from stimulation is possible.

      This is a very interesting point that will require further research.

      8) SJN seems to block neurotransmission. What is the mechanism? The same analysis as for CNQX should be performed ie what is the fold change not compared to baseline but in the presence of SJN.

      Our quantification showed that SJN did not significantly reduce the SEP max amplitude, and we therefore did not include this graph in the figure.

      9) Please acknowledge that the effect of mbetaCD is non-specific. There is a large literature on the effects of cholesterol depletion on LTP.

      We agree that the effect of mβCD may not be specific. To mitigate this issue, we used a very low mβCD concentration (10µM). Notably, this is markedly lower than the concentrations reported by Koudinov et al, showing that cholesterol depletion is only observed at a concentration of 5mM (Koudinov & Koudinova, 2001). This point is now discussed under the discussion paragraph describing the study’s limitations.

      10) k&l seem to have used the same control in which case they should not be analysed separately (they are all part of the same experiment).

      We agree with the reviewer and have revised the figure accordingly.

      11) The difference in gene expression in Figure 4 would be more convincing if it could be prevented by for example a TGFbeta inhibitor.

      We agree and acknowledge the impact such experiments could provide. We plan to incorporate these experiments into our future studies.

      12) Figure 5 seems to indicate bilateral and widespread BBB modulation arguing that this may be a non-specific effect. Panel g should look at other neocortical regions eg occipital cortex.

      We agree and thank the reviewer for this comment. We revised the figure to include other cortical areas, such as the frontal and occipital cortices (Figure 5g)

      Minor comments

      1) Paired data eg in Fig 2D are better represented by pairing the dots usually with a line.

      2) Please correct the %fold baseline in axes in graphs which show % change for baseline.

      3) Figure 4 is not correctly referred to in the text.

      We agree with all the points raised by the reviewer and revised the figures and text accordingly.

      Reviewer #3 (Recommendations For The Authors):

      The conclusions are not compelling however because of a lack of explanation of methods and quantification. It also is not clear whether the prolonged stimulation in the rat was normal conditions. To their credit, the authors recorded the neuronal activity during stimulation, but it seemed excessive excitation. Since seizures open the BBB this result calls into question one of the conclusions. that the results reflect a normal brain. The authors could either conduct studies with stimulation that is more physiological or discuss the caveats of using a supraphysiological stimulus to infer healthy brain function.

      Major concerns:

      Methods need more explanation. Rationales need more justification. Examples are provided below.

      Throughout many sections of the paper, sample sizes and stats are often missing. For stats, please provide p-values and other information (tcrit, U statistic, F, etc.)

      Thank you, we added the relevant information where it was missing throughout the manuscript.

      For transcriptomics, they might have found changes in BBB-related genes if they assayed vessels but they assayed the cortex.

      We agree with the reviewer that this would be a very interesting future direction. The present study could not include this kind of analysis due to lack of access to vasculature isolation methods or single-cell RNA seq.

      What were the inclusion/exclusion criteria for the subjects?

      Thank you for pointing out this lack of clarity. The methods section (under ‘Magnetic Resonance Imaging’ – ‘Participants’) was expanded to include the following:

      “Male and female healthy individuals, aged 18-35, with no known neurological or psychiatric disorders were recruited to undergo MRI scanning while performing a motor task (n=6; 3 males and 3 females). MRI scans of 10 sex- and age- matched individuals (with no known neurological or psychiatric disorders) who did not perform the task were used as control data (n=10; 5 males and 5 females.

      Were they age and sex-matched?

      They were, indeed, age and sex-matched. This was now clarified in the relevant Methods section.

      Were there other factors that could have influenced the results?

      Certainly. Human subjects are difficult to control for due to different schedules, diets, exercise habits, and other factors that may impact vascular integrity and brain function. Larger multimodal studies are needed to better understand the observed phenomenon.

      Fig. 1. Images are very dim. Text here and in other figures is often too small to see. Some parts of the figures are not explained.

      Our apologies. Figures and legends were revised accordingly.

      Fig 2a, f. I don't see much difference here- do the authors think there was?

      We agree that the difference may not be visually obvious. The quantification of trace parameters (amplitude and area under curve) does, however, reveal a significant SEP difference in response to both stimulation (panels X and y) and albumin (panels z and q).

      Fig 3 d and j seem the same.

      We thank the reviewer for noticing. This was a copy mistake that was now rectified.

      Lesser concerns and examples of text that need explana9on:

      Introduction

      Insulin-like growth factor is transported. From where to where?

      The text was edited to clarify that this was cross-BBB influx of insulin-like growth factor-I.

      RMT that underlies the transport of plasma proteins was induced by physiological or non-physiological stimulation.

      This was shown without stimulation, in normal physiology of young and aged healthy mice. The text was edited to clarify this point.

      What was the circadian modulation that was shown to implicate BBB in brain function?

      The text was edited for clarity.

      Results

      When the word stimulation is used please be specific if whiskers are moved by an experimenter, an electrode is used to apply current, etc.

      We have now moved the ‘Stimulation protocol’ section closer to beginning of the Methods and emphasized that we administered electrical stimulation to the forepaw or hindlimb using subdermal needle electrodes.

      Please explain how the authors are convinced they localized the vascular response.

      The vascular response was localized via: (1) visual detection of arterioles that dilated in response to stimulation (due to functional hyperemia / neurovascular coupling) [figure 1 d]; and (2) quantitative mapping of increased hemoglobin concentration (Bouchard et al., 2009) [Figure 1 b]. This is now mentioned in the methods (under ‘In vivo imaging’) and results (under the ‘Stimulation increases BBB permeability’).

      "30 min of limb stimulation" means what exactly? 6 Hz 2mA for 30 min?

      Thank you. The text was revised for clarity (Methods under ‘Stimulation protocol’):

      “The left forelimb or hind limb of the rat was stimulated using Isolated Scmulator device (AD Instruments) attached with two subdermal needle electrodes (0.1 ms square pulses, 2-3 mA) at 6 Hz frequency. Test stimulation consisted of 360 pulses (60 s) and delivered before (as baseline) and after long-duration stimulation (30 min, referred throughout the text as ‘stimulation’). In control and albumin rats, only short-duration stimulations were performed. Under sham stimulation, electrodes were placed without delivering current.”

      Histology that was performed to confirm extravasation needs clarification because if tissue was removed from the brain, and fixed in order to do histology, what is outside the vessels would seem likely to wash away.

      Thank you for pointing out the need to clarify this point. The Histology description in the Methods section was revised in the following manner:

      “Albumin extravasacon was confirmed histologically in separate cohorts of rats that were anesthetized and stimulated without craniotomy surgery. Assessment of albumin extravasacon was performed using a well-established approach that involves peripheral injection of either labeled-albumin (bovine serum albumin conjugated to Alexa Flour 488, Alexa488-Alb) or albumin-labeling dye (Evans blue, EB – a dye that binds to endogenous albumin and forms a fluorescent complex), followed by histological analysis of brain tissue (Ahishali & Kaya, 2020; Ivens et al., 2007; Lapilover et al., 2012; Obermeier et al., 2013; Veksler et al., 2020). Since extravasated albumin is taken up by astrocytes (Ivens et al., 2007; Obermeier et al., 2013), it can be visualized in the brain neuropil after brain removal and fixation (Ahishali & Kaya, 2020; Ivens et al., 2007; Lapilover et al., 2012; Veksler et al., 2020). Five rats were injected with Alexa488-Alb (1.7 mg/ml) and five with EB (2%, 20 mg/ml, n=5). The injections were administered via the tail vein. Following injection, rats were transcardially perfused with…”

      It is not clear why there was extravasacon contralateral but not ipsilateral if there are cortical-cortical connections.

      Interpersonally, we also did not observe ipsilateral SEP in response to limb stimulation, with evidence of SEP and BBB permeability only in the contralateral sensorimotor region. This finding is consistent with electrophysiological and fMRI studies showing that peripheral stimulation results in predominantly contralateral potentials (Allison et al., 2000; Goff et al., 1962).

      After injection of Evans blue or Alexa-Alb, how was it shown that there was extravasacon?

      Extravasalon in cortical sections was visualized using a fluorescent microscope (Figure 1 h-i). Since extravasated albumin is taken up by astrocytes, fluorescent imaging can be used for visualizing and quantifying labeled albumin (Ahishali & Kaya, 2020; Ivens et al., 2007; Knowland et al., 2014). Here is the relevant methods excerpt:

      “Coronal sections (40-μm thick) were obtained using a freezing microtome (Leica Biosystems) and imaged for dye extravasacon using a fluorescence microscope (Axioskop 2; Zeiss) equipped with a CCD digital camera (AxioCam MRc 5; Zeiss).”

      How is a sham control not stimulated - what is the sham procedure?

      In the sham stimulation protocol electrodes were placed, but current was not delivered. A section titled ‘Stimulation protocol’ was added to the methods to clarify this point.

      What was the method for photothrombosis-induced ischemia?

      The procedure for photothrombosis-induced ischemia is described under the Methods section ‘Immunoassays’ – ‘Enzyme-linked immunosorbent assay (ELISA) for albumin extravasalon’:

      “Rats were anesthetilzed and underwent … photothrombosis stroke (PT) as previously described (Lippmann et al., 2017; Schoknecht et al., 2014). Briefly, Rose Bengal was administered intravenously (20 mg/kg) and a halogen light beam was directed for 15 min onto the intact exposed skull over the right somatosensory cortex.”

      Fig 1d. All parts of d are not explained.

      Thank you for pointing this out. In the revised manuscript, the panels of this figure were slightly reordered, and we made sure all panels are explained in the legend.

      e. Is the LFP a seizure? How physiological is this- it does not seem very physiological.

      Thank you for your comment. We believe that this activity is not a seizure because it lacks the typical slow activity that corresponds to the “depolarizalon shir” observed during seizures (Ivens et al., 2007; Milikovsky et al., 2019; Zelig et al., 2022).

      f. Permeability index needs explanation. How was the area chosen for each rat? Randomly? Was it the same across rats?

      We have now revised the Methods section to provide a clearer description of the permeability index calculation and the choice of the imaging area:

      “Across all experiments, acquired images were the same size (512 × 512 pixel, ~1x1 mm), centered above the responding arteriole. Images were analyzed offline using MATLAB as described (Vazana et al., 2016). Briefly, image registration and segmentation were performed to produce a binary image, separating blood vessels from extravascular regions. For each extravascular pixel, a time curve of signal intensity over time was constructed. To determine whether an extravascular pixel had tracer accumulation over time (due to BBB permeability), the pixel’s intensity curve was divided by that of the responding artery (i.e., the arterial input function, AIF, representing tracer input). This ratio was termed the BBB permeability index (PI), and extravascular pixels with PI > 1 were identified as pixels with tracer accumulation due to BBB permeability.”

      g. For Evans blue and Alexa-Alb was the sample size rats or sections?

      Thank you for this question. We revised the statistical analysis for Figure 1j,k to appropriately asses the differences between rats. We used a nested t-test to test for differences between rats (and not sections). The differences remained significant (EB, p=0.0296; Alexa, p=0.0229) and the text was modified accordingly.

      h, i, j need more contrast and/or brightness to appreciate the images. Arrows would help. The text is too small to read.

      Thank you. This issue was addressed in the revised paper.

      To induce potentiation, 6 Hz 2 mA stimuli were used for 30 min. Please justify this as physiological.

      Thank you for the comment. We believe that the used stimulation protocol is within the physiological range (and relevant to plasticity, learning and memory) for the following reasons:

      1. In our continuous electrophysiological recordings, we did not observe any form of epileptiform or otherwise pathological activity.

      2. Memory/training/skill acquisition experiments in humans often involve similar training duration or longer (Bengtsson et al., 2005), e.g., a 30 min thumb training session performed by (Classen et al., 1998).

      3. The levels of SEP potentiation we observed are similar to those reported in:

      a. Rats following a 10-minute whisker stimulation (one hour post stimulation, (Mégevand et al., 2009)).

      b. Humans following a 15 min task (McGregor et al., 2016).

      We have revised the Discussion of the paper to clarify this important point.

      The test stimulus to evoke somatosensory evoked potentials was 1 min. Was this 6 Hz 2 mA for 1 min? Please justify.

      Yes. We chose these parameters as these ranges were shown to induce the largest changes in blood flow (with laserdoppler flowmetry) and summated SEP (Ngai et al., 1999), corresponding with our findings. We also show that these stimulation parameters do not induce changes in BBB permeability nor synaptic potentiation, therefore served as test control.

      How long after the 30 min was the test stimulus triggered- immediately? 30 sec afterwards?

      The test stimulus was applied 5 min afterwards to allow for BBB imaging protocol (now explained in the Methods section).

      How were amplitude and AUC measured? Baseline to peak? For AUC is it the sum of the upward and downward deflections comprising the LFP?

      Yes, and yes. This is now clarified in the ‘Analysis of electrophysiological recordings’ section in the Methods.

      How was the same site in the somatosensory cortex recorded for each animal?<br /> Potentiation was said to last >5 hrs. How often was it measured? Was potentiation the same for the amplitude and the AUC?

      The location of the cranial window over the somatosensory cortex was the same in all rats. The location of the specific responding arteriole may change between animals, but the recording electrode was places around the responding arteriole in the same approaching angle and depth for all animals.

      As the length of experiments differed between animals, the exact length could not be specifically stated. We therefore revised the text to clarify that LTP was recorded until the end of each experiment (depending on the animal condition, between 1.5-5 hours) and added a panel to figure 2 (Figure 2f) with exemplary data showing potentiation 120 min (2hr) post stimulation.

      Why was 25% of the serum level of albumin selected- does the brain ever get exposed to that much? Was albumin dissolved in aCSF or was aCSF chosen as a control for another reason?

      Yes, albumin was dissolved in aCSF and the solution was allowed to diffuse through the brain. The relatively high concentration of albumin was chosen to account for factors that lower its effective tissue concentration:

      1. The low diffusion rate of albumin (Tao & Nicholson, 1996).

      2. The likelihood of albumin to encounter a degradation site or a cross-BBB efflux transporter (Tao & Nicholson, 1996; Zhang & Pardridge, 2001).

      Figure 2.

      a. Please show baseline, the stimulus, and aftier the stimulus.

      Please point out when there was stimulacon.

      What is the inset at the top?

      The inset on top is the example trace of the stimulus waveform, the legend of the figure was modified for clarity.

      b. Please show when the stimulus artifact occurred. The end of the 1-minute test stimulus period is fine. Why are the SEPs different morphologies? It suggests the different locations in the cortex were recorded.

      What is shown is the averaged SEP response over 1min test stimulus, each SEP is time locked to each stimulus. Regarding SEP waveform, it does indeed show different morphology between animals, as sometimes different arterioles respond to the stimulation, and we localize the recording to the responding vessel in each rat. However, in each rat the recording is only from one location. Once the electrode was positioned near the responding arteriole it was not moved.

      d, e. What are the stats?

      h, i. Add stats. Are all comparisons Wilcoxon? Please provide p values.

      The comparisons were performed with the Wilcoxon test. We now state that and provide the exact p values.

      j. What was selected from the baseline and what was selected during Albumin and how long of a record was selected?

      What program was used to create the spectrogram?

      What is meant by changes at frequencies above 200 Hz, the frequencies of HFOs?

      The Method section (under ‘Electrophysiology – Data acquisition and analyses’) has been revised for clarification. Spectrogram was created with MATLAB and graphed with Prism. For analysis, we selected a 10 min recorded segment before starting albumin perfusion, and 10 min after terminating albumin perfusion.

      When the cortial window was exposed to drugs, what were concentrations used that were selective for their receptor? How long was the exposure?

      Was the vehicle tested?

      We have revised the Methods section (under ‘Animal preparation and surgical procedures - Drug application’) to clarify the duration and concentration used and justification. All blockers were exposed for 50 min. The vehicle was an artificial cerebrospinal fluid solution (aCSF).

      For PSD-95, what was the area of the cortex that was tested?

      Were animals acutely euthanized and the brain dissected, frozen, etc?

      We have revised the Methods section (under ‘Immunoassays’) for clarity.

      What is mbetaCD?

      The full term was added to the results section. It is also mentioned in the Methods.

      Is SJN specific at the concentration that was chosen? Did it inhibit the SEP?

      In the concentration used in our experiments, SJN is a selective TGF-β type I receptor ALK5 inhibitor (see (Gellibert et al., 2004)).

      Fig. 3b. It looks like CNQX increased the width of the vessels quite a bit. Please explain.

      For AP5, very large vessels were imaged, making it hard to compare to the other data.

      The vascular dilation in response to the stimulation under CNQX was similar to that seen under “normal” conditions (i.e. aCSF). As for AP5, in some experiments the responding arteriole was in close proximity to a large venule that cannot be avoidable while imaging. For quantification we always measured arterioles within the same diameter range.

      e. Sometimes CNQX did not block the response after 30 min stimulation. Why?

      CNQX is washed out before the 30 min stimulation starts, so it is not expected to block the response to stimulation. However, in some cases the response to stimulation was lower in amplitude, likely due to residual CNQX that did not wash out completely.

      Regarding DEGs, on the top of p 10 what are the percentages of?

      In this analysis we tested in each hemisphere how many genes expressed differentially between 1 and 24 hours post stimulation (either up- or down- regulated). The results were presented as the percentages of differentially expressed genes in each hemisphere (13.2% contralateral, and 7.3% ipsilateral). The text was rephrased for clarity.

      Please add a ref for the use of the JSD metric methods and support for its use as the appropriate method. Other methods need explanation/references.

      References were added to the text to clarify. The Jensen-Shannon Divergence metric is commonly used to calculate the statistical pairwise distance among two distributions (Sudmant et al., 2015). From comparing a few different distance metric calculations including JSD, our results were similar irrespective of the distance metric applied. Therefore, we demonstrate the variability between paired samples of stimulated and non-stimulated cortex of each animal at two time points following stimulation (24 h vs. 1 h) using JSD.

      What synaptic plasticity genes were selected for assay and what were not?

      What does "largely unaffected" mean? Some of the genes may change a small amount but have big functional effects.

      The selected genes of interest were taken from a large list compiled from previous publications (see (Cacheaux et al., 2009; Kim et al., 2017)) and are well documented in gene ontology databases and tools (e.g., Metascape, (Zhou et al., 2019)).

      We agree that the term ‘largely unaffected’ is suboptimal, and we rephrased this section of the results to indicate that “No significant differences were found in BBB or inflammation related genes between the hemispheres”. We also agree that a small number of genes can have big functional effects. Future studies are needed to better understand the genes underlying the observed BBB modulation.

      Please note that Slc and ABCs are not only involved in the BBB.

      Thank you. We modified the text to no longer specify that these are BBB-specific transporters.

      Please explain the choice of the stress ball squeeze task, and DCE.

      DCE is a well-established method for BBB imaging in living humans, and it is cited throughout the manuscript. The ball squeeze task was chosen as it is presumed to involve primarily sensory motor areas, without high-level processing (Halder et al., 2005). This is now stated in the discussion.

      What is Gd-DOTA?

      Gd-DOTA is a gadolinium-based contrast agent (gadoterate meglumine, AKA Dotarem). Text was revised for clarity. Please see the Methods section under ‘Magnetic Resonance Imaging’ - ‘Data Acquisition’.

      What does a higher percentage of activated regions mean- how was activacon defined and how were regions counted?

      Higher percentage of activated regions refers to regions in which voxels showed significant BOLD changes due to the motor task preformed. The statistical approaches and analyses are detailed in the Methods section under ‘Magnetic Resonance Imaging - Preprocessing of functional data, and fMRI Localizer Motor Task’.

      Figure. 4

      Was stimulation 1 min or 30 min.?

      30 min, Text has been revised for clarity.

      What is the Wald test and how were p values adjusted-please add to the Stats section.

      The Methods section under ‘Statistical analysis’ was revised to clarify this point.

      Is there a reason why p values are sometimes circles and otherwise triangles?

      The legend was revised to explain that ”Circles represent genes with no significant differences between 1 and 24 h poststimulation. Upward and downward triangles indicate significantly up- and down- regulated genes, respectively.”

      How can a p-value be zero? Please explain abbreviations.

      The p-value is very low (~10-10) and therefore appears to be zero due to the scale of the y-axis.

      Fig. 5b.

      There are unexplained abbreviations.

      The x on the ball and hand is not clear relative to the black ball and hand.

      Thank you for noticing. We revised the figure for clarity.

      c. What was the method used to make an activator map and what is meant by localizer task?

      The explanation of the “fMRI Localizer Motor Task” section in the methods was revised for added clarity.

      f. What is the measurement "% area" that indicates " BBB modulation"?

      Is it in f, the BBB permeable vessels (%)? f. Please explain: "Heatmap of BBB modulated voxels percentage in motor/sensory-related areas of task vs. controls."

      The %area measurement indicates the percentage of voxels within a specific brain region that have a leaky BBB. See Methods.

      Is Task - the control?

      Yes.

      Supplemental Fig. 2.

      Why is AUC measured, not amplitude?

      The amplitude, and now also the AUC are shown in Figure 3.

      b. There is no comparison to baseline. The arrowhead points to the start of stimulation but there is no arrowhead marking the end.

      In the revised paper we added a grey shade over the stimulation period to better visualize the difference to baseline. In this panel we wanted to show that NMDA receptor antagonist did not block the SEP, while AMPA receptor antagonist did.

      c. In the blot there are two bands for PSD95- which is the one that is PSD95? There is no increase in PSD95 uncl 24 hrs but in the graph in d there is. In the blot, there is a strong expression of PSD95 ipsilateral compared to contralateral in the sham-why?

      What is the percent change fold?

      The PSD-95 is the top and larger band. The lower band was disregarded in the analysis. The example we show may not fully reflect the group statistics presented in panel d. Upon quantification of 8 animals, PSD-95 is significantly higher 30 min and 24 hours post stimulation in the contralateral hemisphere. No significant changes were found in sham animals. The % change fold refers to the AUC change compared to baseline. This panel was now incorporated in Figure 3 (panel h), and the title was corrected to “|AUC|, % change from baseline”.

      Supplemental Fig. 4.

      a. If ipsilateral and contralateral showed many changes why do the authors think the effects were only contralateral?

      Our gene analysis was designed to complement our in vivo and histological findings, by assessing the magnitude of change in differentially expressed genes (DEGs). This analysis showed that: (1) the hemisphere contralateral to the stimulus has significantly more DEGs than the ipsilateral hemisphere; and (2) the DEGs were related to synaptic plasticity and TGF-b signaling. These findings strengthen the hypothesis raised by our in vivo and histological experiments.

      Supplemental Fig. 5 includes many processes not in the results. Examples include dorsal cuneate and VPL, dynamin, Kir, mGluR, etc. The top right has numbers that are not mentioned. If the drawings are from other papers they should be cited.

      The drawings of Figure 5 are original and were not published before. This hypothesis figure points to mechanisms that may drive the phenomena described in the paper. The legend of the figure was revised to include references to mechanisms that were not tested in this study.

      Papers referenced in this letter:

      Ahishali, B., & Kaya, M. (2020). Evaluation of Blood-Brain Barrier Integrity Using Vascular Permeability Markers: Evans Blue, Sodium Fluorescein, Albumin-Alexa Fluor Conjugates, and Horseradish Peroxidase. Methods in Molecular Biology, 2367, 87–103. https://doi.org/10.1007/7651_2020_316

      Aksenov, D. P., Li, L., Miller, M. J., Iordanescu, G., & Wyrwicz, A. M. (2015). Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. Journal of Cerebral Blood Flow and Metabolism, 35(11), 1819–1826. https://doi.org/10.1038/jcbfm.2015.130

      All, A. H., Agrawal, G., Walczak, P., Maybhate, A., Bulte, J. W. M., & Kerr, D. A. (2010). Evoked potential and behavioral outcomes for experimental autoimmune encephalomyelitis in Lewis rats. Neurological Sciences, 31(5), 595–601. https://doi.org/10.1007/s10072-010-0329-y

      Allison, J. D., Meador, K. J., Loring, D. W., Figueroa, R. E., & Wright, J. C. (2000). Functional MRI cerebral activation and deactivation during finger movement. Neurology, 54(1), 135–142. https://doi.org/10.1212/wnl.54.1.135

      Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148–1150. https://doi.org/10.1038/nn1516

      Betterton, R. D., Abdullahi, W., Williams, E. I., Lochhead, J. J., Brzica, H., Stanton, J., Reddell, E., Ogbonnaya, C., Davis, T. P., & Ronaldson, P. T. (2022). Regula/on of Blood-Brain Barrier Transporters by Transforming Growth Factor-β/Activin Receptor-Like Kinase 1 Signaling: Relevance to the Brain Disposition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors (i.e., Sta/ns). Drug Metabolism and Disposition, 50(7), 942–956. https://doi.org/10.1124/dmd.121.000781

      Bouchard, M. B., Chen, B. R., Burgess, S. A., & Hillman, E. M. C. (2009). Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. Optics Express, 17(18), 15670. https://doi.org/10.1364/oe.17.015670

      Cacheaux, L. P., Ivens, S., David, Y., Lakhter, A. J., Bar-Klein, G., Shapira, M., Heinemann, U., Friedman, A., & Kaufer, D. (2009). Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. Journal of Neuroscience, 29(28), 8927–8935. https://doi.org/10.1523/JNEUROSCI.0430-09.2009

      Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79(2), 1117–1123. https://doi.org/10.1152/JN.1998.79.2.1117/ASSET/IMAGES/LARGE/JNP.JA47F4.JPEG

      Franceschini, M. A., Radhakrishnan, H., Thakur, K., Wu, W., Ruvinskaya, S., Carp, S., & Boas, D. A. (2010). The effect of different anesthetics on neurovascular coupling. NeuroImage, 51(4), 1367–1377. https://doi.org/10.1016/j.neuroimage.2010.03.060

      Gellibert, F., Woolven, J., Fouchet, M. H., Mathews, N., Goodland, H., Lovegrove, V., Laroze, A., Nguyen, V. L., Sautet, S., Wang, R., Janson, C., Smith, W., Krysa, G., Boullay, V., De Gouville, A. C., Huet, S., & Hartley, D. (2004). Identification of 1,5-naphthyridine derivatives as a novel series of potent and selective TGF-β type I receptor inhibitors. Journal of Medicinal Chemistry, 47(18), 4494–4506. https://doi.org/10.1021/jm0400247

      Goff, W. R., Rosner, B. S., & Allison, T. (1962). Distribution of cerebral somatosensory evoked responses in normal man. Electroencephalography and Clinical Neurophysiology, 14(5), 697–713. https://doi.org/10.1016/0013-4694(62)90084-6

      Halder, P., Sterr, A., Brem, S., Bucher, K., Kollias, S., & Brandeis, D. (2005). Electrophysiological evidence for cortical plasticity with movement repetition. European Journal of Neuroscience, 21(8), 2271–2277. https://doi.org/10.1111/J.1460-9568.2005.04045.X

      Ivens, S., Kaufer, D., Flores, L. P., Bechmann, I., Zumsteg, D., Tomkins, O., Seiffert, E., Heinemann, U., & Friedman, A. (2007). TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain, 130(2), 535–547. https://doi.org/10.1093/brain/awl317

      Kaplan, L., Chow, B. W., & Gu, C. (2020). Neuronal regulation of the blood–brain barrier and neurovascular coupling. In Nature Reviews Neuroscience (Vol. 21, Issue 8, pp. 416–432). Nature Research. https://doi.org/10.1038/s41583-020-0322-2

      Keller, P., & Simons, K. (1998). Cholesterol is required for surface transport of influenza virus hemagglutinin. Journal of Cell Biology, 140(6), 1357–1367. https://doi.org/10.1083/jcb.140.6.1357

      Kim, S. Y., Senatorov, V. V., Morrissey, C. S., Lippmann, K., Vazquez, O., Milikovsky, D. Z., Gu, F., Parada, I., Prince, D. A., Becker, A. J., Heinemann, U., Friedman, A., & Kaufer, D. (2017). TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Scientific Reports, 7(1), 7711. https://doi.org/10.1038/s41598-017-07394-3

      Knowland, D., Arac, A., Sekiguchi, K. J., Hsu, M., Lutz, S. E., Perrino, J., Steinberg, G. K., Barres, B. A., Nimmerjahn, A., & Agalliu, D. (2014). Stepwise Recruitment of Transcellular and Paracellular Pathways Underlies Blood-Brain Barrier Breakdown in Stroke. Neuron, 82(3), 603–617. https://doi.org/10.1016/j.neuron.2014.03.003

      Koudinov, A. R., & Koudinova, N. V. (2001). Essen/al role for cholesterol in synaptic plasticity and neuronal degeneration. The FASEB Journal, 15(10), 1858–1860. https://doi.org/10.1096/r.00-0815re

      Lapilover, E. G., Lippmann, K., Salar, S., Maslarova, A., Dreier, J. P., Heinemann, U., & Friedman, A. (2012). Periinfarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. Neurobiology of Disease, 48(3), 495–506. htttts://doi.org/10.1016/j.nbd.2012.06.024

      Lindauer, U., Villringer, A., & Dirnagl, U. (1993). Characterization of CBF response to somatosensory stimulation: Model and influence of anesthetics. American Journal of Physiology - Heart and Circulatory Physiology, 264(4 33-4), 223–1228. https://doi.org/10.1152/ajpheart.1993.264.4.h1223

      Lippmann, K., Kamintsky, L., Kim, S. Y., Lublinsky, S., Prager, O., Nichtweiss, J. F., Salar, S., Kaufer, D., Heinemann, U., & Friedman, A. (2017). Epileptiform activity and spreading depolarization in the bloodbrain barrier-disrupted peri-infarct hippocampus are associated with impaired GABAergic inhibition and synaptic plasticity. Journal of Cerebral Blood Flow and Metabolism, 37(5), 1803–1819. https://doi.org/10.1177/0271678X16652631

      Masamoto, K., & Kanno, I. (2012). Anesthesia and the quantitative evaluation of neurovascular coupling. In Journal of Cerebral Blood Flow and Metabolism (Vol. 32, Issue 7, pp. 1233–1247). SAGE PublicationsSage UK: London, England. https://doi.org/10.1038/jcbfm.2012.50

      McGregor, H. R., Cashaback, J. G. A., & Gribble, P. L. (2016). Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing. Current Biology, 26(7), 921–927. https://doi.org/10.1016/j.cub.2016.01.064

      McMillin, M. A., Frampton, G. A., Seiwell, A. P., Patel, N. S., Jacobs, A. N., & DeMorrow, S. (2015). TGFβ1 exacerbates blood-brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5. Laboratory Investigation, 95(8), 903–913. https://doi.org/10.1038/labinvest.2015.70

      Mégevand, P., Troncoso, E., Quairiaux, C., Muller, D., Michel, C. M., & Kiss, J. Z. (2009). Long-term plasticity in mouse sensorimotor circuits after rhythmic whisker stimulation. Journal of Neuroscience, 29(16), 5326– 5335. https://doi.org/10.1523/JNEUROSCI.5965-08.2009

      Milikovsky, D. Z., Ofer, J., Senatorov, V. V., Friedman, A. R., Prager, O., Sheintuch, L., Elazari, N., Veksler, R., Zelig, D., Weissberg, I., Bar-Klein, G., Swissa, E., Hanael, E., Ben-Arie, G., Schefenbauer, O., Kamintsky, L., Saar-Ashkenazy, R., Shelef, I., Shamir, M. H., … Friedman, A. (2019). Paroxysmal slow cortical activity in Alzheimer’s disease and epilepsy is associated with blood-brain barrier dysfunction. Science Translational Medicine, 11(521), eaaw8954–eaaw8954. https://doi.org/10.1126/scitranslmed.aaw8954

      Ngai, A. C., Jolley, M. A., D’Ambrosio, R., Meno, J. R., & Winn, H. R. (1999). Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Research, 837(1–2), 221–228. https://doi.org/10.1016/S0006-8993(99)01649-2

      Obermeier, B., Daneman, R., & Ransohoff, R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. In Nature Medicine (Vol. 19, Issue 12, pp. 1584–1596). Nature Publishing Group. https://doi.org/10.1038/nm.3407

      Schoknecht, K., Prager, O., Vazana, U., Kamintsky, L., Harhausen, D., Zille, M., Figge, L., Chassidim, Y., Schellenberger, E., Kovács, R., Heinemann, U., & Friedman, A. (2014). Monitoring stroke progression: In vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model. Journal of Cerebral Blood Flow and Metabolism, 34(11), 1791–1801. https://doi.org/10.1038/jcbfm.2014.147

      Schumacher, L., Slimani, R., Zizmare, L., Ehlers, J., Kleine Borgmann, F., Fitzgerald, J. C., Fallier-Becker, P., Beckmann, A., Grißmer, A., Meier, C., El-Ayoubi, A., Devraj, K., Mittelbronn, M., Trautwein, C., & Naumann, U. (2023). TGF-Beta Modulates the Integrity of the Blood Brain Barrier In Vitro, and Is Associated with Metabolic Alterations in Pericytes. Biomedicines, 11(1), 1–19. https://doi.org/10.3390/biomedicines11010214

      Shim, H. J., Jung, W. B., Schlegel, F., Lee, J., Kim, S., Lee, J., & Kim, S. G. (2018). Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex ac/va/on in response to forepaw stimulation. NeuroImage, 177, 30–44. https://doi.org/10.1016/J.NEUROIMAGE.2018.04.062

      Sudmant, P. H., Alexis, M. S., & Burge, C. B. (2015). Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biology, 16(1), 287. https://doi.org/10.1186/s13059-015-0853-4

      Tao, L., & Nicholson, C. (1996). Diffusion of albumins in rat cortical slices and relevance to volume transmission. Neuroscience, 75(3), 839–847. https://doi.org/10.1016/0306-4522(96)00303-X

      Vazana, U., Veksler, R., Pell, G. S., Prager, O., Fassler, M., Chassidim, Y., Roth, Y., Shahar, H., Zangen, A., Raccah, R., Onesti, E., Ceccanti, M., Colonnese, C., Santoro, A., Salvati, M., D’Elia, A., Nucciarelli, V., Inghilleri, M., & Friedman, A. (2016). Glutamate-mediated blood–brain barrier opening: Implications for neuroprotection and drug delivery. Journal of Neuroscience, 36(29), 7727–7739. https://doi.org/10.1523/JNEUROSCI.0587-16.2016

      Veksler, R., Vazana, U., Serlin, Y., Prager, O., Ofer, J., Shemen, N., Fisher, A. M., Minaeva, O., Hua, N., SaarAshkenazy, R., Benou, I., Riklin-Raviv, T., Parker, E., Mumby, G., Kamintsky, L., Beyea, S., Bowen, C. V., Shelef, I., O’Keeffe, E., … Friedman, A. (2020). Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain, 143(6), 1826–1842. https://doi.org/10.1093/brain/awaa140

      Zandieh, S., Hopf, R., Redl, H., & Schlag, M. G. (2003). The effect of ketamine/xylazine anesthesia on sensory and motor evoked potentials in the rat. Spinal Cord, 41(1), 16–22. https://doi.org/10.1038/sj.sc.3101400

      Zelig, D., Goldberg, I., Shor, O., Ben Dor, S., Yaniv-Rosenfeld, A., Milikovsky, D. Z., Ofer, J., Imtiaz, H., Friedman, A., & Benninger, F. (2022). Paroxysmal slow wave events predict epilepsy following a first seizure. Epilepsia, 63(1), 190–198. https://doi.org/10.1111/epi.17110

      Zhang, Y., & Pardridge, W. M. (2001). Mediated efflux of IgG molecules from brain to blood across the blood– brain barrier. Journal of Neuroimmunology, 114(1–2), 168–172. https://doi.org/10.1016/S01655728(01)00242-9

      Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-09234-6

    1. Author Response

      Reviewer #1 (Public Review)

      Midbrain dopamine neurons have attracted attention as a part of the brain's reward system. A different line of research, on the other hand, has shown that these neurons are also involved in higher cognitive functions such as short-term memory. However, these neurons are thought not to encode short-term memory itself because they just exhibit a phasic response in short-term memory tasks, which cannot seem to maintain information during the memory period. To understand the role of dopamine neurons in short-term memory, the present study investigated the electrophysiological property of these neurons in rodents performing a T-maze version of a short-term memory task, in which a visual cue indicated which arm (left or right) of the T-maze was associated with a reward. The animal needed to maintain this information while they were located between the cue presentation position and the selection position of the T-maze. The authors found that the activity of some dopamine neurons changed depending on the information while the animals were located in the memory position. This dopamine neuron modulation was unable to explain the motivation or motor component of the task. The authors concluded that this modulation reflected the information stored as short-term memory.

      I was simply surprised by their finding because these dopamine neurons are similar to neurons in the prefrontal cortex that store memory information with sustained activity. Dopamine neurons are an evolutionally conserved structure, which is seen even in insects, whereas the prefrontal cortex is developed mainly in the primate. I feel that their findings are novel and would attract much attention from readers in the field. But the authors need to conduct additional analyses to consolidate their conclusion.

      We thank reviewer #1 for the positive assessment and for the valuable and constructive comments on our manuscript.

      Reviewer #1 (Recommendations to The Authors)

      (1) The authors found the dopamine neuron modulation that reflected the memory information during the delay period. Here the dopamine neuron activity was aligned by the position, not by time, in which the animals needed to maintain the information. Usually, the activity was aligned by time, and many studies found that dopamine neurons exhibited a short duration burst in response to rewards and behaviorally relevant stimuli including visual cues presented in short-term memory tasks. For comparison, I (and probably other readers) want to see the time-aligned dopamine neuron modulation that reflected the memory information. Did the modulation still exist? Did it have a long duration? The authors just showed the time-aligned "population" activity that exhibited no memory-dependent modulation.

      We agree that the point raised by the reviewer is important. To address this question, we added a new paragraph to the Methods section titled “Methodological considerations” (in line 793 of the revised manuscript), where we explain the caveats of using time alignment in the T-maze task study. We also created a new sup figure 5 to clarify our argument. As the figure shows, we did not observe major differences in the firing rates when they were arranged by position or time. More importantly, we did not detect brief bursts of activity in response to the visual cue which could reflect an RPE signaling scheme. Our interpretation is that in the T-maze task, DA neurons encode “miniature” RPE signals between successive states in the T-maze, which are hard to detect, especially when neurons receive a continuous sensory input during trials.

      (2) Several studies have reported that dopamine neurons at different locations encode distinct signals even within the VTA or SNr. Were the locations of dopamine neurons maintaining the memory information different from those of other dopamine neurons?

      We thank the reviewer’s comment. Indeed, there is evidence from recent studies demonstrating that DA neurons form functional and anatomical clusters in the VTA and SN. Following the reviewer’s advice, we report the anatomical structure of memory and non-memory-specific neurons in the revised manuscript. You can read these results in the paragraph “Anatomical organization of trajectory-specific neurons.” in the “Results” section (in line 383 of the revised manuscript) and in the new sup figure 11. We only observed a clear functional-anatomical segregation in GABA neurons, but not in DA neurons. But we should note that the absence of segregation in the DA neurons could be accounted for by the fact that we recorded mostly from the lateral VTA, therefore we do not have any numbers from the medial VTA.

      (3a) Did the dopamine neurons maintaining the memory information respond to reward?

      We believe that we have already provided the data that can partially answer this question by correlating the firing rate difference between the reward and memory delay sections. This result was described in the “Neuronal activities in delay and reward are unrelated.” paragraph and in Figure 6. Moreover, motivated by the reviewer’s question, we also performed additional analysis, which is included in the revised manuscript. Briefly, we clustered significant responses between the memory delay and reward sections (Category 1: Left-signif, R-signif or No-signif / Category 2: Memory delay or Reward). We discovered that only a very small number of neurons showed the same significant trajectory preference in the memory delay and reward sections (i.e., significant preference for left trials in the memory delay and significant preference for the left reward). In fact, more significant neurons showed a preference for opposite trajectories (i.e. significant preference for left trials in memory delay and a significant preference for right rewards). A description of the new results is included in the “Neuronal activities in delay and reward are unrelated.” paragraph (in line 349 of the revised manuscript) and in the new supplementary Figure 11.

      (3b) Did they encode reward prediction error? The relationship between the present data and the conventional theory may be valuable.

      We understand that the readers of this study will come up with the question of how memory-specific activities are related to RPE signaling. However, the T-maze task we used in this research was designed for studying working memory and was not adequate to extract information about the RPE signaling of DA neurons.

      RPE signaling is mainly studied in Pavlovian conditioning. These are low-dimensional tasks with usually four (4) states (state1: ITI, state2: trial start, state3: stimulus presentation, state4: reward delivery). Evidence of RPE signaling is extracted from the firing activity of states 3 and 4 (which is theorized to be related to the difference in the values for states 3 and 4).

      However, in the T-maze task, the number of states is hard to define and practically countless. In these conditions, it has been suggested that numerous small RPEs are signaled while the mice navigate the maze; Thus, they are very difficult to detect. To our knowledge, only Kim et al 2020, Cell, vol183, pg1600, managed to detect the RPE signaling activity of DA neurons while mice were teleported in a virtual corridor.

      Another confounding factor in extracting RPE signals in the T-maze task is that the environment is high-dimensional and DA neurons are multitasking. Therefore, it is likely that RPE signaling could be masked by other parallel encoding schemes.

      We have added these descriptions in the “Methodological considerations” (in line 793 of the revised manuscript).

      (4) Did the dopamine neurons maintaining the memory information (left or right) prefer a contralateral direction like neurons in the motor cortex?

      We thank the reviewer for this comment. Indeed, the majority of the memory-specific DA neurons showed a preference for the contralateral direction. We report this result in the legend of the new sup fig 10 (in line 1668 of the revised manuscript).

      (5) As shown in Table S2, the proportion of GABA neurons maintaining the memory information (left or right during delay) was much larger than that of dopamine neurons. It seems to be strange because the main output neurons in the VTA are dopaminergic. What is the role of these GABA neurons?

      We thank the reviewer for pointing this out. The present study shows that in both populations a sizeable portion of neurons show memory-specific encoding activities. However, the percentage of memory-encoding GABA neurons is more than twice as large as in the DA neurons. Moreover, we show that GABA neurons are functionally and anatomically segregated.

      From this evidence, one could raise the hypothesis that the GABA neurons have a primary role and that the activity of DA neurons is a collateral phenomenon, triggered in a sequence of events within the VTA network. To characterize the (1) role and (2) importance of GABA neurons in memory-guided behavior, one should first identify the afferent and efferent projections of these cells in great detail. Unfortunately, we do not provide anatomical evidence.

      So far, with the electrophysiological data we have collected (unit and field recordings), we can address an alternative hypothesis. It has been reported earlier (but we have also observed) that the VTA circuit engages in behaviorally related network oscillations which range from 0.4Hz up to 100Hz. Converging evidence from different brain regions, in vitro preparations but also in vivo recordings agree that local networks of inhibitory neurons are crucial for the generation, maintenance, and spectral control of network oscillations. Ongoing analysis, which we hope will lead to a publication, is looking for the behavioral correlates of network oscillations on the T-maze task, as well as the correlation of single-unit firing activity to the field oscillations. We expect to detect a higher field-unit coherence in GABA neurons, which could explain their stronger engagement in memory-specific encoding activity.

      The potential role of GABA neurons in network oscillations is discussed in the revised manuscript in a newly added paragraph in line 564.

      Reviewer #2 (Public Review)

      The authors phototag DA and GABA neurons in the VTA in mice performing a t-maze task, and report choice-specific responses in the delay period of a memory-guided task, more so than in a variant task w/o a memory component. Overall, I found the results convincing. While showing responses that are choice selective in DA neurons is not entirely novel (e.g. Morris et al NN 2006, Parker et al NN 2016), the fact that this feature is stronger when there is a memory requirement is an interesting and novel observation.

      I found the plots in 3B misleading because it looks like the main result is the sequential firing of DA neurons during the Tmaze. However, many of the neurons aren't significant by their permutation test. Often people either only plot the neurons that are significant, or plot with cross-validation (ie sort by half of the trials, and plot the other half).

      Relatedly, the cross-task comparisons of sequences (Fig, 4,5) are hampered by the fact that they sort in one task, then plot in the other, which will make the sequences look less robust even if they were equally strong. What happens if they swap which task's sequences they use to order the neurons? I do realize they also show statistical comparisons of modulated units across tasks, which is helpful.

      We thank reviewer #2 for the valuable and constructive comments on our manuscript. If, as the reviewer commented, the rate differences between left and right trajectories were only the result we want to claim, there may be a way to show only those whose left and right are significant. However, the sequential activity is also one of the points we wanted to display. We did not emphasize this result because it has already been shown by Engelhard et al. 2019. However, after reading the reviewer's comments, we decided to add a few lines in the "Results" (in lines 205 - 215 of the revised manuscript) and "Discussion" (in line 453 of the revised manuscript) describing the sequential activity of the VTA circuit. In those lines, we explained that DA activity is position-specific (resulting in sequential activity) and that a fraction of them also have left-right specificity.

      Overall, the introduction was scholarly and did a good job covering a vast literature. But the explanation of t-maze data towards the end of the introduction was confusing. In Line 87, I would not say "in the same task" but "in a similar task" because there are many differences between the tasks in question.

      We thank the reviewer for pointing out this mistake. In the revised manuscript, we replaced “in the same task” with “in a similar task” (in line 85 of the revised manuscript).

      And not clear what is meant by "by averaging neuronal population activities, none of these computational schemes would have been revealed. " There was trial averaging, at least in Harvey et al. I thought the main result of that paper related to coding schemes was that neural activity was sequential, not persistent. I think it would help the paper to say that clearly.

      We admit that this sentence leaves room for misunderstanding. We were mainly referring to DA studies using microdialysis or fiber photometry techniques. We decided to delete this sentence in the revised manuscript.

      Also, I'm not aware it was shown that choice selectivity diminishes when the memory demand of the task is removed - please clarify if that is true in both referenced papers.

      The reviewer’s remark is correct. None of these reports show explicitly that memory-specific activities are diminished without the memory component. Therefore, we deleted this sentence in the revised manuscript.

      If so, an interpretation of this present data could be found in Lee et al biorxiv 2022, which presents a computational model that implies that the heterogeneity in the VTA DA system is a reflection of the heterogeneity found in upstream regions (the state representation), based on the idea that different subsets of DA neurons calculate prediction errors with respect to different subsets of the state representation.

      We thank the reviewer for sharing this interpretation. We agree that this theory would support our results. In the revised manuscript we briefly discuss the Lee et al. report (in line 460 of the revised manuscript).

      I am surprised only 28% of DA neurons responded to the reward - the reward is not completely certain in this task. This seems lower than other papers in mice (even Pavlovian conditioning, when the reward is entirely certain). It would be helpful if the authors comment on how this number compares to other papers.

      In Pavlovian conditioning, neuronal responses to rewards are compared to a relatively quiet period of firing activity (usually the inter-trial interval epoch). As the reviewer pointed out, in the present study, the number of DA neurons responding to reward is smaller compared to the earlier studies. We hypothesize that this is due to our comparison method. We compared the post-reward response to an epoch when the animal was running along the side arms and the majority of neurons were highly active, instead of comparing it to a quiescent baseline epoch.

      Reviewer #2 (Recommendations to The Authors)

      Can you clarify what disparity you are referring to here? "Disparities between this 438 and our study in the proportions of modulated neurons could be attributed to the 439 different recording techniques applied as well as the maze regions of interest; for 440 example, Engelhard et al. analyzed neuronal firing activities in the visual-cue period 441 (Engelhard et al., 2019), whereas we focused on memory delay.". Is it the fact that Engelhard et al did not report choice-selective activity? They did report cue-side-selective activity, with some neurons responsive to cues on one side, and other neurons responsive to cues on the other side. Because there are more cues on the left when the mouse turns left, these neurons do indeed have choice-selective responses.

      We thank the reviewer for this comment. We agree that we need to clarify further our argument. As the reviewer pointed out, Engelhard et al identified choice-specific DA neurons. However, they reported the encoding properties of DA neurons only in the visual-cue period and the reward period. Remarkably, although the task has a memory delay, they did not report the neuronal firing activities for this delay period. Instead, in the present study we dedicated most of our analysis to characterizing the firing properties of VTA neurons in the delay period.

      Also, in response to your comment, we edited the paragraph where we describe the disparities between our study and Engelhard et al (in line 466 in the revised manuscript).

      I don't think this sentence of intro is needed since it doesn't really contain new info: "Therefore, we looked for hints 116 of memory-related encoding activities in single DA and GABA neurons by 117 characterizing their firing preference for opposite behavioral choices.".

      We agree with the reviewer. Therefore, we deleted this sentence in the revised manuscript.

      I didn't understand this line of discussion: "Our evidence does not question the validity of this computational model, since we do not provide evidence of how the selective preference for one response over the other translates into the release site.".

      The gating theory is based on experimental evidence of neuronal firing activities of DA neurons but also takes into consideration (to a lesser degree) the pre- and post-synaptic processes at the DA release sites (inverted U-shape of D1R activity). We thought that the reader may come to the conclusion that we question the validity of the gating theory. But this is not our intention, especially when we do not provide important evidence such as (1) the projection sites of DA and GABA neurons and (2) the sequence of events that take place at the synaptic triads following the DA and GABA release.

      After reading your comment we came to the conclusion that this sentence should be omitted because it is not within the scope of this study to question the validity of the gating theory. Instead, we dedicated a few lines of text to explaining which components of the gating theory (“update”, “maintenance & manipulation” and “motor preparation”) could be attributed to the trajectory-specific activities in the memory delay of the T-maze task. (section “Activities of midbrain DA neurons in short-term memory” in line 417 of the revised manuscript).

      In 1B, please illustrate when the light pulses are on & off?

      Following the reviewer’s instruction, we added colored bars on top of the raster plots in Figure 1B, indicating the light induction conditions.

      In legend for 6C, please clarify it's a correlation between the difference in R and L choice activity across the epochs (if my understanding is correct).

      The reviewer’s understanding is correct. We took this advice into consideration to further clarify the methods of analysis that led to the plot in Figure 6C (in line 1246 in the revised manuscript).

    1. Reviewer #2 (Public Review):

      The authors demonstrate convincingly the potential of single mesodermal cells, removed from zebrafish embryos, to show cell-autonomous oscillatory signaling dynamics and differentiation. Their main conclusion is that a cell-autonomous timer operates in these cells and that additional external signals are integrated to tune cellular dynamics. Combined, this is underlying the precision required for proper embryonic segmentation, in vivo. I think this work stands out for its very thorough, quantitative, single-cell real-time imaging approach, both in vitro and also in vivo. A very significant progress and investment in method development, at the level of the imaging setup and also image analysis, was required to achieve this highly demanding task. This work provides new insight into the biology underlying embryo axis segmentation.<br /> The work is very well presented and accessible. I think most of the conclusions are well supported. Here a my comments and suggestions:

      1) The authors state that "We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding remarkable agreement."

      I think this statement needs to be better placed in context. In absolute terms, the period of oscillations and the timing of differentiation are actually very different in vitro, compared to in vitro. While oscillations have a period of ~30 minutes in vivo, oscillations take twice as long in vitro. Likewise, while the last oscillation is seen after 143 minutes in vivo, the timing of differentiation is very significantly prolonged, i.e.more than doubled, to 373min in vitro (Supplementary Figure 1-9). I understand what the authors mean with 'remarkable agreement', but this statement is at the risk of being misleading. I think the in vitro to in vivo differences (in absolute time scales) needs to be stated more explicitly. In fact, the drastic change in absolute timescales, while preserving the relative ones,i.e. the number of oscillations a cell is showing before onset of differentiation remains relatively invariant, is a remarkable finding that I think merits more consideration (see below).

      2) One timer vs. many timers<br /> The authors show that the oscillation clock slowing down and the timing of differentiation, i.e. the time it takes to activate the gene mesp, are in principle dissociable processes. In physiological conditions, these are however linked. We are hence dealing with several processes, each controlled in time (and hereby space). Rather than suggesting the presence of 'a timer', I think the presence of multiple timing mechanisms would reflect the phenomenology better. I would hence suggest separating the questions more consistently, for instance into the following three:<br /> a. what underlies the slowing down of oscillations?<br /> b. what controls the timing of onset of differentiation?<br /> c. and finally, how are these processes linked?

      Currently, these are discussed somewhat interchangeably, for instance here: "Other models posit that the slowing of Her oscillations arise due to an increase of time-delays in the negative feedback loop of the core clock circuit (Yabe, Uriu, and Takada 2023; Ay et al. 2014), suggesting that factors influencing the duration of pre-mRNA splicing, translation, or nuclear transport may be relevant. Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock."(page 14). In the first part, the slowing down of oscillations is discussed and then the authors conclude on 'the timer', which however is the one timing differentiation, not the slowing down. I think this could be somewhat misleading.

      3) From this and previous studies, we learn/know that without clock oscillations, the onset of differentiation still occurs. For instance in clock mutant embryos (mouse, zebrafish), mesp onset is still occurring, albeit slightly delayed and not in a periodic but smooth progression. This timing of differentiation can occur without a clock and it is this timer the authors refer to "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14). This 'timer' is related to what has been previously termed 'the wavefront' in the classic Clock and Wavefront model from 1976, i.e. a "timing gradient' and smooth progression of cellular change. The experimental evidence showing it is cell-autonomous by the time it has been laid down,, using single cell measurements, is an important finding, and I would suggest to connect it more clearly to the concept of a wavefront, as per model from 1976.

      4) Regarding question a., clearly, the timer for the slowing down of oscillations is operating in single cells, an important finding of this study. It is remarkable to note in this context that while the overall, absolute timescale of slowing down is entirely changed by going from in vivo to in vitro, the relative slowing down of oscillations, per cycle, is very much comparable, both in vivo and in vivo. To me, while this study does not address the nature of this timer directly, the findings imply that the cell-autonomous timer that controls slowing down is, in fact, linked to the oscillations themselves. We have previously discussed such a timer, i.e. a 'self-referential oscillator' mechanism (in mouse embryos, see Lauschke et al., 2013) and it seems the new exciting findings shown here in zebrafish provide important additional evidence in this direction. I would suggest commenting on this potential conceptual link, especially for those readers interested to see general patterns.

      5) Regarding question c., i.e. how the two timing mechanisms are functionally linked, I think concluding that "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14), might be a bit of an oversimplification. It is correct that the timer of differentiation is operating without a clock, however, physiologically, the link to the clock (and hence the dependence of the timescale of clock slowing down), is also evident. As the author states, without clock input, the precision of when and where differentiation occurs is impacted. I would hence emphasize the need to answer question c., more clearly, not to give the impression that the timing of differentiation does not integrate the clock, which above statement could be interpreted to say.

      6) A very interesting finding presented here is that in some rare examples, the arrest of oscillations and onset of differentiation (i.e. mesp) can become dissociated. Again, this shows we deal here with interacting, but independent modules. Just as a comment, there is an interesting medaka mutant, called doppelkorn (Elmasri et al. 2004), which shows a reminiscent phenotype "the Medaka dpk mutant shows an expansion of the her7 expression domain, with apparently normal mesp expression levels in the anterior PSM.". The authors might want to refer to this potential in vivo analogue to their single cell phenotype.

      7) One strength of the presented in vitro system is that it enables precise control and experimental perturbations. A very informative set of experiments would be to test the dependence of the cell-autonomous timing mechanisms (plural) seen in isolated cells on ongoing signalling cues, for instance via Fgf and Wnt signaling. The inhibition of these pathways with well-characterised inhibitors, in single cells, would provide important additional insight into the nature of the timing mechanisms, their dependence on signaling and potentially even into how these timers are functionally interdependent.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study examines a hypothesized link between autism symptomatology and efference copy mechanisms. This is an important question for several reasons. Efference copy is both a critical brain mechanism that is key to rapid sensorimotor behaviors, and one that has important implications for autism given recent empirical and theoretical work implicating atypical prediction mechanisms and atypical reliance on priors in ASD.

      The authors test this relationship in two different experiments, both of which show larger errors/biases in spatial updating for those with heightened autistic traits (as measured by AQ in neurotypical (NT) individuals).

      Strengths:<br /> The empirical results are convincing - effects are strong, sample sizes are sufficient, and the authors also rule out alternative explanations (ruling out differences in motor behavior or perceptual processing per se).

      Weaknesses:<br /> My main concern is that the paper should be more transparent about both (1) that this study does not include individuals with autism, and (2) acknowledging the limitations of the AQ.

      On the first point, and I don't think this is intentional, there are several instances where the line between heightened autistic traits in the NT population and ASD is blurred or absent. For example, in the second sentence of the abstract, the authors state "Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms". I would say this is not correct because the authors did not test individuals with ASD. I don't see a problem with using ASD to motivate and discuss this work, but it should be clear in key places that this was done using AQ in NT individuals.

      For the second issue, the AQ measure itself has some problems. For example, reference 38 in the paper (a key paper on AQ) also shows that those with high AQ skew more male than modern estimates of ASD, suggesting that the AQ may not fully capture the full spectrum of ASD symptomatology. Of course, this does not mean that the AQ is not a useful measure (the present data clearly show that it captures something important about spatial updating during eye movements), but it should not be confused with ASD, and its limitations need to be acknowledged. My recommendation would be to do this in the title as well - e.g. note impaired visuomotor updating in individuals with "heightened autistic traits".

      Suggestions for improvement:<br /> - Figure 5 is really interesting. I think it should be highlighted a bit more, perhaps even with a model that uses the results of both tasks to predict AQ scores.<br /> - Some discussion of the memory demands of the tasks will be helpful. The authors argue that memory is not a factor, but some support for this is needed.<br /> - With 3 sessions for each experiment, the authors also have data to look at learning. Did people with high AQ get better over time, or did the observed errors/biases persist throughout the experiment?

    1. Reviewer #2 (Public Review):

      Summary:

      We often have prior expectations about how the sensory world will change, but it remains an open question as to how these expectations are integrated into perceptual decisions. In particular, scientists have debated whether prior knowledge principally changes the decisions we make about the perceptual world, or directly alters our perceptual encoding of incoming sensory evidence.

      The authors aimed to shed light on this conundrum by using a novel psychophysical task while measuring EEG signals that have previously been linked to either the sensory encoding or response selection phase of perceptual choice. The results convincingly demonstrate that both features of perceptual decision making are modulated by prior expectations - but that these biases in neural process emerge over different time courses (i.e., decisional signals are shaped early in learning, but biases in sensory processing are slower to emerge).

      Another interesting observation unearthed in the study - though not strictly linked to this perceptual/decisional puzzle - is that neural signatures of focused attention are exaggerated on trials where participants are given neutral (i.e. uninformative) cues. This is consistent with the idea that observers are more attentive to incoming sensory evidence when they cannot rely on their expectations.

      In general, I think the study makes a strong contribution to the literature, and does an excellent job of separating 'perceiving' from 'responding'. More perhaps could have been done though to separate 'perceiving' and 'responding' from 'deciding' (see below).

      Strengths:

      The work is executed expertly and focuses cleverly on two features of the EEG signals that can be closely connected to specific loci of the perceptual decision making process - the SSVEP which connects closely to sensory (visual) encoding, and Mu-Beta lateralisation which connects closely to movement preparation. This is a very appropriate design choice given the authors' research question.

      Another advantage of the design is the use of an unusually long training regime (i.e., for humans) - which makes it possible to probe the emergence of different expectation biases in the brain over different timecourses, and in a way that may be more comparable to work with nonhuman animals (who are routinely trained for much longer than humans).

      Weaknesses:

      In my view, the principal shortcoming of this study is that the experimental task confounds expectations about stimulus identity with expectations about to-be-performed responses. That is, cues in the task don't just tell participants what they will (probably) see, but what they (probably) should do.

      In many respects, this feature of the paradigm might seem inevitable, as if specific stimuli are not connected to specific responses, it is not possible to observe motor preparation of this kind (e.g., de Lange, Rahnev, Donner & Lau, 2013 - JoN).

      However, the theoretical models that the authors focus on (e.g., drift diffusion models) are models of decision (i.e., commitment to a proposition about the world) as much as they are models of choice (i.e., commitment to action). Expectation researchers interested in these models are often interested in asking whether predictions influence perceptual processing, perceptual decision and/or response selection stages (e.g., Feuerriegel, Blom & Hoogendorn, 2021 - Cortex), and other researchers have shown that parameters like drift bias and start point bias can be shifted in paradigms where observers cannot possibly prepare a response (e.g., Thomas, Yon, de Lange & Press, 2020 - Psych Sci).

      The present paradigm used by Walsh et al makes it possible to disentangle sensory processing from later decisional processes, but it blurs together the processes of deciding about the stimulus and choosing/initiating the response. This ultimately limits the insights we can draw from this study - as it remains unclear whether rapid changes in motor preparation we see reflect rapid acquisition of new decision criterion or simple cue-action learning. I think this would be important for comprehensively testing the models the authors target - and a good avenue for future work.

      In revising the manuscript after an initial round of revisions, the authors have done a good job of acknowledging these complexities - and I don't think that any of these outstanding scientific puzzles detract from the value of the paper as a whole.

    1. No man would keep his hands off what was not his own when he could safely take what he liked out of the market, or go into houses and lie with any one at his pleasure, or kill or release from prison whom he would, and in all respects be like a God among men.

      This is all a hypothetical situation that cannot be proven. However, I do believe the same could be said regarding the statement that every person who has previously been just will act with the same integrity when placed in a similar situation. It IS all hypothetical. But really thinking about it, I think we all have the capacity to act unjust in situations and justify ourselves. Just think if your loved one's life was at risk and you HAD to be unjust to save that person, would you do it? Many people may say no, or it depends on what I would have to do. But I think in reality, we do not want to admit that we would indeed do anything even if it means being unjust. When we are put under pressure, we show our true colors. We just fear what others may think of us. Or we fear what we may think of ourselves. Either way, we tend to justify ourselves and not view things as they are.

      We have a tendency to want to be above others in society and make our own rules and excuses.

    2. And this we may truly affirm to be a great proof that a man is just, not willingly or because he thinks that justice is any good to him individually, but of necessity, for wherever any one thinks that he can safely be unjust, there he is unjust.

      Earlier I mentioned conscience as something that can drive a person to justice. So, I'm also curious what Plato would think about altruism and how natural it is to humans?

    1. Background Applying good data management and FAIR data principles (Findable, Accessible, Interoperable, and Reusable) in research projects can help disentangle knowledge discovery, study result reproducibility, and data reuse in future studies. Based on the concepts of the original FAIR principles for research data, FAIR principles for research software were recently proposed. FAIR Digital Objects enable discovery and reuse of Research Objects, including computational workflows for both humans and machines. Practical examples can help promote the adoption of FAIR practices for computational workflows in the research community. We developed a multi-omics data analysis workflow implementing FAIR practices to share it as a FAIR Digital Object.Findings We conducted a case study investigating shared patterns between multi-omics data and childhood externalizing behavior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including containers with software dependencies. We adhered to software development practices like version control, documentation, and licensing. Finally, the workflow was described with rich semantic metadata, packaged as a Research Object Crate, and shared via WorkflowHub.Conclusions Along with the packaged multi-omics data analysis workflow, we share our experiences adopting various FAIR practices and creating a FAIR Digital Object. We hope our experiences can help other researchers who develop omics data analysis workflows to turn FAIR principles into practice.

      Reviewer 3 Megan Hagenauer - Original Submission

      Review of "A Multi-omics Data Analysis Workflow Packaged as a FAIR Digital Object" by Niehues et al. for GigaScience08-31-2023I want to begin by apologizing for the tardiness of this review - my whole family caught Covid during the review period, and it has taken several weeks for us to be functional again.OverviewAs a genomics data analyst, I found this manuscript to be a fascinating, inspiring, and, quite honestly, intimidating, view into the process of making analysis code and workflow truly meet FAIR standards. I have added recommendations below for elements to add to the manuscript that would help myself and other analysts use your case study to plan out our own workflows and code release. These recommendations fall quite solidly into the "Minor Revision" category and may require some editorial oversight as this article type is new to me. Please note that I only had access to the main text of the manuscript while writing this review.Specific Comments1) As a case study, it would be useful to have more explicit discussion of the expertise and effort involved in the FAIR code release and the anticipated cost/benefit ratio:As a data analyst, I have a deep, vested interest in reproducible science and improved workflow/code reusability, but also a limited bandwidth. For me, your overview of the process of producing a FAIR code release was both inspiring and daunting, and left me with many questions about the feasibility of following in your footsteps. The value of your case study would be greatly enhanced by discussing cost/benefit in more detail:a. What sort of expertise or training was required to complete each step in the FAIR release? E.g.,i. Was your use of tools like Github, Jupyter notebook, WorkflowHub, and DockerHub something that could be completed by a scientist with introductory training in these tools, or did it require higher level use?ii. Was there any particular training required for the production of high quality user documentation or metadata? (e.g., navigating ontologies?)b. With this expertise/training in place, how much time and effort do you estimate that it took to complete each step of adapting your analysis workflow and code release to meet FAIR standards?i. Do you think this time and effort would differ if an analyst planned to meet FAIR standards for analysis code prior to initiating the analysis versus deciding post-hoc to make the release of previously created code fit FAIR standards?c. The introduction provides an excellent overview of the potential benefits of releasing FAIR analysis code/workflows. How did these benefits end up playing out within your specific case study?i. e.g., I thought this sentence in your discussion was a particularly important note about the benefits of FAIR analysis code in your study: "Developing workflows with partners across multiple institutions can pose a challenge and we experienced that a secure shared computing environment was key to the success of this project."ii. Has the FAIR analysis workflow also been useful for collaboration or training in your lab?iii. How many of the analysis modules (or other aspects of the pipeline) do you plan on reusing? In general, what do you think is the size for the audience for reuse of the FAIR code? (e.g., how many people do you think will have been saved significant amounts of work by you putting in this effort?)iv. … Or is the primary benefit mostly just improving the transparency/reproducibility of your science?d. If there is any way to easily overview these aspects of your case study (effort/time, expertise, immediate benefits) in a table or figure, that would be ideal. This is definitely the content that I would be skimming your paper to find.2) As a reusable code workflow, it would be useful to provide additional information about the data input and experimental design, so that readers can determine how easily the workflow could be adapted to their own datasets. This information could be added to the text or to Fig 1. E.g.,i. The dimensionality of the input (sample size, number of independent variables & potential co-variates, number of dependent variables in each dataset, etc)ii. Data types for the independent variables, co-variates, and dependent variables (e.g., categorical, numeric, etc)iii. Any collinearity between independent variables (e.g., nesting, confounding).3) As documentation of the analysis, it would be useful to provide additional information about how the analysis workflow may influence the interpretation of the results.a. It would be especially useful to know which aspects of the analysis were preplanned or following a standard procedure/protocol, and which aspects of the analysis were customized after reviewing the data or results. This information can help the reader assess the risk of overfitting or HARKing.b. It would also be useful to call out explicitly how certain analysis decisions change the interpretation of the results. In particular, the decision to use dimension reduction techniques within the analysis of both the independent and dependent variables, and then focus only on the top dimensions explaining the largest sources of variation within the datasets, is especially important to justify and describe its impact on the interpretation of the results. Is there reason to believe that externalizing behavior should be related to the largest sources of variation within buccal DNA methylation or urinary metabolites? Within genetic analyses, the assumption tends to be the opposite - that genetic variation related to behavior (such as externalizing) is likely to be present in a small percent of the genome, and that the top sources of variation within the genetics dataset are uninteresting (related to population) and therefore traditionally filtered out of the data prior to analysis. Within transcriptomics, if a tissue is involved in generating the behavior, some of the top dimensions explaining the largest sources of variation in the dataset may be related to that behavior, but the absolute largest sources of variation are almost always technical artifacts (e.g., processing batches, dissection batches) or impactful sources of biological noise (e.g., age, sex, cell type heterogeneity in the tissue). Is there reason to believe that cheek cells would have their main sources of epigenetic variation strongly related to externalizing behavior? (maybe as a canary in a coal mine for other whole organism events like developmental stress exposure?). Is there reason to believe that the primary variation in urinary metabolites would be related to externalizing behavior? (perhaps as a stand-in for other largescale organismal states that might be related to the behavior - hormonal states? metabolic states? inflammation?). Since the goal of this paper is to provide a case study for creating a FAIR data analysis workflow, it is less important that you have strong answers for these questions, and more important that you are transparent about how the answers to these questions change the interpretation of your results. Adding a few sentences to the discussion is probably sufficient to serve this purpose. Thank you for your hard work helping advance our field towards greater transparency and reproducibility. I look forward to seeing your paper published so that I can share it with the other analysts in our lab.

    1. And, as to the faculties of the mind, setting aside the arts grounded uponwords and especially that skill of proceeding upon general and infallible rulescalled science, which very few have and but in few things, as being not a nativefaculty born with us, nor attained, as prudence, while we look after somewhatelse, I find yet a greater equality amongst men than that of strength. Forprudence is but experience, which equal time equally bestows on all men inthose things they equally apply themselves unto. That which may perhaps makesuch equality incredible is but a vain conceit of one’s own wisdom, which almostall men think they have in a greater degree than the vulgar, that is, than all menbut themselves, and a few others whom by fame or for concurring withthemselves they approve. For such is the nature of men that, howsoever theymay acknowledge many others to be more witty or more eloquent or morelearned, yet they will hardly believe there be many so wise as themselves, forthey see their own wit at hand and other men’s at a distance. But this provethrather that men are in that point equal than unequal. For there is not ordinarily agreater sign of the equal distribution of anything than that every man iscontented with his share.2

      To me, Hobbes is saying that In simple terms, people are generally equally smart. The idea that some are wiser might be because individuals often think they are smarter than others. Hobbes argues that, in reality, people are more equal in their mental abilities than they realize.

    2. For such is the nature of men that, howsoever theymay acknowledge many others to be more witty or more eloquent or morelearned, yet they will hardly believe there be many so wise as themselves, forthey see their own wit at hand and other men’s at a distance. But this provethrather that men are in that point equal than unequal.

      This is such an interesting point. We like to assume that we better than, in any aspect, our peers, but when it comes down to it, we are all equal. We all carry that belief that we are better then someone else, believing we are unequal to said person. They may carry that same idea about you, they think they outrank you in some aspect, making them believe they are better then you. Therefore, we are all the same. The same arrogant people.

    1. Content (posts, photos, articles, etc.)# Content recommendations can go well when users find content they are interested in. Sometimes algorithms do a good job of it and users are appreciative. TikTok has been mentioned in particular as providing surprisingly accurate recommendations, though Professor Arvind Narayanan argues that TikTok’s success with its recommendations relies less on advanced recommendation algorithms, and more on the design of the site making it very easy to skip the bad recommendations and get to the good ones. Content recommendations can go poorly when it sends people down problematic chains of content, like by grouping videos of children in a convenient way for pedophiles, or Amazon recommending groups of materials for suicide.

      I think we need to understand the nuances of recommendation algorithms, which is critical in addressing their influence on individual experiences. As these systems are designed to enhance user interaction, they can inadvertently perpetuate biases and present content that may not always align with the best interests or intentions of the users.

    1. To whom our general Ancestor repli'd. Daughter of God and Man, accomplisht Eve, [ 660 ] Those have thir course to finish, round the Earth, By morrow Eevning, and from Land to Land In order, though to Nations yet unborn, Ministring light prepar'd, they set and rise; Least total darkness should by Night regaine [ 665 ] Her old possession, and extinguish life In Nature and all things, which these soft fires Not only enlighten, but with kindly heate Of various influence foment and warme, Temper or nourish, or in part shed down [ 670 ] Thir stellar vertue on all kinds that grow On Earth, made hereby apter to receive Perfection from the Suns more potent Ray. These then, though unbeheld in deep of night, Shine not in vain, nor think, though men were none, [ 675 ] That heav'n would want spectators, God want praise; Millions of spiritual Creatures walk the Earth Unseen, both when we wake, and when we sleep: All these with ceasless praise his works behold Both day and night: how often from the steep [ 680 ] Of echoing Hill or Thicket have we heard Celestial voices to the midnight air, Sole, or responsive each to others note Singing thir great Creator: oft in bands While they keep watch, or nightly rounding walk, [ 685 ] With Heav'nly touch of instrumental sounds In full harmonic number joind, thir songs Divide the night, and lift our thoughts to Heaven.

      In this section, Adam responds to Eve as to why the stars and heavens shine. He explains to her that the sun must shine over all the earth, for those who will inhabit it in the future. They sleep at night, so that they may work harder in the day. He also talks about various "celestial voices"(4. 682) that he has heard at night, praising the glory of God. This heavenly chorus will protect them, as they “divide the night”(4. 688) to keep watch over Adam and Eve, while continuing to exalt their Creator. While reading this section, it seemed to me that the difference between night and day was emphasised heavily. This is an important distinction to make, as God is attributed as the giver of light, and Satan as a bringer of darkness.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      1. General Statements

      We thank the reviewers for their excellent work that greatly improved our work. We are very content that reviewer #1 considered our work to be “novel, interesting and important for understanding the mitochondrial biology of PD”. This reviewer also valued our work as “a significant advancement” and suggested further study of the relationship of CISD1 (dimerization) to general mitophagy/autophagy. We addressed this in the already transferred revision (version 1, v1).

      Also reviewer #2 considered our work to be “an exciting and well-executed piece of research focusing on the defects in iron homeostasis observed in Parkinson's disease which a wide audience will appreciate”. This reviewer had a very specific suggestion on how to improve our manuscript which makes a lot of sense and is feasible. As the suggested experiments include fly breeding and behavioral analysis, these experiments will be included in the second revision to be uploaded as soon as possible (version 2, v2).

      Finally, reviewer #3 gathered that parts of our results “are confirmatory to recently published work” but also appreciated that our results established that iron-depleted apo-Cisd is an important determinant of toxicity which has not been shown before. I would like to comment here, that in contrast to the paper mentioned by this reviewer, our contribution includes data from dopaminergic neurons obtained from human patients suffering from familial Parkinson’s disease that demonstrate the same increase in apo-Cisd levels as the flies. This reviewer mainly suggested that the manuscript would be improved by a more balanced discussion of the strengths and weaknesses of the study and more circumspection in interpretation of data which we did in the revised version of our manuscript. We also added data on the expression levels of Cisd and apo-Cisd in transgenic flies as also suggested.

      2. Description of the planned revisions

      Reviewer #1 (Evidence, reproducibility and clarity):

      Summary: The manuscript focuses on mitochondrial CISD1 and its relationship to two Parkinson's disease (PD) proteins PINK1 and Parkin. Interestingly, CISD1 is a mitochondrial iron sulfur binding protein and an target of Parkin-mediated ubiquitinylation. Disruption of iron metabolism and accumulation of iron in the brain has long since been reported in PD but the involvement of iron sulfur binding is little studied both in vivo and in human stem cell models of PD. This work addresses the relationship between CISD1 and two mitochondrial models of PD (PINK1 and Parkin) making use of in vivo models (Drosophila), PINK1 patient models (iPSC derived neurons) and Mouse fibroblasts. The authors report a complex relationship between CISD1, PINK1 and Parkin, where iron-depleted CISD1 may illicit a toxic gain of function downstream of PINK1 and Parkin.

      Major comments:

      The conclusions are overall modest and supported by the data. One question remains unaddressed. Is mitochondrial CISD1 a downstream target that specifically mediates PINK1 and Parkin loss of function phenotypes or are the phenotypes being mediated because CISD1 is downstream of mitophagy in general?

      It would be interesting to know what happens to CISD1 (dimerization?) upon initiation of mitophagy in wild type cells? Would dissipation of mitochondrial membrane potential be sufficient to induce changes to CISD1 in wild type cells or PINK1 deficient cells? Since iron chelation is a potent inducer of mitophagy (Loss of iron triggers PINK1/Parkin-independent mitophagy. George F G Allen, Rachel Toth, John James, Ian G Ganley. EMBO Reports (2013)14:1127-1135) it would be useful to show one experiment addressing the role of CISD1 dimerization under mitochondrial depolarizing and non-depolarizing conditions in cells.

      Based on the overall assumption of the reviewer that our work is “novel, interesting and important for understanding the mitochondrial biology of PD” and “a significant advancement” we understand the word “modest” here as meaning “not exaggerated”. To address this question, we studied CISD1 dimerization in response to more classical activators of mitophagy namely FCCP and antimycin/oligomycin which had no significant effect on dimerization suggesting that this phenotype is more pronounced under iron depletion. These data are shown in the new Fig. 2c.

      Alternatively, the authors should discuss the topic of mitophagy (including PINK1-parkin independent mitophagy), the limitation of the present study not being able to rule out a general mitophagy effect and previous work on the role of iron depletion on mitophagy induction in the manuscript.

      The data and the methods are presented in such a way that they can be reproduced.

      The experiments are adequately replicated and statistical analysis is adequate.

      Minor comments:

      Show p values even when not significant (ns) since even some of the significant findings are borderline < p0.05.

      Here, I decided to leave it as it is, because the figures became very cluttered and less easy to understand. Borderline findings are however indicated and mentioned in the text.

      Because the situation for CISD1 is complicated (overexpression, different models etc.) it would be helpful if in the abstract the authors could summarize the role. E.g. as in the discussion that iron-depleted CISD1 could represent a toxic function.

      The abstract has been completely rewritten and now mentions the potential toxic function of iron-depleted CISD1.

      If there is sufficient iron (accumulation in PD) why would CISD1 be deactivated? Perhaps that could be postulated or discussed in a simplified way?

      We actually think that apo-CISD1 without its iron/sulfur cluster is incapable of transferring its Fe/S cluster to IRP1 and IRP2. This then results in increased levels of apo-IRP1/2 and subsequent changes that lead to iron overload. Such a sequence of events would place CISD1 upstream of the changes in iron homeostasis observed in PD and models of PD. This is now discussed in more detail.

      In the methods section both reducing and non-reducing gel/Western blotting is mentioned but the manuscript only describes data from blots under reducing conditions. Are there blots under non-reducing conditions that could be shown to see how CISD1 and dimerized CISD1 resolve?

      We now show these blots as supplemental data in new supplemental Figure 2.

      In the results section, PINK1 mutant flies, it is said that the alterations to CISD1 (dimerization) are analogous to the PINK1 mutation patient neurons. The effect is seen in old but not young flies. Since iPSC-derived neurons are relatively young in the dish, would one not expect that young flies and iPSC-derived neurons have similar CISD1 phenotypes? Could the authors modify the text to reflect that? or discuss the finding in further context.

      We only studied one time point in PINK1 mutation patient neurons and controls. It would indeed be interesting whether neuronal aging (as far as this can be studied in the dish) would result in increased CISD1 dimerization. This is now discussed.

      Reviewer #1 (Significance):

      The strengths of this work are in the novelty of the topic and the use of several well established in vivo and cell models including patient-derived neurons. The findings discussed in the text are honest and avoid over-interpretation. The findings are novel, interesting and important for understanding the mitochondrial biology of PD.

      We thank the reviewer for their kind words.

      Limitations include the lack of strong phenotypes in the CISD1 models and the lack of robust, sustained and consistent increase in CISD1 dimers in the patient and fly models (just significant because of variability). The relationship of CISD1 (dimerization) to general mitophagy/autophagy is not shown here.

      We do not completely agree with the assumption that all CISD1 models lack a strong phenotype. At least the CISD1-deficient fibroblasts exhibit a strong phenotype consisting of fragmented mitochondria and increased oxidative stress. The lack of a strong phenotype in Cisd-deficient flies could actually hint to a potential compensatory mechanism that could also protect the Pink1 mutant x Cisd-deficient double-knockout flies. It is correct that the increase in CISD1/Cisd dimers in the PD models are not overwhelming but – as also mentioned by the reviewer – this could be increased in “older” cultures. This is now discussed in more detail. As suggested by the reviewer, we have now added experiments that study the relationship between CISD1 dimerization and conventional mitophagy as described above.

      There is a significant advancement. So far researchers were able to describe the importance of iron metabolism in PD (For example refer to work from the group of Georg Auburger such as PMID 33023155 and discussion of therapeutic intervention such as reviewed by Ma et al. PMID: 33799121) but few papers describe involvement of iron sulfur cluster proteins specifically (such as Aconitase) in relation to PINK1 and parkin (these are cited). The fact that CISD1 is a protein of the mitochondrial outer membrane makes it particularly interesting and further studies looking more closely at the interaction of CISD1 with mitochondrial proteins associated with PD will be of interest.

      We thank the reviewer for pointing out these excellent publications. Key et al present an enormous wealth of data on protein dysregulation of wildtype and Pink1-/- fibroblast cell lines upon perturbation of the iron homeostasis (Key et al, 2020). Both cell lines exhibit a downregulation of CISD1 levels upon iron deprivation with the agent 2,2′ -Bipyridine possibly as a compensatory mechanism to limit the toxic gain of function of iron-depleted CISD1. The other paper, Ma et al. is a recent review on changes in iron homeostasis in PD and PD models (Ma et al, 2021). Both papers are now cited in the manuscript.

      This paper describes CISD1 as a new and relevant player in PINK1 and Parkin biology. Further work could lead to exploration of whether CISD1 could be a therapeutic target, considering its role in maintaining mitochondrial redox and mitochondrial health. This is of particular interest to mitochondrial biologists and pre-clinical research in PD.

      This preprint was reviewed by three scientists whose research focus in the mitochondrial biology underlying Parkinson's disease. The group has a special interest in the functions of the mitochondrial outer membrane. We work with several cell models of Parkinson's disease and work with patient donated samples. We do not have expertise in Drosophila models of PD nor the quantification of iron described in the manuscript.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary: In the paper entitled 'Mitochondrial CISD1 is a downstream target that mediates PINK1 and Parkin loss-of-function phenotypes', Bitar and co-workers investigate the interaction between CISD1 and the PINK1/Parkin pathway. Mutations in PINK1 and PARKIN cause early onset Parkinson's disease and CISD1 is a homodimeric mitochondrial iron-sulphur binding protein. They observed an increase in CISD1 dimer formation in dopaminergic neurons derived from Parkinson's disease patients carrying a PINK1 mutation. Immuno-blots of cells expressing CISD1 mutants that affects the iron sulphur cluster binding and as well as cells treated with iron chelators, showed that the tendency of CISD1 to form dimers is dependent on its binding to iron-sulphur clusters. Moreover, the Iron-depleted apo-CISD1 does not rescue mitochondrial phenotypes observed in CISD1 KO mouse cells. Finally, In vivo studies showed that overexpression of Cisd and mutant apo-Cisd in Drosophila shortened fly life span and, using a different overexpression model, apo-Cisd caused a delay in eclosion. Similar as patient derived neurons, they observed an increase in Cisd dimer levels in Pink1 mutant flies. Additionally, the authors showed that double mutants of Cisd and Pink1 alleviated all Pink1 mutant phenotypes, while double mutants of Prkn and Cisd rescued most Prkn mutant phenotypes.

      Major comments:

      1) The authors observed an increase in the levels of Cisd dimers in Pink1 mutant flies and removing Cisd in Pink1 mutant background rescues all the mutant phenotypes observed in Pink1 mutant flies, suggesting that the Cisd dimers are part and partial of the Pink1 mutant phenotype. The authors also generated a UAS_C111S_Cisd fly which can overexpress apo-Cisd. Overexpression of the C111S_Cisd construct with Tub-Gal4 showed a developmental delay. Since apo-Cisd forms more dimeric Cisd, my question is: does the strong overexpression (e.g. with Tub-Gal4) of the C111S_Cisd in wild type flies shows any of the Pink1 mutant phenotypes? If not, the authors should mention this and elaborate on it.

      We thank the reviewer for their comments. In fact, we only observed very few flies ecclosing after overexpression of wildtype Cisd or C111S Cisd using the strong tubP-Gal4 driver during development. We considered these very few flies to be escapees (also indicated by the rather low induction of Cisd mRNA suggesting compensatory downregulation) and only used them to conduct the analysis shown in Figure 4c-e. This is now mentioned in more detail in the manuscript.

      2) Figure 6g: Shows the TEM pictures of the indirect flight muscles of Pink1 mutant flies and Pink1, Cisd double mutants. To me, the Picture of Pink1 mutant mitochondria is not very convincing. We expect swollen (enlarged) mitochondria with disrupted mitochondrial matrix. However, this is not clear in the picture. Moreover, in my opinion, Figure6 g, is missing an EM Picture of the Cisd mutant indirect flight muscles.

      We now show exemplary pictures from Pink1 mutant and DKO in a higher magnification which better demonstrate the rounded Pink1 mutant mitochondria and the disrupted cristae structure. EM pictures of all four genotypes in different magnifications are now shown in new supplemental Figure 6.

      3) OPTIONAL: The authors suggest that most probably apo-Cisd, assumes a toxic function in Pink1 mutant flies and serves as a critical mediator of Pink1-linked phenotypes. If this statement is correct, we can hypothesize that increasing apo-Cisd in Pink1 mutant background should worsen the pink1 mutant defects.

      Therefore, I suggest overexpressing Cisd1 wild type (and/or C111S Cisd) in pink1 mutant flies, as pink1 is on the X chromosome, and mild overexpression of Cisd1 with da is not lethal, these experiments could be done in 3-4 fly crosses and hence within 1.5 - 2 months.

      We have set up this experiment and will report in the second revision (v2) of our manuscript.

      Since Pink1 mutant flies contain higher levels of endogenous Cisd dimers, we can expect that overexpression of wild type Cisd will result in an even stronger increase of dimers. If these dimers indeed contribute to Pink1 mutant phenotypes we can expect that overexpression of Cisd will result in a worsening of the Pink1 mutant phenotypes.

      We have set up this experiment and will report in the second revision of our manuscript.

      Minor Comments:

      -) In the Introduction (Background) there are some parts without references:

      E.g., there is not a single reference in the following part between

      'However, in unfit mitochondria with a reduced mitochondrial membrane potential ...&... compromised mitochondria safeguards overall mitochondrial health and function.'

      We thank the reviewer for pointing out this flaw. We have now added a suitable reference to the introduction.

      -) In the introduction there is some confusion about the nomenclature used in the article: e.g. following comments are made in the text: Cisd2 (in this publication referred to as Dosmit) or fly Cisd2 (in this publication named MitoNEET).

      However, the names Dosmit and MitoNEET do not appear in the manuscript (except in references)

      The literature and nomenclature for CISD1 are indeed confusing. We have now revised the introduction.

      -) Figure 1: I am not sure why some gels are shown in this figure. The two last lanes of figure 1c are redundant and Figure 1c' which is also not mentioned in the text, is also a repetition of figure 1c.

      The blots in 1c and 1c’ represent all data points (different patients and different individual differentiations) shown in the quantification in 1d. This is now explained better in the revised manuscript.

      -) The authors mention in material and methods that T2A sites are used at the C-terminus of CISD1 to avoid tagging of CISD1. However, this is not entirely true as T2A will leave some amino acids (around 20) after the self-cleaving and therefore CISD1 will be tagged.

      This is indeed true and we have now changed the wording in the revised manuscript.

      -) In figure 5 P1 is used to abbreviate Pink1 mutants, however P1, to me, refers to pink1 wild type. It would be clearer to abbreviate Pink1 mutants as P1B9 in the graphs as B9 is the name of the mutant pink1 allele.

      We thank the reviewer for pointing out this flaw. We have now altered Fig. 5 to be clearer.

      -) In figure 7: Parkin is abbreviated both as Prkn and as Park

      We thank the reviewer for pointing out this flaw, we indeed mixed up both names because it is complicated. The gene symbol is Prkn, the fly line is called Park25. We have now clarified this in the text and Fig. 7.

      -) I suggest changing the title. Recently an article (Ham et al, 2023 PMID: 37626046) was published showing similar genetic interactions between Pink1/Prkn and Cisd. However, the article of Ham et al, 2023 was focused on Pink1/Prkn regulation of ER calcium release, while this article is more related to iron homeostasis. I suggest that the title shows this distinction.

      This is indeed a very good suggestion. We have now altered the title to “Iron/sulfur cluster loss of mitochondrial CISD1 mediates PINK1 loss-of-function phenotypes”.

      Reviewer #2 (Significance):

      In general, this is an exciting and well-executed piece of research focusing on the defects in iron homeostasis observed in Parkinson's disease which a wide audience will appreciate. Very recently, a similar genetic interaction between Cisd and Pink1/Prkn in flies was published (Ham et al, 2023 PMID: 37626046) however, from a different angle. While, Ham et al focused on the role of Pink1/Prkn and Cisd in IP3R related ER calcium release, this manuscript approaches the Pink1/Prkn - Cisd interaction from an iron homeostasis point of view. Since, iron dysregulation contributes to the pathogenesis of Parkinson's disease, the observations in this manuscript are relevant for the disease. Hence, the work is sufficiently novel and deserves publication. However, additional experiments are suggested to strengthen the authors' conclusions.

      We thank the reviewer for their kind words. As mentioned above, these additional experiments are on their way and will be included in version 2 of our revised manuscript (v2).

      I work on Drosophila models of Parkinson's disease

      Referees cross-commenting

      I agree with the reviewer number 1 that it would be interesting to investigate CISD1 dimerisation status during mitophagy.

      As mentioned above, we now studied CISD1 dimerization in response to more classical activators of mitophagy namely FCCP and antimycin/oligomycin which had no significant effect on dimerization suggesting that this phenotype is more pronounced under iron depletion. These data are shown in the new Fig. 2c.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Here the authors provide evidence that Cisd is downstream of Parkin/Pink1 and suggest that the levels of apo-Cisd correlate with neurotoxicity. The data presented generally supports the conclusions of the authors and will be useful to those in the field. The manuscript would be improved by a more balanced discussion of the strengths and weaknesses of the study and more circumspection in interpretation of data.

      We thank the reviewer for their comments aimed to improve our manuscript. We have now discussed the strengths and weaknesses of our study in more detail.

      Introduction. While iron has been implicated in Parkinson's disease, it is an overstatement to say that disruption in iron metabolism contributes significantly to the pathogenesis of the disease.

      There is certainly a plethora of data implicating perturbed iron homeostasis in PD as also pointed out by reviewer #1. We have tried to tone down our wording in the text and added a recent review on the topic (Ma et al, 2021) as also suggested by reviewer #1.

      Introduction. The discussion of the various names for Cisd2 is important, but confusing as written. Specifically, the use of "this" makes the wording unclear.

      We thank the reviewer for pointing out this flaw. We have altered the wording in the introduction.

      Methods. It would be preferable to use heterozygous driver lines or a more similar genetic control rather than w-1118.

      The exact controls were indeed not well explained in the Methods section, this has been corrected in the revised version. In brief, homozygous driver and UAS lines were indeed used in Fig. 4, this will be addressed in the second revision of our manuscript together with the experiments reviewer #2 suggested. The data shown in Fig. 5, 6, and 7 all used w1118 as control because all other fly strains are on the same genetic background.

      Page 10. It appears that the PINK1 lines have been described previously. The authors should clarify this point and ensure that the new data presented in the current manuscript (presumably the mRNA levels, Fig. 1a) is indicated, as well as data that is confirmatory of prior findings (Fig. 1b).

      Yes, these PINK1 lines have been described previously as pointed out in the manuscript. The original paper did not quantify the PINK1 mRNA levels shown in Fig. 1a. The blots shown in Fig. 1b are from new differentiations and have also not been shown before but confirm findings published in Jarazo et al. (Jarazo et al, 2022). This has been clarified in the revised version of our manuscript.

      Fig. 3 legend. There is a typographical error, "ne-way ANOVA."

      We thank the reviewer for pointing out this flaw. This has been corrected in the revised version.

      Page 15. The nature of the Pink1-B9 mutant should be specified.

      We now added a supplemental Figure 1 that depicts the specific mutation in these flies.

      Fig. 4. Levels of mutant and wild type Cisd should be compared in transgenic flies.

      We now added a quantification of mutant and wildtype Cisd levels to the new Figure 4d.

      Fig. 5b,d. The striking change seems to be the decrease in dimers in young Pink1 mutant animals, not the small increase in dimers in the older Pink1 mutants.

      It is always difficult to find a “typical” picture that reflects all changes observed in quantitative data. This Figure actually shows a decrease of total Cisd levels in young flies in Fig. 5c but no difference of the dimer/monomer ratio in Fig. 5d.

      Fig. 5f. Caution should be used in interpreting the results. Deferiprone has toxicity to wildtype flies (trend) and may simply be making sick Pink1 mutants sicker.

      There is certainly a tendency for wildtype flies to thrive less in food containing deferiprone. To make this more obvious, we have now added the exact p value (0.0764, which we don’t consider borderline but a tendency) to this figure and mention this fact in the text.

      Fig. 5e. The data are hard to interpret. The number of animals is very small for a viability study and the strains are apparently in different genetic backgrounds, though this is not clearly specified. The experiment in Supplementary Fig. 1 appears better controlled and supports the Pink1 data; however, a similar concern pertains to Fig. 7. The authors may thus wish to be more circumspect in their interpretation, especially of the Parkin data.

      In Fig 5e we quantified total iron levels and the Fe3+/Fe2+ ratio using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). Although indeed not so many flies were used in this quantification, the results are highly significant. If the reviewer was referring to Fig. 5f, we agree that this experiment was not well (to be honest, even wrongly explained) which we corrected in the revised version of this manuscript. We thank the reviewer for pointing out this flaw.

      Reviewer #3 (Significance):

      The major significance of the study is in putting downstream of Parkin/Pink1 (largely confirmatory to recently published work) and suggesting that the levels of apo-Cisd are an important determinant of toxicity. The work will be of interest to those in the field.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      The changes already carried out and included in the transferred manuscript (v1) are indicated above in bold orange. All changes pending on ongoing experiments to be included in the second revision of the manuscript are indicated above in bold magenta.

      4. Description of analyses that authors prefer not to carry out

      All changes suggested by the reviewers were addressed (v1) or will be addressed (v2).

      References

      Jarazo J, Barmpa K, Modamio J, Saraiva C, Sabaté-Soler S, Rosety I, Griesbeck A, Skwirblies F, Zaffaroni G, Smits LM, et al (2022) Parkinson’s Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2-Hydroxypropyl-β-Cyclodextrin Treatment. Mov Disord 37: 80–94

      Key J, Sen NE, Arsović A, Krämer S, Hülse R, Khan NN, Meierhofer D, Gispert S, Koepf G & Auburger G (2020) Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells 9

      Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, et al (2021) Parkinson’s disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 41: 101896

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      __We thank all the reviewers for their time and their constructive criticism, based on which we will revise our manuscript. All our responses are indicated in red. __

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      The manuscript by Nguyen and Cheng is investigating the timing and mechanism of cessation of neuroblasts in the pupal optic lobe. Previous studies by several groups have determined the spatial and temporal factors required for the neuroepithelial to neuroblast transition and neuroblast to neural/glycogenesis in third instar larvae such that neuroblasts are eliminated. The mechanism of elimination of neuroblasts in the VNC or mushroom bodies have been investigated, but the mechanism(s) and the timing of elimination of medulla neuroblasts has not been investigated. The authors suggest that medulla neuroblasts are eliminated via a combination of mechanisms including apoptosis, prospero induced size symmetric terminal differentiation and a switch to gliogenesis by gcm expression. Expression of Tailless also was found to affect the timing of medulla neuroblast termination. They also ruled out several mechanisms such as ecdysone pulses.

      Major comments

      Clearly written and logical flow to experiments and results not over interpreted.

      Clearly show that the neuroblast number and size decrease (12 to 18 hrs) and are eliminated by 30 hours

      Figure 2a Marking of the Neuroepithelium. Would be more convincing if shown by PatJ expression and is clonal analysis. While the following panels use PatJ in clones suggesting are NE and NBs present it is more difficult to put into the context in the higher magnification images (Figure 2 D- M) and the Miranda expression in F' seems to be the entire lobe and it is not clear if would be any NE which does not agree with what is shown in panel A.

      We will perform clonal analysis using MARCM to show that the elimination of medulla NBs (marked by Dpn) is accompanied by the depletion of NE (marked by PatJ). For Figure 2 D, E, I, L, we will change the images to the whole lobes to clearly show the shift in the NE-NB transition upon Notch OE/KD.

      Is difficult to see the neuroblasts in Figure 2 D D" and E. The figure does not match what is stated in the results in that the neuroblasts are difficult to observe. If the point is that there is fewer NE cells and more neuroblasts then this is hard to see. It has been previously shown that with Notch RNAi clones prematurely extrude form the NE (Egger 20210; Keegan 2023) and could be expressing more Neuroblast markers but this is not visible in the panels as shown. Are the images single focal plane or maximum projections? Imaging more deeply in the brain or viewing in cross section would account for these possibilities. The possibility that are more neuroblasts but not all at the surface of the OL should be addressed as this could also alter the overall results.

      Figure 2 is key to first point of the paper so needs to be addressed.

      The images are single focal plane of the superficial layer of the medulla. We will specify this information in the figure legends. We will include cross-section of the notch RNAi clones to show the delamination of precocious NBs.

      Minor comments

      Why express volume of DPN in clone volume. Would make the point more clear and more strong be to express as number of NB in the 3-D volume of the clone. This measurement occurs in several figures.

      We will redo the quantification as suggested.

      Use of Miranda to mark NBs is unclear in Figure 2. Perhaps more clear in B&W.

      We will redo the staining with Dpn instead of Mira to mark medulla NBs. Figures will be presented in B&W as suggested.

      Make clear in figures (or figure legend) if single focal plane or projections.

      We will do so.

      It is unclear what percentage of NB the Gal4 line eyR16F10 are expressed in. Veen 2023 state that the GAL4 is also expressed in neurons and at different levels whether deeper within the brain or superficially on the surface of the brain. At 16 APF it is expressed but it is not clear whether it is in all cells at a low level or only within a few cells

      We will further characterize the expression of eyR16F10-GAL4 in the pupal medulla as suggested.

      Some RNAi lines referenced as previously validated and other are not. For example: EcR, Oxphos, Med27, Notch need references or confirmation of specificity to the intended target (qRT)

      We will perform RT-qPCR to validate the use of UAS-med27 RNAi. For RNAi stocks such as UAS-EcR RNAi, UAS-Atg1 RNAi, UAS-notch RNAi that have been previously used in other publications, we will provide appropriate references.

      At least 2 animals per genotype were used. While I appreciate the technical difficulty of working in pupae this seems a bit low in terms of number of samples and data would be more robust with more numbers.

      Any experiments in which less than 3 animals were used, we will redo the experiments.

      Reviewer #1 (Significance (Required)):

      This provides mechanism and timing for the elimination of neuroblasts (NE to NB) that arise from the medulla. As these are most similar to mammalian brain development (Radial glial to NSC) this information provides more context to interpret the formation of glial and neurons in the adult optic lobe given the effect on timing and mechanisms of elimination.

      This paper would be of interest to developmental biologist who work with Drosophila or mice who are looking at neural development. An understanding of how neural diversity is achieved and the mechanisms behind this that can be dysfunctional in terms of etiology of neural diseases. Is a well done study for the most part that would be improved by clarifying some data and provided more replicates for robustness of the data.

      I am a developmental biologist working with Drosophila in larval and adult neural development.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      Lineages of neural stem cells are of great interest to understand how many neural types are generated. They produce very diverse neurons, often in a highly stereotyped series. However, they must terminate their life when the animal becomes functional or if neurons need time to become mature before birth.

      In the Drosophila optic lobes, neural stem cells are produced over a period of several days by a wave of neurogenesis that transforms a neuroepithelium into neural stem cells that undergo a series of temporal patterning steps. It has been reported that they finish their life when a symmetric division generates glial cells. The authors however analyze the end of a particular lineage, that of the latest born neural stem cells of the medulla.

      The paper shows that neural stem cells stop being produced when the neuroepithelium is consumed. But how do the latest born neural stem cells stop their lineage?

      The results show that they do so by several means, which is quite unexpected: they may die from apoptosis, or autophagy, by becoming glioblasts or by a terminal symmetric division.

      There are no major issues affecting the conclusions

      • The paper shows that the end of production of neural stem cells occurs the neuroepithelium is completely transformed. The experiments performed by the authors are fine and show that, if the transition is delayed, neural stem cells terminate their life later, and vice versa. However, the lifespan of the neural stem cells is not affected by the timing of the transition. Therefore, these experiments do not tell us how neural stem cells terminate their life, which is the central question of the study. The discussion should be written accordingly and the title and the model in Fig 6 modified to reflect the importance of the end of life of the stem cells, the main theme of the paper.

      We agree that our said experiments did not elucidate how NBs terminate at the end of neurogenesis. Nevertheless, our aim is to show that the timing of NB termination in the medulla is dependent on the timing of the NE-NB transition.

      In Supplementary Figure 1, we showed that factors previously shown to be involved in NB termination in other lineages did not play similar roles in the medulla NBs. Thus, we think that NB termination in the medulla is likely regulated at the levels of the NE, but not the NBs themselves. Although we have briefly mentioned this in our manuscript, we hope by conducting the experiments suggested by the reviewer (see below), we can subsequently modify our model in Figure 6 and our discussion.

      • The authors talk about Pros-dependent symmetric division and gliogenic switch as two separate processes, but these may be two sides of the same phenomenon. Tll+ gcm+ neural stem cells undergo Pros-dependent cell cycle exit, generating glial progeny. If the authors agree with this, could they update their model (and discussion) to reflect the fact that gliogenic switch occurs via a Pros-dependent symmetric division, and these are not two separate processes independently contributing to the depletion of the neural stem cell pool? Ideally, a triple staining between Dpn, Pros, and gcm would show that the symmetrically dividing cells seen by the authors are committed to the glial fate.

      We will further test how gliogenesis is affected in pros RNAi clones. The results may shed light on whether Pros-mediated symmetric division is required for Gcm-mediated gliogenesis in the medulla. Regarding the model, we have summarized our findings and suggestions in Figure 5K, however, we will integrate this information into our final model.

      In Figure 5C, we showed that at 12h APF, there are Dpn+ NBs in the medulla that expressed both Pros and Gcm, suggesting that it is very likely that Pros is upstream of Gcm to induce the glial cell fate switch of the medulla NBs.

      • Why were Notch RNAi experiments assessed for the presence of neural stem cells at P12 and gcm RNAi experiments at P24? Given that most optic lobe neural stem cells disappear between P12-18, a subtle effect of gcm RNAi may have been missed. Do the authors have data for gcm RNAi at P12?

      We hypothesized that the timing of NE-NB transition affects the timing of NB termination in the medulla. Because Notch KD was previously shown to induce precocious NE-NB transition in the OL, meaning that medulla NBs are born prematurely, we expected that this manipulation will lead to a corresponding premature elimination of the NBs. In contrast, gcm RNAi which inhibits the switch into the glial cell fate of the NBs, is expected to prolong the neurogenic phase of the NBs, and thereby, their persistence by 24h APF when WT NBs are eliminated.

      • The authors should acknowledge that the inhibition of either apoptosis or autophagy alone may not be fully sufficient to prevent the death of NBs. In mushroom body neural stem cells, both processes must be inhibited simultaneously to produce a strong effect on their survival (Pahl et al. 2019, PMID 30773368).

      We will add this information in our discussions.

      • There is an important missing point that should be addressed: is there a specific point in time when all neural stem cells must stop their lineage wherever they are in the temporal series and either die or divide symmetrically? One possibility that is not discussed is that most neural stem cells end their life through a gliogenic symmetric division while those that were generated late must stop en route and die by apoptosis and/or autophagy. This would solve the strange diversity of end-of-life, which could be easily addressed by identifying the temporal stage of the neural stem cells that undergo apoptosis

      We agree that it would be of interest to understand how there are diverse mechanisms by which medulla NBs terminate during pupal development. To address if temporal progression is involved in apoptosis of the medulla NBs, we will first characterize the expression of some temporal TFs (e.g., Ey, Slp, Tll) at 12h APF when we found a subset of medulla NBs undergo apoptosis in the wildtype animals.

      Minor suggestions:

      We agree with these minor modifications.

      • Line 46: Specify that there are 8 type II neural stem cells in each hemisphere*.

      • The statement in lines 181-182 that "cell death, and not autophagy, makes a minor contribution to..." should be replaced with "apoptosis, and not autophagy," as autophagy is also a type of cell death.

      • The authors should adjust the logic of the section "Medulla neuroblasts terminate during early pupal development": Describe the wild-type pattern first (the decrease in the number of neural stem cells and their size with age) and then describe the perturbations aimed at disrupting the number and the size of neural stem cells

      • Line 151 should refer to Fig. 2I-K, not Fig. 2J-K.

      **Referees cross-commenting**

      How can NBs die by different mechanisms?? This might only happen is they are in a different states, an issue that is not addressed.

      it has been shown that optic lobe NBs end their life by a symmetric, gliogenic last division at the end of the last temporal window, and not by PCD.

      It is likely, and the authors do hint at it, that NBs only die by PCD when they prematurely interrupt the temporal series in early pupation when neurons synchronously start undergoing maturation.

      I believe that the authors should explain this, if this is indeed their model, and show that NBs die while still in early temporal windows.

      Reviewer #2 (Significance (Required)):

      Lineages of neural stem cells are of great interest to understand how many neural types are generated. They produce very diverse neurons, often in a highly stereotyped series. However, they must terminate their life when the animal becomes functional or if neurons need time to become mature before birth.

      In the Drosophila optic lobes, neural stem cells are produced over a period of several days by a wave of neurogenesis that transforms a neuroepithelium into neural stem cells that undergo a series of temporal patterning steps. It has been reported that they finish their life when a symmetric division generates glial cells. The authors however analyze the end of a particular lineage, that of the latest born neural stem cells of the medulla.

      The paper shows that neural stem cells stop being produced when the neuroepithelium is consumed. But how do the latest born neural stem cells stop their lineage?

      The results show that they do so by several means, which is quite unexpected: they may die from apoptosis, or autophagy, by becoming glioblasts or by a terminal symmetric division.

      There are no major issues affecting the conclusions

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary

      In this manuscript, the authors address the timing and mechanisms responsible for the termination of medulla neuroblasts in Drosophila visual processing centres, also known as optic lobes. Through time course experiments the authors demonstrate the medulla NBs are completely eliminated by 30h APF during early pupal development. By manipulating the Notch signalling pathway as well as proneural genes such as lethal of scute, the authors show that altering the NE-NB transition is sufficient to change the timing of NB termination. In contrast, ecdysone signalling and components of the mediator complex, known to terminate proliferation of central brain NBs, are not required for the termination of medulla NBs. Medulla NBs sequentially express a variety of temporal transcription factors to promote cellular diversity, however, the authors demonstrate that altering temporal factors such as Ey, Sco or Hth, does not affect the timing of the medulla NBs termination. Interestingly however overexpression of the transcription factor tailless can cease medulla NB termination via the conversion of type I to type II NB fate. They further go on to show the importance of the differentiation factor, Prospero, in promoting the differentiation of medulla NBs as well as terminating medulla neurogenesis during pupal development. Finally, in addition to differentiation, the authors show another mechanism responsible for the cessation of neurogenesis which is the commencement of gliogenesis. Through manipulation of the neurogenic to gliogenic switch by knockdown or overexpressing the glial regulatory gene, gcm, the authors show that even though the downregulation of gcm is is not sufficient to induce NB persistence, gcm overexpression can cause premature termination of NBs.

      Major comments:

      • Are the key conclusions convincing?

      Yes, the key conclusions are convincing with proper controls, quantifications and statistical analyses.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      The conclusion that temporal transcription factors (TTF) do not affect the timing of medulla NB termination is somewhat preliminary. The authors investigated a simplified temporal series including Homothorax, Eyeless, Sloppy-paired, Dichaete and Tailless. However, there are additional temporal factors that have not been examined for their potential involvement in medullar NB termination. Previous reports have identified several other temporal factors that play a role in medulla TTF cascade, such as, SoxNeuro (SoxN) and doublesex-Mab related 99B (Dmrt99B) that start their expression in the NE similar to Hth, however, Dmrt99B is likely to be repressed much later than Hth (Li, Erclik et al. 2013, Zhu, Zhao et al. 2022). At this point, it remains challenging to completely rule out the possibility that other temporal factors play a role in medullar NB termination or have redundant functions in regulating the timing of medulla NB cessation. It is suggested to tone down this claim and provide a brief discussion on alternative possibilities, citing relevant papers on the functions of other temporal factors in medullar NBs.

      We agree.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      Loss of pros by RNAi caused the formation of ectopic NBs and the NBs persist even at 24h APF. Do these NBs persist at 30h or 48h APF? Does overexpression of Pros result in early termination of medulla NBs?

      We will do these experiments in clones as suggested.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      Yes, I believe the suggested experiments are realistic in terms of time and resources, with an estimation of 3 months to complete the experiments.

      • Are the data and the methods presented in such a way that they can be reproduced?

      Yes.

      • Are the experiments adequately replicated and statistical analysis adequate?

      The experiments are straight forward and were performed with proper controls, supported by quantifications and proper statistical analyses. However, there is no mention about how many replicates were used.

      We will add this information in our Material and Methods section.

      Minor comments:

      1. The authors use the eyR6F10-Gal4 driver in certain experiments. The eyR6F10-Gal4 driver is however expressed only in a subset of medulla NBs. Can the authors comment on what percentage of medulla NBs is the driver expressed in? We will characterize this.

      Does the EGFR signalling pathway or JAK/STAT pathway affect the timing of termination of medulla NBs? Experiments are not necessary. The author can speculate on their roles.

      We will modify our discussion accordingly.

      Figure 1C has a p value of only 0.03 (*) but shows a strong reduction in the number of Dpn+ cells from 12h to 18h, etc. Is this correct? Also, is the p value the same for the comparison between 12h and 24h as well as 12h and 30h APF?

      Yes. P-values showed no significant differences between 28-24h and 24-30h APF.

      The controls in figure 2B and to some extent figure 2H show one major outlier (much higher than the other brain lobes in the control). Will the removal of this outlier affect the significance/ p-value of the experiment?

      No, removing the outliers do not change the statical results.

      In figure 2B what is the p-value between 12h and 18h APF? Is it *** as well?

      No, it’s not significant.

      Line 84 of the introduction introduces Tll, Gcm and Pros for the first time in the manuscript and should be written out in full.

      We will change this.

      • Are prior studies referenced appropriately?

      Yes.

      • Are the text and figures clear and accurate?

      Yes.

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      Quite a few of data mentioned in the manuscript have been described as data not shown. I think it would be nice to show quantifications or representative images in the supplementary figures.

      We will add the data which was previously not shown.

      Reviewer #3 (Significance (Required)):

      Since the mechanisms by which medulla NBs are terminated are currently unknow, this is an important and interesting study to understand how medulla neuroblasts in the optic lobe are terminated. The balance between stem cell maintenance and differentiation is critical for proper brain development and the results presented in this paper are impactful. Furthermore, Drosophila melanogaster is an excellent model to study stem cell niches and neuroblast temporal patterning. The authors provide key mechanisms namely cell death, Pros-mediated differentiation and the gliogenic switch that contribute to a better understanding of how the NB progenitor pool can be terminated in the Drosophila OL, which is largely supported by the data.

      • Place the work in the context of the existing literature (provide references, where appropriate).

      So far, most work in this field has focused on the regulation of the temporal factors to promote the progression of the TTF transcriptional cascade and thereby diversity of the neural progenitors (Li, Erclik et al. 2013, Naidu, Zhang et al. 2020, Ray and Li 2022, Zhu, Zhao et al. 2022). Furthermore, work on pathways such as EGFR and Notch signalling that allows the proneural wave to progress and subsequently induce neuroblast formation in a precise and orderly manner have also been studied (Yasugi, Umetsu et al. 2008, Yasugi, Sugie et al. 2010). Here, considering previous literature, the authors move one step forward to determine how and when these neuroblast progenitors cease proliferation during development thus providing mechanisms for the regulation of the neuroepithelial stem cell pool, its timely conversion into NSCs and the switch from neurogenesis to gliogenesis thus providing important implications for brain size determination and function.

      • State what audience might be interested in and influenced by the reported findings.

      Stem cell research, neurobiologists and developmental biologists.

      • Define your field of expertise

      Stem cells, developmental biology

    1. One big category of website that produces writing are the professional media outlets that employ journalists, editors, researchers, and writers to produce daily or weekly content. On these sites, the writing itself is the product.

      Although thee are so many different styles of writing, especially on the internet, I think we can all agree in one way or another that knowing how to write professionally, whether it may be for a professional media outlet or even for a company website, is very important. Consider journalism. If a journalist working for the New York Times were to publish a story that was written in the style of something that came from Reddit, they would be fired immediately. Therefore, knowing how to differentiate when to use different writing styles is extremely important as a writer.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This valuable study, of interest for students of the biology of genomes, uses simulations in combination with published data to examine how many TADs remain after cohesin depletion. The authors suggest that a significant subset of chromosome conformations do not require cohesin, and that knowledge of specific epigenetic states can be used to identify regions of the genome that still interact in the absence of cohesin. The theoretical approaches and quantitative analysis are state-of-the-art, and the data quality and strength of the conclusions are solid. However, because "physical boundaries (of domains?)" in the model appear to be a consequence of preserved TADs, rather than the other way around, the functional insights are limited.

      Summary of the reviewer discussion for the authors:

      While the simulations are state of the art and the reviewers appreciated that the approaches used here might help to resolve apparent discrepancies between conclusions from single-cell and bulk/ensemble techniques to study chromosome conformation, the work would benefit from clarification of what precisely is meant with "physical boundaries" and from a comparison of CCM and HIPPS models to understand commonalities and differences between them. In addition, more discussion of the relation of the current work to previous studies, such as Schwarzer et al., 2017, and Nuebler et al., 2018, would elevate the work and make the key claims more compelling. Please see also the detailed comments from the expert reviewers.

      We thank the editor for the assessment and the reviewers for the incisive comments. We will address these comments one by one. In particular, we attempt to clarify the concept of “physical boundaries” and its relevance in our study. We hope our responses are satisfactory. We believe that our manuscript has benefitted substantially by revising the manuscript following the comments by the reviewers.

      Below is our point-by-point response to the comments:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Jeong et al. investigate the prevalence and cause of TADs that are preserved in eukaryotic cells after cohesin depletion. The authors perform an extensive analysis of previously published Hi-C data, and find that roughly 15% of TADs are preserved in both mouse liver cells and in HCT-116 cells. They confirm previous findings that epigenetic mismatches across the boundaries of TADs can cause TAD preservation. However, the authors also find that not all preserved TADs can be explained this way. Jeong et al. provide an argument based on polymer simulations that "physical boundaries" in 3D structures provide an additional mechanism that can lead to TAD preservation. However, in its current form, we do not find the argumentation and evidence that leads to this claim to be fully compelling.

      Strengths:

      We appreciate the extensive statistical analysis performed by the authors on the extent to which TAD's are preserved; this does seem like a novel and valuable contribution to the field.

      We thank the reviewer for a succinct and comprehensive summary of our work and for appreciating value of our work.

      Weaknesses:

      1) As the authors briefly note, the fact that compartmentalization due to epigenetic mismatches can cause TAD-like structures upon cohesin depletion has already been discussed in the literature; see for example Extended Data Figure 8 in (Schwarzer et al., 2017) or the simulation study (Nuebler et al., 2018). We are hence left with the impression that the novelty of this finding is somewhat overstated in this manuscript.

      It is unclear to us by studying the results in the Extended Data Figure 8 that the authors have shown that epigenetic mismatches cause TAD-like structures. As far as we can discern, the data, without a quantitative analysis, shows that may be new TAD-like structures that are not in the wild type appear when cohesin is deleted.

      The studies by Schwarzer et al 2017 and Nuebler et al 2018 are relevant to our own investigation, which we undertook after scrutinizing the experiments in Schwarzer et al 2017 and the related work by Rao et. al in 2017 on a different cell line. In the summary of the Reviewer discussion, it is suggested we discuss the relation to the experimental study by Schwarzer et al 2017 and the computational work by Nuebler et al 2018.

      (1) The results and the corresponding discussion in these two studies are different (may be complimentary) from our results. When referring to the Extended Data Figure 8 Schwarzer and co-authors state in the main text, “The finer compartmentalization explains most of the remaining or new domains and boundaries seen in Nipbl Hi-C maps”. We are not 100% sure what “remaining” means in this context. The Extended Data Fig. 8(a) shows the “common boundaries” is correlated with the eigenvectors of compartmentalization. If this indeed is what the reviewer is referring to, we believe that our study differs from theirs in two important ways: First, Extended Data Fig.8 (a) is a statistical analysis at the “ensemble” level. In our study, we examined the preservation of TADs at both individual and ensemble level with more detailed analysis. Second, in Extended Data Fig. 8(a), the “common boundaries” (incidentally we are uncertain how that was calculated) are compared to the eigenvectors of PCA analysis of the compartments (larger length scales). In contrast, in our study, we examined the correlation between TAD boundaries and the epigenetic profiles. We believe that this is an important distinction. The PCA analysis of compartments and “common boundaries” defined using (presumably) the insulation score are both derived from the Hi-C contact map. Epigenetic profile, on the other hand, is independent of Hi-C data. We believe our contribution, is to build the connection between epigenetic profiles with the preservation of TADs, and link it to 3D structures. For these reasons, we assert that our results are novel, and are not contained (or even implied) in the Schwarzer et al 2017 study.

      The simulations in Neubler et al 2018, which were undertaken to rationalize the experimenrs, revealed that compartmentalization of small segments is enhanced after cohesin depletion, while TADs disappear, which support the broad claims that are made in the experiments. They assert that the structures generated are non-equilibrium. They do not address the emergence of preserved nor the observation of TAD-like structures at the single cell level. However, our goal was to elucidate the reasons for of preservation of TADs. By that we mean, the reasons why certain TADs are present in both the wild and cohesin depleted cells? Through a detailed analyses of two cells, polymer simulations, we have provided a structural basis to answer the question. Finally, we have provided a plausible between TAD preservation and maintenance of enhancer-promoter interactions by analyzing the Micro-C data. For all these reasons, we believe that our study is different from the results in the Extended Figure 8 or the simulations described by Neubler.

      Let us summarize the new results in our study that are not contained in the studies referred to by this Reviewer. (1) We showed by analyzing the Hi-C data for mouse liver and HCT-16 that a non-negligible fraction of TAPs is preserved, which set in motion our detailed investigation. (2) Then, using polymer simulations on a different cell type, we generated quantitative insights (epigenetic mismatches as well as structural basis) for the preservation of TADs. Although not emphasized, we showed that deletion of cohesin in the GM12878 cells also give rise to P-TADs a prediction that suggests that the observations might be “universal”. (3) Rather than perform, time consuming polymer simulations, we calculated 3D structures directly from Hi-C data for the mouse liver and HCT-16 cells, which provided a structural basis for TAP preservation. (4) The 3D structures also showed how TAD-like features appear at the single cell level, which is in accord with imaging experiments. (5) Finally, we suggest that P-TADs may be linked to the maintenance of enhancer-promoter and promoter-promoter interactions by calculating the 3D structures using the recent Micro-C data.

      For the reasons given above, we assert that our results are novel, and bring new perspectives that are not in the aforementioned insightful studies cited by the Reviewer.

      2) It is not quite clear what the authors conceptually mean by "physical boundaries" and how this could offer additional insight into preserved TADs. First, the authors use the CCM model to show that TAD boundaries correlate with peaks in the single cell boundary probability distribution of the model. This finding is consistent with previous reports that TAD-like structures are present in single cells, and that specific TAD boundaries only arise as a population average.

      The finding based on the CCM simulations hence seems to be that preserved TADs also arise as a population average in cohesin-depleted cells, but we do not follow what the term "physical boundaries" refers to in this context. The authors then use the Hi-C data to infer a maximumentropy-based HIPPS model. They find that preserved TADs often have boundaries that correspond to peaks in the single cell boundary probabilities of the inferred model. The authors seem to imply that these peaks in the boundary probability correspond to "physical boundaries" that cause the preservation of TADs. This argument seems circular; the model is based on inferring interaction strengths between monomers, such that the model recreates the input Hi-C map. This means that the ensemble average of the model should have a TAD boundary where one is present in the input Hi-C data. A TAD boundary in the Hi-C data would then seem to imply a peak in the model's single-cell boundary probability. (The authors do display two examples where this is not the case in Fig.3h, but looking at these cases by eye, they do not seem to correspond to strong TAD boundaries.) "Physical boundaries" in the model are hence a consequence of the preserved TADs, rather than the other way around, as the authors seem to suggest. At the very least the boundary probability in the HIPPS model is not an independent statistic from the Hi-C map (on which their model is constrained), so we have concerns about using the physical boundaries idea to understand where some of the preserved TADs come from.

      There are many statements in this long comment that require us to unpack separately. First, using both the CCM simulations, and even more importantly using data-driven approach, we established that TAD-like structures are present in single cells with and without cohesin. The latter finding is fully consistent with imaging experiments. We are unaware of other computational efforts, before our work, demonstrating that this is the case. Perhaps, the Reviewer can point to the papers in the literature.

      Regarding the statement that our arguments are circular, and lack of clarity of the meaning of physical boundary, please allow us to explain. First, we apologize for the confusion. Let us clarify our approach. We first used CCM to understand the potential origin of substantial fraction of P-TADs in the GM. The simulations, allowed us to generate the plausible mechanisms, for the origin of P-TADs. Because the CCM does reproduce the Hi-C data, we surmised that the general mechanisms inferred from these simulations could be profitably used to analyze the experiments. The simulations also showed that knowledge of 3D structures produces a muchneeded structural basis of P-TADs , and potentially for emergence of new TADs upon cohesin depletion.

      Because 3D coordinates are needed to obtain structural insights into the role of cohesin, we use a novel method to obtain them without the need for simulations. In particular, we used the HIPPS method to obtain 3D coordinates with the Hi-C data as the sole input, which allowed us to calculate directly the boundary probabilities. The excellent agreement between the predicted 3D structures and imaging experiments suggests that meaningful information, not available in Hi-C, may be gleaned from the ensemble of calculated 3D structures.

      Although “physical boundary”, a notion introduced by Zhuang, is defined in in the method section, it is apparently unclear for which we apologize. Because this is an important technical tool, we have added a summary in the main text in the revision. We did not mean to imply that the physical boundaries cause the preservation of TADs, although we found that maintenance of the enhancer-promoter contacts (see Fig. 8 in the revision) could be one of the potential reasons for the emergence of physical boundaries. We agree with the reviewer that physical boundaries are structural evidence of preserved TADs (not the cause), that is when a TAD is preserved, we can detect it by prominent physical boundary. The purpose and benefit of physical boundary analysis and using HIPPS in general is to obtain three-dimensional structures of chromosomes. Although both CCM simulations and HIPPS use Hi-C contact maps, three-dimensional structures provide additional information that is not present in the Hi-C data.

      The arguments that the authors use to justify their claims could be clarified and strengthened. Here are some suggestions: -Explain the concept of "physical boundaries" more clearly in the main text.

      As explained above, we have revised the text to clarify the concept and purpose of physical boundaries analysis. See Page 7.

      • Justify why the boundary probabilities and the physical boundaries concept can be used to offer novel insight into where preserved TADs may come from.

      Boundary probabilities and physical boundaries provide previously unavailable 3D structural information on the TADs structures both at the single-cell and population level. This provides a direct structural basis for determining which TADs are preserved. But in order to understand where P-TADs may come from, physical boundaries analysis alone is not sufficient. As we have shown in the analysis of enhancer-promoter contact, using physical boundary analysis from 3D structures, we can conclude that conservation of enhancer-promoter contact could be one of the reasons for the P-TAD.

      • Explain more clearly what the additional value of using the HIPPS model to study TAD preservation is.

      Our goal, as announced in the title is to elucidate the structural basis for the emergence of PTADs. The HIPPS method, which avoids doing simulations (like CCM and other polymer models used in the literature) provides an ensemble of 3D conformations using averaged contact map generated in Hi-C experiments. Even more importantly, HIPPS produce an ensemble of structures, which can be the basis for predicting the outcomes at the single-cell level. The accuracy of the generated structures has been shown in our previous work (Shi and ThirumalaiPRX 2021). In ensemble-averaged Hi-C experiments, TADs appear to be relatively stable. However, imaging experiments (Bintu et. al, 2018) have revealed that TADs are not fixed structures present in every single cell, but instead exhibit variability at the single-cell level. TADlike structures with distinct boundaries are observed in individual cells, and the location of these boundaries varies from cell to cell. However, these TAD-like structures still show a preferential positioning in 3D structures. Interestingly, the preferential positioning often corresponds to TAD boundaries observed in population-averaged Hi-C data. This suggests that while cohesin is involved in establishing the overall organization of TADs, other factors and mechanisms could also contribute to TAD formation at the individual cell level. In this study, we showed some boundaries of P-TADs upon cohesin loss in the Hi-C maps, align with preferential boundaries in individual 3D structures of chromosomes. The makes the finding that a subset of TADs is preserved upon cohesin is robust.

      From a technical perspective, the use of HIPPS avoids time-consuming polymer simulations. The HIPPS is rapid and can be used to generate arbitrarily large ensemble of structures, allowing us calculate properties both at the single cell and ensemble level.

      In addition, we'd like to offer the following feedback to the authors.

      3) The discussion of enhancer-promoter loops as a cause of TAD preservation is interesting, but it would be interesting to know fraction of preserved TADs enhancer-promoter loops might explain.

      We thank the reviewer for the excellent suggestion. We have done the suggested calculation. The results are shown in a new Figure.8 in the main text. We also moved the results on enhancer-promoter to the main results section from the Discussion section.

      4) The last paragraph of the introduction seems to state that only the HIPPS model was used to find single-cell 3D structures and boundary probabilities. However, the main text suggests that the CCM model was also used for these purposes.

      We have revised the text to clarify this point on pages 3-4. Also please see the discussion on the utility of HIPPS above.

      5) When referring to the boundary probability, it would be useful if the authors always specified whether they refer to the boundary probability before or after cohesin depletion (or loop depletion in the CCM model). Statements such as "This implies that peaks in the boundary probabilities should correspond to P-TADs" are ambiguous; it is unclear if the authors mean that boundary probabilities before cohesin depletion predict that the boundary will be preserved, rather than that preserved TAD boundaries correlate with peaks in the boundary probability after cohesin depletion.

      We thank the reviewer for the suggestion. Indeed, it may be confusing. Hence, we have revised the text in numerous places to clarify this point.

      6) It would be interesting to analyze all TAD boundaries that are present after cohesin depletion, rather than just those that overlap with TAD boundaries in WT cells. This would give better statistics for answering the question what causes TAD-like structures in cells without cohesin.

      We thank the reviewer for this excellent suggestion. First, this would we believe this deviate from the primary goal of this study: what leads to TAD preservation after cohesin deletion? Second, this has to be done very systematically, as we did here for P-TADs, in order draw meaningful conclusions. This is a very useful study for another occasion.

      7) The use of a plethora of acronyms (P-TAD, CM, DM, CCM, HLM...) makes the paper difficult to read.

      We have revised the text to change CM to “contact map” and “DM” to “distance map”. For PTADs, CCM, and WLM, we would argue that P-TAD is rather a clear and intuitive abbreviation and CCM/WLM refers to specific methods/models and replacing them with full names would make text more difficult to read. We hope the reviewer is okay with us keeping these acronyms.

      Reviewer #2 (Public Review):

      Summary:

      Here Jeong et al., use a combination of theoretical and experimental approaches to define molecular contexts that support specific chromatin conformations. They seek to define features that are associated with TADs that are retained after cohesin depletion (the authors refer to these TADs as P-TADs). They were motivated by differences between single cell data, which suggest that some TADs can be maintained in the absence of cohesin, whereas ensemble HiC data suggest complete loss of TADs. By reananalyzing a number of HiC datasets from different cell types, the authors observe that in ensemble methods, a significant subset of TADs are retained. They observe that P-TADs are associated with mismatches in epigenetic state across TAD boundaries. They further observe that "physical boundaries" are associated with P-TAD maintenance. Their structure/simulation based approach appears to be a powerful means to generate 3D structures from ensemble HiC data, and provide chromosome conformations that mimic the data from single-cell based experiments. Their results also challenge current dogma in the field about epigenetic state being more related to compartment formation rather than TAD boundaries. Their analysis is particularly important because limited amounts of imaging data are presently available for defining chromosome structure at the single-molecule level, however, vast amounts of HiC and ChIP-seq data are available. By using HiC data to generate high quality simulated structural data, they overcome this limitation. Overall, this manuscript is important for understanding chromosome organization, particularly for contacts that do not require cohesin for their maintenance, and for understanding how different levels of chromosome organization may be interconnected. I cannot comment on the validity of the provided simulation methods and hope that another reviewer is qualified to do this.

      We appreciate the reviewer for a comprehensive summary of our work, and we are happy that the reviewer finds our work important, which provides valuable insights to the field.

      Specific comments

      • It is unclear what defines a physical barrier. From reading the text and the methods, it is not entirely clear to me how the authors have designated sites of physical barriers. It may help to define this on pg 7, second to last paragraph, when the authors first describe instances of PTAD maintenance in the absence of epigenetic mismatch.

      We thank the reviewer for the suggestions. The details of physical boundary designation are provided in the appendix data analysis. To make the concept and idea of physical boundary easy to understand, we have revised the text on page 7 in the revised main text.

      • Figure 7 adds an interesting take to their approach. Here the authors use microC data to analyze promoter-enhancer/promoter-promoter contacts. These data are included as part of the discussion. I think this data could be incorporated into the main text, particularly because it provides a biological context where P-TADs would have a rather critical role.

      We thank the reviewers for the suggestion. We also agree that results in Figure 7 provide novel insights on TAD formation and its possible preservation upon perturbation. We have followed the reviewer’s suggestion to move it to an independent section in the main results section as the last subsection.

      • Figure 3a- the numbers here do not match the text (page 6, second to last paragraph). The numbers have been flipped for either chromosome 10 or chromosome 13 in the text or the figures.

      We thank the reviewer for pointing out this error. In the revised main text, it has been corrected.

      Reviewer #3 (Public Review):

      This manuscript presents a comprehensive investigation into the mechanisms that explain the presence of TADs (P-TADs) in cells where cohesin has been removed. In particular, to study TADs in wildtype and cohesin depleted cells, the authors use a combination of polymer simulations to predict whole chromosome structures de novo and from Hi-C data. Interestingly, they find that those TADs that survive cohesin removal contain a switch in epigenetic marks (from compartment A to B or B to A) at the boundary. Additionally, they find that the P-TADs are needed to retain enhancer-promoter and promoter-promoter interactions.

      Overall, the study is well-executed, and the evidence found provides interesting insights into genome folding and interpretations of conflicting results on the role of cohesin on TAD formation.

      We are pleased with the reviewer’s positive assessment of our work.

      To strengthen their claims, the authors should compare their de-novo prediction approach to their data-driven predictions at the single cell level.

      We thank the reviewer for the very good suggestion. We are assuming that the Reviewer is asking us to compare the CCM simulations with HIPPS generated structures at the single cell level. We have shown, using the GM12878 cell data, that the polymer simulations reproduce the Hi-C contact maps (an average quantity) well (see Appendix Fig. 2 and Fig. 3). In addition, we show in Appendix Fig. 8 the comparison with ensemble averaged distance maps as well as at the single cell level for Chr 13 from the GM12878 cell. There are TAD-like structures at the single cell level just as we find for HCT-116 cell (Fig. 5 in the main text). Thus, the conclusions from de-novo prediction and data-driven predictions are consistent. In addition, in our previous publication introducing HIPPS in Phys Rev X 11: 011051 (2021), we showed that the method is quantitatively accurate in reproducing experimental data for all the interphase chromosomes.

      Having demonstrated this consistency, we used computationally simple data-driven predictions to analyze HCT-116 and mouse liver cell lines for which Hi-C data with and without cohesin rather than perform multiple laborious polymer simulations.

      Please see below for our response to specific comments.

      1) It is confusing that the authors change continuously their label for describing B-A and A-B switches. They should choose one expression. I think that the label "switch" between A and B is more precise than "mismatch".

      We have revised the text to make it consistent. Now it all reads “A-B”. Yes, the suggestion that we use switch is good but we think that mismatch is more concise. We trust that this Reviewer will indulge us on this point.

      2) In the Abstract, the authors mention HCT-116 cells but do not specify which cells are these.

      We have changed “HCT-116” in the abstract to “human colorectal carcinoma cell line”.

      3) In the Abstract, it is unclear what the authors mean by "without any parameters"

      In the theoretically based HIPPS method, there is no “free” parameter. In other words, the only parameter is uniquely determined. To avoid confusion, we have removed “without any parameters” from abstract.

      4) In Results, what do the authors mean by 16% (26%)?

      This refers the percentage of how many TADs are preserved after Nipbl and RAD21 removal in mouse and HCT-116 cells, respectively. Using TopDom method, we identified TAD boundaries in Wild and cohesin-depleted cells. There are 16% (959 out of 4176 – Fig. 1a) and 26% (1266 out of 4733 – Fig. 1b) of TADs are preserved after Nipbl and RAD21 removal in mouse and HCT-116 cells, respectively. We removed the percentages in the revised version.

      5) In Results, the authors mention "more importantly, we did tune the value of any parameter to fit the experimental CMs". Did they mean that instead they didn't tune any parameter?

      We apologize for the confusion. In the CCM, there is a single controlled parameter. We have changed the sentence to reflect this correctly.

      6) In Results, section "CCM simulations reproduce wild-type Hi-C maps", Kullback-Leibler (KL) divergence is used to assess the correlation between two loci, but it is unclear what the value 0.04 stands for; is it a good or a bad correlation?

      The value for Kullback-Leibler divergence can vary from 0 to infinity with 0 give the perfect correlation. Thus, 0.04 means that the correlation is excellent.

      7) The authors use two techniques to obtain 3D structures, one is CCM, which takes the cohesin as constraints, and another is HIPPS, which reconstructs from Hi-C maps. Both seem to have good agreement with the Hi-C contact maps. However, did the authors compare the CCM with the HIPPS 3D structures?

      This is detailed in response at the start of the reply to this Reviewer. As detailed in this response as well in the main text we used the CCM to generate hypotheses for the origin of P-TADs. In the process, we established the accuracy of CCM, which gives us confidence about the hypotheses. As explained above and emphasized in the revised version, CCM simulations are time consuming whereas generating 3D structures using HIPPS is computationally simple. Because HIPPS is also accurate, we used it to analyze the Hi-C data on mouse liver, HCT-116 as well as Micro-Data on mESC.

      In our paper in Phys Rev X 11: 011051 (2021) we showed that HIPPS reproduces Hi-C data. In the current manuscript, we showed in Appendix Fig. 2 and Fig. 3 as well as in a study in 2018 (Shi and Thirumalai, Nat Comm.) that CCM is accurate as well. Thus, there is little doubt about the accuracies of the methods that we have developed.

      8) In Results, section "P-TADs have prominent spatial domain boundaries", the authors constructed individual spatial distance matrices (DMs) using 10,000 simulated 3D structures. What are the differences among these 10,000 simulations? Do they start them with different initial structures?

      The structures are generated using HIPPS which is data-driven method that uses Hi-C contact map as constraints. The method, which uses the maximum entropy theory, samples from a distribution that describe the structural ensemble of chromosome. The 10,000 structures are randomly sampled and are independent from each other. The HIPPS method is not a simulation, and hence the issue of initial structures does not arise.

      9) In Methods, when the authors mention the "unknown parameter", do they use one parameter for all simulations (+/- cohesin) or is this parameter different for each system? Would this change the results?

      We apologize for the confusion. The “unknown parameter” is the energy scale 𝜖 that describes the interaction strength between chromosome loci. We have revised the text in the method (page 27) to clarify it. The same value of 𝜖 is used for all CCM simulation with or without cohesin.

      10) In Methods, when the authors perform DBSCAN clustering, they mention that they optimize the clustering parameters for each system. However, if they want to compare between different systems, the clustering parameters should be the same.

      The purpose of DBSCAN is to capture the spatial clustering topology of chromosome loci. However, different cell types and chromosomes may have different overall density, which will impact the average distance between loci. If using the same parameters, such global changes will impact the result of clustering most and the intended spatial clustering topology can be distorted. Hence, we tune the clustering parameter for each system in order to ignore the global effect but only capture the local and topology of clustering of chromosome loci.

      Grammar comments:

      1) "structures, with sharp boundaries are present, at.."

      We thank the reviewer for pointing out the error. We have fixed it.

      2) "Three headlines emerge from these studies are:"

      We have fixed it.

      3) "both the cell lines"

      We have fixed it.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript presents the first evidence for a plastic enhancement in the response of pial cortical arterioles to external stimulation. Specifically, they show (p8; Figure 3A-C) that repeated application of a visual stimulus at 0.25 Hz, at the upper edge of the vasomotor response, leads to a greater change in the diameter of pial arterioles at that frequency. This adds to the earlier, referenced work of Mateo et al (2017) that showed locking - or entrainment of pial arteriole vasomotion - by stimuli at different (0.0 to 0.3 Hz) frequencies.

      We thank the reviewer for positively identifying the value of our manuscript.

      The manuscript has a major flaw. Much as there is plasticity that leads to an increase in the amplitude of vasomotion at the drive frequency, the authors need to show reversibility. This could possibly be accomplished by driving the visual system at a different frequency, say 0.15 Hz, and observing if the 0.25 Hz response is then diminished. The authors could then test if their observation is repeatable by again driving at 0.25 Hz. Unless I missed the presentation on this point, there is no evidence for reversibility.

      The reviewer has raised a very important point of view. In our experiments, the visually induced vasomotion (or visual stimulus-triggered vasomotion) was always entrained by repeated trials of the 0.25 Hz temporal frequency stimuli. When the visual stimulation stops, the vasomotion frequency lock to 0.25 Hz quickly dissipates. After saturated training with this stimulus, the parameters of the visual stimulus were switched, for example to 0.15 Hz. The animal quickly adapted to this new stimulus paradigm and the vasomotion was frequency-locked to 0.15 Hz. The adaptation to this new paradigm occurred well within 5 minutes. In Fig. 5, various paradigms were randomly tested. In some of the trials, 0.25 Hz stimulus was tested after 0.15 Hz. The vasomotion also quickly adapted back to the 0.25 Hz. We agree with the reviewer that this reversibility could have been explicitly documented in the manuscript.

      Drew, P. J., A. Y. Shih, J. D. Driscoll, P. M. Knutsen, D. Davalos, P. Blinder, K. Akassoglou, P. S. Tsai, and D. Kleinfeld. 2010. 'Chronic optical access through a polished and reinforced thinned skull', Nature Methods, 7: 981-84.

      Morii, S., A. C. Ngai, and H. R. Winn. 1986. 'Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: With detailed description of the closed cranial window technique in rats', Journal of Cerebral Blood Flow & Metabolism, 6: 34-41.

      Reviewer #2 (Public Review):

      Sasaki et al. investigated methods to entrain vasomotion in awake wild-type mice across multiple regions of the brain using a horizontally oscillating visual pattern which induces an optokinetic response (HOKR) eye movement. They found that spontaneous vasomotion could be detected in individual vessels of their wild-type mice through either a thinned cranial window or intact skull preparation using a widefield macro-zoom microscope. They showed that low-resolution autofluorescence signals coming from the brain parenchyma could be used to capture vasomotion activity using a macro-zoom microscope or optical fibre, as this signal correlates well with the intensity profile of fluorescently-labelled single vessels. They show that vasomotion can also be entrained across the cortical surface using an oscillating visual stimulus with a range of parameters (with varying temporal frequencies, amplitudes, or spatial cycles), and that the amplitude spectrum of the detected vasomotion frequency increases with repeated training sessions. The authors include some control experiments to rule out fluorescence fluctuations being due to artifacts of eye movement or screen luminance and attempt to demonstrate some functional benefit of vasomotion entraining as HOKR performance improves after repeat training. These data add in an interesting way to the current knowledge base on vasomotion, as the authors demonstrate the ability to entrain vasomotion across multiple brain areas and show some functional significance to vasomotion with regards to information processing as HOKR task performance correlates well with vascular oscillation amplitudes.

      We thank the reviewer for summarizing the value of our study and recognizing its significance.

      The aims of the paper are mostly well supported by the data, but some streamlining of the data presentation would improve overall clarity. The third aim to establish the functional significance of vasomotion in relation to plasticity in information processing could be better supported by the inclusion of some additional control experiments.

      We thank the reviewer for recognizing our vast amount of data supporting our findings. We agree that better data presentation could have improved the clarity of the manuscript.

      Specifically:

      1) The clarity and comprehensibility of the paper could be significantly enhanced by incorporating additional details in both the introduction and discussion sections. In the introduction, a succinct definition of the frequency range of vasomotion should be provided, as well as a better description of the horizontal optokinetic response (i.e. as they have in the results section in the first paragraph below the 'Entrainment of vasomotion with visual stimuli presentation' sub-heading). The discussion would benefit from the inclusion of a clear summary of the results presented at the start, and the inclusion of stronger justification (i.e. more citations) with regards to the speculation about vasomotion and neuronal plasticity (e.g. paragraph 5 includes no citations).

      We agree that a better description of vasomotion and horizontal optokinetic response could have been provided in the introduction. As the reviewer suggests, the discussion could also have started with the following summary of the results.

      “We show that visually induced vasomotion can be frequency-locked to the visual stimulus and can be entrained with repeated trials. The initial drive for the vasomotion, or the sensory-evoked hyperemia, must be coming from the neuronal activity in the visual system. The vasomotion is likely triggered by activation of the neurovascular interaction (Kayser, 2004; van Veluw et al., 2020). Surprisingly, the entrained vasomotion was observed not only in the visual cortex but also widely throughout the surface of the brain and deep in the cerebellar flocculus. The global entrainment could be realized through separate mechanisms from the local neurovascular coupling. What is also unknown is where the plasticity occurs. The neuronal visual response in the primary visual cortex could potentially decrease with repeated visual stimulation presentation as the adaptive movement of the eye should decrease the retinal slip. With repeated training sessions, a more static projection of the presented image will likely be shown to the retina. The neurovascular coupling could be enhanced with increased responsiveness of the vascules and vascular-to-vascular coupling could also be potentiated.”

      2) The novel methods for detecting vasomotion using low-resolution imaging techniques are discussed across the first four figures, but this gets a little bit confusing to follow as the authors jump back and forth between the different imaging and analysis techniques they have employed to capture vasomotion. The data presentation could be better streamlined - for instance by presenting only the methods most relevant for the functional dataset (in Figures 5-7), with the additional information regarding the various controls to establish the use of autofluorescence intensity imaging as a valid method for capturing vasomotion reduced to fewer figure panels, or moved to supplementary figures so as to not detract from the main novel findings contributed in this study.

      We apologize for the confusing presentation of the data. Many of the initial figures were technical; however, we feel that following these steps was necessary to logically conclude that shadow imaging of the autofluorescence could be used as an indicator of vasomotion. We do agree with the reviewer that going back and forth between different techniques can be confusing. We could have added separate supplementary figures to introduce the various methods used upfront before going into the findings.

      3) The authors heavily rely on representative traces from individual vessels to illustrate their findings, particularly evident in Figures 1-4. While these traces offer a valuable visualization, augmenting their approach by presenting individual data points across the entire dataset, encompassing all animals and vessels, would significantly enhance the robustness of their claims. For instance, in Figures 1 and 2, where average basal and dilated traces are depicted for a representative vessel, supplementing these with graphs showcasing peak values across all measured vessels would enable the authors to convey a more holistic representation of their data. Or in Figure 3, where the amplitude spectrum is presented for individual Texas red fluorescence intensity changes in V1 across novice, trained, and expert mice, incorporating a summary graph featuring the amplitude spectrum value at 0.25Hz for each individual trace (across animals/imaging sessions), followed by statistical analysis, would fortify the strength of their assertions. Moreover, providing explicit details on sample sizes for each individual figure panel (where not a representative trace), including the number of animals or vessels/imaging sessions, would contribute to transparency and aid readers in assessing the generalisability of the findings.

      We agree with the reviewer that summarization of the data across a number of vessels/imaging sessions would lead to more generalization of the findings. However, contrary to what the reviewer described, we did summarize the vessel diameter expansion events across multiple vessel observations in Fig. 1F, G. The vasomotion parameters were not summarized for observation in intact skull shown in Fig. 2. However, this figure was intended just to show that vessel boundary cannot be well defined in intact skull imaging and Texas Red intensity or autofluorescence intensity fluctuation would give a better indication of vessel diameter fluctuation. In Fig. 3G, the peak ratio of 0.25 Hz was calculated for individual animals at Novice, Trained, and Expert levels and summarized for n = 5 animals. Statistical analysis was also done. The variability between imaging sessions within individual animals was not analyzed; thus, this could have been indicated.

      4) In the experiments where mice are classed as "novice", "trained" or "expert", the inclusion of the specific range of the number of training sessions for each category would improve replicability.

      We agree with the reviewer that classification on the level of training should have been explicitly indicated. Mice experiencing the first visual training session were defined as “Novice”. The mice that have experienced 3 training sessions are the “Trained” mice and the performance of the “Trained” mice during the 4th training session was evaluated. Mice that experienced 8 to 11 rounds of visual training sessions are the “Expert” mice.

      5) The authors don't state whether mice were habituated to the imaging set-up prior to the first data collection, as head-fixation and restraint can be stress-inducing for animals, especially upon first exposure, which could impact their neurovascular coupling responses differentially in "novice" versus "trained" imaging sessions (e.g. see Han et al., 2020, DOI: https://doi.org/10.1523/JNEUROSCI.1553-20.2020). The stress associated with a tail vein injection prior to imaging could also partially explain why mice didn't learn very well if Texas Red was injected before the training session. If no habituation was conducted in these experiments, the study would benefit from the inclusion of some control experiments where "novice" responses were compared between habituated and non-habituated animals.

      We agree with the reviewer that stress could well affect spontaneous vasomotion as well as visually induced vasomotion (or visual stimulus-triggered vasomotion). As the reviewer suggested, we could have compared the habituated and non-habituated mice to the initial visually induced vasomotion response. In addition, whether the experimentally induced increase in stress would interfere with the vasomotion or not could also be studied. With the Texas Red experiments, we observed that tail-vein injection stress appeared to interfere with the HOKR learning process. In the experiments presented in Fig. 3, Texas Red was injected before session 1. Vasomotion entrainment likely progressed with sessions 2 and 3 training. Before session 4, Texas Red was injected again to visualize the vasomotion. The vasomotion was clearly observed in session 4, indicating that the stress induced by tail-vein injection could not interfere with the generation of visually induced vasomotion.

      6) The experiments regarding the brain-wide vasomotion entrainment across the cortical surface would benefit from some additional information about how brain regions were identified (e.g. particularly how V1 and V2 were distinguished given how close together they are).

      The brain regions were identified by referring to the Mouse Brain Atlas. As the skull was intact, the location of bregma, lambda, and midline was clearly visible. We agree with the reviewer that strict separation of V1 and V2 could be difficult if we rely on the brain atlas alone. However, what we wanted to emphasize was that there was no specific localization of the vasomotion entrainment effect.

      7) Whilst the authors show that HOKR task performance and vasomotion amplitude are increased with repeated training to provide some support to their aim of investigating the functional significance of vasomotion with regards to information processing plasticity, the inclusion of some additional control experiments would provide stronger evidence to address this aim. For instance, if vasomotion signalling is blocked or reduced (e.g. using optogenetics or in an AD mouse model where arteriole amyloid load restricts vasomotion capacity), does flocculus-dependent task performance (e.g. HOKR eye movements) still improve with repeated exposure to the external stimulus.

      We agree that experimental intervention to vasomotion is ideal to test the functional significance of vasomotion. As pharmacological intervention lacks specificity, we are currently exploring the optogenetic approach. We have never thought of using the AD mouse as a model of restricted vasomotion by amyloid, and we agree this would be an interesting model to study. However, the AD mouse model would also have deficits other than the restricted vasomotion. On the other hand, we could test whether the repeated presentation of slowly oscillating visual stimuli can have beneficial effects in improving the cognitive abilities of AD model mice.

      Reviewer #3 (Public Review):

      Summary:

      Here the authors show global synchronization of cerebral blood flow (CBF) induced by oscillating visual stimuli in the mouse brain. The study validates the use of endogenous autofluorescence to quantify the vessel "shadow" to assess the magnitude of frequency-locked cerebral blood flow changes. This approach enables straightforward estimation of artery diameter fluctuations in wild-type mice, employing either low magnification wide-field microscopy or deep-brain fibre photometry. For the visual stimuli, awake mice were exposed to vertically oscillating stripes at a low temporal frequency (0.25 Hz), resulting in oscillatory changes in artery diameter synchronized to the visual stimulation frequency. This phenomenon occurred not only in the primary visual cortex but also across a broad cortical and cerebellar surface. The induced CBF changes adapted to various stimulation parameters, and interestingly, repeated trials led to plastic entrainment. The authors control for different artefacts that may have confounded the measurements such as light contamination and eye movements but found no influence of these variables. The study also tested horizontally oscillating visual stimuli, which induce the horizontal optokinetic response (HOKR). The amplitude of eye movement, known to increase with repeated training sessions, showed a strong correlation with CBF entrainment magnitude in the cerebellar flocculus. The authors suggest that parallel plasticity in CBF and neuronal circuits is occurring. Overall, the study proposes that entrained "vasomotion" contributes to meeting the increased energy demand associated with coordinated neuronal activity and subsequent neuronal circuit reorganization.

      We thank the reviewer for providing a thorough summarization of our manuscript.

      Strengths:

      • The paper describes a simple and useful method for tracking vasomotion in awake mice through an intact skull.

      • The work controls for artefacts in their primary measurements.

      • There are some interesting observations, including the nearly brain-wide synchronization of cerebral blood flow oscillations to visual stimuli and that this process only occurs after mice are trained in a visual task.

      • This topic is interesting to many in the CBF, functional imaging, and dementia fields.

      We thank the reviewer for positively recognizing the strength of the paper.

      Weaknesses:

      • I have concerns with the main concepts put forward, regarding whether the authors are actually studying vasomotion as they state, as opposed to functional hyperemia which is sensory-induced changes in blood flow, which is what they are actually doing. I recommend several additional experiments/analyses for them to explore. This is mostly further characterizing their effect which will benefit the interpretations.

      We recognized that the terminology used in our paper was not explicitly explained. Traditionally, “vasomotion” is defined as the dilation and constriction of the blood vessels that occurs spontaneously at low frequencies in the 0.1 Hz range without any apparent external stimuli. Sensory-induced changes in the blood flow are usually called “hyperemia”. However, in our paper, we used the term, vasomotion, literally, to indicate both forms of “vascular” “motion”. Therefore, the traditional vasomotion was called “spontaneous vasomotion” and the hyperemia induced with slow oscillating visual stimuli was called “visually induced vasomotion”.

      Using our newly devised methods, we show the presence of “spontaneous vasomotion”. However, this spontaneous vasomotion was often fragmented and did not last long at a specific frequency. With visual stimuli that slowly oscillated at temporal frequencies close to the frequency of spontaneous vasomotion, oscillating hyperemia, or “visually induced vasomotion” was observed.

      • Neuronal calcium imaging would also benefit the study and improve the interpretations.

      In our paper, we mainly studied the visually induced vasomotion (or visual stimulus-triggered vasomotion). Therefore, visual stimulation must first activate the neurons and, through neurovascular coupling, the initial drive for vasomotion is likely triggered. However, visually induced vasomotion is not observed in novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to neuronal activity in the primary visual cortex. We also do not know how the synchronized vasomotion can spread throughout the whole brain. Where the plasticity for vasomotion entrainment occurs is also unknown. To identify the extent of the neuronal contribution to the vasomotion triggering, whole brain synchronization, and vasomotion entrainment, simultaneous neuronal calcium imaging would be ideal. However, due to the fact that fluorescent Ca2+ indicators expressed in neurons would also be distorted by the “shadow” effect from the vasomotion, exquisite imaging techniques would be required.

      • The plastic effects in vasomotion synchronization that occur with training are interesting but they could use an additional control for stress. Is this really a plastic effect, or is it caused by progressively decreasing stress as trials and progress? I recommend a habituation control experiment.

      As also pointed out by reviewer #2, we agree that, whether stress would affect visually induced vasomotion or not could be studied. Studying the visually induced vasomotion in mice well-habituated to the experimental apparatus would give an idea of whether stress could truly be a profounding factor affecting vasomotion. On the other hand, whether acutely induced stress can interfere with the already entrained vasomotion could also be studied. In the experiments presented in Fig. 3, Texas Red was injected via the tail vein, which would be quite stressful for the mouse. However, in the trained mouse, visually induced vasomotion could be observed regardless of the stress. It is likely that stress can interfere with the acquisition of vasomotion entrainment, but the already acquired entrainment will not be canceled with acute stress induced by tail-vein injection. We agree that further relationship between stress and vasomotion and plasticity related to vasomotion entrainment could be investigated.

      Appraisal

      I think the authors have an interesting effect that requires further characterization and controls. Their interpretations are likely sound and additional experiments will continue to support the main hypothesis. If brain-wide synchrony of blood flow can be trained and entrained by external stimuli, this may have interesting therapeutic potential to help clear out toxic proteins from the brain as seen in several neurodegenerative diseases.

      We thank the reviewer for the positive evaluation of our manuscript. Strong entrainment of visually induced vasomotion was observed with a simple presentation of slowly oscillating visual stimuli for several days. This is a totally non-invasive method to train the vasomotion capacity. As the reviewer recognizes, potential benefits for the treatment of dementia and neurodegenerative diseases could be evaluated with further studies.

    1. A disability is an ability that a person doesn’t have, but that their society expects them to have.1 For example: If a building only has staircases to get up to the second floor (it was built assuming everyone could walk up stairs), then someone who cannot get up stairs has a disability in that situation. If a physical picture book was made with the assumption that people would be able to see the pictures, then someone who cannot see has a disability in that situation. If tall grocery store shelves were made with the assumption that people would be able to reach them, then people who are short, or who can’t lift their arms up, or who can’t stand up, all would have a disability in that situation. If an airplane seat was designed with little leg room, assuming people’s legs wouldn’t be too long, then someone who is very tall, or who has difficulty bending their legs would have a disability in that situation. Which abilities are expected of people, and therefore what things are considered disabilities, are socially defined. Different societies and groups of people make different assumptions about what people can do, and so what is considered a disability in one group, might just be “normal” in another. There are many things we might not be able to do that won’t be considered disabilities because our social groups don’t expect us to be able to do them. For example, none of us have wings that we can fly with, but that is not considered a disability, because our social groups didn’t assume we would be able to. Or, for a more practical example, let’s look at color vision: Most humans are trichromats, meaning they can see three base colors (red, green, and blue), along with all combinations of those three colors. Human societies often assume that people will be trichromats. So people who can’t see as many colors are considered to be color blind, a disability. But there are also a small number of people who are tetrachromats and can see four base colors2 and all combinations of those four colors. In comparison to tetrachromats, trichromats (the majority of people), lack the ability to see some colors. But our society doesn’t build things for tetrachromats, so their extra ability to see color doesn’t help them much. And trichromats’ relative reduction in seeing color doesn’t cause them difficulty, so being a trichromat isn’t considered to be a disability. Some disabilities are visible disabilities that other people can notice by observing the disabled person (e.g., wearing glasses is an indication of a visual disability, or a missing limb might be noticeable). Other disabilities are invisible disabilities that other people cannot notice by observing the disabled person (e.g., chronic fatigue syndrome, contact lenses for a visual disability, or a prosthetic for a missing limb covered by clothing). Sometimes people with invisible disabilities get unfairly accused of “faking” or “making up” their disability (e.g., someone who can walk short distances but needs to use a wheelchair when going long distances). Disabilities can be accepted as socially normal, like is sometimes the case for wearing glasses or contacts, or it can be stigmatized as socially unacceptable, inconvenient, or blamed on the disabled person. Some people (like many with chronic pain) would welcome a cure that got rid of their disability. Others (like many autistic people), are insulted by the suggestion that there is something wrong with them that needs to be “cured,” and think the only reason autism is considered a “disability” at all is because society doesn’t make reasonable accommodations for them the way it does for neurotypical people. Many of the disabilities we mentioned above were permanent disabilities, that is, disabilities that won’t go away. But disabilities can also be temporary disabilities, like a broken leg in a cast, which may eventually get better. Disabilities can also vary over time (e.g., “Today is a bad day for my back pain”). Disabilities can even be situational disabilities, like the loss of fine motor skills when wearing thick gloves in the cold, or trying to watch a video on your phone in class with the sound off, or trying to type on a computer while holding a baby. As you look through all these types of disabilities, you might discover ways you have experienced disability in your life. Though please keep in mind that different disabilities can be very different, and everyone’s experience with their own disability can vary. So having some experience with disability does not make someone an expert in any other experience of disability.

      The differentiation between visible and invisible disabilities in this text serves as a crucial reminder of the broad spectrum of disabilities and the varied experiences of those living with them. It underscores the need for greater awareness and sensitivity towards individuals whose disabilities may not be immediately apparent. The mention of the unjust stigma faced by individuals with invisible disabilities raises important questions about societal attitudes and the need for a shift towards more compassionate and informed perspectives. This section also implicitly advocates for a more inclusive definition of disability, one that acknowledges the complexity and diversity of individual experiences, thereby fostering a more accommodating and supportive community.

    1. There are several ways of managing disabilities. All of these ways of managing disabilities might be appropriate at different times for different situations. 10.2.1. Coping Strategies# Those with disabilities often find ways to cope with their disability, that is, find ways to work around difficulties they encounter and seek out places and strategies that work for them (whether realizing they have a disability or not). Additionally, people with disabilities might change their behavior (whether intentionally or not) to hide the fact that they have a disability, which is called masking and may take a mental or physical toll on the person masking, which others around them won’t realize. For example, kids who are nearsighted and don’t realize their ability to see is different from other kids will often seek out seats at the front of classrooms where they can see better. As for us two authors, we both have ADHD and were drawn to PhD programs where our tendency to hyperfocus on following our curiosity was rewarded (though executive dysfunction with finishing projects created challenges)1. This way of managing disabilities puts the burden fully on disabled people to manage their disability in a world that was not designed for them, trying to fit in with “normal” people. 10.2.2. Modifying the Person# Another way of managing disabilities is assistive technology, which is something that helps a disabled person act as though they were not disabled. In other words, it is something that helps a disabled person become more “normal” (according to whatever a society’s assumptions are). For example: Glasses help people with near-sightedness see in the same way that people with “normal” vision do Walkers and wheelchairs can help some disabled people move around closer to the way “normal” people can (though stairs can still be a problem) A spoon might automatically balance itself when held by someone whose hands shake Stimulants (e.g., caffeine, Adderall) can increase executive function in people with ADHD, so they can plan and complete tasks more like how neurotypical people do. Assistive technologies give tools to disabled people to help them become more “normal.” So the disabled person becomes able to move through a world that was not designed for them. But there is still an expectation that disabled people must become more “normal,” and often these assistive technologies are very expensive. Additionally, attempts to make disabled people (or people with other differences) act “normal” can be abusive, such as Applied Behavior Analysis (ABA) therapy for autistic people, or “Gay Conversion Therapy.” 10.2.3. Making an environment work for all# Another strategy for managing disability is to use Universal Design, which originated in architecture. In universal design, the goal is to make environments and buildings have options so that there is a way for everyone to use it2. For example, a building with stairs might also have ramps and elevators, so people with different mobility needs (e.g., people with wheelchairs, baby strollers, or luggage) can access each area. In the elevators the buttons might be at a height that both short and tall people can reach. The elevator buttons might have labels both drawn (for people who can see them) and in braille (for people who cannot), and the ground floor button may be marked with a star, so that even those who cannot read can at least choose the ground floor. In this way of managing disabilities, the burden is put on the designers to make sure the environment works for everyone, though disabled people might need to go out of their way to access features of the environment. 10.2.4. Making a tool adapt to users# When creating computer programs, programmers can do things that aren’t possible with architecture (where Universal Design came out of), that is: programs can change how they work for each individual user. All people (including disabled people) have different abilities, and making a system that can modify how it runs to match the abilities a user has is called Ability based design. For example, a phone might detect that the user has gone from a dark to a light environment, and might automatically change the phone brightness or color scheme to be easier to read. Or a computer program might detect that a user’s hands tremble when they are trying to select something on the screen, and the computer might change the text size, or try to guess the intended selection. In this way of managing disabilities, the burden is put on the computer programmers and designers to detect and adapt to the disabled person. 10.2.5. Are things getting better?# We could look at inventions of new accessible technologies and think the world is getting better for disabled people. But in reality, it is much more complicated. Some new technologies make improvements for some people with some disabilities, but other new technologies are continually being made in ways that are not accessible. And, in general, cultures shift in many ways all the time, making things better or worse for different disabled people. 1 We’ve also noticed many youtube video essayists have mentioned having ADHD. This is perhaps another job that attracts those who tend to hyperfocus on whatever topic grabbed their attention, and then after releasing their video, move on to something completely different. 2 Universal Design has taken some criticism. Some have updated it, such as in acknowledging that different people’s needs may be contradictory, and others have replaced it with frameworks like Inclusive Design..

      This explains different ways to help people with disabilities, like using special tools or making places easier for everyone to use. An example could be the tiktok update allowing for autogenerated subtitles so people didn't have to consciously write out every line. It shows that helping disabled people often means changing our surroundings or technology to fit their needs better.

    1. kinds of facts and events which are facts for ushave already been shaped up and given theircharacter and substance as facts, as relations, etc.,by the methods and practice of governing. Men-tal illness, crimes, riots, violence, work satisfac-tion, neighbors and neighborhoods, motiva-tion, etc., these are the constructs of the practiceof government. In many instances such as mentalillness, crimes, neighborhoods, etc., they are con-stituted as discrete phenomena primarily byadministrative procedures and others arise asproblems in relation to the actual practice ofgovernment, as for example concepts of motiva-tion, work satisfaction, etc.The governing processes of our society areorganized as social entities constituted externallyto those persons who participate in and performthem. The managers, the bureaucrats, the admin-istrators, are employees, are people who are used.They do not own the enterprises or otherwise ap-propriate them. Sociologists study these entitiesunder the heading of formal organization. Theyare put together as objective structures with goals,activities, obligations, etc., other than those whichits employees can have as individuals. The acad-emic professions are also set up in a mode whichexternalizes them as entities vis-8-vis their practi-tioners. The body of knowledge which its mem-bers accumulate is appropriated by the disciplineas its body. The work of members aims at con-tributing to that body of knowledge.As graduate students learning to become sociol-ogists, we learn to think sociology as it is thoughtand to practice it as it is practiced. We learnthat some topics are relevant and some are not.We learn to discard our experienced world as asource of reliable information or suggestionsabout the character of the world; to confine andfocus our insights within the conceptual frame-works and relevances which are given in thediscipline. Should we think other kinds ofthoughts or experience the world in a differentway or with edges and horizons that pass beyondthe conceptual we must practice a discipline whichdiscards them or find some procedure whichmakes it possible to sneak them in. We learn away of thinking about the world which is recog-nizable to its practitioners as the sociologicalway of thinking.We learn to practice the sociological subsump-tion of the actualities of ourselves and of otherpeople. We find out how to treat the world asinstances of a sociological body of knowledge.The procedure operates as a sort of conceptualimperialism. When we write a thesis or a paper,we learn that the first thing to do is to latch it onto the discipline at some point. This may be byThe profession of sociology is predicated on auniverse which is occupied by men and it is itselfstill largely appropriated by men as their “ter-ritory.”

      Цікаво, наскільки змінилася ситуація з часу написання цієї статті. Звичайно, "базові" соціологічні твори були написані переважно білими чоловіками (переважно, бо були Рут Бенедикт та Маргарет Мід, наприклад), проте з огляду на авторство джерел, що вивчаються принаймні в Могилянці на соціології, кількість впливових соціологинь значно зросла

    1. Ethics provides a foundation for what teachers should do in their roles and responsibilities as an educator. It is a framework that a teacher can use to help make decisions about what is right or wrong in a given situation.

      I think it is important to have a foundation for us teachers to refer to in order to help lead us in the right direction to make the "right" solution. This is important because sometimes teachers make connections with their students or have certain feelings towards an individual due to there behavior or whatever it may be which can hinder there decisions making. So it is important that we do not let our feelings get in the way of our decision making but rather rely on the ethics of the situation.

    1. Author Response

      We thank the editors and the reviewers for their assessment of our revised manuscript. Please see bellow, our answers to the recommendations by reviewer #2.

      Figure S2F - Seems like a very narrow range of parameters. Is there some fine tuning here?

      The range of values of tau_P that yields previous-trial biases is bounded by below and above for the following reasons: above a certain value of tau_P (therefore large integration time), the bump that had formed in the previous trial is not strong enough to remain stable for a long time, and therefore dissipates by the time the current trial starts (especially when adaptation is fast, towards the left of the third panel). Below a certain value, instead, this integration timescale is small enough to quickly form a representation of the current trial, hence the bump from the previous trial quickly dissipates (due to mutual inhibition). This interplay between the integration and the adaptation timescale as well as considering a phenomenon which is bounded in time (how close the activity bump is to the second stimulus of the previous trial which is presented between -22.4 and -5.6 seconds from the moment we are considering) yields a region for tau_P which is bounded. This region, however, appears narrow due to the limited number of points we have considered for the simulation grid.

      Regarding my comment on lapse at the boundaries (old line 221). Lapse parameters in psychometric curves correspond to errors on the "easy" trials. But the mechanistic explanation for lapse trials is that there is a non-zero probability for the subject to respond in a manner that is random and independent of the stimulus. In the case of extreme stimuli, this is the only reason for errors, and thus looking at the edges of the psychometric curves allows to calculate lapse rate. But - the usual assumption for underlying mechanism is that the subject lapses in all trials, regardless of stimulus. If I understand correctly, this is different than the mechanistic reason for lapses in the network model, which was described as something that happens more in the edges than in the center. Or more generally, to be a stimulus-dependent effect.

      We thank the reviewer for this clarification. The reviewer is right that in our mechanistic model, lapses (as defined by errors on easy trials) are more likely to occur for extreme stimuli, due to the vicinity to the boundary of the attractor. Such errors also occur for non-extreme stimuli, when delay intervals are long enough for the bump in PPC to drift to the boundaries. In experiments, lapse trials as described by the reviewer occur due to multiple different reasons; for lapse that is independent of the stimuli, mechanisms such as attention have been thought to play a role, this however is not included in our model.

      What are the parameters for the distributions (skewed, bimodal, ...)?

      These parameters are reported in the legend of Fig.6, where the distributions appear.

      Bump with adaptation. Sorry for the draft-like comment. I don't think the existing studies are in the form you describe. I do think it might be useful to point readers to these studies. If an interested reader wishes to understand network dynamics in this and similar scenarios, it might be useful to have the pointers. The reference I had in mind was Romani, S., & Tsodyks, M. (2015). Short‐term plasticity based network model of place cells dynamics. Hippocampus, 25(1), 94-105.

      We thank the reviewer for the clarification, and we will include this reference in the Version of Record.


      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study about the mechanisms underlying our capacity to represent and hold recent events in our memory and how they are influenced by past experiences. A key aspect of the model put forward here is the presence of discrete jumps in neural activity with the posterior parietal region of the cortex. The strength of evidence is largely solid, with some weaknesses noted in the methodology. Both reviewers suggested ways in which this aspect of the model can to be tested further and resolve conflicts with previously published experimental results, in particular the study by Papadimitriou et al 2014 in Journal of Neurophysiology.

      We thank the editors for their assessment. As mentioned in the cover letter, we have addressed all the reviewers’ concerns and would like to request and update of the assessment to reflect the revisions we have made.

      Public Reviews:

      We thank both reviewers for their careful reading and feedback that helped clarify many aspects of the model. Below, we address their comments.

      Reviewer #1 (Public Review):

      This paper aims to explain recent experimental results that showed deactivating the PPC in rats reduced both the contraction bias and the recent history bias during working memory tasks. The authors propose a twocomponent attractor model, with a slow PPC area and a faster WM area (perhaps mPFC, but unspecified). Crucially, the PPC memory has slow adaptation that causes it to eventually decay and then suddenly jump to the value of the last stimulus. These discrete jumps lead to an effective sampling of the distribution of stimuli, as opposed to a gradual drift towards the mean that was proposed by other models. Because these jumps are single-trial events, and behavior on single events is binary, various statistical measures are proposed to support this model. To facilitate this comparison, the authors derive a simple probabilistic model that is consistent with both the mechanistic model and behavioral data from humans and rats. The authors show data consistent with model predictions: longer interstimulus intervals (ISIs) increase biases due to a longer effect over the WM, while longer intertrial intervals (ITIs) reduce biases. Finally, they perform new experiments using skewed or bimodal stimulus distributions, in which the new model better fits the data compared to Bayesian models.

      The mechanistic proposed model is simple and elegant, and it captures both biases that were previously observed in behavior, and how these are affected by the ISI and ITI (as explained above). Their findings help rethink whether our understanding of contraction bias is correct.

      On the other hand, the main proposal - discrete jumps in PPC - is only indirectly verified.

      We agree with the reviewer that the evidence for discrete jumps in PPC has been provided in behavioural results (short-term, n-back trial biases), and not from neural data. However, we believe electrophysiological investigations are out of the scope of the current manuscript and future works are needed to further verify the results.

      The model predicts a systematic change in bias with inter-trial-interval. Unless I missed it, this is not shown in the experimental data. Perhaps the self-paced nature of the experiments allows to test this?

      We thank the reviewer for this great suggestion.

      We had not previously looked at this in the data for the reason that in the simulations, the ITI is set to either 2.2, 6 or 11 seconds, whereas the experiment is self-paced. Therefore, any comparison with the simulation should be made carefully.

      However, after the reviewer’s suggestion, we did look at the change in the bias with the inter-trial interval, by dividing trials according to ITIs lower than 3 seconds (“short” ITI), and higher than 3 seconds (“long” ITI). This choice was motivated by the shape of the distribution of ITIs, which is bimodal, with a peak around 1 second, and another after 3 seconds (new Fig 8F). Hence, we chose 3 seconds as it seemed a natural division. However, 3 seconds also happens to be approximately the 75th percentile of the distribution, and this means that there is much more data in the “short” ITI than the “long” ITI set. In order to have sufficient data in the “long” ITI for clearer effects we used all of our dataset – the negatively skewed, and also two bimodal distributions (of which only one was shown in the manuscript, for succinctness). This larger dataset allows us to clearly see not only a decreasing contraction bias with increasing ITI (Fig 8G), but also a decreasing onetrial-back attractive bias with increasing ITI (Fig 8H). We have uploaded all the datasets as well as scripts used to analyze them to this repository: https://github.com/vboboeva/ParametricWorkingMemory_Data.

      The data in some of the figures in the paper are hard to read. For instance, Figure 3B might be easier to understand if only the first 20 trials or so are shown with larger spacing. Likewise, Figure 5C contains many overlapping curves that are hard to make out.

      We have limited the dynamics in Fig 3B to the first 50 trials for better visibility. Likewise, as suggested, we report the standard error of the mean instead of the standard deviation in old Fig 5C (new Fig 6C) – this allows for the different curves to be better discernible.

      There is a gap between the values of tau_PPC and tau_WM. First - is this consistent with reports of slower timescales in PFC compared to other areas?

      Recent studies by Xiao-Jing Wang and colleagues (Refs. 1-3 below) suggest that may be the case. In Wang et al 2023, Ref 1 below), the authors use a generative model to study the concept of bifurcation in space in working memory, that is accompanied by an inverted-V shape of the time constants as a function of cortical hierarchy.

      Briefly, they propose a generative model of the cortex with modularity, incorporating repeats of a canonical local circuit connected via long-range connections. In particular, the authors define a hierarchy for each local circuit. At a critical point in this hierarchy axis, there is a phase transition from monostability to bistability in the firing rate. This means that a local circuit situated below the critical point will only display a low activity steady state, while those above the critical point additionally display a persistent activity steady state.

      The model predicts a critical slowing down of the neural fluctuations at the critical point, resulting in an inverted-V shape of the time constants as a function of the hierarchy. They test the predictions of their model – the bifurcation in space and that inverted-V-shaped time constants as a function of the hierarchy - on connectome-based models of the macaque and mouse cortex. Interestingly both datasets show similar behavior. In particular, during working memory, frontal areas (higher in the hierarchy, e.g. area 24c in macaques) has a smaller time constant relative to posterior parietal areas (lower in the hierarchy, like LIP or f7). We have now cited this new work.

      [1] https://www.biorxiv.org/content/10.1101/2023.06.04.543639v1

      [2] https://elifesciences.org/articles/72136

      [3] https://www.biorxiv.org/content/10.1101/2022.12.05.519094v3.abstract

      Second - is it important for the model, or is it mostly the adaptation timescale in PPC that matters?

      We have run simulations producing a phase diagram with tau_theta^P on the x-axis, tau^P on the y-axis, and in color, the fraction of trials in which the bump is in the vicinity of a target (Fig S2 F), before the network is presented with the second stimulus. This target can be the first stimulus s_1 (left), mean over stimuli (middle) and previous trial’s stimulus (right)). White point corresponds to parameters of the default network.

      In this phase diagram, the lowest value that tau_P takes is tau_WM=0.01. When tau_P=tau_WM, the bump is rarely in the vicinity of 1-trial-back stimulus, and we can see that tau_PPC should be greater than tau_WM in order for the model to yield 1-trial back effects. We conclude that it is indeed important for tau_PPC > tau_WM.

      We have included this in Fig S2 F of the manuscript.

      Regarding the relation to other models, the model by Hachen et al (Ref 45) also has two interacting memory systems. It could be useful to better state the connection, if it exists.

      The model proposed by Hachen et al is conceptually different in that one module stores the mean of the sensory stimulus; it could be related to a variant of our model where adaptation is turned off in the PPC network (Fig S2 A). However, the task they model is also different: subjects have to learn the location of a boundary according to which the stimulus is classified as ‘weak’ or ‘strong’, set by the experimenter. Hence, it is a task where learning is needed - this contrasts with the task we are modelling, where only working memory is required. How task demands reconfigure existing circuits via dynamics and/or learning to perform different computations is a fascinating area of research that is outside the scope of this work.

      Reviewer #2 (Public Review):

      Working memory is not error free. Behavioral reports of items held in working memory display several types of bias, including contraction bias and serial dependence. Recent work from Akrami and colleagues demonstrates that inactivating rodent PPC reduces both forms of bias, raising the possibility of a common cause.

      In the present study, Boboeva, Pezzotta, Clopath, and Akrami introduce circuit and descriptive variants of a model in which the contents of working memory can be replaced by previously remembered items. This volatility manifests as contraction bias and serial dependence in simulated behavior, parsimoniously explaining both sources of bias. The authors validate their model by showing that it can recapitulate previously published and novel behavioral results in rodents and neurotypical and atypical humans.

      Both the modeling and the experimental work is rigorous, providing compelling evidence that a model of working memory in which reports sometimes sample past experience can produce both contraction bias and serial dependence, and that this model is consistent with behavioral observations across rodents and humans in the parametric working memory (PWM) task.

      Evidence for the model advanced by the authors, however, remains incomplete. The model makes several bold predictions about behavior and neural activity, untested here, that either conflict with previous findings or have yet to be reported but are necessary to appropriately constrain the model.

      First, in the most general (descriptive) formulation of the Boboeva et al. model, on a fraction of trials items in working memory are replaced by items observed on previous trials. In delayed estimation paradigms, which allow a more direct behavioral readout of memory items on a trial-by-trial basis than the PWM task considered here, reports should therefore be locked to previous items on a fraction of trials rather than display a small but consistent bias towards previous items. However, the latter has been reported (e.g., in primate spatial working memory, Papadimitriou et al., J Neurophysiol 2014). The ready availability of delayed estimation datasets online (e.g., from Rademaker and colleagues, https://osf.io/jmkc9/) will facilitate in-depth investigation and reconciliation of this issue.

      As pointed out by the reviewer, in the PWM task that we are modelling here, the activity in the network is used to make a binary decision. However, it is possible to directly analyse the network activity before the onset of the second stimulus.

      In their manuscript, Papadimitriou et al. study a memory-guided saccade task in nonhuman primates and argue that the animals display a small but consistent bias towards previous items (Fig 2). In that figure, the authors compute the error as the difference between the saccade direction and target direction in each trial. They compute this error for all trials in which the preceding trial’s target direction is between 35° and 85° relative to the current trial (counterclockwise with respect to the current trial’s target). They discover that the residual error distribution is unimodal with a mode at 1.29° and a mean at 2.21° (positive, so towards the preceding target’s direction), from which they deduce a small but systematic bias towards previous trial targets.

      We have computed a similar measure for our network with default parameters (Table 1), by subtracting the location of the bump at the end of the delay interval (s_hat(t), ‘saccade’) from the initial location of the first stimulus in the current trial (s1(t) or the ‘target’). We have done this for all trials where s1(t)=0.2, and where s2(t-1) takes specific values. These distributions are characterized by two modes. The first corresponds to those trials where the bump is not displaced in WM (i.e. mean of zero). We can also see the appearance of a second mode at the location of s1(t) - s2(t-1), corresponding to the displacements towards the preceding trial’s stimulus described in the main text. If, instead, we limit the analysis to a small range of previous trials close to s1(t) (similar to Papadimitriou et al) then the distribution of residual errors will appear unimodal, as the two modes merge. Importantly, note that there is a large variability around the second mode, expressing a more complex dynamics in the network. As can be seen in Fig 3B, the location of the bump is not always slaved to the one in the PPC in a straightforward way -- due to the adaptation in the PPC, the global inhibition in the connectivity kernel, as well as interleaved design for various delay intervals, the WM bump can be displaced in nontrivial ways (see also Recommendation no 4), yielding the dispersion around the second peak. It remains to be seen whether such patterns can be observed in the data from previous works on continuous working memory recall (including Papadimitriou et al). However, to our knowledge, such detailed and full analysis of errors at the level of individual trials has not been done.

      In summary, this analysis shows that the type of dynamics in our network is not one of the two cases: 1) small and systematic bias in each and every trial or 2) large error that occurs only rarely; rather, the dispersion around both modes suggests that the dynamics in our model are a mixture of these two limit cases.

      We have also performed another typical analysis, reported in several continuous recall tasks (e.g. Jazayeri and Shadlen 2010) where contraction bias has been reported. We plot WM bump locations after the delay period for every trial (s_hat(t)), and their averages, against the nominal value of s1(t). We see that the mean WM location deviates from the identity line toward the mean values of s1(t), again showing contraction bias as an average effect, while individual trials follow the dynamics explained above.

      We have now included a new section on continuous recall (Sect. 1.5 and a new figure (Fig 5)), which details the two above-mentioned analyses. The analysis of freely available datasets of delayed estimation tasks, unfortunately, is out of the scope of this work, and we leave such analyses to future studies.

      Second, the bulk of the modeling efforts presented here are devoted to a circuit-level description of how putative posterior parietal cortex (PPC) and working-memory (WM) related networks may interact to produce such volatility and biases in memory. This effort is extremely useful because it allows the model to be constrained by neural observations and manipulations in addition to behavior, and the authors begin this line of inquiry here (by showing that the circuit model can account for effects of optogenetic inactivation of rodent PPC).

      Further experiments, particularly electrophysiology in PPC and WM-related areas, will allow further validation of the circuit model. For example, the model makes the strong prediction that WM-related activity should display 'jumps' to states reflecting previously presented items on some trials. This hypothesis is readily testable using modern high-density recording techniques and single-trial analyses.

      As mentioned in response to the previous comment, we note again that in the WM network, the bump ‘displacement’ has a complex dynamics -- the examples we have provided in Fig 1A and 2B mainly show the cases in which jumps occur in the WM network, but this is not the only type of dynamics we observe in the model. We do have instances in which the continuity of the model causes drift across values, and we have now replaced the right panel in Fig 2B with one such instance, in order to emphasize that this displacement towards the previous trial’s stimulus (s2(t-1)) can occur in various ways. For a more thorough analysis, we have analyzed the distance between s1(t) and the position of the bump in the WM network at the end of the delay period s_hat(t), conditioned on specific values of s1(t) and s2(t-1) (Fig 5C). In this figure, we can see the appearance of two modes: one centered around 0, corresponding to the correct trials where the stimulus is kept in WM (s1(t) = s_hat(t)), and another mode centered around s2(t-1), the location of the second stimulus of the previous trial, where the bump is displaced. Note, as we explain in Sect. 1.5, the large dispersion around this second mode, which suggests that the bump is not always displaced to that specific location and may undergo drift.

      We agree with the reviewer that future electrophysiological experiments (or analysis of existing datasets) are necessary for validation of these results.

      Finally, while there has been a refreshing movement away from an overreliance on p-values in recent years (e.g., Amrhein et al., PeerJ 2017), hypothesis testing, when used appropriately, provides the reader with useful information about the amount of variability in experimental datasets. While the excellent visualizations and apparently strong effect sizes in the paper mitigate the need for p-values to an extent, the paucity of statistical analysis does impede interpretation of a number of panels in the paper (e.g., the results for the negatively skewed distribution in 5D, the reliability of the attractive effects in 6a/b for 2- and 3- trials back).

      We share the reviewer’s criticism towards the misuse of p-values – in order for a clearer interpretation of old Fig 5D (new Fig 7E), we have looked at the 2 and 3 trials-back biases by using all of our dataset – the negatively skewed, and also two bimodal distributions (of which only one was shown in the manuscript). This larger dataset of 43 subjects (approximately 17,200 trials) allows us to clearly see the 2 and 3 trial back attractive biases, and the effect that the delay interval exerts on them.

      Reviewer #1 (Recommendations For The Authors):

      Fig 5 A&C - It might be beneficial to separate the distribution of stimuli from the performance. It is hard to read the details of the performance, especially with error bars.

      Following the next recommendation, we have exchanged the standard deviation to standard errors of the mean, hopefully this allows to better read the performance.

      Fig 5C. The number of participants should be written. Perhaps standard errors instead of standard deviation?

      We have now changed the standard deviation to standard errors of the mean and included the number of participants in the figure.

      Fig 2B - hard to understand, because there is no marking of where "perfect" memory of s1 would be.

      The perfect memory of s1 is shown in the upper panel as black bars.

      Fig 3B. dot number 9 (blue, around 0.7) - why is WM higher than stimulus?

      This trial has a long ISI (blue means 10s). During this delay, the bump in the PPC, under the influence of adaptation, drifts far below the first stimulus (note that the previous trial also had its first stimulus in the same location, as a result of which the adaptative thresholds have built up significantly, causing the bump to move away from that location). During this delay period, neurons in the WM network receive inputs from the PPC network: if this input is strong enough, it can disrupt an existing bump; if not, this input still exerts inhibiting influence on the existing bump via the global inhibition in the connectivity. This can cause an existing bump to slowly drift in a random direction, and finally dissipate. Note that the lines in Fig 2B represent the neuron with the maximal activity, this activity may be a stable bump, or an unstable bump that may soon dissipate.

      Other examples with similar dynamics include trials 43 and 54.

      L167 fewer -> smaller

      We have now corrected this.

      Fig 3C - bump can also be in between. Is this binned?

      We have not binned the length of the attractor; to produce that figure, we check whether the position of the neuron with the maximal firing rate is within a distance of ±5% of the length of the whole line attractor from the target location.

      L221 Lapse at the boundary of attractor. This seems very different from behavior. Specifically, if it is in the boundaries, it should be stimulus dependent.

      Very sorry, we did not manage to understand the reviewer’s comment.

      L236 are -> is

      We have now corrected this.

      Fig S4 - should be mostly in main text.

      Part of this figure is in Fig 6A, but given the amount of detail, we think Supplementary Material is better suited.

      L253-254. Differences across all distributions - very minor except the bimodal case.

      That is correct, this is why we conducted the experiment with the bimodal distribution, to better differentiate the predictions of the two models.

      L273 extra comma after "This probability"

      We have now corrected this.

      ITI was only introduced in section 1.5.2. Perhaps worth mentioning the default 5s value earlier in the paper.

      We have now mentioned this in line 97-98.

      Fig S6B title: perhaps "previous stimuli"?

      We have now corrected this.

      L364 i"n A given trial"

      Equation 2 - no decay term?

      Thank you for pointing out this error, we have now corrected this.

      Equation 5,6 are j^W and j^P indices of neurons in those populations?

      Yes, j^W indexes neurons in the WM network, and j^P those in the PPC. We have now added this in the text for clarity.

      Bump with adaptation - other REFs? Sandro?

      We are aware of continuous bump attractors implementing short-term synaptic plasticity in various studies (including by Sandro Romani), but not in the form we have described. May the reviewer kindly point us towards the relevant literature.

      Free boundary - what is the connectivity for neurons 1 and N? Is it weaker than others? Is the integral still 1? Does this induce some bias on the extreme values?

      The connectivity of the network is all-to-all. However, as expressed by Eq. (3), the distance-dependent contribution to the weights, K, decreases exponentially as we move from neuron 1 onwards, and from neuron N down. The sum (or integral, in the large-N limit) of the K_ij for j on either side of neuron i is unity only when i is sufficiently far from 1 or N. We have rephrased the paragraph starting in line 516 to make this clearer.

      The presence of a boundary could introduce a bias in theory, but in practice, it affects the dynamics only when the bump drifts sufficiently close to it. The smallest stimulus in the simulated task has amplitude 0.2, with width 0.05, which implies the activation of 50 neurons on either side of neuron 400. If one compares this with the width of the kernel K in stimulus space (d_0 = 0.02), which spans ~10 neurons, we can see that the bump of activity stays mostly far from the boundary. It is possible, though it is observed rarely, when several consecutive long delay intervals happen to occur, that the bump in PPC drifts beyond the location corresponding to either the minimum or maximum stimulus.

      Code availability?

      Code simulating the dynamics of the network as well as analysing the resulting data can be found in the following repository: https://github.com/vboboeva/ParametricWorkingMemory Code used to analyse human behavioural data and fit them with our statistical model can be found in this repository: https://github.com/vboboeva/ParametricWorkingMemory_Data Code used to run the auditory PWM experiments with human subjects (adapted from Akrami et al 2018) can be found here: https://github.com/vboboeva/Auditory_PWM_human

      L547 stimuli

      We have now corrected this.

      Equation 14 uses both stimuli. Was this the same for the rest of analysis in the paper (first figures for instance)?

      This equation was used for all GLM analyses (Figs 9 and S6).

      D0 is very small (0.02). Does this mean that activity is essentially discrete in the model? Fig 1A & 2B - the two examples of model activity suggest this is the case. In other words - are there cases where the continuity of the model causes drift across values? Can you show an example (similar to Fig 1A)?

      Since this point has been raised beforehand, we refer to the first comment, Fig 2B and Sect. 1.5 for the response to this question.

      Table 1 - inter trial interval 6. Text says 5

      We have now corrected this in the text.

      Reviewer #2 (Recommendations For The Authors):

      In addition to my review above, I just have a few minor comments:

      • If I understood correctly, the squares inside the purple rectangle in Figure 1B are meant to show a gradation from red to blue, but this was hard to make out in the pdf.

      Actually the squares are all on one side or the other of the diagonal, therefore they do not have any gradation.

      • line 164: "The resulting dynamics... [are]?"

      We have corrected this in the text.

      • Fig 7B legend: "The network performance is on average worse for longer ITIs" – correct?

      This was a mistake, we have replaced worse with better.

      Other comments

      We realized that the colorbar reported the incorrect fraction classified in Figs 1B, 2C, 7B (new 8B), S2C, S3A, S5B. We have corrected this in the new version of the manuscript.

      We also found a minor mistake in one of our analysis codes that computed the n-trial back biases for different delay intervals. This did not change our results, actually made the effects clearer. The figures concerned are Fig 3F and new Fig 7E.

    1. Author Response

      eLife assessment

      This study presents important findings for understanding cortical processing of color, binocular disparity, and naturalistic textures in the human visual cortex at the spatial scale of cortical layers and columns using state-of-the-art high-resolution fMRI methods at ultra-high magnetic field strength (7 T). Solid evidence supports an interesting layer-specific informational connectivity analysis to infer information flow across early visual areas for processing disparity and color signals. While the question of how the modularity of representation relates to cortical hierarchical processing is interesting and fundamental, the findings that texture does not map onto previously established columnar architecture in V2 is suggestive but would benefit from further controls. The successful application of high-resolution fMRI methods to study the functional organization along cortical columns and layers is relevant to a broad readership interested in general neuroscience.

      Thank you for your assessment of our manuscript "Mesoscale functional organization and connectivity of color, disparity, and naturalistic texture in human second visual area ". We have carefully considered the public reviews and have outlined our plans of revision by providing point-by-point responses to the reviewers’ comments.

      Reviewer #1 (Public Review):

      To support the finding that texture is not represented in a modular fashion, additional possibilities must be considered. These include the effectiveness and specificity of the texture stimulus and control stimuli, (b) further analysis of possible structure in images that may have been missed, and (c) limitations of imaging resolution.

      Thank you for your suggestions. We will provide evidence and additional analyses to show that there was indeed a large difference in high-order statistical information between the texture and control stimuli in our study, and thus the contrast between the two stimuli should be effective in localizing the processing of high-order texture information. Compared to the previous studies, another reason for the weaker texture selectivity in the current study could be the smaller number of images used and the slower rate of image presentation. Although our fMRI result at 1-mm isotropic resolution did not show a modular processing of naturalistic texture in CO-stripe columns, this does not exclude the possibility that smaller modules exist beyond the current fMRI resolution. We will discuss these limitations in the revised manuscript.

      More in-depth analysis of subject data is needed. The apparent structure in the texture images in peripheral fields of some subjects calls for more detailed analysis. e.g. Relationship to eccentricity and the need for a 'modularity index' to quantify the degree of modularity. A possible relationship to eccentricity should also be considered.

      We will perform further analysis based on your suggestion, especially regarding the relationship between eccentricity and modulation index. We will discuss this possibility in the revised manuscript.

      Given what is known as a modular organization in V4 and V3 (e.g. for color, orientation, curvature), did images reveal these organizations? If so, connectivity analysis would be improved based on such ROIs. This would further strengthen the hierarchical scheme.

      Thank you for your suggestion. The informational connectivity analyses used highly informative voxels by feature selection, which may already represent information from the modular organizations in these higher visual areas. We will examine the functional maps for possible modular organizations.

      Reviewer #2 (Public Review):

      In lines 162-163, it is stated that no clear columnar organization exists for naturalistic texture processing in V2. In my opinion, this should be rephrased. As far as I understand, Figure 2B refers to the analysis used to support the conclusion. The left and middle bar plots only show a circular analysis since ROIs were based on the color and disparity contrast used to define thin and thick stripes. The interesting graph is the right plot, which shows no statistically significant overlap of texture processing with thin, thick, and pale stripe ROIs. It should be pointed out that this analysis does not dismiss a columnar organization per se but instead only supports the conclusion of no coincidence with the CO-stripe architecture.

      Reviewer #1 also raised a similar concern. We agree that there may be a smaller functional module of textures in area V2 at a finer spatial scale than our fMRI resolution. We will rephrase our conclusions to be more precise.

      In Figure 3, cortical depth-dependent analyses are presented for color, disparity, and texture processing. I acknowledge that the authors took care of venous effects by excluding outlier voxels. However, the GE-BOLD signal at high magnetic fields is still biased to extravascular contributions from around larger veins. Therefore, the highest color selectivity in superficial layers might also result from the bias to draining veins and might not be of neuronal origin. Furthermore, it is interesting that cortical profiles with the highest selectivity in superficial layers show overall higher selectivity across cortical depth. Could the missing increase toward the pial surface in other profiles result from the ROI definition or overall smaller signal changes (effect size) of selected voxels? At least, a more careful interpretation and discussion would be helpful for the reader.

      We will discuss the limitations of cortical depth-dependent analysis using GE-BOLD fMRI. All our stimuli produced robust activations in these visual areas, thus the flat laminar profiles of modulatory indices are unlikely to be caused by smaller signal changes. We will show the original BOLD responses in addition to the modulation index.

      I was slightly surprised that no retinotopy data was acquired. The ROI definition in the manuscript was based on a retinotopy atlas plus manual stripe segmentation of single columns. Both steps have disadvantages because they neglect individual differences and are based on subjective assessment. A few points might be worth discussing: (1) In lines 467-468, the authors state that V2 was defined based on the extent of stripes. This classical definition of area V2 was questioned by a recent publication (Nasr et al., 2016, J Neurosci, 36, 1841-1857), which showed that stripes might extend into V3. Could this have been a problem in the present analysis, e.g., in the connectivity analysis? (2) The manual segmentation depends on the chosen threshold value, which is inevitably arbitrary. Which value was used?

      The retinotopic atlas on the standard surface is usually quite accurate in defining the boundaries of early visual areas. Although some stripes may extend into V3, these patterns should be more robust in V2. In our analysis, we selected only those with clear organizations within the retinotopic atlas. Thus, the signal contribution from V3 is likely to be small and would not affect the pattern of results. In addition, the results between V3 and V2 could be very different, we will compare the pattern of results from these areas in additional analyses. The threshold for segmentation is abs(T)>2, we will clarify this in the method.

      The use of 1-mm isotropic voxels is relatively coarse for cortical depth-dependent analyses, especially in the early visual cortex, which is highly convoluted and has a small cortical thickness. For example, most layer-fMRI studies use a voxel size of around isotropic 0.8 mm, which has half the voxel volume of 1 mm isotropic voxels. With increasing voxel volume, partial volume effects become more pronounced. For example, partial volume with CSF might confound the analysis by introducing pulsatility effects.

      We agree that the 1-mm isotropic voxel is much smaller in volume than the 0.8-mm isotropic voxel, but the resolution along the cortical depth is not a large difference. In addition to our study, there are also other studies showing that fMRI at 1-mm isotropic resolution is capable of resolving cortical depth-dependent signals. Also, our fMRI slices were oriented perpendicular to the calcarine sulcus, the higher in-plane resolution will also benefit in resolving depth-dependent signals. We will discuss these issues about fMRI resolution in the revised manuscript.

      The SVM analysis included a feature selection step stated in lines 531-533. Although this step is reasonable for the training of a machine learning classifier, it would be interesting to know if the authors think this step could have reintroduced some bias to remaining draining vein contributions.

      Several precautions have been taken in the ROI definition to reduce the influence of large draining veins. The same number of voxels were selected from each cortical depth for the SVM analysis, thus there was no bias from the superficial layers susceptible to draining veins. Also, since both feedforward and feedback connections involved the superficial voxels, the remaining influence of large draining veins should be comparable between the two connections.

      Reviewer #3 (Public Review):

      The authors tend to overclaim their results.

      Thank you for your comments. We will add more control analyses to strengthen our findings, and have appropriate discussion of results.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: The authors study the appearance of oscillations in motifs of linear threshold systems, coupled in specific topologies. They derive analytical conditions for the appearance of oscillations, in the context of excitatory and inhibitory links. They also emphasize the higher importance of the topology, compared to the strength of the links. Finally, the results are confirmed with WC oscillators, which are also linear. The findings are to some extent confirmed with spiking neurons, though here results are less clear, and they are not even mentioned in the Discussion.

      Overall, the results are sound from a theoretical perspective, but I still find it hard to believe that they are of significant relevance for biological networks, or in particular for the oscillations of BG-thalamus-cortex loop in PD. I find motifs in general to be too simplistic for multiscale and generally large networks as is the case in the brain. Moreover, the division of regions is more or less arbitrary by definition, and having such a strong dependence on an odd/even number of inhibitory links is far from reality. Another limitation is the fact that the cortex is considered a single node. Similarly, decomposing even such a coarse network in all possible (238 in this case) motifs doesn't seem of much relevance, when I assume that the emergence of pathological rhythms is more of an emergent phenomenon.

      Strengths:

      From the point of view of nonlinear dynamics, the results are solid, and the intuition behind the proofs of the theorems is well explained.

      Weaknesses:

      As stated in the summary, I find the work to be too theoretical without a real application in biological systems or the brain, where the networks are generally very large.

      We respectfully disagree with the reviewer here. The second half of the paper is all about explaining a biological problem. We have shown the validity of our theoretical results (which indeed were obtained in idealized settings) to explain emergence of oscillations in the basal ganglia. We clearly show that our theoretical results hold both in a rate-based model and in a network model with spiking neurons. The model with spiking neurons is one of the most complete network models of the basal ganglia available in the literature. So we emphasize that we have provided a clear application of our results for the brain networks.

      It is not the problem in the simplicity of the model or of the topology, it is often the case that the phenomena are explained by very reduced systems, but the problem is that the applicability of the finding cannot be extended. E.g. the Kuramoto model uses all-to-all coupling, or similar with QIF neurons which also need to follow a Lorentzian distribution in order to derive a mean field.

      We do not understand this comment. There is no need to extend these results to a network of Kuramoto models because in that setting we already assume that individual nodes/populations are oscillating – there is no problem of emergence of oscillations. Here, we are specifically considering a setting in which nodes themselves are not oscillators. We agree that we, at this point, have no insight into how to extend our analytical proof to a situation where individual nodes are spiking.

      But in those cases, relaxing the strict conditions that were necessary for the derivations, still conserves the main findings of the analysis, which I don't see being the case here. The odd/even number rule is too strict, and talking about a fixed and definite number of cycles in the actual brain seems too simplistic.

      We have clearly relaxed most of our assumptions when we considered a network model of basal ganglia in which each subpopulation is a collection of spiking neurons. And as we have shown our results still hold (see Figure 5). Again our model is about oscillations in a network of networks i.e. network of brain regions.

      At meso-scale it is not unreasonable to find such cycles and even-odd number rules. We have shown this for the case of a cortico-basal ganglia model. We can also extend this to cortico-thalamic networks and so on. We have already emphasized this point in the introduction to avoid any confusion: see lines 62-66 – “We prove this conjecture for the threshold-linear network (TLN) model without delays which can closely capture the dynamics of neural populations. Therefore, it is implicit that our results do not hold at the neuronal level but rather at the level of neuron populations/brain regions e.g. the basal ganglia (BG) network which can be described a network of different nuclei.” and lines 69-70 – ’Within the framework of the odd-cycle theory, distinct nuclei are associated with either excitatory or inhibitory nodes.’

      Being linear is another strong assumption, and it is not clear how much of the results are preserved for spiking neurons, even though there is such an analysis, or maybe for other nonlinear types of neuronal masses.

      Clearly our results hold in a network of spiking neurons (see Figure 5). It is of course interesting to ask whether our results hold in a network where individual spiking neurons have more complex spiking behavior like AdEx or Quadratic IF. But that kind of analysis deserves a full manuscript on its own.

      Delays are also mentioned, and their impact on the oscillatory networks is as expected: it reduces the amplitude, but there is no link to the literature, where this is an established phenomenon during synchronization. Finally, the authors should also discuss the time-delays as a known phenomenon to cause or amplify oscillations at different frequencies in a network of coupled oscillators, e.g Petkoski & Jirsa Network Neuroscience 2022, Tewarie et al. NeuroImage 2019, Davis et al. Nat Commun 2021.

      This is indeed a weakness of our model. But as the reviewer already knows, dynamical systems with delays are very difficult to analyze analytically. We have mentioned this in the limitations of the model and the analysis. In our simulations we have considered delays and when the delays are within reasonable limits our results hold.

      Reviewer #2 (Public Review):

      Summary:

      The authors present here a mathematical and computational study of the topological/graph theory requirements to obtain sustained oscillations in neural network models. A first approach mathematically demonstrates that a given network of interconnected neural populations (understood in the sense of dynamical systems) requires an odd number of inhibitory populations to sustain oscillations. The authors extend this result via numerical simulations of (i) a simplified set of Wilson-Cowan networks, (ii) a simplified circuit of the cortico-basal ganglia network, and (iii) a more complex, spike-based neural network of basal ganglia network, which provides insight on experimental findings regarding abnormal synchrony levels in Parkinson's Disease (PD).

      Strengths:

      The work elegantly and effectively combines solid mathematical proof with careful numerical simulations at different levels of description, which is uncommon and provides additional layers of confidence to the study. Furthermore, the authors included detailed sections to provide intuition about the mathematical proof, which will be helpful for readers less inclined to the perusal of mathematical derivations. Its insightful and well-informed connection with a practical neuroscience problem, the presence of strong beta rhythms in PD, elevates the potential influence of the study and provides testable predictions.

      Weaknesses:

      In its current form, the study lacks a more careful consideration of the role of delays in the emergence of oscillations. Although they are addressed at certain points during the second part of the study, there are sections in which this could have been done more carefully, perhaps with additional simulations to solidify the authors' claims. Furthermore, there are several results reported in the main figures which are not explained in the main text. From what I can infer, these are interesting and relevant results and should be covered. Finally, the text would significantly benefit from a revision of the grammar, to improve the general readability at certain sections. I consider that all these issues are solvable and this would make the study more complete.

      This point has been made by the first reviewer as well. So we repeat our answer:

      This is indeed a weakness of our model. But as the reviewer already knows, dynamical systems with delays are very difficult to analyze analytically. We have mentioned this in the limitations of the model and the analysis. In our simulations we have considered delays and when the delays are within reasonable limits our results hold.

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in my comments above, I think that the work is already quite solid and relevant but would significantly improve if some issues were addressed:

      We would like to thank the reviewer for valuable comments and constructive feedback which has helped us greatly improve the manuscript.

      1) While the authors acknowledge early on the limitations of this study in terms of not considering plasticity or neuron biophysics (line 72), I think that the absence of propagation delays should be explicitly included here. This absence leads to inaccuracies --for example, the sentence "Consider a small network of two nodes. If we connect them mutually with excitatory synapses, intuitively we can say that the two-population network will not oscillate" (line 74) is only correct if the delays (or signal latencies) are zero. With a proper delay, two excitatory neurons can engage in oscillations with a period given by two times the value of the delay.

      A similar situation happens for inhibitory neurons, where the winner-take-all dynamics described in line 77 is only valid for zero delay. It is known that a homogeneous population of inhibitory spiking neurons with delayed synapses can lead to fast oscillations (Brunel and Hakim 1999), something which is also valid for the equivalent inhibitory single node with delayed self-inhibition. Indeed, a circuit of two inhibitory populations with delayed self- and cross-inhibition can generate oscillations, contradicting the main conclusion of the odd number of inhibitory nodes needed for oscillations.

      Because of these considerations, I think the authors should be more careful when explaining the effects of delays, and state that their main results on the link between oscillations and having an odd number of inhibitory nodes are not valid when delays are considered. They could modify the sentences in lines 72-77 above and include a supplementary figure right after their simulation study for the Wilson-Cowan (to explain the examples above, and also the one in the next point).

      The reviewer has brought up a critical point regarding the impact of propagation delays, and we completely concur with your assessment. In our study, we indeed did not comprehensively consider the effects of propagation delays in cycles with even inhibition, which may introduce inaccuracies in our conclusions.

      We note that in the Wilson-Cowan model with delays, certain cycles with even number of inhibitory links can also generate oscillations with a period equal to twice the delay value. However, in our hand such oscillations were transient and dissipated quickly.

      To better reflect the limitations of our research, we have made significant modifications to the relevant sections in our manuscript.

      In line 100, we've added text to explicitly state that we considered delays in our simulations and acknowledged their potential to generate oscillations ("Given the importance of delays in biological network such as BG, we will consider them in the simulations.").

      In line 102, we've clarified that our conclusions are based on a scenario without delays ("In this following, we give simple examples of the possibility of oscillation (or not) based on the connectivity characteristics of small networks without delays. Let us start with a network of two nodes.").

      Additionally, in line 230, we've included a reference figure supplement 3-2 to highlight the outcomes in terms of oscillations ("EII network only resulted in transient oscillations (Fig. 3, figure supplement 3-1, figure supplement 3-2)").

      In lines 234-237, we've added a sentence discussing the role of synaptic delays in generating transient oscillations in cycles with an even number of inhibitory components, referring to figure supplement 3-2 ("In networks with even number of inhibitory connections (e.g. EII, EEE, II), synaptic delays are the sole mechanism for initiating oscillations, however, unless delays are precisely tuned such oscillations will remain transient (see Supplementary figure supplement 3-2)").

      Moreover, in response to the reviewer’s suggestion, we have included an additional figure supplement 3-2 to illustrate how cycles with even inhibitory components generate transient oscillations when propagation delays are taken into account. This figure provides a visual representation of the phenomenon and enhances the clarity of our findings.

      2) In Figure 3, two motifs (III and EII) are explored to demonstrate the validity of the results across different parameters. Delays don't seem to play a disruptive role in these two cases, but the results seem to be different for other motifs not considered here. Aside from the examples mentioned above, I can imagine how a motif of EEE (i.e. a circle of three excitatory Wilson-Cowan neurons) would display oscillations when delays are included, as the activation would 'circulate' along the ring. However, this EEE motif has an even number of inhibitory units (or perhaps zero is considered an exception, but if so it's not mentioned in the text).

      We thank the reviewer for this observation regarding Figure 3. Indeed, the impact of delays may differ for other motifs not considered in our study. For example, as the reviewer has correctly anticipated, a motif of EEE (a circular network of three excitatory Wilson-Cowan neurons) would exhibit oscillations when delays are included, as activation could 'circulate' along the ring.

      To address this concern,we have performed new simulations (added as a new supplementary figure supplement 3-2). As illustrated in figure supplement 3-2, oscillations may indeed arise in the EEE motif when delays are introduced. However, these oscillations will eventually dissipate – at least with our settings.

      3) Figures 1b, 1c, and 4e display interesting results, but these are absent from the main text. Please include the description of those results. Particularly the case of Figs 1b and 1c seems very relevant to understanding the main results in the context of more complex networks, in which multiple loops with odd and even numbers of inhibitory units would coexist in the network. Does the number of odd-inhibitory loops in a given network affect somehow the power or frequency of the resulting network oscillations? It would be interesting to show this.

      Indeed, we did not explain Figs 1b,c and 4e properly. Now we have revised the manuscript in the following way to incorporate these results:

      In lines 124-128, we added the following text to introduce the concept: "We can generalize these results to cycles of any size, categorizing them into two types based on the count of their inhibitory connections in one direction (referred to as the odd cycle rule, as illustrated in Fig. 1b). More complex networks can also be decomposed into cycles of size 2…N (where N is number of nodes), and predict the ability of the network to oscillate (as shown in Fig. 1c)" In line 298, we included the following text to highlight the relevant result: "Next, we removed the STN output (equivalent to inhibition of STN), the Proto-D2-Arky subnetwork generated oscillations for weak positive inputs to the D2-SPNs (Fig.4e, bottom)."

      How the number of odd/even loops affect the frequency is an interesting question. Intuitively there should be a relation between the two. However, a complete treatment of this question is beyond the scope of the manuscript but we think that in a network with identical node properties, more odd cycles should imply higher oscillation power.

      4) The cortico-BG model is focused on how inactivating STN could suppress (or not) beta oscillations, following experimental observations. However, besides mechanisms for extinguishing oscillations, it would be interesting to see if the progressive emergence of pathological beta oscillations could be explained by the modification of some of the nodes in the model (for example, explicitly mimicking the loss of dopaminergic neurons in the substantia nigra). This could be a very interesting additional figure in the main text.

      This is an interesting suggestion. Something similar has been already done – e.g. Kumar et al. (2010) showed that progressive increase of inhibition of GPe can lead to oscillations. Similarly Holgado et al. (2008) showed how progressive change in the mutual connectivity between STN and GPe can cause oscillations. More recently, Ortone et al. (PloS Comp. Biol 2023) and Azizpour et al. (2023 Bioarxiv) have also shown the effect of progressive change in individual node properties on oscillations in basal ganglia using numerical simulations. Our work in a way provides the theoretical backing to their work. Therefore, we think it is not necessary to again show these results in our model. Instead we have cited these papers. Lines 392-396

      5) I observed some grammatical inconsistencies in the text, some of them are indicated below. I would suggest carefully going through the text to correct those issues or seeking help with editing.

      -line 32 "...which can closely capture the neural population dynamics". Which population dynamics? Do the authors refer to general neural dynamics?

      -line 33 "long term behavior" -> long-term behavior

      -line 68 "given the ionic channel composition" -> "given its ionic channel composition"

      We apologize for the grammatical inconsistencies in our manuscript. We have made the necessary corrections to improve the clarity and accuracy of our text.

      Reviewer #3 (Recommendations For The Authors):

      This manuscript is useful for analytically showing that a cyclic network of threshold-linear neural populations can only oscillate if it has an odd number of inhibitory nodes with strong enough connections. Establishing this result, which holds under rather narrow assumptions, relies on standard tools from dynamical system theory. I find the strength of support for this result to be incomplete for the reasons detailed below:

      Although the mathematical arguments used appear to be correct, the manuscript lacks in rigor and clarity. For instance, the main result presented in theorem 2 is stated in a very unclear fashion: aside from the oddity of the number of inhibitory nodes, there are two conditions to check, which determines four cases. This can be explained in a much more straightforward way without introducing four relations in equations 4-7.

      We acknowledge the reviewer’s concern regarding the presentation of the main result in Theorem 2.

      We would like to emphasize that the introduction of four relations in equations 4-7 was intended to provide a detailed and transparent exposition of the conditions for the main result. While we understand that this approach may appear less straightforward, it allows for a more comprehensive understanding of the underlying logic and the multiple factors influencing the outcomes.

      However, we are open to suggestions for more concise and clear ways to express these conditions if the reviewer has specific recommendations or if there are alternative approaches that the reviewer believes would be more effective in conveying the information.

      Moreover, equation 3 in that same theorem is clearly wrong.

      We sincerely apologize for the typographical error in equation 3 within the same theorem. We thank the reviewer for noticing this. We have revised the text to rectify this mistake. The equation has now been corrected to ensure its accuracy.

      The proof of theorem 2 relies on standard linear algebra and can be improved as well: there are typos, approximations, and missing words (see line 664). The rigor of the exposition is also unsatisfactory. For instance, the proof of Lemma 1 ends with the sentence: "Similarly as before, the convergence of the dynamics driven by the left and right terms ends the proof". I don't know what this means.

      We thank the reviewer for the comments and suggestions. We have made the necessary adjustments to enhance the rigor and clarity of our mathematical reasoning in the revised manuscript.

      In line 644, we have provided clarification for the sentence you found unclear. The revised version now offers a more precise explanation that should help in understanding the proof.

      At the same time, the intuitive arguments presented in the main text are vague at best and do not really help grasping the possible generalizability of the results. For instance, I do not understand the message of panel B in Figure 2 and there seems to be no explanation about it in the main text.

      The main purpose of Figure 2B is to offer a visual representation of the concept and to serve as an aid for readers who may prefer a graphical illustration over extensive equations. While we understand that the figure may not provide a complete explanation on its own, it is intended to complement the text and mathematical content presented in the main text. In the revised version we have added the explanation of Figure 2B.

      Aside from the analytical result, most of the paper consists in simulating networks with distinct inhibitory cyclic structure to validate the theoretical argument. I do not find this approach particularly convincing due to the qualitative nature of the numerical results presented. There is little quantitative analysis of the network structure in relation to the emergence of oscillations. It is also hard to judge whether the examples discussed are cherry picked or truly representative of a large class of dynamics.

      The reviewer has a valid concern about numerical simulations and qualitative nature of the results. We would like to provide some perspective on our approach.

      In our paper, the primary focus is on the mathematical proof, which rigorously establishes the existence of our results. However, we understand that numerical simulations are valuable for illustrating the applicability of the theoretical framework and providing insights into the practical implications.

      If we get into the quantitative description of all the results, the manuscript will become prohibitively long. We acknowledge that there is a balance to be struck between theory and numerical examples in a research paper. We believe that, in conjunction with the mathematical proof, the numerical simulations serve the purpose of illustrating the existence of our results in specific examples. While we cannot provide an exhaustive exploration of all possible network structures, we have chosen representative cases to demonstrate the applicability of our findings. Some of these are already provided in figure supplements S3-1 and S3-3. In the absence of specific suggestions from the reviewer we would like to leave it as is.

      Moreover, the authors apply their cycle analysis to real-world networks by considering cycles of inhibitory nodes independently, whereas the same nodes can belong to several cycles. I find it hard to believe that considering these cycles independently should be enough to make predictions about the emergence of oscillations, as these cycles must interact with one another via shared nodes. I do not understand the color coding used to mark distinct cycles in supplementary figures. There is also not enough information to understand figures in the main text. For instance, I do not understand what the grids are representing in panel B, Figure 4.

      We have clarified the color coding and added more information to understand the figures. We appreciate the reviewer’s concern about our application of cycle analysis to real-world networks and the clarity of our figures. It is not a matter of belief – we have provided a mathematical proof and complemented that with illustrative examples from real-world networks i.e. cortico-basal ganglia network with both rate-based and spiking neurons. Clearly our results hold.

      Regarding the color coding in supplementary figures, we have revised the color scheme to make it more intuitive and informative in caption of figure 4: we use different colors to mark potential oscillators in each motif in BG, and each color means an oscillator from panel a. For more details, see figure supplements 4-1–4-6. The colors now represent distinct cycles more clearly, helping readers better interpret the figures.

    1. Reviewer #1 (Public Review):

      Summary & Assessment:

      The catalytic core of the eukaryotic decapping complex consists of the decapping enzyme DCP2 and its key activator DCP1. In humans, there are two paralogs of DCP1, DCP1a, and DCP1b, that are known to interact with DCP2 and recruit additional cofactors or coactivators to the decapping complex; however, the mechanisms by which DCP1 activates decapping and the specific roles of DCP1a versus DCP1b, remain poorly defined. In this manuscript, the authors used CRISPR/Cas9-generated DCP1a/b knockout cells to begin to unravel some of the differential roles of human DCP1a and DCP1b in mRNA decapping, gene regulation, and cellular metabolism. While this manuscript presents some new and interesting observations on human DCP1 (e.g. human DCP1a/b KO cells are viable and can be used to investigate DCP1 function; only the EVH1 domain, and not its disordered C-terminal region which recruits many decapping cofactors, is apparently required for efficient decapping in cells; DCP1a and b target different subsets of mRNAs for decay and may regulate different aspects of metabolism), there are several major issues that undercut some of the main conclusions of the paper, and some key claims that are incompletely or inconsistently supported by the presented data.

      Strengths & well-supported claims:

      • Through in vivo tethering assays in CRISPR/Cas9-generated DCP1a/b knockout cells, the authors show that DCP1 depletion leads to significant defects in decapping and the accumulation of capped, deadenylated mRNA decay intermediates.

      • DCP1 truncation experiments reveal that only the EVH1 domain of DCP1 is necessary to rescue decapping defects in DCP1a/b KO cells.

      • RNA and protein immunoprecipitation experiments suggest that DCP1 acts as a scaffold to help recruit multiple decapping cofactors to the decapping complex (e.g. EDC3, DDX6, PATL1 PNRC1, and PNRC2), but that none of these cofactors are essential for DCP2-mediated decapping in cells.

      • The authors investigated the differential roles of DCP1a and DCP1b in gene regulation through transcriptomic and metabolomic analysis and found that these DCP1 paralogs target different mRNA transcripts for decapping and have different roles in cellular metabolism and their apparent links to human cancers. (Although I will note that I can't comment on the experimental details and/or rigor of the transcriptomic and metabolomic analyses, as these are outside my expertise.)

      Weaknesses & incompletely supported claims:

      1) A central mechanistic claim of the paper is that "DCP1a can regulate DCP2's cellular decapping activity by enhancing DCP2's affinity to RNA, in addition to bridging the interactions of DCP2 with other decapping factors. This represents a pivotal molecular mechanism by which DCP1a exerts its regulatory control over the mRNA decapping process." Similar versions of this claim are repeated in the abstract and discussion sections. However, this appears to be entirely at odds with the observation from in vitro decapping assays with immunoprecipitated DCP2 that showed DCP1 knockout does not significantly affect the enzymatic activity of DCP2 (Figures 2B-D; I note that there may be a very small change in DCP2 activity shown in panel C, but this may be due to slightly different amounts of immunoprecipitated DCP2 used in the assay, as suggested by panel D). If DCP1 pivotally regulates decapping activity by enhancing RNA binding to DCP2, why is no difference in decapping activity observed in the absence of DCP1? Furthermore, the authors show only weak changes in relative RNA levels immunoprecipitated by DCP2 with versus without DCP1 (~2-3 fold change; consistent with the Valkov 2016 NSMB paper, which shows what looks like only modest changes in RNA binding affinity for yeast Dcp2 +/- Dcp1). Is the argument that only a 2-3 fold change in RNA binding affinity is responsible for the sizable decapping defects and significant accumulation of deadenylated intermediates observed in cells upon Dcp1 depletion? (and if so, why is this the case for in-cell data, but not the immunoprecipitated in vitro data?)

      The authors acknowledge this apparent discrepancy between the in vitro DCP2 decapping assays and in-cell decapping data, writing: "this observation could be attributed to the inherent constraints of in vitro assays, which often fall short of faithfully replicating the complexity of the cellular environment where multiple factors and cofactors are at play. To determine the underlying cause, we postulated that the observed cellular decapping defect in DCP1a/b knockout cells might be attributed to DCP1 functioning as a scaffold." This is fair. They next show that DCP1 acts as a scaffold to recruit multiple factors to DCP2 in cells (EDC3, DDX6, PatL1, and PNRC1 and 2). However, while DCP1 is shown to recruit multiple cofactors to DCP2 (consistent with other studies in the decapping field, and primarily through motifs in the Dcp1 C-terminal tail), the authors ultimately show that *none* of these cofactors are actually essential for DCP2-mediated decapping in cells (Figures 3A-F). More specifically, the authors showed that the EVH1 domain was sufficient to rescue decapping defects in DCP1a/b knockout cells, that PNRC1 and PNRC2 were the only cofactors that interact with the EVH1 domain, and finally that shRNA-mediated PNRC1 or PNCR2 knockdown has no effect on in-cell decapping (Figures 3E and F). Therefore, based on the presented data, while DCP1 certainly does act as a scaffold, it doesn't seem to be the case that the major cellular decapping defect observed in DCP1a/b knockout is due to DCP1's ability to recruit specific cofactors to DCP2.

      So as far as I can tell, the discrepancy between the in vitro (DCP1 not required) and in-cell (DCP1 required) decapping data, remains entirely unresolved. Therefore, I don't think that the conclusions that DCP1 regulates decapping by (a) changing RNA binding affinity (authors show this doesn't matter in vitro, and that the change in RNA binding affinity is very small) or (b) by bridging interactions of cofactors with DCP2 (authors show all tested cofactors are dispensable for robust in-cell decapping activity), are supported by the evidence presented in the paper (or convincingly supported by previous structural and functional studies of the decapping complex).

      2) Related to the RNA binding claims mentioned above, are the differences shown in Figure 3H statistically significant? Why are there no error bars shown for the MBP control? (I understand this was normalized to 1, but presumably, there were 3 biological replicates here that have some spread of values?). The individual data points for each replicate should be displayed for each bar so that readers can better assess the spread of data and the significance of the observed differences. I've listed these points as major because of the key mechanistic claim that DCP1 enhances RNA binding to DCP2 hinges in large part on this data.

      3) Also related to point (1) above, the kinetic analysis presented in Figure 2C shows that the large majority of transcript is mostly decapped at the first 5-minute timepoint; it may be that DCP2-mediated decapping activity is actually different in vitro with or without DCP1, but that this is being missed because the reaction is basically done in less than 5 minutes under the conditions being assayed (i.e. these are basically endpoint assays under these conditions). It may be that if kinetics were done under conditions to slow down the reaction somewhat (e.g. lower Dcp2 concentration, lower temperatures), so that more of the kinetic behavior is captured, the apparent discrepancy between in vitro and in-cell data would be much less. Indeed, previous studies have shown that in yeast, Dcp1 strongly activates the catalytic step (kcat) of decapping by ~10-fold, and reduces the KM by only ~2 fold (Floor et al, NSMB 2010). It might be beneficial to use purified proteins here (only a Western blot is used in Figure 2D to show the presence of DCP2 and/or DCP1, but do these complexes have other, and different, components immunoprecipitated along with them?), if possible, to better control reaction conditions.

      This contradiction between the in vitro and in-cell decapping data undercuts one of the main mechanistic takeaways from the first half of the paper. This needs to be addressed/resolved with further experiments to better define the role of DCP1-mediated activation, or the mechanistic conclusions significantly changed or removed.

      4) The second half of the paper compares the transcriptomic and metabolic profiles of DCP1a versus DCP1b knockouts to reveal that these target a different subset of mRNAs for degradation and have different levels of cellular metabolites. This is a great application of the DCP1a/b KO cells developed in this paper and provides new information about DCP1a vs b function in metazoans, which to my knowledge has not really been explored at all. However, the analysis of DCP1 function/expression levels in human cancer seems superficial and inconclusive: for example, the authors conclude that "...these findings indicate that DCP1a and DCP1b likely have distinct and non-redundant roles in the development and progression of cancer", but what is the evidence for this? I see that DCP1a and b levels vary in different cancer cell types, but is there any evidence that these changes are actually linked to cancer development, progression, or tumorigenesis? If not, these broader conclusions should be removed.

      5) The authors used CRISPR-Cas9 to introduce frameshift mutations that result in premature termination codons in DCP1a/b knockout cells (verified by Sanger sequencing). They then use Western blotting with DCP1a or DCP1b antibodies to confirm the absence of DCP1 in the knockout cell lines. However, the DCP1a antibody used in this study (Sigma D5444) is targeted to the C-terminal end of DCP1a. Can the authors conclusively rule out that the CRISPR/Cas-generated mutations do not result in the production of truncated DCP1a that is just unable to be detected by the C-terminally targeted antibody? While it is likely the introduced premature termination codon in the DCP1a gene results in nonsense-mediated decay of the resulting transcript, this outcome is indeed supported by the knockout results showing large defects in cellular decapping which can be rescued by the addition of the EVH1 domain, it would be better to carefully validate the success of the DCP1a knockout and conclusively show no truncated DCP1a is produced by using N-terminally targeted DCP1a antibodies (as was the case for DCP1b).

      Some additional minor comments:

      • More information would be helpful on the choice of DCP1 truncation boundaries; why was 1-254 chosen as one of the truncations?<br /> • Figure S2D is a pretty important experiment because it suggests that the observed deadenylated intermediates are in fact still capped; can a positive control be added to these experiments to show that removal of cap results in rapid terminator-mediated degradation?

    1. We have, as a bedrock value in our society, long agreed on thevalue of open access to information, and recognize the problems thatarise with attempts to restrict access to and development of knowledge.

      Many academics and modern people may think this way, but it is far from a "bedrock value".

      In many indigenous cultures knowledge was carefully sectioned and cordoned off.

      And as we know that knowledge itself is power (ipsa scientia potestas est - Francis Bacon) many people have frequently cordoned off access to information.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study advances our understanding of the forces that shape the genomic landscape of transposable elements. By exploiting both long-read sequencing of mutation accumulation lines and in vivo transposition assays, the authors offer compelling evidence that structural variation rather than transposition largely shapes transposable element copy number evolution in budding yeast. The work will be of interest to the transposable element and genome evolution communities.

      Public Reviews:

      Reviewer #1 (Public Review):

      Henault et al build on their own previous work investigating the longstanding hypothesis that hybridization between divergent populations can activate transposable element mobilization (transposition). Previously they created crosses of increasing sequence divergence, using both intra- and inter-species hybrids, and passaged them neutrally for hundreds of generations. Their previous work showed that neither hybrids isolated from natural environments nor hybrids from their mutation accumulation lines showed consistent evidence of increased transposable element content. Here, they sequence and assemble long-read genomes of 127 of their mutation-accumulation lines and annotate all existing and de novo transposable elements. They find only a handful of de novo transposition events, and instead demonstrate that structural variation (ploidy, aneuploidy, loss of heterozygosity) plays a much larger role in the transposable element load in a given strain. They then created transposable element reporter constructs using two different Ty1 elements from S. paradoxus lineages and measured the transposition rate in a number of intraspecific crosses. They demonstrate that the transposition rate is dependent on both the Ty1 sequence and the copy number of genomic transposable elements, the latter of which is consistent with what has been observed in the literature on transposable element copy number control in Saccharomyces. To my knowledge, others have not directly tested the effect of Ty1 sequence itself (have not created diverse Ty1 reporter constructs), and so this is an interesting advance. Finally, the authors show that mitotype has a moderate effect on transposition rate, which is an intriguing finding that will be interesting to explore in future work.

      This study represents a large effort to investigate how genetic background can influence transposable element load and transposition rate. The long read sequencing, assembly, and annotation, and the creation of these reporter constructs are non-trivial. Their results are straightforward, well supported, and a nice addition to the literature.

      The authors state that the results from their current work support results taken from their previous study using short-read sequencing data of the same lines. The argument that follows is whether the authors gained anything novel from long-read sequencing. I would like to see the authors make a stronger argument for why this new work was necessary, and a more detailed view of similarities or differences from their previous study (when should others choose to do long read vs. short read of evolved lines?).

      We thank the reviewer for the suggestion. While we initially aimed to justify the relevance and novelty of the current in relation to our previous study, we understand that this justification may not have been strong enough.

      In the second paragraph of the introduction, we explain how the multidimensional nature of TE load makes it more complex to characterize that simply reporting the abundance of a given TE family in a given genome. We added the following concluding sentence to further emphasize the importance of long reads in TE-focused genome inference:

      “As such, ongoing technological and computational advances in genome inference, including long-read sequencing, will certainly be key to getting a detailed understanding of the dynamics of TEs and the underpinning evolutionary forces.”

      In the penultimate introductory paragraph, we summarize our previous work from 2020 and highlight that the evolution of Ty contents in MA lines was inferred from aggregate measures of genomic abundance of TE families using short reads. We then make the point that combinations of multiple SVs could affect the landscape of TEs in ways that are not reflected by crude short-read measures. We added the following sentence to further emphasize this point and contrast it with the necessity of using more powerful methodologies for genome resolution:

      “Under this scenario, measuring Ty family abundance would yield no significant net change, and the dissection of the underlying SVs using short reads could often be challenging.”

      Relatedly, the authors should report the rates of structural variants that they observe. How are these results similar/different from other mutation-accumulation work in S. cerevisiae?

      Since this work does not attempt to provide an exhaustive report of all the SVs in the MA lines, but rather focus on attributing an SV type to individual loci occupied by TEs, we cannot include these estimates, excepted for de novo transposition itself (see below). We added the following sentence to the Results section on the classification of Ty loci by SV types:

      “We note that the current methodology does not aim at providing an exhaustive quantification of all SVs in the MA lines, as previously done for some SV types (Marsit et al., 2021), but focuses solely on loci containing Ty elements.”

      We added estimates of the average retrotransposition rate in the MA experiment based on the number of de novo insertions detected in the MA lines genomes.

      Figure 4:

      “The average retrotransposition rates estimated from the counts of de novo insertions (per line per generation per element) are the following: CC1, 1.0✕10-5; CC2, 4.9✕10-6; CC3, 7.6✕10-6; BB1, 1.5✕10-5; BC2, 1.7✕10-5; BA1, 6.5✕10-6; BA2, 2.2✕10-5; BSc1, 3.6✕10-5.”

      We added the following paragraph in the Discussion section to specifically discuss these estimates in relation to the in vivo measurements.

      “We note that while the CC crosses tend to have the lowest retrotransposition rates as estimated from the de novo insertions (~1✕10-5 per line per generation per element; Figure 4), these values are several orders of magnitude higher than the in vivo measures in SpC backgrounds. The discrepancy between these estimates could be due to uncharacterized biases inherent to each method. They could also be linked to differences between the parental genotypes used to generate the MA crosses and the fluctuation assays. One major difference is the use of ade2 genotypes in the MA parents, a strategy that was initially adopted to provide a marker for the loss of mitochondrial respiration (Joseph and Hall, 2004; Lynch et al., 2008). It has been shown that the induction of adenine starvation through minimal adenine concentration in the medium and deletion of ADE2, which inactivates the adenine de novo biosynthesis pathway, increases Ty1 transcript levels (Todeschini et al., 2005), resulting in higher transposition rates. Rich complex medium like the one that was used for the MA experiment (YPD) can exhibit substantial variation in adenine concentration (VanDusen et al., 1997), and adenine can quickly become the limiting nutrient for ade2 strains (Kokina et al., 2014). Thus, we cannot exclude that the choice of initial ade2 genotypes could have inflated the transposition rates in the MA experiment.”

      Since the authors show a small, but consistent influence of mitotype on transposition rates, adding further evidence for the role of mtDNA in regulating transposition, I'm curious what the transposition rate of a p0 strain is. I think including these results could make this observation more compelling.

      We agree that measuring in vivo transposition rates in ρ0 backgrounds would be an interesting avenue. However, there is a large distinction between having non-functional mitochondrial respiration in ρ0 strains and inheriting diverse functional mtDNA haplotypes. The effects we show are all linked to the reciprocal inheritance of intact mtDNAs, producing ρ+ strains that are all respiration-competent, as shown by our growth confirmations on non-fermentable carbon sources for all the diploid backgrounds generated. While potentially interesting, adding transposition rates measures for the ρ0 backgrounds seems hard to justify in the context of our results.

      Reviewer #2 (Public Review):

      This is an interesting follow-up study that uses long-read sequencing to examine previously constructed mutation accumulation lines between wild populations of S. cerevisiae and S. paradoxus. They also complement this work with reporter assays in hybrid backgrounds. The authors are attempting to test the hypothesis that hybridization leads to genome shock and unrestrained transposition. The paper largely confirms previous results (suggesting hybridization does not increase transposition) that are well cited and discussed in the paper, both from this group and from the Smukowski Heil/Dunham group but extends them to a new set of species/hybrids and with some additional resolution via the long read sequencing. The paper is well written and clear and I have no serious complaints.

      In the abstract, the authors make three primary claims:

      Structural variation plays a strong role in TE load.

      Transposition plays only a minor role in shaping the TE landscape in MA lines.

      Transposition rates are not increased by hybridization but are affected by genotype-specific factors.

      I found all three claims supported, albeit with some minor questions below:

      Structural variation plays a strong role in TE load.

      Convinced of this result. However:

      Line 185-187/Figure 3C: I'm curious given that the changes in Ty count are so often linked to changes in gross DNA sequence whether the count per total DNA sequence is actually changing on average in these genomes. Ie., does hybridization tend to increase TE count via CNV or does hybridization tend to increase DNA content in the MA lines and TEs come along for the ride?

      The Ty content definitely “rides along” with the rest of the genome that is affected by retrotransposition-unrelated SVs. To further highlight this point, we added a panel (E) to Figure 3 in which we correlate the net Ty copy number change (same as panel D, formerly C) to the corresponding genome size, which reflects the amount of DNA lost/gained by all SV types. We added the following to the results section:

      “The distributions of net Ty CN change per MA line showed that most crosses had significant gains (Figure 3D), suggesting that Ty load can often increase as a result of random genetic drift. Some (but not all) of these crosses also exhibited significant increases in genome size after evolution (Supplemental Figure S7A). The net Ty CN changes per MA line subgenome were globally correlated to the corresponding changes in subgenome size (Figure 3E). Even after excluding polyploid lines (which have the largest changes in both Ty CN and genome size), we found a significant relationship between the two variables (mixed linear model with random intercepts and slopes for MA crosses, P-value=3.71✕10-9; Supplemental Figure S7B), indicating that SVs affecting large portions of the genome have a substantial impact on the Ty landscape.”

      One question about ploidy (lines 175-177):

      Both aneuploidy and triploidy seem easy to call from this data. A 3:1 tetraploidy as well. However, in Figure 2B there are tetraploids that are around the 1:1 line. How are the authors calling ploidy for these strains? This was not clear to me from the text.

      This detail was indeed missing from the manuscript. The ploidy level of all MA lines was previously measured by DNA staining and flow cytometry, and the ploidy level of the subgenomes of each polyploid MA line was previously inferred from short-read sequencing. We modified the figure captions and the main text to include this along with the corresponding references:

      Figure 2:

      “The ploidy level of each line was previously determined by DNA staining and flow cytometry (Charron et al., 2019; Marsit et al., 2021).”

      Main text:

      “The ratio of classified bases per subgenome was consistent with the corresponding ploidy levels: triploid BC lines had two copies of the SpC subgenome, while tetraploid lines had both SpC subgenomes duplicated (Charron et al., 2019; Marsit et al., 2021) (Figure 2B).”

      “Finally, we used the ploidy level of each MA line subgenome as previously measured by flow cytometry and short-read sequencing (Charron et al., 2019; Marsit et al., 2021).”

      Reviewer #3 (Public Review):

      Henault et al. address the important open question of whether hybridization could trigger TE mobilization. To do this they analysed MA lines derived from crosses of Saccharomyces paradoxus and Saccharomyces cerevisiae using long-read sequencing. These MA lines were already analysed in a previous publication using Illumina short-read data but the novelty of this work is the long-read sequencing data, which may reveal previously missed information. It is an interesting message of this study that hybridization between the two species did not lead to much TE activity. Due to this low activity, the authors performed an additional TE activity assay in vivo to measure transposition rates in hybrid backgrounds. The study is well written and I cannot spot any major problems. The study provides some important messages (like the influence of the genotype and mitochondrial DNA on transposition rates).

      Major comments

      • What I miss the most in this work is the perspective of the host defence against TEs in Saccharmoces. Based on such a mechanistic perspective, why do the authors think that hybridization could lead to a TE reactivation? For example, in Drosophila small RNAs important for the defence against a TE, are solely maternally transmitted. Hybrid offspring will thus solely have small-RNAs complementary to the TEs of the mother but not to the TEs of the father, therefore a reactivation of the paternal TEs may be expected. I was thus wondering, what is the situation in yeast. Why would we expect an upregulation of TEs? Without such a mechanistic explanation the hypothesis that TEs should be upregulated in hybrids is a bit vague, based on a hunch.

      We agree with the reviewer that in the first version of the manuscript, the justification for the investigation of the reactivation hypothesis in the first place was not self-sufficient and relied too much on our previous work, upon which this article builds. We extensively remodeled the introduction to better justify the investigation of this hypothesis in the context of the current knowledge on the regulation of Ty elements in Saccharomyces.  

      Reviewer #1 (Recommendations For The Authors):

      It's interesting that the net change in transposable element copy number in mutation accumulation lines is either insignificant or gain, and never a significant loss. I think this could make a nice discussion point regarding the roles of drift and selection on TE load.

      We thank the reviewer for the suggestion and agree that this is an interesting perspective that we did not explore in the first version of the manuscript. We thus included a short discussion point in the Results:

      “The distributions of net Ty CN change per MA line showed that most crosses had significant gains (Figure 3D), suggesting that Ty load can often increase as a result of random genetic drift.”

      We also added the following paragraph to the discussion section:

      “Our experiments illustrate how under weakened natural selection efficiency, TE load can increase in hybrid genomes by the action of transposition-unrelated SVs. This offers a nuanced perspective on the classical interpretation of the transposition-selection balance model (Charlesworth et al., 1994; Charlesworth and Langley, 1989), in which increased TE load would be predominantly driven by the relaxation of purifying selection against TE insertions generated by de novo transposition. Our results suggest that SVs arising in the context of hybridization can act as a significant source of TE insertion polymorphisms which natural selection can purge more or less efficiently, depending on the population genetic context. This is closely related to the idea that sexual reproduction could favor the spread of TE families, contributing to their evolutionary success (Hickey, 1982; Zeyl et al., 1996). Since the insertion polymorphisms that contribute to increase TE load mostly originate from standing genetic variation, they could be less deleterious and thus harder for natural selection to purge efficiently.”

      The point about the role of LOH in TE load is cool!

      We thank the reviewer for their enthusiasm, it is one of our favorite results as well.

      Figure 1: Add a figure component of the green box and label it Ty1 or TE.

      We modified Figure 1 accordingly.

      Figure 2C: what is the assembly size ratio?

      We added the following sentence to the figure caption to clarify what we define as assembly size ratio:

      “Assembly size ratio refers to the ratio of subgenome assembly size to the corresponding parental assembly size.”

      Something cut off in the N50 plot axis

      Unfortunately, we can’t seem to understand what the reviewer meant with this comment, nothing seems cut out of the figure panel 2C in any of our versions of the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      These are all minor comments/suggestions that the authors can take or leave.

      Line 42: "fuels" should be "fuel".

      Since the verb refers to “source” and not “variants”, we believe it should be at the third person singular.

      Line 43: unclear what the authors mean by "regroup".

      We understand how this phrasing may sound strange. We modified the sentence accordingly:

      “Structural variation is a term that encompasses a broad variety of large-scale sequence alterations”

      Line 51-52: There are a couple of really nice papers that could be cited here from Anna Selmecki's group (Todd et al. 2020, Todd and Selmecki 2019, both in eLife).

      We thank the reviewer for the suggestions, we included some of these references in the manuscript.

      Figure 1: This is a nice cartoon! I'd suggest spelling out LOH here for a truly naive reader.

      We modified the Figure 1 accordingly.

      Figure 3A: One thing that is slightly lost here in the presentation is the relative frequency of the different events because of the changing scales across 3A. I can see why you want to do it this way, but would consider whether there may be a way to present this that makes it more obvious how much more frequent polyploidy is than excision for example.

      We agree with the reviewer that the focus of this visualization is to compare crosses and individual MA lines within SV types, and fails to display the relative importance of each SV type. We solved this by including an additional panel (new 3A) that shows how the number of Ty loci affected by each SV type scales in comparison to others.

      Figure 5: I'm not a fan of the gray bars highlighting the individual strains. This made the graph less intuitively readable for me.

      We tend to agree with the reviewer and rolled back to a previous version of Figure 5 that was lighter on annotations.

      One thing I would like to see in the future from this data (definitely not in this paper) is genome rearrangements within these hybrid MA lines. How often are there structural changes and how often are those changes mediated by repeats including TEs?

      We completely agree with the reviewer that this would be a very interesting avenue, with a distinct (and likely higher) set of challenges at the analysis level compared to simply focusing on TE sequences like we did here. We hope to be able to tackle this goal in the future of this project.

      Reviewer #3 (Recommendations For The Authors):

      • I'm not from the yeast field. But why this focus on the Ty-load? Are Ty's the only active TEs in yeast? Provide some background on the TE landscape in yeast and a justification for focusing on Ty's.

      We agree with the reviewer that this point was only implicit in the introduction. We modified the introductory segment on Saccharomyces yeasts to mention that Ty retrotransposons are the only TEs found in these genomes, thus explaining the exclusive focus on them. It now reads as follows:

      “In the case of Saccharomyces cerevisiae, the only TEs found are five families of long terminal repeat (LTR) retrotransposons families named Ty1-Ty5 (Kim et al., 1998).”

      • 56 I would argue that Petrov et al 2003 is not the best citation for arguing that TEs can lead to genomic rearrangement through ectopic recombination. Petrov solely showed that some long TE families are at lower population frequency than short TE families ones. This could be due to many reasons (e.g. recent activity of long TEs - mostly LTRs) but Petrov interpreted the data as being due to ectopic recombination. Petrov, therefore, did not demonstrate any direct evidence for the involvement of ectopic recombination.

      We agree with the reviewer that this reference is not the best choice to simply support the role of TEs in generating ectopic recombination events and modified the references accordingly.

      • For the assembly the authors used two steps 1) separate the reads based on similarity to a subgenome 2) and assembly the reads from the resulting two sets separately. This is probably the only viable approach, but I'm wondering if this step can lead to some biases (many reads may not be assigned to one sub-genome or assigned to the wrong sub-genome). An alternative, possibly less biased approach, would be to use one of the emerging assemblers that promise to assemble sub-genomes. Maybe discuss why this approach was not pursued.

      We completely agree that our method has some level of bias. We adopted it because it seemed the most appropriate to answer our question, which required to resolve individual TE insertions at the level of single haplotype sequences. One specific challenge of this dataset is that we have a relatively wide range of nucleotide divergence between parental subgenomes in the different MA crosses, from <1% to ~15%. The efficiency of haplotype separation from tools that are not necessarily designed to be tunable with respect to the level of nucleotide divergence seemed uncertain, which is why we opted for a custom methodology. Although read non-classification remains a problem that is hard to solve (and would remain so using orthogonal strategies), we believe that read misclassification is minimized by our stringent criteria for read classification. The goal of this study was not to develop a tool nor to benchmark our approach against existing diploid assembly tools. It yielded phased genome representations that were of sufficient completeness and contiguity to confidently answer our questions, and we believe that pushing the discussion towards technical considerations would fall outside of our main objective.

      • The authors used a decision tree to classify Ty loci. What were the training data? How were the trees validated? Decision tree is a technical term for a classifier in machine learning. I do not think the authors used machine learning in this work, but rather an "an ad-hoc set of rules". The term decision tree in this study is misleading.

      We believe that the term “decision tree” can simply refer to a hierarchy of conditional rules implemented as a classification algorithm. As the reviewer pointed, it is clear from the manuscript that none of the analyses performed include any form of training or fitting of a machine learning classifier. However, we agree that its specific reference to the machine learning classifier can create unnecessary confusion. We thus agree to remove this term from the manuscript and replaced all its instances by “a hierarchy of binary rules”.

      • 272: as it is the CNC explanation does not make a lot of sense to me; some information is missing, is p22 expression increasing with copy numbers?

      Yes, p22 expression correlates positively with the CN of p22-expressing Ty1 elements.

      Why are the two alternative downstream codons important?

      We thought it would be useful to mention the two start codons at this point because later in the discussion, we bring the conservation of the first start codon as an observation consistent with the putative expression of p22 in S. paradoxus. We also thought that it helped clarify the mechanism by which the N-truncated version of the protein is expressed.

      p22 interferes with assembly viral particles when in high copy numbers, but what happens when at low copy numbers, is it essential for retroviral activity? Is it even necessary for the virus or just some garbage product (they mention N-truncated).

      To our knowledge, these questions regarding the potential molecular functions of p22 outside of a retrotransposition restriction factor are still open. We added details to the background on CNC in the Introduction and Results section to help clarify some the points raised:

      Introduction:

      “The best known regulation mechanism in yeast is termed copy number control (CNC) and was characterized in the Ty1 family of S. cerevisiae. This mechanism is a potent copy-number dependent negative feedback loop by which increasing the CN of Ty1 elements strengthens their repression (Czaja et al., 2020; Garfinkel et al., 2003; Saha et al., 2015).”

      Results:

      “The mechanism of negative copy-number dependent self-regulation of retrotransposition (CNC) was characterized in the Ty1 family of S. cerevisiae (Garfinkel et al., 2016). This mechanism relies on the expression of an N-truncated variant of the Ty1 capsid/nucleocapsid Gag protein (p22) from two downstream alternative start codons (Nishida et al., 2015; Saha et al., 2015). p22 expression scales up with the CN of Ty1 elements that encode it (Tucker et al., 2015), which gradually interferes with the assembly of the viral-like particles essential for Ty1 replication (Cottee et al., 2021; Saha et al., 2015). Thus, CNC yields a steep negative relationship between the retrotransposition rate measured with a tester element and the number of Ty1 copies in the genome (Garfinkel et al., 2003; Tucker et al., 2015).”

      • mtDNA influences transposition, is anything known about the mechanism?

      When presenting this result, we make it clear that this finding is not new and was previously observed in S. cerevisiae x S. uvarum hybrids by Smukowski-Heil et al. (2021). In this reference, the authors discuss multiple mechanisms by which mitochondrial biology and mito-nuclear interplay may affect transposition rate, although their data cannot support one specific hypothesis. Our data does not to allow to further dissect the mechanistic basis of the mtDNA effect, not more than the effect of distinct Ty1 natural variants. Since we simply provide new independent evidence for the mtDNA effect, it seems to us that repeating the discussion on putative mechanisms while bringing no support to any given hypothesis would be of limited relevance.

      • During the first reading, I got quite confused about what CN means (copy number as it turned out). I suggest using abbreviations only if absolutely necessary, and I'm not entirely convinced it is necessary here. But I leave this to the discretion of the authors.

      We agree that the excessive use of abbreviations in manuscripts is annoying. However, in this case, “copy number” is used so extensively that its abbreviation seemed to improve the reading experience. Thus, we would prefer to keep it unchanged.

      • Fig 3D: Wilcoxon Rank sum test. It is not clear to me what was tested here? Which data were used?

      We confirm that the statistical test employed is the Wilcoxon signed-rank test, and not the Wilcoxon rank-sum test (also known as Mann-Whitney U-test). The Wilcoxon signed-rank test is used here as a non-parametric one-sample test against the null hypothesis that the distribution is centered around zero.

      • de novo -> italics

      We choose to follow the recommendation of the general style conventions of the ACS guide for scholarly communications not to italicize common Latin terms like “de novo”, “e.g.” and “i.e.”.

    1. Instead of seeking discrete answers to complex problems, experts un-derstand that a given issue may be characterized by several compet-ing perspectives as part of an ongoing conversation in which infor-mation users and creators come together and negotiate meaning.

      This part of the assignment confused me, but now I think I understand better. I realized that sometimes we don't have all the answers, and sometimes the "answers" are just a collaboration of opinions and it is up to you to decide.All the sources I am finding are not direct answers to my question, but they do relate and spark my thoughts and more questions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      The reviewers make some suggestions aimed towards increasing the clarity of the manuscript, and I suggest that the authors examine those carefully. In particular, the figure is difficult to read and could contain additional information to help the reader's interpretation. For example, Reviewer 1 suggests including sample age estimates alongside depth, while Reviewer 3 also notes that there is missing information in the figure. Apart from the figure, Reviewer 1 suggests two additional analysis to help explain the amount of mammoth DNA recovered, which they observe is much higher than previous similar investigations. This would seem to be an important issue to address, given the surprising nature of the findings. In addition to this larger issue, the Reviewer makes a few important suggestions for supplementary material that may be needed to support the authors' statements.

      Some additional recommended edits -- in particular to the text and included references to related studies -- are suggested by Reviewers 2 and 3, and both commented on the lack of a publicly-available data repository. The authors may also wish to comment on or revisit their differential treatment of wooly mammoth vs. wooly rhinoceros samples, though I suspect this has more to do with low read numbers for the rhinos.

      Thank you very much for the positive assessment of our manuscript and clear suggestions for revision. We address these points below.

      Reviewer #1 (Recommendations For The Authors):

      I have a few suggestions that might further improve the manuscript:

      It is difficult for the reader to follow which core slices exactly have been sampled and sequenced. The authors mention 23 samples were taken from core LK-001 and 16 samples from core LK-007. From the text it remains unclear to me what the exact age of each of these samples is. Figure 1 shows the depth at which the LK-001 core was sampled, maybe sample age estimates could be included here.

      Thanks for pointing this out. We have added approximate ages to Figure 1, added the depth range to the text (“from 1.5 to 80 cm”; l. 73-74, caption Figure 1), and reworked the table of the sampling depths in the supplement.

      Line 84-87. The authors mention the retrieval of DNA from several expected Arctic taxa, however no further data regarding these findings is given in the manuscript. It would be useful to report the same numbers for these species as the ones given for the Mammuthus and woolly rhinoceros, which would allow for a comparison of the relative abundance of the DNA between these species. Are the expected Arctic species for instance at much higher (DNA) abundance in the samples? It would also be interesting to know if the authors discovered DNA from extant species that are unlikely to have occurred in the geographic region. A (supplementary)table listing the number of mapped reads to each of the respective mitogenomes for each sequence library would be useful for the reader.

      We added a supplementary table (S8) indicating the numbers of reads assigned to mammals.

      Line 90: I am somewhat amazed by the amount of mammoth DNA the authors recovered from these cores. A total depth of over 400X of the mitogenome is quite extraordinary and I am not aware of any ancient sediment study to date that has retrieved a similar amount of data. For instance, the Wang et al. 2021 paper, which the authors cite, sequenced over 400 samples and did not find any mammoth DNA in 70% of those. For the 30% of samples showing signs of mammoth DNA they retrieved on average 530 sequence reads. In this study the authors find on average ~20.000 reads, in 22 out of the 23 sequence libraries. This makes me wonder if the way the mapping was performed has been too lenient, resulting in possible spurious mappings? To really confirm the authenticity of the mammoth (and woolly rhino data) I would suggest two additional analysis:

      1) Mapping all the sequence libraries to a reference consisting of the complete Asian-elephant genome (for instance https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_024166365.1/), the complete human genome (+mitogenome) and the Asian elephant mitogenome. This could possibly reduce spurious mappings as conserved regions between the genomes are filtered out and could also reduce the possible mapping of NUMTS. If the authors could show that after such a mapping approach a significant number of reads are still assigned to the Asian elephant part (including the mitogenome) of the reference, the reported findings would be strengthened.

      2) I also suggest to construct a mitochondrial haplotype network from the obtained DNA, while also including previously published Asian and African elephants as well as previously published mammoth mitogenomes. If the obtained haplotypes indeed show that they cluster within the known haplotype diversity of mammoth, that would be strong support for the authenticity of the data

      The same analysis could be considered for the woolly rhino data, although the lower read numbers might make this analysis challenging.

      We agree that the amount of mammoth DNA is surprising, which is why we opted for further laboratory experiments for confirmation of the hybridization capture results of the first core, i.e., 1) DNA extraction from a second core of a different lake, 2) a quantitative PCR approach (ddPCR), and 3) metabarcoding. Our results of the highly specific ddPCR and metabarcoding assays confirmed considerable amounts of mammoth DNA in two sediment cores of different lakes, thus we have no doubts regarding the authenticity of the data. Considering the large amount of mammoth DNA, the high number of reads, and particularly the high mitogenome coverage, we argue that the effect of some spurious mapping is negligible and does not affect the main outcome and conclusions of our study. Although we agree that a haplotype network would be interesting, such analyses would stretch beyond the focus of this publication.

      Line 91: The authors mention negative controls (extraction and library blanks) did not produce any reads assigned to mammals. This is quite remarkable, as in my experience low levels of (human)contamination are almost always present in the blanks. Could the authors comment on why they think the blanks did not show any signal of mammalian DNA?

      The hybridization capture enrichment and the filtration and mapping procedures likely eliminated human contamination. Also, the data were mapped against Arctic mammal mitogenomes, which did not include human reference sequences. However, six of the sediment samples contained human sequences (now shown in supplementary table S8), albeit at low read counts (mean = 65)

      Line 97: "mapping suggested that the sequences throughout the core originated from multiple individuals" The authors do not provide any supporting data showing this. I think that an analysis (for instance based on allele frequencies) has to be included in manuscript to support this claim.

      We agree that his claim was not sufficiently supported. We performed further analyses including genomic data of previously retrieved mammoth remains and assigned our data to these haplogroups; the results were added to the main text and are shown as a figure (Fig. 2).

      Line 98: "Signatures of post-mortem DNA decay were comparably minor."

      Do the authors know if the used hybridisation enrichment method can distort the measurement of post-mortem damage? Are for instance reads with C-T substitutions less likely to be captured by the baits?

      To our knowledge, there is no study suggesting that damaged sites are less likely to be captured. In general, the hybridization capture procedure is not overly specific, and studies report that DNA is readily and preferentially captured as long as the difference between baits and DNA is not above 10%.

      Line 100: "The proportions of bases did not suggest a substantial deviation from those in the reference genomes or in the closest extant relative of Mammuthus, the Asian elephant (Elephas maximus)."

      It is not clear to me what the authors mean by this. Could the authors explain how this was measured and what their interpretation of this result is?

      We realize that the sentence was unclear. We meant that the nucleotide composition was similar to that of the reference genomes or the closest extant relative. However, as we do not consider this important for the argument, we have removed this sentence from the manuscript.

      Given the high number of recovered mammoth reads in the samples, it would be interesting to know how much mammoth reads are present in the sample before enrichment capture with the baits. Shotgun sequencing the raw extract of one of the samples with the highest number of mammoth reads might allow for a rough estimate of mammoth DNA abundance compared to the other extant species (e.g. reindeer, Arctic lemming and hare) found in the sample(s). This could give further clarification about the extent of stratigraphy disturbance and its overall effect on the DNA based community reconstruction. However, this is just a suggested additional analysis and not something I believe crucial for supporting the overall findings in this manuscript.

      We fully agree that this would be a highly interesting and informative additional analysis to perform. It was, however, not possible to perform this additional analyses in the course of the current experiments.

      Finally, I could not find a public link to the (sequence)data produced in this study. I strongly encourage the authors to make their data publicly available.

      Thank you for pointing this out. We have added a Data Availability paragraph, including the respective reference.

      Reviewer #2 (Recommendations For The Authors):

      In the Discussion it is mentioned that the reasons for Mammoth extinction are not entirely clear but are largely attributed to sudden climate warming (and add some relevant citations). However, there is also abundant literature that suggest humans also played a role in their extinction (for instance, a recent one, Damien et al. (2022) at Ecology Letters 25: 127-137).

      We agree with the reviewer and have added some the recent citation highlighting the possible influence of humans.

      One possibility to add further interest to this paper would be to conduct a phylogenetic tree with the Mammoth mitogenome(s) retrieved and a reference dataset; it could be interesting to know where do they fall in the phylogeny -already abundant with tens of individuals- and maybe it could be even possible to roughly estimate their date. There are some papers that report many Mammoth mitogenomes, including of course some from Siberia; for instance Chang et al. (2017) at Sci Reports and also Fellow Yates et al. (2017) also at Sci Reports (the latter mainly from Central Europe).

      We are well aware of the amount of mt genomes available for mammoth, and such an analyses would be an interesting addition, potentially also offering the possibility to date the DNA. However, the analyses was hampered and would be less secure for this dataset, as our sequences display quite some variation among each other, suggesting that we have a mix of multiple mt genomes, which we cannot readily distinguish. We thus refrain from this, also because we instead provide multiple lines of evidence for the existence of the mammoth DNA in the surface sediment core (metabarcoding, ddPCR).

      Minor points:

      -Correct wooly to woolly

      Revised.

      -In the sampling description it is not totally clear if the samples were taken at 1 cm each (it is mentioned that core LK-001 is sliced in the field at 1-cm steps for radiometric dating and later it is explained that 23 samples were analyzed from this core, but it is unclear if they represent 23 cm of core)

      -Maybe the authors could briefly define some terms such as "talik"

      Revised.

      Reviewer #3 (Recommendations For The Authors):

      Maybe I missed this but I could not find a data availability statement or the location of the repository

      We have added a Data Availability paragraph, including the respective reference.

      It would be good to see some additional analysis on the distribution of the woolly rhinoceros DNA through the sediment core - like the figure for the mammoth i.e read numbers vs depth.

      We have added to the supplements a table showing the numbers of assigned mammal reads over the core depths (Table S8). However, as rhinoceros reads are considerable rarer in our results, we did not produce a figure.

      Would it be possible to be more explicit about the multiple mammoth individuals, could you calculate a minimum number or haplotypes for example.

      We agree that his claim was not sufficiently supported and added results from additional analyses (incl. Fig. 2). Please see our response above.

      Based on the aim stated in the introduction, the analysis of the Arctic biodiversity of this area is missing, it would be nice to see these result added or maybe the focus needs to be changed for clarity.

      We now explicitly state that this objective pertains to a different study, which is currently still in preparation for publication.

      The single main figure needs a bit more consideration. For example in panel A - there was no information on the transformation performed or what the general trend line refers to. Do the results in panel B refer to all 22 libraries? What is the x-axis in Panel C and what do the coloured lines refer to? Additionally, I think the figure needs to be in higher resolution with increased text size on all axes.

      We revised the figure and the caption for clarity and readability.

      Finally this might be an accidental typo - but when referring to the sample aged at around 8,677 years in text it states this the 36.5 cm sample (line 130 and 192), but the supplementary says this is the 51cm sample (Table S6). This would maybe impact potential conclusions. Would you be able to clarify this.

      Thank you for noting this error, we revised it.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Dubicka and co-workers on calcification in miliolid foraminifera presents an interesting piece of work. The study uses confocal and electron microscopy to show that the traditional picture of calcification in porcelaneous foraminifera is incorrect.

      Strengths:

      The authors present high-quality images and an original approach to a relatively solid (so I thought) model of calcification.

      Weaknesses:

      There are several major shortcomings. Despite the interesting subject and the wonderful images, the conclusions of this manuscript are simply not supported at all by the results. The fluorescent images may not have any relation to the process of calcification and should therefore not be part of this manuscript. The SEM images, however, do point to an outdated idea of miliolid calcification. I think the manuscript would be much stronger with the focus on the SEM images and with the speculation of the physiological processes greatly reduced.

      Reply: We would like to give thanks for all of the highly valuable comments. Prior to our study, we were also convinced that the calcification model of Miliolid (porcelaneous) foraminifera was relatively solid. Nevertheless, our SEM imaging results surprisingly contradicted the old model. The main difference is the in situ biomineralization of calcitic needles that precipitate within the chamber wall after deposition of ACC-bearing vesicles. We agree that our fluorescence studies presented in the paper are not conclusive evidence for the calcification model used by the studied Miliolid species. However, our fluorescent results show that “the old model” (sensu Hemleben et al., 1986) is not completely outdated. Most of the fluorescent imaging data show a vesicular transport of substrates necessary for calcification. This transport is presented by Calcein labelling experiments (Movie 1 that show a high number of dynamic endocytic vesicles of sea water circulation within the cytoplasm. These very fine Calcein-labelled vesicles are most likely responsible for transport and deposition of Ca2+ ions. This is partly consistent with the model presented by Hemleben et al. (1986). We may speculate that calcite nucleation is already occurring within the transported vesicles, but at this stage of research we have no evidence for this phenomenon.

      Further live imaging fluorescence data show autofluorescence of vesicles upon excitation at 405 nm (emission 420–480 nm) associated with acidic vesicles marked by pH-sensitive LysoGlow84, may be a hint indicating association of ACC-bearing vesicles with acidic vesicles. Such spatial association of these vesicles may indicate a mechanism of pH elevation in the vesicles transporting Ca2+-rich gel to the calcifying wall of the new chamber.

      We will do our best to limit the physiological interpretation presented based on fluorescence studies in the revised version of the manuscript. We are convinced that our fluorescent live imaging experiments provide important observations in biomineralizing Miliolid foraminifera, which are still missing in the existing literature. It should be stressed that all the fluorescent experiments and SEM observations were based on specimens constructing and biomineralizing new chambers. All of them belong to the same species and come from the same culture. Due to the aforementioned reasons, it is worthwhile presenting these complimentary results of our study. In the future they may be helpful in further exploration and understanding of all aspects of calcification in foraminifera.

      Reviewer #2 (Public Review):

      Summary:

      Dubicka et al. in their paper entitled " Biocalcification in porcelaneous foraminifera" suggest that in contrast to the traditionally claimed two different modes of test calcification by rotallid and porcelaneous miliolid formaminifera, both groups produce calcareous tests via the intravesicular mineral precursors (Mg-rich amorphous calcium carbonate). These precursors are proposed to be supplied by endocytosed seawater and deposited in situ as mesocrystals formed at the site of new wall formation within the organic matrix. The authors did not observe the calcification of the needles within the transported vesicles, which challenges the previous model of miliolid mineralization. Although the authors argue that these two groups of foraminifera utilize the same calcification mechanism, they also suggest that these calcification pathways evolved independently in the Paleozoic.

      Reply: We would like to acknowledge the review and all valuable comments. We do not argue that Miliolida and Rotallida utilise an identical calcification mechanism, but both groups utilize less divergent crystallization pathways, where mesocrystalline chamber walls are created by accumulating and assembling particles of pre-formed liquid amorphous mineral phase.

      Strengths:

      The authors document various unknown aspects of calcification of Pseudolachlanella eburnea and elucidate some poorly explained phenomena (e.g., translucent properties of the freshly formed test) however there are several problematic observations/interpretations which in my opinion should be carefully addressed.

      Weaknesses:

      1) The authors (line 122) suggest that "characteristic autofluorescence indicates the carbonate content of the vesicles (Fig. S2), which are considered to be Mg-ACCs (amorphous MgCaCO3) (Fig. 2, Movies S4 and S5)". Figure S2 which the authors refer to shows only broken sections of organic sheath at different stages of mineralization. Movie S4 shows that only in a few regions some vesicles exhibit red autofluorescence interpreted as Mg-ACC (S5 is missing but probably the authors were referring to S3). In their previous paper (Dubicka et al 2023: Heliyon), the authors used exactly the same methodology to suggest that these are intracellularly formed Mg-rich amorphous calcium carbonate particles that transform into a stable mineral phase in rotaliid Aphistegina lessonii. However, in Figure 1D (Dubicka et al 2023) the apparently carbonate-loaded vesicles show the same red autofluorescence as the test, whereas in their current paper, no evidence of autofluorescence of Mg-ACC grains accumulated within the "gel-like" organic matrix is given. The S3 and S4 movies show circulation of various fluorescing components, but no initial phase of test formation is observable (numerous mineral grains embedded within the organic matrix - Figures 3A and B - should be clearly observed also as autofluorescence of the whole layer). Thus the crucial argument supporting the calcification model (Figure 5) is missing. There is no support for the following interpretation (lines 199-203) "The existence of intracellular, vesicular intermediate amorphous phase (Mg-ACC pools), which supply successive doses of carbonate material to shell production, was supported by autofluorescence (excitation at 405 nm; Fig. 2; Movies S3 and S4; see Dubicka et al., 2023) and a high content of Ca and Mg quantified from the area of cytoplasm by SEM-EDS analysis (Fig. S6)."

      Reply: We used laser line 405nm and multiphoton excitation to detect ACCs. These wavelengths (partly) permeate the shell to excite ACCs autofluorescence. The autofluorescence of the shells is present as well, but it is not clearly visible in movieS4 as the fluorescence of ACCs is stronger. This may be related to the plane/section of the cell which is shown. The laser permeates the shell above the ACCs (short distance), but to excite the shell CaCO3 around foraminifera in the same three-dimensional section where ACCs are shown, the light must pass a thick CaCO3 area due to the three-dimensional structure of the foraminifera shell. Therefore, the laser light intensity is reduced. In a revised version a movie/image with reduced threshold will be shown.

      2) The authors suggest that "no organic matter was detected between the needles of the porcelain structures (Figures 3E; 3E; S4C, and S5A)". Such a suggestion, which is highly unusual considering that biogenic minerals almost by definition contain various organic components, was made based only on FE-SEM observation. The authors should either provide clearcut evidence of the lack of organic matter (unlikely) or may suggest that intense calcium carbonate precipitation within organic matrix gel ultimately results in a decrease of the amount of the organic phase (but not its complete elimination), alike the pure calcium carbonate crystals are separated from the remaining liquid with impurities ("mother liquor"). On the other hand, if (249-250) "organic matrix involved in the biomineralization of foraminiferal shells may contain collagen-like networks", such "laminar" organization of the organic matrix may partly explain the arrangement of carbonate fibers parallel to the surface as observed in Fig. 3E1.

      Reply: We agree with the reviewer that biogenic minerals should, by definition, contain some organic components. We wrote that "no organic matter was detected between the needles of the porcelain structures” as we did not detect any organic structures based only on our FE-SEM observations. We are convinced that the shell incorporates a limited amount of organic matrix. We will rephrase this part of the text to avoid further confusion.

      3) The author's observations indeed do not show the formation of individual skeletal crystallites within intracellular vesicles, however, do not explain either what is the structure of individual skeletal crystallites and how they are formed. Especially, what are the structures observed in polarized light (and interpreted as calcite crystallites) by De Nooijer et al. 2009? The author's explanation of the process (lines 213-216) is not particularly convincing "we suspect that the OM was removed from the test wall and recycled by the cell itself".

      Reply: Thank you for this comment. We will do our best to supplement our explanations. We are aware of the structures observed in polarized light by De Nooijer et al. (2009). However, Goleń et al. (2022, Protist, https://doi.org/10.1016/j.protis.2022.125886) showed that organic polymers may also exhibit light polarization. Additional experimental studies are needed to distinguish these types of polarization. We will aim to investigate this issue in our future research.

      4) The following passage (lines 296-304) which deals with the concept of mesocrystals is not supported by the authors' methodology or observations. The authors state that miliolid needles "assembled with calcite nanoparticles, are unique examples of biogenic mesocrystals (see Cölfen and Antonietti, 2005), forming distinct geometric shapes limited by planar crystalline faces" (later in the same passage the authors say that "mesocrystals are common biogenic components in the skeletons of marine organisms" (are they thus unique or are they common)? It is my suggestion to completely eliminate this concept here until various crystallographic details of the miliolid test formation are well documented.

      Reply: Our intention was to express that mesocrystals are common biogenic components in the skeletons of marine organisms, however Miliolid needles that form distinct geometric shapes limited by planar crystalline faces are unique type of mesocrystals.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary:

      In this interesting work, the authors investigated an important topical question: when we see travelling waves in cortical activity, is this due to true wave-like spread, or due to sequentially activated sources? In simulations, it is shown that sequential brain module activation can show up as a travelling wave - even in improved methods such as phase delay maps - and a variety of parameters is investigated. Then, in ex-vivo turtle eye-brain preparations, the authors show that visual cortex waves observable in local field potentials are in fact often better explained as areas D1 and D2 being sequentially activated. This has implications for how we think about travelling wave methodology and relevant analytical tools.

      Strengths:

      I enjoyed reading the discussion. The authors are careful in their claims, and point out that some phenomena may still indeed be genuine travelling waves, but we should have a higher evidence bar to claim this for a particular process in light of this paper and Zhigalov & Jensen (2023) (ref 44). Given this careful discussion, the claims made are well-supported by the experimental results. The discussion also gives a nice overview of potential options in light of this and future directions.

      The illustration of different gaussian covariances leading to very different latency maps was interesting to see.

      Furthermore, the methods are detailed and clearly structured and the Supplementary Figures, particularly single trial results, are useful and convincing.

      We are glad the reviewer found our manuscript “interesting”, the questions we raise “important”, our claims “well-supported by the experimental results”, and our methods “detailed and clearly structured”.

      The details of the sequentially activated Gaussian simulations give some useful results, but the fundamental idea still appears to be "sequential activation is often indistinguishable from a travelling wave", an idea advanced e.g. by Zhigalov & Jensen (2023). It takes a while until the (in my opinion) more intriguing experimental results.

      To emphasize the experimental results, we switched between the analytical results and the experimental results. Correspondingly, figure 2 now illustrates the more intriguing experimental results and figure 3 the analytical results. In addition, we added subtitles to the different sections of the results to ease the navigation through the paper and to enable the readers to access the different sections more easily.

      One of the key claims is that the spikes are more consistent with two sequentially activated modules rather than a continuous wave (with Fig 3k and 3l key to support this). Whilst this is more consistent, it is worth mentioning that there seems to be stochasticity to this and between-trial variability, especially for spikes.

      In the revised manuscript we added the reviewer’s comment about stochasticity, and we discuss its possible origins:

      "The transition was also not clear when examining spiking responses in some of the trials (as indicated by high DIP scores, Figure 2K). However, the observation that temporal grouping became more pronounced when using ALSA (a more robust estimate of local excitability) (Figure 2L,N), suggests that high DIP values may result from variability in the spike times of single neurons, and not necessarily from the lack of modular activation. Such issues can be resolved by denser sampling of spiking activity in the tissue."

      Recommendations For The Authors:

      The eye-cortex turtle preparation is not the most common. I would add more context about how specific the results are to this preparation vs how comparable it is to human data.

      We added a sentence explaining the relevance of our preparation: “Finally, while the layered organization of turtle cortex is different than that of mammalian cortex, the basic excitability features of both tissues are similar (Connors and Kriegstein, 1986; Hemberger et al., 2019; Kriegstein and Connors, 1986; Larkum et al., 2008; Shein-Idelson et al., 2017b), and substantial differences in the manner by which field potentials and spikes spread through the tissue are not to be expected.”

      Philosophical question: when does a 'module' become small enough for it to count as a travelling wave? More on this could be added to the discussion. I think we are in the very early days for a true understanding of travelling waves, and I wonder if these sequentially activated modules will functionally correspond to the known cortical segregation, or if it varies by area/task.

      We agree with the reviewer that macroscopic waves could be composed of smaller modules (or single neurons at the smallest scale). Our results suggest that modular patterns can be classified as wave patterns both at large scales (of brain areas) and smaller scales of local neural circuits. Therefore, we believe it is necessary to make this distinction across different scales. We sharpened this point in the first paragraph of the discussion:

      "…We showed that LFP measurements indicative of waves propagating across turtle cortex are underlined by discrete and consecutively activated neuronal populations, and not by a continuously propagating wavefront of spikes (Figure 2). Similarly, activation profiles that resemble continuous travelling waves in EEG simulations can be underlined by consecutive activation of two discrete cortical regions (Figure 1). We replicated these results using an analytical model and demonstrated that a simple scenario of sequentially activated Gaussians can exhibit WLPs with a rich diversity of spatiotemporal profiles (Figure 3). Our results offer insight into the scenarios and conditions for WLP detection by identifying failure points that should be considered when identifying travelling waves and therefore suggest caution when interpreting continuous phase latency maps as microscopically propagating wave patterns. Such failure points may exist both when examining activity at the scale of brain regions (Figure 1) and smaller neural circuits (Figure 2). Therefore, our results suggest that the discrepancy between modular and wave activation should be examined across spatial scales. Specifically, it is not necessarily the case that at the fine grained (single neuron) scale activation patterns are modular, but, following coarse graining, smooth wave patterns emerge. Rather, modular activation may hierarchically exist across scales (Kaiser and Hilgetag, 2010; Meunier et al., 2010) and may be masked by smeared spatial supra-threshold excitability boundaries. Below we discuss these limitations across techniques and their implications.”

      I would advise the authors to focus on the experimental data, perhaps by putting the simulations second, and by putting some of the equation details that are in Methods into the Supplementary Information. Whilst the simulation parameter space is well-explored, the fundamental idea of spreading Gaussians is relatively simple, and the current manuscript organization detracted from the main message for me a little bit.”

      Following the referee’s suggestion, we switched between the section with experimental data and the one with the analytic model (see response to comment 1). In addition, to ease the reading of the methods, we moved the mathematical derivation and related equations to appendix 1.

      Things I thought about that you may also enjoy thinking about: Could we tell something about sequential sources vs travelling waves by the nature of the wave - e.g. shape or dispersion? If some wave properties are conserved whilst travelling, this could be evidence for travelling vs two sources.

      This is a wonderful suggestion. We are currently working on a follow up publication with a new approach to do exactly that! We think that this new body of work is outside the scope of this paper.

      Could synaptic potentials spread like waves, but spikes more in modular bursts? This would also explain the LFP vs spikes difference - maybe travelling waves of EPSPs are there priming the network, 'looking' for suitable modules to activate, which then activate sequentially. The current discussion is quite spike-focused - could some information be in synaptic potentials after all?

      This is an interesting idea with intriguing functional implications. We added this idea to our discussion (see paragraph below). In addition, to emphasize our discussion on synaptic potentials, we reorganized the paragraphs in the discussion to separate between our discussion on sub-threshold excitability (which is mostly synaptic) and supra-threshold excitability which is the focus of the second part of the discussion.

      “Variability in responses may also be explained by differences in propagation mechanisms (Ermentrout and Kleinfeld, 2001; Muller et al., 2018; Wu et al., 2008). Several reports suggest that waves are underlined by propagation along axonal collaterals (Muller et al., 2018, 2014). Both the transmembrane voltage-gated currents excited during action potentials as well as the post-synaptic currents along axonal boutons can potentially contribute to measured signals. However, such waves travel at high propagation speeds and are not compatible with the wide diversity of wave velocities and mechanisms of local neuronal interactions (Ermentrout and Kleinfeld, 2001; Feller et al., 1996). An intriguing possibility is that such axonal waves prime neuronal excitability by sub-threshold inputs that later result in modular supra-threshold activation. The ability to experimentally discriminate between axonal inputs and local spiking excitability (e.g. by reporters with different wavelengths) can potentially resolve such discrepancies.

      Our turtle cortex results (Figure 2) exemplify how contrasting sub-threshold LFP measurements with supra-threshold spiking measurements can yield different conclusions about the nature of activity spread….”

    2. Joint Public Review:

      Summary:

      In this interesting work, the authors investigated an important topical question: when we see travelling waves in cortical activity, is this due to true wave-like spread, or due to sequentially activated sources? In simulations, it is shown that sequential brain module activation can show up as a travelling wave - even in improved methods such as phase delay maps - and a variety of parameters is investigated. Then, in ex-vivo turtle eye-brain preparations, the authors show that visual cortex waves observable in local field potentials are in fact often better explained as areas D1 and D2 being sequentially activated. This has implications for how we think about travelling wave methodology and relevant analytical tools.

      Strengths:

      I enjoyed reading the discussion. The authors are careful in their claims, and point out that some phenomena may still indeed be genuine travelling waves, but we should have a higher evidence bar to claim this for a particular process in light of this paper and Zhigalov & Jensen (2023) (ref 44). Given this careful discussion, the claims made are well-supported by the experimental results. The discussion also gives a nice overview of potential options in light of this and future directions.

      The illustration of different gaussian covariances leading to very different latency maps was interesting to see.

      Furthermore, the methods are detailed and clearly structured and the Supplementary Figures, particularly single trial results, are useful and convincing.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      […] While this does not rule out criticality in the brain, it decidedly weakens the evidence for it, which was based on the following logic: critical systems give rise to power law behavior; power law behavior is observed in cortical networks; therefore, cortical networks operate near a critical point. Given, as shown in this paper, that power laws can arise from noncritical processes, the logic breaks. Moreover, the authors show that criticality does not imply optimal information transmission (one of its proposed functions). This highlights the necessity for more rigorous analyses to affirm criticality in the brain. In particular, it suggests that attention should be focused on the question "does the brain implement a dynamical latent variable model?".

      These authors are not the first to show that slowly varying firing rates can give rise to power law behavior (see, for example, Touboul and Destexhe, 2017; Priesemann and Shriki, 2018). However, to our knowledge they are the first to show crackling, and to compute information transmission in the critical state.

      We thank the reviewers for their thoughtful assessment of our paper.

      We would push back on the assessment that our model ‘has nothing to do with criticality,’ and that we observed ‘signatures of criticality [that] emerge through fundamentally non-critical mechanisms.’ This assessment partially stems from the definition of criticality provided in the Public Comment, that ‘criticality is a very specific set of phenomena in physics in which fundamentally local interactions produce unexpected long-range behavior.’

      Our disagreement is largely focused on this definition, which we do not think is a standard definition. Taking the favorite textbook example, the Ising model, criticality is characterized by a set of power-law divergences in thermodynamic quantities (e.g., susceptibility, specific heat, magnetization) at the critical temperature, with exponents of these power laws governed by scaling laws. It is not defined by local interactions. All-to-all Ising model is generally viewed as showing a critical behavior at a certain temperature, even though interactions there are manifestly non-local. It is possible that, by “local” in the definition, the Public Comment meant that interactions are “collective” and among microscopic degrees of freedom. However, that same all-to-all Ising model is mathematically equivalent to the mean-field model, where criticality is achieved through large fluctuations of the mean field, but not through microscopic interactions.

      More commonly, criticality is defined by power laws and scaling relationships that emerge at a critical value of a parameter(s) of the system. That is, criticality is defined by its signatures. What is crucial in all such definitions is that this atypical, critical state requires fine tuning. For example, in the textbook example of the Ising model, a parameter (the temperature) must be tuned to a critical value for critical behavior to appear. In the branching process model that generates avalanche criticality, criticality requires tuning m=1. The key result of our paper is that all signatures expected for avalanche criticality (power laws, crackling, and, as shown below, estimates of the branching rate m), and hence the criticality itself, appear without fine-tuning.

      As we discussed in our introduction, there are a few other instances of signatures of criticality (and hence of criticality itself) emerging without fine-tuning. The first we are aware of was the demonstration of Zipf’s Law (by Schwab, et al. 2014, and Aitchison et al. 2016), a power-law relationship between rank and frequency of states, which was shown to emerge generically in systems driven by a broadly distributed latent variable. A second example, arising from applications of coarse-graining analysis to neural data (cf., Meshulam et al. 2019; also, Morales et al., 2023), was demonstrated in our earlier paper (Morrell et al. 2021). Thus, here we have a third example: the model in this paper generates signatures of criticality in the statistics of avalanches of activity, and it does so without fine-tuning (cf., Fig. 2-3).

      The rate at which these ‘criticality without fine-tuning' examples are piling up may inspire revisiting the requirement of fine-tuning in the definition of criticality, and our ongoing work (Ngampruetikorn et al. 2023) suggests that criticality may be more accurately defined through large fluctuations (variance > 1/N) rather than through fine-tuning or scaling relations.

      References:

      • Schwab DJ, Nemenman I, Mehta P. “Zipf’s Law and Criticality in Multivariate Data without FineTuning.” Phys Rev Lett. 2014 Aug; doi::101103/PhysRevLett.113.068102,

      • Aitchison L, Corradi N, Latham PE. “Zipf’s Law Arising Naturally When There Are Underlying, Unobserved Variables.” PLOS Computational biology. 2016 12; 12(12):1-32. doi:10.1371/journal.pcbi.1005110

      • Meshulam L, Gauthier JL, Brody CD, Tank DW, Bialek W. “Coarse Graining, Fixed Points, and Scaling in a Large Population of Neurons.” Phys Rev Lett. 2019 Oct; doi: 10.1103/PhysRevLett.123.178103.

      • Morales GB, di Santo S, Muñoz MA. “Quasiuniversal scaling in mouse-brain neuronal activity stems from edge-of-instability critical dynamics.” Proceedings of the National Academy of Sciences. 2023; 120(9):e2208998120.

      • Morrell MC, Sederberg AJ, Nemenman I. “Latent Dynamical Variables Produce Signatures of Spatiotemporal Criticality in Large Biological Systems.” Phys Rev Lett. 2021 Mar; doi: 10.1103/PhysRevLett.126.118302.

      • Ngampruetikorn, V., Nemenman, I., Schwab, D., “Extrinsic vs Intrinsic Criticality in Systems with Many Components.” arXiv: arXiv:2309.13898 [physics.bio-ph]

      Major comments:

      1) For many readers, the essential messages of the paper may not be immediately clear. For example, is the paper criticizing the criticality hypothesis of cortical networks, or does the criticism extend deeper, to the theoretical predictions of "crackling" relationships in physical systems as they can emerge without criticality? Statements like "We show that a system coupled to one or many dynamical latent variables can generate avalanche criticality ..." could be misinterpreted as affirming criticality. A more accurate language is needed; for instance, the paper could state that the model generates relationships observed in critical systems. The paper should provide a clearer conclusion and interpretation of the findings in the context of the criticality hypothesis of cortical dynamics.

      Please see the response to the Public Review, above. To clarify the essential message that the dynamical latent variable model produces avalanche criticality without fine-tuning, we have made revisions to the abstract and introduction. This point was already made in the discussion (first sentence).

      Key sentences changed in the abstract:

      "… We find that populations coupled to multiple latent variables produce critical behavior across a broader parameter range than those coupled to a single, quasi-static latent variable, but in both cases, avalanche criticality is observed without fine-tuning of model parameters. … Our results suggest that avalanche criticality arises in neural systems in which activity is effectively modeled as a population driven by a few dynamical variables and these variables can be inferred from the population activity."

      In the introduction, we changed the final sentence to read:

      "These results demonstrate how criticality in neural recordings can arise from latent dynamics in neural activity, without need for fine-tuning of network parameters."

      2) On lines 97-99, the authors state that "We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from recurrent dynamics locally". This idea is also repeated at the beginning of the Summary section. Perhaps being agnostic isn't such a good idea: it's possible that the recurrent dynamics is in a critical regime, which would just push the problem upstream. Presumably you're thinking of recurrent dynamics with slow timescales that's not critical? Or are you happy if it's in the critical regime? This should be clarified.

      We have amended this sentence to clarify that any latent dynamics with large fluctuations would suffice:

      ”We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from large fluctuations in local recurrent dynamics.”

      3) Even though the model in Equation 2 has been described in a previous publication and the Methods section, more details regarding the origin and justification of this model in the context of cortical networks would be helpful in the Results section. Was it chosen just for simplicity, or was there a deeper reason?

      This model was chosen for its simplicity: there are no direct interactions between neurons, coupling between neurons and latent variables is random, and simulation is straightforward. More complex latent dynamics or non-random structure in the coupling matrices could have been used, but our aim was to explore this model in the simplest setting possible.

      We have revised the Results (“Avalanche scaling in a dynamical latent variable model,” first paragraph) to justify the choice of the model:

      "We study a model of a population of neurons that are not coupled to each other directly but are driven by a small number of dynamical latent variables -- that is, slowly changing inputs that are not themselves measured (Fig.~\ref{fig:fig1}A). We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from large fluctuations in local recurrent dynamics. The model was chosen for its simplicity, and because we have previously shown that this model with at least about five latent variables can produce power laws under the coarse-graining analysis \citep{Morrell2021}."

      We have added the following to the beginning of the Methods section expanding on the reasons for this choice:

      "We study a model from Morrell 2021, originally constructed as a model of large populations of neurons in mouse hippocampus. Neurons are non-interacting, receiving inputs reflective of place-field selectivity as well as input current arising from a random projection from a small number of dynamical latent variables, representing inputs shared across the population of neurons that are not directly measured or controlled. In the current paper, we incorporate only the latent variables (no place variables), and we assume that every cell is coupled to every latent variable with some randomly drawn coupling strength."

      4) The Methods section (paragraph starting on line 340) connects the time scale to actual time scales in neuronal systems, stating that "The timescales of latent variables examined range from about 3 seconds to 3000 seconds, assuming 3-ms bins". While bins of 3 ms are relevant for electrophysiological data from LFPs or high-density EEG/MEG, time scales above 10 seconds are difficult to generate through biophysically clear processes like ionic channels and synaptic transmission. The paper suggests that slow time scales of the latent variables are crucial for obtaining power law behavior resembling criticality. Yet, one way to generate such slow time scales is via critical slowing down, implying that some brain areas providing input to the network under study may operate near criticality. This pushes the problem toward explaining the criticality of those external networks. Hence, discussing potential sources for slow time scales in latent variables is crucial. One possibility you might want to consider is sources external to the organism, which could easily have time scales in the 1-24 hour range.

      As the reviewers note, it is a possibility that slow timescales arise from some other brain area in which dynamics are slow due to critical dynamics, but many other plausible sources exist. These include slowly varying sensory stimuli or external sources, as suggested by the reviewers. It is also possible to generate “effective” slow dynamics from non-critical internal sources. One example, from recordings in awake mice, is the slow change in the level of arousal that occurs on the scale of many seconds to minutes. These changes arise from release of neuromodulators that have broad effects on neural populations and correlations in activity (for a focused review, see Poulet and Crochet, 2019).

      We have added the following sentence to the Methods section where timescales of latent variables was discussed:

      "The timescales of latent variables examined range from about $3$ seconds to $3000$ seconds, assuming $3$-ms bins. Inputs with such timescales may arise from external sources, such as sensory stimuli, or from internal sources, such as changes in physiological state."

      5) It is common in neuronal avalanche analysis to calculate the branching parameter using the ratio of events in consecutive bins. Near-critical systems should display values close to 1, especially in simulations without subsampling. Including the estimated values of the branching parameter for the different cases investigated in this study could provide more comprehensive data. While the paper acknowledges that the obtained exponents in the model differ from those in a critical branching process, it would still be beneficial to offer the branching parameter of the observed avalanches for comparison.

      The reviewers requested that the branching parameter be computed in our model. We point out that, for the quasi-stationary latent variables (as in Fig. 3), a branching parameter of 1 is expected because the summed activity at time t+k is, on average, equal to the summed activity at time t, regardless of k. Numerics are consistent with this expectation. Following the methodology for an unbiased estimate of the branching parameter from Wilting and Priesemann (2018), we checked an example set of parameters (epsilon = 8, eta = 3) for quasi-stationary latent fields. We found that the naïve (biased) estimate of the branching parameter was 0.94, and that the unbiased estimator was exp(−1.4⋅10−8) ≈ 0.999999986.

      For faster time scales, it is no longer true that summed activity is constant over time, as the temporal correlations in activity decay exponentially. Using the five-field simulation from Figure 2, we calculated the branching parameter for several values of tau. The biased estimates of m are 0.76 (𝜏=50), 0.79 (𝜏=500), and 0.79 (𝜏=5000). The corrected estimates are 0.98 (𝜏=50), 0.998 (𝜏=500), and 0.9998 (𝜏=5000).

      6) In the Discussion (l 269), the paper suggests potential differences between networks cultured in vitro and in vivo. While significant differences indeed exist, it's worth noting that exponents consistent with a critical branching process have also been observed in vivo (Petermann et al 2009; Hahn et al. 2010), as well as in large-scale human data.

      We thank the reviewers for pointing out these studies, and we have added the missing one (Hahn et al. 2010) to our reference list. The following was added to the discussion, in the section “Explaining Experimental Exponents:”

      "A subset of the in vivo recordings analyzed from anesthetized cat (Hahn et al. 2010) and macaque monkeys (Petermann et al. 2009) exhibited a size distribution exponent close to 1.5."

      Along these lines, we noted two additional studies of high relevance that have been published since our initial submission (Capek et al. 2023, Lombardi et al. 2023), and we have added these references to the discussion of experimental exponents.

      Minor comments:

      1) The term 'latent variable' should be rigorously explained, as it is likely to be unfamiliar to some readers.

      Sentences and clauses have been added to the Introduction, Results and the Methods to clarify the term:

      Intro: “Numerous studies have reported relatively low-dimensional structure in the activity of large populations of neurons [refs], which can be modeled by a population of neurons that are broadly and heterogeneously coupled to multiple dynamical latent (i.e., unobserved) variables.”

      Results: “We studied a population of neurons that are not coupled to each other directly but are driven by a small number of dynamical latent variables -- that is, slowly changing inputs that are not themselves measured.”

      Methods: “Neurons are non-interacting, receiving inputs reflective of place-field selectivity as well as input current reflecting a random projection from a small number of dynamical latent variables, representing inputs shared across the population of neurons that are not directly measured.”

      2) There's a relatively important typo in the equations: Eq. 2 and Eq. 6 differ by a minus sign in the exponent. Eqs. 3 and 4 use the plus sign, but epsilon_0 on line 198 uses the minus sign. All very confusing until we figured out what was going on. But easy to fix.

      Thank you for catching this. We have made the following corrections:

      1) Figures adopted the sign convention that epsilon > 0, with larger values of epsilon decreasing the activity level. Signs in Eqs. 3 and 4 have been corrected to match.

      2) Equation 5 was missing a minus sign in front of the Hamiltonian. Restoring this minus sign fixed the discrepancy between 2 and 6.

      3) In Eq. 7, the left hand side is zeta'/zeta', which is equal to 1. Maybe it should be zeta'/zeta? Fixed, thank you.

      Additional comments:

      The authors are free to ignore these; they are meant to improve the paper.

      We are extremely grateful for the close reading of our paper and note the actions taken below.

      1) We personally would not use the abbreviation DLV; we find abbreviations extremely hard to remember. And DLV is not used that often.

      Done, thank you for the suggestion.

      2) l 198: epsilon_0 = -log(2^{1/N}-1) was kind of hard to picture -- we had to do a little algebra to make sense of it. Why not write e^{-epsilon_0} = 2^{1/N}-1 \approx log(2)/N, which in turn implies that epsilon_0 ~ log(N)?

      Thank you, good point. We have added a sentence now to better explain:

      "...which is maximized at $\epsilon_0 = - \log (2^{1/N} - 1)$, independent of $J_i$ and $\eta$. After some algebra, we find that $\epsilon_0 \sim \log N$ for large $N$."

      3) Typo on l 202: "We plot P_ava as a function of epsilon in Fig. 4B". 4B --> 4D.

      Done

      4) It would be easier on the reader if the tables were all in one place. It would be even nicer to put the parameters in the figure captions. Or at least N; that one is kind of important.

      Table placement was a Latex issue, which we have now fixed. We also have included links between tables and relevant figures and indicated network size.

      5) What's x_i in Eqs. 7 and 8?

      We added a sentence of explanation. These are the individual observations of avalanche sizes or durations, depending on what is being fit.

      6) The latent variables evolve according to an Ornstein-Uhlenbeck process. But we might equally expect oscillations or non-normal behavior coupling dynamical modes, and these are likely to give different behavior with respect to avalanches. It might be worth commenting on this.

      7) The model assumes a normal distribution of the coupling strengths between the latent variables and the binary units. Discussing the potential effects of different types of random coupling could provide interesting insights.

      Both 6 and 7 are interesting questions. At this point, we could speculate that the main results would be qualitatively unchanged, provided dynamics are sufficiently slow and that the distribution of coupling strengths is sufficiently broad (that is, there is variance in the coupling matrix across individual neurons). Further studies would be needed to make these statements more precise.

      8) In Fig 1, tau_f = 1E4 whereas in Fig 2 tau_f = 5E3. Why the difference?

      For Figure 1, we chose a set of parameters that gave clear scaling. In Figure 2, we saw some value in showing more than one example of scaling, hence different parameters for the examples in Fig 2 than Fig 1. Note that the Fig 1 simulations are represented in Fig. 2 G-J, as the 5-field simulation with tau_F = 1e4.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The dominant paradigm in the past decade for modeling the ventral visual stream's response to images has been to train deep neural networks on object classification tasks and regress neural responses from units of these networks. While object classification performance is correlated to the variance explained in the neural data, this approach has recently hit a plateau of variance explained, beyond which increases in classification performance do not yield improvements in neural predictivity. This suggests that classification performance may not be a sufficient objective for building better models of the ventral stream. Lindsey & Issa study the role of factorization in predicting neural responses to images, where factorization is the degree to which variables such as object pose and lighting are represented independently in orthogonal subspaces. They propose factorization as a candidate objective for breaking through the plateau suffered by models trained only on object classification. They claim that (i) maintaining these non-class variables in a factorized manner yields better neural predictivity than ignoring non-class information entirely, and (ii) factorization may be a representational strategy used by the brain.

      The first of these claims is supported by their data. The second claim does not seem well-supported, and the usefulness of their observations is not entirely clear.

      Strengths:<br /> This paper challenges the dominant approach to modeling neural responses in the ventral stream, which itself is valuable for diversifying the space of ideas.

      This paper uses a wide variety of datasets, spanning multiple brain areas and species. The results are consistent across the datasets, which is a great sign of robustness.

      The paper uses a large set of models from many prior works. This is impressively thorough and rigorous.

      The authors are very transparent, particularly in the supplementary material, showing results on all datasets. This is excellent practice.

      Weaknesses:<br /> 1. The primary weakness of this paper is a lack of clarity about what exactly is the contribution. I see two main interpretations: (1-A) As introducing a heuristic for predicting neural responses that improve over-classification accuracy, and (1-B) as a model of the brain's representational strategy. These two interpretations are distinct goals, each of which is valuable. However, I don't think the paper in its current form supports either of them very well:

      (1-A) Heuristic for neural predictivity. The claim here is that by optimizing for factorization, we could improve models' neural predictivity to break through the current predictivity plateau. To frame the paper in this way, the key contribution should be a new heuristic that correlates with neural predictivity better than classification accuracy. The paper currently does not do this. The main piece of evidence that factorization may yield a more useful heuristic than classification accuracy alone comes from Figure 5. However, in Figure 5 it seems that factorization along some factors is more useful than others, and different linear combinations of factorization and classification may be best for different data. There is no single heuristic presented and defended. If the authors want to frame this paper as a new heuristic for neural predictivity, I recommend the authors present and defend a specific heuristic that others can use, e.g. [K * factorization_of_pose + classification] for some constant K, and show that (i) this correlates with neural predictivity better than classification alone, and (ii) this can be used to build models with higher neural predictivity. For (ii), they could fine-tune a state-of-the-art model to improve this heuristic and show that doing so achieves a new state-of-the-art neural predictivity. That would be convincing evidence that their contribution is useful.

      (1-B) Model of representation in the brain. The claim here is that factorization is a general principle of representation in the brain. However, neural predictivity is not a suitable metric for this, because (i) neural predictivity allows arbitrary linear decoders, hence is invariant to the orthogonality requirement of factorization, and (ii) neural predictivity does not match the network representation to the brain representation. A better metric is representational dissimilarity matrices. However, the RDM results in Figure S4 actually seem to show that factorization does not do a very good job of predicting neural similarity (though the comparison to classification accuracy is not shown), which suggests that factorization may not be a general principle of the brain. If the authors want to frame the paper in terms of discovering a general principle of the brain, I suggest they use a metric (or suite of metrics) of brain similarity that is sensitive to the desiderata of factorization, e.g. doesn't apply arbitrary linear transformations, and compare to classification accuracy in addition to invariance.

      Overall, I suggest the authors clarify exactly what their claim is, then focus on that claim and present results to justify it. If neither of the claims above can be supported by evidence, then this paper still has value as an idea that they spent effort trying to test, but they should not suggest these claims in the paper. In that case, it may also be possible to increase the value of the contribution by characterizing how the structure of class-free variable representations impacts correlation with neural fit, instead of just comparing existence vs absence (invariance) of this information. For example, evaluate the degree to which local or global orthogonality matters, or the degree to which curvature of the embedding matters.

      2. I think the comparison to invariance, which is pervasive throughout the paper, is not very informative. First, it is not surprising that invariance is more weakly correlated with neural predictivity than factorization, because invariant representations lose information compared to factorized representations. Second, there has long been extensive evidence that responses throughout the ventral stream are not invariant to the factors the authors consider, so we already knew that invariance is not a good characterization of ventral stream data.

      3. The formalization of the factorization metric is not particularly elegant, because it relies on computing top K principal components for the other-parameter space, where K is arbitrarily chosen as 10. While the authors do show that in their datasets the results are not very sensitive to K (Figure S5), that is not guaranteed to be the case in general. I suggest the authors try to come up with a formalization that doesn't have arbitrary constants. For example, one possibility that comes to mind is E[delta_a x delta_b], where 'x' is the normalized cross product, delta_a, and delta_b are deltas in representation space induced by perturbations of factors a and b, and the expectation is taken over all base points and deltas. This is just the first thing that comes to mind, and I'm sure the authors can come up with something better. The literature on disentangling metrics in machine learning may be useful for ideas on measuring factorization.

      4. The authors defined the term "factorization" according to their metric. I think introducing this new term is not necessary and can be confusing because the term "factorization" is vague and used by different researchers in different ways. Perhaps a better term is "orthogonality", because that is clear and seems to be what the authors' metric is measuring.

      5. One general weakness of the factorization paradigm is the reliance on a choice of factors. This is a subjective choice and becomes an issue as you scale to more complex images where the choice of factors is not obvious. While this choice of factors cannot be avoided, I suggest the authors add two things: First, an analysis of how sensitive the results are to the choice of factors (e.g. transform the basis set of factors and re-run the metric); second, include some discussion about how factors may be chosen in general (e.g. based on temporal statistics of the world, independent components analysis, or something else).

  4. Jan 2024
    1. everything in my own immediate experience supports my deep belief that I am the absolute centre of the universe; the realest, most vivid and important person in existence. We rarely think about this sort of natural, basic self-centredness because it’s so socially repulsive.

      We did an exercise in my "Models of Effective Helping" class yesterday where we were given a list of about 12 people and the list had their ages and a brief description of who they are. We had to choose as a group eight people from the list to go on a life raft and the rest of them would die. You could also choose to save yourself as one of the eight. There was a heated debate over whether its ethical or proper to choose to save yourself over somebody else. I couldn't fathom the thought of me choosing for somebody to die over myself, but the majority of the class agreed to save themselves and kill somebody else. What I thought was even more shocking was that a few of the people on the list were teenagers and people were trying to justify killing them over themselves. What I learned is that there are many people who truly believe that they are the center of the universe, and it may just be human nature to think so.

    1. These functions include the following: (1) poor people do the work that other people do not want to do; (2) the programs that help poor people provide a lot of jobs for the people employed by the programs; (3) the poor purchase goods, such as day-old bread and used clothing, that other people do not wish to purchase, and thus extend the economic value of these goods; and (4) the poor provide jobs for doctors, lawyers, teachers, and other professionals who may not be competent enough to be employed in positions catering to wealthier patients, clients, students, and so forth (Gans, 1972)

      This seems like the thinking of someone who does not believe in equality. I don't think that we need such severe levels of poverty to achieve a healthy social order. It should not be impossible to get out of poverty. Poverty should not be a life sentence.

    1. A disability is an ability that a person doesn’t have, but that their society expects them to have.1 For example: If a building only has staircases to get up to the second floor (it was built assuming everyone could walk up stairs), then someone who cannot get up stairs has a disability in that situation. If a physical picture book was made with the assumption that people would be able to see the pictures, then someone who cannot see has a disability in that situation. If tall grocery store shelves were made with the assumption that people would be able to reach them, then people who are short, or who can’t lift their arms up, or who can’t stand up, all would have a disability in that situation. If an airplane seat was designed with little leg room, assuming people’s legs wouldn’t be too long, then someone who is very tall, or who has difficulty bending their legs would have a disability in that situation. Which abilities are expected of people, and therefore what things are considered disabilities, are socially defined. Different societies and groups of people make different assumptions about what people can do, and so what is considered a disability in one group, might just be “normal” in another. There are many things we might not be able to do that won’t be considered disabilities because our social groups don’t expect us to be able to do them. For example, none of us have wings that we can fly with, but that is not considered a disability, because our social groups didn’t assume we would be able to. Or, for a more practical example, let’s look at color vision: Most humans are trichromats, meaning they can see three base colors (red, green, and blue), along with all combinations of those three colors. Human societies often assume that people will be trichromats. So people who can’t see as many colors are considered to be color blind, a disability. But there are also a small number of people who are tetrachromats and can see four base colors2 and all combinations of those four colors. In comparison to tetrachromats, trichromats (the majority of people), lack the ability to see some colors. But our society doesn’t build things for tetrachromats, so their extra ability to see color doesn’t help them much. And trichromats’ relative reduction in seeing color doesn’t cause them difficulty, so being a trichromat isn’t considered to be a disability. Some disabilities are visible disabilities that other people can notice by observing the disabled person (e.g., wearing glasses is an indication of a visual disability, or a missing limb might be noticeable). Other disabilities are invisible disabilities that other people cannot notice by observing the disabled person (e.g., chronic fatigue syndrome, contact lenses for a visual disability, or a prosthetic for a missing limb covered by clothing). Sometimes people with invisible disabilities get unfairly accused of “faking” or “making up” their disability (e.g., someone who can walk short distances but needs to use a wheelchair when going long distances). Disabilities can be accepted as socially normal, like is sometimes the case for wearing glasses or contacts, or it can be stigmatized as socially unacceptable, inconvenient, or blamed on the disabled person. Some people (like many with chronic pain) would welcome a cure that got rid of their disability. Others (like many autistic people), are insulted by the suggestion that there is something wrong with them that needs to be “cured,” and think the only reason autism is considered a “disability” at all is because society doesn’t make reasonable accommodations for them the way it does for neurotypical people. Many of the disabilities we mentioned above were permanent disabilities, that is, disabilities that won’t go away. But disabilities can also be temporary disabilities, like a broken leg in a cast, which may eventually get better. Disabilities can also vary over time (e.g., “Today is a bad day for my back pain”). Disabilities can even be situational disabilities, like the loss of fine motor skills when wearing thick gloves in the cold, or trying to watch a video on your phone in class with the sound off, or trying to type on a computer while holding a baby. As you look through all these types of disabilities, you might discover ways you have experienced disability in your life. Though please keep in mind that different disabilities can be very different, and everyone’s experience with their own disability can vary. So having some experience with disability does not make someone an expert in any other experience of disability. As for our experience with disability, Kyle has been diagnosed with generalized anxiety disorder and Susan has been diagnosed with depression. Kyle and Susan also both have: near sightedness: our eyes cannot focus on things far away (unless we use corrective lenses, like glasses or contacts) ADHD: we have difficulty controlling our focus, sometimes being hyperfocused and sometimes being highly distracted and also have difficulties with executive dysfunction. 1 There are many ways to think about disability, such as legal (what legally counts as a disability?), medical (what is a problem to be cured?), identity (who views themselves as “disabled”), etc. We are focused here more on disability as it relates to design and who things in our world are designed for. 2 Trying to name the four base colors seen by tetrachromats is not straightforward since our color names are based on trichromat vision. It seems that for tetrachromats blue would be the same, but they would see three different base colors in the red/green range instead of two.

      This paragraph of the article tells how technological developments have the potential to redefine disability. For example, the development of cochlear implants and hearing aids has changed the way society views hearing loss. Similarly, Braille displays and screen reading technology have revolutionized the way blind people access information. I think these are all very significant things, and increasingly people are seeing disability as a spectrum rather than a binary state (disabled vs. non-disabled). Individuals may have different levels of skills in different areas. For example, a person may have a mild visual impairment that has no effect on most activities, but can be a major handicap in specific situations, such as dimly lit areas. I've known people with this problem so I think the point is important.

    2. There are many ways to think about disability, such as legal (what legally counts as a disability?), medical (what is a problem to be cured?), identity (who views themselves as “disabled”), etc. We are focused here more on disability as it relates to design and who things in our world are designed for.

      Certainly, considering disability in the context of design involves creating products, environments, and systems that are inclusive and accessible to individuals with a diverse range of abilities. Engaging individuals with disabilities in the design process helps to identify specific needs and challenges they may face. This approach ensures that the final design reflects the diverse perspectives and requirements of the user community.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Nitrogen metabolism is of fundamental importance to biology. However, the metabolism and biochemistry of guanidine and guanidine containing compounds, including arginine and homoarginine, have been understudied over the last few decades. Very few guanidine forming enzymes have been identified. Funck et al define a new type of guanidine forming enzyme. It was previously known that 2-oxogluturate oxygenase catalysis in bacteria can produce guanidine via oxidation of arginine. Interestingly, the same enzyme that produces guanidine from arginine also oxidises 2-oxogluturate to give the plant signalling molecule ethylene. Funck et al show that a mechanistically related oxygenase enzyme from plants can also produce guanidine, but instead of using arginine as a substrate, it uses homoarginine. The work will stimulate interest in the cellular roles of homoarginine, a metabolite present in plants and other organisms including humans and, more generally, in the biochemistry and metabolism of guanidines.

      1) Significance

      Studies on the metabolism and biochemistry of the small nitrogen rich molecule guanidine and related compounds including arginine have been largely ignored over the last few decades. Very few guanidine forming enzymes have been identified. Funck et al define a new guanidine forming enzyme that works by oxidation of homoarginine, a metabolite present in organisms ranging from plants to humans. The new enzyme requires oxygen and 2oxogluturate as cosubstrates and is related, but distinct from a known enzyme that oxidises arginine to produce guanidine, but which can also oxidise 2-oxogluturate to produce the plant signalling molecule ethylene.

      Overall, I thought this was an exceptionally well written and interesting manuscript. Although a 2-oxogluturate dependent guanidine forming enzyme is known (EFE), the discovery that a related enzyme oxidises homoarginine is really interesting, especially given the presence of homoarginine in plant seeds. There is more work to be done in terms of functional assignment, but this can be the subject of future studies. I also fully endorse the authors' view that guanidine and related compounds have been massively understudied in recent times. I would like to see the possibility that the new enzyme makes ethylene explored. Congratulations to the authors on a very nice study.

      Response: We thank the reviewer for the positive evaluation of our manuscript. In the revised version, we have emphasized more clearly that we found no evidence for ethylene production by the recombinant enzymes. The other suggestions of the reviewer are also considered in the revised version as detailed below.

      Reviewer #2 (Public Review):

      In this study, Dietmar Funck and colleagues have made a significant breakthrough by identifying three isoforms of plant 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) as homo/arginine-6-hydroxylases, catalyzing the degradation of 6-hydroxyhomoarginine into 2aminoadipate-6-semialdehyde (AASA) and guanidine. This discovery marks the very first confirmation of plant or eukaryotic enzymes capable of guanidine production.

      The authors selected three plant 2-ODD-C23 enzymes with the highest sequence similarity to bacterial guanidine-producing (EFE) enzymes. They proceeded to clone and express the recombinant enzymes in E coli, demonstrating capacity of all three Arabidopsis isoforms to produce guanidine. Additionally, by precise biochemical experiments, the authors established these three 2-ODD-C23 enzymes as homoarginine-6-hydroxylases (and arginine-hydroxylase for one of them). Furthermore, the authors utilized transgenic plants expressing GFP fusion proteins to show the cytoplasmic localization of all three 2-ODD-C23 enzymes. Most notably, using T-DNA mutant lines and CRISPR/Cas9-generated lines, along with combinations of them, they demonstrate the guanidine-producing capacity of each enzyme isoform in planta. These results provide robust evidence that these three 2-ODD-C23 Arabidopsis isoforms are indeed homoarginine-6-hydroxylases responsible for guanidine generation.

      The findings presented in this manuscript are a significant contribution for our understanding of plant biology, particularly given that this work is the first demonstration of enzymatic guanidine production in eukaryotic cells. However, there are a couple of concerns and potential ways for further investigation that the authors should (consider) incorporate.

      Firstly, the observation of cytoplasmic and nuclear GFP signals in the transgenic plants may also indicate cleaved GFP from the fusion proteins. Thus, the authors should perform Western blot analysis to confirm the correct size of the 2-ODD-C23 fusion proteins in the transgenic protoplasts.

      Secondly, it may be worth measuring pipecolate (and proline?) levels under biotic stress conditions (particularly those that induce transcript changes of these enzymes, Fig S8). Given the results suggesting a potential regulation of the pathway by biotic stress conditions (eg. meJA), these experiments could provide valuable insights into the physiological role of guanidine-producing enzymes in plants. This additional analysis may give a significance of these enzymes in plant defense mechanisms.

      Response: We thank also reviewer 2 for the positive evaluation and useful suggestions. We performed the proposed GFP Western blot, which indeed indicated the presences of both, fulllength fusion proteins and free GFP, which can explain the partial nuclear localization. We fully agree that further experiments with biotic and abiotic stress will be required to determine the physiological function of the 2-ODD-C23 enzymes. However, the list of potential experiments is long and they are beyond the scope of the present manuscript.

      Reviewer #1 (Recommendations For The Authors):

      Specific points

      Overall, I thought this was a very interesting study, comprising biochemical, cellular, and in vivo studies. Of course more could be done on each of these, and likely will be, but I think the assignment of biochemical function is very strong, across all three approaches. The one new experiment I would like to see is a clear demonstration of whether ethylene is produced - unlikely but should be tested.

      We had mentioned our failure to detect ethylene production by the plant enzymes in the previous version and have made it more prominent and reliable by including ethylene production as positive control in the new supplementary figure S5.

      Abstract

      Delete 'hitherto overlooked' - this is implicit 'but is more likely' to 'is likely'?

      Agreed and modified

      Introduction

      Second sentence - what about relevant small molecule primary metabolites including precursors of proteins/nucleic acids.

      We modified the sentence accordingly.

      Paragraph 2 - maybe also note EFE produces glutamate semi aldehyde, via arginine C-5 oxidation.

      Paragraph 2 has been re-phrased according to your suggestion.

      Overall, I thought the introduction was exceptionally well written.

      Perhaps either in the introduction, or later, note there are other 2OG oxygenases that oxidise arginine/arginine derivatives in various ways, e.g. clavaminate synthase/arginine hydroxylases/desaturases.

      We added a sentence mentioning the arginine hydroxylases VioC and OrfP to the introduction and included VioC into the sequence comparison in supplementary figure 2 to show that these enzymes, as well as NapI, are very different from EFE and the plant hydroxylases.

      Results

      Paragraph 1 - qualify similarity and refer to/give a structurally informed sequence alignment, including EFE

      A new supplemental figure S2 was added with sequence identity values and a structurally informed alignment. The text has been modified accordingly.

      Paragraph 2 - briefly state method of guanidine analysis

      We included a reference to the M&M section and mentioned LC-MS in paragraph 2.

      Figure 1 - trivial point - proteins are not expressed/genes are

      We have modified the legend to figure 1. However, we would like to point out that terms like “recombinant protein expression” are widely used in the field. A quick search with google Ngram viewer shows that “protein expression” started to appear in the mid-80ies and its use stayed constantly at 1/8th of “gene expression”.

      Define errors clearly in all figure legends, clearly defining biological/technical repeats<br /> Page 6 - was the His-tag cleared to ensure no issues with Ni contamination?

      We treat individual plants or independent bacterial cultures as biological replicates. Only in the case of enzyme activity assays with NAD(P)H, technical replicates were used and this has been indicated in the legend of figure 6.

      Lower case 'p' in pentafluorobenzyl corrected

      In Figure 2 make clear the hydroxylated intermediates are not observed

      We now use grey color for the intermediates and have put them in brackets. Additionally we state in the figure legend that these intermediates were not detected.

      Pages 6-7 - I may have missed this but it's important to investigate what happens to the 2OG. Is succinate the only product or is ethylene also produced? This possibility should also be considered in the plant studies, i.e. is there any evidence for responses related to perturbed ethylene metabolism. The authors consider a signalling role relating to AASA/P6C, but seem to ignore a potential ethylene connection.

      As stated above, we checked for ethylene production with negative result. EFE produced 6 times more guanidine than the plant enzymes under the same condition, but even 100-fold lower ethylene production would have been clearly detected.

      Page 12 - 'plants have been shown to....' Perhaps note how hydroxy guanidine is made?

      We now mention the canavanine-γ-lyase that cleaves canavanine into hydroxyguanidine and homoserine.

      Overall, I thought the discussion was good, but perhaps a bit long/too speculative on pages 12/13 and this detracted from the biochemical assignment of the enzyme. I'd suggest shortening the discussion somewhat - the precise roles of the enzyme can be the subject of future work. As indicated above, some discussion on potential links to ethylene would be appreciated.

      Since reviewer 2 wanted more (speculative) discussion on the role of the 2-ODD-C23 enzymes and there was no detectable ethylene production, we took the liberty to leave the discussion largely unaltered.

      I'd also like to see some more consideration/metabolic analyses of guanidine related metabolism in the genetically modified plants.

      Such analyses will certainly be included in future experiments once we get an idea about the physiological role of the 2-ODD-C23 enzymes.

      Page 16 - mass spectrometry

      Corrected.

      Please add a structurally informed sequence alignment with EFE and other 2OG oxygenases acting on arginine/derivatives.

      An excerpt of the alignment is now presented in supplementary figure S2.

      Reviewer #2 (Recommendations For The Authors):

      I would like to see more discussion in the manuscript about the possible interconnection/roles between 2-ODD-C23 guanidine-producing, lysine- ALD1-Pipecolate producing, and proline metabolism pathways during both biotic and abiotic stresses.

      Since we were unable to detect pipecolate in any of our plant samples and also our preliminary results with biotic stress did not produce any evidence for a function of the 2ODD-C23 enzymes in the tested defense responses, we would like to postpone such extended discussion until we find a condition where the physiological function of these enzymes is evident.

      Fig. 4: Authors should change colors for Col-0, 0.2 HoArg and ctrl? They look too similar in my pdf file.

      We changed the colors in figure 4 and hope that the enhanced contrast is maintained during the production of the final version of our article.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Sender et al describe a model to estimate what fraction of DNA becomes cell-free DNA in plasma. This is of great interest to the community, as the amount of DNA from a certain tissue (for example, a tumor) that becomes available for detection in the blood has important implications for disease detection.

      However, the authors' methods do not consider important variables related to cell-free DNA shedding and storage, and their results may thus be inaccurate. At this stage of the paper, the methods section lacks important detail. Thus, it is difficult to fully assess the manuscript and its results.

      Strengths:

      The question asked by the authors has potentially important implications for disease diagnosis. Understanding how genomic DNA degrades in the human circulation can guide towards ways to enrich for DNA of interest or may lead to unexpected methods of conserving cell-free DNA. Thus, the question "how much genomic DNA becomes cfDNA" is of great interest to the scientific and medical community. Once the weaknesses of the manuscript are addressed, I believe this manuscript has the potential to be a widely used resource.

      Weaknesses:

      There are two major weaknesses in how the analysis is presented. First, the methods lack detail. Second, the analysis does not consider key variables in their model.

      Issues pertaining to the methods section.

      The current manuscript builds a flux model, mostly taking values and results from three previous studies: 1) The amount of cellular turnover by cell type, taken from Sender & Milo, 2021

      2) The fractions of various tissues that contribute DNA to the plasma, taken from Moss et al, 2018 and Loyfer et al, 2023

      My expertise lies in cell-free DNA, and so I will limit my comments to the manuscripts in (2). Paper by Loyfer et al (additional context):

      Loyfer et al is a recent landmark paper that presents a computational method for deconvoluting tissues of origin based on methylation profiles of flow-sorted cell types. Thus, the manuscript provides a well-curated methylation dataset of sorted cell-types. The majority of this manuscript describes the methylation patterns and features of the reference methylomes (bulk, sorted cell types), with a smaller portion devoted to cell-free DNA tissue of origin deconvolution.

      I believe the data the authors are retrieving from the Loyfer study are from the 23 healthy plasma cfDNA methylomes analyzed in the study, and not the re-analysis of the 52 COVID-19 samples from Cheng et al (MED 2021).

      Paper by Moss et al (additional context):

      Moss et al is another landmark paper that predates the Loyfer et al manuscript. The technology used in this study (methylation arrays) is outdated but is an incredible resource for the community. This paper evaluates cfDNA tissues of origin in health and different disease scenarios. Again, I assume the current manuscript only pulled data from healthy patients, although I cannot be sure as it is not described in the methods section.

      This manuscript:

      The current manuscript takes (I think) the total cfDNA concentration from males and females from the Moss et al manuscript (pooled cfDNA; 2 young male groups, 2 old male groups, 2 young female groups, 2 old female groups, Supplementary Dataset; "total_cfDNA_conc" tab). I believe this is the data used as total cfDNA concentration. It would be beneficial for all readers if the authors clarified this point.

      The tissues of origin, in the supplemental dataset ("fraction" tab), presents the data from 8 cell types (erythrocytes, monocytes/macrophages, megakaryocytes, granulocytes, hepatocytes, endothelial cells, lymphocytes, other). The fractions in the spreadsheet do not match the Loyfer or Moss manuscripts for healthy individuals. Thus, I do not know what values the supplementary dataset represents. I also don't know what the deconvolution values are used for the flux model.

      The integration of these two methods lack detail. Are the authors here using yields (ie, cfDNA concentrations) from Moss et al, and tissue fractions from Loyfer et al? If so, why? There are more samples in the Loyfer manuscript, so why are the samples from Moss et al. being used? The authors are also selectively ignoring cell-types that are present in healthy individuals (Neurons from Moss et al, 2018). Why?

      Appraisal:

      At this stage of the manuscript, I think additional evidence and analysis is required to confirm the results in the manuscript.

      Impact:

      Once the authors present additional analysis to substantiate their results, this manuscript will be highly impactful on the community. The field of liquid biopsies (non-invasive diagnostics) has the potential to revolutionize the medical field (and has already in certain areas, such as prenatal diagnostics). Yet, there is a lack of basic science questions in the field. This manuscript is an important step forward in asking more "basic science" questions that seek to answer a fundamental biological question.

      We thank the reviewer for the valuable comments on our analysis. In response to the feedback, we have updated the analysis to address all critical points as described below and revised the text to enhance the clarity of our methodology. One notable improvement to our analysis involved ensuring better alignment between the cohort data for cfDNA plasma concentration and cell turnover estimates. To achieve this, we utilized the total plasma concentration of cfDNA from a study conducted by Meddeb et al. 2019, taking into account the influence of age and sex on these concentrations and specifically focusing on a cohort of relatively young and healthy individuals. Additionally, we considered expected variations related to sex, age, and other pertinent factors, as outlined in the studies by Meddeb et al. 2019 and Madsen et al. 2019.

      In addition, we have addressed concerns regarding the technical aspects of cfDNA analysis, providing detailed explanations of their limited impact on our analysis and the resulting conclusions.

      Reviewer #2 (Public Review):

      Summary:

      Cell-free DNA (cfDNA) are short DNA fragments released into the circulation when cells die. Plasma cfDNA level is thought to reflect the degree of cell-death or tissue injury. Indeed, plasma cfDNA is a reliable diagnostic biomarker for multiple diseases, providing insights into disease severity and outcomes. In this manuscript, Dr. Sender and colleagues address a fundamental question: What fraction of DNA released from cell death is detectable as plasma cfDNA? The authors use public data to estimate the amount of DNA produced from dying cells. They also utilize public data to estimate plasma cfDNA levels. Their calculations showed that <10% of DNA released is detectable as plasma cfDNA, the fraction of detectable cfDNA varying by tissue sources. The study demonstrates new and fundamental principles that could improve disease diagnosis and treatment via cfDNA.

      Strengths:

      1) The experimental approach is resource-mindful taking advantage of publicly available data to estimate the fraction of detectable cfDNA in physiological states. The authors did not assess if the fraction of detectable cfDNA changes in disease conditions. Nonetheless, their pioneering study lays the foundation and provides the methods needed for a similar assessment in disease states.

      2) The findings of this study potentially explain discrepancies in measured versus expected tissue-specific cfDNA from some tissues. For example, the gastrointestinal tract is subject to high cell turnover and release of DNA. Yet, only a small fraction of that DNA ends up in plasma as gastrointestinal cfDNA.

      3) The study proposes potential mechanisms that could account for the low fraction of detectable cfDNA in plasma relative to DNA released. This includes intracellular or tissue machinery that could "chew up" DNA released from dying cells, allowing only a small fraction to escape into plasma as cfDNA. Could this explain why the gastrointestinal track with an elaborate phagosome machinery contributes a small fraction of plasma cfDNA? Given the role of cfDNA as damage-associated molecular pattern in some diseases, targeting such a machinery may provide novel therapeutic opportunities.

      Weaknesses:

      In vitro and in vivo studies are needed to validate these findings and define tissue machinery that contribute to cfDNA production. The validation studies should address the following limitations of the study design: -

      1) Align the cohorts to estimate DNA production and plasma cfDNA levels. Cellular turnover rate and plasma cfDNA levels vary with age, sex, circadian clock, and other factors (Madsen AT et al, EBioMedicine, 2019). This study estimated DNA production using data abstracted from a homogenous group of healthy control males (Sender & Milo, Nat Med 2021). On the other hand, plasma cfDNA levels were obtained from datasets of more diverse cohort of healthy males and females with a wide range of ages (Loyfer et al. Nature, 2023 and Moss et al., Nat Commun, 2018).

      2) "cfDNA fragments are not created equal". Recent studies demonstrate that cfDNA composition vary with disease state. For example, cfDNA GC content, fraction of short fragments, and composition of some genomic elements increase in heart transplant rejection compared to no-rejection state (Agbor-Enoh, Circulation, 2021). The genomic location and disease state may therefore be important factors to consider in these analyses.

      3) Alternative sources of DNA production should be considered. Aside from cell death, DNA can be released from cells via active secretion. This and other additional sources of DNA should be considered in future studies. The distinct characteristics of mitochondrial DNA to genomic DNA should also be considered.

      We appreciate the reviewer's comments on our analysis. In response to the feedback, we have updated to address key points and revised the text accordingly.

      1) We have incorporated several enhancements to improve the coherence of our analysis. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      There was no specific estimate for a cohort of young males in both Meddeb et al. and Loyfer et al.; however, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in literature (Meddeb et al. 2019; Madsen et al. 2019). Thus, we demonstrate that sex and age have a small effect on the cfDNA concentrations and thus are unlikely to alter our conclusions substantially when considering a healthy population. We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion.

      2) In this study, we addressed the total amount of cfDNA in healthy individuals without regard to GC content, representation of different genomic regions, or fragment length, as the goal was to understand if cell death rates are fully accounted for by cfDNA concentration. We agree that it will be interesting to study the relative representation of the genome in cfDNA and the processes that determine cfDNA concentration in pathologies beyond the rate of cell death. These topics for future research fall beyond this study's scope.

      3) We know only a few specific cases whereby DNA is released from cells that are not dying. These include the release of DNA from erythroblasts and megakaryocytes to generate anucleated erythrocytes and platelets (Moss et al. 2022, cited in our paper) and the release of NETs from neutrophils.

      The presence of cfDNA fragments originating from megakaryocytes and erythroblasts indicates the elimination of megakaryocytes and erythroblasts and the birth of erythrocytes and platelets. However, the considerations in the rest of the paper still apply: the concentration of cfDNA from these sources is far lower than expected from the cell turnover rate.

      Concerning NETosis: the presence of cfDNA originating in neutrophils that have not died would reduce the concentration of cfDNA from dying neutrophils and thus further increase the discrepancy, which is the topic of our study (under-representation of DNA from dying cells in plasma).

      We neglected mitochondrial DNA, as it is not measured in methylation cell-of-origin analysis. Similarly to the argument above, if some of the total DNA measured in plasma is in fact, mitochondrial, this would mean that genomic cfDNA concentration is actually lower than the estimates, meaning that an even smaller fraction of DNA from dying cells is measured in plasma.

      Recommendations For The Authors

      Reviewer #1 (Recommendations For The Authors):

      I think readers would appreciate the authors commenting or addressing the following points, in addition to addressing the concerns I raised about the methods section in the public review:

      What variables and considerations did the authors omit in this study?

      1) Cell-free DNA is found in virtually every biofluid.

      Thus, the fact that cell-free DNA is not present in the plasma does not mean it cannot be detected elsewhere. This also implies that phagocytosis may not be the only factor related to cfDNA not being present in the blood. One example (of many, many others) is neutrophil-derived cell-free DNA, which is present in the urine.

      Indeed, dying cells and their DNA can be consumed locally, released into the blood, or shed outside the body. The latter is a function of tissue topology. For example, intestinal epithelial cell turnover releases material to the lumen of the gut (i.e., stool); kidney and bladder cell turnover releases material to urine; and lung epithelium releases material to the air spaces. In these cases, the absence of cfDNA in plasma is expected. However, in cases where tissue topology dictates release to blood, low representation in cfDNA indicates local consumption or a related mechanism. In Figure 1 of the manuscript, we distinguish between tissues according to their topology, labeling organs that shed material to the outside denoted by open circles.

      Neutrophil-derived DNA in urine likely represents a local process in the kidney (neutrophils that penetrate the epithelium and fall into the urine). Neutrophils that die elsewhere in the body must release cfDNA to the blood before it can reach the urine. Hence, quantifying plasma cfDNA is a legitimate approach for assessing the relationship between cell death and cfDNA. The revised text clarifies this point. We made revisions to the initial paragraph in the results section and a paragraph within the discussion to provide clarity on this topic:

      “Based on atlases of human cell type-specific methylation signatures, Moss et al. and Loyfer et al. analyzed the main cell types contributing to plasma cfDNA. They found the primary sources of plasma cfDNA to be blood cells: granulocytes, megakaryocytes, macrophages, and/or monocytes (the signature could not differentiate between the last two), lymphocytes, and erythrocyte progenitors. Other cells that had detectable contributions are endothelial cells and hepatocytes. Qualitatively, these cells represent most of the leading cell types in cellular turnover, as shown in Sender & Milo 2021 (Sender and Milo 2021). Epithelial cells of the gastrointestinal tract, lung, kidney, bladder, and skin are other cell types that significantly contribute to cellular turnover. Dying cells in these tissues are shed into the gut lumen, the air spaces, the urine, or out of the skin (note that while DNA from gut, lung, and kidney epithelial cells can be found in stool, bronchoalveolar lavage, and urine, the fate of DNA from skin cells is not known). This arrangement may explain why DNA from these cell types is not represented in plasma cfDNA in healthy conditions. Therefore, it appears that cells with high cfDNA plasma levels are those with relatively high turnover that are not being shed out of the body.”

      “A comparison between the different types of cells shows a trend in which less DNA flux from cells with higher turnover gets to the bloodstream. In particular, a tiny fraction (1 in 3x104) of DNA from erythroid progenitors arrives at the plasma, indicating an extreme efficiency of the DNA recovery mechanism. Erythroid progenitors are arranged in erythroblastic islands. Up to a few tens of erythroid progenitors surround a single macrophage that collects the nuclei extruded during the erythrocyte maturation process (pyrenocytes) (Chasis and Mohandas 2008). The amount of DNA discarded through the maturation of over 200 billion erythrocytes per day (Sender and Milo 2021) exceeds all other sources of homeostatic discarded DNA. Our findings indicate that the organization of dedicated erythroblastic islands functions highly efficiently regarding DNA utilization. Neutrophils are another high-turnover cell type with a low level of cfDNA. When contemplating the process of NETosis (Vorobjeva and Chernyak 2020), the existence of cfDNA originating from live neutrophils would potentially diminish the concentration of cfDNA released by dying neutrophils, thereby amplifying the observed ratio for this particular cell type. The overall trend of higher turnover resulting in a lower cfDNA to DNA flux ratio may indicate similar design principles, in which the utilization of DNA is better in tissues with higher turnover. However, our analysis is limited to only several cell types (due to cfDNA test and deconvolution sensitivities), and extrapolation to cells with lower cell turnover is problematic.”

      2) Effect of biofluid storage.

      Cell-free DNA continues to degrade after it is extracted via blood draw. This is not expected to change tissue of origin predictions (although that remains to be shown in the literature), but definitely affects extraction yield. This is not accounted for (or even discussed) in the manuscript. It would be important to understand how this was done for the data presented here.

      The paper integrates data from multiple recent studies that adhered to state-of-the-art procedures requiring rapid processing of blood samples. In fact, earlier studies that were not careful to isolate plasma quickly typically reported very high concentrations due to the lysis of leukocytes and artifactual release of genomic DNA. Rapid plasma isolation and DNA extraction typically yield 5ng/ml in healthy donors, as stated in the paper (last paragraph of Results).

      3) Batch effects

      Batch effects are not discussed here and can affect cfDNA yields.

      Our analysis relies on data reported by multiple studies from different groups, which independently results in similar key findings (total concentration of cfDNA and the relative contribution of different tissues). Thus, batch effects are unlikely to affect the calculations markedly.

      4) Cell-free DNA extraction kits

      Different kits and methods extract cell-free DNA at different quantities. Importantly, much research has been done recently that most kits are not sensitive for ultrashort cell-free DNA (of lengths ~50bp). This may represent most of the DNA present in plasma. This raises an important question: are the yields that are being used in Moss et al (where I presume the total concentration is taken from) accurate? Is there more cell-free DNA that was missed? While the importance of this ultrashort cfDNA has yet to be shown, it is in the blood. Thus, the authors' model may underestimate ratios by not accounting for this. This is mentioned in the discussion, but it is not evident why it was not added into the model.

      The Qiagen cfDNA extraction kit can detect 50bp fragments. As shown in the specification sheets of the kit (https://www.qiagen.com/us/products/diagnostics-and-clinical-research/solutions-for -laboratory-developed-tests/qiasymphony-dsp-circulating-dna-kit), urine DNA contains abundant DNA fragments that peak at 50bp. In contrast, plasma cfDNA does not contain such fragments at appreciable concentrations. This suggests that small fragments, 50-150bp long, are not a major component of cfDNA, and thus, our measurements of the total concentration of cfDNA are not dramatically underestimated.

      The convention regarding the size distribution of cfDNA fragments is based on extensive evidence using multiple approaches. For example, a study that profiled the DNA released by multiple cell lines in vitro (Aucamp et al. 2017) used another kit for DNA isolation – the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Düren, Germany). This kit does extract fragments that are 50bp long (nucleospin-gel-and-pcr-clean-up-mini). Indeed, the DNA released from cultured cells did contain a peak at 50bp, but it was minor compared with the nucleosome-size peak.

      More recently, several studies did suggest the presence of ultra-short cfDNA fragments, 50 bp long on average, and concluded that such fragments might be present at a molar concentration that is comparable to that of nucleosome-protected DNA (for example, (Hisano et al. 2021)).

      Thus, our model estimates can be off by up to 2-fold (that is, actual cfDNA concentration measured in most studies overlooks the small fragments and thus underestimates the actual concentration of cfDNA by 2-fold). This is incorporated into the revised manuscript.

      We note that we cannot exclude the presence of abundant ultra-short DNA fragments (e.g., 10bp long). However, such fragments are not measurable in cfDNA analysis. Thus, we can refine our conclusion and state that only a small fraction of DNA of dying cells appears as measured cfDNA. We included a section in the methods detailing the integration of a potential factor for the short fragments and revised the discussion:

      “The overall plasma cfDNA concentration was multiplied by a factor of 1.5 to accommodate for the presence of small fragments of approximately 50 base pairs of cfDNA in the plasma. These fragments are suggested to contribute comparable molar concentrations (Hisano, Ito, and Miura 2021). Despite having approximately one-third of the mass, it is reasonable to presume that these fragments represent a similar number of genomes. This assumption is based on the idea that their source is a broken nucleosome unit, and the fragments represent the portion that was not degraded. Given the restricted data and its interpretation, we consider factors spanning the range of 1 (negligible effect) and 2 (doubling of the amount). The chosen factor, 1.5, is selected as the midpoint within this range of uncertainty.”

      “In this study, we report a surprising, dramatic discrepancy between the measured levels of cfDNA in the plasma and the potential DNA flux from dying cells. One hypothetical explanation for that discrepancy is the limited sensitivity of typical cfDNA assays to short DNA fragments, which may contribute a significant fraction of the overall cfDNA mass. Regular cfDNA analysis shows a size distribution concentrated around a length of 165 base pairs (bp). The sizes in ctDNA vary more, but most are longer than 100 bp (Alcaide et al. 2020; Udomruk et al. 2021). Recent studies suggested a significant fraction of single-strand ultrashort fragments (length of 25-60 bp) (Cheng et al. 2022; Hisano, Ito, and Miura 2021). However, the total amount of DNA contained in these fragments is less than or comparable to that of the longer “regular” nucleosome-protected cfDNA fragments (Cheng et al. 2022; Hisano, Ito, and Miura 2021), arguing against ultrashort fragments as a dominant explanation for the “missing” cfDNA material. We integrated the estimate provided by Hisano et al. into our analysis as a modifying factor for both the total concentration and uncertainty of plasma cfDNA. Importantly, this incorporation did not alter the overall conclusions, as the discrepancy between the cfDNA plasma concentration and potential DNA flux remains on the same order of magnitude. We note that we cannot exclude the presence of abundant DNA fragments that are even shorter (e.g., 10bp long) and are not measurable in cfDNA analysis. Thus, our formal conclusion is that only a small fraction of the DNA of dying cells appears as measurable cfDNA.”

      5) Health status of samples analyzed.

      Health, sex and physical activity affects cfDNA yields. This is not accounted for or discussed in the manuscript.

      We incorporated several enhancements to improve our analysis in response to the provided feedback. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      Furthermore, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in the works of (Meddeb et al. 2019; Madsen et al. 2019). Our intent in doing so was to demonstrate that these factors are unlikely to alter our conclusions substantially when considering a healthy population. We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion:

      “Our estimates for total plasma cfDNA concentration were derived from the median concentration observed in individuals below 47 years of age (n=52), as reported by (Meddeb et al. 2019). To complement this, we integrated our total concentration estimates with data on the proportion of cfDNA originating from specific cell types, leveraging a plasma methylome deconvolution method described by (Loyfer et al. 2023), which did not provide absolute quantities of cfDNA). To quantify the uncertainty associated with our cfDNA concentration estimates, we employed a methodology that considered several sources of variation. First, we incorporated the confidence interval of the median concentration reported by Meddeb et al. as a measure of uncertainty. Additionally, we accounted for individual-specific and analytic variations based on the study by (Madsen et al. 2019), encompassing factors such as the precise timing of measurements and assay precision. These sources of uncertainty were combined using the approach outlined below.”

      “Our current analysis focused on estimating plasma cfDNA concentration and cellular turnover in a cohort of healthy, relatively young individuals. The total plasma cfDNA concentrations were sourced from healthy individuals below 47 years, as reported by (Meddeb et al. 2019). We use data analyzed based on plasma samples from healthy individuals to estimate the proportion of cfDNA originating from specific cell types (Loyfer et al. 2023). These values were then compared to the potential DNA flux resulting from homeostatic cellular turnover, estimated for reference healthy males aged between 20 and 30 (Sender and Milo 2021). In our analysis, we considered various sources of uncertainty, including inter-individual variation, variability in the timing of sample collection, and analytical precision (Madsen et al. 2019; Meddeb et al. 2019). These factors collectively contributed to an uncertainty factor of less than 3. Importantly, this level of uncertainty does not alter our conclusion regarding the relatively small fraction of DNA present in plasma as cfDNA. Furthermore, we acknowledge that age and sex can impact total cfDNA concentration, as demonstrated by (Meddeb et al. 2019), with potential variations of up to 30%. However, as the results of our analysis present a much larger difference, these effects do not change the conclusions drawn from our analysis. Nevertheless, age and health status may influence the proportion of cfDNA originating from specific cell types and their corresponding cellular turnover rates. Consequently, the ratios themselves may vary in the elderly population or individuals with underlying health conditions.”

      Reviewer #2 (Recommendations For The Authors):

      1) Align the cohorts to estimate DNA production and plasma cfDNA levels. Cellular turnover rate and plasma cfDNA levels vary with age, sex, circadian clock, and other factors (Madsen AT et al, EBioMedicine, 2019). This study estimated DNA production using data abstracted from a homogenous group of healthy control males (Sender & Milo, Nat Med 2021). On the other hand, plasma cfDNA levels were obtained from datasets of more diverse cohort of healthy males and females with a wide range of ages (Loyfer et al. Nature, 2023 and Moss et al., Nat Commun, 2018).

      We have incorporated several enhancements to improve the coherence of our analysis. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      There was no specific estimate for a cohort of young males in both Meddeb et al. and Loyfer et al.; however, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in literature (Meddeb et al. 2019; Madsen et al. 2019). Thus, we demonstrate that sex and age have a small effect on the cfDNA concentrations and thus are unlikely to alter our conclusions substantially when considering a healthy population.

      We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion.

      “Our estimates for total plasma cfDNA concentration were derived from the median concentration observed in individuals below 47 years of age (n=52), as reported by (Meddeb et al. 2019). To complement this, we integrated our total concentration estimates with data on the proportion of cfDNA originating from specific cell types, leveraging a plasma methylome deconvolution method described by (Loyfer et al. 2023), which did not provide absolute quantities of cfDNA). To quantify the uncertainty associated with our cfDNA concentration estimates, we employed a methodology that considered several sources of variation. First, we incorporated the confidence interval of the median concentration reported by Meddeb et al. as a measure of uncertainty. Additionally, we accounted for individual-specific and analytic variations based on the study by (Madsen et al. 2019), encompassing factors such as the precise timing of measurements and assay precision. These sources of uncertainty were combined using the approach outlined below.”

      “Our current analysis focused on estimating plasma cfDNA concentration and cellular turnover in a cohort of healthy, relatively young individuals. The total plasma cfDNA concentrations were sourced from healthy individuals below 47 years, as reported by (Meddeb et al. 2019). We use data analyzed based on plasma samples from healthy individuals to estimate the proportion of cfDNA originating from specific cell types (Loyfer et al. 2023). These values were then compared to the potential DNA flux resulting from homeostatic cellular turnover, estimated for reference healthy males aged between 20 and 30 (Sender and Milo 2021). In our analysis, we considered various sources of uncertainty, including inter-individual variation, variability in the timing of sample collection, and analytical precision (Madsen et al. 2019; Meddeb et al. 2019). These factors collectively contributed to an uncertainty factor of less than 3. Importantly, this level of uncertainty does not alter our conclusion regarding the relatively small fraction of DNA present in plasma as cfDNA. Furthermore, we acknowledge that age and sex can impact total cfDNA concentration, as demonstrated by (Meddeb et al. 2019), with potential variations of up to 30%. However, as the results of our analysis present a much larger difference, these effects do not change the conclusions drawn from our analysis. Nevertheless, age and health status may influence the proportion of cfDNA originating from specific cell types and their corresponding cellular turnover rates. Consequently, the ratios themselves may vary in the elderly population or individuals with underlying health conditions.”

      2) "cfDNA fragments are not created equal". Recent studies demonstrate that cfDNA composition vary with disease state. For example, cfDNA GC content, fraction of short fragments, and composition of some genomic elements increase in heart transplant rejection compared to no-rejection state (Agbor-Enoh, Circulation, 2021). The genomic location and disease state may therefore be important factors to consider in these analyses.

      In this study, we addressed the total amount of cfDNA in healthy individuals without regard to GC content, representation of different genomic regions, or fragment length, as the goal was to understand if cell death rates are fully accounted for by cfDNA concentration. We agree that it will be interesting to study the relative representation of the genome in cfDNA and the processes that determine cfDNA concentration in pathologies beyond the rate of cell death. These topics for future research fall beyond this study's scope.

      3) Alternative sources of DNA production should be considered. Aside from cell death, DNA can be released from cells via active secretion. This and other additional sources of DNA should be considered in future studies. The distinct characteristics of mitochondrial DNA to genomic DNA should also be considered.

      We know only a few specific cases whereby DNA is released from cells that are not dying. These include the release of DNA from erythroblasts and megakaryocytes to generate anucleated erythrocytes and platelets (Moss et al. 2022, cited in our paper) and the release of NETs from neutrophils.

      The presence of cfDNA fragments originating from megakaryocytes and erythroblasts indicates the elimination of megakaryocytes and erythroblasts and the birth of erythrocytes and platelets. However, the considerations in the rest of the paper still apply: the concentration of cfDNA from these sources is far lower than expected from the cell turnover rate.

      Concerning NETosis: the presence of cfDNA originating in neutrophils that have not died would reduce the concentration of cfDNA from dying neutrophils and thus further increase the discrepancy, which is the topic of our study (under-representation of DNA from dying cells in plasma).

      We updated a paragraph in the discussion regarding this issue:

      “A comparison between the different types of cells shows a trend in which less DNA flux from cells with higher turnover gets to the bloodstream. In particular, a tiny fraction (1 in 3x104) of DNA from erythroid progenitors arrives at the plasma, indicating an extreme efficiency of the DNA recovery mechanism. Erythroid progenitors are arranged in erythroblastic islands. Up to a few tens of erythroid progenitors surround a single macrophage that collects the nuclei extruded during the erythrocyte maturation process (pyrenocytes) (Chasis and Mohandas 2008). The amount of DNA discarded through the maturation of over 200 billion erythrocytes per day (Sender and Milo 2021) exceeds all other sources of homeostatic discarded DNA. Our findings indicate that the organization of dedicated erythroblastic islands functions highly efficiently regarding DNA utilization. Neutrophils are another high-turnover cell type with a low level of cfDNA. When contemplating the process of NETosis (Vorobjeva and Chernyak 2020), the existence of cfDNA originating from live neutrophils would potentially diminish the concentration of cfDNA released by dying neutrophils, thereby amplifying the observed ratio for this particular cell type. The overall trend of higher turnover resulting in a lower cfDNA to DNA flux ratio may indicate similar design principles, in which the utilization of DNA is better in tissues with higher turnover. However, our analysis is limited to only several cell types (due to cfDNA test and deconvolution sensitivities), and extrapolation to cells with lower cell turnover is problematic.”

      We neglected mitochondrial DNA, as it is not measured in methylation cell-of-origin analysis. Similarly to the argument above, if some of the total DNA measured in plasma is in fact mitochondrial, this would mean that genomic cfDNA concentration is actually lower than the estimates, meaning that an even smaller fraction of DNA from dying cells is measured in plasma.

    1. Late infection

      Given that we assume the effect of revision is conditional on the nature of that revision, it's not clear to me what "DAIR vs. Revision" means for late infection silo,

      Just thinking through it for myself...

      The options are:

      • A = DAIR -> B = 12w
      • A = Revision(one) -> B in {12w, 6w}
      • A = Revision(two) -> B in {12w, 7d}
      • C in (no rifampicin, rifampicin)

      Currently, (just focusing on surgery/duration, and making 12w the reference for all groups rather than 7w/6d) cell parameters as specified in the model are:

      $$ \begin{matrix} \text{DAIR} \ \text{Revision(one), 12w} \ \text{Revision(two), 12w} \ \text{Revision(one), 6w} \ \text{Revision(two), 7d} \end{matrix} \begin{pmatrix} \alpha \ \alpha + \beta_A \ \alpha + \beta_A \ \alpha + \beta_A + \beta_{B1} \ \alpha + \beta_A + \beta_{B2} \end{pmatrix} $$

      So, effect of one-stage + 12 w assumed equal to the effect of two-stage + 12w, then revision type specific deviations from those. And "DAIR vs Revision" (beta_A) is really DAIR vs. weighted average of one-stage 12w and two-stage 12w, i.e. ignores the duration options.

      I'm guessing this is the only randomised comparison we can make: a weighted average of one/two + 12w is the "default" revision.

      As an alternative, I assume it's plausible that one-stage 12w and two-stage 12w differ due to clinician selection of one/two stage. So there may be preference (or maybe it just makes things messy) to have something like

      $$ \begin{matrix} \text{DAIR} \ \text{Revision(one), 12w} \ \text{Revision(two), 12w} \ \text{Revision(one), 6w} \ \text{Revision(two), 7d} \end{matrix} \begin{pmatrix} \alpha \ \alpha + \beta_{A1} \ \alpha + \beta_{A2} \ \alpha + \beta_{A1} + \beta_{B1} \ \alpha + \beta_{A2} + \beta_{B2} \end{pmatrix} $$

      Noting that \beta_{A1} and \beta_{A2} aren't "causal" in the sense that any differences could just be due to selection bias rather than differences in effectiveness of one/two stage.

      The effect of revision versus DAIR will depend on what "revision" means. We can't just compare one-stage 12 weeks to DAIR vs 12 weeks because surgeon's choose who gets one-stage. Only comparison that seems to make sense is weighted combination of one/two stage, with weight as observed in the trial. I think that comparison makes sense, but maybe not.

      Assume that $$p_{A1}$$ is the proportion randomised to revision who are selected to receive one-stage and $$1 - p_{A1}$$ the proportion selected to receive two-stage. Then the comparison for any revision versus DAIR might be taken to mean

      $$ p_{A1}(0.5\beta_{A1} + 0.5(\beta_{A1} + \beta_{B1}))\ + (1 - p_{A1})(0.5\beta_{A2} + 0.5(\beta_{A2} + \beta_{B2})) $$

      which just explicitly allows for the differences. Or some other combination of groups, where we assume that selection of one/two stage in the trial is the same in the population. Presumably though there are issues in interpreting such a comparison as "causal", unless also adjust for factors determining one/two stage selection.

      The \beta_{A1} and \beta_{A2} are necessary for estimation of the duration effects, unless willing to assume no differences between one/two stage 12w.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their reading of our manuscript, which we believe has led to substantial improvements.

      To aid clarity, we have split Fig. 1 into three separate figures.

      For convenience, we have put all major changes in the text in blue.

      Reviewer #1

      Evidence, reproducibility and clarity

      Summary: Hui et al. tackle a crucial question in biology: what factors influence the preference for carbon sources in yeasts?

      They reveal that the growth rate on palatinose exceeds that on glucose,

      The above statement is incorrect --- we think the reviewer may have confused sugars.

      despite palatinose utilization being repressed in the presence of glucose. Consequently, the favored carbon source does not necessarily align with the one supporting the fastest growth rate. The study also delves into potential regulatory mechanisms governing carbon source preference and dismisses certain existing theories, such as the general carbon flux sensing mechanism proposed by Okano et al. [25].

      Major comments: None

      Minor comments:

      The authors suggest that a higher growth rate implies a higher glycolytic flux (l63), a crucial assumption underpinning their interpretation of the absence of a ``general carbon flux sensing mechanism' (l65). To substantiate this significant conclusion, they could calculate the extracellular uptake fluxes (based on the time-course concentrations of biomass and substrates).

      This suggestion is a good one, but unfortunately the number of data points in the new Fig. 3 are insufficient to estimate the uptake flux reliably.

      To address whether glycolytic flux increases, we have added a new paragraph to the introduction explaining how all the sugars we consider feed upper glycolysis, providing either its first or second metabolite. We therefore think it highly likely that any differences in growth rate are generated by differences in glycolytic flux. Indeed, Hackett et al., 2016, showed that the glycolytic flux increases with growth rate when they changed extracellular glucose concentrations. We now include this reference in the Discussion.

      The accumulation of certain by-products is known to be toxic, reducing cellular growth rate (e.g., acetate DOI: 10.1038/srep42135, ethanol DOI: 10.1016/B978-0-12-040308-0.50006-9, etc.), while they can also enhance growth under specific conditions (e.g., acetate DOI: 10.15252/embj.2022113079). Considering this is crucial to rule out certain hypotheses, such as the possibility that a by-product produced during growth on the first carbon source would not modulate growth on the second carbon source, potentially influencing the growth rate differentially in each phase. Although the authors use mutant strains to eliminate the role of some C2 compounds (acetate and ethanol), alternative pathways could be implicated in the (co-)utilization of these by-products. This aspect should be discussed, and ideally, the authors could quantify the time-course concentrations of by-products to assess their potential role.

      We agree with the reviewer that extracellular acetate and ethanol may inhibit growth, although budding yeast might be less sensitive than E. coli, the subject of most of the studies provided.

      Nevertheless, we think it unlikely that these chemicals modify the decision-making we see. First, the icl1Δ mutant we tested is unable to consume ethanol (Fernandez et al., 1992) or acetate (Lee et al., 2011) --- we now include these references in the SI --- and yet has wild-type behaviour (Fig. S2D). Second, we observe that isomaltase expression strongly decreases in the presence of galactose when we grow cells in a microfluidic device (Fig. S4), just like it does in batch culture (Fig. 3A), even though the constant flow of medium through the device removes any chemicals the cells excrete.

      The general flux-sensing regulatory mechanism proposed by Okano et al. [25], which has been dismissed by this study, has recently been questioned, as discussed in DOI: 10.15252/embj.2022113079. This aspect should be included in the discussion.

      Okano et al. studied E. coli while we study budding yeast. We therefore have shown that the understanding for that organism does not transfer to our eukaryotic example. We suspect that control in budding yeast combines both flux-sensing and specific regulation, as we say in the discussion, and so we consider our results to build on those of Okano et al.

      Significance

      Strengths & limitations: The work is robust, and the experiments in the study have been appropriately designed and conducted. The primary question of this study has been tackled using a combination of experimental and computational methods to thoroughly assess various regulatory and functional aspects. However, there are gaps in the data that could enhance key conclusions, notably the absence of glycolytic flux measurements. Moreover, further evidence is needed to substantiate the assertion that by-products do not play a role in carbon source preference.

      Advance: This study represents a significant step forward in comprehending the nutritional strategy of microbes. The authors demonstrate that the preferred carbon source may not necessarily be the one supporting the fastest growth rate. Furthermore, they dismiss certain theories that have been proposed to explain the growth strategy of microbes on mixed carbon sources.

      Audience: By addressing a fundamental question in life science, this work is important in the field of biology in general and of particular interest in systems biology, biotechnology, synthetic biology, and health. Consequently, it will be of interest to a broad audience.

      Reviewer #2

      Evidence, reproducibility and clarity

      Summary: The authors have used microtiter plates to produce growth profiles on combinations of different sugars. From this data they have evaluated whether the sugars are co-consumed or if there is a preference for either sugar, seen as a diauxic shift. They found diauxie between galactose and the disaccharide palatinose, but co-consumption between palatinose and fructose. They further used strains with perturbations in their GAL regulon to attempt to explain this discrepency.

      Major comments:

      I unfortunately found a large portion of the present manuscript unintelligable.

      Firstly, figures were incorrect to the point I could not dechiffre them: Figure 2A-C have black solid and dashed lines in the legend that are not found in the graph, instead there are orange and blue dashed lines in the graph with no legends. Figure 4C has no description of the y-axis. The growth rates in Figure 1C are very hard to follow, and there are definitely local maxima in both the blue and green profiles that are not being discussed (at 15-20 h). I cannot evaluate the conclusions drawn from the data until these issues have been resolved.

      We apologise for the difficulties experienced by this reviewer.

      The black lines in the old Fig. 2's legend, now Fig. 4, explain the different styles used: dashed lines are for single sugars regardless of their concentration and full lines are for mixtures regardless of their concentration. We now explicitly say this in the caption.

      We have fixed the missing label in what is now Fig. 6C and have moved the statement that we are showing two biological replicates for each set of concentrations earlier in Fig. 2's caption.

      We now explore the meaning of the shoulder for the fructose-palatinose mixture in Fig. 2B in the Discussion. This point is not a local maximum, unlike the case for diauxie, because the growth rate always decreases. The shoulder for the glucose-palatinose mixture was likely an artefact generated by measurement noise at low ODs because it was not present when we repeated the experiment. We now use that data for Fig. 2A & B. We also include a new Fig. S5 showing that there are sucrose-palatinose concentrations too that have a similar shoulder.

      Secondly, the language in the Results and Discussion sections is confusing. Alternating between present and imperfect tense as well as active and passive form makes it hard to distinguish the authors own results from literature findings (Results are usually written in passive, imperfect tense). Examples are found on lines 24, 29, 37-38, 59, 84, 131, and 165.

      We have made both sections flow more smoothly with substantial re-writing. As before, we cite all results that are not our own.

      The authors also do not consider the differences and similarities in catabolic pathways for assimilation of galactose, fructose and palatinose. Even if they do not see a reason to continue that as a possible explanation for the co-consumption between fructose and palatinose a discussion of why it is disregarded would not be out of place here.

      A good point, and we now state in the Introduction that all the sugars we study feed upper glycolysis.

      Significance

      There is some novelty to the authors findings, but I would argue it is being overstated in the present manuscript. Some examples of studies looking at catabolite repression, the main cause of diauxie, of sugars other than glucose can be found in: Simpson-Lavy and Kupiec (2019), Gancedo (1998), Prasad and Venkatesh (2008) and Borgstrom et al (2022).

      We strongly disagree with this statement. The papers cited do not address, as we do, the co-consumption between two sugars neither of which is glucose. Where they study two sugars, they always study glucose.

      Simpson-Lavy and Kupiec, 2019, investigate the interaction between acetate and ethanol, neither of which are sugars. Further, they are not independent carbon sources because cells convert ethanol into acetate when catabolising ethanol.

      Gancedo, 1998, is a review of glucose repression and describes how glucose represses the expression of genes for other sugars. Although Gancedo mentions ``galactose repression', this repression is of genes encoding enzymes for gluconeogenesis and the TCA and glyoxylate cycles, not of other sugar regulons, our subject.

      Prasad and Venkatesh, 2008, also focus on glucose and the well studied diauxie between glucose and galactose.

      Borgstrom et al., 2022, focus too on glucose and growth on glucose and xylose in recombinant strains. The standard laboratory strains we study have not be artificially engineered to consume xylose. They do mention that galactose causes repression of TPS1, which encodes an enzyme that synthesises the storage carbohydrate trehalose. This repression is again not of a sugar catabolic regulon, our subject.

      I would not say that the field would be significantly advanced by the publication of this manuscript, and the authors have themselves not explained the application of futhering the understanding palatinose metabolism in yeast. As mentioned above, the catabolite repression potential of galactose is already known, it just hasn't been shown for palatinose specifically before.

      We again strongly disagree. Our findings are novel. The reviewer did not provide any evidence for galactose repression of other sugar regulons, which is not widely recognised as we emphasised in the Discussion. We believe that the reviewer has confused the known "galactose repression' of gluconeogenic or TCA-cycle genes with our new report of repression of other sugar regulons in the presence of the sugar catabolised by the regulon.

      I would recommend a complete rewrite of the manuscript as presented, with a lower stated novelty, clearer language and comprehensible figures.

      Reviewer #3

      Evidence, reproducibility and clarity

      Summary: Microbes grow at different growth rates in different carbon sources. When more than one carbon sources are present in the media microbes often show a preference over certain carbon sources, and 'non-preferred' carbons sources are used only when the preferred carbon source is exhausted in the media, this process called diauxic shift.

      Why microbes exhibit such utilization preference over certain carbon sources, is an interesting question in microbiology and evolutionary biology, and the molecular mechanisms that enable microbes to preferentially use one carbon over another is worth investigating. It is intuitive to think that microbes will prefer to use a carbon source that confers maximum growth rate, but when tested experimentally it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used.

      Although the reviewer states that "it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used“, we are unaware of this work and would appreciate references, particularly for budding yeast. The most systematic study we know, in E. coli by Aidelberg et al., 2014 --- reference 13, concludes that "the faster the growth rate, the higher the sugar on the hierarchy“, the opposite behaviour.

      In this study authors demonstrate that budding yeast prefer to use galactose over palatinose, but not over sucrose or fructose where all three sugars can support faster growth rate compared to palatinose. Authors presented data where preferential galactose use and diauxic shift is observed in the growth curve when galactose and palatinose or glucose and palatinose combinations were used.

      No diauxic shift was observed in the growth curve when fructose-palatinose, or sucrose-palatinose combination were used. In fructose-palatinose and sucrose-palatinose combinations growth curves agree more with co-utilization strategies. Authors used transcriptomics and genetic perturbations to decipher the molecular mechanism of such preferential carbon use, and reports preference of galactose over palatinose is achieved by preventing positive feedback of MAL regulon, which encodes the genes for palatinose catabolism. We found this observation is interesting and the molecular mechanism of such preferential carbon use is nicely described in this paper. We also find claims authors made are well supported by experiments. Although catabolite repression and diauxic transitions are known in yeast, and authors also pointed out such previous references, but preferential use of a slower carbon source, i.e. galactose over at least one other fast-growing carbon is interesting enough for publication. We would like to support the publication of this article, but we have major concerns about the data analysis and data presentation. Authors must address our concerns which are mentioned below.

      Major comments:

      1. This study mainly hinges on growth rate measurements, but we found growth rates are not properly represented in the figures. Growth curves are always shown in linear scale, which makes it almost impossible to compare fast and slow growth when presented in same plot. All growth curves must be shown on log scale.

      We have changed all growth curves to log2 scale, following New et al., 2014, rather than Monod's choice of linear scale that we had originally.

      Our conclusions are unaffected.

      1. Growth rates of the Yeast strain growing individual single carbon sources (galactose, palatinose, sucrose and fructose) should be shown as a figure panel and t-test should be performed to conclude if the individual growth rates are significantly different or not.

      We already showed these growth rates in their own panel in Fig. 1B. Following the reviewer's suggestion, we have now added their statistical significance to the caption.

      1. Growth phase, lag phase, diauxic shift and post shift growth should be clearly shown in figure 2 and 4, each phase should be clearly marked, carbons used in each phase should be mentioned on the plot. Also, the growth curve must be plotted using log scale.

      Although we have changed all growth curves to log scale, we decided against include this additional labelling for two reasons. First, we are presenting evidence that some of the growth we observe is diauxic and labelling the curves as diauxic before we discuss this evidence undermines that discussion. Second, any further labels would clutter the figures, and we believe would hinder rather than help the reader.

      Instead we changed the colour scheme and the boldness of the diauxic growth curves in Fig. 2, which we hope the reviewer agrees adds the clarity they felt was missing.

      1. Authors has taken in account that MAL12 gene overexpression causes long lag when cells need to switch to maltose from glucose, and shown deletion of IMA1 decreases the lag with subsequent 2% growth rate increase in palatinose. How significant is this increase?

      We have confirmed the statistical significance through a t-test and added the results to the caption of Fig. 6C.

      1. Authors have an interesting observation that in sucrose-palatinose and fructose palatinose combinations, most probably co utilization of the carbons is taking place. Authors should discuss this in more details. In galactose-palatinose scenario intracellular galactose-based repression of gal80 and subsequent lack of feed forward of the Mal regulon is expected to stop co-utilization of palatinose. As authors have RNA seq data, can they make predictions for other carbon pairs, where sequential utilization can occur based on their model?

      We agree and have added more discussion of the fructose- and sucrose-palatinose mixtures to the Discussion and a new figure, Fig. S5.

      Our RNAseq data reveals the difference in gene expression caused by an active versus an inactive GAL regulon. In Fig. S11, we show that the hexose transporters HXT2 and HXT7 are down regulated in 0.1% fructose when the GAL regulon is active, perhaps implying that cells are able to prioritise galactose over other hexoses. Nevertheless, to predict if particular carbon sources are therefore favoured, we would need to know whether cells use specific hexose transporters to drive growth on different carbon sources, which has been little investigated.

      Minor comments:

      1. In figure 5, authors attempted to summarize the model, which is informative, but it will be more useful for non-specific reader if a cell-based cartoon, with transports on surface and catabolic enzymes inside is also added.

      We have re-designed Fig. 5, now Fig. 7, following this suggestion and agree it improves clarity.

      In this schematic diagram, switch from galactose (blue line) to red line (palatinose) shows a mixed color zone, it's a bit confusing, as this represents a bi-stable state. Authors should clearly comment on possibility of biostability while discussing their proposed mechanism.

      In the new figure, this part has been removed.

      1. The author may want to put their work in the context of other recent observations that bacteria do not try to maximize their growth rates in many conditions. Fast growth is often associated with expansive tradeoffs, and a carbon source which confers fast growth rate may confer selective disadvantage. Thus, there are evolutionary benefits of sub-optimal growth, which could be discussed in the manuscript. In this regard a recent study (bioRxiv (2023) doi:10.1101/2023.08.22.554312.) has established the link between resource allocation strategies, growth rates and tradeoffs, which may be taken in account while discussing. Are there any known tradeoffs, when galactose is used over palatinose and which is not the case sucrose or fructose?

      This is an interesting reference looking at growth on a single carbon source. We are unaware of similar tradeoffs relevant to our study. For example, we see little evidence for a constraint on the proteome because in a strain with a constitutively active GAL regulon there is no change in phenotype if we delete the genes for the three highly expressed GAL enzymes (Fig. S6B). Nevertheless and as we state in the penultimate paragraph of the Discussion, we agree that such a constraint must exist, although perhaps this constraint is ecological.

      Referees cross-commenting

      As other reviewers pointed out, this study has merit and addressed interesting questions, but needed to be written well in a more understandable form, we agree with this assessment. Also figures must be made much clearer, as all of the reviewers pointed out. In summary, this is an interesting study, but needs some work before publication.

      Significance

      General assessment: Strength and limitations:

      This study addressed an interesting question regarding resource preference and growth rate optimization in microbes. This is an important question in the field. Study is well designed and claims are backed up with experimental results. One of the limitations of the study is lack of predictability. Authors explained the mechanism for one pair of carbon sources, but how applicable that will be in general is not clear.

      We would argue that one of our important findings is to demonstrate that the scientific community is missing the information needed to make such predictions. We provide a counter example to the generally accepted belief that accurate predictions can be made using growth rates. Our work poses the question: what then are the physiological variables required to predict how a cell will consume a pair of carbon sources?

      Advance: This study helps to advance our knowledge. Their observation regarding preferential utilization of a carbon source which supports slower growth over a carbon source which can support faster growth, and the molecular mechanism provided will help researchers to understand resource allocation strategies better.

      Audience: Microbiology, systems biology, evolutionary biology, fermentation and bio process engineering research.

      Reviewer expertise: Biochemistry, systems biology, metabolic strategies and tradeoffs in microbes, microbial ecology.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Review of the paper by Yu Huo et al.

      Summary:

      Microbes grow at different growth rates in different carbon sources. When more than one carbon sources are present in the media microbes often show a preference over certain carbon sources, and 'non-preferred' carbons sources are used only when the preferred carbon source is exhausted in the media, this process called diauxic shift. Why microbes exhibit such utilization preference over certain carbon sources, is an interesting question in microbiology and evolutionary biology, and the molecular mechanisms that enable microbes to preferentially use one carbon over another is worth investigating. It is intuitive to think that microbes will prefer to use a carbon source that confers maximum growth rate, but when tested experimentally it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used. In this study authors demonstrate that budding yeast prefer to use galactose over palatinose, but not over sucrose or fructose where all three sugars can support faster growth rate compared to palatinose. Authors presented data where preferential galactose use and diauxic shift is observed in the growth curve when galactose and palatinose or glucose and palatinose combinations were used.

      No diauxic shift was observed in the growth curve when fructose-palatinose, or sucrose-palatinose combination were used. In fructose-palatinose and sucrose-palatinose combinations growth curves agree more with co-utilization strategies. Authors used transcriptomics and genetic perturbations to decipher the molecular mechanism of such preferential carbon use, and reports preference of galactose over palatinose is achieved by preventing positive feedback of MAL regulon, which encodes the genes for palatinose catabolism. We found this observation is interesting and the molecular mechanism of such preferential carbon use is nicely described in this paper. We also find claims authors made are well supported by experiments. Although catabolite repression and diauxic transitions are known in yeast, and authors also pointed out such previous references, but preferential use of a slower carbon source, i.e. galactose over at least one other fast-growing carbon is interesting enough for publication. We would like to support the publication of this article, but we have major concerns about the data analysis and data presentation. Authors must address our concerns which are mentioned below.

      Major comments:

      1. This study mainly hinges on growth rate measurements, but we found growth rates are not properly represented in the figures. Growth curves are always shown in linear scale, which makes it almost impossible to compare fast and slow growth when presented in same plot. All growth curves must be shown on log scale.
      2. Growth rates of the Yeast strain growing individual single carbon sources (galactose, palatinose, sucrose and fructose) should be shown as a figure panel and t-test should be performed to conclude if the individual growth rates are significantly different or not.
      3. Growth phase, lag phase, diauxic shift and post shift growth should be clearly shown in figure 2 and 4, each phase should be clearly marked, carbons used in each phase should be mentioned on the plot. Also, the growth curve must be plotted using log scale.
      4. Authors has taken in account that MAL12 gene overexpression causes long lag when cells need to switch to maltose from glucose, and shown deletion of IMA1 decreases the lag with subsequent 2% growth rate increase in palatinose. How significant is this increase?
      5. Authors have an interesting observation that in sucrose-palatinose and fructose palatinose combinations, most probably co utilization of the carbons is taking place. Authors should discuss this in more details. In galactose-palatinose scenario intracellular galactose-based repression of gal80 and subsequent lack of feed forward of the Mal regulon is expected to stop co-utilization of palatinose. As authors have RNA seq data, can they make predictions for other carbon pairs, where sequential utilization can occur based on their model?

      Minor comments

      1. In figure 5, authors attempted to summarize the model, which is informative, but it will be more useful for non-specific reader if a cell-based cartoon, with transports on surface and catabolic enzymes inside is also added.

      In this schematic diagram, switch from galactose (blue line) to red line (palatinose) shows a mixed color zone, it's a bit confusing, as this represents a bi-stable state. Authors should clearly comment on possibility of biostability while discussing their proposed mechanism. 2. The author may want to put their work in the context of other recent observations that bacteria do not try to maximize their growth rates in many conditions. Fast growth is often associated with expansive tradeoffs, and a carbon source which confers fast growth rate may confer selective disadvantage. Thus, there are evolutionary benefits of sub-optimal growth, which could be discussed in the manuscript. In this regard a recent study (bioRxiv (2023) doi:10.1101/2023.08.22.554312.) has established the link between resource allocation strategies, growth rates and tradeoffs, which may be taken in account while discussing. Are there any known tradeoffs, when galactose is used over palatinose and which is not the case sucrose or fructose?

      Referees cross-commenting

      As other reviewers pointed out, this study has merit and addressed interesting questions, but needed to be written well in a more understandable form, we agree with this assessment. Also figures must be made much clearer, as all of the reviewers pointed out. In summary, this is an interesting study, but needs some work before publication.

      Significance

      General assessment: Strength and limitations: This study addressed an interesting question regarding resource preference and growth rate optimization in microbes. This is an important question in the field. Study is well designed and claims are backed up with experimental results. One of the limitations of the study is lack of predictability. Authors explained the mechanism for one pair of carbon sources, but how applicable that will be in general is not clear.

      Advance: This study helps to advance our knowledge. Their observation regarding preferential utilization of a carbon source which supports slower growth over a carbon source which can support faster growth, and the molecular mechanism provided will help researchers to understand resource allocation strategies better.

      Audience: Microbiology, systems biology, evolutionary biology, fermentation and bio process engineering research.

      Reviewer expertise: Biochemistry, systems biology, metabolic strategies and tradeoffs in microbes, microbial ecology.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We would firstly like to thank all reviewers for their comments and support of this manuscript.

      Reviewer #1 (Recommendations For The Authors):

      No further recommendations.

      Reviewer #2 (Recommendations For The Authors):

      All of my comments have been sufficiently addressed.

      Reviewer #3 (Recommendations For The Authors):

      Thanks for responding to my former recommendations constructively. I believe these points have been fully addressed in this new version.

      However, I have not seen any comments on the points I raised in my former public review concerning the I-2 dependence of the FonSIX4 cell death. Do you know whether FonSIX4 would trigger cell death in tissues not expressing any I-2?

      We are a little confused concerning this comment. I-2 is a different class of resistance protein (NLR) that recognises Avr2 and this is likely to be intracellular. From the previous public review, we believe reviewer 3 may have been asking us to clarify the dependence of I (MM or M82) on FonSIX4 cell death. We have performed these controls by expressing FonSIX4 and associated FonSIX4/Avr1 chimeras in N. benthamiana (with the PR-1 signal peptide for efficient secretion of effectors) and it does not cause cell death in the absence of the I receptor – see S11F Fig. This was not explicitly conveyed in text so we have included the following in text: “Using the N. benthamiana assay we show FonSIX4 is recognised by I receptors from both cultivars (IM82 and iMoneymaker) and cell death is dependent on the presence of IM82 or iMoneymaker (Fig 5B, S11 Fig).”

      I still recommend discussing whether the Avr1 residues crucial for Avr activity are in the same structural regions of the C-terminal domain where previous work has identified residues under diversifying selection in symbiotic fungal FOLD proteins.

      The region important for recognition does encompass some residues within the structural region identified to be under diversifying selection in FOLD effectors from Rhizophagus irregularis previously reported (two residues within one beta-strand). However, we also see residues that don’t overlap to this area. We also note that the mycFOLD proteins analysed in symbiotic fungi are heavily skewed towards strong structurally similarity with FolSIX6 (similar cysteine spacing within both N and C-domains and structural orientation of the N and C-domains) rather than Avr1. We are under the impression that Avr1 was not included in the analysis of diversifying selection in symbiotic fungal FOLD proteins, it also is unclear to us if close Avr1 homologues are present. With this in mind, and considering our already lengthy discussion (as previously highlighted during reviewer), we have decided not to include further discussion concerning this point.


      The following is the authors’ response to the original reviews.

      We would like to thank the editor(s) and reviewers for their work concerning our manuscript. Most of the suggested changes were related to text changes which we have incorporated into the revised version. Please find our response to reviewers below.

      Reviewer #1 (Recommendations For The Authors):

      I only have very minor suggestions for the authors. The first one comes from reading the manuscript and finding it very dense with so many acronyms. This will limit the audience that will read the study and appreciate its impact. This is more noticeable in the Results, with many passages that I would suggest moving to Methodology.

      We thank reviewer 1 for their very positive review. We understand that due to the nature of this study, which includes many protein alleles/mutations that were expressed with different boundaries etc., it is difficult to achieve this. Reviewer 2 asked for more details to be provided. We hope we have achieved a nice balance in the revised manuscript.

      Something else that would facilitate the reading of the manuscript is the effectors name. The authors use the SIX name or the Avr name for some effectors and it makes it difficult to follow up.

      We have tried to make this consistent for Avr1 (SIX4), Avr2 (SIX3) and Avr3 (SIX1). Other SIX effectors are not known Avrs so the SIX names were used.

      Reading the manuscript and seeing how in most of the sections the authors used a computational approach followed by an experimental approach, I wonder why Alphafold2-multimer was not used to investigate the interaction between the effector and the receptor?

      This is a great suggestion, we have certainly investigated this, however to date there is no experimental evidence to directly support the direct interaction between I and Avr1. Post review, we spent some time trying to capture an interaction using a co-immunoprecipitation approach however to date we have not been able to obtain robust data that support this. We are currently looking to study this utilising protein biophysics/biochemistry but this work will take some time.

      Reviewer #2 (Recommendations For The Authors):

      We thank reviewer 2 for the very thorough editing and recommendations. We have incorporated all minor text edits below into the manuscript.

      Line 43: perhaps "Effector recognition" instead of "Effector detection", to be consistent with line 51?

      Line 60: Change to "leads".

      Line 79: Italicise Avr2.

      Line 94: Add the acronym ETI in parentheses after "effector-triggered immunity".

      Line 106: "(Leptosphaeria Avirulence-Supressing)" should be "(Leptosphaeria Avirulence and Supressing)".

      Line 112: Change "defined" to "define".

      Line 119: Spell out the species name on first use.

      Line 205: Glomeromycota is a division rather than a genus. Consistent with Fig 2, it also does not need to italicized.

      Line 207: Change "basidiomycete" to "Division Basidiomycota", consistent with Fig 2.

      Line 214: Change "alignment of Avr1, Avr3, SIX6 and SIX13" to "alignment of the mature Avr1, Avr3, SIX6 and SIX13 sequences".

      Line 324: Change "solved structures" to "solved protein structures".

      Line 335: Spell out acronyms like "MS" on first use in figure legends. Also dpi in other figure legends.

      Line 341: replace "effector-triggered immunity (ETI)" with "(ETI)" - see comment on Line 94.

      Line 370: Change "domains" to "domain".

      Line 374: In the title, change "C-terminus" to C-domain", consistent with the rest of the figure legend.

      Line 404: Change "(basidiomycetes and ascomycetes)" to "(Basidiomycota and Ascomycota fungi)", consistent with Fig 2C.

      Line 416: Change "in" to "by".

      Line 427: un-italicize the parentheses.

      Line 519: First mention of NLR. Spell out the acronym on first use in main text. S5 and S11 figure titles should be bolded.

      Line 852: Replace "@" with "at".

      S4 Table: Gene names should be italicised.

      S5 Table: Needs to be indicated that the primer sequences are in the 5´-3´ orientation.

      With regards to the Agrobacterium tumefaciens-mediated transient expression assays involving co-expression of the Avr1 effector and I immune receptor, the authors need to make clear how many biological replicates were performed as this information is only provided for the ion leakage assay.

      We have added these data to the figure legend

      Line 57: For me, the text "Fol secretes a limited number of structurally related effectors" reads as Fol secretes structurally related effectors, but very few of them are structurally related. Perhaps it would be better to say that the effector repertoire of Fol is made up of proteins that adopt a limited number of structural folds, or that the effector repertoire can be classified into a reduced set of structural families?

      This edit has been incorporated.

      Lines 66-67: Subtle re-wording required for "The best-characterized pathosystem is F. oxysporum f. sp. lycopersici (Fol)", as a pathosystem is made up of a pathogen and its host. Perhaps "The best-characterized pathosystem involves F. oxysporum f. sp. lycopersici (Fol) and tomato".

      Sentence has been reworded.

      Line 113 and throughout: Stick with one of "resistance protein", "receptor", "immune receptor" and "immunity receptor" throughout the manuscript.

      We have decided to use both receptor and immunity receptor as not all receptors investigated in the manuscript provide immunity.

      Lines 149-150: The title does not fully represent what is shown in the figure. The text "that is unique among fungal effectors" can be deleted as there is nothing in Fig 1 that shows that the fold is unique to fungal effectors.

      Figure title has been changed.

      Line 173: The RMSD of Avr3 is stated as being 3.7 Å, but in S3 Fig it is stated as being 3.6 Å.

      This was a mistake in the main text and has been corrected.

      Lines 202-204: This sentence needs to be reworded, as the way that it is written implies that the Diversispora and Rhizophagus genera are in the Ascomycota division. Also, "Ascomycetes" should be changed to "Ascomycota fungi", consistent with Fig 2.

      Sentence has been reworded.

      Line 233: "Scores above 8". What type of scores? Z-scores?

      These are Z-scores. This has been added in text.

      Lines 242-246: It is stated that SIX9 and SIX11 share structural similarity to various RNA-binding proteins, but no scores used to make these assessments is given. The scores should be provided in the text.

      Z-scores have been added.

      Fig 4A: SIX3 should be Avr2, consistent with line 292. The gene names should be italicised in Fig 4A.

      SIX3 was changed to Avr2. Gene names have been italicised.

      Line 356: Subtle rewording required, as "co-infiltrated with both IM82 and iMoneymaker" implies that you infiltrated with protein rather than Agrobacterium strains.

      Sentence has been reworded.

      Fig 5A, Fig 5C and Line 380: Light blue is used, but this looks grey. Perhaps change colour, as grey is already used to show the pro-domain in Fig 5A (or simply change the colour used to highlight the pro-domain)?

      Colour depicting the C-domain was changed.

      Lines 530-531: This text is no longer correct. Rlm4 and Rlm3 are now known to be alleles of Rlm9. See: Haddadi, P., Larkan, N. J., Van deWouw, A., Zhang, Y., Neik, T. X., Beynon, E., ... & Borhan, M. H. (2022). Brassica napus genes Rlm4 and Rlm7, conferring resistance to Leptosphaeria maculans, are alleles of the Rlm9 wall‐associated kinase‐like resistance locus. Plant Biotechnology Journal, 20(7), 1229.

      We thank the reviewer for picking this up. This text has been updated.

      Line 553: Provide more information on what the PR1 signal peptide is.

      More information about the PR1 signal peptide has been added.

      Lines 767-781: Descriptions and naming conventions of proteins throughout the figure legend need to be consistent and better reflect their makeup. For example, I think it would be best to put the sequence range after each protein mentioned - e.g. Avr118-242 or Avr159-242 instead of Avr1, PSL1_C37S18-111 instead of PSL1_C37S, etc. Furthermore, it is often stated that a protein is full-length when it lacks a signal peptide - my thought is that if a proteins lack its signal peptide, it is not full-length. The acronym "PD" also needs to be spelled out as "pro-domain (PD)" in the figure legend.

      We have incorporated sequence range for proteins that were produced upon first use. Sequence ranges that were modelled in AlphaFold2 were not added in text because they can be found in Supplementary Table 3.

      Lines 853-845: It is stated the sizes of proteins are indicated above the chromatogram in S10 Fig, but this is not the case. It is also not clear from S10B Fig that the faint peaks correspond to the peaks in the Fig 4B chromatogram. In S10D Fig, the stick of C58S is difficult to see. Perhaps change the colour or use an arrow/asterisk?

      Protein size estimates have been added above the chromatogram. Added text to indicate that the faint peaks correspond to peaks in Fig 4B. Added an asterisk in S10D Fig to identify the location of C58.

      S14 Fig is not mentioned/referenced in the main text of the manuscript.

      This was a mistake and has been added.

      The reference list needs to be updated to accommodate those referenced bioRxiv preprints that have now been published in peer-reviewed journals.

      The reference list has been updated.

      Reviewer #3 (Recommendations For The Authors):

      It would be good to discuss whether the pro-domains affecting virulence or avirulence activity.

      Kex2, the protease that cleaves the pro-domain functions in the golgi. We therefore suspect that the pro-domain is removed prior to secretion. For recombinant protein production in E. coli we find that these pro-domains are necessary to obtain soluble protein (doi: 10.1111/nph.17516). As we require the pro-domain for protein production and can not completely removing them from our preps, we cannot perform experiments to test this and subsequently comment further. In a paper that identified SIX effectors in tomato utilising proteomics approach (https://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/j.1364-3703.2007.00384.x), it appears that the pro-domains were not captured in this analysis. This supports the conclusion that they are not associated with the mature/secreted protein.

      The authors stated that the C-terminal domain of SIX6 has a single disulfide bond unique to SIX6. Please clarify in which context is it unique: in Fusarium or across all FOLD proteins?

      This is in direct comparison to Avr1 and Avr3. The disulfide in the C-domain of SIX6 is unique compared to Avr1 and Avr3. This has been made clear in text.

      The structural similarity of FOLD proteins to other known structures have been discussed (lines 460ff), but it is not clear whether all structures and models identified in this work would yield cysteine inhibitor and tumor necrosis factors as best structural matches in the database or whether this is specific to a single FOLD protein. Please consider discussing recently published findings by others (Teulet et al. 2023, New Phytologist) on this aspect.

      This analysis was performed for Avr1, we obtained relatively low similarity hits for Avr3/Six6. We have updated this text accordingly… “Unfortunately, the FOLD effectors share little overall structural similarity with known structures in the PDB outside of the similarity with each other. At a domain level, the N-domain of the FOLD effector Avr1 has some structural similarities with cystatin cysteine protease inhibitors (PDB code: 4N6V, PDB code: 5ZC1) [60, 61], and the C-domain with tumour necrosis factors (PDB code: 6X83) [62] and carbohydrate-binding lectins (PDB code: 2WQ4) [63]. Relatively weak hits were observed for Avr3/Six6.”

      It might be useful to clearly point out that the ToxA fold and the C-terminus of the FOLD fold are different.

      We have secondary structural topology maps of the FOLD and ToxA-like families in S8 Fig which highlight the differences in topology between these two families.

      Please add information to Fig.S8 listing the approach to generate the secondary structure topology maps.

      We have added this information in the figure caption.

    1. Author response

      eLife assessment

      Using a genetically controlled experimental setting, the authors find that the lack of Polycomb-dependent epigenetic programming in the oocyte and early embryo influences the developmental trajectory through gestation in the mouse. By showing a two-phase outcome of early growth restriction followed by enhancement, the authors address previous inconsistencies in the field. However, the link with placenta function and gene misregulation is not yet fully supported.

      We thank the Reviewers for their constructive comments. In response we have added significantly more data to the study and substantially rewritten the manuscript. New data include analyses of glucose, amino acid and metabolite levels in fetal and maternal blood samples, more highly resolved fetal growth analyses, a more detailed study of the hyperplastic placenta including IF analyses of labyrinth area, labyrinth to placenta and capillary to labyrinth ratios. We have also added analyses of placental DNA methylation state in offspring from oocytes lacking EED, which reveals a range of DNA methylation changes at imprinted and non-imprinted genes in HET-hom offspring compared to HET-het or WT-wt controls.

      Reviewer #1 (Public Review):

      Oberin, Petautschnig et. al investigated the developmental phenotypes that resulted from oocyte-specific loss of the EED (Embryonic Ectoderm Development) gene - a core component of the Polycomb repressive complex 2 (PRC2), which possess histone methyltransferase activity and catalyses trimethylation of histone H3 at lysine 27 (H3K27). The PRC2 complex plays essential roles in regulating chromatin structure, being an important regulator of cellular differentiation and development during embryogenesis. As novel findings, the authors find that PRC2-dependent programming in the oocyte, via loss of the core component EE2, causes placental hyperplasia and propose that the increase of placental transplacental flux of nutrients leads to fetal and postnatal overgrowth. At the mechanistic level, they show altered expression of genes previously implicated in placental hyperplasia phenotypes. They also establish interesting parallelism with the placental hyperplasia phenotype that is frequently observed in cloned mice.

      Strengths:

      The mouse breeding experiments are very well designed and are powerful to exclude potential confounding genetic effects on the developmental phenotypes that resulted from the loss of EED in oocytes. Another major strength is the developmental profiling across gestation, from pre-implantation to late gestation.

      Weaknesses:

      The evidence for 'oocyte' programming is restricted to phenotypic and gene expression analysis, without measurements of epigenetic dysregulation. It would be an added value if the authors could show evidence for altered H3K27me3 or DNA methylation in the placenta, for example.

      In an earlier previous study we identified a large number of developmentally important genes that accumulated H3K27me3 in primary-secondary stage growing oocytes and were repressed by EED (Jarred et al., 2022 Clinical Epigenetics). However, H3K27me3 was removed from all from these genes during preimplantation development, indicating that maternal inheritance of H3K27me3 at a wide range of genes is unlikely (Jarred et al., 2022 Clinical Epigenetics). Consistent with this only a small number of genes, including Slc38a4 and C2MC, have been shown to be functionally important in H3K27me3-dependent imprinting (Matoba et al., 2022 Genes and Development). Moreover, a related study showed that deletion of Setd2 and consequent loss of H3K36me3 in oocytes led to spreading of H3K27me3 into regions that were otherwise marked by H3K36me3 and DNA methylation (Xu et al. 2019 Nature Genetics 51:844–56). Based on these studies, we proposed that loss of EED and H3K27me3 may result in the ectopic spreading of H3K36me3 and DNA methylation in oocytes and that altered DNA methylation may then be transmitted to offspring and affect developmental outcomes (Jarred et al., 2022 Clinical Epigenetics)

      Given this hypothesis we analysed DNA methylation rather than H3K27me3 in the placenta of WT-wt, HET- het and HET-hom offspring. This revealed differentially methylated regions (DMRs) in HET-hom placentas at two H3K27me3 imprinted genes Sfmbt2 (C2MC) and Mbnl2, five classically imprinted genes and at 74 DMRs not associated with imprinted loci. Together, our data supports the hypothesis from Jarred et al., 2022 Clinical Epigenetics that loss of EED in oocytes results in altered DNA methylation patterning at both imprinted and non-imprinted genes in offspring and that this is likely to affect offspring growth and development. However, whether these changes result from direct alteration of DNA methylation in oocytes remains unclear.

      These new data are now included in results (Lines 387-409), Figure 6I, Supplementary File H-J and Discussion Lines 569-581.

      Reviewer Comment 1. The claim that placental hyperplasia drives offspring catch-up growth is not supported by current experimental data. The authors do not address if transplacental flux is increased in the hyperplastic placentae, measure amino acids and glucose in fetal/maternal plasma, or perform tetraploid rescue experiments to ascertain the contribution of the placenta to growth phenotypes. Furthermore, it is unclear, from the current data, if the surface area for nutrient transport is actually increased in the hyperplastic placenta and the extent to which other cell populations (i.e. spongiotrophoblasts) are affected in addition to glycogen cells. In addition, one of the supporting conclusions that the placenta is a key contributor to fetal overgrowth is based on a very crude measurement - placenta efficiency - which the authors claim is increased in the homozygous mutants compared to controls. After analysing the data carefully, I find evidence for decreased placental efficiency instead. I believe that the authors mistakenly present the data as placenta to fetal weight ratios, which led to the misinterpretation of the 'efficiency' concept.

      We thank the reviewer for pointing out our error in the placental efficiency data and we have now corrected the placental efficiency graphs (fetal/placental weight ratios) and updated the text throughout the manuscript as required (Figure 3I-K). As requested and described below, we have also added significantly more data, which support the conclusion that placental function is not enhanced in HET-hom mice and is unlikely to support fetal growth recovery.

      The new data and analyses we have added include:

      1. Further analyses of glycogen-enriched and non-glycogen-enriched cell counts in the decidua and junctional zones (Figure 4F-J)

      2. Total glycogen cell counts for male and female placentas (Figure 4 – figure supplement 1F)

      3. New analyses of fetal blood glucose levels at E17.5 and E18.5 and matching data from the mothers of each litter (Figure 4M)

      4. New analyses of the circulating amino acid levels and metabolites in fetal blood of E17.5 offspring and matching data from the mothers of each litter (Figure 8)

      5. New IF analyses of CD31 (PECAM-1) and combined this with machine learning assisted quantitative analyses of labyrinth and capillary areas using HALO (Figure 5)

      6. Separated male and female offspring and placental weights at E14.5 and E17.5 and total areas of the placenta, decidua, junctional zone and labyrinth (Figure 3 – figure supplement 1) which provide more insight into potential sex-specific differences in HET-hom offspring and placenta

      We have significantly re-written the results and discussion to reflect our new data and interpretation.

      While we did not assess transplacental flux, our new data revealed: 1. HET-hom fetuses had lower blood glucose levels at E18.5; 2. Circulating levels of amino acids and a wide range of metabolites did not differ between HET-hom and control offspring, or between the mothers of these offspring; 3. HET-hom placentas had lower total labyrinth area, labyrinth/placenta and capillary/labyrinth ratios based on analysis of total capillary and labyrinth areas, indicating that the surface area for nutrient transfer is not increased

      Together these data strongly indicate that hyperplastic HET-hom placentas do not provide greater support to HET-hom fetuses than controls, and that increased placental function in HET-hom offspring is unlikely to explain the late gestation fetal growth recovery we observed in HET-hom offspring or how HET-hom offspring were able to attain normal weights by birth.

      While we have not directly counted the spongiotrophoblast populations, we have now included analyses of both the glycogen-enriched and non-glycogen cell populations in the junctional zone and the decidua (Figure 4H-K). This revealed an increased area of both glycogen-enriched and non-glycogen cells in the junctional zone and in the decidua of HET-hom placentas, consistent with the greater junctional zone/placenta ratio observed in HET-hom placentas (Figure 4D). Together with data in Figure 4C-F and Supp. Fig. 3, our observations demonstrate that the overall decidua and junctional zone areas were increased in HET-hom offspring, but there was a disproportionate expansion of the junctional zone that was caused by increased areas of both glycogen and non-glycogen-enriched cells.

      Tetraploid rescue experiments would require a very significant amount of time and investment and are technically very demanding. While creation of complementary tetraploid offspring would be informative, unfortunately these experiments are beyond the scope of this current study.

      Reviewer Comment 1 cont. The authors do not mention alternative explanations for the observed fetal catch-up and postnatal overgrowth. Why would oocyte epigenetic programming effects be restricted to the placenta, and not include fetal organs?

      Our intention was certainly not to convey a message that effects may be placenta specific. Indeed, our ongoing work beyond the scope of this study provides evidence for effects in other tissues (brain and bones) that will be published elsewhere. Our new data clearly show low placental efficiency, fetal blood glucose, low capillary/labyrinth ratio and no impact on circulating fetal amino acid or metabolite levels in HET-hom offspring. In light of these new data, we have reinterpreted the findings of this study and substantially updated the discussion.

      Given our observations that fetal growth rate markedly increased during late gestation, but placental efficiency was reduced, our data strongly indicate that the effects of altered epigenetic oocyte programming due to loss of Eed affect both the placenta and the fetus. While our findings are significant, the precise mechanism underlying this growth response in HET-hom fetuses remains unknown. Understanding this mechanism will require substantially more work that will be the subject of future studies.

      Reviewer #2 (Public Review):

      Consistent fetal growth trajectories are vital for survival and later life health. The authors utilise an elegant and novel animal model to tease apart the role of Eed protein in the female germline from the role of somatic Eed. The authors were able to experimentally attribute placental overgrowth - particularly of the endocrine region of the placenta - to the function of Eed protein in the oocyte. Loss of Eed protein in the oocyte was also associated with dynamic changes in fetal growth and prolonged gestation. It was not determined whether the reported catch-up growth apparent on the day of birth was due to enhanced fetal growth very late in gestation, a longer gestational time ie the P0 pups are effectively one day "older" compared to the controls, or the pups catching up after birth when consuming maternal milk.

      To understand if increased growth occurred in HET-hom fetuses prior to birth, we have now included analyses of offspring weight at E18.5 (Figure 2F), all pups collected with a verified E19.5 birth date (Figure 2J) and for pups from similar litter sizes (5-7 pups) at E19.5 (Figure 2K). Together with our existing data, these additional analyses provide average weights for fetuses at E14.5, E17.5, E18.5 and pups born on E19.5. This confirmed that HET-hom offspring undergo enhanced growth in the last few days of pregnancy, resulting in the progression of substantially growth and developmentally restricted HET-hom fetuses at E14.5, to pups with normal weight at birth within the 40% of pregnancies that were born on E19.5 in a normal gestational time.

      However, in addition, gestational length was increased by one to two days in 60% of pregnancies from hom oocytes, but not in control pregnancies from het or wt oocytes. As average weights were significantly greater in all surviving HET-hom offspring at P0 (i.e. surviving pups born on E19.5-E21.5; Figure 2G), it appears that this additional gestational time contributed to the offspring overgrowth. This is logical, however it does not explain how growth and developmentally delayed fetuses at E14.5 attained normal weight and developmental stage by E19.5 (Figure 2J-K).

      Together our data clearly show that HET-hom offspring undergo enhanced growth during the late stages of pregnancy, allowing them to resolve the developmental delay and growth insufficiency observed at E14.5 so that they were born at normal weight and stage at E19.5. In addition, increased gestational time contributes to weight of pups delivered on E20.5 or 21.5, partly explaining the overgrowth phenotype observed in this model.

      The idea that increased milk consumption may explain the overgrowth of HET-hom offspring is interesting. It is possible that the increased growth rate of HET-hom offspring continues after birth and contributes to overgrowth. However, examining this outcome in a tightly controlled manner is complicated given that we cannot predict the day of birth of HET-hom litters, and that these litters are generally small and would need to be fostered on the day of birth alongside control litters. Given these challenges and that our primary observation is that HET-hom offspring underwent fetal growth recovery during pregnancies of normal length and via extension of gestational length, we have not examined the possibility of increased milk consumption after birth.

      We have updated the results to reflect the new analyses and have provided relevant discussion to address these data. Our description of these data can be found in Results (lines 165-197) and in Figure 2.

      Reviewer #3 (Public Review):

      My understanding of the main claims of the paper, and how they are justified by the data are discussed below:

      Overall, loss of PRC2 function in the developing oocyte and early embryo causes:

      1) Growth restriction from at least the blastocyst stage with low cell counts and midgestational developmental delay.

      Strengths:

      • Live embryo imaging added an important dimension to this study. The authors were able to confirm an unquantified finding from a previous lab (reduced time to 2-cell stage in oocyte-deletion Eed offspring, Inoue 2018, PMID: 30463900) as well as identify developmental delay and mortality at the blastocyst- hatching transition.

      • For the weight and morphological analysis the authors are careful to provide isogenic controls for most of the experiments presented. This means that any phenotypes can be attributed to the oocyte genotype rather than any confounding effects of maternal or paternal genotype.

      • Overall, there is good evidence that oocyte deletion of Eed results in early embryonic growth restriction, consistent with previous observations (Inoue 2018, PMID: 30463900).

      Reviewer 3, Comment 1: Weaknesses: Gaps in the reporting of specific features of the methodology make it difficult to interpret/understand some of the results.

      While we are unsure exactly which methods Reviewer 3 would like expanded, we have updated parts that we thought required further detail and allow more informed interpretation of the results. These include methods for placental histology (Lines 650-669) and immuno- histochemistry (Lines 671-690), and new methods for CD31 immunofluorescence (Lines 692-714), glucose and metabolomics (Lines 752-769) and DNA methylation (RRBS; Lines 734-750) analyses.

      To clarify the approach taken for histology, immunohistochemical and immunofluorescent staining, sections were cut in compound series from the centre of each placenta, ensuring that we collected representative data for each sample. QuPath was used to quantify the decidual and junctional zone areas in one complete, fully intact midline section for each placenta as close to the midline as possible. This provided data from 10 placentas for each genotype. In addition, glycogen-enriched and non-glycogen-enriched cells were identified and quantified using machine learning assisted QuPath analyses of the whole placenta, decidua and junctional zone regions. We have also added quantitative analyses of the labyrinth and labyrinth capillary network using immunofluorescent CD31 staining and machine learning assisted HALO software. This new analysis of placental morphology is included in the methods section.

      Moreover, as there were no sex-specific differences in placental morphology or weight, we combined the samples from both sexes to provide greater numbers for analysis in each genotype. For example, as described for the analyses of labyrinth and capillaries using CD31 IF, 4 placentas of each sex were used for data collection. This provided data from a total of 8 placentas (4 male and 4 female) for each genotype from a total of 17 WT-wt (9 male and 8 female), 21 HET-het (9 male and 12 female) and 24 HET-hom (16 male and 8 female) sections (2-3 sections/placenta).

      Reviewer 3, Comment 2: Placental hyperplasia with disproportionate overgrowth of the junctional trophoblast especially the glycogen trophoblast (GlyT) cells.

      Strengths: • The authors provide a comprehensive description of how placental and embryo weight is affected by the oocyte-Eed deletion through mid-to-late gestation development. The case for placentomegaly is clear.

      Weaknesses:

      • The placental efficiency data presented in Figure 3G-I is incorrect. Placental efficiency is calculated as embryo mass/placental mass, and it increases over the late gestation period. For e14.5 for example (Fig3G), WT-wt embryo mass = ~0.3g, placenta mass = 0.11g (from Fig 3D) = placental efficiency 2.7; HET-hom = 0.25/0.12 = 2.1. The paper gives values: WT-wt 0.5, HET-hom 0.7. Have the authors perhaps divided placenta weight by embryo mass? This would explain why the E17.5 efficiencies are so low (WT-wt 0.11 rather than a more usual figure of 8.88. If this is the case then the authors' conclusion that placental efficiency is improved by oocyte deletion of Eed is wrong - in fact, placental efficiency is severely compromised.

      The authors have performed cell type counting on histological sections obtained from placentas to discover which cells are contributing to the placentomegaly. This data is presented as %cell type area in the main figure, though the untransformed cross-sectional area for each cell type is shown in the supplementary data. This presentation of the data, as well as the description of it, is misleading because, while it emphasises the proportional increase in the endocrine compartment of the placenta it downplays the fact that the exchange area of the mutant placentas is vastly expanded. This is important for two reasons.

      Firstly, the whole placenta is increased in size suggesting that the mechanism is not placental lineage- specific and instead acting on the whole organ. Secondly in relation to embryonic growth, generally speaking, genetic manipulations that modify labyrinthine volume tend to have a positive correlation with fetal mass whereas the relationship between junctional zone volume and embryonic mass is more complex (discussed in Watson PMID: 15888575, for example). The authors should reconsider how they present this data in light of the previous point.

      We thank the reviewer for pointing out our error in the placental efficiency analysis and apologise for this error. We have corrected the presentation and interpretation of these data and have described this in detail in our response to Reviewer 1, Comment 1.

      As discussed in our response to Reviewer 1, Comment 1, we have added a range of analyses to determine whether placental efficiency was enhanced in HET-hom offspring. These include measuring fetal and maternal circulating glucose levels (Figure 4K), individual amino acids and an extensive range of metabolites (Figure 8) and providing CD31 immunofluorescent analyses of labyrinth area, labyrinth/placental ratio and capillary/labyrinth ratio in HET-hom and control placentas (Figure 5).

      We also added analyses of glycogen enriched and non-glycogen-enriched cell counts in the decidua and junctional zones. As suggested by Reviewer 3, both glycogen-enriched and non-enriched cell populations are significantly increased in HET-hom placentas.

      Combined, these new analyses significantly expand the study and support the conclusion that placental efficiency in HET-hom offspring was either compromised or not different from controls, depending on the analysis. We find no evidence that placental efficiency was increased in HET-hom offspring and have reworked our results and discussion sections to reflect these new data and interpretation.

      Reviewer 3, Comment 2 cont: Again, some of the methods are not clearly reported making interpretation difficult - especially how they have estimated their GlyT number.

      As outlined in our response to Reviewer 3 Comment 1, in the methods section we have added further detail of how we counted glycogen-enriched and non-enriched cells in the decidua and junctional zone regions of sections for the middle of WT-wt, WT-het, HET-het and HET-hom placentas (Lines 650-669).

      Reviewer 3, Comment 3: Perinatal embryonic/pup overgrowth.

      Strengths:

      • The overgrowth exhibited by the oocyte-Eed-deleted pups is striking and confirms the previous work by this group (Prokopuk, 2018). This is an important finding, especially in the context of understanding how PRC2-group gene mutations in humans cause overgrowth syndromes. It is also intriguing because it indicates that genetic/environmental insults in the mother that affect her gamete development can have long-term consequences on offspring physiology.

      Weaknesses:

      • Is the overgrowth intrauterine or is it caused by the increase in gestation length? The way the data is reported makes it impossible to work this out. The authors show that gestation time is consistently lengthened for mothers incubating oocyte-Eed-deleted pups by 1-2 days. In the supplementary material, the mutant embryos are not larger than WT at e19.5, the usual day of birth. Postnatal data is presented as day post-parturition. It would probably be clearer to present the embryonic and postnatal data as days post coitum. In this way, it will be obvious in which period the growth enhancement is taking place. This is information really important to determine whether the increased growth of the mutants is due to a direct effect of the intrauterine environment, or perhaps a more persistent hormonal change in the mother that can continue to promote growth beyond the gestation period.

      We have used embryonic day (E) to denote embryo and fetal age throughout the study – this is the same as using DPC (i.e. E19.5 is equivalent to 19.5 DPC). As described in the Methods “Collection of post-implantation embryos, placenta and postnatal offspring”, mice were time mated for two-four nights, with females plug checked daily. Positive plugs were noted as day E0.5.

      To make the data presentation clearer, we have shown the data for surviving HET-hom pups born on E19.5 (Figure 2J) separately from all HET-hom surviving pups born on E19.5-E21.5. (Figure 2G). As discussed in our response to Reviewer 2, we have also included growth data for pregnancies at E14.5, E17.5, E18.5 (Fig. 2C-F) and E19.5 (Figure 2J,K), as well as P0 (combined data for surviving pups born E19.5-E21.5), and P3 (combined data for surviving pups born E19.5-E21.5, Figure 2G,H).

      These data clearly show that HET-hom fetuses are substantially growth and developmentally delayed at E14.5 (Figure 2D), but HET-hom pups born on E19.5 are the same weight as WT-wt, WT-het and HET-het control pups (Figure 2J). This demonstrates that weight of HET-hom fetuses is normalised in utero between E14.5 and day of birth on E19.5.

      Importantly, as requested by Reviewer 3, we have separated average weight for all surviving pups with a day of birth of E19.5-21.5 (Figure 2G) from average weight of pups born on E19.5 only (Figure 2J). These analyses revealed that the average weight of surviving pups born between E19.5-21.5 was significantly higher than for controls (Figure 2G), but the average weight of pups born on E19.5 only was not. It is therefore clear that extended gestation also contributed to increased HET-hom pup birth weight. We have updated these additional analyses in Results (Lines 165-197) and Figure 2

      As revealed in Figure 2H, it is also possible/likely that growth of HET-hom pups during the three days post- partum may have contributed to the offspring overgrowth we observed in this and our previous study (Prokopuk et al., 2018 Clinical Epigenetics). However, we cannot determine whether there is a contribution from a persistent maternal hormonal change that promotes post-natal offspring growth or whether there is an innate growth benefit in HET-hom pups. As this is very difficult to dissect, separating these possibilities is beyond the scope of our study.

      Reviewer 3, Comment 4: "fetal growth restriction followed by placental hyperplasia, .. drives catch-up growth that ultimately results in perinatal offspring overgrowth".

      Here the authors try to link their observations, suggesting that i) the increased perinatal growth rate is a consequence of placentomegaly, and ii) the placentomegaly/increased fetal growth is an adaptive consequence of the early growth restriction. This is an interesting idea and suggests that there is a degree of developmental plasticity that is operating to repair the early consequences of transient loss of Eed function.

      Strengths:

      • Discrepancies between earlier studies are reconciled. Here the authors show that in oocyte-Eed-deleted embryos growth is initially restricted and then the growth rate increases in late gestation with increased perinatal mass.

      Weaknesses:

      • Regarding the dependence of fetal growth increase on placental size increase, this link is far from clear since placental efficiency is in fact decreased in the mutants (see above).

      • "Catch-up growth" suggests that a higher growth rate is driven by an earlier growth restriction in order to restore homeostasis. There is no direct evidence for such a mechanism here. The loss of Eed expression in the oocyte and early embryo could have an independent impact on more than one phase of development.

      Firstly, there is growth restriction in the early phase of cell divisions. Potentially this could be due to depression of genes that restrain cell division on autosomes, or suppression of X-linked gene expression (as has been previously reported, Inoue, 2018 PMID: 30463900). The placentomegaly is explained by the misregulation of non-canonically imprinted genes, as the authors report (and in agreement with other studies, e.g. Inoue, 2020. PMID: 32358519).

      • Explaining the perinatal phase of growth enhancement is more difficult. I think it is unlikely to be due to placentomegaly. Multiple studies have shown that placentomegaly following somatic cell nuclear transfer (SCNT) is caused by non-canonically imprinted genes, and can be rescued by reducing their expression dosage. However, SCNT causes placentomegaly with normal or reduced embryonic mass (for example -Xie 2022, PMID: 35196486), not growth enhancement. Moreover, since (to my knowledge) single loss of imprinting models of non-canonically imprinted genes do not exist, it is not possible to understand if their increased expression dosage can drive perinatal overgrowth, and if this is preceded by growth restriction and thus constitutes 'catch up growth'.

      Reviewer 3 is correct in their assessment that placental efficiency was decreased in HET- hom offspring and we have corrected the placental efficiency analysis based on fetal/placental weight ratios (discussed in detail in our response to Reviewer 1 Comment 1). We have added substantially more data (glucose, amino acids, metabolites, labyrinth capillary area and density). These data support the conclusion that a placentally driven advantage for HET-hom fetal growth is unlikely, despite our observation that HET- hom fetuses are developmental delayed and underweight at E14.5, but are born at normal weight after a normal gestational length (19.5 days) (discussed in our responses to Reviewer 3, Comment 3 and Reviewer 2).

      This demonstrates that HET-hom fetuses are able to attain normal birth weight despite being initially growth restricted state at E14.5, and that this occurs despite low placental function. Moreover, as we compared isogenic offspring with heterozygous loss of Eed (Het-het compared to HET-hom offspring) the outcomes we observed in HET-hom offspring originate from loss of EED in the growing oocyte or loss of maternal EED in the zygote strongly suggesting that a non-genetic mechanism is involved.

      As pointed out by Reviewer 3, the initial developmental delay in HET-hom offspring may be due to increased expression of genes that regulate cell proliferation – this could clearly explain the lower number of cells we observed in the ICM and the growth delay at later stages of embryonic and fetal development. Another possibility is that maternal PRC2 provided by the oocyte promotes cell divisions in preimplantation embryos We have discussed these possibilities on Lines 467-476.

      In addition, Matoba et al 2022 demonstrated that deletion of maternal Xist together with Eed was able to rescue male-biased lethality in offspring from oocytes lacking Eed, revealing a clear role for X-linked genes in this phenotype (Matoba et al 2022, Genes and Development). However, deletion of maternal Xist did not properly normalise survival offspring from Eed null oocytes (i.e. Eed/Xist double maternal null litters were smaller than litters derived from wild type oocytes) strongly suggesting other mechanisms provide the capacity for HET-hom offspring to attain normal weight at birth. We have added further discussion of the Matoba study in the context of our study on of the Discussion (Lines 544-555)

      Finally, with respect to the outcomes for SCNT derived offspring, we extracted SCNT fetal growth and placental weight data from the supplementary data included in Matoba et al., 2018 Cell Stem Cell. 2018;23(3):343-54.e5 and compared it with data collected in our study (Figure 7). This analysis revealed that the weights of placentas and fetuses of offspring derived via SCNT were very similar to the HET-hom offpsring in our study and we have discussed the similarities and potential differences between HET-hom and SCNT offspring in the Discussion (Lines 478-500).

      As pointed out by Reviewer 3, deletion of maternal non-canonically imprinted genes partially or fully rescued the placental hyperplasia phenotype in both SCNT derived and offspring from oocyte lacking EED. However, as we have discussed, the mechanisms underlying other aspects of the offspring phenotype, such as fetal growth recovery of HET-hom offspring observed in our study, remain unknown. Moreover, the comparison we provide in Figure 7 strongly indicates that HET-hom and SCNT fetuses are similarly delayed at E14.5 and undergo similar fetal growth recovery before birth, but the mechanism also remains unknown. Together, it appears that offspring derived from either Eed-null oocytes or by SCNT have an innate ability to remediate fetal growth restriction during the late stages of pregnancy without a requirement to correct maternally inherited impacts mediated by Xist or H3K27me3-dependent imprinting.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This well done and interesting paper examining the connection between TXNIP and GDF15. The main thrust is that TXNIP upregulation chemotherapies, such as Oxa, results in an a down regulation of GDF15 early in tumorigenesis. Later in tumorigenesis, TXNIP upregulation is less pronounced, elevating GFP15 resulting in a blockage of tumor suppressive immune responses. Generally the work is convincing. For example, it's clear that TXNIP is up regulated by Oxa in an ROS and MondoA-dependent manner. Likewise its quite clear TXNIP loss reads to an upregulation of GDF15. However, it's also quite clear that Oxa suppresses GDF15 in a manner that appears to be completely independent of TXNIP. The writing in the paper implies strongly that there is a mechanistic connection between TXNIP and GDF15, but no experiments investigate this possibility.

      We feel this is very fair and is reflective of a) perhaps an overemphasis of the TXNIP knockout observation and supportive tissue data, which suggests a relationship but not a mechanistic understanding b) an underemphasis of the data in Figure 3 that shows a decrease in GDF15 after oxaliplatin treatment in TXNIP knockout lines.

      We have addressed these concerns in several ways:

      1. We have carried out knockdown experiments using siRNA for ARRDC4, which we felt, given its regulation by MondoA and ROS, and homology to TXNIP, may also regulate GDF15. This was found to be the case and may explain the data in Figure 3. At the very least it shows that other factors involved in oxidative stress management may have similar impacts – a form of functional redundancy. Lines 553-559 “Finally, given our previous data (Figure S4) we looked to assess the role of ARRDC4 on GDF15 expression. In the absence of oxaliplatin, knocking down ARRDC4 in DLD1 and HCT15 cells drove an increase in GDF15. When challenged with oxaliplatin, both ARRDC4 and TXNIP expression increased and GDF15 decreased. When the ARRDC4 knockdown was challenged TXNIP increased further and GDF15 decreased further (Figure S6G-J). Given the common regulatory pathways and homology between TXNIP and ARRDC4, and their similar functional roles, we suggest these data are evidence of redundancy within this system. “

      We have included some context in the discussion:

      Lines 930-933: “Further support for both TXNIP and ARRDC4’s role in regulating GDF15 after the induction of ROS comes from a pan cancer meta-analysis assessing the impact of metformin (which has been reported to inhibit ROS) on gene expression. Here the top two downregulated genes were TXNIP and ARRDC4 and the top four upregulated genes were DDIT4, CHD2, ERN1 and GDF1572

      We have tempered the text:

      Lines 522-524 “It is important to note however that here we saw clear evidence that TXNIP was not solely responsible for the downregulation of GDF15 post oxaliplatin treatment, with decreased levels seen in knockout lines (Figure 3C-G, S5E).”

      Lines 926-929 “It must be stressed that these data do not place TXNIP as the sole regulator of GDF15, for example ARRDC4 can also be seen to regulate GDF15. We envisage TXNIP as one of a number of ROS-dependent GDF15 regulators, with this redundancy potential evidence of the importance of this regulatory framework.”

      We have carried out additional analysis detailed in the discussion and in Figure S12 which suggests TXNIP impacts MYC function, as reported elsewhere (detailed below). For ease, the key paper can be accessed through this link https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001778

      Lines 934-956: “The main shortcoming of this paper is the lack of mechanistic understanding linking TXNIP to GDF15. There are 650 transcription factors that have been shown, or are predicted, to bind to GDF15 promoter and/or enhancer regions. By assessing our list of differentially expressed genes (Suppl. Table 1-2) for the presence of these factors we identified 6 GDF15 binding TFs that show significantly decreased expression after oxaliplatin treatment in both cell lines (ATF4, MYC, SREBF1, PHB2, HBP1, KLF9). There was only one, MYC, that was downregulated by oxaliplatin treatment (validated; Figure S12A), and with this downregulation partially being rescued in a matched TXNIP knockout line (Figure S12B). We then observed that c-myc has been shown or is predicted to bind to promoter/enhancer regions of the top five transcriptomic and proteomic differentials in TXNIP knockout lines, including TXNIP itself (apart from C16orf90). Even with c-myc’s promiscuity (binds to 10-20% of all promoters/enhancers) this may be suggestive of a specific relationship. Finally, when looking at the correlations between these 6 TFs and TXNIP and GDF15 in the TCGA COAD dataset, MYC has the greatest and most significant negative correlation to TXNIP (r=-0.4631 p=1.42e-28) and the greatest and most significant positive correlation to GDF15 (r=0.4653 p=7.32e-29). ATF4 and PHB2 are the other TFs in the list, that show the same significant trends (Figure S12C), and therefore may play a role in the TXNIP-independent oxaliplatin-dependent regulation of GDF15. Further exploration of these additional TFs is outside the scope of the current manuscript.

      MYC’s role in bridging from TXNIP to GDF15 is further supported by a recent paper which shows that TXNIP is “a broad repressor of MYC genomic binding” and that “TXNIP loss mimics MYC overexpression”73. Furthermore, the inter-dependent regulatory relationship between MondoA, TXNIP, and MYC has been seen in a variety of models74, whilst the impact of NAC on MYC-dependent pathways has been seen in lymphoma75. These studies lend credence to the idea that MYC is the most likely TXNIP-regulated TF that regulates GDF15 in our systems.”

      It seems equally likely that TXNIP and GDF15 represent independent parallel pathways. Even if TXNIP is a direct regulator of GDF15, it's also clear that other "factors" up or down-regulated by Oxa also contribute to the regulation of GDF15. These are not explored and even though TXNIP is highly regulated genes shown Figure 2 that are not identified or discussed that may also be contributing to GDF15 regulation.

      As mentioned above, the new data suggests that at least one other factor, ARRDC4, can regulate GDF15 (changes upon oxaliplatin treatment) and that MYC is a potential mechanistic bridge between TXNIP and GDF15. Whilst assessing for the transcription factor that may link TXNIP and GDF15 we found an additional 5 TXNIP-independent factors (ATF4, PHB2, SREBF1, HBP1, KLF9) that bind to GDF15 promoter/enhancer regions and are downregulated post-oxaliplatin treatment. When looking at correlations between these factors and GDF15 in the TCGA COAD dataset, ATF4 and PHB2 correlate most closely with GDF15 (when removing MYC) and so we would cautiously suggest that these may be the most pertinent. This data is now included.

      Further, the experiments treating PBMCs with conditioned media contain other cytokines/factors, in addition to GDF15, that likely also contribute the observed effects on the different immune cells understudy. The conditioned media from GDF15 knock out cells are a good experiment, but the media is not rigorously tested to see what other cytokines/factors might have also been depleted.

      The TXNIP knockout media is the same as that analysed by mass spec and the protein array, however as the reviewer states there is no analysis (excluding assessing for the presence or absence of GDF15) on the double knockout supernatant or over-expression supernatant. The text has been corrected as follows:

      Lines 675-679. “In light of other secreted factors being seen to be regulated by TXNIP (Figure 3A-B), we included double knockouts (TXNIP and GDF15 knockout; GTKO) as well as an overexpression system (GDF15a) to test for GDF15 specific effects. However, we do not know the impact of knocking out or overexpressing GDF15 on the broader secretome.”

      Perhaps a GDF15 complementation experiment would help here.

      We felt that the association between GDF15 and Treg induction is reasonably well established in the literature, and so once we saw that the supernatant from our GDF15 overexpression system (+/- CD48 blockade) complemented what has already been demonstrated, we were encouraged. However we needed more – hence the TCGA data and IHC staining.

      Finally, even if completely independent, a TXNIP/GDF15 ratio does seem to have utility in determining chemo-therapeutic response.

      We agree – we feel that conceptually this may be the most interesting part of the project and is an example of what can be done with these tools.

      Other major points: 1. Please label the other highly regulated genes shown in Fig 2A and B. Might they also explain some of the underlying biology. This could be on the current figures or in a supplement, though the former is preferred.

      Many thanks – we have done this.

      Please address why the TXNIP induction is so much less in patient-derived organoids vs. cell line spheroids (Fig S2). By the western blots, TXNIP inductions in the organoids looks quite modest. Further, the text is quite cryptic and implies that the "upregulation" is similar in both organoids and spheroids.

      You are absolutely correct. Many apologies, the wording has changed:

      Lines 320-323 “In both models we observed the upregulation of TXNIP mRNA (Figure S2E-H) and TXNIP protein (Figure S2I-L) after oxaliplatin treatment, with spheroids showing greater responsiveness. This difference is most likely due to culturing conditions or differences in the number and location of cycling cells.”

      We have two possible explanations. Firstly the media in which the organoids are cultured contains a lower glucose concentration than that used for the spheroids. As per some of our new data (Figure S3 – later in the rebuttal), the upregulation of TXNIP after oxaliplatin is glucose dependant, with lower concentrations resulting in less of a differential. Secondly, while restricted to the periphery, the Ki67 signal in DLD1 spheroids is quite pronounced indicating that, within the outer zone, many cells (probably the majority) are in the S/G1/G2 phase of the cell cycle at any given point in time (figure below this text).

      This is not the case for the organoids, where the Ki67 (and pCDK1) signal is quite weak, and only sporadic in the outer layer. So we believe that there are many more rapidly cycling cells in the most drug-exposed layer of spheroids when compared to the comparable region in organoids. As the spheroid cells are likely cycling more rapidly, they would also be expected to be more adversely affected by the drug within the finite drug treatment window. Indeed, these spheroids grow large, and quite quickly. If the organoid cells are cycling more slowly and if, within the cell layer most exposed to drug, these cycling cells are less abundant, then the TXNIP response may well be subdued in organoids when compared with spheroids.

      We have decided to not include the above (full) explanation and figure within the new draft, as we feel it may distract from the central message. However do let ourselves and the editor know if you disagree.

      What was the rationale of performing the MS experiment on control and TXNIP KO DLD1 cells in the absence of oxaliplatin? The other experiments in Fig 3 clearly show that Oxa can repress GDF15 even in the absence of TXNIP, which implicates other pathways. ARRDC4? Or something else? This needs to be addressed.

      We adopted this approach because of the order in which the assays occurred and technical issues surrounding the use of post-oxaliplatin treated supernatant. By the time we moved to the proteomics we had already identified, and validated, GDF15 as our number one candidate (initially from the protein array), in terms of response to oxaliplatin and dependence on TXNIP. This led us to the next stage of the project – to assess the environmental impacts of this factor in vitro before validation in situ. To do this, aware of the issue of contaminated recombinant GDF15, we decided early on to use cell line supernatant. We carried out some pilot studies on immune cells using supernatant from oxaliplatin treated cell lines and we had several technical issues (difficulty in determining the correct controls, immune cell death…). This changed the emphasis to using supernatant from knockout models rather than knockout and treated models. Before we began these assays in earnest we wanted to assess exactly what was enriched in TXNIP knockout supernatant and so we turned to proteomics. When this further validated GDF15, we then generated GDF15 and TXNIP/GDF15 knockouts to further elucidate GDF15’s role specifically.

      With regards the other pathways, as you correctly predicted, ARRDC4 also appears to regulate GDF15 – many thanks for helping with this line of enquiry. Please see earlier in the rebuttal for more details and the data.

      The data in 3J with the MondoA knockdown is not convincing. The knockdown is weak and TXNIP goes down a smidge. Agree that GDF15 goes up

      We agree. We have re-run this and pooled the densitometry data – see new figure below (Panel 3J).

      Minor points 1. Line 79. The "loss" of TXNIP/GDF15 axis is confusing. It's really loss of TXNIP and upregulation of GDF15, right?

      Absolutely - corrected to responsiveness.

      Lines 144-147: “Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker.”

      Please provide an explanation for the different stages in tables 1 and 2. This will likely not be clear to non-clinicians.

      Many thanks. The following has been added at the bottom of the second table.

      Lines 304-309: “The TNM staging system stands for Tumor, Node, Metastasis. T describes the size of the primary tumor (T1-2; 5cm). N describes the presence of tumor cells in the lymph nodes (N0; no lymph nodes. N1-3 >0). M describes whether there are any observable metastases (M0; no metastases. M1; metastases). The clinical stage system is as follows: I/II; the tumor has remained stable or grown, but hasn’t spread. III/IV; the tumor has spread, either locally (III) or systemically (IV).”

      Line 231 should probably read ...cysteine (NAC), a reactive oxygen species inhibitor,

      Many thanks - corrected

      Line 247, should be RT-qPCR I think.

      Many thanks - corrected

      Lines 343-345. I don't quite understand the wording. Does this mean to say that 675 soluble proteins were not changed between the condition media from both cell populations?

      Yes, exactly this. We have removed as this is superfluous and confusing.

      The data in FigS1 B and C don't seem to reach the standard p value of > 0.05

      Very true – we have rewritten the text to make sure the reader knows there is no significance.

      Lines 269-271. “High levels of both the protein (significantly) and the transcript (not significantly) were seen to be associated with favourable prognosis (Figure 1G,H and S1B,C).”

      **Referee Cross-Commenting**

      cross comment regarding referees 2 and 3 above. I'm am convinced that TXNIP is at least contemporaneously upregulated with GDF15 downregulation. However, the strong implication from the writing is that TXNIP regulates GDF15 directly. I agree with the comment above that exploring mechanisms may be open-ended especially as TXNIP has been implicated in gene regulation by several different mechanism. I'd be satisfied with a more open-minded discussion of potential mechanisms by which TXNIP may repress GDF15 and the possibility of other parallel pathways that likely contribute to GDF15 repression.

      Many thanks, this is a generous and understanding approach. As described above we have carried out extra analysis and have found 6 differentially regulated transcription factors which have been shown to bind GDF15 promoter or enhancer regions with 1 of these, MYC, being significantly affected in the TXNIP knockout cell lines, which in combination with supportive literature suggests a degree of TXNIP dependence. We have also identified ARRDC4 as an additional regulator of GDF15 – again please see above.

      Reviewer #1 (Significance (Required)):

      This is an interesting contribution but the mechanistic connection between GDF15 and TXNIP is relatively weak. That said, even as independent variables they do seem to have utility in predicting therapeutic response.

      Many thanks for the comment – we concur. We have reanalysed our data looking for relevant transcription factors (those that bind GDF15 promoter / enhancer regions) finding MYC as the most likely bridge. Please see above.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Deng et al. investigates a mechanistic link between TXNIP and GDF15 expression and oxaliplatin treatment and acquired resistance. They observe an upregulation in TXNIP expression in the tumors of patients who have previously received chemotherapy. They demonstrate oxaliplatin-driven MondoA transcriptional activity is what underlies the induction of TXNIP. They further demonstrate that TXNIP is a negative regulator of GDF15 expression. Together, oxaliplatin induces MondoA activity and TXNIP expression, resulting in a downregulation of GDF15 expression and consequently decreased Treg differentiation.

      Major Comments

      1. The authors suggest that TXNIP induction and GDF15 downregulation are a common effect of chemotherapies; however, the mechanistic studies were limited to oxaliplatin. The authors should clarify this point through further investigation using other commonly used CRC chemotherapies (5-FU, irinotecan, etc.),or through textual changes. To be clear, I think that the oxaliplatin results could potentially stand on their own but would require additional clarification. For example, regarding the patient samples analyzed in 1D and 4F, which patients received oxaliplatin? Could the analysis of publicly available molecular data be drilled down to just the patients who received oxaliplatin?

      Many thanks – this is an excellent point. Firstly, all the patients in 1D and 4F received oxaliplatin. Secondly, we have included new data looking at the impact of other chemotherapies (FOLRIRI, FU-5 and SN-38) on aspects of the study, ultimately finding that these processes (especially an anti-correlation between GDF15 and TXNIP changes upon chemo treatment) appear to be specific to oxaliplatin. These data have been added (Figure S11) and throughout the emphasis has been switched from chemotherapeutic treatment to oxaliplatin treatment.

      Lines 796-799: “To check if the pre-treatment GDF15/TXNIP ratio could be used for patients treated with FOLFIRI we performed the same analyses finding no significance (S11A-D). This oxaliplatin specificity was then confirmed by western blot analysis in DLD1 and HCT15 cells treated with 5-FU or SN38 (Figure S11E-F).

      Example of change of emphasis from ‘chemotherapy’ to ‘oxaliplatin’ – lines 139-142: “Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15).”

      The data demonstrating the induction of MondoA transcriptional activity and TXNIP expression in response to oxaliplatin treatment is quite convincing. The data regarding ROS induction of TXNIP is interesting, especially in light of other studies arguing that ROS limits MondoA activity (PMID: 25332233). Given this apparent disparity, I think that this study could really be strengthened by also investigating other potential mechanisms of oxaliplatin induction of MondoA. In particular, given many studies arguing for direct nutrient-regulation of MondoA, the authors should address the potential for oxaliplatin regulation of glucose availability and a potential glucose dependence of oxaliplatin-induced TXNIP. 2

      In line with the previous point, since MondoA activity and TXNIP expression are sensitive to glucose levels, the authors should investigate oxaliplatin-regulation of TXNIP under physiological glucose levels. No need to replicate everything, just key experiments.

      We feel these are excellent point and really help the piece – many thanks. We have carried out assays around these points suggested and have included the findings in the new draft – see below.

      Lines 332-339: “As such, we went back to first principles and assessed the impact of different concentrations of glucose on TXNIP induction +/- oxaliplatin treatment, finding a concentration dependent effect (Figure S3A). Intriguingly, high glucose alone was able to induce increased TXNIP expression. We then assessed if oxaliplatin treatment drove an increase in glucose uptake, with this seen at concentrations >10mM (Figure S3B). Next, to investigate the impact of glucose metabolism, and consequent ROS generation, on TXNIP induction we treated cells with Antimycin A, an inhibitor of oxidative phosphorylation, finding a complete block in oxaliplatin-induced TXNIP (Figure S3C).”

      The authors did a good job of linking TXNIP and GDF15 in untreated conditions; however, the data arguing for oxaliplatin regulation of GDF15 through TXNIP is less clear. For example, in 3B-H, oxaliplatin treatment reduces GDF15 approximately to the same extent in the NTC and TKO cells, potentially in line with a mechanism of downregulation that doesn't involve TXNIP.

      A very salient point and completely in line with the other reviewers. We have carried out a few additional analyses mentioned previously in this letter. The most pertinent for this specific point are the experiments around ARRDC4, where we found evidence to suggest that, like TXNIP, it regulates GDF15.

      Minor Comments

      1. The presentation of data in Figure 5 is confusing. A-B include raw cell numbers, whereas C-F show "normalized proliferation." What does this mean? And how was the normalization done?

      Apologies for this. Legend test has been corrected to “Normalised proliferation (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) on gated CD3+CD8+ or CD3+CD4+ cells is shown. n=6. (G-H) Normalised IFNg concentrations (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) in the supernatant of cells from C-F.” (lines 727-729).

      **Referee Cross-Commenting**

      cross-comment regarding reviewer #1

      I agree with the referee that the link between TXNIP and GDF15 is weak, though as I mentioned before, this is particularly true in the context of oxaliplatin-regulation of TXNIP. I agree that given all the presented data, it is likely that oxaliplatin-regulation of TXNIP and GDF15 are independent. In my opinion, the referee brought up all valid concerns, but this is by far the biggest concern that I share.

      We agree that this is the weakest aspect of the paper, however our new analyses plus supportive literature, suggests that the relationship between TXNIP and GDF15 may be mediated by MYC (please see above)

      cross-comment regarding reviewer #3

      The major concern that this referee addresses is whether another transcription factor supersedes the proposed MondoA/TXNIP induction in regulating GDF15 expression in later stage CRC. In my opinion, this another other concerns of the referee are all valid, but still I remain unconvinced that TXNIP induction underlies the oxaliplatin-regulation of GDF15. I think fleshing out that aspect of the study would potentially help the authors tease apart how this potential MondoA-TXNIP-GDF15 axis is dysregulated later in CRC progression.

      This is a great discussion. Interestingly enough, c-myc is seen at higher levels in late stage CRC (Hu X, Fatima S, Chen M, Huang T, Chen YW, Gong R, Wong HLX, Yu R, Song L, Kwan HY, Bian Z. Dihydroartemisinin is potential therapeutics for treating late-stage CRC by targeting the elevated c-Myc level. Cell Death Dis. 2021 Nov 5;12(11):1053. Doi: 10.1038/s41419-021-04247-w. PMID: 34741022; PMCID: PMC8571272.), is seen as an important factor in resistance, and as this review argues, is driven by stress (Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat. 2023 Jul;69:100963. Doi: 10.1016/j.drup.2023.100963. Epub 2023 Apr 20. PMID: 37119690; PMCID: PMC10330748.). So it is very plausible that the partial TXNIP-mediated regulation of myc in early / sensitive CRCs that we may be observing, and has been reported recently (TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, et al. (2023) TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLOS Biology 21(3): e3001778. https://doi.org/10.1371/journal.pbio.3001778) is lost in late stage / resistant CRCs. If this is the case, in effect what we would have observed is the loss of a stress-associated method (TXNIP) of controlling c-myc activity. What makes our collective lives difficult is that, as reported “this expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc’s intrinsic capacity to activate transcription and without increasing Myc levels.” (TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, et al. (2023) TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLOS Biology 21(3): e3001778. https://doi.org/10.1371/journal.pbio.3001778)

      Reviewer #2 (Significance (Required)):

      Generally speaking the experiments are well controlled and the findings are significant and novel. Though the link between MondoA activity and ROS could be strengthened, and the data could be validated under more physiological settings. Further, the authors should clarify their interpretations so as to not overstate the findings.

      Many thanks for the comments. We have taken onboard the need for more physiological settings and have included varying levels of glucose to reflect concentrations in different environments. We have repeated the siMondoA work in 3J strengthening the conclusions wrt its impact on TXNIP and GDF15 expression (see above).

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this well-written manuscript, the authors show that chemotherapy increases a MondoA-dependent oxidative stress-associated protein, TXNIP, in chemotherapy-responsive colorectal cancer cells. They show that TXNIP negatively regulates GDF-15 expression. GDF-15, in turn, correlates with the presence of T cells (Treg), and inhibits CD4 and CD8 T cell stimulation. In advanced disease and chemo-resistant cancers, upregulation of TXNIP and downregulation of GDF-15 appear to get lost. Based on a somewhat smallish data set, the authors suggest that the pre-treatment GDF-15/TXNIP ratio can predict responses to oxaliplatin treatment. This is a very interesting, novel finding. In general, the quality of the experiments and the data are high and the conclusions appear sound. Still, there are a number of aspects that should still be improved:

      The observed loss of the ROS - MondoA - TXNIP - GDF15 axis in chemoresistant and/or metastatic tumors implies that another transcription factor or pathway becomes dominant upon tumor progression. As this switch would be key to better understanding the mechanism underlying the prognostic role of the TXNIP/GDF15 ratio, the authors should at least do data mining followed by ChEA or Encode (or other) analysis to identify transcription factors or pathways that become activated in late-stage/metastatic CRC cells. There is a high likelihood that a transcription factor or pathway involved in GDF-15 upregulation in cancer (e.g. p53, HIF1alpha, Nrf2, NF-kB, MITF, C/EBPß, BRAF, PI3K/AKT, MAPK p38, EGR1) supersedes the inhibitory effect of the MondoA-TXNIP axis. As it stands, the proposed loss of function of the ROS - MondoA - TXNIP - GDF-15 axis is far less convincing than almost all other aspects of the study.

      An extremely fair point. We adopted a similar approach to that suggested – as mentioned above, we looked at TFs that bind to GDF15 promoter/enhancer regions and then looked at the presence of these in our transcriptomic data – specifically any evidence of change post oxaliplatin treatment. We found 6 such TFs that were decreased post-oxaliplatin treatment. We then looked for any evidence of TXNIP dependence in these TFs by comparing post-oxaliplatin treatment across NTC and TXNIP knockout lines, when we did this we found only one GDF15 promoter/enhancer binding TF was significantly changed: MYC. We then looked at the relationship between MYC,TXNIP, and GDF15 against the other 5 ‘control’ TFs in the TCGA COAD dataset, we found that MYC showed the strongest correlations, in the ‘correct’ directions. This finding was further backed up in the literature where a TXNIP knockout in a breast cancer model drove c-myc-dependent transcription, whilst c-myc has been observed to increase in later stage CRC patients, is associated with cellular stress and resistance. The collective evidence therefore suggests that MYC is the factor that is initially at least partially regulated by TXNIP, before this regulation is lost in advanced / resistant disease. Continuing on this line, it is likely that the predictive GDF15/TXNIP ratio is at least in part, a measure of c-myc responsiveness to oxaliplatin. All the while we must bear in mind TXNIP-independent oxaliplatin-dependent regulation of GDF15, most likely ARRDC4, as described earlier in this document.

      Using pathway analysis software to compare our transcriptomic data from cell lines treated with/without oxaliplatin, the most likely pathways upstream of MYC/c-myc that are negatively affected by chemotherapy are BAG2, Endothelin-1, telomerase, ErbB2-ErbB3 and Wnt/B-catenin. When looking at the comparison of UTC and resistant lines’ transcripts there is only one key component of these pathways which is upregulated in both lines - ERBB3 – which has already been shown to be important in CRC metastasis and resistance (Desai O, Wang R. HER3- A key survival pathway and an emerging therapeutic target in metastatic colorectal cancer and pancreatic ductal adenocarcinoma. Oncotarget. 2023 May 10;14:439-443. doi: 10.18632/oncotarget.28421. PMID: 37163206; PMCID: PMC10171365.). It is highly speculative, but our data suggests the most likely pathway to supersede TXNIP in its (partial) regulation of MYC is the ErbB2-ErbB3 pathway.

      My further criticisms are mostly more technical:

      Figure 2 I-L: What was the extent of MondoA downregulation achieved by siRNA treatment? Could the effects also be seen with the small molecule mondoA inhibitor SBI-477 (or a related substance)?

      This experiment has been repeated. The pooled densiometric data is also now given (please see above).

      How do you explain the different GDF-15 levels between untreated non-target control cells (NTC) and TXNIP knock-down cells (TKO) in Figures 3C-F?

      The only way to interpret this is that there is a TXNIP-independent pathway regulating GDF15 expression after oxaliplatin treatment, as described this is most likely to be ARRDC4 - the text has been updated to:

      Lines 522-524: “It is important to note, however, that we saw clear evidence that TXNIP was not solely responsible for the downregulation of GDF15 post oxaliplatin treatment (Figure 3C-G, S6E).”

      In figures 3 E-G the dots for the individual measurements should be indicated. This would be more informative than just the bar graphs.

      Completed.

      Figure 4C,D and Table 3: Data on the role of GDF-15 in CRC are largely valedictory of previous work (e.g. Brown et al. Clin Cancer Res 2003, 9(7):2642-2650, Wallin et al., Br J Cancer. 2011 May, 10;104(10):1619-27). Therefore, the previous studies should be cited.

      Apologies for the oversight and many thanks – this is an excellent addition.

      Figure 5C-F: Please indicate in the figure legend how proliferation was assessed.

      Many thanks. This was noticed by another reviewer also. We have changed the text to include how the data was normalised: “(C-F) Labelled PBMCs were stimulated with anti-CD3 and anti-CD28 for 4 days in the presence of fresh supernatant from indicated cell lines, before being stained with anti-CD3 and anti-CD8 (C-D) or anti-CD4 (E-F) antibodies and measured by flow cytometry. Normalised proliferation (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) on gated CD3+CD8+ or CD3+CD4+ cells is shown. n=6. (G-H) Normalised IFNg concentrations (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) in the supernatant of cells from C-F.” (lines 724-730)

      Figure S8E-G: Please indicate the analysed parameters in the graphs. In Figure S8G, the legend just indicates that "aggression of tumour" is dichotomized and plotted. This clearly requires a better definition.

      Many thanks, this has been changed as per the below.

      Lines 862-868: “(E-G) Receiver operating characteristic (ROC) curves showing area under the curve and p values for the use of GDF15/TXNIP ratio in predicting origin of cell line (E; primary; DLD1, HCT15, HT29, SW48 [n=4] or secondary; DiFi, LIM1215 [n=2]), sensitivity to oxaliplatin (F; parental DLD1 (plus biological repeat), HCT15 [n=3] or resistant DLD1 (plus biological repeat), HCT15 [n=3]), aggression of tumor (G; non-aggressive; The authors propose a novel ROS - MondoA - TXNIP - GDF15 - Treg axis, where MondoA activation, TXNIP up- and GDF-15 downregulation enhance tumor immunogenicity. While this axis has been analyzed in some detail, GDF-15 is not only linked to induction of regulatory T cells. There has been a report showing that GDF-15/MIC-1 expression in colorectal cancer correlates with the absence of immune cell infiltration (Brown et al. Clin Cancer Res 2003, 9(7):2642-2650). The link between GDF-15 and immune cell exclusion has also been confirmed in other conditions, including different cancers (Kempf et al. Nat Med 2011, 17(5):581-588, Roth P et al. Clin Cancer Res 2010, 16(15):3851-3859, Haake et al. Nat Commun 2023, 14(1):4253). A key mechanism is the GDF-15 mediated inhibition of LFA-1 activation on immune cells. As the authors argue that the described pathways turns cold tumors hot in response to oxaliplatin-based chemotherapy, this GDF-15 dependent immune cell exclusion mechanism might be at least as relevant than induction of Treg. Likewise, inhibition of dendritic cell maturation by GDF-15 (Zhou et al. PLoS One 2013, 8(11):e78618) could explain why GDF-15high tumors are immunologically cold. Reviewed in 3

      The authors propose that the pathways discovered by them contributed to the "heating up" of the tumor microenvironment after oxaliplatin-based chemotherapy. The authors should thus look in their data sets for the presence of cytotoxic T cells and their possible correlation with TXNIP and GDF-15 levels.

      This is a wonderful explanation – many thanks. We have taken the opportunity to assess the impact of GDF15 expression on a variety of T cell markers (Figure S9). In this data a negative association between GDF15 and CD8 CTLs can clearly be seen, as predicted by the reviewer.

      Lines 712-717: “To assess if the GDF15-dependent presence of Tregs may be associated with a decrease in activated cytotoxic CD8 T cells, we interrogated the TCGA COAD dataset. We found that low GDF15 tumors carried significantly higher levels of CD8, CD69, IL2RA, CD28, PRF1, GZMA, GZMK, TBX21, EOMES and IRF4 (Figure S9); transcripts indicative of activated cytotoxic CD8 T cells. High GDF15 tumors were enrichment for FOXP3 and, interestingly, RORC (Figure S9). These data support the hypothesis that GDF15 induces Foxp3+ve Tregs which inhibit CD8 T cell proliferation and activation in the TME.”

      The paragraph on GDF-15 receptors needs to be corrected: The purported role of a type 2 transforming growth factor (TGF)-beta receptor in GDF-15 signalling had been due to a frequent contamination of recombinant GDF-15 with TGF-beta (Olsen et al. PLoS One 2017, 12(11):e0187349). There have been a number of screenings for GDF-15 receptors that have all failed to show an interaction between GDF-15 and TGF-beta receptors. Instead, only GFRAL was found in these large-scale screenings (Emmerson et al. Nat Med 2017, 23(10):1215-1219, Hsu et al. Nature 2017, 550(7675):255-259, Mullican et al. Nat Med 2017, 23(10):1150-1157, Yang et al. Nat Med 2017, 23(10):1158-1166). The one subsequent report that shows a link between GDF-15, engagement of CD48 on T cells and induction of a regulatory phenotype (Wang et al. J Immunother Cancer 2021, 9(9)) still awaits independent validation. Considering that CD48 lacks an intracellular signaling domain that would be critical for a classical receptor function, I recommend to be more cautious regarding the role of CD48 as GDF-15 receptor. Given the mechanism outlined by Wang et al. the word interaction partner might be more apt. Moreover, an anti-GDF-15 antibody would be a good control for the experiments involving an anti-CD48 antibody in Figure 5.

      Thank you so much for this concise and highly informative paragraph. We have changed the text to read:

      202-204: “As a soluble protein, GDF15 exerts its effects by binding to its cognate receptor, GDNF-family receptor a-like (GFRAL)44,45,46,47 or interaction partner, CD48 receptor (SLAMF2)43, with the latter still requiring additional verification.”

      We would have ideally included an anti-GDF15 antibody in the CD48 assay at the time but didn’t have the foresight. We have included the additional text to temper any conclusions.

      Lines 701-711: “Furthermore, when stimulating naïve CD4 T cells in the presence of GDF15 enriched supernatant we were able to both differentiate these cells into functional Tregs and also block the generation of this functionality using an anti-CD48 antibody (Figure 5M-N). However, it must be stressed that the binding and functional impacts of GDF15’s interaction with CD48 still require further verification.”

      Cell surface externalization of annexin A1 has been described as a failsafe mechanism to prevent inflammatory responses during secondary necrosis (PMID: 20007579). Thus, I am surprised that the authors list annexin A1 among the immune-stimulatory molecules exposed or released in response to chemotherapy-induced cell death (line 103). Please clarify!

      We agree – it shouldn’t be there!! Removed. Many thanks.

      **Referee Cross-Commenting**

      Regarding the cross-comment by referee 2: In my opinion, the data shown in Figure 3C-H clearly demonstrates that TXNIP can repress GDF-15 expression. I agree that there will likely be further regulators. The GDF-15 promoter is constantly regulated by a multitude of factors (which mostly induce transcription). As downregulation of GDF-15 in response to oxaliplatin is the opposite of the frequently described induction of GDF-15 upon chemotherapy, net effects may always be "smudged" by contributions from different pathways (e.g. by cell stress due to siRNA transfection). Therefore, I believe that the data are as good as it will get. Accordingly, I would not force the authors to further amplify the observed effect.

      Many thanks for your understanding – yes, GDF15 has >650 TFs that bind its promoter/enhancer regions – a number we found rather daunting. Happily your comments and those of the other reviewers inspired us to dig and we now have data that is supportive of MYC’s and ARRDC4’s involvement – detailed throughout this reply.

      cross comment regarding referee #1: I share the general assessment of the referee and recognize the very detailed mechanistic analysis. To further support the moderate effects of the MondoA knockdown, a small molecule inhibitor like SBI-477 might be useful. (I had already suggested using this inhibitor to support these data.)

      Many thanks for the suggestion. We opted to increase the number of siRNA repeats instead – with the data included in Figure 3J (above).

      Still, my view on the potential relevance of oxaliplatin-induced, TXNIP-independent downregulation of GDF-15 differs from that of referee 1. In the clinics, platinum-based chemotherapy is one of the strongest inducers of GDF-15 (compare Breen et al. GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metabolism 32(6), P938-950, 2020.DOI:https://doi.org/10.1016/j.cmet.2020.10.023). I was thus surprised that the authors found a pathway, which leads to an outcome that an exactly opposite effect.

      This is fascinating that oxaliplatin drives this increase in GDF15 – we were unaware of this paper. Looking at figure 2(H-K), GDF15 is being produced from multiple non-diseased tissues after systemic chemotherapy – even at day 19 post-treatment – this suggests that wrt this study, systemic GDF15 could not be used as a readout of success or otherwise – which is extremely helpful! Thank you.

      Thus far, the only obvious reason for reduced GDF-15 secretion upon treatment with cytotoxic drugs was a reduction in tumor cell number due to cytotoxicity.

      Please do not discount this. This study was focused on the cells which survived oxaliplatin treatment – the cells which did not were discarded. Our view, given your input, would be a complex picture where in early stages systemic GDF15 goes up, due to off-target effects, but locally levels drop owing to cell death and this, and other, stress-related pathways in the remaining tumor cells.

      Still, the authors managed to convince me that the described pathway (ROS - MondoA - TXNIP - GDF-15) exists. (Here, I still largely concur with referee 1.) Moreover, as we have identified some factors required for GDF-15 biosynthesis that could easily interact with TXNIP, I find the proposed mechanism plausible.

      Extremely encouraging for us to hear!

      Nevertheless, as a downregulation of GDF-15 in response to chemotherapy is hardly ever observed in late-stage cancers, I believe that the observed switch in pathway activation between early- and late-stage cancers might be highly relevant - in particular, as there is so much evidence for platinum-based induction of GDF-15 in late-stage cancer patients. Emphasizing the divergent clinical observations (e.g. by Breen et al.) could thus help to put the finding into perspective.

      Very much agree. We did see this phenomenon in LIM1215 cells (Figure 6B) and the resistant lines we generated continually produced higher levels.

      Analysing TXNIP-independent mechanisms involved in the oxaliplatin-dependent repression of GDF-15, as suggested by referee #1, will require enormous efforts and resources, and may still turn out to be fruitless. Personally, I would thus be content if the authors just mentioned possible contributions from other pathways upon cancer progression. To me, the described pathway seems to be limited to early-stage cancers, and the actual finding that GDF-15 is downregulated is an interesting observation, irrespective of further involved pathways.

      Many thanks – this is extremely fair. Happily we have managed to make some tentative steps forward in highlighting the potential role of MYC, and the suggestion of redundancy wrt ARRDC4, but as you say, much more work needs to be done to fully understand these processes.

      cross comment regarding referee #2: I fully agree with the referee that activation of the pathway by further chemotherapeutic drugs could be a valuable addition. As Guido Kroemer´s lab has described oxaliplatin to induce a more immunogenic cell death compared to other platinum-based chemotherapies, even a rather limited comparison between oxaliplatin and cisplatin could be very interesting.

      Absolutely agree – extra data on this has been included in Figure S11, which is included earlier in this letter. We also uncovered a meta-analysis using metformin, which has been seen to inhibit ROS, where TXNIP and ARRDC4 are the top two downregulated transcripts whilst GDF15 appears in the top four upregulated. This may suggest that chemotherapeutic immunogenicity, at least through the presence or absence of GDF15, may in part be driven by ROS.

      Lines 930-933: “Further support for both TXNIP and ARRDC4’s role in regulating GDF15 after the induction of ROS comes from a pan cancer meta-analysis assessing the impact of metformin (which has been reported to inhibit ROS) on gene expression. Here the top two downregulated genes were TXNIP and ARRDC4 and the top four upregulated genes were DDIT4, CHD2, ERN1 and GDF1572 “

      Reviewer #3 (Significance (Required)):

      In general, this is a very interesting manuscript describing a cascade of events that may contribute to successful chemotherapy (which likely requires induction of an immune response against dying tumor cells.) The observation that this pathway is only active in early/non-metastatic cancer cells is striking. Unfortunately, the authors cannot explain inactivation of this pathway in later stage/ metastatic/ highly aggressive cancers. Understanding this switch could easily be the most important finding triggered by this report. Therefore, I highly recommend to make some effort in this direction. Strikingly, the authors find that disruption of TXNIP-mediated GDF-15 downregulation is strongly associated with worse prognosis. They also suggest that this ratio could indicate whether a patient will respond to oxaliplatin-based chemotherapy.

      This is again very fair – we have posited a potential mechanism for the loss of this switch elsewhere in this reply– one which involves a change in TXNIP-mediated MYC regulation and/or increased HER2-HER3 signalling – but although reasonable for a rebuttal (and publication in that context) we do not feel we have the evidence to include this within the full manuscript.

      Altogether, the findings described in manuscript are very novel and may have prognostic (or, in case of the presumed loss of the MondoA - TXNIP - GDF-15 pathway) therapeutic implications. Thus, the manuscript certainly fills various gaps and should be of major interest for cell biologists working on immunogenic cell death, or colorectal cancer, or MondoA, TXNIP or GDF-15. Still, due to its translational implications, it would also be worthwhile reading for a large number of researchers in the oncology field.

      We are very grateful for your kind comments.

      1 Sinclair, L. V., Barthelemy, C. & Cantrell, D. A. Single Cell Glucose Uptake Assays: A Cautionary Tale. Immunometabolism 2, e200029, doi:10.20900/immunometab20200029 (2020).

      2 Yu, F. X., Chai, T. F., He, H., Hagen, T. & Luo, Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem 285, 25822-25830, doi:10.1074/jbc.M110.108290 (2010).

      3 Wischhusen, J., Melero, I. & Fridman, W. H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front Immunol 11, 951, doi:10.3389/fimmu.2020.00951 (2020).

    1. trauma reenactment narrative is by getting the child manipulating the child convincing the child to adopt the victimized child role within that trauma reenactment there and so all we have to do is get the child to believe that the

      This ominous realization did not occur and come together for me until just now:

      Kate's influence did not start with Kate directly. It would have started with her son Liam. I've not recognized until now the likely significant role he plays in this. He is her son. He would have already been fully traumatized by Kate or by the situation with his dad, depending on if it existed, but if it did or didn't, the fear/abandonment/insecure attachment disorder would be entrenched in both Kate and Liam and they would be reinforcing it in each other. Rhyanna working with Liam at Subway would have been the first contact in which casual conversation would begin the subtle campaign by Liam via trauma reenactment (and also fueled by being a teenage boy meets girl savior/peacocking mentality) that at first innocuously and then overtly was showing (manipulating into false belief) that she is victimized. Liam then notifies Mom of "the recruit", probably a genuine felt statement like "Mom, there's this girl at work and it sounds like she's going through what we went through and we could help her". Then Mom [Kate], which we know this happened, took the initiative to contact her (or told Liam to bring her over to the house to hangout so she could then introduce herself and have 'a talk' with her). Phone numbers were shared, instructions to not let Dad know where they lived were given, taking out to dinners were done, sharing of "stories about my husband we don't tell other people so please don't share this" were given about "my dangerous psychotic husband that Liam and I had to flee from and go on the run because the system couldn't save us so we had to act outside it". This matches the dynamic and origination story of every cult/radical "church"/scientology/NXIVM story I know and it is the same dynamic whether it's the pathogenic parent or pathogenic adult influence which in this way has an extra component of evolution. Ie, the pathogenic adult has created/obtained a pathogenic "victimized" subordinate follower. The follower then acts as a relatable/ice-breaking recruiter that has the effect on the target of " they're my peer, they're like me, I can therefore trust the accuracy of what they're saying more and am more willing to listen". Then when the follower eventually introduces the pathogenic adult, the critical judgement defence of the target is suppressed/ignored because the target has made the naive judgment error that since I believe and feel trusting in this peer, I can put that trust into someone he is introducing me too. And because that person is "the adult in the room" this person instantly gets, erroneously, the elevated security clearance in the target's mind that this person is a "trusted"+"adult"+"who understands me"+"has my best interest"+"and knows what I need". Additionally, when speaking with this adult, should the target's defense mechanisms of critical judgement start turning on, the target then looks to a reference point to "reality test", and the follower, Liam, is immediately on hand and present almost daily to act as that reference point nodding reassuringly when the target glances over [literally or metaphorically]. ..... Combine this with a parent who is getting sicker and sicker, who's observably by the child who knows her father well can tell his fear, anxiety (particularly regarding his ability to provide for them both), and sadness because of his non-improving sickness from a mysterious unknown deadly pandemic disease, a parent who is the SOLE parent and there is no second parent to reality test against and get reassuring grounded perspective (ie you are not victimized, dad isn't going to kill himself, yes this is a tough situation but we and you are not a victim and this is not a Hallmark/teen drama, and tough situations like this have long been and are a prolific part of human life and we can more than handle this situation and frankly will serve to accelerate your empowered growth and deeper understanding, meaning, passion, joy of life and further shedding of vulnerability to irrational and mismanagement of uncontrollable fear as a general skill set in your personal quiver. This all is the loss of the second, of which there may only be 2, fundamental defense mechanisms to safeguard a child's sound critical analytical/judgement skills. It is easy to empathize with a child's daily living experience, especially an adolescent, how these are the 2 mechanisms which are functioning by which they are consuming and assembling all new knowledge and understanding. #1 They first use their incumbent developed analytical/judgement skills to self analyze a concept or problem or question. #2 They verify that determination with their trusted source of truth and protection, ie their parents (a reality test). Perhaps this at the root of the common report "teenagers think they know everything". It's probably the first time the first mechanism is developed strongly enough to feel like it can safely be used in its own. And in being the first time, many errors will be made and in many of those errors the use of verification of mechanism 2 will not be used. An ill unimproving parent will exacerbate the error to not use mechanism 2. Fear and anxiety will exacerbate errors in mechanism number 1. Severity of those insults would proportionally affect the rate of error. Malfunctions in both mechanisms would have a multiplicative effect on damaging erroneous conclusions the child arrives at and the damage further choices on those erroneous conclusions causes. Then when the "virus" of the narcissistic/BLP cross generational shared persecutory delusion boundary violation gains entry into this now much increased "analytically vulnerable" child, it has the critically added effect of disabling mechanism 2 since the patent now becomes "all bad [splitting]". ..... Then ..... add to this child a history that she is a survivor, albeit exceptionally so, of incurring the pain and largely successful battle for separation from a very narcissistic mother and the family that produced that narcissism in her mother. The entire repercussions of that I am not sure, but relevant here is I think that means my child's developmental reality has a biased understanding and emotional sensitivity to the fear that a parent "I thought was normal, changed into a monster" and second "I fully believed a truth about the 1 of 2 people I trusted and depend on the most, and I was wrong. How can I trust my own conclusions now if I can't trust my own analytical and emotional judgement abilities?". No doubt also a fear and anxiety upregulating mechanism in and if itself, as well as providing a data point which can add confusion to a child frantically looking for understanding and/or can be leveraged to falsely rationalize the false narrative is correct especially when the pain of the truth is building and she is looking for any tool to suppress confronting that pain.

      Then, as Rhyanna further looks for, or rather it is imposed onto her, the naive drama thirsty peer group, whom many know Liam and Kate, and whom with very good intention but naivety of teenagers who in Boulder Colorado are conditioned to both be very helpful and that money and wealth (like them) combined with middle aged Caucasian combined with a "Boulderite" personality with an air of non-confrontational superiority and cancel-culture tendencies is the equivalent of "insightful, wise, holder of truth, and generally the definition of what is good, righteous, and hold the authority to declare whom is bad and further that it is expected that they will declare whom is good and bad and that action further validates that they are and have such authorities" in these teenagers minds reenforces this false truth as accurate.. Then the school, then CIRT team "mental health professionals", then the mental health hospital centennial peaks, then Boulder county child welfare via multiple staff, then the court and the judge personally all buy in and propagate this false truth and reinforce it overtly or indirectly overtly, and some propagate it by simply ignoring and not speaking out against or in questioning validity, all reinforcing this false truth. ..... And given all this, given all these goddamn ignorant spineless children of men in their lack of knowledge or past traumas, and under the weight of their ignorance and cowardice and laziness, and then under the unreal weight and fear and confusion of her and her dad, her one parent who's been her warrior defender of knowledge, self discovery, safety, character, food, and shelter, and whom no other family support exists is now very possibly dying and cannot speak for himself or to her (because her confusion and outside influence is not allowing it) to tell her the truth and reassurance of the situation ....... her heart and mind refuse to yield. The pain from her heart refusing to give way to the lie, they are trying to make her believe had caused her to want to kill herself. My daughter s unyielding heart and character brought tears to a police officer who'd not had the fortune of experiencing someone like my daughter. And still, after a year and a half, my daughter, MY daughter, still holds fast and is unwilling to tell the COURT that her resistance is because of me and is instead because of her. Yeah, that's who my daughter is. That is the caliber here. She is her father's daughter.

      I see you kid. You hold fast. I'm comin' for you.

      PS - Attention needs to be given to Liam. With consideration towards his possible and to what degree of trauma, and the validity of the story regarding his father.. It is now a real question, is his father above and well, normative, searching for his son and or fallen into decline, suicidality, doom? Is Liam about to lose a father and be irreversibly severely damaged because of the complete irreversible devastation, which will also include the self blame he incurs and will not be able to reconcile.

      PSS - likely it is both important and the is the time to revisit with focus Rhyannas feelings and understanding of her mom. She possibly stands to gain 1, a self confidence and esteem and complete obliteration of any feeling/false rationalization that she is somehow "less", that she is at fault, or that she is somehow "less capable" of a person now and going forward, 2) stamp out reactions of hate, tolerance, splitting, and walls she might form that would prevent problem solving, truth finding, and understanding so crucial to both abilities and finding of joy, particularly in relationships of love and family, 3) she stands to gain a mother and an entire side of a family and which is attained by a fulfilling relationship of her own architecture and which she is fully empowered to control and manage and nurture at her pleasure.

    1. Empiricism involves acquiring knowledge through observation and experience. Once again many of you may have believed that all swans are white because you have only ever seen white swans.

      I think this the reason why Karl Popper proposed an alternative approach based on falsification rather than confirmation. because when we saying that all swans are white, confirming this statement would involve finding as many white swans as possible However, with Popper's approach it shows that the statement is scientific only if there is a way to show it is false. In this case, finding a single black swan would falsify the statement). Therefore, we can also say that confirmation alone cannot provide certainty or proof of a theory's validity.

    1. ZK II note 9/8b 9/8b On the general structure of memories, see Ashby 1967, p. 103 . It is then important that you do not have to rely on a huge number of point-by-point accesses , but rather that you can rely on relationships between notes, i.e. references , that make more available at once than you would with a search impulse or with one thought - has fixation in mind.

      This underlies the ideas of songlines and oral mnemonic practices and is related to Vannevar Bush's "associative trails" in As We May Think.

      Luhmann, Niklas. “ZK II Zettel 9/8b.” Niklas Luhmann-Archiv, undated. https://niklas-luhmann-archiv.de/bestand/zettelkasten/zettel/ZK_2_NB_9-8b_V.

    1. us of that. As regards the third source, the social source of suffering, our attitude is adifferent one. We do not admit it at all; we cannot see why the regulations made by ourselves shouldnot, on the contrary, be a protection and a benefit for every one of us. And yet, when we consider howunsuccessful we have been in precisely this field of prevention of suffering, a suspicion dawns on us thathere, too, a piece of unconquerable nature may lie behind -this time a piece of our own psychicalconstitution.When we start considering this possibility, we come upon a contention which is so astonishing that wemust dwell upon it. This contention holds that what we call our civilization is largely responsible for ourmisery, and that we should be much happier if we gave it up and returned to primitive conditions. I callthis contention astonishing because, in whatever way we may define the concept of civilization, it is acertain fact that all the things with which we seek to protect ourselves against the threats that emanatefrom the sources of suffering are part of that very civilization.How has it happened that so many people have come to take up this strange altitude of hostility tocivilization? I believe that the basis of it was a deep and long-standing dissatisfaction with the thenexisting state of civilization and that on that basis a condemnation of it was built up, occasioned bycertain specific historical events. I think I know what the last and the last but one of those occasionswere. I am not learned enough to trace the chain of them far back enough in the history of the humanspecies; but a factor of this land hostile to civilization must already have been at work in the victory ofChristendom over the heathen religions, for it was very closely related to the low estimation put uponearthly life by the Christian doctrine. The last but one of these occasions was when the progress of

      I believe the focus of the reading is happiness can't be fully observed from the outside due to the lack self understanding we may have pertaining to happiness. It's hard for a man to be happy when they're so many different outlooks on what happiness should look like.

    2. If there had been no railway to conquer distances, my child wouldnever have left his native town and I should need no telephone to hear has voice; if travelling across theocean by ship had not been introduced, my friend would not have embarked on his sea-voyage and Ishould not need a cable to relieve my anxiety about him. What is the use of reducing infantile mortalitywhen it is precisely that reduction which imposes the greatest restraint on us in the begetting ofchildren, so that, taken all round, we nevertheless rear no more children than in the days before thereign of hygiene, while at the same time we have created difficult conditions for our sexual life inmarriage, and have probably worked against the beneficial effects of natural selection? And, finally,what good to us is a long life if it is difficult and barren of joys, and if it is so full of misery that we canonly welcome death as a deliverer?

      It seems lie Freud is trying to say that thirst for technological advancements have birthed new problems related to human existence. When you look at it from that perspective it does paint a rather bleak picture. However I do not think it's quite that simple. A dilemma such this may never have a clear cut answer.

    3. And yet, when we consider howunsuccessful we have been in precisely this field of prevention of suffering, a suspicion dawns on us thathere, too, a piece of unconquerable nature may lie behind -this time a piece of our own psychicalconstitution

      I don't know why but this made me think about fate vs free as we may make all the right choices but somethings may not fall in our favor.

    1. We also engage in social comparison based on similarity and difference. Since self-concept is context specific, similarity may be desirable in some situations and difference more desirable in others. Factors like age and personality may influence whether or not we want to fit in or stand out. Although we compare ourselves to others throughout our lives, adolescent and teen years usually bring new pressure to be similar to or different from particular reference groups.

      People put so much focus on social comparison. I think people get tunnel vision on trying to find a group to fit into, rather than find a group that fits them. Both are important in the right context. Just as it's important to step out of your comfort zone for new people, it's just as important to seek out people with shared interests and hobbies.

    1. history can seem more difficult to deny than those of engineering or medicine.

      Though history may seem trivial at times, I think that the real purpose of learning history is how we learn what works, as well as what we should never do again. Our goal should be to learn from our mistakes as a society. It also tells us so much about culture and in that we can also learn about our future.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study advances our understanding of the ways in which different types of communication signals differentially affect mouse behaviors and amygdala cholinergic/dopaminergic neuromodulation. Researchers interested in the complex interaction between prior experience, sex, behavior, hormonal status, and neuromodulation should benefit from this study. Nevertheless, the data analysis is incomplete at this stage, requiring additional analysis and description, justification, and - potentially - power to support the conclusions fully. With the analytical part strengthened, this paper will be of interest to neuroscientists and ethologists.

      GENERAL COMMENTS ON REVIEWS AND REVISIONS

      Experimental design

      Here we address questions from several reviewers regarding our periods of neuromodulator and behavioral analysis. First, we recognize that the text would benefit from an overview of the experimental structure different from the narrative we provide in the first paragraphs of the Results. We now include this near the beginning for the Materials and Methods (page 17). We further articulate that the 10-minute time periods were dictated by the sampling duration required to perform accurate neurochemical analyses (and to reserve half of the sample in the event of a catastrophic failure of batch-processing samples). Since neurochemical release may display multiple temporal components (e.g., ACh: Aitta-aho et al., 2018) during playback stimulation, and since these could differ across neurochemicals of interest, we decided to collect, analyze, and report in two stimulus periods as well as one Pre-Stim control. We now clarify this in additional text in the Material and Methods (p. 24, lines 20-22; p. 26, lines 17-19). We decided not to include analyses of the post-stimulus period because this is subject to wider individual and neuromodulator-specific effects and because it weakens statistical power in addressing the core question—the change in neuromodulator release DURING vocal playback.

      We also sought to clarify the meaning of the periods “Stim 1” and “Stim 2”; they are two data collection periods, using the same examplar sequences in the same order. We have added statements in the Material and Methods (p. 18, lines 4-7; Fig. caption, p. 39, lines 11-13) to clarify these periods.

      For behavioral analyses, observation periods were much shorter than 10 mins, but the main purpose of behavioral analyses in this report is to relate to the neurochemical data. As a result, we matched the temporal features of the behavioral and neurochemical analyses (p. 22, lines 17-22). We plan a separate report, focused exclusively on a broader set of behavioral responses to playback, that may examine behaviors at a more granular level.

      Data and statistical analyses

      Reviewers 1 and 3 expressed concerns about our normalization of neurochemical data, suggesting that it diminishes statistical power or is not transparent. We note that normalization is a very common form of data transformation that does not diminish statistical power. It is particularly useful for data forms in which the absolute value of the measurement across experiments may be uninformative. Normalization is routine in microdialysis studies, because data can be affected by probe placement and factors affecting neurochemical recovery and processing. Recent examples include:

      Li, Chaoqun, Tianping Sun, Yimu Zhang, Yan Gao, Zhou Sun, Wei Li, Heping Cheng, Yu Gu, and Nashat Abumaria. "A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice." Neuron (2023).

      Gálvez-Márquez, Donovan K., Mildred Salgado-Ménez, Perla Moreno-Castilla, Luis Rodríguez-Durán, Martha L. Escobar, Fatuel Tecuapetla, and Federico Bermudez-Rattoni. "Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus." Proceedings of the National Academy of Sciences 119, no. 49 (2022): e2208254119.

      Holly, Elizabeth N., Christopher O. Boyson, Sandra Montagud-Romero, Dirson J. Stein, Kyle L. Gobrogge, Joseph F. DeBold, and Klaus A. Miczek. "Episodic social stress-escalated cocaine self-administration: role of phasic and tonic corticotropin releasing factor in the anterior and posterior ventral tegmental area." Journal of Neuroscience 36, no. 14 (2016): 4093-4105.

      Bagley, Elena E., Jennifer Hacker, Vladimir I. Chefer, Christophe Mallet, Gavan P. McNally, Billy CH Chieng, Julie Perroud, Toni S. Shippenberg, and MacDonald J. Christie. "Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors." Nature neuroscience 14, no. 12 (2011): 1548-1554.

      However, since all reviewers requested raw values of neurochemicals, we provide these in supplementary tables 1-3. The manuscript references these table early in the Results (p. 6, lines 18-19) and in the Material and Methods (p. 27, lines 3-4)

      All reviewers commented on correlation analyses that we presented, with different perspectives. Reviewer 2 questioned the validity of such analyses, performed across experimental groups, while Reviewer 1 pointed out that the analyses were redundant with the GLM. We agree with these criticisms, and note the challenges associated with correlations involving behaviors for which there is a “floor” in the number of observations. As a result, we have removed most correlation analyses from the manuscript. The text and figures have been modified accordingly. Due these changes, we have to decline requests of Reviewer 3 to include many more such analyses. While correlation analyses could still be performed between neurochemicals and behaviors for each group, the relatively small size of each experimental group, the large number of groups, and the even larger numbers of pairings between neurochemicals and behavior, the statistical power is very low. The only correlations we utilize in the manuscript concern the interpretation of our increased acetylcholine levels.

      As part of this revision, we re-ran our statistical analyses on neuromodulators because of a calculation error in 3 animals (regarding baseline values). In a few instances, a significance level changed, but none of these changed a conclusion regarding neuromodulator changes under our experimental conditions.

      Other revisions

      INTRODUCTION: We modified the Introduction to provide both a more general framework and specific gaps in our understanding relating neuromodulators with vocal communication.

      DISCUSSION: We have added material in the first two pages of the Discussion to provide more framework to our conclusions, to address the issues of the temporal aspects of neurochemical release and behavioral observations, and to identify limitations that should be addressed in future studies.

      FIGURES: All figures are now in the main part of the manuscript. We modified most figures in response to reviewer comments. We removed neuromodulator – behavior correlations from several figures. We modified all box plots to ensure that all data points are visible. The visible data points match the numbers reported in figure captions. We brought 5-HIAA data into the main figures reporting on neuromodulator results.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript addresses a fundamental question about how different types of communication signals differentially affect brain states and neurochemistry. In addition, the manuscript highlights the various processes that modulate brain responses to communication signals, including prior experience, sex, and hormonal status. Overall, the manuscript is well-written and the research is appropriately contextualized. The authors are thoughtful about their quantitative approaches and interpretations of the data.

      That being said, the authors need to work on justifying some of their analytical approaches (e.g., normalization of neurochemical data, dividing the experimental period into two periods (as opposed to just analyzing the entire experimental period as a whole)) and should provide a greater discussion of how their data also demonstrate dissociations between neurochemical release in the basolateral amygdala and behavior (e.g., neurochemical differences during both of the experimental periods but behavioral differences only during the first half of the experimental period). The normalization of neurochemical data seems unnecessary given the repeated-measures design of their analysis and could be problematic; by normalizing all data to the baseline data (p. 24), one artificially creates a baseline period with minimal variation (all are "0"; Figures 2, 3 & 5) that could inflate statistical power.

      Please see our general responses to structure of observation periods and normalization of neuromodulator data. Normalization is a common and appropriate procedure in microdialysis studies that does not alter statistical power.

      We have included a section in the Discussion concerning the temporal relationship between behavioral responses and neurochemical changes in response to vocal playback (p. 12, lines 3-17). We note where the linkage is particularly strong (e.g., ACh release and flinching). This points to a need to examine these phenomena with finer temporal resolution, but also with the recognition that the brain circuits driving a behavioral response may extend beyond the BLA.

      The Introduction could benefit from a priori predictions about the differential release of specific neuromodulators based on previous literature.

      We added some material to the Introduction to provide additional rationale for the study. However, we did not attempt to develop predictions for the range of neuromodulators that we sought to test. The literature can lead to opposite predictions for a given neuromodulator. For example, acetylcholine could be associated with both positive and negative valence. Instead, we note in the Introduction the association of both DA and ACh with vocalizations.

      The manuscript would also benefit from a description of space use and locomotion in response to different valence vocalizations.

      We have provided additional descriptions of space use and video tracking data in Material and Methods (p. 23, lines 1-6). We now report a few correlations based on these data in the Results to demonstrate that increased ACh in Restraint males and Mating estrus females was not related to the amount of locomotion (p. 9, lines 8-14).

      Nevertheless, the current manuscript seems to provide some compelling support for how positive and negative valence vocalizations differentially affect behavior and the release of acetylcholine and dopamine in the basolateral amygdala. The research is relevant to broad fields of neuroscience and has implications for the neural circuits underlying social behavior.

      Reviewer #2 (Public Review):

      Ghasemahmad et al. report findings on the influence of salient vocalization playback, sex, and previous experience, on mice behaviors, and on cholinergic and dopaminergic neuromodulation within the basolateral amygdala (BLA). Specifically, the authors played back mice vocalizations recorded during two behaviors of opposite valence (mating and restraint) and measured the behaviors and release of acetylcholine (ACh), dopamine (DA), and serotonin in the BLA triggered in response to those sounds.

      Strength: The authors identified that mating and restraint sounds have a differential impact on cholinergic and dopaminergic release. In male mice, these two distinct vocalizations exert an opposite effect on the release of ACh and DA. Mating sounds elicited a decrease of Ach release and an increase of DA release. Conversely, restraint sounds induced an increase in ACh release and a trend to decrease in DA. These neurotransmission changes were different in estrus females for whom the mating vocalization resulted in an increase of both DA and ACh release.

      Weaknesses: The behavioral analysis and results remain elusive, and although addressing interesting questions, the study contains major flaws, and the interpretations are overstating the findings.

      Although Reviewer 2 raises several valid issues that we have addressed in our response and revision, we believe that none represent “major flaws” in the study that challenge the validity of our central conclusions. In brief, we will:

      --provide enhanced description of behaviors (pp. 22-23 and Table 1)

      --clarify / modify box-plot representations of data (p 28. Lines 3-9)

      --point to our methods that describe corrections for multiple comparisons (p. 27; lines 15-16)

      --revise figures to clarify sample size (Figs. 3-6)

      Reviewer #3 (Public Review):

      Ghasemahmad et al. examined behavioral and neurochemical responses of male and female mice to vocalizations associated with mating and restraint. The authors made two significant and exciting discoveries. They revealed that the affective content of vocalizations modulated both behavioral responses and the release of acetylcholine (ACh) and dopamine (DA) but not serotonin (5-HIAA) in the basolateral amygdala (BLA) of male and female mice. Moreover, the results show sex-based differences in behavioral responses to vocalizations associated with mating. The authors conclude that behavior and neurochemical responses in male and female mice are experience-dependent and are altered by vocalizations associated with restraint and mating. The findings suggest that ACh and DA release may shape behavioral responses to context-dependent vocalizations. The study has the potential to significantly advance our understanding of how neuromodulators provide internal-state signals to the BLA while an animal listens to social vocalizations; however, multiple concerns must be addressed to substantiate their conclusions.

      Major concerns:

      1) The authors normalized all neurochemical data to the background level obtained from a single pre-stimulus sample immediately preceding playback. The percentage change from the background level was calculated based on a formula, and the underlying concentrations were not reported. The authors should report the sample and background concentrations to make the results and analyses more transparent. The authors stated that NE and 5-HT had low recovery from the mouse brain and hence could not be tracked in the experiment. The authors could be more specific here by relating the concentrations to ACh, DA, and 5-HIAA included in the analyses.

      Please see our general statement regarding normalization of neurochemical data. We have added supplemental tables that shows concentrations of dopamine, acetylcholine, 5-HIAA. We do not report serotonin or noradrenalin since these were below the detection threshold.

      2) For the EXP group, the authors stated that each animal underwent 90-min sessions on two consecutive days that provided mating and restraint experiences. Did the authors record mating or copulation during these experiments? If yes, what was the frequency of copulation? What other behaviors were recorded during these experiences? Did the experiment encompass other courtship behaviors along with mating experiences? Was the female mouse in estrus during the experience sessions?

      In the mating experience, mounting or attempted mounting was required for the animal to be included in subsequent testing. Since the session lasted 90 minutes, more general courtship behavior was likely. However, we did not record detailed behaviors or track estrous stage for the mating experience. See p. 21, line 20-22.

      3) For the mating playback, the authors stated that the mating stimulus blocks contained five exemplars of vocal sequences emitted during mating interactions. The authors should clarify whether the vocal sequences were emitted while animals were mating/copulating or when the male and female mice were inside the test box. If the latter was the case, it might be better to call the playback "courtship playback" instead of "mating playback".

      We have modified the Results (p. 5, lines 18-20) and Materials and Methods (p. 21, lines 8-15) to clarify our meaning. We continue to use the term “mating” because this refers to a specific set of behaviors associated with mounting and copulation, rather than the more general term “courtship”. We also indicate that we based these behaviors on previous work (e.g., Gaub et al., 2016).

      4) Since most differences that the authors reported in Figure 3 were observed in Stim 1 and not in Stim 2, it might be better to perform a temporal analysis - looking at behaviors and neurochemicals over time instead of dividing them into two 10-minute bins. The temporal analysis will provide a more accurate representation of changes in behavior and neurochemicals over time.

      Please see our general response to the structuring of experimental periods. The 10-min periods are the minimum for the neurochemical analyses, and we adopted the same periods for behavioral analyses to match the two types of observations. Our repeated measures analysis is a form of temporal analysis, since it compares values in three observation periods.

      5) In Figures 2 and 3, the authors show the correlation between Flinching behavior and ACh concentration. The authors should report correlations between concentrations of all neurochemicals (not just ACh) and all behaviors recorded (not just Flinching), even if they are insignificant. The analyses performed for the stim 1 data should also be performed on the stim 2 data. Reporting these findings would benefit the field.

      Please see general comments regarding correlation analyses. We removed almost all such analyses and references to them from the manuscript based on concerns of the other reviewers.

      6) The mice used in the study were between p90 - p180. The mice were old, and the range of ages was considerable. Are the findings correlated with age? The authors should also discuss how age might affect the experiment's results.

      Our p90-p180 mice are not “old”. CBA/CaJ mice display normal hearing for at least 1 year (Ohlemiller, Dahl, and Gagnon, JARO 11: 605-623, 2010) and adult sexual and social behavior throughout our observation period. They are sexually mature adults, appropriate for this study. We decline to perform correlation analyses with age, both because this was not a question for this study and because the very large number of correlations, for each experimental group (as requested by reviewer #2), render this approach statistically problematic.

      7) The authors reported neurochemical levels estimated as the animals listened to the sounds played back. What about the sustained effects of changes in neurochemicals? Are there any potential long-term effects of social vocalizations on behavior and neurochemical levels? The authors might consider discussing long-term effects.

      We have not included discussion of long term effects of neuromodulatory release, both because our data analysis doesn’t address it (see response to Comment #10) and because we desired to keep the Discussion focused on topics more closely related to the results.

      8) Histology from a single recording was shown in supplementary figure 1. It would benefit the readers if additional histology was shown for all the animals, not just the colored schematics summarizing the recording probe locations. Further explanation of the track location is also needed to help the readers. Make it clear for the readers which dextran-fluorescein labeling image is associated with which track in the schematic.

      Based on the recent publications cited in our overall response to reviewer comments about statistical methods, our reporting of histological location of microdialysis exceeds the standard. We believe that the inclusion of all histology is unnecessary and not particularly helpful. Raw photomicrographs do not always illustrate boundaries, so interpretation is required. However, we added a second photomicrograph example and we identified which tracks correspond to these photomicrographs (see Figure 2; now in main body of manuscript).

      9) The authors did not control for the sounds being played back with a speaker. This control may be necessary since the effects are more pronounced in Stim 1 than in Stim 2. Playing white noise rather than restraint or courtship vocalizations would be an excellent control. However, the authors could perform a permutation analysis and computationally break the relationship between what sound is playing and the neurochemical data. This control would allow the authors to show that the actual neurochemical levels are above or below chance.

      We considered a potential “control” stimulus in our experimental design. We concluded, based on our previous work (e.g., Grimsley et al., 2013; Gadziola et al., 2016), that white noise is not or not necessarily a neutral stimulus and therefore the results would not clarify the responses to the two vocal stimuli. Instead, we opted to use experience as a type of control. This control shows very clearly that temporal patterns and across-group differences in neurochemical response to playback disappear in the absence of experience with the associated behavior.

      10) The authors indicated that each animal's post-vocalization session was also recorded. No data in the manuscript related to the post-vocalization playback period was included. This omission was a missed opportunity to show that the neurochemical levels returned to baseline, and the results were not dependent on the normalization process described in major concern #1. The data should be included in the manuscript and analyzed. It would add further support for the model described in Figure 6.

      We decided not to include analyses of the post-stimulus period because this period is subject to wider individual and neuromodulator-specific effects and because it weakens statistical power in addressing the core question—the change in neuromodulator release DURING vocal playback. We agree that the general question is of interest to the field, but we don’t think our study is best designed to answer that question.

      11) The authors could use a predictive model, such as a binary classifier trained on the CSF sampling data, to predict the type of vocalizations played back. The predictive model could support the conclusions and provide additional support for the model in Figure 6.

      We recognize that a binary classifier could provide an interesting approach to support conclusions. However, we do not believe that the sample size per group is sufficient to both create and test the classifier.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      • Introduction: It would be useful to set up an experimental framework before delving into the results. What are the predictions about specific neuromodulators based on previous literature?

      Because this narrative is laid out in the first two paragraphs of the Results, which immediately follow the Introduction, we believe that additional text in the Introduction on the experimental framework is redundant. As stated above, detailing predictions for a range of neuromodulators would make for a long and not particularly illuminating Introduction. We instead have related our findings to more general understanding of DA and ACh in the Discussion.

      • There really isn't a major difference in stimuli during the "Stim 1" and "Stim 2" phases, and it's not clear why the authors divided the experimental period into two phases. Therefore, the authors need to justify their experimental approach. For example, the authors could first anecdotally mention that behavioral responses to playbacks seem to be larger in the first half of the playbacks than during the second half, therefore they individually analyzed each half of the experimental period. Or adopt a different approach to justify their design. Overall, the analytical approach is reasonable but it is currently not justified.

      See general comment for analysis periods. As noted, we clarified these issues in several locations with Materials and Methods (pp. 24, lines 20-22; p. 26, lines 17-19). We also sought to clarify the meaning of the periods “Stim 1” and “Stim 2”; they are two data collection periods, using the same examplar sequences in the same order. We have added statements in the Material and Methods (p. 18, lines 4-7; Fig. caption, p. 39, lines 11-13).

      • The normalization of neurochemical data seems problematic and unnecessary. By normalizing all data to the baseline data (p. 24), one artificially creates a baseline period with minimal variation (all are "0"; Figures 2, 3 & 5) and this has implications for statistical power. Because the analysis is a within-subjects analysis, this normalization is not necessary for the analysis itself. It can be useful to normalize data for visualization purposes, but raw data should be analyzed. Indeed, behavioral data are qualitatively similar to the neurochemical data, and those data are not normalized to baseline values.

      Please see our general comment on this issue. We believe normalization does not affect statistical power and is both the standard way and an appropriate way to analyze microdialysis results. We include concentrations of ACh, DA, and 5-HIAA in supplementary tables?

      • The authors should include a discussion (in the Discussion section) of how behavior and neurochemical release are associated during the first half of the experimental session but not in the second half (e.g., differences in Ach and DA release between mating and restraint groups during stim 1 and 2, but behavioral differences only during stim 1).

      We have included a section in the Discussion concerning the temporal relationship between behavioral responses and neurochemical changes in response to vocal playback. We note that the linkage is particularly strong in some cases (e.g., ACh release and flinching). This points to a need to examine these phenomena with finer temporal resolution, but also with the recognition that the brain circuits driving a behavioral response may extend beyond the BLA.

      Minor comments:

      • Keywords: add "serotonin" (even though there are no significant differences on 5-HIAA, people interested in serotonin would find this interesting).

      Added to keywords list.

      • Do the authors collect data on the vocalizations of mice in response to these playbacks?

      We monitored vocalizations during playback, noting that vocalizations–especially “Noisy” vocalization–were common. However, we did not record vocalizations and are therefore unable quantify our observations.

      • First line of page 7: readers do not know about "stim 1" and "stim 2". Therefore, the authors need to describe their approach to analyzing behavior and neurochemical release.

      We first introduce these terms earlier, citing Figure 1D,E. We have added some additional wording for further clarification. page 7, lines 4-5.

      • Make sure citations are uniformly formatted (e.g., Inconsistencies in: "As male and female mice emit different vocalizations during mating (Finton et al., 2017; J. M. S. Grimsley et al., 2013; Neunuebel et al., 2015; Sales (née Sewell), 1972)").

      We have reviewed and corrected citations throughout the manuscript.

      • Last paragraph of page 7: "attending behavior" has not been defined yet.

      Table 1 contains our description of the behaviors analyzed in this study. We have now inserted a reference to Table 1 earlier in the Results (p. 6, line 12).

      • Figure 2E and 3G: I find these correlations to be redundant with the GLMs. This is because the significant relationship is likely to be driven by group differences in behavior and in neurochemical release.

      Please see general comments regarding correlation analyses. We removed such analyses and references to them from the manuscript.

      • Page 2, 2nd paragraph, 2nd sentence: this paragraph seems to be rooted in comparing and contrasting experienced and inexperienced mice, so there should be explicit comparisons in each sentence. For example, the 2nd sentence should read: "Whereas EXP estrus females demonstrated increased flinching behaviors in response to mating vocalizations, INEXP ....". This paragraph overall could use some refining.

      We believe this refers to page 9. We have revised the paragraph to clarify our findings (Beginning p. 9, line 23).

      • Page 9: "Further, there were no significant differences across groups during Stim 1 or Stim 2 periods. These results contrast sharply with those from all EXP groups, in which both ACh and DA release changed significantly during playback (Figs. 2C, 2D, 3E, 3F)." While I understand their perspective, this is misleading because changes were only observed during the Stim 1 period.

      We have slightly revised the wording in this paragraph, because the restraint males did not show significant ACh decreases. However, we do not believe our statements mislead readers just because some changes are observed in only one of the stimulation periods (p 10, lines 13-16).

      • Last paragraph of page 14: it would be useful to mention the increase in flinching in experienced females in response to mating vocalizations.

      We have added a sentence in this paragraph relating flinching in estrus females to increased ACh (p. 15, lines 18-20).

      • Was there a full analysis of locomotion in response to playbacks? I see that locomotion was correlated with neurochemical release but was it different in response to different stimuli? Were there changes to the part of the arena that mice occupied in response to restraint vs. mating vocalizations? Given their methods section, it would be useful for the authors to mention the results of the analyses of these aspects of movement.

      We have provided additional descriptions of space use and video tracking data in Material and Methods (p. 23, lines 1-6). We now report additional results associated with these analyses (p. 8, lines 13-15; p. 9, lines 8-14).

      • I believe that each experimental mouse only heard one of the stimuli (given the analytical approach). Because it is plausible to measure neurochemical release in response to both types of stimuli, I encourage the authors to be more explicit about this aspect of the experimental design (e.g., mention in Results section).

      Sentence modified to read: “Each mouse received playback of either the mating or restraint stimuli, but not both: same-day presentation of both stimuli would require excessively long playback sessions, the condition of the same probe would likely change on subsequent days, and quality of a second implanted probe on a subsequent day was uncertain.” (p. 7, lines 5-9).

      • Figure 1A and 1B: add labels to the panels so readers don't have to read the legend to know what spectrogram is associated with what context.

      We added these labels to Figure 1.

      • Table 1: in the definition of "still and alert", should this mention "abrupt attending" instead of "abrupt freezing"? The latter isn't described.

      Yes, we intended “abrupt attending”, and now indicated that in Table 1

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      • The authors report they performed manual behavioral analysis, and provide a table defining the different behaviors. However, it remains unclear how some of these behaviors were detected (such as still-and-alert events). A thorough description of the criteria used to define these events needs to be provided.

      We have modified some descriptions of manually analyzed behaviors in Table 1, and have added additional description of how we developed this set of behaviors for analysis in the study (pp. 22-23).

      • The box plots do not appear to represent the "minimum, first quartile, median, third quartile, and maximum values." as specified on page 24 (Methods). Indeed, the individual data points sometimes do not reach the max or min of the bar plot, and sometimes are way beyond them.

      We used the “inclusive median” function in Excel to generate final boxplots. These boxplots will sometimes result in a data point being placed outside of the whiskers. SPSS considers these to be “outliers”, but our GLM analysis includes these values. We describe this in Data Analysis section of Materials and Methods (p. 28, lines 3-9)

      • Some of the data are replicated in different Figures: Figure 2A and Figure 3C. While this is acceptable, the authors did not correct for multiple comparisons (dividing the p value by the number of comparisons).

      Our analysis included corrections for multiple comparisons, as we have indicated on p. 27, lines 15-16.

      • Overall, the sample sizes are too small (for example in Figure 3, non-estrus females are at n=3), and are different in experiments where they should be equal (Figure 2B: mating stim 1 is at n=5 and mating stim 2 is at n=3).

      We apologize that sample sizes were not properly displayed in figures. Please note that sample sizes are identified in the figure captions. For neuromodulator data, all sample sizes are at least 7. For behavioral data, the minimum sample size is 5. We have revised Figures 3-6 to ensure that all data points are visible.

      • It remains unclear why the impact of mating vocalizations has been tested only in males.

      We assume the reviewer meant that only males were tested in restraint. We now indicate that our preliminary evidence indicated no difference in behavioral responses to restraint vocalization between males and females, so we opted to perform the neurochemical analysis for restraint only in males (page 22 lines 4-5). If there were no limitations to time and cost, we would have preferred to test responses to restraint in females as well. We note that such inclusion would have added up to 4 experimental groups (estrus and non-estrus groups in both EXP and INEXP groups).

      • The correlation between the number of flinching and ACh release changes (Figure 2E) visually appears to be opposite between mating and restraint playbacks. The authors should perform independent correlations for these 2 playbacks.

      Please see general comments regarding correlation analyses. We removed such analyses and references to them from the manuscript.

      • The authors state that their findings "indicate that behavioral responses to salient vocalizations result from interactions between sex of the listener or context of vocal stimuli with the previous behavioral experience associated with these vocalizations.". However, in male mice, they do not report any difference in previous experience on flinching for both restraint and mating sounds, as well as no difference in rearing for the restrain sounds (Figure 4A-B). Thus, the discussion of these results should be completely revisited.

      We revised the paragraph in question (p. 9, line 22 through p. 10, line 9). For instance, we note that significant differences between EXP male-mating and male-restraint flinching do not exist between the INEXP groups. We believe that the last sentence correctly summarizes findings described in this paragraph.

      • For serotonin experiments in Figure S2 there are strong outliers (150% increase in 5HIAA release). Did the authors correlate these levels with the behavior of the animals?

      Outliers are identified by the Excel function that generated the boxplots, but we have no reason to consider these as outliers and exclude them. As noted above, we have clarified that these “outliers” are the result of the Excel function in the Materials and Methods (p. 28, lines 3-9) and we have revised the plotting of data points

      Minor comments:

      • Mating vocalization playback is mainly emitted by males, thus, instead of a positive valence signal, this could also be interpreted as a competitive signal to other males.

      There is support in the literature for viewing our mating stimulus as having positive valence. Gaub et al., 2016 describe the emission of stepped calls, lower frequency harmonics, and increased sound level as indicators of “positive emotion”. We have shown (Grimsley et al, 2013) that the female LFH vocalization can be highly attractive to male mice, under the right conditions, indicating something like “sex is happening”. The inclusion of both the male and female vocalizations in our stimuli was a key piece of our experimental design, based on our understanding of the contributions of both vocalizations to the meaning of the overall acoustic experience.

      • Figure 1 should include panel titles.

      No change. This information is available in the Figure caption.

      • n=31 should be indicated in the EXP group.

      We’re not sure where the reviewer is referring to this value.

      • The color legend of Figure 1E is absent, making the Figure not understandable.

      We added text in the Figure 1 caption to indicate that each color represents a different exemplar. We don’t think a legend provides additional useful information.

      • The point of making two blocks (stim 1 and stim2) should be stated more clearly.

      Please see general statement regarding experimental blocks. We have modified our description of these in an Experimental overview section in the Material and Methods.

      • Including raw data of micro-dialysis in the supplementary figures would allow assessment of the variability and quality of the measurements.

      We have added concentrations of neurochemicals in supplemental tables 1-3.

      • Baseline (prestimulus) number of flinch and rearing should systematically be indicated (missing in Figure 4).

      The focus in this figure is on the differences that occur in Stim 1 values. There are no differences between EXP and INEXP animals of any group during the Pre-Stim period. We now state that in the Figure 4 caption.

      • Discussion: "increase in AMPA/NMDA currents". We believe the authors are referring to the ratio of AMPA to NMDA currents. This sentence should be reformulated.

      These are modified to refer to “… the AMPA/NMDA current ratio…” in two locations in the Discussion (p. 14, lines 8-9; p. 15, line 4)

      • Overall the discussion is very speculative and should rely more on the data.

      We believe that the Discussion provides appropriate speculation that is based on our experimental data and previous literature. We have added a paragraph to identify limitations of our findings and recommendations of future experiments to resolve some issues (p. 12, lines 3-17)

      Reviewer #3 (Recommendations For The Authors):

      Minor concerns:

      1) The authors stated that USVs are most likely to be emitted by males, and LFH are likely to be emitted by females. However, Oliveira-Stahl et al. 2023, Matsumoto et al. 2022, Warren et al. 2018, Heckman et al. 2017, Neunuebel et al., 2015 showed that females also emit USVs. The authors should mention that USVs are emitted by both males and females and discuss how the sex of the vocalizing animal (both males and females) can influence neuromodulator release.

      The reviewer slightly mis-stated the wording of our text, changing the meaning significantly. Our wording is “These sequences included ultrasonic vocalizations (USVs) with harmonics, steps, and complex structure, mostly emitted by males, and low frequency harmonic calls (LFHs) emitted by females (Fig. 1A,C)…” This phrasing is correct and carefully chosen. The Discussion in Oliveira-Stahl et al 2023 (p. 10-11) supports our statement: “The exact fraction of USVs emitted by females as concluded in all previous studies on dyadic courtship has varied, ranging from 18%, 17.5%, and 16% to 10.5% in the present study…”.

      2) The authors should explain why ECF from BLA was collected unilaterally from the left hemisphere.

      p. 23, lines 9-11: We inserted a sentence to explain why we targeted the BLA unilaterally. “Since both left and right amygdala are responsive to vocal stimuli in human and experimental animal studies (Wenstrup et al., 2020), we implanted microdialysis probes into the left amygdala to maintain consistency with other studies in our laboratory..” Beyond that, the choice was arbitrary.

      3) The authors said each animal recovered in its home cage for four days before the playback experiment. A 4-day period may not be sufficient for every animal to recover from surgery, so the authors should describe how a mouse's recovery was assessed.

      p. 23, lines 20-23: We provide more description about the recovery and how it was assessed. Except for a few animals that were not included in the experiments, all animals recovered within 4 days.

      4) The authors stated that each animal was exposed to 90-min sessions with mating and restraint behaviors in a counterbalanced design. This description for Figure 1D should also include the duration of the mating and restraint experience.

      The Results that immediately precede citation to this figure include this information.

      5) The authors stated, "Data are reported only from mice with more than 75% of the microdialysis probe implanted within the BLA". What are the implications of having 25% of the probe outside the BLA? The authors should shed more light on this by discussing this issue as it relates to the findings and commenting on where the other 25% of the probe was located.

      We inserted a sentence to explain the rationale for this inclusion criterion. “We verified placement of microdialysis probes to minimize variability that could arise because regions surrounding BLA receive neurochemical inputs from different sources (e.g., cholinergic inputs to putamen and central amygdala).” (p. 25, lines 21-23).

      All brain regions that surround BLA, dorsal, medial, ventral, or lateral, could have been sampled by the “other” 25%. Some of these, e.g., the central amygdala or caudate-putamen, have different sources of cholinergic input that may not have the same release pattern. We do not think it is worthy of further speculation in the Discussion. Due to the high cost of the neurochemical analysis, we often did not process the neurochemistry data if histology indicated that a probe missed the BLA target.

      6) The authors confirmed that the estrus stage did not change during the experiment day by evaluating and comparing estrus prior to and after data collection. This strategy was a fantastic experimental approach, but the authors should have discussed the results. How did the results the authors included change when the females were in estrus before but not after data collection? What percentage of females started in estrus but ended in metestrus? Assuming that some females changed estrus state, were these animals excluded from the analyses?

      All animals were in the same estrus state at the beginning and end of the playback session.

      7). Authors cite Neunuebel et al., 2015 for the sentence "As male and female mice emit different vocalizations during mating". However, Neunuebel et al., 2015 showed vocalizations emitted during chasing--not mating. If mating is a general term for courtship, then this reference is appropriate, but see major concern #3.

      In the Results (p. 8, line 5), we changed the phrasing to “courtship and mating” to include the Neunubel et al study.

      As we indicate in our response to Public Comment #3, we have modified the Results (p. 5, lines 18-20) and Materials and Methods (p. 21, lines 8-15) to clarify our meaning. We continue to use the term “mating” because this refers to a specific set of behaviors associated with mounting and copulation, rather than the more general term “courtship”. We also indicate that we based these behaviors on previous work (e.g., Gaub et al., 2016).

      8) Authors interpret Figure 3F as DA release showed a "consistent" increase during mating playback across all three experimental groups. However, the increase in the estrus female group is inconsistent, as seen in the graph. This verbiage should be reworded to describe the data more accurately.

      p. 8, line 23 “consistent” was deleted.

      9) In all the box plots, multiple data points overlay each other. A more transparent way of showing the data would be adding some jitter to the x value to make each data point visible. The mean (X's) in Figure 3D (pre-stim mating and mating estrus) are difficult to see, as are all the data points in mating non-estrus. Adding all the symbols to the figure legend or a key in the figure instead of the method section would aid the reader and make the plots easier to interpret

      We have revised the boxplots to ensure that all data points are visible.

      10) Some verbiage used in the discussion should be toned down. For example, "intense" experiences and "emotionally charged" vocalizations should be removed.

      We have not changed these terms, which we believe are appropriate to describe these experiences and vocalizations.

      11) The authors include "Emotional Vocalizations" in the title. It would be beneficial if the authors included more detail and references in the introduction to help set up the emotional content of vocalizations. It may benefit a broader readership as typically targeted by eLife.

      We now cite Darwin and some more recent publications that articulate the general understanding that social vocalizations carry emotional content.

    1. 7.6. Ethics and Trolling# 7.6.1. Background: Forming Groups# Every “we” implies a not-“we”. A group is constituted in part by who it excludes. Think back to the origin of humans caring about authenticity: if being able to trust each other is so important, then we need to know WHICH people are supposed to be entangled in those bonds of mutual trust with us, and which are not from our own crew. As we have developed larger and larger societies, states, and worldwide communities, the task of knowing whom to trust has become increasingly large. All groups have variations within them, and some variations are seen as normal. But the bigger groups get, the more variety shows up, and starts to feel palpable. In a nation or community where you don’t know every single person, how do you decide who’s in your squad? One answer to this challenge is that we use various heuristics (that is, shortcuts for thinking) like stereotypes and signaling to quickly guess where a person stands in relation to us. Sometimes wearing items of a certain brand signals to people with similar commitments that you might be on the same page. Sometimes features that are strongly associated with certain social groups—stereotypes—are assumed to tell us whether or not we can trust someone. Have you ever tried to change or mask your accent, to avoid being marked as from a certain region? Have you ever felt the need to conceal something about yourself that is often stereotyped, or to use an ingroup signal to deflect people’s attention from a stereotyped feature? There is a reason why stereotypes are so tenacious: they work… sort of. Humans are brilliant at finding patterns, and we use pattern recognition to increase the efficiency of our cognitive processing. We also respond to patterns and absorb patterns of speech production and style of dress from the people around us. We do have a tendency to display elements of our history and identity, even if we have never thought about it before. This creates an issue, however, when the stereotype is not apt in some way. This might be because we diverge in some way from the categories that mark us, so the stereotype is inaccurate. Or this might be because the stereotype also encodes value judgments that are unwarranted, and which lead to problems with implicit bias. Some people do not need to think loads about how they present in order to come across to people in ways that are accurate and supportive of who they really are. Some people think very carefully about how they curate a set of signals that enable them to accurately let people know who they are or to conceal who they are from people outside their squad. Because patterns are so central to how our brains process information, patterns become extremely important to how societies change or stay the same. TV tropes is a website that tracks patterns in media, such as the jump scare The Seven Basic Plots Patterns build habits. Habits build norms. Norms build our reality. To create a social group and have it be sustainable, we depend on stable patterns, habits, and norms to create the reality of the grouping. In a diverse community, there are many subsets of patterns, habits, and norms which go into creating the overall social reality. Part of how people manage their social reality is by enforcing the patterns, habits, and norms which identify us; another way we do this is by enforcing, or policing, which subsets of patterns, habits, and norms get to be recognized as valid parts of the broader social reality. Both of these tactics can be done in appropriate, just, and responsible ways, or in highly unjust ways. 7.6.2. Ethics of Disruption (Trolling)# Trolling is a method of disrupting the way things are, including group structure and practices. Like these group-forming practices, disruptive trolling can be deployed in just or unjust ways. (We will come back to that.) These disruptive tactics can also be engaged with different moods, ranging from playful (like some flashmobs), to demonstrative (like activism and protests), to hostile, to warring, to genocidal. You may have heard people say that the difference between a coup and a revolution is whether it succeeds and gets to later tell the story, or gets quashed. You may have also heard that the difference between a traitor and a hero depends on who is telling the story. As this class discusses trolling, as well as many of the other topics of social media behavior coming up in the weeks ahead, you are encouraged to bear this duality of value in mind. Trolling is a term given to describe behavior that aims to disrupt (among other things). To make value judgments or ethical judgments about instances of disruptive behavior, we will need to be thoughtful and nuanced about how we decide to pass judgments. One way to begin examining any instance of disruptive behavior is to ask what is being disrupted: a pattern, a habit, a norm, a whole community? And how do we judge the value of the thing being disrupted? Returning to the difference between a coup and a revolution, we might say that a national-level disruption is a coup if it fails, and a revolution if it succeeds. Or we might say that such a disruption is a coup if it intends to disrupt a legitimate instance of political domination/statehood, but a revolution if the instance of political domination is illegitimate. If you take a close look at English-language headlines in the news about uprisings occurring near to or far from here, it should become quickly apparent that both of these reasons can drive an author’s choice to style an event as a coup. To understand what the author is trying to say, we need to look inside the situation and see what assumptions are driving their choice to characterize the disruption in the way that they do. Trolling is disruptive behavior, and whether we class it as problematic or okay depends in part on how we judge the legitimacy of the social reality which is being disrupted. Trolling can be used, in principle, for good or bad ends. 7.6.3. Trolling and Nihilism# While trolling can be done for many reasons, some trolling communities take on a sort of nihilistic philosophy: it doesn’t matter if something is true or not, it doesn’t matter if people get hurt, the only thing that might matter is if you can provoke a reaction. We can see this nihilism show up in one of the versions of the self-contradictory “Rules of the Internet:” 8. There are no real rules about posting … 20. Nothing is to be taken seriously … 42. Nothing is Sacred Youtuber Innuendo Studios talks about the way arguments are made in a community like 4chan: You can’t know whether they mean what they say, or are only arguing as though they mean what they say. And entire debates may just be a single person stirring the pot [e.g., sockpuppets]. Such a community will naturally attract people who enjoy argument for its own sake, and will naturally trend oward the most extremte version of any opinion. In short, this is the free marketplace of ideas. No code of ethics, no social mores, no accountability. … It’s not that they’re lying, it’s that they just don’t care. […] When they make these kinds of arguments they legitimately do not care whether the words coming out of their mouths are true. If they cared, before they said something is true, they would look it up. The Alt-Right Playbook: The Card Says Moops by Innuendo Studios While there is a nihilistic worldview where nothing matters, we can see how this plays out practically, which is that they tend to protect their group (normally white and male), and tend to be extremely hostile to any other group. They will express extreme misogyny (like we saw in the Rules of the Internet: “Rule 30. There are no girls on the internet. Rule 31. TITS or GTFO - the choice is yours”), and extreme racism (like an invented Nazi My Little Pony character). Is this just hypocritical, or is it ethically wrong? It depends, of course, on what tools we use to evaluate this kind of trolling. If the trolls claim to be nihilists about ethics, or indeed if they are egoists, then they would argue that this doesn’t matter and that there’s no normative basis for objecting to the disruption and harm caused by their trolling. But on just about any other ethical approach, there are one or more reasons available for objecting to the disruptions and harm caused by these trolls! If the only way to get a moral pass on this type of trolling is to choose an ethical framework that tells you harming others doesn’t matter, then it looks like this nihilist viewpoint isn’t deployed in good faith1. Rather, with any serious (i.e., non-avoidant) moral framework, this type of trolling is ethically wrong for one or more reasons (though how we explain it is wrong depends on the specific framework). 7.6.4. Reflection Exercise# Revisit the K-Pop protest trolling example in section 7.3. Take your list of ethical frameworks from Chapter 2 and work through them one by one, applying each tool to the K-Pop trolling. For each theory, think of how many different ways the theory could hook up with the example. For example, when using a virtue ethics type of tool, consider how many different people’s character and flourishing could be developed through this? When using a tool based on outcomes, like consequentialism, how many different elements of the outcome can you think of? The goal here is to come up with as many variations as you can, to see how the tools of ethical analysis can help us see into different aspects of the situation. Once you have made your big list of considerations, choose 2-3 items that, in your view, feel most important. Based on those 2-3 items, do you evaluate this trolling event as having been morally good? Why? What changes to this example would change your overall decision on whether the action is ethical?

      The section provides a profound exploration of the complexities involved in understanding and evaluating disruptive behaviors in social media contexts. It compellingly illustrates how the formation of groups, the use of stereotypes, and the enforcement of norms are all deeply intertwined with our cognitive processes and societal structures. The examination of trolling as a form of disruption that can be deployed for both just and unjust ends invites readers to reflect on the multifaceted nature of these actions and their ethical implications.

    1. Reviewer #1 (Public Review):

      This valuable study demonstrates a novel mechanism by which implicit motor adaptation saturates for large visual errors in a principled normative Bayesian manner. Additionally, the study revealed two notable empirical findings: visual uncertainty increases for larger visual errors in the periphery, and proprioceptive shifts/implicit motor adaptation are non-monotonic, rather than ramp-like. This study is highly relevant for researchers in sensory cue integration and motor learning. However, I find some areas where statistical quantification is incomplete, and the contextualization of previous studies to be puzzling.

      Issue #1: Contextualization of past studies.

      While I agree that previous studies have focused on how sensory errors drive motor adaptation (e.g., Burge et al., 2008; Wei and Kording, 2009), I don't think the PReMo model was contextualized properly. Indeed, while PReMo should have adopted clearer language - given that proprioception (sensory) and kinaesthesia (perception) have been used interchangeably, something we now make clear in our new study (Tsay, Chandy, et al. 2023) - PReMo's central contribution is that a perceptual error drives implicit adaptation (see Abstract): the mismatch between the felt (perceived) and desired hand position. The current paper overlooks this contribution. I encourage the authors to contextualize PReMo's contribution more clearly throughout. Not mentioned in the current study, for example, PReMo accounts for the continuous changes in perceived hand position in Figure 4 (Figure 7 in the PReMo study).

      There is no doubt that the current study provides important additional constraints on what determines perceived hand position: Firstly, it offers a normative Bayesian perspective in determining perceived hand position. PReMo suggests that perceived hand position is determined by integrating motor predictions with proprioception, then adding a proprioceptive shift; PEA formulates this as the optimal integration of these three inputs. Secondly, PReMo assumed visual uncertainty to remain constant for different visual errors; PEA suggests that visual uncertainty ought to increase (but see Issue #2).

      Issue #2: Failed replication of previous results on the effect of visual uncertainty.

      2a. A key finding of this paper is that visual uncertainty linearly increases in the periphery; a constraint crucial for explaining the non-monotonicity in implicit adaptation. One notable methodological deviation from previous studies is the requirement to fixate on the target: Notably, in the current experiments, participants were asked to fixate on the target, a constraint not imposed in previous studies. In a free-viewing environment, visual uncertainty may not attenuate as fast, and hence, implicit adaptation does not attenuate as quickly as that revealed in the current design with larger visual errors. Seems like this current fixation design, while important, needs to be properly contextualized considering how it may not represent most implicit adaptation experiments.

      2b. Moreover, the current results - visual uncertainty attenuates implicit adaptation in response to large, but not small, visual errors - deviates from several past studies that have shown that visual uncertainty attenuates implicit adaptation to small, but not large, visual errors (Tsay, Avraham, et al. 2021; Makino, Hayashi, and Nozaki, n.d.; Shyr and Joshi 2023). What do the authors attribute this empirical difference to? Would this free-viewing environment also result in the opposite pattern in the effect of visual uncertainty on implicit adaptation for small and large visual errors?

      2c. In the current study, the measure of visual uncertainty might be inflated by brief presentation times of comparison and referent visual stimuli (only 150 ms; our previous study allowed for a 500 ms viewing time to make sure participants see the comparison stimuli). Relatedly, there are some individuals whose visual uncertainty is greater than 20 degrees standard deviation. This seems very large, and less likely in a free-viewing environment.

      2d. One important confound between clear and uncertain (blurred) visual conditions is the number of cursors on the screen. The number of cursors may have an attenuating effect on implicit adaptation simply due to task-irrelevant attentional demands (Parvin et al. 2022), rather than that of visual uncertainty. Could the authors provide a figure showing these blurred stimuli (gaussian clouds) in the context of the experimental paradigm? Note that we addressed this confound in the past by comparing participants with and without low vision, where only one visual cursor is provided for both groups (Tsay, Tan, et al. 2023).

      Issue #3: More methodological details are needed.

      3a. It's unclear why, in Figure 4, PEA predicts an overshoot in terms of perceived hand position from the target. In PReMo, we specified a visual shift in the perceived target position, shifted towards the adapted hand position, which may result in overshooting of the perceived hand position with this target position. This visual shift phenomenon has been discovered in previous studies (e.g., (Simani, McGuire, and Sabes 2007)).

      3b. The extent of implicit adaptation in Experiment 2, especially with smaller errors, is unclear. The implicit adaptation function seems to be still increasing, at least by visual inspection. Can the authors comment on this trend, and relatedly, show individual data points that help the reader appreciate the variability inherent to these data?

      3c. The same participants were asked to return for multiple days/experiments. Given that the authors acknowledge potential session effects, with attenuation upon re-exposure to the same rotation (Avraham et al. 2021), how does re-exposure affect the current results? Could the authors provide clarity, perhaps a table, to show shared participants between experiments and provide evidence showing how session order may not be impacting results?

      3d. The number of trials per experiment should be detailed more clearly in the Methods section (e.g., Exp 4). Moreover, could the authors please provide relevant code on how they implemented their computational models? This would aid in future implementation of these models in future work. I, for one, am enthusiastic to build on PEA.

      3f. In addition to predicting a correlation between proprioceptive shift and implicit adaptation on a group level, both PReMo and PEA (but not causal inference) predict a correlation between individual differences in proprioceptive shift and proprioceptive uncertainty with the extent of implicit adaptation (Tsay, Kim, et al. 2021). Interestingly, shift and uncertainty are independent (see Figures 4F and 6C in Tsay et al, 2021). Does PEA also predict independence between shift and uncertainty? It seems like PEA does predict a correlation.

      References:

      Avraham, Guy, Ryan Morehead, Hyosub E. Kim, and Richard B. Ivry. 2021. "Reexposure to a Sensorimotor Perturbation Produces Opposite Effects on Explicit and Implicit Learning Processes." PLoS Biology 19 (3): e3001147.<br /> Makino, Yuto, Takuji Hayashi, and Daichi Nozaki. n.d. "Divisively Normalized Neuronal Processing of Uncertain Visual Feedback for Visuomotor Learning."<br /> Parvin, Darius E., Kristy V. Dang, Alissa R. Stover, Richard B. Ivry, and J. Ryan Morehead. 2022. "Implicit Adaptation Is Modulated by the Relevance of Feedback." BioRxiv. https://doi.org/10.1101/2022.01.19.476924.<br /> Shyr, Megan C., and Sanjay S. Joshi. 2023. "A Case Study of the Validity of Web-Based Visuomotor Rotation Experiments." Journal of Cognitive Neuroscience, October, 1-24.<br /> Simani, M. C., L. M. M. McGuire, and P. N. Sabes. 2007. "Visual-Shift Adaptation Is Composed of Separable Sensory and Task-Dependent Effects." Journal of Neurophysiology 98 (5): 2827-41.<br /> Tsay, Jonathan S., Guy Avraham, Hyosub E. Kim, Darius E. Parvin, Zixuan Wang, and Richard B. Ivry. 2021. "The Effect of Visual Uncertainty on Implicit Motor Adaptation." Journal of Neurophysiology 125 (1): 12-22.<br /> Tsay, Jonathan S., Anisha M. Chandy, Romeo Chua, R. Chris Miall, Jonathan Cole, Alessandro Farnè, Richard B. Ivry, and Fabrice R. Sarlegna. 2023. "Implicit Motor Adaptation and Perceived Hand Position without Proprioception: A Kinesthetic Error May Be Derived from Efferent Signals." BioRxiv. https://doi.org/10.1101/2023.01.19.524726.<br /> Tsay, Jonathan S., Hyosub E. Kim, Darius E. Parvin, Alissa R. Stover, and Richard B. Ivry. 2021. "Individual Differences in Proprioception Predict the Extent of Implicit Sensorimotor Adaptation." Journal of Neurophysiology, March. https://doi.org/10.1152/jn.00585.2020.<br /> Tsay, Jonathan S., Steven Tan, Marlena Chu, Richard B. Ivry, and Emily A. Cooper. 2023. "Low Vision Impairs Implicit Sensorimotor Adaptation in Response to Small Errors, but Not Large Errors." Journal of Cognitive Neuroscience, January, 1-13.

    2. Reviewer #3 (Public Review):

      Summary<br /> In this paper, the authors model motor adaptation as a Bayesian process that combines visual uncertainty about the error feedback, uncertainty about proprioceptive sense of hand position, and uncertainty of predicted (=planned) hand movement with a learning and retention rate as used in state space models. The model is built with results from several experiments presented in the paper and is compared with the PReMo model (Tsay, Kim, et al., 2022) as well as a cue combination model (Wei & Körding, 2009). The model and experiments demonstrate the role of visual uncertainty about error feedback in implicit adaptation.

      In the introduction, the authors notice that implicit adaptation (as measured in error-clamp-based paradigms) does not saturate at larger perturbations, but decreases again (e.g. Moorehead et al., 2017 shows no adaptation at 135{degree sign} and 175{degree sign} perturbations). They hypothesized that visual uncertainty about cursor position increases with larger perturbations since the cursor is further from the fixated target. This could decrease the importance assigned to visual feedback which could explain lower asymptotes.

      The authors characterize visual uncertainty for 3 rotation sizes in the first experiment, and while this experiment could be improved, it is probably sufficient for the current purposes. Then the authors present a second experiment where adaptation to 7 clamped errors is tested in different groups of participants. The models' visual uncertainty is set using a linear fit to the results from experiment 1, and the remaining 4 parameters are then fit to this second data set. The 4 parameters are 1) proprioceptive uncertainty, 2) uncertainty about the predicted hand position, 3) a learning rate, and 4) a retention rate. The authors' Perceptual Error Adaptation model ("PEA") predicts asymptotic levels of implicit adaptation much better than both the PReMo model (Tsay, Kim et al., 2022), which predicts saturated asymptotes, or a causal inference model (Wei & Körding, 2007) which predicts no adaptation for larger rotations. In a third experiment, the authors test their model's predictions about proprioceptive recalibration, but unfortunately, compare their data with an unsuitable other data set. Finally, the authors conduct a fourth experiment where they put their model to the test. They measure implicit adaptation with increased visual uncertainty, by adding blur to the cursor, and the results are again better in line with their model (predicting overall lower adaptation) than with the PReMo model (predicting equal saturation but at larger perturbations) or a causal inference model (predicting equal peak adaptation, but shifted to larger rotations). In particular, the model fits experiment 2 and the results from experiment 4 show that the core idea of the model has merit: increased visual uncertainty about errors dampens implicit adaptation.

      Strengths<br /> In this study, the authors propose a Perceptual Error Adaptation model ("PEA") and the work combines various ideas from the field of cue combination, Bayesian methods, and new data sets, collected in four experiments using various techniques that test very different components of the model. The central component of visual uncertainty is assessed in the first experiment. The model uses 4 other parameters to explain implicit adaptation. These parameters are 1) learning and 2) retention rate, as used in popular state space models, and the uncertainty (variance) of 3) predicted and 4) proprioceptive hand position. In particular, the authors observe that asymptotes for implicit learning do not saturate, as claimed before, but decrease again when rotations are very large and that this may have to do with visual uncertainty (e.g. Tsay et al., 2021, J Neurophysiol 125, 12-22). The final experiment confirms predictions of the fitted model about what happens when visual uncertainty is increased (overall decrease of adaptation). By incorporating visual uncertainty depending on retinal eccentricity, the predictions of the PEA model for very large perturbations are notably different from and better than, the predictions of the two other models it is compared to. That is, the paper provides strong support for the idea that visual uncertainty of errors matters for implicit adaptation.

      Weaknesses<br /> Although the authors don't say this, the "concave" function that shows that adaptation does not saturate for larger rotations has been shown before, including in papers cited in this manuscript.

      The first experiment, measuring visual uncertainty for several rotation sizes in error-clamped paradigms has several shortcomings, but these might not be so large as to invalidate the model or the findings in the rest of the manuscript. There are two main issues we highlight here. First, the data is not presented in units that allow comparison with vision science literature. Second, the 1 second delay between the movement endpoint and the disappearance of the cursor, and the presentation of the reference marker, may have led to substantial degradation of the visual memory of the cursor endpoint. That is, the experiment could be overestimating the visual uncertainty during implicit adaptation.

      The paper's third experiment relies to a large degree on reproducing patterns found in one particular paper, where the reported hand positions - as a measure of proprioceptive sense of hand position - are given and plotted relative to an ever-present visual target, rather than relative to the actual hand position. That is, 1) since participants actively move to a visual target, the reported hand positions do not reflect proprioception, but mostly the remembered position of the target participants were trying to move to, and 2) if the reports are converted to a difference between the real and reported hand position (rather than the difference between the target and the report), those would be on the order of ~20{degree sign} which is roughly two times larger than any previously reported proprioceptive recalibration, and an order of magnitude larger than what the authors themselves find (1-2{degree sign}) and what their model predicts. Experiment 3 is perhaps not crucial to the paper, but it nicely provides support for the idea that proprioceptive recalibration can occur with error-clamped feedback.

      Perhaps the largest caveat to the study is that it assumes that people do not look at the only error feedback available to them (and can explicitly suppress learning from it). This was probably true in the experiments used in the manuscript, but unlikely to be the case in most of the cited literature. Ignoring errors and suppressing adaptation would also be a disastrous strategy to use in the real world, such that our brains may not be very good at this. So the question remains to what degree - if any - the ideas behind the model generalize to experiments without fixation control, and more importantly, to real-life situations.

      Specific comments:<br /> A small part of the manuscript relies on replicating or modeling the proprioceptive recalibration in a study we think does NOT measure proprioceptive recalibration (Tsay, Parvin & Ivry, JNP, 2020). In this study, participants reached for a visual target with a clamped cursor, and at the end of the reach were asked to indicate where they thought their hand was. The responses fell very close to the visual target both before and after the perturbation was introduced. This means that the difference between the actual hand position, and the reported/felt hand position gets very large as soon as the perturbation is introduced. That is, proprioceptive recalibration would necessarily have roughly the same magnitude as the adaptation displayed by participants. That would be several times larger than those found in studies where proprioceptive recalibration is measured without a visual anchor. The data is plotted in a way that makes it seem like the proprioceptive recalibration is very small, as they plot the responses relative to the visual target, and not the discrepancy between the actual and reported hand position. It seems to us that this study mostly measures short-term visual memory (of the target location). What is astounding about this study is that the responses change over time to begin with, even if only by a tiny amount. Perhaps this indicates some malleability of the visual system, but it is hard to say for sure.

      Regardless, the results of that study do not form a solid basis for the current work and they should be removed. We would recommend making use of the dataset from the same authors, who improved their methods for measuring proprioception shifts just a year later (Tsay, Kim, Parvin, Stover, and Ivry, JNP, 2021). Although here the proprioceptive shifts during error-clamp adaptation (Exp 2) were tiny, and not quite significant (p<0.08), the reports are relative to the actual location of the passively placed unseen hand, measured in trials separate from those with reach adaptation and therefore there is no visual target to anchor their estimates to.

      Experiment 1 measures visual uncertainty with increased rotation size. The authors cite relevant work on this topic (Levi & Klein etc) which has found a linear increase in uncertainty of the position of more and more eccentrically displayed stimuli.

      First, this is a question where the reported stimuli and effects could greatly benefit from comparisons with the literature in vision science, and the results might even inform it. In order for that to happen, the units for the reported stimuli and effects should (also) be degrees of visual angle (dva).

      As far as we know, all previous work has investigated static stimuli, where with moving stimuli, position information from several parts of the visual field are likely integrated over time in a final estimate of position at the end of the trajectory (a Kalman filter type process perhaps). As far as we know, there are no studies in vision science on the uncertainty of the endpoint of moving stimuli. So we think that the experiment is necessary for this study, but there are some areas where it could be improved.

      Then, the linear fit is done in the space of the rotation size, but not in the space of eccentricity relative to fixation, and these do not necessarily map onto each other linearly. If we assume that the eye-tracker and the screen were at the closest distance the manufacturer reports it to work accurately at (45 cm), we would get the largest distances the endpoints are away from fixation in dva. Based on that assumed distance between the participant and monitor, we converted the rotation angles to distances between fixation and the cursor endpoint in degrees visual angle: 0.88, 3.5, and 13.25 dva (ignoring screen curvature, or the absence of it). The ratio between the perturbation angle and retinal distance to the endpoint is roughly 0.221, 0.221, and 0.207 if the minimum distance is indeed used - which is probably fine in this case. But still, it would be better to do fit in the relevant perceptual coordinate system.

      The first distance (4 deg rotation; 0.88 dva offset between fixation and stimulus) is so close to fixation (even at the assumed shortest distance between eye and screen) that it can be considered foveal and falls within the range of noise of eye-trackers + that of the eye for fixating. There should be no uncertainty on or that close to the fovea. The variability in the data is likely just measurement noise. This also means that a linear fit will almost always go through this point, somewhat skewing the results toward linearity. The advantage is that the estimate of the intercept (measurement noise) is going to be very good. Unfortunately, there are only 2 other points measured, which (if used without the closest point) will always support a linear fit. Therefore, the experiment does not seem suitable to test linearity, only to characterize it, which might be sufficient for the current purposes. We'd understand if the effort to do a test of linearity using many more rotations requires too much effort. But then it should be made much clearer that the experiment assumes linearity and only serves to characterize the assumed linearity.

      Final comment after the consultation session:<br /> There were a lot of discussions about the actual interpretation of the behavioral data from this paper with regards to past papers (Tsay et al. 2020 or 2021), and how it matches the different variables of the model. The data from Tsay 2020 combined both proprioceptive information (Xp) and prediction about hand position (Xu) because it involves active movements. On the other hand, Tsay et al. 2021 is based on passive movements and could provide a better measure of Xp alone. We would encourage you to clarify how each of the variables used in the model is mapped onto the outcomes of the cited behavioral experiments.

      The reviewers discussed this point extensively during the consultation process. The results reported in the Tsay 2020 study reflect both proprioception and prediction. However, having a visual target contributes more than just prediction, it is likely an anchor in the workspace that draws the response to it. Such that the report is dominated by short-term visual memory of the target (which is not part of the model). However, in the current Exp 3, as in most other work investigating proprioception, this is calculated relative to the actual direction.

      The solution is fairly simple. In Experiment 3 in the current study, Xp is measured relative to the hand without any visual anchors drawing responses, and this is also consistent with the reference used in the Tsay et al 2021 study and from many studies in the lab of D. Henriques (none of which also have any visual reach target when measuring proprioceptive estimates). So we suggest using a different data set that also measures Xp without any other influences, such as the data from Tsay et al 2021 instead.

      These issues with the data are not superficial and can not be solved within the model. Data with correctly measured biases (relative to the hand) that are not dominated by irrelevant visual attractors would actually be informative about the validity of the PEA model. Dr. Tsay has so much other that we recommend using a more to-the-point data set that could actually validate the PEA model.

    1. 4.4. How Data Informs Ethics# Think for a minute about consequentialism. On this view, we should do whatever results in the best outcomes for the most people. One of the classic forms of this approach is utilitarianism, which says we should do whatever maximizes ‘utility’ for most people. Confusingly, ‘utility’ in this case does not refer to usefulness, but to a sort of combo of happiness and wellbeing. When a utilitarian tries to decide how to act, they take stock of all the probable outcomes, and what sort of ‘utility’ or happiness will be brought about for all parties involved. This process is sometimes referred to by philosophers as ‘utility calculus’. When I am trying to calculate the expected net utility gain from a projected set of actions, I am engaging in ‘utility calculus’ (or, in normal words, utility calculations). Now, there are many reasons one might be suspicious about utilitarianism as a cheat code for acting morally, but let’s assume for a moment that utilitarianism is the best way to go. When you undertake your utility calculus, you are, in essence, gathering and responding to data about the projected outcomes of a situation. This means that how you gather your data will affect what data you come up with. If you have really comprehensive data about potential outcomes, then your utility calculus will be more complicated, but will also be more realistic. On the other hand, if you have only partial data, the results of your utility calculus may become skewed. If you think about the potential impact of a set of actions on all the people you know and like, but fail to consider the impact on people you do not happen to know, then you might think those actions would lead to a huge gain in utility, or happiness. When we think about how data is used online, the idea of a utility calculus can help remind us to check whether we’ve really got enough data about how all parties might be impacted by some actions. Even if you are not a utilitarian, it is good to remind ourselves to check that we’ve got all the data before doing our calculus. This can be especially important when there is a strong social trend to overlook certain data. Such trends, which philosophers call ‘pernicious ignorance’, enable us to overlook inconvenient bits of data to make our utility calculus easier or more likely to turn out in favor of a preferred course of action. Can you think of an example of pernicious ignorance in social media interaction? What’s something that we might often prefer to overlook when deciding what is important? One classic example is the tendency to overlook the interests of children and/or people abroad when we post about travels, especially when fundraising for ‘charity tourism’. One could go abroad, and take a picture of a cute kid running through a field, or a selfie with kids one had traveled to help out. It was easy, in such situations, to decide the likely utility of posting the photo on social media based on the interest it would generate for us, without thinking about the ethics of using photos of minors without their consent. This was called out by The Onion in a parody article, titled “6-Day Visit To Rural African Village Completely Changes Woman’s Facebook Profile Picture”. The reckoning about how pernicious ignorance had allowed many to feel comfortable leaving the interests of many out of the utility calculus for use of images online continued. You can read an article about it here, or see a similar reckoning discussed by National Geographic: “For Decades, Our Coverage Was Racist. To Rise Above Our Past, We Must Acknowledge It”.

      This section particularly the exploration of utilitarianism in the context of social media, provides a thought-provoking perspective on ethical decision-making. The concept of the utility calculus as a method of predicting the outcomes and moral implications of our actions highlights the importance of comprehensive data collection and the potential pitfalls of biased or incomplete data. The discussion cleverly highlighted the challenges of navigating social media in an ethical manner, which must consider

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study reports jAspSnFR3, a biosensor that enables high spatiotemporal resolution of aspartate levels in living cells. To develop this sensor, the authors used a structurally guided amino acid substitution in a glutamate/aspartate periplasmic binding protein to switch its specificity towards aspartate. The in vitro and in cellulo functional characterization of the biosensor is convincing, but evidence of the sensor's effectiveness in detecting small perturbations of aspartate levels and information on its behavior in response to acute aspartate elevations in the cytosol are still lacking.

      We thank the reviewers and editors for the detailed assessment of our work and for their constructive feedback. Most comments have now been experimentally addressed in the revised manuscript, which we feel is substantially improved from the initial draft.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, Davidsen and coworkers describe the development of a novel aspartate biosensor jAspSNFR3. This collaborative work supports and complements what was reported in a recent preprint by Hellweg et al., (bioRxiv; doi: 10.1101/2023.05.04.537313). In both studies, the newly engineered aspartate sensor was developed from the same glutamate biosensor previously developed by the authors of this manuscript. This coincidence is not casual but is the result of the need to find tools capable of measuring aspartate levels in vivo. Therefore, it is undoubtedly a relevant and timely work carried out by groups experienced in aspartate metabolism and in the generation of metabolite biosensors.

      Reviewer #2 (Public Review):

      In this work the IGluSnFR3 sensor, recently developed by Marvin et al (2023) is mutated position S72, which was previously reported to switch the specificity from Glu to Asp. They made 3 mutations at this position, selected a S72P mutant, then made a second mutation at S27 to generate an Asp-specific version of the sensor. This was then characterized thoroughly and used on some test experiments, where it was shown to detect and allow visualization of aspartate concentration changes over time. It is an incremental advance on the iGluSnFR3 study, where 2 predictable mutations are used to generate a sensor that works on a close analog of Glu, Asp. It is shown to have utility and will be useful in the field of Asp-mediated biological effects.

      Reviewer #3 (Public Review):

      In this manuscript, Davidsen and collaborators introduce jAspSnFR3, a new version of aspartate biosensor derived from iGluSnFR3, that allows monitoring in real-time aspartate levels in cultured cells. A selective amino acids substitution was applied in a key region of the template to switch its specificity from glutamate to aspartate. The jAspSnFR3 does not respond to other tested metabolites and performs well, is not toxic for cultured cells, and is not affected by temperature ensuring the possibility of using this tool in tissues physiologically more relevant. The high affinity for aspartate (KD=50 uM) allowed the authors to measure fluctuations of this amino acid in the physiological range. Different strategies were used to bring aspartate to the minimal level. Finally, the authors used jAspSnFR3 to estimate the intracellular aspartate concentration. One of the highlights of the manuscript was a treatment with asparagine during glutamine starvation. Although didn't corroborate the essentiality of asparagine in glutamine depletion, the measurement of aspartate during this supplementation is a glimpse of how useful this sensor can be.

      Reviewer #1 (Recommendations For The Authors):

      The authors should evaluate the effectiveness of the sensor in detecting small perturbations of aspartate levels and its behavior in response to acute aspartate elevations in the cytosol. In vivo aspartate determinations were performed exclusively in conditions that cause aspartate depletion. By means the use of mitochondrial respiratory inhibitors or aspartate withdrawal, it was determined the reliability of the sensor performing readings during relatively long periods, until reaching a steady-state of aspartate-depletion 12-60 hours later. Although in Hellweg and coworkers, it has been demonstrated that a related aspartate sensor could detect increases in aspartate in cell overexpressing the aspartate-glutamate GLAST transporter, the differences reported here between both sensors advise testing whether this aspect is also improved, or not, using jAspSNFR3.

      Similarly, Davidsen et al. did not test if the sensor can be able to detect transient variations in cytosolic aspartate levels. In proliferative cells aspartate synthesis is linked to NAD+ regeneration by ETC (Sullivan et al., 2015, Cell), indeed the authors deplete aspartate using CI or CIII inhibitors but do not analyze if those are recovered, and increased, after its removal. Furthermore, the sequential addition of oligomycin and uncouplers could generate measurable fluctuations of aspartate in the cytosol.

      We agree with the reviewer that only including situations of aspartate depletion in our cell culture experiments provided an incomplete evaluation of the utility of this biosensor. In the revised manuscript we provide three additional experiments using secondary treatments that restore aspartate synthesis to conditions that initially caused aspartate depletion. First, we conducted experiments where cells expressing jAspSnFR3/NucRFP were changed into media without glutamine, inducing aspartate depletion, with glutamine being replenished at various time points to observe if GFP/RFP measurements recover. As expected, glutamine withdrawal caused a decay in the GFP/RFP signal and we found that restoring glutamine caused a subsequent restoration of the GFP/RFP signal at all time points, with each fully recovering the GFP/RFP signal over time (Revised Manuscript Figure 2E). Next, we conducted the experiment suggested by the reviewer, testing whether the published finding, that oligomycin induced aspartate limitation can be remedied by co-treatment with electron transport chain uncouplers, could be visualized using jAspSnFR3 measurements of GFP/RFP. Indeed, after 24 hours of oligomycin induced aspartate depletion, treatment with the ETC uncoupler BAM15 dose dependently restored GFP/RFP signal (Revised Manuscript Figure 2G). Finally, we also measured whether the ability of pyruvate to mitigate the decrease in aspartate upon co-treated with rotenone (Figure 2B) could also be detected in a sequential treatment protocol after aspartate depletion. Indeed, after 24 hours of aspartate depletion by rotenone treatment, the GFP/RFP signal was rapidly restored by additional treatment with pyruvate (Revised Manuscript Figure 2, figure supplement 1C). Collectively, these results provide support for the utility of jAspSnFR3 to measure transient changes in aspartate levels in diverse metabolic situations, including conditions that restore aspartate to cells that had been experiencing aspartate depletion.

      Reviewer #2 (Recommendations For The Authors):

      Weaknesses: Sensor basically identical to iGluSnFR3, but nevertheless useful and specific. The results support the conclusions, and the paper is very straightforward. I think the work will be useful to people working on the effects of free aspartate in biology and given it is basically iGluSnFR3, which is widely used, should be very reproducible and reliable.

      We appreciate the reviewer’s comment that sensor is useful for specific detection of aspartate. We agree that the advance of the paper is primarily in demonstrating its utility to measure aspartate, rather than any fundamental innovation on the biosensor approach. We hope the fact that jAspSnFR3 derives from a well validated biosensor (iGluSnFR3) will support its adoption.

      Reviewer #3 (Recommendations For The Authors):

      Although this is a well-performed study, I have some comments for the authors to address:

      1) A red tag version of the sensor (jAspSnFR3-mRuby3) was generated for normalization purposes, with this the authors plan to correct GFP signal from expression and movement artifacts. I naturally interpret "movement artifacts" as those generated by variations in cell volume and focal plane during time-lapse experiments. However, it was mentioned that jAspSnFR3-mRuby3 included a histidine tag that may induce a non-specific effect (responses to the treatment with some amino acids). This suggests that a version without the tag needs to be generated and that an alternative design needs to be set for normalization purposes. A nuclear-localized RFP was expressed in a second attempt to incorporate RFP as a normalization signal. Here the cell lines that express both signals (sensor and RFP) were generated by independent lentiviral transductions (insertions). Unless the number of insertions for each construct is known, this approach will not ensure an equimolar expression of both proteins (sensor and RFP). In this scenario is not clear how the nuclear expression of RFP will help the correction by expression or monitor changes in cell volume. The authors may be interested in attempting a bicistronic system to express both the sensor and RFP.

      The reviewer noted several potential issues concerning the use of RFP for normalization, which will be separated into sections below:

      Movement artifacts:

      We are glad the reviewer raised this issue since we see how it was confusingly worded. We have deleted the text “and movement artefacts” from the sentence.

      His-tag and non-specific responses to some amino acids:

      We also found it concerning that non-specific responses to amino acids could potentially contribute to our RFP normalization signal, and so we conducted additional experiments to address whether this was likely to be an issue in intracellular measurements. We first tested whether the non-specific signal was related to the histidine tag, or was intrinsic to the mRuby3 protein itself, by comparing the fluorescence response to a titration of histidine (which showed the largest effect of red fluorescence), aspartate, and GABA (structurally related to glutamate and aspartate, but lacking a carboxylate group) across a group of mRuby containing variants, with or without histidine tags. We replicated the non-specific signal originally observed in jAspSnFR3-mRuby3-His and found that another biosensor with a histidine tagged on the C terminus of mRuby3 had a similar response (iGlucoSnFR2.mRuby3-His), as did mRuby3-His alone, indicating that the aspect of being fused with jAspSnFR3 or another binding protein was not required for this effect. Additionally, we also compared the fluorescence response of lysates expressing mRuby2 and mRuby3 without histidine tags and found that the non-specific signal was essentially absent (Revised Manuscript Figure 1, figure supplement 4B-D). Collectively. These data support our original hypothesis that the histidine tag was responsible for the non-specific signal, alleviating concerns about more substantial protein design issues or with using nuc-RFP for normalization. Since we also found that measuring aspartate signal using GFP/RFP ratios from cells with linked the jAspSnFR3-Ruby3-His agreed with measurements from cells separately expressing jAspSnFR3 and nucRFP (without a His tag), and the amino acid concentrations needed to significantly alter His tagged Ruby3 signal are above those typically found in cells, we conclude that this is unlikely to be a significant factor in cells. Nonetheless, we have added all the relevant data to the manuscript to allow readers to make their own decision about which construct would be best for their purposes.

      Original text:

      "Surprisingly, the mRuby3 component responds to some amino acids at high millimolar concentrations, indicating a non-specific effect, potentially interactions with the C-terminal histidine tag (Figure 1—figure Supplement 2, panel B). Notably, this increase in fluorescence is still an order of magnitude lower than the green fluorescence response and it occurs at amino acid concentrations that are unlikely to be achieved in most cell types."

      Revised text:

      "Surprisingly, the mRuby3 fluorescence of affinity-purified jAspSnFR3.mRuby3 responds to some amino acids at high millimolar concentrations, indicating a non-specific effect (Figure 1—figure Supplement 4, panel A). This was determined to be due to an unexpected interaction with the C-terminal histidine tag and could be reproduced with other proteins containing mRuby3 and purified via the same C-terminal histidine tag (Figure 1—figure Supplement 4, panel B and C). Interestingly, a structurally related, non-amino acid compound, GABA, does not elicit a change in red fluorescence; indicating, that only amino acids are interacting with the histidine tag (Figure 1—figure Supplement 4, panel D). Nevertheless, most of our cell culture experiments were performed with nuclear localized mRuby2, which lacks a C-terminal histidine tag, and these measurements correlated with those using the histidine tagged jAspSnFR3-mRuby3 construct (Figure 1—figure Supplement 1 panel D)."

      Lentiviral transductions

      We agree that splitting the two fluorescent proteins across two expression constructs and infections effectively guarantees that there will not be equimolar expression of jAspSnFR3 and RFP, however we do not think equimolar expression is necessary in this context. The primary goal of RFP measurements in these experiments (and in experiments using the jAspSnFR3-mRuby3 fused construct) is to control for global alterations in protein expression that might confound the interpretation that a change in GFP fluorescence corresponds to a change in aspartate levels. While a bicistronic system is arguably a better approach to improve the similarity of expression of jAspSnFR3 and nuc-RFP in a cell, we only require that the cells have consistent expression of both proteins across all cells in the population, not that the expression of one necessarily be a similar molarity to the other. We accomplish consistent expression of proteins by single cell cloning after expression of jAspSnFR3 and nucRFP (or jAspSnFR3-mRuby3), and screening for clones that have high enough expression of both proteins such that they are well detected by standard Incucyte conditions. Given that our data do not identify an obvious downside to separate expression of jASPSnFR3 and nuc-RFP compared to the fused jAspSnFR3-mRuby3 construct (where the fluorescent proteins are truly equimolar) (Figure 2, Figure Supplement 1C), we elected to prioritize the separate jAspSnFR3 and nuc-RFP combination, which provides additional opportunities to measure cell number in the same experiment (see below).

      2) The authors were interested in establishing the temporal dynamics of aspartate depletion by genetics and pharmaceutical means. For the inhibition of mitochondrial complex I rotenone and metformin were used. Although the assays are clearly showing aspartate depletion the report of cell viability is missing. Considering that glutamine deprivation induces arrest in cell proliferation, I think will be important to know the conditions of the cell cultures after 60 hours of treatment with such inhibitors.

      We agree that ensuring that cells are still viable in conditions where aspartate is depleted, as determined by GFP/RFP in jAspSnFR3 expressing cells, is an important goal. To this end, we added a new experiment investigating the restoration of glutamine on the GFP/RFP signal at different time points after glutamine depletion (Revised Manuscript Figure 2E, see response to reviewer 1). One advantage of using the nuclear RFP as a normalization marker is that it also enables measurements of nuclei counts, a surrogate measurement for cell number. In the same glutamine depletion experiment we therefore measured cell counts using nuclear RFP incidences and confluency as measurements of cell proliferation/growth. In both cases, the arrest in cell proliferation upon glutamine withdrawal was obvious, as was the restoration of cell proliferation following glutamine replenishment, with the amount of growth delay corresponding to the length of glutamine withdrawal (Revised Manuscript Figure 2, Figure Supplement 2A-B). Nonetheless, there was no obvious lasting defects in restarting cell proliferation even after 12 hours of glutamine withdrawal, indicating that cell viability is preserved. In the case of mitochondrial inhibitors, we also observe even that after 24 hours of treatment with oligomycin or rotenone, restoration of aspartate synthesis from BAM15 or pyruvate, respectively, can also restore GFP/RFP signal, supporting the conclusion that cellular metabolism is still active in these conditions (Revised Manuscript Figure 2G; Revised Manuscript Figure 2, figure supplement 1C).

      3) The pH sensitivity was checked in vitro with jAspSnFR3-mRuby3 and the sensor reported suitable for measurements at physiological pH. It would be an opportunity to revisit the analysis for pH sensitivity in cultured cells using an untagged version of jAspSnFR3 coupled, for example, to a sensor for pH.

      We thank the reviewer for the suggestion and agree that pH effects on sensor signal could be a confounding factor in some conditions. Unfortunately, measuring intracellular pH is not trivial and using multiple fluorescent sensors that change simultaneously would be complex to interpret, particularly in the absence of controls to unambiguously control intracellular pH and aspartate concentrations. Thus, we believe that proper investigation of the variable of pH is beyond the scope of this study. Nonetheless, we agree that measuring the contribution of pH to sensor signal is an important goal for future work, particularly if deploying it in conditions likely to cause substantial pH differences, such as comparing compartmentalized signal of jAspSnFR3 in the cytosol and mitochondria. We have added the following italicized text to the conclusions section to underscore this point:

      “Another potential use for this sensor would be to dissect compartmentalized metabolism, with mitochondria being a critical target, although incorporating the influence of pH on sensor fluorescence will be an important consideration in this context.”

      4) While the authors take an interesting approach to measuring intracellular aspartate concentration, it will be highly desirable if a calibration protocol can be designed for this sensor. Clearly, glutamine depletion grants a minimal ("zero") aspartate concentration. However, having a more dynamic way for calibration will facilitate the introduction of this tool for metabolism studies. This may be achieved by incorporating a cultured cell that already expresses the transporter or by ectopic expression in the cells that have already been used.

      We appreciate the suggestion and would similarly desire a calibration protocol to serve as a quantitative readout of aspartate levels from fluorescence signal, if possible. While we do calibrate jAspSnFR3 fluorescence in purified settings, conducting an analogous experiment intracellularly is currently difficult, if not impossible. While we have several methods to constrain the production rate of aspartate (glutamine withdrawal, mitochondrial inhibitors, and genetic knockouts of GOT1 and GOT2), we cannot prevent cells from decreasing aspartate consumption and so cannot get a true intracellular zero to aid in calibration. Additionally, the impermeability of aspartate to cell membranes makes it challenging to specifically control intracellular concentrations using environmental aspartate, and the best-known aspartate transporter (SLC1A3) is concentrative and so has the reciprocal problem. Considering these issues, we are wary of implying to readers that any specific fluorescence measurement can be used to directly interpret aspartate concentration given the many variables that can impact its signal, both related to the biosensor system itself (expression of jAspSnFR3, expression of Nuc-RFP, sensitivity and settings of the fluorescence detector) and based on cell intrinsic variability (differences in basal ASP levels, different sensitivity to treatments, influence of pH, etc.). We maintain that jAspSnFR3 has utility to measure relative changes in aspartate within a cell line across treatment conditions and over time, but absolute quantitation of aspartate still will require complementary approaches, like mass spectrometry, enzymatic assays, or NMR.

      5) jAspSnFR3 seems to have the potential to be incorporated easily for several research groups as a main tool. In general, a minor correction to replace F/F with ΔF/F in the text.

      Thank you for catching this error, the text has been edited accordingly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, the authors provide evidence to show that an increase in Kv7 channels in hilar mossy cells of Fmr1 knock out mice results in a marked decrease in their excitability. The reduction in excitatory drive onto local hilar interneurons produces an increased excitation/inhibition ratio in granule cells. Inhibiting Kv7 channels can help normalize the excitatory drive in this circuit, suggesting that they may represent a viable target for targeted therapeutics for fragile-x syndrome.

      Strengths:

      The work is supported by a compelling and thorough set of electrophysiological studies. The authors do an excellent job of analysing their data and present a very complete data set.

      We thank the Reviewer for the positive comments.

      Weaknesses:

      There are no significant weaknesses in the experimental work, however the complexity of the data presentation and the lack of a schematic showing the organizational framework of this circuit make the data less accessible to non-experts in the field. I highly encourage a graphical abstract and network diagram to help individuals understand the implications of this work.

      We thank the Reviewer for the suggestion, and added a schematic of the dentate network organization (Figure 1A).

      The work is important as it identifies a unique regional and cell-specific abnormality in Fmr1 KO mice, showing how the loss of one gene can result in region-specific changes in brain circuits.

      Reviewer #2 (Public Review):

      Summary:

      Deng et al. investigate, for the first time to my knowledge, the role that hippocampal dentate gyrus mossy cells play in Fragile X Syndrome. They provide strong evidence that, in slice preparations from Fmr1 knockout mice, mossy cells are hypoactive due to increased Kv7 function whereas granule cells are hyperactive compared to slices from wild-type mice. They provide indirect evidence that the weakness of mossy cell-interneuron connections contributes to granule cell hyperexcitability, despite converse adaptations to mossy cell inputs. The authors show that application of the Kv7 inhibitor XE991 is able to rescue granule cell hyperexcitability back to wild-type baseline, supporting the overall conclusion that inhibition of Kv7 in the dentate may be a potential therapeutic approach for Fragile X Syndrome. However, any claims regarding specific circuit-based intervention or analysis are limited by the exclusively pharmacological approach of the manipulations.

      Strengths:

      Thorough electrophysiological characterization of mossy cells in Fmr1 knockout mice, a novel finding.

      Their electrophysiological approach is quite rigorous: patched different neuron types (GC, MC, INs) one at a time within the dentate gyrus in FMR1 KO and WT, with and without 'circuit blockade' by pharmacologically inhibiting neurotransmission. This allows the most detailed characterization possible of passive membrane/intrinsic cell differences in the dentate gyrus of Fmr1 knockout mice.

      Provide several examples showing the use of Kv7 inhibitor XE991 is able to rescue excitability of granule cell circuit in Fmr1 knockout mice (AP firing in the intact circuit, postsynaptic current recordings, theta-gamma coupling stimulation).

      We thank the Reviewer for the positive comments.

      Weaknesses:

      The implications for these findings and the applicability of the potential treatment for the disorder in a whole animal are limited due to the fact that all experiments were done in slices.

      We appreciate the Reviewer’s point and agree. To address this concern, we have revised the Discussion to state that “the applicability of a circuit-wide approach as a potential treatment in vivo will require extensive future behavioral analyses, which are beyond the scope of the current study”. We also now emphasize in Discussion that “these findings provide a proof-of-principle demonstration that a circuit-based intervention can normalize dynamic E/I balance and restore dentate circuit output in vitro”.

      The authors' interpretation of the word 'circuit-based' is problematic - there are no truly circuit-specific manipulations in this study due to the reliance on pharmacology for their manipulations. While the application of the Kv7 inhibitor may have a predominant effect on the circuit through changes to mossy cell excitability, this manipulation would affect many other cells within the dentate and adjacent brain regions that connect to the dentate that express Kv7 as well.

      We appreciate the reviewer’s point but would like to clarify that by using a term “circuit-based” we did not intend to imply that it is a “’circuit-specific” intervention. Our intended interpretation of the term ‘circuit-based’ stems from the following reasoning: the dentate circuit has two types of excitatory neurons which show opposite excitability defects in FXS mice, thus presenting an irreconcilable conflict to correct pharmacologically for each cell type individually. Instead, we sought an approach to correct the overall dentate circuit output, rather than to restore excitability defects of individual cell types. Notably, when we pharmacologically isolated granule cells from the circuit, inhibition of Kv7 failed to restore their excitability, suggesting that normalization of the dentate output depends on the circuit activity. Since we focused on correcting dentate output using such a circuit-dependent approach, we used the term ‘circuit-based intervention’ to emphasize this notion.

      Reviewer #3 (Public Review):

      The paper by Deng, Kumar, Cavalli, Klyachko describes that, unlike in other cell types, loss of Fmr1 decreases the excitability of hippocampal mossy cells due to up-regulation of Kv7 currents. They also show evidence that while muting mossy cells appears to be a compensatory mechanism, it contributes to the higher activity of the dentate gyrus, because the removal of mossy cell output alleviates the inhibition of dentate principal cells. This may be important for the patho-mechanism in Fragile X syndrome caused by the loss of Fmr1.

      These experiments were carefully designed, and the results are presented ‎in a very logical, insightful, and self-explanatory way. Therefore, this paper represents strong evidence for the claims of the authors. In the current state of the manuscript, there are only a few points that need additional explanation.

      We thank the Reviewer for the positive comments.

      One of the results, which is shown in the supplementary dataset, does not fit the main conclusions. Changes in the mEPSC frequency suggest that in addition to the proposed network effects, there are additional changes in the synaptic machinery or synapse number that are independent of the actual activity of the neurons. Since the differences of the mEPSC and sEPSC frequencies are similar and because only the latter can signal network effects, while the former is typically interpreted as a presynaptic change, it cannot be claimed that sEPSC frequency changes are due to the hypo-excitability of mossy cells.

      We thank the Reviewer for this important point and agree. To address this concern, we now state in Results that “We note that changes in the excitatory drive onto interneurons include both mEPSC and sEPSC frequencies, which reflect not only potential deficits in excitability of their input cells, such as MCs, but also changes in synaptic connectivity/function, that may arise from homeostatic circuit reorganization/compensation (see Discussion)”.

      We also now emphasize this point in Discussion by stating that “alterations in excitatory drives, including both mEPSC and sEPSC frequencies onto interneurons, suggest changes in the excitatory synapse number and/or function. Together with alterations in inhibitory drives these changes may reflect compensatory circuit reorganization of both excitatory and inhibitory connections, including mossy cell synapses”.

      We also note in Discussion that “Such circuit reorganization can explain the balanced E/I drive onto granule cells in Fmr1 KO mice we observed in the basal state, which can result from reorganization of excitatory and inhibitory axonal terminals”.

      Notably, our findings that Kv7 blocker acting by increasing MC excitability is sufficient to correct dentate output, supports the notion that hypo-excitability of mossy cells is a major factor contributing to dentate circuit E/I imbalance. This does not exclude the presence of additional mechanisms contributing to E/I imbalance, such as changes of synaptic connectivity or release machinery. To reflect this point, we revised the Results to temper the initial claim that “this analysis supports the notion that the hypo-excitability of MCs in Fmr1 KO mice caused (now replaced with “is a major factor contributing to”) the reduction of excitatory drive onto hilar interneurons, which ultimately results in reduced local inhibition”.

      An apparent technical issue may imply a second weak point in the interpretation of the results. Because the IPSCs in the PP stimulation experiments (Fig 8) start within a few milliseconds, it is unlikely that its first ‎components originate from the PP-GC-MC-IN feedforward inhibitory circuit. The involvement of this circuit and MCs in the Kv7-dependent excitability changes is the main implication of the results of this paper. But this feedforward inhibition requires three consecutive synaptic steps and EPSP-AP couplings, each of them lasting for at least 1ms + 2-5ms. Therefore, the inhibition via the PP-GC-MC-IN circuit can be only seen from 10-20ms after PP stimulation. The earlier components of the cPSCs should originate from other circuit elements that are not related to the rest of the paper. Therefore, more isolated measurements on the cPSC recordings are needed ‎which consider only the later phase of the IPSCs. This can be either a measurement of the decay phase or a pharmacological manipulation that selectively enhances/inhibits a specific component of the proposed circuit.

      We appreciate the Reviewer’s point. As we mentioned in Results: “The EPSP measured in granule cells in response to the PP stimulation integrates both excitatory and inhibitory synaptic inputs onto granule cells, including the direct synaptic input from the PP and all the PP stimulation-associated feedforward and feedback synaptic inputs. In other words, the EPSP in granule cells integrates all dentate circuit ‘operations’.” As the Reviewer pointed out, this is also the case in the measurements of cPSCs, which comprise all of PP stimulation-associated feedforward and feedback inhibition. We thank the Reviewer for the suggestion to isolate specific components of IPSC. However, we did not attempt to do it in this study for three reasons. First, activity of all of these circuit components likely overlaps extensively in time and it is difficult to identify the specific time point that can separate contributions from earlier canonical feed-forward and feed-back components from the contribution of the later MC-dependent PP-GC-MC-IN feed-forward component. Notably the tri-synapse PP-GC-MC-IN component differs temporarily from the canonical di-synaptic (PP-GC-IN) feed-back inhibition only by a single synaptic activation step, resulting in only a few milliseconds difference. Moreover, the temporal differences in the contributions of these components vary widely among different recordings making a uniform analysis very difficult. Second, we used three different metrics to assess E/I changes in cPSC measurements, which capture a wide range of temporal processes and their integration, including peak-to-peak measurements, the charge transfer, and the excitation window metrics. Third, the principal readout in our study was the overall dentate output (i.e., granule cell firing), which reflects the integration of all dentate circuit ‘operations’ thus making the overall cPSC measurements appropriate, in our view, for this readout.

      I suggest refraining from the conclusions saying "‎MCs provide at least ~51% of the excitatory drive onto interneurons in WT and ~41% in KO mice", because too many factors (eg. IN cell types, slice condition, synaptic reliability) are not accounted for in these actual numbers, and these values are not necessary for the general observation of the paper.

      We thank the reviewer for this suggestion, and have revised the manuscript accordingly.

      There are additional minor issues about the presentation of the results.

      We have carefully checked and corrected the minor errors that reviewer pointed out.

      Recommendations for the authors:

      Revisions that are considered essential for improved assessment regarding the strengths of support of the claims:

      • Temper claims regarding circuit-based effects

      • Temper claims regarding very specific quantitative assessments of synaptic drives

      • Differentiate between monosynaptic inputs and inputs arriving through multiple synaptic contacts with proper analytical techniques.

      We appreciate these suggestions and have revised the manuscript to address the concerns raised by the reviewers.

      Reviewer #1 (Recommendations For The Authors):

      The authors do an outstanding job of reviewing and presenting all of their data. This is a paper I will recommend all of my trainees read, as it is an excellent example of a complete research project. While I am impressed with the effort involved, I also wondered if the complexity and thoroughness of their presentations could make the story less accessible to non-expert readers. My comments are simply intended to help them present a more coherent and succinct story to a wider audience, though I am not sure I really provide any meaningful changes. This is simply a very thorough and complete body of work that the authors should be commended for. After reading it I felt they had gone above and beyond what most authors would provide in terms of data to support their story, and thus I had no doubt that a change in Kv7 plays a role in changing the excitability of the network.

      We thank the Reviewer for the positive comments and great suggestions. We have made numerous changes to present our work in a more coherent and succinct way, in part by re-plotting some of the figures, as well as by adding a schematic of the dentate circuit in Figure 1.

      Figure 1. A visual of mossy cells and the local circuit they are studying would be a useful addition to Figure. 1. I also feel this is important for conveying the story of how hypo-excitability can impact the E/I of the network. I think it has to be more of a cell structure/circuit-based figure than is presented in Supplementary Figure 8.

      We thank the reviewer for this suggestion. We have added a schematic of the dentate circuit with all major cell types involved in Figure 1A.

      Figure 1. A, B, and C tell a coherent story and are easy to understand. The interpretation of the phase plot in D is harder to access. Perhaps having this as a separate figure and providing a clearer presentation of the way the phaseplot was created (see Figure 3 Bove et al., 2019, Neuroscience 418; DOI: 10.1016/j.neuroscience.2019.08.048)

      We appreciate the Reviewer’s point and agree. In order to keep Figure 1 more concise and readable, we removed the phase plot in the revised version. This change did not negatively impact the result presentation because the primary aim of this plot was to visualize changes in voltage threshold in an alternative way, but it was already clearly shown by the ramp-evoked AP traces (revised Figure 1D, insert), and thus was not essential to show.

      Figure 1 E-N might be better situated in a supplementary graph as the characteristics of the AP aren't changing.

      We understand the Reviewer’s point, but we feel it would be better to keep all action potential metrics together in one figure, to show that only a specific subset of parameters was affected in Fmr1 KO mice.

      Figure 2: (A-D) I am not sure having so many figures is required given the focus is on having a small change in Ir at one membrane potential. I do worry that the significance appears to be due to 2 cells with an IR of over 100 in the WT group and 2 with an IR of around 62 in the KO group. All other cells are between 75-100 in both groups. I also worry a bit bc in the literature IRs between 55 and 125 seem to be commonly reported by groups that do this work normally (Buzsacki, Westbrook, etc.). I would be cautious about making too much out of this result.

      We thank the Reviewer for these comments. We have performed additional analyses of these data, as also suggested by Reviewer 3 (Point #1), and improved presentation of the data in Figure 2D-F by showing the effect of XE991 on increasing input resistance in WT vs KO. We also plotted other panels in a similar way to show the comparisons between WT and KO, as well as comparisons within genotype +/- XE991, which makes the results easy to follow. For more details, please also see the response to Reviewer 3, Point 1.

      Figure 2D-E: As in the text, this result is really pointing towards there being a Kv7 issue. Worries about the data in D aside, I think these two figures alone tell a clearer story. Figure 3 on the other hand tells a story of the effects of blocking Kv7 on membrane potential. Is this central to the story the others are trying to tell?

      We thank the reviewer for this point. We believe that Figure 2, Figure 3 and Figure 4—figure supplement 1 together provide strong and multifaceted evidence to support changes in Kv7 function in Fmr1 KO mossy cells.

      Figure 3. This is an interesting finding that shows how detailed their analysis was. Showing that the change in holding current in KO animals is greater than in WT is the first solid piece of evidence that there is a change in Kv7 in these cells that affects their excitability.

      We appreciate the reviewer’s comment. As mentioned above, we believe that Figure 2, Figure 3 and Figure 4—figure supplement 1 together provide strong and multifaceted evidence to support changes in Kv7 function in Fmr1 KO mossy cells.

      Figures 4 and 5 provide additional detail to support the idea that Kv& changes by showing how the E/I ratio and spontaneous minis are shifted in KO animals.

      We thank the Reviewer for the comments.

      Figures 6-8 build a compelling story for the reduction in excitatory drive in mossy cells affecting the network dynamics in excitatory/inhibitory interactions in DG cells.

      We appreciate the Reviewer’s comment.

      Reviewer #2 (Recommendations For The Authors):

      1) Other than location and characteristic morphology, the other parameters that were used to identify mossy cells and granule cells were also parameters used to find differences in cellular properties between wild-type and Fmr1 KO mice (RMP, sEPSC frequency, etc.), which would confound the results shown. The use of available transgenic mouse lines would provide for a more unbiased screen of these cells. Afterhyperpolarization was also used as a parameter while screening cells, yet none of the data on this measurement is shown.

      We thank the reviewer for this point and agree that transgenic mouse lines provide a more unbiased way to identify various types of neurons. However, since the present study involves analyses of at least three different types of neurons, establishing multiple transgenic lines labeling different types of dentate neurons in the Fmr1 KO mouse model would be very time consuming and beyond the current resources of the lab. We would also like to clarify that the three types of dentate neurons are easily distinguished according to the large differences in location, morphology and basal electrophysiological properties, none of which were essential in defining differences between genotypes. Specifically, granule cells are located in the granule cell layer, have a small cell body (<10 m), RMP around -80mV, capacitance ~20 pF, and infrequent sEPSCs (<20 events/min); mossy cells are located in the hilus, have a large cell body (>15 m), RMP around -65 mV, capacitance >100 pF, and fast afterhyperpolarization less than -10 mV (WT –5.1 ± 0.7 mV, KO -5.8 ± 0.5 mV); interneurons are located in the hilus or border of granule cell layer, have a relative smaller cell body (10-15 m), RMP around -55 mV, capacitance <60 pF, and afterhyperpolarization larger than -15 mV (WT -20.4 ± 1.3 mV, KO -19.8 ±1.4 mV). We note that the cells that could not be definitively classified into the three categories were not included in analyses, and we have now clarified this further in the Methods. To address the reviewer’s second concern regarding AHP, we now provided the corresponding values in the Methods.

      2) A definitive way to test the cell-autonomous nature of the Kv7 changes would be to use female mice, who will have a mosaic of cells affected by the fragile X chromosome, and the Fmr1 KO cells could be engineered to express GFP to help identify them from wild-type cells.

      We agree and appreciate this suggestion. This could be an interesting follow up study to further verify the cell-autonomous nature of Kv7 changes.

      3) The authors heavily rely on XE991 as a selective Kv7 blocker. Is it blocking all Kv7 channels at the concentration used? If so, given the significant expression of Kv7 in the dentate as shown by Western blot, is it surprising that there is no effect of this inhibitor on wild-type slices in most cases?

      We thank the reviewer for this important point. We used 10x of IC50 concentration in the present study, suggesting that more than 80% of Kv7 should be blocked. Notably, we observed several effects of XE991 in WT mice: it significantly increased input resistance (new Figure 2D-F), and strongly enhanced AP firing evoked by step depolarization (Figure 7E-H), although we did not observe effect of XE991 in WT in the analyses of spiking evoked by theta-gamma stimulation in Figure 8. However, this is not surprising. If a parameter we measured is predominately cell-autonomous (for example, input resistance), the effects of XE991 are easy to observe. However, if a parameter reflects integration of all dentate circuit operations (for example, AP probability in response to theta-gamma stimulation), it is difficult to detect the effect of XE991 in WT mice because the dentate circuit of WT mice has larger capability to maintain E/I balance in response to XE991.

      4) E/I ratio is a helpful concept, and it is heavily relied upon in the results text, but statistically shaky, especially for sEPSC:sIPSCs since you are combining uncertainty in the sEPSC and sIPSC to make one very uncertain ratio that doesn't undergo any subsequent statistical confirmation (such as in Fig 4I).

      We appreciate the reviewer’s point and apologize for the confusion in presentation of Fig 4I (and 5I), due to lack of detailed explanation. The E/I ratio shown in Figs. 4I (and 5I) is a single data-point estimate calculated from the mean values of independent sEPSC and sIPSC measurements (Figs. 4G-H and 5G-H, respectively). This ratio was used only as an estimate/illustration of the changes, rather than a precise determination of the shift in E/I balance. Because there is only one data-point for this ratio, statistical analysis is not possible. For this reason we performed extensive additional analyses in Figures 7 and 8, in which the EPSC and IPSC were measured from the same cells and at the same time to define the actual E/I ratio with the corresponding statistical analyses (i.e., a real matched and dynamic E/I ratio).

      5) Is this mGlur2/CB1 specificity to PP/granule and MC axons, respectively, true in the Fmr1 KO mice? It is possible that mGluR2 and CB1 expression patterns are altered in FMR1 KO, thus the assumption used to isolate these distinct inputs may not hold true.

      This is a very good point. We do assume that the specificity of Group II mGluR and CB1 is similar between Fmr1 KO and WT mice, but this is an assumption that we have not directly verified. However, our results in Figures 7 and 8 strongly support this assumption, because if it were not true, then our intervention would be unlikely to correct the excessive dentate output.

      6) XE991 only normalized GC firing when other cells were not pharmacologically blocked. The authors suggest this means blockage of MC Kv7 reduces GC excitability back to normal...presumably by increasing MC --> IN --> GC firing. This is a conclusion from many indirect comparisons (comparing XE991 effect on GC with/without GABA and glutamate blockers; comparing MC firing rates with/without XE991, and using CB1 agonist versus mGluR2 agonist to say it is mossy cells that are mostly controlling INs) - a clincher experiment would be to acutely knockdown Kv7 in mossy cells specifically and measure GC and IN firing.

      Thank you, this is a great suggestion. Indeed, as an expansion of this project, in the future studies we are planning to manipulate excitability of mossy cells through manipulating Kv7, or using chemogenetic or optogenetic approaches.

      7) The reasoning behind the FMRP-Kv7 connection is quite weak, citing the paper Darnell 2011 as "translational target", but FMRP has myriad translational targets.

      We agree, and attempted to define the mechanism of increased Kv7 function using co-immunoprecipitation approach, as well as immunostaining to look at cell-type specific expression changes. However, both of these approaches were difficult to interpret due to technical limitations of the available antibodies. We also note that “We did not further investigate the precise mechanisms underlying enhancement of Kv7 function in the absence of FMRP, since the present study primarily focuses on the functional consequences of abnormal cellular and circuit excitability”. To address this concern, we extensively discussed the potential mechanisms of FMRP-Kv7 connection, acknowledged in Discussion that “further studies will be needed to elucidate the precise mechanism responsible for the increased Kv7 function in Fmr1 KO mice”, and will continue to investigate it in the future studies.

      8) The authors attempt to look for changes in Kv7 expression with Western blot, but since they hypothesize that Kv7 changes are mainly in the mossy cells, it is perhaps not surprising that they would not be able to see any changes when they look at dentate as a whole. Staining for Kv7 subunits to look at expression on a cellular level would be beneficial.

      We appreciate the reviewer’s suggestion. We attempted to perform the suggested experiments using immunostaining for KCNQ2, KCNQ3 and KCNQ5 in different subtypes of dentate neurons. However, these experiments failed to produce interpretable results due to technical limitations of the available antibodies.

      9) Is Kv7 localization or splice/composition different in FMR1 KO mice?

      This is a very good point. As we mentioned in Point 8 above, we were not able to perform these experiments and do not have the answer at this point.

      10) Regarding the 3 subtypes of interneurons in the dentate, the authors are pooling data based on similar intrinsic properties, but this conclusion may be affected by the low number of recorded neurons for the regular-spiking type. In addition, it is unclear whether these different interneuron types have differential circuit connectivity (most likely) which would make it imperative to keep circuit analysis for interneurons segregated into these cell types.

      We appreciate the reviewer’s point. Indeed, these different interneuron types may have distinct circuit connectivity and contributions to circuit activity. However, identification of these 3 types of interneurons and determination of their respective functions is in itself a very extensive set of experiments which is beyond the scope of the current manuscript. We also note that the functional readout of circuit activity in our measurements was the AP firing and EPSPs evoked in granule cells by PP stimulation, which integrate all dentate circuit operations, including all of the feedforward and feedback loops which are mediated by all of these different types of interneurons. For simplicity, we thus pooled all interneuron data for the purposes of this study. But we fully agree that extensive future work is required to elucidate interneuron-type specific changes in Fmr1 KO mice and their contributions to the dentate circuit dysfunction.

      11) To do statistics treating each cell individually, and therefore assuming each cell is independent of one another, is not correct. Two cells from the same mouse will be more similar than two cells from different mice, therefore they are not independent data points. Nested statistical methods (n cells from o slices from p mice) will be important in future work, as discussed by (Aarts et al., Nat. Neurosci. 2014).

      We agree with the Reviewer’s point and appreciate this suggestion. In the present study, the cells tested in electrophysiological experiments were from at least 3 different mice for each condition, which help minimize this kind of errors.

      Reviewer #3 (Recommendations For The Authors):

      Is there a difference in the Rin at -45mV of the control cell after the application of XE991? This is important to appreciate whether the XE991-sensitive conductances contribute to the basal excitability of MCs. Furthermore, the statistical comparison of the Rin at -45mV of the FXS animals in the control solution and in the presence of XE991 would be also important‎. Actually, the most accurate measurement would be to show a difference in the acute Kv7-blockade between control and FXS animals, if that is possible with this blocker. Additionally, it would be also informative if the bar graphs in Fig.2 D & E were merged for this purpose, similarly as in the later figures.

      We thank the Reviewer for this suggestion and agree. Following this suggestion, we have re-plotted the data in Figure 2 accordingly. Specifically, we now show that XE991 significantly increased input resistance in both WT and KO mossy cells, and the effect of XE991 on increasing input resistance was markedly larger in KO than WT mossy cells. For other figures, we have plotted data in a similar way to show the comparisons between WT and KO, as well as comparisons within genotype +/- XE991.

      Because of the cell-to-cell variability of the voltage responses, it would be more informative and representative if the average of traces from all cells were shown in Fig.2 D & E.

      We agree with the Reviewer’s point. For clarity of presentation, we presented the cell-to-cell variability of the data as scatter points of input resistance values in the bar graph (Figure 2E), together with the representative traces (Figure 2D). Plotting the average traces from all cells would result in a total of 30 traces for all the WT and KO mice, which is difficult to visually assess clearly.

      On page 7, please clarify the recorded cell type in this sentence: "In ‎contrast, WIN markedly reduced the number of sEPSCs in both WT and KO mice...".

      We thank the Reviewer for pointing out this omission and have clarified it in the revised version.

      In Figures 6 C, F, and I, the title of the Y-axis should be normalized frequency. Please also correct the figure legend accordingly because the current sentence can be also interpreted as the absolute or total number of events that were compared, irrespective of the duration of the recordings.

      We thank the Reviewer for this point and have corrected the revised version accordingly.

    1. Interpretation is the third part of the perception process, in which we assign meaning to our experiences using mental structures known as schemata.

      I feel like when people think about perception, this is the aspect that usually comes to mind. So much so that other aspects are often disregarded. I can attest to this myself. When I think about how I perceive things, I don't usually think about selecting information, or even organizing it. This gives some interesting perspective going forward in life. I'm realizing I may have more things to consider as I take in the world.

    1. Hope is a disposition of the soul to be convinced that what it desires willcome about. It is caused by a particular movement of the spirits,consisting of the movement of joy mixed with that of desire. And anxietyis another disposition of the soul, which convinces it that its desires willnot be fulfilled. It should be noted that these two passions, althoughopposed, may nevertheless occur together, namely when we think ofreasons for regarding the fulfilment of the desire as easy, and at the sametime we think of other reasons which make it seem difficult

      lol me af

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and the editors for their constructive and critical comments/ suggestions regarding our paper. We have since extensively revised the manuscript accordingly, including the addition of new experimental data. Hope the readers, reviewers, and editors are now satisfied with the quality and significance of the revised paper.

      Our responses to the eLife assessment and the reviewers’ comment as well as the details of the revisions are described below.

      Wang et al present a useful manuscript that builds modestly on the group's previous publication on KLF1 (EKLF) K47R mice focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo (Shyu et al., Adv Sci (Weinh). 2022). The data demonstrates that Eklf (K74R) imparts these advantages in a background, age, and gender independent manner, not the consequence of the specific amino acid substitution, and transferable by BMT. However, the authors overstate the meaning of these results and the strength of evidence is incomplete, since only a melanoma model of cancer is used, it is unclear why only homozygous mutation is needed when only a small fraction of cells during BMT confer benefit, they do not show EKLF expression in any cells analyzed, and the PD-1 and PDL-1 experiments are not conclusive. The definitive mechanism relative to the prior publication from this group on this topic remains unclear.

      The issues in the assessment by the editor on our paper were also brought up by the reviewers. We have taken care of them by carrying out new experiments as well as rewriting of the paper to highlight the rationales and novel aspects of the current study, as described below in our responses to the three reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors Wang et al. present a study of a mouse model K74R that they claim can extend the life span of mice, and also has some anti-cancer properties. Importantly, this mechanism seems to be mediated by the hematopoietic system, and protective effects can be transferred with bone marrow transplantation.

      The authors need to be more specific in the title and abstract as to what is actually novel in this manuscript (a single tumor model), and what relies on previously published data (lifespan). Because many of these claims derive from previously published data, and the current manuscript is an extension of previously published work. The authors need to be more specific as to the actual data they present (they only use the B16 melanoma model) and the actual novelty of this manuscript.

      Especially experiments on life span are published and not sufficiently addressed in this actual paper, as the title would suggest.

      Indeed important to point out the novelty of this paper in comparison to the previous paper. First, we have modified the title, the abstract, and the text so to emphasize that the extended lifespan as well as tumor resistance could be transferred by from Eklf(K74R) mice to WT mice by a single transplantation of the Eklf(K74R) bone marrow mononuclear cells (BMT) to the WT mice at their young age (2 months).

      We now also provide several new experimental data including the one demonstrating that Eklf(K74R) mice are resistant to tumorigenesis of hepatocellular carcinoma as well (new Fig. 1E). These points are elaborated in more details below in my responses to the reviewers’ comments/ suggestions.

      Reviewer #2 (Public Review):

      The manuscript by Wang et al. follows up on the group's previous publication on KLF1 (EKLF) K47R mice and reduced susceptibility to tumorigenesis and increased life span (Shyu et al., Adv Sci (Weinh). Sep 2022;9(25):e2201409. doi:10.1002/ advs.202201409). In the current manuscript, the authors have described the dependence of these phenotypes on age, gender, genetic background, and hematopoietic translation of bone marrow mononuclear cells. Considering the current study is centered on the phenotypes described in the previous study, the novelty is diminished. Further, there are significant conceptual concerns in the study that make the inferences in the manuscript far less convincing. Major concerns are listed below:

      1) The authors mention more than once in the manuscript that KLF1 is expressed in range of blood cells including hematopoietic stem cells, megakaryocytes, T cells and NK cells. In the case of megakaryocytes, studies from multiple labs have shown that while EKLF is expressed megakaryocyte-erythroid progenitors, EKLF is important for the bipotential lineage decision of these progenitors, and its high expression promotes erythropoiesis, while its expression is antagonized during megakaryopoiesis. In the case of HSCs, the authors reference to their previous publication for KLF1's expression in these cells- however, in this study nor in the current study, there is no western blot documented to convincingly show that KLF1 protein is expressed at detectable levels in these cells. For T cells, the authors have referenced a study which is based on ectopic expression of KLF1. For NK cells, the authors reference bioGPS: however, upon inspection, this is also questionable.

      2) The current study rests on the premise that KLF1 is expressed in HSCs, NK cells and leukocytes, and the references cited are not sufficient to make this assumption, for the reasons mentioned in the first point. Therefore, the authors will have to show both KLF1 mRNA and protein levels in these cells, and also compare them to the expression levels seen in KLF1 wild type erythroid cells along with knockout erythroid cells as controls, for context and specificity.

      Regarding the novelties of the current story. Besides demonstration of the independence of the healthy longevity characteristics on age, gender, and genetic background, as exemplified by the tumor resistance, another novelty of the current study is that the healthy longevity characteristics, in particular the tumor resistance and extended lifespan, could be transferred by one-time long-term transplantation of the Eklf(K74R) bone marrow mononuclear cells from young Eklf(K74R) mice to young WT mice. Also, since submission of the last version of the paper, we have carried out new experiments, including the characterization of the anti-cancer capability of NK cells (new Fig. 6) as well as assay of the tumor-resistance of Eklf(K74R) mice to hepatocellular carcinoma (new Fig. 1E), etc.

      We have also modified the title, Abstract, and different parts of the text to highlight the novelties of the current study.

      As to the expression of EKLF in different hematopoietic blood cell types, we have now added a paragraph in Result (p.6 and p.7) describing what have been known in literature in relation to our data presented in the paper. Importantly, following the reviewer’s comments, we have since carried out Western blot analysis of EKLF expression in NK, T, and B cells (p. 6, p.7 and new Fig. S4B). Also noted is that the level of EKLF in B cells is very low and only could be detected by RT-qPCR (Fig. S4C) and RNA-Seq (Bio-GPS database)

      3) To get to the mechanism driving the reduced susceptibility to tumorigenesis and increased life span phenotypes in EKLF K74R mice, the authors report some observations- However, how these observations are connected to the phenotypes is unclear.

      a. For example, in Figure S3, they report that the frequency of NK1.1+ cells is higher in the mutant mice. The significance of this in relation to EKLF expression in these cells and the tumorigenesis and life span related phenotypes are not described. Again, as mentioned in the second point, KLF1 protein levels are not shown in these cells.

      b. In Figure 4, the authors show mRNA levels of immune check point genes, PD-1 and PD-l1 are lower in EKLF K74R mice in PB, CD3+ T cells and B220+ B cells. Again, the questions remain on how these genes are regulated by EKLF, and whether and at what levels EKLF protein is expressed in T cells and B cells relative to erythroid cells. Further, while the study they reference for EKLF's role in T cells is based on ectopic expression of EKLF in CD4+ T cells, in the current study, CD3+ T cells are used. Also, there are no references for the status of EKLF in B cells. These details are not discussed in the manuscript.

      Regarding this part of the questions and comments by the reviewer.

      First, we have since assayed the effect of the K74R substitution of EKLF on the in vitro cancer cell-killing ability of NK cells (termed NK1.1 cells in the previous version). The data showed that NK(K74R) cells have higher ability than the WT NK cells (new Fig. 6). This property together with the higher expression level of NK(K74R) cells in 24 month-old Eklf (K74R) mice than NK cells in 24 month-old WT mice would contribute to the higher tumor-resistance of the Eklf (K74R) mice. This point is also addressed on p. 8 andp.9.

      Second, as stated in previous sections, we have since carried out comparative Western blot analysis of the expression of EKLF protein in NK, CD3 T, and B cells of the WT and Eklf(K74R) mice, respectively (please see the new Fig. S4B). Also, description regarding what are known in literature in relation to our data on the expression of EKLF protein/ Eklf mRNA in different types of hematopoietic blood cells is now included in the Result (please see p.6 and p.7). Notably though, the level of EKLF protein in B cells was too low to be detected by WB (Fig. S4B).

      4) The authors perform comparative proteomics in the leukocytes of EKLF K74R and WT mice as shown in Figure S5. What is the status of EKLF levels in the mutant lysate vs wild type lysates based on this analysis? More clarity needs to be provided on what cells were used for this analysis and how they were isolated since leukocytes is a very broad term.

      The leukocytes used by us were isolated from the peripheral blood after removal of red blood cells, as described in the Materials and Methods.

      Also, the Western blot analysis of EKLF expression in the lysates of leukocytes/ white blood cells (WBC) has been shown previously, now presented in the new Figure S4A.

      5) In the discussion the authors make broad inferences that go beyond the data shown in the manuscript. They mention that the tumorigenesis resistance and long lifespan is most likely due to changes in transcription regulatory properties and changes in global gene expression profile of the mutant protein relative to WT leukocytes. And based on reduced mRNA levels of Pd-1 Pd-l1 genes in the CD3+ T cells and B220+ B cells from mutant mice, they "assert" that EKLF is an upstream regulator of these genes and regulates the transcriptomes of a diverse range of hematopoietic cells. The lack of a ChIP assay to show binding of WT EKLF on genes in these cells and whether this binding is reduced or abolished in the mutant cells, make the above statements unsubstantiated.

      We have since carried out ChIP-PCR analysis of EKLF-binding in the Pd-1 promoter (new Fig. S5). The data showed that EKLF was bound on the CACCC box at -103 of the promoter in WT CD3+T as well as in CD3+T(K74R) cells. This result is discussed on p.7.

      6) Where westerns are shown, the authors need to show the molecular weight ladder, and where qPCR data are shown for EKLF, it will be helpful to show the absolute levels and compare these levels to those in erythroid cells, along the corresponding EKLF knock out cells as controls.

      We have since included the molecular weight markers by the side of Western blots in Fig. S4. Also, we have added a new figure (Fig.S4C) showing the comparison of the expression levels of Eklf mRNA in B cells and CD3+ T cells to the mouse erythroleukemia (MEL) cells, as analyzed by RT-qPCR.

      Also, as indicated now in the Material and Methods section, the specificity of the primers used for RT-qPCR quantitation of mouse Eklf mRNA has been validated before by comparative analysis of wild type and EKLF-knockout mouse erythroid cells (Hung et al., IJMS, 2020).

      7) Figure S1D does not have a figure legend. Therefore, it is unclear what the blot in this figure is showing. In the text of the manuscript where they reference this figure, they mention that the levels of the mutant EKLF vs WT EKLF does not change in peripheral blood, while in the figure they have labeled WBCs for the blot, and the mRNA levels shown do seem to decrease in the mutant compared to WT peripheral blood.

      We apologize for this ignorance on our side. The data shown in the original Fig. SID (new Fig. S4A) are from Western blot analysis of EKLF protein and RT-qPCR analysis of Eklf mRNA in leukocytes/ white blood cells (WBC) isolated from the peripheral blood samples. We have now added back the figure legend and also rewritten the corresponding description in the text on p.6.

      Reviewer #3 (Public Review):

      Hung et al provide a well-written manuscript focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo. The work is fundamental and the data is convincing although several details remain incompletely elucidated. The major strengths of the manuscript include the clarity of the effect and the appropriate controls. For instance, the authors query whether Eklf (K74R) imparts these advantages in a background, age, and gender dependent manner, demonstrating that the findings are independent. In addition, the authors demonstrate that the effect is not the consequence of the specific amino acid substitution, with a similar effect on anticancer activity. Furthermore, the authors provide some evidence that PD-1 and PDL-1 are altered in Eklf (K74R) mice.

      Here we thank the encouraging comments by this reviewer.

      Finally, they demonstrate that the effects are transferrable with BMT. Several weaknesses are also evidence. For instance, only melanoma is tested as a model of cancer such that a broad claim of "anti-cancer activity" may be somewhat of an overreach.

      We have now included new data showing that the Eklf(K74R) mice also carry a higher anti-cancer ability against hepatocellular carcinoma than the WT mice (new Fig. 1E).

      It is also unclear why a homozygous mutation is needed when only a small fraction of cells during BMT can confer benefit. It is also difficult to explain how transplanted donor Eklf (K74R) HSCs confer anti-melanoma effect 7 and 14 days after BMT.

      First, these two observations not necessarily conflict with each other. It is likely that homozygosity, but not heterozygosity, of the K74R substitution in EKLF allows one or more types of hematopoietic blood cells to gain new functions, e.g. the higher cancer cell- killing capability of NK(K74R) cells (new Fig. 6), that help the mice to live long and healthy. Also, the data in Fig. 2D indicated that as low as 20% of the blood cells carrying homozygous Eklf(K74R) alleles in the recipient mice upon BMT could be sufficient to confer the mice a higher anti-cancer capability, likely in part due to cells such as NK(K74R). These points are now clarified in Discussion (p.9 and p.10).

      Second, we think the NK(K74R) cells contributed a significant part to the anti-cancer capability of the transplanted Eklf(K74R) blood in the recipient WT mice. As documented in some literature, e.g. Ferreira et al., Journal of Molecular Medicine (2019), the hematopoietic lineage of the NK cells would be fully reconstituted as early as 2 weeks after BMT. Of course, there could be other still unknown factors/ cells that also contribute to the tumor-resistance of the recipient mice at 7 day following BMT. This point is now touched upon on p.8 and p.9.

      Furthermore, it would be useful to see whether there are virulence marker alterations in the melanoma loci in WT vs Eklf (K74R) mice.

      As responded in the Public Reviews, we will analyze this in future together with other types of tumors in a separate study.

      Finally, the data in Fig 4c is difficult to interpret as decreased PD-1 and PDL-1 after knockdown of EKLF in vitro is not a useful experiment to corroborate how mutation without changing EKLF expression impacts immune cells. The work is impactful as it provides evidence that healthspan and lifespan may be modulated by specific hematological mutation but the mechanism by which this occurs is not completely elucidated by this work.

      As described in a previous section, we have since also carried out ChIP-qPCR analysis of the binding of WT EKLF and EKLF (K74R) on the Pd-1 promoter (new Fig. S5).

      Reviewer #1 (Recommendations For The Authors):

      The authors present interesting melanoma model data but need to tone down their claim of multiple effects of their model system. It needs to be clear what is new and what is previously known.

      As respond in the Public Reviews, we have since added new data on the tumor resistance of the Eklf(K74R) mice to hepatocellular carcinoma (new Fig. 1E). We have also modified the title as well as highlighted the novel points in the Abstract and text of the revised draft.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the major concerns listed in the public review, the minor concerns that the authors could address are listed below:

      1) Will be helpful to describe why was the pulmonary melanoma focus assay chosen for metastasis assay?

      We now describe on p. 4 the rationale behind the initial choice of this assay for analysis of the anti-cancer capability of the Eklf(K74R) mice. Also, we have since included data from experiment using the subcutaneous cancer cell inoculation assay for comparative analysis of the anti-hepatocellular carcinoma capability of Eklf(K74R) and WT mice (Fig. 1E and p.5).

      2) Reference #61 for B16-F10-luc cells cited in the methods does not have details on the generation of these cells. What these cells are and why this model was chosen needs to be described.

      Sorry about not providing this information before. We now describe the generation of B16F10-luc cells in the Material and Methods section (p.13). The rationale of choosing the B16-F10 cells for the pulmonary lung foci assay is also added on p.4.

      3) The DNA binding consensus site for EKLF needs to be expanded in the introduction.

      This part has been taken care of now on p.13.

      Reviewer #3 (Recommendations For The Authors):

      Hung et al provide a well-written manuscript focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo. The work is fundamental and the data is convincing although several details remain incompletely elucidated.

      1) Only melanoma is tested as a model of cancer such that a broad claim of "anti-cancer activity" may be somewhat of an overreach. The authors, therefore, need to provide evidence of a second type of malignancy to which Eklf mutation confers anticancer and longevity advantages or temper the claims in the discussion that the effect still needs to be tested in non-melanoma cancer models to determine the broad anti-cancer effect.

      As responded in the Public Reviews, we have since shown that Eklf(K74R) mice also exhibited a higher resistance to the carcinogenesis of hepatocellular carcinoma (new Fig. 1E).

      2) Why is a homozygous mutation needed when only a small fraction of cells during BMT can confer benefit of Eklf mutation? Is there evidence that the cellular effect is binary but only a few such cells are needed? This is confusing and requires further clarification.

      As responded in the Public Reviews, these two observations not necessarily conflict with each other. It is likely that homozygosity, but not heterozygosity, of the K74R substitution in EKLF allows one or more types of hematopoietic blood cells to gain new functions, e.g. the higher cancer cell- killing capability of NK(K74R) cells (new Fig. 6), that help the mice to live long and healthy. Also, the data in Fig. 2D indicated that as low as 20% of the blood cells carrying homozygous Eklf(K74R) alleles in the recipient mice upon BMT could be sufficient to confer the mice a higher anti-cancer capability, likely in part due to cells such as NK(K74R). This point is now clarified in Discussion (p.9).

      3) BMT typically requires at least 3-4 weeks to reconstitute the marrow compartment but the authors are able to see effects of Eklf mutation as early as 7 days following BMT. This is surprising and brings into question the mechanism of effect.

      As responded in the Public Reviews, we think the NK(K74R) cells contributed a significant part to the anti-cancer capability of the transplanted Eklf(K74R) blood in the recipient WT mice. As documented in some literature, e.g. Ferreira et al., Journal of Molecular Medicine (2019), the hematopoietic lineage of the NK cells would be fully reconstituted as early as 2 weeks after BMT. Of course, there could be other still unknown factors/ cells that also contribute to the tumor-resistance of the recipient mice at 7 day following BMT (please see discussion of this point on p. 9).

      4) It would be useful to see whether there are virulence marker alterations in the melanoma loci in WT vs Eklf (K74R) mice.

      As responded in the Public Reviews, we will analyze this in future together with other types of tumors in a separate study.

      5) The data in Fig 4c is difficult to interpret as decreased PD-1 and PDL-1 after knockdown of EKLF in vitro is not a useful experiment to corroborate how mutation WITHOUT changing EKLF expression impacts immune cells.

      Indeed, the RNAi knockdown experiment only demonstrated a positive regulatory role of EKLF in Pd1/Pd-l1 gene expression. We have followed the reviewer’s suggestion and carried out ChIP-qPCR analysis and shown that the factor is bound on the Pd-1 promoter in both WT CD3+T cells and CD3+T(K74R) cells (new Fig. S5). We briefly discuss these data on p.7 in relation to the possible effect of K74R substitution of EKLF on Pd-1 expression.

      We have now further clarified this point on p. 7.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Congratulations on the very nice structure! In my opinion, which you can feel free to take or leave, this would work better as a short report focused on the improvement of the structure relative to the current published model. To my mind, while the functional and dimerization studies are supportive of the cryo-EM studies (specifically, the purified protein is functional, and does tend to dimerize in various membrane mimetics), these experiments don't provide a lot of new mechanistic insight on their own. The dimerization, in particular, could be developed further.

      Response: Thank you for the comments. We have chosen to stick with the current article format. That the protein is dimeric is exciting in our view and we are working to further define the functional significance of this formation.

      Reviewer #2 (Recommendations For The Authors):

      Ln 48. Abstract. "highlighting feature of the complex interface" sounds a bit vague. I was wondering if the authors considered including more specific findings here.

      Response: This sentence has been removed.

      Ln 149 and elsewhere. The authors refer to the previously published structure of HiSiaQM as "low resolution". It may just be me and likely not the intention of the authors, but this comes across as an attempt to diminish the validity of this previous work from another group, which is not necessary. I would recommend rewording these parts slightly, even if it is just to say "lower resolution" instead of "low resolution".

      Response: It was not our intention to diminish the excellent work published by another group, we have changed “low resolution” to “lower resolution” throughout.

      Ln 160. The authors state that the inward-open conformation is likely "the resting state of the transporter". I think this statement should be modified slightly to acknowledge that this is only true under these conditions, i.e. in the absence of the bilayer, membrane potential and chemical gradients.

      Response: We have edited this as follows “That we observe the inward-open conformation without either a bound P-subunit or fiducial marker, suggests that this is the resting state of the transporter under experimental conditions (in the absence of a membrane bilayer, membrane potential and chemical gradients).”

      Ln 202. I'm not convinced that the use of the word "probable" is appropriate here; "possible" would likely fit better in the absence of compelling evidence that this dimer forms in a bacterial cell membrane with physiological levels of HiSiaQM expression.

      Response: We have changed “probable” to “possible”.

      The authors show an SEC trace for DDM solubilised protein, which is a single peak, whereas the LMNG extracted protein has 2 distinctly different elution profiles depending on the LMNG concentration. Was the same phenomenon observed when varying the DDM concentration?

      Response: We observed significantly more aggregation with DDM than L-MNG, so it was infrequently used and considerably less well characterised. In one purification, moderately higher DDM shifted the elution peak to be slightly later but retained a similar profile. Overall, we did not observe the same phenomenon of distinctly different elution profiles with DDM, but we have limited data.

      Ln 245. The two positions cited as important for the elevator-type mechanism are the fusion helix and the dimer interface. However, there is no evidence that the dimer interface observed in this work has any relevance to the transport mechanism. To make this statement, the interface would need to be disrupted and the effects on transport evaluated.

      Response: This has been edited as follows. “Evident in our cryo-EM maps are well-defined phospholipid densities associated with areas of HiSiaQM that may be important for the function of an elevator-type mechanism (Figure 4), but require further testing.”

      Ln 257. The authors state that the lipids form "specific and strong interactions" with the protein, but without knowing the identity of the lipids present, it is difficult to say anything about the specificity of this interaction. I think the authors could consider rewording this. Response: We have edited this by removing the term “specific” and describing the lipid interactions only as strong interactions.

      Ln 270. The authors identify a lipid-binding site and residues that likely interact with the headgroup. It would be interesting if the authors could speculate on the purpose of this lipid binding site and how it could affect transport. The residues are not conserved, which the authors suggest reflects the variety of lipid compositions in different bacteria. Are the authors suggesting that this lipid binding site is a general feature for all fused TRAP transporters and that the identity of the lipid changes depending on the species?

      Response: Yes, we speculate that the lipid binding site may be a general feature for fused TRAP transporters. We have added speculation about this binding site, specifically that “the fusion helix and concomitant lipid molecule may provide a more structurally rigid scaffold than a Q-M heterodimer, i.e., PpSiaQM, although how this impacts the elevator transition requires further testing” at Line 283.

      Though we believe that a binding pocket is likely found in a number of fused TRAPs (based on sequence and Alphafold predictions, e.g., FnSiaQM and AaSiaQM), we have now acknowledged that some fusions may not necessarily bind a lipid molecule here, by stating “While this binding pocket is likely found in a number of fused TRAPs (based on sequence predictions, e.g., FnSiaQM and AaSiaQM in Supplementary Figure 8), it is not clear whether they also bind lipids here without experimental data” at Line 290.

      Ln 306. The authors state that the HiSiaPQM has a 10-fold higher transport activity than PpSiaPQM. Unless the transport assays were performed in parallel (to mitigate small changes in experimental set-up) and the reconstitution efficiency for each proteoliposome preparation was carefully analysed, it is very difficult for this to be a meaningful comparison. Even if the amount of protein incorporated into the proteoliposomes is quantified (e.g. by evaluating protein band intensity when the proteoliposomes are analysed using SDS-PAGE), this does not account for an inactive protein that was incorporated, nor the proportion of the protein that was incorporated in the inside-out orientation, which would be functionally silent in these assays. I'm not suggesting these assays actually need to be performed, but I think the text should be modified to reflect what can actually be compared.

      Response: We agree with the reviewer that a meaningful comparison is difficult to make without a careful analysis of the reconstitution efficiency and have modified the text to reflect this. We have altered the paragraph beginning at Line 319 to the following: “The fused HiSiaPQM system appears to have a higher transport activity than the non-fused PpSiaPQM system. With the same experimental setup used for PpSiaPQM (5 M Neu5Ac, 50 M SiaP) (33), the accumulation of [3H]-Neu5Ac by the fused HiSiaPQM is ~10-fold greater. Although this difference may reflect the reconstitution efficiency of each proteoliposome preparation, it is possible that it has evolved as a result of the origins of each transporter system—P. profundum is a deep-sea bacterium and as such the transporter is required to be functional at low temperatures and high pressures… ”

      Ln 335. "S298A did not show an effect on growth when mutated to alanine previously." Suggest changing "S298A" here to "S298".

      Response: This has been changed.

      Ln 340. In addition to PpSiaQM, the large cavity was also presumably observed in the lower resolution structure of HiSiaQM?

      Response: The cavity is detectable in the lower resolution structure (7qe5), though very poorly defined by the density. Furthermore, the AlphaFold model fitted to this density has positioned sidechains inside the cavity, which we consider very likely to be an error (in comparison to our structures, VcINDY and our estimates of the volume required to house sialic acid). The cavity is generally much better defined by the structures we have referenced.

      Ln 345. Reference missing after "previously reported"? Response: This has been added. Measuring the affinity for the P-to-QM interaction is very useful, but it would have enhanced the study if some of the residues identified as important for this interaction (detailed on p.13) had been tested for their contributions to binding using this approach.

      Response: We do aim to perform this assay with these mutants in the future, but are also developing parallel assays to further test this interaction in different membrane mimetics.

      Ln 436. As stated previously, it is more accurate to say that "this is the most stable conformation" under these conditions.

      Response: We have edited this to say “The ‘elevator down’ (inward-facing) conformation is preferred in experimental conditions”. We have also changed the last sentence of this paragraph to say “However, the dimeric structures we have presented have no other proteins bound, yet exist stably in the elevator down state, suggesting this is the most stable conformation in experimental conditions, where there is no membrane bilayer, membrane potential, or chemical gradient present.”

      Ln 438. "Lipids associated with HiSiaQM are structurally and mechanistically important." This conclusion is not supported by the data presented; there is no evidence that the bound lipids influence the mechanism at all. The lipids observed are certainly interestingly placed and one could speculate about their relevance, but this statement of fact is not supported. Therefore, their importance to the mechanism needs to be tested or this conclusion needs to be substantially softened.

      Response: We have softened this statement by changing it to “Lipids have strong interactions with HiSiaQM and are likely to be important for the transport mechanism.”

      Reviewer #3 (Recommendations For The Authors):

      The fact that HiSiaQM samples consist of a mixture of compact monomer and dimer is clear, from Fig. S5 and S6. However, the analysis displayed in Fig 3 and Fig S4 would require more explanation. To my understanding, it requires the values of the sedimentation and diffusion coefficients. It could be good to provide the experimental values of D, and explain a little more about the method in the material and method section.

      Response: Yes, the analysis requires the experimental diffusion coefficients. These have been added to the Figure 3 and S4 legends and more detail has been added to the method section.

      In addition, I am puzzled when reading, in the legend of Fig 3, considerations that peak 2 could not correspond to a monomer or trimer: do these sentences correspond to other mathematical solutions, or is a given frictional ratio considered, or do they refer to Fig. S5 analysis?

      We can see where this confusion could arise from. These sentences do not correspond to a given frictional ratio or the Fig. S5 analysis (this is a separate, complementary analysis). For peak 2 not existing as a monomer is strictly a physical justification – with pure protein and an observed peak smaller than peak 2, a monomer is not possible for peak 2. For peak 2 not existing as a trimer is a mathematical solution using the s and D coefficients. The solutions identify that an unreasonably low amount of detergent would be bound to a trimer (32 molecules for L-MNG or 0 for DDM) to exist at those s and D values so we have ruled the trimer out. Reassuringly, the complementary analysis in Fig. S5/S6 agrees with the monomer-dimer outputs from the s and D analysis. We have adjusted the text in the legends of Fig. 3 and S4 to better convey these points.

    1. Author Response

      The following is the authors’ response to the original reviews.

      First of all, we'd like to thank the three reviewers for their meticulous work that enable us to present now an improved manuscript and substantial changes were made to the article following reviewers' and editors' recommendations. We read all their comments and suggestions very carefully. Apart from a few misunderstandings, all comments were very pertinent. We responded positively to almost all the comments and suggestions, and as a result, we have made extensive changes to the document and the figures. This manuscript now contains 16 principal figures and 15 figure supplements.

      The number of principal figures is now 16 (1 new figure), and additional panels have been added to certain figures. On the other hand, we have added 7 additional figures (supplement figures) to answer the reviewers' questions and/or comments.

      Main figures

      ▪ Figures 1, 4, 5, 10, 11, 12, 13, 14: unchanged ▪ Figure 7 and 8 were switched.

      ▪ Figure 2: we added panel F in response to reviewer 3's and request for sperm defect statistics

      ▪ Figure 3: the contrast in panel B has been taken over to homogenize colors

      ▪ Figure 6: This figure was recomposed. The WB on testicular extract was suppressed and we present a new WB allowing to compare the presence of CCDC146 in the flagella fraction. Using an anti-HA Ab, we demonstrate that the protein is localized in the flagella in epididymal sperm. Request of the 3 reviewers.

      ▪ Figure 7 (old 8): to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum. Moreover, the WB was removed and is now presented in figure 6 (improved as requested).

      ▪ Figure 8. Was old figure 7

      ▪ Figure 9: figure 9 was recomposed and improved for increased clarity as suggested by reviewer 2 and 3.

      ▪ Figure 16 was before appendix 11

      Figure supplements and supplementary files

      ▪ Figure 1-Figure supplement 1 New. Sperm parameters of the 2 patients. requested by editor (remark #1) by the reviewer 1 (Note #3)

      ▪ Figure 2-Figure supplement 1 new. Sperm parameters of the line 2 (KO animals) requested by the reviewer 1 (Note #5)

      ▪ Figure 4-Figure supplement 1 New. Experiment to evaluate the specificity of the human CCDC146 antibody. Minimal revision request and reviewer 1 note #8

      ▪ Figure 6-Figure supplement 1 New. Figure recomposed; Asked by reviewer 2 note #4 and reviewer 3

      ▪ Figure 8-Figure supplement 1 New. We now provide new images to show the non-specific staining of the midpiece of human sperm by secondary Abs in ExM experiments; Asked by reviewer 2

      ▪ Figure 10-Figure supplement 1 New. We added new images to show the non-specific staining of the midpiece of mouse sperm by secondary Abs in IF (panel B). Rewiever 1 note #9 and reviewer 2 note #5

      ▪ Figure 12-Figure supplement 1 New. Control requested by reviewer 3 Note #23

      ▪ Figure 13-Figure supplement 1 New. We provide a graph and a statistical analysis demonstrating the increase of the length of the manchette in the Ccdc146 KO. Requested by editor and reviewer 3 Note 24

      ▪ Figure 15-Figure supplement 1 New. Control requested by reviewer 2. Minor comments

      ▪ Figure supplementary 1 New. Answer to question requested by reviewer 2 note #1

      All the reviewers' and editors’ comments have been answered (see our point to point response) and we resubmit what we believe to be a significantly improved manuscript. We strongly hope that we meet all your expectations and that our manuscript will be suitable for publication in "eLife". We look forward to your feedback,

      Point by point answer

      Please note that there has been active discussion of the manuscript and the summarize points below is the minimal revision request that the reviewers think the authors should address even under this new review model system. It was the reviewers' consensus that the manuscript is prepared with a lot of oversights - please see all the minor points to improve your manuscript.

      All minimal revision requests have been addressed

      Minimal revision request

      1) Clinical report/evaluation of the two patients should be given as it was not described even in their previous study as well as full description of CCDC146.

      We provide now a new Figure 1-figure supplement 1 describing the patients sperm parameters

      2) Antibody specificity should be provided, especially given two of the reviewers were not convinced that the mid piece signal is non-specific as the authors claim. As both KO and KI model in their hands, this should be straightforward.

      To validate the specificity of the Antibody, we transfected HEK cells with a human DDK-tagged CCDC146 plasmid and performed a double immunostaining with a DDK antibody and the CCDC146 antibody. We show that both staining are superimposable, strongly suggesting that the CCDC146 Ab specifically target CCDC146. This experiment is now presented in Figure 4-Figure supplement 1. Next, to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum.

      3) The authors should improve statistical analysis to support their experimental results for the reader can make fair assessment. Combined with clear demonstration of ab specificity, this lack of statistical analysis with very few sample number is a major driver of dampening enthusiasm towards the current study.

      Several statistical analyses were carried out and are now included:

      1) distribution of the HA signal in mouse sperm cells (see point 2 Figure 7 panel B)

      2) quantification and statistical analyses of the defect observed in Ccdc146 KO sperm (figure 2 panel E)

      3) Quantification and statistical analyses of the length of the manchette in spermatids 13-15 steps (Figure 13-Figure supplement 1 new)

      4) The authors need to clarify (peri-centriolar vs. centriole)

      In figure 4A, we have clearly shown that the protein colocalizes with centrin, a centriolar core protein in somatic cells. This colocalization strongly suggests that CCDC146 is therefore a centriolar protein, and this is now clearly indicated lines 211-212. However, its localization is not restricted to the centrioles and a clear staining was also observed in the pericentriolar material (PCM). The presence of a protein in PCM and centriole was already described, and the best example is maybe gamma-tubulin (PMID: 8749391).

      or tone down (CCDC146 to be a MIP) of their claim/description.

      Concerning its localization in sperm, we agree with the reviewer that our demonstration that CCDC146 is MIP would deserve more results. Because of that, we have toned down the MIP hypothesis throughout the manuscript. See lines 491495

      Testis-specific expression of CCDC146 as it is not consistent with their data.

      We have also modified our claim concerning the testis-expression of CCDC146. Line 176

      Reviewer #1 (Recommendations For The Authors):

      Major comments

      1) As described in general comments, this study limits how the CCDC146 deficiency impairs abnormal centriole and manchette formation. The authors should explain their relationship in developing germ cells.

      In fact, there are limited information about the relationship between the manchette and the centriole. However, few articles have highlighted that both organelles share molecular components. For instance, WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis (Commun Biol. 2021; 4: 645. doi: 10.1038/s42003-021-02171-5). Another study demonstrates that CCDC42 localizes to the manchette, the connecting piece and the tail (Front. Cell Dev. Biol. 2019 https://doi.org/10.3389/fcell.2019.00151). These articles underline that centrosomal proteins are involved in manchette formation and removal during spermiogenesis and support our results showing the impact of CCDC146 lack on centriole and manchette biogenesis. This information is now discussed. See lines 596-603

      2) The authors generated knock-in mouse model. If then, are the transgene can rescue the MMAF phenotype in CCDC146-null mice? This reviewer strongly suggest to test this part to clearly support the pathogenicity by CCDC146.

      We indeed wrote that we created a “transgenic mice”, which was misleading. We actually created a CCDC16 knock-in expressing a tagged-protein. The strain was actually made by CRISPR-Cas9 and a sequence coding for the HA-tag was inserted just before the first amino acid in exon 2, leading to the translation of an endogenous HA-tagged CCDC146 protein. We have removed the word transgenic from the text and made changes accordingly (see lines 250-253). We can therefore not use this strain to rescue the MMAF phenotype as suggested by the reviewer.

      3) Although the authors cite the previous study (Coutton et al., 2019), the study does not describe any information for CCDC146 and clinical information for the patients. The authors must show the results for clinical analysis to clarify the attended patients are MMAF patients without other phenotypic defects.

      We have now inserted a table, indicating all sperm parameters for the patients harboring a mutation in the CCDC146 gene (Figure 1-Figure supplement 1) and is now indicated lines 159-160

      4) The authors describe CCDC146 expression is dominant in testes, However, the level in testis is only moderate in human (Supp Figure 1). Thus, this description is not suitable.

      In Figure 1-figure supplement 2 (old FigS1), the median of expression in testis is around 12 in human, a value considered as high expression by the analysis software from Genevestigator. However, for mouse, it is true that the level of expression is medium. We assumed that reviewer’s comment concerned testis expression in mouse. To take into account this remark, we changed the text accordingly. See line 176.

      5) Although the authors mentioned that two mice lines are generated, only one line information is provided. Authors must include information for another line and provide basic characterization results to support the shared phenotype within the lines.

      We now provide a revised Figure 2-figure supplement 1CD, presenting the second line and the corresponding text in the main text is found lines 178-183.

      6) In somatic cells, the CCDC146 localizes at both peri-centriole and microtubule but its intracellular localization in sperm is distinguished. The authors should explain this discrepancy.

      The multi-localization of a centriolar protein is already discussed in detail in discussion lines 520-526. We have written:

      “Despite its broad cellular distribution, the association of CCDC146 with tubulin-dependent structures is remarkable. However, centrosomal and axonemal localizations in somatic and germ cells, respectively, have also been reported for CFAP58 [37, 55], thus the re-use of centrosomal proteins in the sperm flagellar axoneme is not unheard of. In addition, 80% of all proteins identified as centrosomal are found in multiple localizations (https://www.proteinatlas.org/humanproteome/subcellular/centrosome). The ability of a protein to home to several locations depending on its cellular environment has been widely described, in particular for MAP. The different localizations are linked to the presence of distinct binding sites on the protein…. “

      7) Authors mention CCDC146 is a centriolar protein in the title and results subtitle. However, the description in results part depicts CCDC146 is a peri-centriolar protein, which makes confusion. Do the authors claim CCDC146 is centrosomal protein?

      In figure 4A, we have clearly shown that the protein colocalizes with centrin, a centriolar core protein. This colocalization strongly suggests that CCDC146 is therefore a centriolar protein in somatic cells, and is now clearly indicated lines 211-212. However, its localization is not restricted to the centrioles and a clear staining was also observed in the pericentriolar material (PCM). The presence of a protein in PCM and centriole was already described and the best example is maybe gamma-tubulin (PMID: 8749391).

      8) Verification of the antibody against CCDC146 must be performed and shown to support the observed signal are correct. 2nd antibody only signal is not proper negative control.

      It is a very important remark. The commercial antibody raised against human CCDC146 was validated in HEK293-cells expressing a DDK-tagged CCDC146 protein. Cells were co-marked with anti-DDK and anti-CCDC146 antibodies. We have a perfect colocalization of the staining. This experiment is now presented in Figure 4-figure supplement 1 and presented in the text (lines 206-208).

      9) In human sperm, conventional immunostaining reveals CCDC146 is detected from acrosome head and midpiece. However, in ExM, the signal at acrosome is not detected. How is this discrepancy explained? The major concern for the ExM could be physical (dimension) and biochemical (properties) distortion of the sample. Without clear positive and negative control, current conclusion is not clearly understood. Furthermore, it is unclear why the authors conclude the midpiece signal is non-specific. The authors must provide experimental evidence.

      Staining on acrosome should always be taken with caution in sperm. Indeed, numerous glycosylated proteins are present at the surface of the plasma membrane regarding the outer acrosomal membrane for sperm attachment and are responsible for numerous nonspecific staining. Moreover, this acrosomal staining was not observed in mouse sperm, strongly suggesting that it is not specific.

      Concerning the staining in the midpiece observed in both conventional and Expansion microscopy, it also seems to be nonspecific and associated with secondary Abs.

      For IF, we now provide new images showing clearly the nonspecific staining of the midpiece when secondary Ab were used alone (see Figure 10-figure supplement 1B).

      For ExM, we provide new images in Figure 8-figure supplement 1B (POC5 staining) showing a staining of the midpiece (likely mitochondria), although POC5 was never described to be present in the midpiece. Both experiments (CCDC146 and POC5 staining by ExM) shared the same secondary Ab and the midpiece signal was likely due to it.

      Moreover, we now provide new images (figure 7C) in ExM on mouse sperm showing no staining in the midpiece and demonstrating that the punctuated signal is present all along the flagellum. Finally, we would like to underline that we now provide new IF results, using an anti-HA conjugated with alexafluor 488 and confirming the ExM results.

      These points are now discussed lines 498-502 for acrosome and lines 503-511 for midpiece staining.

      10) For intracellular localization of the CCDC146 in mouse sperm, the authors should provide clear negative control using WT sperm which do not carry the transgene.

      This experiment was performed.

      To avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum.

      11) Current imaging data do not clearly support the intracellular localization of the CCDC146. Although western blot imaging reveal that CCDC146 is detected from sperm flagella, this is crude approach. Thus, this reviewer highly recommends the authors provide more clear experimental evidence, such as immuno EM.

      We provide now a WB comparing the presence of the protein in the flagellum and in the head fractions; see new figure 6. We show that CCDC146 is only present in the flagellum fraction; The detection of the band appeared very quickly at visualization and became very strong after few minutes, demonstrating that the protein is abundant in the flagella. It is important to note that epididymal sperm do not have centrioles and therefore this signal is not a centriolar signal. We also now provide new statistical analyses showing that the immuno-staining observed in the principal piece is very specific (Figure 7B). Altogether, these results demonstrate unequivocally the intracellular localization of CCDC146 in the flagellum. This point is now discussed lines 480-489

      12) Although sarkosyl is known to dissociate tubulin, it is not well understood and accepted that the enhanced detection of CCDC146 by the detergent indicates its microtubule inner space. Sperm axoneme to carry microtubule is also wrapped peri-axonemal components with structural proteins, which are even not well solubilized by high concentration of the ionic detergent like SDS.

      We agree with the reviewer that the solubilization of the protein by sarkozyl is not a proof of the presence of the protein inside microtubule. Taking into account this point, the MIP hypothesis was toned down and we now discuss alternative hypothesis concerning these results; See discussion lines 490-497

      13) SEM image is not suitable to explain internal structure (line 317-323).

      We agree with the reviewers and changes were made accordingly. See lines 354-357

      Minor comments

      1) In main text, supplementary figures are cited "Supp Figure". And the corresponding legends are written in "Appendix - Figure". Please unify them.

      Done Labelled now “Figure X-figure supplement Y”

      2) Line 159, "exon 9/19" is not clear.

      We have written now exons 9 and indicated earlier that the gene contains 19 exons

      3) Line 188, "positive cells" are vague.

      Positive was changed by “fluorescent”

      4) Representative TUNEL assay image for knockout testes were not shown in Supp Figure 3B.

      It was a mistake now Figure 2-figure supplement 2C

      5) Please provide full description for "IF" and "AB" when described first.

      Done

      6) Line 262, It is unclear what is "main piece".

      Changed to principal piece

      7) Line 340, Although the "stage" information might be applicable, this is information for "seminiferous tubule" rather than "spermatid". This reviewer suggests to provide step information rather than stage information.

      We agree with the reviewer that there was a confusion between “stage” and “step”. We change to step spermatids

      8) Line 342, Step 1 is not correct in here.

      OK corrected. now steps 13-15 spermatids

      9) Line 803, "C." is duplicated.

      Removed

      10) Figure 3A, it will be good to mark the defective nuclei which are described in figure legends.

      These cells are now indicated by white arrow heads

      11) Figure 5, Please provide what MT stands for.

      Now explained in the legend of figure 5

      12) Figure 6. Author requires clear blot images for C. In addition, Panel B information is not correct. If the blot was performed using HA antibody, then how "WT" lane shows bands rather than "HA" bands?

      The reviewer is correct. It was a mistake; The figure was recomposed and improved.

      Reviewer #2 (Recommendations For The Authors):

      Overall, editing oversights are present throughout the manuscript, which has made the review process quite difficult. Some repetitive figures can be removed to streamline to grasp the overall story easier. Some claims are not fully supported by evidence that need to tone down. Some figures not referenced in the main text need to be mentioned at least once.

      All figures are now referenced in the text

      Major comments:

      1) 163-164 - Please clarify the claim that there is going to be an absence of the protein or nonfunctional protein, especially for the patient with a deletion that could generate a truncated protein at two third size of the full-length protein. Similarly, 35% of the protein level is present for the patient with a nonsense mutation. Some in silico structural analysis or analysis of conserved domains would be beneficial to support these claims.

      Both mutations are predicted to produce a premature stop codons: p.Arg362Ter and p.Arg704serfsTer7, leading either to the complete absence of the protein in case of non-sense mediated mRNA decay or to the production of a truncated protein missing almost two third or one fourth of the protein respectively. CCDC146 is very well conserved throughout evolution (Figure supplementary 1), including the 3’ end of the protein which contains a large coil-coil domain (Figure 1B). In view of the very high degree of conservation, it is most likely that the 3’ end of the protein, absent in both subjects, is critical for the CCDC146 function and hence that both mutations are deleterious. This explanation is now added to the discussion. see lines 439-448

      2) 173, 423 - Please clearly state a rationale of your mouse model design (i.e., why a mouse model that recapitulate human mutation is not generated) as the truncations identified in human patients are located further towards the C-terminus, and it is not clear whether truncated proteins are present, and if so, they could still be functional. Basically, the current mouse model supports the causality of the human mutations.

      This is an important question, which goes beyond the scope of this article, and raises the question of how to confirm the pathogenicity of mutations identified by high-throughput sequencing. The production of KO or KI animals is an important tool to help confirm one’ suspicions but the first element to take into consideration is the nature of the genetic data.

      Here we had two patients with homozygous truncating variants. In human, it is well established that the presence of premature stop codons usually induces non-sense mediated mRNA decay (NMD), inducing the complete absence of the protein or a strong reduction in protein production. In the unlikely absence of NMD in our two patients, the identified variants would induce the production of proteins missing 60% and 30% of their C terminal part. Often (and it is particularly true for structural proteins) the production of abnormal proteins is more deleterious than the complete absence of the protein (and it is most likely the purpose of NMD, to limit the production of abnormal “toxic” proteins). For these reasons, to try to recapitulate the most likely consequences of the human variants, without risking obtaining an even more severe effect, we decided to introduce a stop codon in the first exon in order to remove the totality of the protein in the KO mice.

      The second element is to interpret the phenotype of the KO animals. Here, the human sperm phenotype is perfectly recapitulated in the KO mice.

      Overall, we have strong genetic arguments in human and the reproduction of the phenotype in KO mice confirming the pathogenicity of the variants identified in men.

      This point is now discussed see lines 433-438

      3) Figure 6A - the labelling is misleading as it seems to suggest that the specific cells were isolated from the testes for RT-PCR.

      We have modified the labelling to avoid any confusion.

      Figure 6B -Signal of HA-tag is shown in WT, not in transgenic. Please check the order of the labels. Figure 6C - This blot is NOT a publication-quality figure. The bands are very difficult to observe, especially in lane D18. Because it is one of the important data of this study, replacing this figure is a must.

      The figure has been completely remade, including new results. See new figure 6. Figure 6C was suppressed.

      4) Supplementary fig 6 is also not a publication-level figure, and the top part seems largely unnecessary (already in the figure legend).

      The figure has been completely remade as well (now Figure 6-Figure Supplement 1).

      5) 261/267- The conclusion that mitochondrial staining in the flagellum (in both mice and humans) is non-specific is not convincing. Supplementary fig 8 shows that the signal from secondary only IF possibly extends beyond the midpiece - but it is hard to determine as no mitochondrial-specific staining is present. Either need to tone down the conclusion or provide supporting experimental evidence.

      First, to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum. These experiments are now described lines 271-279

      Second, we provide new images of the signal obtained with secondary Abs only that shows more clearly that the secondary Ab gave a non-specific staining (Figure 10-Figure supplement 1B). This point is discussed lines 503-511

      6) Figure 9 A - Please relate the white line to Fig. 9B label in X-axis. The information from Fig 9A+D and 9E+F are redundant. The main text nor the figure legends indicate why these specific two sperm were chosen for quantification and demonstrating the outcomes. One of them could be moved to supplementary information or removed, or the two could be combined.

      As suggested by the reviewer, we have combined the two sperm to demonstrate that CCDC146 staining is mostly located on microtubule doublets. Moreover, the figure was recomposed to make it clearer.

      Minor comments:

      All of the supplementary figures are referred to as Supp Fig X in the text, however, they are actually titled Appendix - Figure X. This needs to be consistent.

      The figures are now referred as figure supplement x in both text and figures

      Line 125 - edit spacing.

      We think this issue (long internet link) will be curated later and more efficiently by the journal, during the step of formatting necessary for publication.

      144 - With which to study  with which we studied?

      We made the change as suggested.

      151 - Supp Fig 1 - the text says that the gene is highly transcribed in human and mouse testes, but the information in the figure states that the level in mouse tissues is "medium"

      We have corrected this mistake in the text; See line 176

      165 - The two mutations are most likely deleterious. Please specifically mention what analyses done to predict the deleterious nature to support these claims.

      Both variants, c.1084C>T and c.2112del, are extremely rare in the general population with a reported allele frequency of 6.5x10-5 and 6.5x10-06 respectively in gnomAD v3. Moreover, these variants are annotated with a high impact on the protein structure (MoBiDiC prioritization algorithm (MPA) score = 10, DOI: 10.1016/j.jmoldx.2018.03.009) and predicted to induce each a premature termination codon, p.(Arg362Ter) and p.(Arg704SerfsTer7) respectively, leading to the production of a truncated protein. This information is now given line 164-169

      196-200/Figure 4 - As serum starved cells/basal body (B) are not mentioned in the main text, as is, Fig 4A would be sufficient/is relevant to the text. Please make the text reflect the contents of the whole figure, or re/move to supplement.

      We agree with the reviewer that the full description of the figure should be in the text. We added two sentences to describe figure 4B see lines 217-218.

      224 - spermatozoa (plural) fits better here, not spermatozoon

      OK changed accordingly

      236 - According to the figure legend, 6B is only showing data from the epididymal sperm, not postnatal time points; should be referencing 6C. Alignment of Marker label

      As indicated above, the figure has been completely remade, including new results. See new figure 6. Figure 6C was suppressed. The corresponding text was changed accordingly see lines 249-266

      255-256 - Referenced figure 7B3, however, 7B3 only shows tubulin staining, so no CCDC146 can be observed. Did authors mean to reference fig 7B as a whole?

      Sorry for this mistake. We agree and the text is now figure 8B6 (figure 7 and 8 were switched)

      305 - "of tubules" - I presume it is meant to be microtubules?

      Yes; The text was changed as suggested

      317-321 - a diagram of HTCA would be useful here

      We have added a reference where HTCA diagram is available see line 363. Moreover, a TEM view of HTCA is presented figure 12A

      322/Fig 11A - an arrow denoting the damage might be useful, as A1 and A3 look similar. The size of the marker bar is missing. Please update the information on figure legend.

      Concerning, the comparison between A1 and A3, the take home message is that there is a great variability in the morphological damages. This point is now underlined in the corresponding text. We updated the size of the marker bar as suggested (200 nm). See line 365-367

      323 - Please mark where capitulum is in the figure

      Capitulum was changed for nucleus

      Since Fig 11B2 is not referenced in the main text, it does not seem to add anything to the data, and could be removed/moved to supplement.

      We added a sentence to describe figure 11B2 line 370

      342-343 - manchette in step I is not seen clearly - the figure needs to be annotated better. However, DPY19L2 is absent in step I in the KO, but the main text does not reflect that - why is that?

      We do not understand the remark of the reviewer “manchette in step I is not seen clearly”. The figure shows clearly the manchette (red signal) in both WT and KO (Figure 13 D1/D2).

      For steps 13-15 WT spermatids, the size of the manchette decreases and become undetectable. In KO spermatids, the shrinkage of the manchette is hampered and in contrast continue to expand (Figure 13D2). We also provide a new Figure 13-figure supplement 1 for other illustrations of very long manchettes and a statistical analysis. In the meantime, the acrosome is strongly remodeled, as shown in figure 16-new, with detached acrosome (panel H). This morphological defect may induce a loss of the DPY19L2 staining (Figure 13 D2 stage I-III). This explanation is now inserted in the text line 396399

      Figure 15B and 15C only show KO, corresponding images from the WT should be present for comparison.

      WT images are now provided in Figure 1-figure supplement 1 new

      Figure 12 - Figure 12 - JM?.

      JM was removed. It does not mean anything

      Figure 12C and Supplementary Fig 10 - structures need to be labelled, as it is unclear what is where

      Done

      338 - text mentions step III, but only sperm from step VII are shown in Figure 13

      As suggested by reviewer 3, we changed stage by step. The text was modified to take into account this remark see lines 388-396

      360 - This is likely supposed to say Supp Figure 11E-G, not 13??

      Yes, it is a mistake. Corrected

      388 Typo "in a in a".

      Yes, it is a mistake. Corrected

      820 - Fig 3 legend - in KO spermatid nuclei were elongated - could this be labelled by arrows? I am not convinced this phenotype is that different from the WT.

      In fact, the nuclei of elongating KO spermatids are elongated and also very thin, a shape not observed in the WT; We have added arrow heads and modified the text to indicate this point line 200.

      836 - Figure 5 legend says that in yellow is centrin, but that is not true for 5A, where the figure shows labelling for y-tubulin (presumably, according to the figure itself).

      We have modified the text of the legend to take into account the remark

      837- 5A supposedly corresponds to synchronized HEK293T cells, but the reasoning behind using synchronized cells is not mentioned at all in the main text; furthermore, how this synchronization is achieved is not explained in materials and methods (serum starvation? Thymidine block?).

      Yes, figure 5A was obtained with synchronized cells. We have added one paragraph in the MM section. For cell synchronization experiments, cells underwent S-phase blockade with thymidine (5 mM, SigmaAldrich) for 17 h followed by incubation in a control culture medium for 5 h, then a second blockade at the G2-M transition with nocodazole (200 nM, Sigma-Aldrich) for 12 h. Cells were then fixed with cold methanol at different times for IF labelling. See line 224 for changes made in the result section and lines 700-704 for changes made in the MM section.

      845- figure legend says that the RT-PCR was done on CCDC146-HA tagged mice, but the main text does not reflect that.

      We made changes and the description of the KI is now presented before (line 240) the RT-PCR experiment (line 257).

      949 - it is likely supposed to say A2, not B1 (B1 does not exist in Fig 15)

      Yes, it is a mistake. Corrected

      971 - Appendix Fig 3 legend - I believe that the description for B and C are swapped.

      Yes, it is a mistake. Corrected

      Furthermore, some questions to address in A would be: Which cross sections were from which animal/points? How many per animal? Were they always in the same location?

      Yes, we have a protocol for arranging and orienting all testes in the same way during the paraffin embedding phase. The cross-sections are therefore not taken at random, and we can compare sections from the same part of the testis. The number of animals was already indicated in the figure legend (see line 1128)

      Reviewer #3 (Recommendations For The Authors):

      1) There are a number of grammatical and orthographical errors in the text. Careful proofreading should be performed.

      We have sent the manuscript to a professional proofreader

      2) The author should also check for redundancies between the introduction and the discussion.

      The discussion has modified to take into account reviewers’ remarks. Nevertheless, we did our best to avoid redundancies between introduction and discussion.

      3) Can the authors provide a rationale why they have chosen to tag their gene with an HA tag for localisation? One would rather think of fluorescent proteins or a Halo tag.

      Because the functional domains of the protein are unknown, adding a fluorescent protein of 24 KDa may interfere with both the localization and the function of CCDC146. For this reason, we choose a small tag of only 1.1 KDa, to limit as such as possible the risk of interfering with the structure of the protein. This rational is now indicated in the manuscript lines 251-254. It is worth to note, that the tagged-strain shows no sperm defect, demonstrating that the HA-tag does not interfere with CCDC146 function.

      4) In the abstract, line 53, "provide evidence" is not the right term for something that is just suggestive. The term "suggests" would be more appropriate.

      The text was modified to take into account this remark

      5) Line 74: "genetic deficiency" sounds strange here, do the authors mean simply "mutation"?

      Infertility may be due to several genetic deficiency such as chromosomal defects (XXY (Klinefelter syndrome)), microdeletion of the Y chromosome or mutations in a single gene. Therefore, mutation is too restrictive. Nevertheless, we modified the sentence which is now “…or a genetic disorder including chromosomal or single gene deficiencies”

      6) Lines 163-164: the authors describe the mutations (premature stop mutations) and say that they could either lead to complete absence of the gene product, or the expression of a truncated protein. Did they test this, for example, with some immuno blot analyses?

      As stated above, unfortunately, we were unable to verify the presence of RNA-decay in these patients for lack of biological material.

      7) Line 184 and Fig 2E: the sperm head morphologies should be quantitatively assessed.

      We provide now a full statistical analysis of the observed defects: see new panel in Figure 2 F

      8) Fig 3: The annotation should be more precise - KO certainly means CDCC146-KO. The colours of the IH panels is different, which attracts attention but is clearly a colour-adjustment artefact. Colours should be adjusted for the panels to look comparable. It would be also helpful to add arrowheads into the figure to point at the phenotypes that are highlighted in the text.

      We have added Ccdc146 KO in all figures. We have added arrow heads to point out the spermatids showing a thin and elongated nucleus. Concerning adjustment of colors, we attempted to make images of panel B comparable. See new figure 3.

      9) Fig 6A: the authors use RT PCR to determine expression dynamics of their gene of interested, and use actin (apparently) as control. However, actin and CDCC146 expression levels follow the same trend. How is the interpreted?

      The reviewer did not understand the figure. The orange bars do not correspond to actin expression and the grey bars to Ccdc146 expression but both bars represent the mRNA expression levels of Ccdc146 relative to Actb (orange) and Hprt (grey) expression in CCDC146-HA mouse pups’ testes. We tested two housekeeping genes as reference to be sure that our results were not distorted by an unstable expression of a housekeeping gene. We did not see significant difference between both house keeping genes. Actin was not used.

      10) In line 235, the authors suggest posttranslational modifications of their protein as potential cause for a slightly different migration in SDS PAGE as predicted from the theoretical molecular weight. This is not necessarily the case, some proteins do migrate just differently as predicted.

      We have changed the text accordingly and now provide alternative explanation for the slightly different migration. See lines 258-259

      11) The annotation of Fig 6 panels is problematic. First, why do the authors write "Laemmli" as description of the gel? It would be more helpful to write what is loaded on the gel, such as "sperm". Second, in panels B and C it would be helpful to add the antibodies used. It is not clear why there is a signal in the WT lane of panel B, but not in the HA lane (supposing an anti-HA antibody is used: why has WT a specific HA band?). In panel C, it is not clear why the blot that has so beautifully shown a single band in panel B suddenly gives such a bad labelling. Can the authors explain this? Also, they cut off the blot, likely because to too much background, but this is bad practice as full blots should be shown. In the current state, the panel C does not allow any clear conclusion. To make it conclusive, it must be repeated.

      Several mistakes were present in this figure. This figure was recomposed. The WB on testicular extract was suppressed and we now present a new WB allowing to compare the presence of CCDC146 in the flagella and head fractions from WT and HA-CCDC146 sperm. Using an anti-HA Ab, we demonstrate that in epididymal sperm the protein is localized in the flagella only. See new figure 6. The corresponding text was changed accordingly.

      12) The authors have raised an HA-knockin mouse for CDCC146, which they explained by the unavailability of specific antibodies. However, in Fig 7, they use a CDCC146 antibody. Can they clarify?

      The commercial Ab work for HUMAN CCDC146 but not for MOUSE CCDC146. We have added few words to make the situation clearer, we have added the following information “the commercial Ab works for human CCDC146 only”. See line 240

      13) In Fig 7A (line 258), the authors hypothesise that they stain mitochondria - why not test this directly by co-staining with mitochondria markers?

      We chose another solution to resolve this question:

      To avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the whole flagellum.

      14) It seems that in both, Fig 7 and 8, the authors use expansion microscopy to localise CDCC146 in sperm tails. However, the staining differs substantially between the two figures. How is this explained?

      In figure 8 we used the commercial Ab in human sperm, whereas in figure 7 we used the anti-HA Abs in mouse sperm. Because the antibodies do not target the same part of the CCDC146 protein (the tag is placed at the N-terminus of the protein, and the HPA020082 Ab targets the last 130 amino acids of the Cter), their accessibility to the antigenic site could be different. However, it is important to note that both antibodies target the flagellum. This explanation is now inserted see lines 304-312

      15) Fig 8D and line 274: the authors do a fractionation, but only show the flagella fraction. Why?

      Showing all fractions of their experiment would have underpinned the specific enrichment of CDCC146 in the flagella fraction, which is what they aim to show. Actually, given the absence of control proteins, the fact that the band in the flagellar fraction appears to be weaker than in total sperm, one could even conclude that there is more CDCC146 in another (not analysed) fraction of this experiment. Thus, the experiment as it stands is incomplete and does not, as the authors claim, confirm the flagellar localisation of the protein.

      We agree with the reviewer’s remark. We provide now new results showing both flagella and nuclei fractions in new figure 6A. This experiment is presented lines 253-256

      16) Line 283, Fig 9D,F: The description of the microtubules in this experiment is not easy to understand. Do the authors mean to say that the labelling shows that the protein is associated with doublet microtubules, but not with the two central microtubules? They should try to find a clearer way to explain their result.

      As suggested by reviewer 2, we have changed the figure to make it clearer. The text was changed accordingly. See new figure 9 and new corresponding legend lines 1006.

      17) Fig 9G - how often could the authors observe this? Why is the axoneme frayed? Does this happen randomly, or did the authors apply a specific treatment?

      Yes, it happens randomly during the fixation process.

      18) Line 300 and Fig 10A - the authors talk about the 90-kDa band, but do say anything about what they think this band is representing.

      We have now added the following sentence lines 340-342: “This band may correspond to proteolytic fragment of CCDC146, the solubilization of microtubules by sarkosyl may have made CCDC146 more accessible to endogenous proteases.”

      19) Fig 11A, lines 321-322: the authors write that the connecting piece is severely damaged. This is not obvious for somebody who does not work in sperm. Perhaps the authors could add some arrow heads to point out the defects, and briefly describe them in the text.

      We realized from your remark that our message was not clear. In fact, there is a great variability in the morphological damages of the HTCA. For instance, the HTCA of Ccdc146 KO sperm presented in figure 10A2 is quite normal, whereas that in figure 10A4 is completely distorted. This point is now underlined in the corresponding text. See lines 367-369

      We also added the size of the marker bar (200 nm), which were missing in the figure’s legend.

      20) Line 323: it will be important to name which tubulin antibody has been used to identify centrioles, as they are heavily posttranslationally modified.

      The different types of anti-tubulin Abs are described in the corresponding figure’s legend

      21) Fig 11B - phenotypes must be quantified to make these observations meaningful.

      We agree that a quantification would improve the message. However, testicular sperm are obtained by enzymatic separation of spermatogenic cells and the number of testicular sperm are very low. Moreover, not all sperm are stained. Taking these two points into account, it seems to us that quantification could be difficult to analyze. For this reason, the quantification was not done; however, it is important to note that these defects were not observed in WT sperm, demonstrating that these defects are cased by the lack of CCDC146. We have added a sentence to underline this point; See lines 374-375

      22) Line 329: Figure 12AB - is this a typo - should it read Figure 12B?

      We have split the panel A in A1 and A2 and changed the text accordingly. See line 378

      23) Why are there not wildtype controls in Fig 12B, C?

      We provide now as Figure 12-figure supplement 1, a control image for fig 12B. For figure 12C, the emergence of the flagellum from the distal centriole in WT is already shown in Fig 12A1

      24) Fig 13: the authors write that the manchette is "clearly longer and wider than in WT cells" (lines 342-343). How can they claim this without quantitative data?

      We now provide a statistical analysis of the length of the manchette. See figure 13-figure supplement 1A. We also provide a new a new image illustrating the length of the manchette in Ccdc146 KO spermatids; See Figure 13-figure supplement 1B.

    1. Reviewer #1 (Public Review):

      Summary: This papers performs fine-mapping of the silkworm mutants bd and its fertile allelic version, bdf, narrowing down the causal intervals to a small interval of a handful of genes. In this region, the gene orthologous to mamo is impaired by a large indel, and its function is later confirmed using expression profiling, RNAi, and CRISPR KO. All these experiments are convincingly showing that mamo is necessary for the suppression of melanic pigmentation in the silkworm larval integument.

      The authors also use in silico and in vitro assays to probe the potential effector genes that mamo may regulate.

      Strengths: The genotype-to-phenotype workflow, combining forward (mapping) and reverse genetics (RNAi and CRISPR loss-of-function assays) linking mamo to pigmentation are extremely convincing.

      This revision is a much improved manuscript and I command the authors for many of their edits.

      I find the last part of the discussion, starting at "It is generally believed that changes in gene expression patterns are the result of the evolution of CREs", to be confusing.<br /> In this section, I believe the authors sequentially:<br /> - emphasize the role of CRE in morphological evolution (I agree)<br /> - emphasize that TF, and in particular their own CRE, are themselves important mutational targets of evolution (I agree, but the phrasing need to insist the authors are here talking about the CRE found at the TF locus, not the CRE bound by the TF).<br /> - use the stickleback Pel enhancer as an example, which I think is a good case study, but the authors also then make an argument about DNA fragility sites, which is hard to connect with the present study.<br /> - then continue on "DNA fragility" using the peppered moth and butterfly cortex locus. There is no evidence of DNA fragility at these loci, so the connection does not work. "The cortex gene locus is frequently mutated in Lepidoptera", the authors say. But a more accurate picture would be that the cortex locus is repeatedly involved in the generation of color pattern variants. Unlike for Pel fragile enhancer, we don't know if the causal mutations at this locus are repeatedly the same, and the haplotypes that have been described could be collateral rather than causal. Overall, it is important to clarify the idea that mutation bias is a possible factor explaining "genetic hotspots of evolution" (or genetic parallelism sensu 10.1038/nrg3483), but it is also possible that many genetic hotspots are repeated mutational targets because of their "optimal pleiotropy" (e.g. hub position in GRNs, such as mamo might be), or because of particularly modular CRE region that allow fine-tuning. Thus, I find the "fragility" argument misleading here. In fact the finding that "bd" and "bdf" alleles are different in nature is against the idea of a fragility bias (unless the authors can show increased mutation rates at this locus in a wild silkmoth species?). These alleles are also artificially-selected ie. they increased in frequency by breeding rather than natural selection in the wild, so while interesting for our understand of the genotype-phenotype map, they are not necessarily representative of the mutations that may underlie evolution in the wild.<br /> - Curiously, the last paragraph ("Some research suggests that common fragile sites...") elaborate on the idea that some sites of the genome are prone to mutation. The connection with mamo and the current article are extremely thin. There is here an attempt to connect meiotic and mitotic breaks to Bm-mamo, but this is confusing : it seems to propose Bm-mamo as a recruiter of epigenetic modulators that may drive higher mutation rates elsewhere. Not only I am not convinced by this argument without actual data, but this would not explain how the mutations at the Bm-mamo itself evolved.

      On a more positive note, I find it fascinating that the authors identified a TF that clearly articulates or orchestrate larval pattern development, and that when it is deleted, can generate healthy individuals. In other words, while it is a TF with many targets, it is not too pleiotropic. This idea, that the genetically causal modulators of developmental evolution are regulatory genes, has been described elsewhere (e.g. Fig 4c in 10.1038/s41576-020-0234-z, and associated refs). To me, the beautiful findings about Bm-mamo make sense in the general, existing framework that developmental processes and regulatory networks "shape" the evolutionary potential and trajectories of organisms. There is a degree of "programmability" in the genomes, because some loci are particularly prone to modulate a given type of trait. Here, Bm-mamo, as a potentially regulator of both CPs and melanin pathway genes, appear to be a potent modulator of epithelial traits. Claiming that there are inherent mutational biases behind this is unwarranted.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, the authors explore the effects of DNA methylation on the strength of regulatory activity using massively parallel reporter assays in cell lines on a genome-wide level. This is a follow-up of their first paper from 2018 that describes this method for the first time. In addition to adding more indepth information on sequences that are explored by many researchers using two main methods, reduced bisulfite sequencing and sites represented on the Illumina EPIC array, they now show also that DNA methylation can influence changes in regulatory activity following a specific stimulation, even in absence of baseline effects of DNA methylation on activity. In this manuscript, the authors explore the effects of DNA methylation on the response to Interferon alpha (INFA) and a glucocorticoid receptor agonist (dexamethasone). The authors validate their baseline findings using additional datasets, including RNAseq data, and show convergences across two cell lines. The authors then map the methylation x environmental challenge (IFNA and dex) sequences identified in vitro to explore whether their methylation status is also predictive of regulatory activity in vivo. This is very convincingly shown for INFA response sequences, where baseline methylation is predictive of the transcriptional response to flu infection in human macrophages, an infection that triggers the INF pathways.

      Thank you for your strong assessment of our work!

      The extension of the functional validity of the dex-response altering sequences is less convincing.

      We agree. We note that genes close to dex-specific mSTARR-seq enhancers tend to be more strongly upregulated after dex stimulation than those near shared enhancers, which parallels our results for IFNA (lines 341-344). However, there is unfortunately no comparable data set to the human flu data set (i.e., with population-based whole genome-bisulfite sequencing data before and after dex challenge), so we could not perform a parallel in vivo validation step. We have added this caveat to the revised manuscript (lines 555-557).

      Sequences altering the response to glucocorticoids, however, were not enriched in DNA methylation sites associated with exposure to early adversity. The authors interpret that "they are not links on the causal pathway between early life disadvantage and later life health outcomes, but rather passive biomarkers". However, this approach does not seem an optimal model to explore this relationship in vivo. This is because exposure to early adversity and its consequences is not directly correlated with glucocorticoid release and changes in DNA methylation levels following early adversity could be related to many physiological mechanisms, and overall, large datasets and meta-analyses do not show robust associations of exposure to early adversity and DNA methylation changes. Here, other datasets, such as from Cushing patients may be of more interest.

      Thank you for making these important points. We have expanded the set of caveats regarding the lack of enrichment of early adversity-reported sites in the mSTARR-data set (lines 527-533). Specifically, we note that the relationship between early adversity and glucocorticoid physiology is complex (e.g., Eisenberger and Cole, 2012; Koss and Gunnar, 2018) and that dex challenge models one aspect of glucocorticoid signaling but not others (e.g., glucocorticoid resistance). Nevertheless, we also see little evidence for enrichment of early adversity-associated sites in the mSTARR data set at baseline, independently of the dex challenge experiment (lines 483-485; Figure 4).

      We also agree that large data sets (e.g., Houtepen et al., 2018; Marzi et al., 2018) and reviews (e.g., Cecil et al., 2020) of early adversity and DNA methylation in humans show limited evidence of associations between early adversity and DNA methylation levels. However, the idea that early adversity impacts downstream outcomes remains pervasive in the literature and popular science (see Dubois et al., 2019), which we believe makes tests like ours important to pursue. We also hope that our data set (and others generated through these methods) will be useful in interpreting other settings in which differential methylation is of interest as well—in line with your comment below. We have clarified both of these points in the revised manuscript (lines 520-522; 536-539).

      Overall, the authors provide a great resource of DNA methylation-sensitive enhancers that can now be used for functional interpretation of large-scale datasets (that are widely generated in the research community), given the focus on sites included in RBSS and the Illumina EPIC array. In addition, their data lends support that differences in DNA methylation can alter responses to environmental stimuli and thus of the possibility that environmental exposures that alter DNS methylation can also alter the subsequent response to this exposure, in line with the theory of epigenetic embedding of prior stimuli/experiences. The conclusions related to the early adversity data should be reconsidered in light of the comments above.

      Thank you! And yes, we have revised our discussion of early life adversity effects as discussed above.

      Reviewer #1 (Recommendations For The Authors):

      While the paper has a lot of strengths and provides new insight into the epigenomic regulation of enhancers as well as being a great resource, there are some aspects that would benefit from clarification.

      a. It would be great to have a clearer description of how many sequences are actually passing QC in the different datasets and what the respective overlaps are in bps or 600bp windows. Now often only % are given. Maybe a table/Venn diagram for overview of the experiments and assessed sequences would help here. This concern the different experiments in the K652, A549, and Hep2G cell lines, including stimulations.

      We now provide a supplementary figure and supplementary table providing, for each dataset, the number of 600 bp windows passing each filter (Figure 2-figure supplement 1; Supplementary File 9), as well as a supplementary figure providing an upset plot to show the number of assessed sequences shared across the experiments (Figure 2-figure supplement 2).

      b. It would also be helpful to have a brief description of the main differences in assessed sequences and their coverage of the old (2018) and new libraries in the main text to be able better interpret the validation experiments.

      We now provide information on the following characteristics for the 2018 data set versus the data set presented for the first time here: mean (± SD) number of CpGs per fragment; mean (± SD) DNA sequencing depth; and mean (± SD) RNA sequencing depth (lines 169-170 provide values for the new data set; in line 194, we reference Supplementary File 5, which provides the same values for the old data set). Notably, the coverage characteristics of analyzed windows in both data sets are quite high (mean DNA-seq read coverage = 94x and mean RNA-seq read coverage = 165x in the new data set at baseline; mean DNA-seq read coverage = 22x and mean RNA-seq read coverage = 54x in Lea et al. 2018).

      c. Statements of genome-wide analyses in the abstract and discussion should be a bit tempered, as quite a number of tested sites do not pass QC and do not enter the analysis. From the results it seems like from over 4.5 million sequences, only 200,000 are entering the analysis.

      The reason why many of the windows are not taken forward into our formal modeling analysis is that they fail our filter for RNA reads because they are never (or almost never) transcribed—not because there was no opportunity for transcription (i.e., the region was indeed assessed in our DNA library, and did not show output transcription, as now shown in Figure 2-figure supplement 1). We have added a rarefaction analysis (lines 715-722 in Materials and Methods) of the DNA fragment reads to the revised manuscript which supports this point. Specifically, it shows that we are saturated for representation of unique genomic windows (i.e., we are above the stage in the curve where the proportion of active windows would increase with more sequencing: Figure 1figure supplement 4). Similarly, a parallel rarefaction curve for the mSTARR-seq RNA-seq data (Figure 1-figure supplement 4) shows that we would gain minimal additional evidence for regulatory activity with more sequencing depth. We now reference these analyses in revised lines 179-184 and point to the supporting figure in line 182.

      In other words, our analysis is truly genome-wide, based on the input sequences we tested. Most of the genome just doesn’t have regulatory activity in this assay, despite the potential for it to be detected given that the relevant sequences were successfully transfected into the cells.

      d. Could the authors comment on the validity of the analysis if only one copy is present (cut-off for QC)?

      We think this question reflects a misunderstanding of our filtering criteria due to lack of clarity on our part, which we have modified in the revision. We now specify that the mean DNA-seq sequencing depth per sample for the windows we subjected to formal modeling was quite high:

      93.91 ± 10.09 SD (range = 74.5 – 113.5x) (see revised lines 169-170). In other words, we never analyze windows in which there is scant evidence that plasmids containing the relevant sequence were successfully transfected (lines 170-172).

      Our minimal RNA-seq criteria require non-zero counts in at least 3 replicate samples within either the methylated condition or the unmethylated condition, or both (lines 166-168). Because we know that multiple plasmids containing the corresponding sequence are present for all of these windows—even those that just cross the minimal RNA-seq filtering threshold—we believe our results provide valid evidence that all analyzed windows present the opportunity to detect enhancer activity, but many do not act as enhancers (i.e., do not result in transcribed RNA). Notably, we observe a negligible correlation between DNA sequencing depth for a fragment, among analyzed windows, and mSTARR-seq enhancer activity (R2 = 0.029; now reported in lines 183-184). We also now report reproducibility between replicates, in which all replicate pairs have r > 0.89, on par with previously published STARR-seq datasets (e.g., Klein et al., 2020; Figure 1-figure supplement 6, pointed to in line 193).

      e. While the authors state that almost all of the control sequences contain CpGs sites, could the authors also give information on the total number of CpG sites in the different subsets? Was the number of CpGs in a 600 bp window related to the effects of DNA methylation on enhancer activity?

      We now provide the number of CpG sites per window in the different subsets in lines 282-284. As expected, they are higher for EPIC array sites and for RRBS sites because the EPIC array is biased towards CpG-rich promoter regions, and the enzyme typically used in the starting step of RRBS digests DNA at CpG motifs (but control sequences still contain an average of ~13 CpG sites per fragment). We also now model the magnitude of the effects of DNA methylation on regulatory activity as a function of number of CpG sites within the 600 bp windows. Consistent with our previous work in Lea et al., 2018, we find that mSTARR-seq enhancers with more CpGs tend to be repressed by DNA methylation (now reported in lines 216-219 and Figure 1figure supplement 11).

      f. In the discussion, a statement on the underrepresented regions, likely regulatory elements with lower CG content, that nonetheless can be highly relevant for gene regulation would be important to put the data in perspective.

      Thanks for this suggestion. We agree that regulatory regions, independent of CpG methylation, can be highly relevant, and now clarify in the main text that the “unmethylated” condition of mSTARR-seq is essentially akin to a conventional STARR-seq experiment, in that it assesses regulatory activity regardless of CpG content or methylation status (lines 128-130).

      Consequently, our study is well-designed to detect enhancer-like activity, even in windows with low GC content. We now show with additional analyses that we generated adequate DNA-seq coverage on the transfected plasmids to analyze 90.2% of the human genome, including target regions with no or low CpG content (lines 148-149; 153-156; Supplementary file 2). As noted above, we also now clarify that regions dropped out of our formal analysis because we had little to no evidence that any transcription was occurring at those loci, not because sequences for those regions were not successfully transfected into cells (see responses above and new Figure 1-figure supplement 4 and Figure 2-figure supplement 1).

      g. To control for differences in methylation of the two libraries, the authors sequence a single CpGs in the vector. Could the authors look at DNA methylation of the 600 bp windows at the end of the experiment, could DNA methylation of these windows be differently affected according to sequence? 48 hours could be enough for de-methylation or re-methylation.

      We agree that variation in demethylation or remethylation depending on fragment sequence is possible. We now state this caveat in the main text (lines 158-159), and specify that genomic coverage of our bisulfite sequencing data across replicates are (unfortunately) too variable to perform reliable site-by-site analysis of DNA methylation levels before and after the 48 hour experiment (lines 1182-1185). Instead, we focus on a CpG site contained in the adapter sequence (and thus included in all plasmids) to generate a global estimate of per replicate methylation levels. We also now note that any de-methylation or re-methylation would reduce our power to detect methylation-dependent activity, rather than leading to false positives (lines 163-165).

      h. The section on the method for correction for multiple testing should be more detailed as it is very difficult to follow. Why were only 100 permutations used, the empirical p-value could then only be <0.01? The description of a subsample of the N windows with positive Betas is unclear, should the permutation not include the actual values and thus all windows - or were the no negative Betas? Was FDR accounting for all elements and pairs?

      We have now expanded the text in the Materials and Methods section to clarify the FDR calculation (lines 691, 695-699, 702, 706). We clarify that the 100 permutations were used to generate a null distribution of p-values for the data set (e.g., 100 x 17,461 p-values for the baseline data set), which we used to derive a false discovery rate. Because we base our evidence on FDRs, we therefore compare the distribution of observed p-values to the distribution of pvalues obtained via permutation; we do not calculate individual p-values by comparing an observed test statistic against the test statistics for permuted data for that individual window.

      We compare the data to permutations with only positive betas because in the observed data, we observe many negative betas. These correspond to windows which have no regulatory activity (i.e., they have many more input DNA reads than RNA-seq reads) and thus have very small pvalues in a model testing for DNA-RNA abundance differences. However, we are interested in controlling the false discovery rate of windows that do have regulatory activity (positive betas). In the permuted data, by contrast and because of the randomization we impose, test statistics are centered around 0 and essentially symmetrical (approximately equally likely to be positive or negative). Retaining all p-values to construct the null therefore leads to highly miscalibrated false discovery rates because the distribution of observed values is skewed towards smaller values— because of windows with “significantly” no regulatory activity—compared to the permuted data. We address that problem by using only positive betas from the permutations.

      i. The interpretation of the overlap of Dex-response windows with CpGs sites associated with early adversity should be revisited according to the points also mentioned in the public review and the authors may want to consider exploring additional datasets with other challenges.

      Thank you, see our responses to the public review above and our revisions in lines (lines 555559). We agree that comparisons with more data sets and generation of more mSTARR-seq data in other challenge conditions would be of interest. While beyond the scope of this manuscript, we hope the resource we have developed and our methods set the stage for just such analyses.

      Reviewer #2 (Public Review):

      This work presents a remarkably extensive set of experiments, assaying the interaction between methylation and expression across most CpG positions in the genome in two cell types. To this end, the authors use mSTARR-seq, a high-throughput method, which they have previously developed, where sequences are tested for their regulatory activity in two conditions (methylated and unmethylated) using a reporter gene. The authors use these data to study two aspects of DNA methylation:

      1) Its effect on expression, and 2. Its interaction with the environment. Overall, they identify a small number of 600 bp windows that show regulatory potential, and a relatively large fraction of these show an effect of methylation on expression. In addition, the authors find regions exhibiting methylation-dependent responses to two environmental stimuli (interferon alpha and glucocorticoid dexamethasone).

      The questions the authors address represent some of the most central in functional genomics, and the method utilized is currently the best method to do so. The scope of this study is very impressive and I am certain that these data will become an important resource for the community. The authors are also able to report several important findings, including that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures.

      Thank you for this generous summary!

      The main weaknesses of the study are: 1. The large number of regions tested seems to have come at the expense of the depth of coverage per region (1 DNA read per region per replicate). I have not been convinced that the study has sufficient statistical power to detect regulatory activity, and differential regulatory activity to the extent needed. This is likely reflected in the extremely low number of regions showing significant activity.

      We apologize for our lack of clarity in the previous version of the manuscript. Nonzero coverage for half the plasmid-derived DNA-seq replicates is a minimum criterion, but for the baseline dataset, the mean depth of DNA coverage per replicate for windows passing the DNA filter is quite high: 12.723 ± 41.696 s.d. overall, and 93.907 ± 10.091 s.d. in the windows we subjected to full analysis (i.e., windows that also passed the RNA read filter). We now provide these summary statistics in lines 148-149 and 169-170 and Supplementary file 5 (see also our responses to Reviewer 1 above). We also now show, using a rarefaction analysis, that our data set saturates the ability to detect regulatory windows based on DNA and RNA sequencing depth (new Figure 1-figure supplement 4; lines 179-184; 715-722).

      2) Due to the position of the tested sequence at the 3' end of the construct, the mSTARR-seq approach cannot detect the effect of methylation on promoter activity, which is perhaps the most central role of methylation in gene regulation, and where the link between methylation and expression is the strongest. This limitation is evident in Fig. 1C and Figure 1-figure supplement 5C, where even active promoters have activity lower than 1. Considering these two points, I suspect that most effects of methylation on expression have been missed.

      Thank you for pointing this out. We agree that we have not exhaustively detected methylationdependent activity in all promoter regions, given that not all promoter regions are active in STARR-seq. However, there is good evidence that some promoter regions can function like enhancers and thus be detected in STARR-seq-type assays (Klein et al., 2020). This important point is now noted in lines 187-189; an example promoter showing methylation-dependent regulatory activity in our dataset is shown in Figure 3E.

      We also now clarify that Figure 1C shows significant enrichment of regulatory activity in windows that overlap promoter sequence (line 239). The y-axis is not a measure of activity, but rather the log-transformed odds ratio, with positive values corresponding to overrepresentation of promoter sequences in regions of mSTARR-seq regulatory activity. Active promoters are 1.640 times more likely to be detected with regulatory activity than expected by chance (p = 1.560 x 10-18), which we now report in a table that presents enrichment statistics for all ENCODE elements shown in Figure 1C for clarity (Supplementary file 4). Moreover, 74.1% of active promoters that show regulatory activity have methylation-dependent activity, also now reported in Supplementary file 4.

      Overall, the combination of an extensive resource addressing key questions in functional genomics, together with the findings regarding the relationship between methylation and environmental stimuli makes this a key study in the field of DNA methylation.

      Thank you again for the positive assessment!

      Reviewer #2 (Recommendations For The Authors):

      I suggest the authors conduct several tests to estimate and/or increase the power of the study:

      1) To estimate the potential contribution of additional sequencing depth, I suggest the authors conduct a downsampling analysis. If the results are not saturated (e.g., the number of active windows is not saturated or the number of differentially active windows is not saturated), then additional sequencing is called for.

      We appreciate the suggestion. We have now performed a downsampling/rarefaction curve analysis in which we downsampled the number of DNA reads, and separately, the number of RNA reads. We show that for both DNA-seq depth and RNA-seq depth, we are within the range of sequencing depth in which additional sequencing would add minimal new analysis windows in the dataset (Figure 1-figure supplement 4; lines 179-184; 715-722).

      2) Correlation between replicates should be reported and displayed in a figure because low correlations might also point to too few reads. The authors mention: "This difference likely stems from lower variance between replicates in the present study, which increases power", but I couldn't find the data.

      We now report the correlations between RNA and DNA replicates within the current dataset and within the Lea et al., 2018 dataset (Figure 1-figure supplement 6). The between-replicate correlations in both our RNA libraries and DNA libraries are consistently high (r ≥ 0.89).

      3) The correlation between the previous and current K562 datasets is surprisingly low. Given that these datasets were generated in the same cell type, in the same lab, and using the same protocol, I expected a higher correlation, as seen in other massively parallel reporter assays. The fact that the correlations are almost identical for a comparison of the same cell and a comparison of very different cell types is also suspicious.

      Thanks for raising this point. We think it is in reference to our original Figure 1-Figure supplement 6, for which we now provide Pearson correlations in addition to R2 values (now Figure 1-Figure supplement 8). We note that this is not a correlation in raw data, but rather the correlation in estimated effect sizes from a statistical model for methylation-dependent activity. We now provide Pearson correlations for the raw data between replicates within each dataset (Figure 1-Figure supplement 6), which for the baseline dataset are all r > 0.89 for RNA replicates and r > 0.98 for DNA replicates, showing that replicate reproducibility in this study is on par with other published studies (e.g., Klein et al., 2020 report r > 0.89 for RNA replicates and r > 0.91 for DNA replicates).

      We do not know of any comparable reports in other MPRAs for effect size correlations between two separately constructed libraries, so it’s unclear to us what the expectation should be. However, we note that all effect sizes are estimated with uncertainty, so it would be surprising to us to observe a very high correlation for effect sizes in two experiments, with two independently constructed libraries (i.e., with different DNA fragments), run several years apart—especially given the importance of winner’s curse effects and other phenomena that affect point estimates of effect sizes. Nevertheless, we find that regions we identify as regulatory elements in this study are 74-fold more likely to have been identified as regulatory elements in Lea et al., 2018 (p < 1 x10-300).

      4) The authors cite Johnson et al. 2018 to support their finding that merely 0.073% of the human genome shows activity (1.7% of 4.3%), but:

      a. the percent cited is incorrect: this study found that 27,498 out of 560 million regions (0.005%) were active, and not 0.165% as the authors report.

      We have modified the text to clarify the numerator and denominator used for the 0.165% estimate from Johnson et al 2018 (lines 175-176). The numerator is their union set of all basepairs showing regulatory activity in unstimulated cells, which is 5,547,090 basepairs. The denominator is the total length of the hg38 human genome, which is 3,298,912,062 basepairs.

      Notably, the denominator (the total human genome) is not 560 million—while Johnson et al (2018) tested 560 million unique ~400 basepair fragments, these fragments were overlapping, such that the 560 million fragments covered the human genome 59 times (i.e., 59x coverage).

      b. other studies that used massively parallel reporter assays report substantially higher percentages, suggesting that the current study is possibly underpowered. Indeed, the previous mSTARR-seq found a substantially larger percentage of regions showing regulatory activity (8%). The current study should be compared against other studies (preferably those that did not filter for putatively active sequences, or at least to the random genomic sequences used in these studies).

      We appreciate this point and have double checked comparisons to Johnson et al., 2018 and Lea et al., 2018. Our numbers are not unusual relative to Johnson et al., 2018 (0.165%), which surveyed the whole genome. Also, in comparing to the data from Lea et al., 2018, when processed in an identical manner (our criteria are more stringent here), our values of the percent of the tested genome showing significant regulatory activity are also similar: 0.108% in the Lea et al., 2018 dataset versus 0.082% in the baseline dataset. Finally, our rarefaction analyses (see our responses above) indicate that we are not underpowered based on sequencing depth for RNA or DNA samples. We also note that there are several differences in our analysis pipeline from other studies: we use more technical replicates than is typical (compare to 2-5 replicates in Arnold et al., 2013; Johnson et al., 2018; Muerdter et al., 2018), we measure DNA library composition based on DNA extracted from each replicate post-transfection (as opposed to basing it on the pre-transfection library: [Johnson et al., 2018], and we use linear mixed models to identify regulatory activity as opposed to binomial tests [Johnson et al., 2018; Arnold et al., 2013; Muerdter et al., 2018].

      I find it confusing that the four sets of CpG positions used: EPIC, RRBS, NR3C1, and random control loci, add up together to 27.3M CpG positions. Do the 600 bp windows around each of these positions sufficient to result in whole-genome coverage? If so, a clear explanation of how this is achieved should be added.

      Thanks for this comment. Although our sequencing data are enriched for reads that cover these targeted sites, the original capture to create the input library included some off target reads (as is typical of most capture experiments, which are rarely 100% efficient). We then sequenced at such high depth that we ultimately obtained sequencing coverage that encompassed nearly the whole genome. We now clarify in the main text that our protocol assesses 27.3 million CpG sites by assessing 600 bp windows encompassing 93.5% of all genomic CpG sites (line 89), which includes off-target sites (line 149).

      scatter plot showing the RNA to DNA ratios of the methylated (x-axis) vs unmethylated (y-axis) library would be informative. I expect to see a shift up from the x=y diagonal in the unmethylated values.

      We have added a supplementary figure showing this information, which shows the expected shift upwards (Figure 1-figure supplement 9).

      Another important figure missing is a histogram showing the ratios between the unmethylated and methylated libraries for all active windows, with the significantly differentially active windows marked.

      We have added a supplementary figure showing this information (Figure 1-Supplementary Figure 10).

      Perhaps I missed it, but what is the distribution of effect sizes (differential activity) following the various stimuli?

      This information is provided in table form in Supplementary Files 3, 10, and 11, which we now reference in the Figure 2 legend (lines 365-366).

      Minor changes

      It is unclear what the lines connecting the two groups in Fig.3C represent, as these are two separate groups of regions.

      We now clarify in the figure legend that values connected by a line are the same regions, not two different sets of regions. They show the correlation between DNA methylation and gene expression at mSTARR-seq-identified enhancers in individuals before and after IAV stimulation, separately for enhancers that are shared between conditions (left) versus those that are IFNAspecific (right). The two plots therefore do show two different sets of regions, which we have depicted to visualize the contrast in the effect of stimulation on the correlation on IFNA-specific enhancers versus shared enhancers. We have revised the figure legend to clarify these points (line 458-460).

      L235-242 are unclear. Specifically - isn't the same filter mentioned in L241-242 applied to all regions?

      Yes, the same filter for minimal RNA transcription was applied to all regions. We have modified the text (lines 264-265, 271, 275-277) to clarify that the enrichment analyses were performed twice, to test whether the target types were: 1) enriched in the dataset passing the RNA filter (i.e., the dataset showing plasmid-derived RNA reads in at least half the sham or methylated replicates; n = 216,091 windows) and 2) enriched in the set of windows showing significant regulatory activity (at FDR < 1%; n = 3,721 windows).

      To improve cohesiveness, the section about most CpG sites associated with early life adversity not showing regulatory activity in K562s can be moved to the supplementary in my opinion.

      Thank you for this suggestion. Because ELA and the biological embedding hypothesis (via DNA methylation) were major motivations for our analysis (see Introduction lines 42-48; 75-79), and we also discuss these results in the Discussion (lines 518-520), we have respectfully elected to retain this section in the main manuscript. We have added text in the Discussion explaining why we think experimental tests of methylation effects on regulation are relevant to the literature on early life adversity (lines 520-522), and have added discussion on limits to these analyses (lines 527-533).

      References:

      Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 339, 1074-1077.

      Cecil CA, Zhang Y, Nolte T (2020) Childhood maltreatment and DNA methylation: A systematic review. Neuroscience & Biobehavioral Reviews, 112, 392-409.

      Dubois M, Louvel S, Le Goff A, Guaspare C, Allard P (2019) Epigenetics in the public sphere: interdisciplinary perspectives. Environmental Epigenetics, 5, dvz019.

      Eisenberger NI, Cole SW (2012) Social neuroscience and health: neurophysiological mechanisms linking social ties with physical health. Nature neuroscience, 15, 669-674.

      Houtepen L, Hardy R, Maddock J, Kuh D, Anderson E, Relton C, Suderman M, Howe L (2018) Childhood adversity and DNA methylation in two population-based cohorts. Translational Psychiatry, 8, 1-12.

      Johnson GD, Barrera A, McDowell IC, D’Ippolito AM, Majoros WH, Vockley CM, Wang X, Allen AS, Reddy TE (2018) Human genome-wide measurement of drug-responsive regulatory activity. Nature communications, 9, 1-9.

      Klein JC, Agarwal V, Inoue F, Keith A, Martin B, Kircher M, Ahituv N, Shendure J (2020) A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nature Methods, 17, 1083-1091.

      Koss KJ, Gunnar MR (2018) Annual research review: Early adversity, the hypothalamic–pituitary– adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59, 327-346.

      Marzi SJ, Sugden K, Arseneault L, Belsky DW, Burrage J, Corcoran DL, Danese A, Fisher HL, Hannon E, Moffitt TE (2018) Analysis of DNA methylation in young people: limited evidence for an association between victimization stress and epigenetic variation in blood. American journal of psychiatry, 175, 517-529.

      Muerdter F, Boryń ŁM, Woodfin AR, Neumayr C, Rath M, Zabidi MA, Pagani M, Haberle V, Kazmar T, Catarino RR (2018) Resolving systematic errors in widely used enhancer activity assays in human cells. Nature methods, 15, 141-149.

    1. There are however, areas of knowledge and human experience that the methods of science cannot be applied to. These include such things as answering purely moral questions, aesthetic questions, or what can be generally categorized as spiritual questions.

      This is my tricky or troubling fact. I think it may just be purely human to wonder about the afterlife and we like to create ideas and follow religion but were blindly following in a sense. As a religious person I myself don't know more about the afterlife than the next person does. And the fact that science cannot prove what is and isn't involved in the afterlife is troubling to say the least.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      1) Can the authors statistically define the egg-laying classes? In some parts of the manuscript, the division between the different classes could be more ambiguous. I understand that the class III strains are divided by the kcnl-1 genotype, but given the different results for diverse traits, it could be more clear to keep them as one class. Also, overall, the authors choose a collection of 15 strains across the different classes to phenotype for many traits and perform genome edits. It is understandable that they cannot test all strains, but given the variation across traits and classes, it might be good to add a few more caveats about how these strains might not be representative of all strains across the species.

      Response: The egg-laying classes were defined as in Figure 1A by arbitrarily chosen cut-offs (at 10, 10-25, and 25 eggs in utero) to simplify subsequent analyses. We added this explanation to the first paragraph of the results section. However, the differences in average egg retention are significantly different between the four defined classes using the 15 selected strains (Fig. 2A).

      We think that the distinction between Class IIIA and IIIB strains is important and justified because the two Classes significantly differ in mean egg retention (Fig. 2A) and because Class IIIB harbour the large-effect variant KCNL-1 V530L whereas Class IIIA do not.

      We agree that the 15 selected strains are not necessarily representative of all strains across the species. We have added a note of caution regarding this point to the first paragraph of the section “Temporal progression of egg retention and internal hatching”: “Note that this strain selection, especially concerning the largest Class II, is unlikely to reflect the overall strain diversity observed across the species". In addition, we have reworded the first sentence of this paragraph as follows: “ To better characterize natural variation in C. elegans egg retention, we focused on a subset of 15 strains from divergent phenotypic Classes I-III, with an emphasis on Class III strains exhibiting strong egg retention (at mid-L4 + 30h) (Fig. 2A and 2B).”

      2) For the GWAS experiments, the authors should describe if any of the QTL overlap with hyper-divergent regions in the strain set. The QTL could be driven by these less well defined regions.

      Response: We have added the following sentence: “The three QTLs do not align with any of the recently identified hyper-divergent regions of the genome (Lee et al., 2021).

      3) The authors should look at correlations between the mod-5(n822) edit phenotypes and the exogenous 5-HT and SSRI phenotypes to demonstrate how the traits can differ. Some correlation plots might help that point as well.

      Response: We examined all possible correlations as suggested: none are significant and strain effects on trait differences are idiosyncratic, as written in our results section. The correlational analyses remain of limited value due to small samples: N=10 for mean strain values for measured phenotypes. We therefore feel that these analyses do not provide any additional insights beyond our figures (4C, 4D, 5C, 5D, S5A-C ) and our statement on page 15: “As in previous experiments (Fig. 4C and 5C), we find again that strains sharing the same egg retention phenotype may differ strongly in egg-laying behaviour in response to modulation of both exo- and endogenous serotonin levels (Class IIIA: ED3005 and JU2829) (Fig. 5D and S5C).”

      4) Figure 6D, was there any censoring of the data? Normally, these types of studies are plagued by an increase in censored animals that can decrease significance. The effects among the classes seem large, but statistical comparisons might help as well.

      Response: There was no censoring of animals (censoring of animals in lifespan studies is usually done by removing “bags of worms”, which here was our study phenotype). We now mention this in the corresponding figure legend. We also added a statistical analysis showing that mean survival was significantly different between all Classes.

      5) Many of the traits, edits, and deeper analyses are performed on the JU751 genetic background. This choice is sensible, otherwise, the work can increase exponentially. However, the authors should add a caveat about how these results might be limited to JU751 and other strains might respond differently.

      Response: For certain experiments, it was not feasible to include multiple strains from all phenotypic classes, so we selected JU751 (Class IIIB) and JU1200 (Class II), for which we had established CRISPR-engineered lines to modulate the egg retention phenotype by a single amino acid change in KCNL-1. To emphasize that these experimental observations cannot be generalized, we added the following statement in the relevant results section: “These experimental results offer preliminary evidence (bearing in mind that our analysis was primarily centered on a single genetic background) that laying of advanced-stage embryos may enhance intraspecific competitive ability, particularly in scenarios where multiple genotypes compete for colonization and exploitation of limited, patchily distributed resources.”

      6) The authors argue that evolution could be acting on specific parts of the egg-laying machinery (e.g., muscledirected signaling components). It might be useful to look at levels of standing variation and selection at groups of loci compared to genomic controls to see if this conclusion can be strengthened.

      Response: This is a good idea but how to select pertinent candidate loci is unclear (there are over 300 genes with effects on egg laying, www.wormbase.org). In addition, the genetics of muscle-directed signalling components in egg laying is only starting to be explored, with no specific candidate genes having been identified (Medrano & Collins, 2023, Curr Biol). We therefore think that such an analysis is currently not possible.

      7) Completely optional: The authors present a compelling and interesting case for transitions and trade-offs between oviparity and viviparity. The C. vivipara species has a different egg-laying mode than other Caenorhabditis species. The authors could add a short section describing their expectations about the neuronal morphology, 5-HT circuits, and muscle function in this species given their results. What genes or circuits should be the focus of future studies to address this question in Caenorhabditis. Also, Loer and Rivard present some similar ideas based on the differences in 5-HT staining neurons across diverse nematodes. Those results can be incorporated and discussed as well.

      Response: Our current research focuses on the evolution of egg laying in different Caenorhabditis species. So far, however, it remains difficult to provide specific hypotheses on how the egg-laying circuit has changed in C. vivipara. We rephrased the final paragraph of the discussion to incorporate some of the reviewer’s suggestions: “Nematodes display frequent transitions from oviparity to obligate viviparity in many distinct genera (Sudhaus, 1976; Ostrovsky et al., 2015), including in the genus Caenorhabditis, with at least one viviparous species, C. vivipara (Stevens et al., 2019). Although evidence exists for the evolution of egg-laying circuitry across oviparous Caenorhabditis species (Loer and Rivard, 2007), the specific cellular and genetic changes responsible for the transition to obligate viviparity in C. vivipara have yet to be examined. Resolving the genetic basis of intraspecific variation in C. elegans egg retention, including partial or facultative viviparity, may thus shed light on the molecular changes underlying the initial steps of evolutionary transitions from oviparity to obligate viviparity in invertebrates.”

      Specific edits:

      1) Perhaps a silly point, but "parity" (to my knowledge) does not have a biological meaning on its own. I suggest "egg-laying mode" or "birth mode".

      Response: This term has been used previously in the literature (e.g.https://onlinelibrary.wiley.com/doi/10.1111/jeb.13886 or https://doi.org/10.1101/2023.10.22.563505). However, as the referee rightly points out, this is not a standard term. We therefore replaced “parity mode” with “egg-laying mode”.

      2) "Against fluctuating environmental fluctuations" is a bit strange

      Response: Corrected.

      3) The first publications of Egl mutants were by the Horvitz lab so some citations are not in all of the first descriptions of the trait (early in Results)

      Response: We have added the relevant work (Trent 1982, Trent 1983, Desai & Horvitz 1989) to this paragraph in the early results section.

      4) "Strong egg retention usually strongly..." is a bit strange

      Response: Corrected.

      1. Figure 8G font looks smaller than the others.

      Response: Corrected.

      Reviewer #2:

      1) In Figure 1A, I infer that in the graph class I measurements are represented by dark blue dots and class II by purple dots. I am having a really hard time distinguishing between these two colors in the graph. In the pie chart I have no problem, but in the graph the black lines around the colored dots seem to obscure the colors. Not sure how to fix this graphical problem, but it is preventing the graph from communicating the results effectively.

      Response: We have changed the colours, spacing and format of this figure to resolve this problem.

      2) The behavioral analysis of Figure 3B-3F is problematic. The experimental methods used and the interpretation of the results each have issues. This is cause for concern since this is the most direct analysis of the actual variations in egg-laying behavior across strains presented in this paper.

      This experiment is modeled after the work of Waggoner et al. 1998, who recorded egg laying events of individual worms on video over several hours and noted the exact time of individual egg laying events. Waggoner et al. found in the reference C. elegans strain N2 that egg-laying events occurred in ~2 minute clusters ("active phases") separated by ~20 minute silent periods ("inactive phases"). Mignerot et al. did not take continuous videos of animals, but rather examined plates bearing a single worm only every 5 minutes and noted the number of new eggs that appeared on the plate in each 5-minute interval. From these data, the authors claim they have measured the intervals between "egg-laying phases" (the term used in the Figure 3 legend). In the Results, the authors explicitly claim they are measuring the timing and frequency of actual active and inactive egg-laying phases. Apparently, all the eggs laid within one 5-minute interval are considered to have been laid in a single active phase, and the time between 5-minute intervals containing egg laying events is considered an "inactive phase" and is measured only with a resolution of 5 minutes. It is not explained anywhere how the authors handle the situation of seeing eggs laid in two consecutive 5-minute intervals. Is that one active phase that is 10 minutes long, or is that two separate active phases with a 5-minute active phase in between? Because of this ambiguity in how they define active and inactive phases, I find it impossible to understand and judge the data presented in Fig. 3D-3F. The authors in the results state that "Class I and Class IIIB displayed significantly accelerated and reduced egg laying activity respectively (Fig. 3C to 3E)" . I assume they are referring to the statistical analysis described in the figure legend, which is quite difficult to understand. Frankly, just looking at the graphs in Fig. 3D3F, it is hard for the reader to identify specific features shown in the graphs can explain why, for example, Class I strains have fewer retained eggs than Class III strains. So, I found this analysis very unsatisfying.

      I also feel the authors are making an unwarranted assumption that their non-N2 strains will have distinguishable active and inactive phases of egg-laying behavior analogous to those seen in the N2 strain. Given the possibly large variations in egg-laying behavior in the various strains examined, that assumption should be questioned. Thus, framing the entire analysis of behavior patterns in terms of the length of active and inactive phases might not be appropriate.

      Response: This comment validly highlights important problems and limitations of our scan-sampling method to quantify strain differences in egg-laying behaviour. We acknowledge that we failed to present the data with due diligence, and clarity regarding terminology and interpretation. However, we think that some of these results are still of value after revised presentation. Our biggest mistake was to use the terms “active and inactive phase”, as coined by Waggoner et al. 1998. We are aware that our measures are not equivalent to these previously defined measures but have been sloppy with terminology. We therefore carefully reworded this entire results section, using clear definitions to indicate differences between the Waggoner assay and our assay (including a graphical representation of our assay design in the revised Fig. 3B). In brief, our simplified assay is useful to estimate the frequency and approximate duration of prolonged inactive periods of egg laying because we can unambiguously determine intervals in which eggs were laid or not. In contrast, as pointed out by the reviewer, we cannot determine if multiple active phases occurred within a 5-min interval, nor can we estimate the duration of an active “phase”. We now state this limitation explicitly in the manuscript. What our results do show is that the number of intervals during which egg laying occurred is significantly different between strains and Classes: Class I (low retention) have a higher number of intervals with egg-laying events, whereas Class IIIB showed a reduced number of such events (Fig. 3D). We can therefore also roughly estimate the mean time (per individual) between two egg-laying intervals, giving us a proxy for prolonged periods when egg-laying is inactive (Fig. 3E); we note that our estimate for N2 is very close to what has been previously measured (~20 min). Therefore, we can confidently conclude that there are natural strains which have both shorter (Class I) and longer (Class IIIB) inactive periods of egg laying. These results partly align with observed variation in egg retention. However, we agree with the reviewer – as we had stated both in results and discussion sections – that these behavioural differences act together with differences in the sensing of egg accumulation in utero (as suggested by results shown in Fig. 3G and 3H). We also agree that it seems very plausible that the observed behavioural differences, as revealed by scan-sampling, may only have a secondary role in accounting for natural variation in egg retention. We will be testing these hypotheses specifically in our future research.

      Note: The statistical analyses are nested ANOVAs to ask (a) does the value differ between strains within a given class and (b) does the value differ between Classes? Classes labelled with different letters in the figures therefore significantly differ in their mean values, demonstrating that measured behavioural phenotypes consistently differ between some (but not all) phenotypic classes, yet largely in line with their egg retention phenotypes (Fig. 3D and 3E).

      3) Figure 4A is a schematic diagram of how the egg-laying circuit works based on previous literature, and the authors cite Collins et al. 2015 and Kopchock et al. 2021 as their sources. One feature of this figure seems unwarranted, namely the part indicating that egg accumulation acts on the UM muscles, and the statement in the legend that "mechanical excitation of uterine muscles (UM) in response to egg accumulation favours exit from the inactive state (Collins et al., 2016)". I believe Collins et al. 2016 showed that egg accumulation favors egg laying and may have speculated that it does so by stretching the um muscles, but this idea remains speculative and has not been established by any experimental data. I point out this issue,in particular, because it may bear on the nice data the authors of this manuscript show in Figure 3G and 3H, which show that some strains accumulate many eggs in the uterus before they initiate egg laying.

      Also, in Figure 4A and 4B, the legend does not explain the logic of the green areas labeled "egg-laying active phase" and the yellow area labeled "egg-laying inactive state". I was not sure what sure how to interpret these features of the graphics.

      Response: The input from uterine muscles remains indeed hypothetical, and we have corrected the figure accordingly, now simply referring to the feedback of egg accumulation on egg laying activity, as recently characterized in more detail by Medrano & Collins (2023, Curr Biol).

      The green/yellow backgrounds shown in figures 4A (and 4B) are not useful and we have removed them.

      4) Results, page 11: "We used standard assays, in which animals are reared in liquid M9 buffer without bacterial food." In the standard assays, animals are reared on NGM agar plates with bacterial food, and then at the start of the egg-laying assay, are transferred to liquid M9 buffer without bacterial food. I assume that is what these authors did, and they should correct the language of the text to make it more accurate.

      Response: The reviewer is correct. We have incorporated this change to improve accuracy.

      5) The authors note that "serotonin induced a much stronger egg-laying responds in the Class IIIA strain ED3005 than in other strains (Fig. 4C)". I would like to point out to the authors that strains such as ED3005 that have a very large number of unlaid eggs in their uterus are prone to lay a very large number of eggs when treated with exogenous serotonin, simply for the trivial reason that they have more eggs to release. This was previously seen in, for example, in Desai and Horvitz (1989) in certain egg-laying defective mutants.

      Response: This is an important point and our comparison of ED3005 to ALL other strains is problematic. We changed this result description by stating that ED3005 shows possible serotonin hypersensitivity compared to strains with similar levels of egg retention (Class IIIA): “In addition, serotonin induced a much stronger egg-laying response in the strain ED3005 than in other Class IIIA strains with similar levels of egg retention (Fig. 4B). ED3005 may thus exhibit serotonin hypersensitivity, which has been observed in certain egg-laying mutants where perturbed synaptic transmission impacts serotonin signalling (Schafer and Kenyon, 1995; Schafer et al., 1996).”

      6) In Figure 4 the authors show that all strains lay eggs in response to fluoxetine and imipramine, but some strains (Class IIIB) do not lay eggs in response to serotonin. They then cite a series of papers, starting with Trent et al. 1983, that they claim show that this specific phenotype demonstrates that the HSN neurons are functionally releasing serotonin (bottom of page 11). This statement needs to be removed - it is incorrect. It is true that egg laying in response to fluoxetine and/or imipramine AS WELL AS egg laying in response to serotonin has been interpreted as indicating the presence of HSN neurons that functionally release serotonin to stimulate egg laying (these were referred to as Category C by Trent et al., 1983). However, the mutants that Mignerot et al. are talking about (those that don't respond to serotonin but do respond to imipramine/fluoxetine) were called Category D by Trent et al., 1983, and to my knowledge these have never been interpreted as necessarily having functionally intact HSN neurons. Mutants such as these that can lay eggs in some circumstances but cannot lay eggs in response to exogenous serotonin have usually been interpreted as having egg-laying muscles that are defective in responding to serotonin.

      How can we interpret strains that respond to imipramine/fluoxetine and not serotonin? Mignerot et al. cite some of the papers (Kullyev et al. 2010; Wenishenker et al., 1999; Yue et al., 2018) showing that imipramine and fluoxetene have off-target effects and can stimulate egg laying by acting through proteins other than the serotonin-reuptake inhibitor. The authors later in their discussion at the top of Page 24 also cite Dempsey et al 2005, a paper that also argues that imipramine and fluoxetene act via off target effects. However, currently in Figure 4B Mignerot et al. emphasize that the serotonin reuptake inhibitor is the target of these drugs. Since the results presented for Class IIIB strains are not in accord with this interpretation, this seems misleading to me. The bottom line for me is that class IIIB strains cannot respond to exogenous serotonin, but can lay eggs in other conditions, so perhaps there is something specifically wrong with their ability to respond to serotonin.

      Response: We thank the reviewer for this important comment – we misinterpreted some of these past findings and our statements were either inexact or incorrect. We have revised this section accordingly: “Both drugs also stimulated egg laying in the Class IIIB strains and the Class IIIA strain JU2829 for which exogenous serotonin either inhibited egg laying or had no effect on it (Fig. 4B). In the past, mutants unresponsive to serotonin yet responsive to other drugs, including fluoxetine and imipramine, have been interpreted as being defective in the serotonin response of vulval muscles (Trent et al., 1983; Reiner et al., 1995; Weinshenker et al., 1995). This is indeed the likely case of Class IIIB strains carrying the KCNL-1 V530L variant thought to specifically reduce excitability of vulval muscles (Vigne et al., 2021). Our results therefore suggest that JU2829 (Class IIIA) may exhibit a similar defect in vulval muscle activation via serotonin caused by an alternative genetic change. Overall, these pharmacological assays do not allow us to conclude if and how HSN function has diverged among strains because the mode of action and targets of tested drugs has not been fully resolved. Nevertheless, our results are consistent with previous models proposing that these drugs do not simply block serotonin reuptake but can stimulate egg laying, to some extent, through mechanisms independent of serotonergic signaling (Trent et al., 1983; Desai and Horvitz, 1989; Reiner et al., 1995; Weinshenker et al., 1995, 1999; Dempsey et al., 2005; Kullyev et al., 2010; Branicky et al., 2014; Yue et al., 2018).”

      We removed the oversimplified Fig. 4B to avoid any misinterpretation.

      8) In Figure 7B and 7C, the authors should add some type of error bars to the graphs to and give the readers an idea of whether the differences between strains that they write about are statistically significant or not.

      Response: These are frequency data to describe temporal dynamics of hatching (N=45-72 eggs per strain) (Fig. 7B) and development in single cohorts (N=48-177 eggs per strain) (Fig. 7C), hence, the absence of error bars.

      We agree that this representation of the data is not very telling. We therefore changed the data representation in these two figures to show that there are clear, statistically significant, negative correlations between egg retention and time to hatching / egg-to-adult developmental time.

      9) When the authors reference a list of papers in a single list, e.g. "(Burton et al., 2021; Fausett et al., 2021; Garsin et al., 2001; Padilla et al., 2002; Van Voorhies and Ward, 2000)" they seem to do so in alphabetical order by the first author's last name. I believe the usual practice is to list references by year of publication, with the earliest first.

      Response: We corrected citation style according to eLIFE format.

      10) At the top of page 24, the authors write "It seems unlikely, however, that any of these variants strongly alter central function of HSN and HSN-mediated signalling because fluoxetine and imipramine, known to act via HSN (Dempsey et al., 2005; Trent et al., 1983; Weinshenker et al., 1995), triggered a robust stimulatory effect on egg laying in all examined strains (Fig. 4C)." I believe that the Weinshenker paper in fact showed that imipramine does not act via the HSN, and the Dempsey paper suggested that both drugs can act at least in part independently of the HSN. Therefore, the authors should revise their statement.

      Response: We have removed the sentence.

      Reviewing Editor:

      Minor suggestions:

      1) p. 2, fifth line from bottom: "lead" instead of "leads";

      2) p. 2, last line: "muscle" instead of "muscles";

      3) p. 3, first full paragraph, 17th line: "populations" instead of "population";

      4) p. 5, fourth line from bottom: Delete first comma;

      5) p. 6, Figure 1D: "of" instead of "off";

      6) p. 7, fifth line: "KCNL-1";

      7) p. 9, third paragraph, second line: please clarify "late mid-L4";

      8) p. 16, first line: "exogenous";

      9) p 20, first paragraph, beginning of second sentence: "Whether" instead of "If";

      10) p. 22, ninth line from bottom: delete "shaped by";

      11) p. 23, last paragraph, third and eighth lines from bottom: change "between" to "among"

      Response: Thank you. All corrected.

      Additional changes:

      Figure 5A: We removed figure 5A showing a cartoon of mod-5/SERT and its effects on serotonin signalling. This figure was incorrectly showing that MOD-5 is expressed in HSN (Jafari et al 2011 J. Neuroscience, Hammarlund et al 2018 Neuron).

      Abstract: We reworded the abstract to reduce its length.

    1. While regulation is outside the control of the hotel industry, the brand and the customer experience are not. We contend that these are the areas where hotel companies’ efforts need to be focused. Hotels need to re-think the brand promise, both for the parent brand as well as individual brands in the portfolio, and how it defines and shapes the guest experience.

      There is potential to annotate insights related to guest satisfaction and experience. Hotels may focus on personalized services or unique offerings to compete with the unique experiences often associated with Airbnb. This could be an area for further exploration.

    1. While many may benefit from it, itleads to suffering for others.

      I think some of these models were created with good intentions, but as we have seen, it depends on who is using it and how.

    1. When someone presents themselves as open and as sharing their vulnerabilities with us, it makes the connection feel authentic. We feel like they have entangled their wellbeing with ours by sharing their vulnerabilities with us.

      I think it is true, when someones reveals their vulnerabilities, it is a sign of showing non-threating and authentic. It is the rule from the ancient time, but now the situations may be more complicated. Showing vulnerabilities may be suspected as fake, an action to gain trust, and if someone really shows vulnerabiities, his/her competitors may use them to take advantages of the person. In other word, people are harder to get authentic connections these days.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public Review):

      The authors of the manuscript "High-resolution kinetics of herbivore-induced plant volatile transfer reveal tightly clocked responses in neighboring plants" assessed the effects of herbivory induced maize volatiles on receiver plants over a period of time in order to assess the dynamics of the responses of receiver plants. Different volatile compound classes were measured over a period of time using PTR-ToF-MS and GC-MS, under both natural light:dark conditions, and continuous light. They also measured gene expression of related genes as well as defense related phytohormones. The effects of a secondary exposure to GLVs on primed receiver plants was also measured.

      The paper addresses some interesting points, however some questions arise regarding some of the methods employed. Firstly, I am wondering why VOCs (as measured by GC-MS) were not quantified. While I understand that quantification is time consuming and requires more work, it allows for comparisons to be made between lines of the same species, as well as across other literature on the subject. Simply relying on the area under the curve and presenting results using arbitrary units is not enough for analyses like these. AU values do not allow for conclusions regarding total quantities, and while I understand that this is not the main focus of this paper, it raises a lot of uncertainty for readers (for example, the references cited show that TMTT has been found to accumulate at similar levels of caryophyllene, however the AU values reported are an order of magnitude higher for TMTT. Again, without actual quantification this is meaningless, but for readers it is confusing).

      With regards to the correlation analyses shown in figure 6, the results presented in many of the correlation plots are not actually informative. While there is a trend, I do not think that this is an appropriate way to show the data, as there are clearly other relationships at play. The comparison between plants under continuous light and normal light:dark conditions is interesting.

      This paper addresses a very interesting idea and I look forward to seeing further work that builds on these ideas.

      As mentioned in our previous response, we have added the quantification of GLVs in order to increase the comparability of our work to other studies.

      Regarding the comment about TMTT (only measured as internal pools), the purpose of the inclusion of these internal pool data, was simply to determine whether terpenes were accumulating in leaf tissue during the night when emissions are hindered (likely due to closed stomata). The data clearly show that internal terpene pools do not accumulate above daytime levels during darkness – this is further supported by gene expression data that show downregulation of terpene synthase genes during darkness. While quantification would certainly increase the ability to compare internal pools, it would not change the interpretation of our results. Also note that absolute quantification is challenging for compounds such as TMTT, which are not readily available.

      Regarding the comment on Figure 6, while we agree there may be interesting patterns beyond linear relationships, as stated in our previous response, the purpose of our analysis was to determine if the higher terpene burst in receiver plants on the second day may be explained by sender plants emitting more GLVs on the second day. Figure 6 shows that this is not the case. Further analyses would not provide additional significant insights into the hypothesis that we tested here.

      We thank the reviewer for their overall positive outlook on our paper and for the constructive comments.

      Reviewer #2 (Public Review):

      The exact dynamics of responses to volatiles from herbivore-attacked neighbouring plants have been little studied so far. Also, we still lack evidence whether herbivore-induced plant volatiles (HIPVs) induce or prime plant defences of neighbours. The authors investigated the volatile emission patterns of receiver plants that respond to the volatile emission of neighbouring sender plants which are fed upon by herbivorous caterpillars. They applied a very elegant approach (more rigorous than the current state-of-the-art) to monitor temporal response patterns of neighbouring plants to HIPVs by measuring volatile emissions of senders and receivers, senders only and receivers only. Different terpenoids were produced within 2 h of such exposure in receiver plants, but not during the dark phase. Once the light turned on again, large amounts of terpenoids were released from the receiver plants. This may indicate a delayed terpene burst, but terpenoids may also be induced by the sudden change in light. As one contrasting control, the authors also studied the time-delay in volatile emission when plants were just kept under continuous light. Here they also found a delayed terpenoid production, but this seemed to be lower compared to the plants exposed to the day-night-cycle. Another helpful control was now performed for the revision in which the herbivory treatment was started in the evening hours and lights were left on. This experiment revealed that the burst of terpenoid emission indeed shifted somewhat. Circadiane and diurnal processes must thus interact.

      Interestingly, internal terpene pools of one of the leaves tested here remained more comparable between night and day, indicating that their pools stay higher in plants exposed to HIPVs. In contrast, terpene synthases were only induced during the light-phase, not in the dark-phase. Moreover, jasmonates were only significantly induced 22 h after onset of the volatile exposure and thus parallel with the burst of terpene release.

      An additional experiment exposing plants to the green leaf volatile (glv) (Z)-3-hexenyl acetate revealed that plants can be primed by this glv, leading to a stronger terpene burst. The results are discussed with nice logic and considering potential ecological consequences. All data are now well discussed.

      Overall, this study provides intriguing insights in the potential interplay between priming and induction, which may co-occur, enhancing (indirect and direct) plant defence. Follow-up studies are suggested that may provide additional evidence.

      We thank the reviewer for their positive outlook on our paper and for their constructive comments.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      The authors did a great job with the revision. The additional experiments strengthened their conclusions. Thanks also for performing the suggested test for potential differences in induction capacity at different times of day, the new data are very interesting.

      Thank you very much.

      Line 49-52: The newly added sentence could be clarified in wording.

      We will clarify the sentence.

      Line 254-255: The newly added sentence needs to be corrected. This is no full sentence and it is not clear what the authors wanted to say here.

      We will clarify this sentence.

      Figure 6: In those instances, in which the correlation is not significant, the line should not be shown.

      We will remove the lines when correlations are not significant.

      The names of chemical compounds and terpene synthases should be written in lower case letters (see legend Fig 6, e.g. hexenal, not Hexenal; legend fig. 2: terpene synthase, not Terpene synthase)

      In the last round of revisions, I commented on Line 23: consequences on community dynamics are not investigated here, so this is a bit misleading. ... Your response was "We have deleted the sentence about community dynamics ..." which, however, in fact was not done! Please change!

      Apologies for that, we will delete mention of community dynamics in that sentence (for real).


      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study examines the effects of herbivory-induced maize volatiles on neighboring plants and their responses over time. Measurements of volatile compound classes and gene expression in receiver plants exposed to these volatiles led to the conclusion that the delayed emission of certain terpenes in receiver plants after the onset of light may be a result of stress memory, highlighting the role of priming and induction in plant defenses triggered by herbivore-induced plant volatiles (HIPVs). Most experimental data are compelling but additional experiments and accurate quantifications of the compounds would be required to confirm some of the main claims.

      Response: We thank the editors for their overall positive feedback on our MS. We have added additional experiments to quantify green leaf volatile emissions in both sender plants and synthetic dispensers (Reviewer 1) and address the importance of the precise time of day plants are induced (Reviewer 2). These additions strengthen the main conclusions of our study.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors of the manuscript "High-resolution kinetics of herbivore-induced plant volatile transfer reveal tightly clocked responses in neighboring plants" assessed the effects of herbivory-induced maize volatiles on receiver plants over a period of time in order to assess the dynamics of the responses of receiver plants. Different volatile compound classes were measured over a period of time using PTR-ToF-MS and GC-MS, under both natural light:dark conditions, and continuous light. They also measured gene expression of related genes as well as defence-related phytohormones. The effects of a secondary exposure to GLVs on primed receiver plants were also measured.

      The paper addresses some interesting points, however, some questions arise regarding some of the methods employed. Firstly, I am wondering why VOCs (as measured by GC-MS) were not quantified. While I understand that quantification is time-consuming and requires more work, it allows for comparisons to be made between lines of the same species, as well as across other literature on the subject. As experiments with VOC dispensers were also used in this experiment, I find it even more baffling that the authors didn't confirm the concentration of the emission from the plants they used to make sure they matched. The references cited justifying the concentration used (saying it was within the range of GLVs emitted by their plants) to prepare the dispenser were for either a different variety of maize (delprim versus B73) or arabidopsis. Simply relying on the area under the curve and presenting results using arbitrary units is not enough for analyses like these.

      Response: We thank the reviewer for their comment. We have now quantified both the emission of dispensers and maize seedlings infested with 3 4th-instar Spodoptera exigua larvae. Averaged across 1 h, HAC dispensers emitted roughly 2x higher molar concentrations than total GLV molar concentrations emitted by plants infested by 3 caterpillars. Of note, GLV emissions induced by caterpillars vary over time, and can be more than 2-fold higher than the average during times of strong active feeding (Supplemental Fig 4). Thus, the release rate of the dispensers is well within the plant’s physiological range.

      Note that the references cited were included to support the claim of the biological activity of all three GLVs rather than to justify concentration of our dispensers. We have rephrased this sentence to reflect this (see L330-333).

      With regards to the correlation analyses shown in Figure 6, the results presented in many of the correlation plots are not actually informative. By blindly reporting the correlation coefficient important trends are being ignored, as there are clearly either bimodal relationships (e.g. upper left panel, HAC/TMTT, HAC/MNT) or even stranger relationships (e.g. upper left panel, IND/SQT, IND/MNT) that are not being well explained by a correlation plot. It is not appropriate to discuss the correlation factors presented here and to draw such strong conclusions on emission kinetics. The comparison between plants under continuous light and normal light:dark conditions is interesting, but I think there are better ways to examine these relationships, for example, multivariate analysis might reveal some patterns.

      Response: We thank the reviewer for their comment. With our analysis we aimed at testing specifically whether the high release of known bioactive volatiles (GLVs and indole) by sender plants on the second day can explain the higher terpene emissions in the receiver plants. We explicitly mention this in the text (L176-L186). Indeed, under normal light conditions (light and dark phase), there are clear positive correlations between the GLV release of sender plants and the terpene release of receiver plants over time (see also Fig 1 and Fig 5). However, under continuous light conditions, GLV emissions in sender plants no longer correlate with terpene emissions in receiver plants (also apparent by comparison of Fig 4 and Fig 5). This shows that temporal variation in GLV emissions are insufficient to explain the delayed terpene burst. This is the relevant conclusion we draw from this analysis. As presented, we find the data to provide strong evidence that the delayed burst in receiver plant terpene emissions cannot be solely explained by higher availability of active signals on the second day. The priming experiment in Figure 7 then provides a direct additional test for this concept. While more complex analyses could indeed reveal additional patterns, these would not be particularly informative for the question at hand.

      In Figure 2, the elevated concentrations of beta-caryophyllene found in the control plants at 8h and 16.75h measurement timepoints are curious. Is this something that is commonly seen in B73?

      Response: We thank the reviewer for this comment. A small number of untreated plants indeed accumulated β -caryophyllene at night, which is likely the result of biological variability between samples. Our plants were soil-grown, and it is for instance possible that variation in soil biota may account for this variability. Alternatively, some plants may have been slightly stressed during handling. Note that this variability does not affect any of the conclusions in our manuscript.

      While there can be discrepancies between emissions and compounds actually present within leaf tissue, it is a little bit odd that such high levels of b-caryophyllene were found at these timepoints, however, this is not reflected in the PTR-ToF-MS measurements of sesquiterpenes. It would be beneficial to include an overview of the mechanism of production and storage of sesquiterpenes in maize leaves, which would clarify why high amounts were found only in the GC-MS analysis and not the PTR-ToF-MS analysis, which is a more sensitive analytical tool. It is possible that the amounts of b-caryophyllene present in the leaf are actually extremely low, however as the values are not given as a concentration but rather arbitrary units, it is not possible to tell. I would include a line explaining what is seen with b-caryophyllene.

      Response: Thank you for this comment. It is important to note that accumulation in maize leaves can differ substantially from emission, especially at night when stomata are closed. This has been observed before in maize leaves (Seidl-Adams et al., 2015). As the reviewer suspects, earlier work indeed found that β-caryophyllene is a minor sesquiterpene compared to β-farnesene and α-bergamotene in B73 ( Block et al., 2018). The PTR-ToF-MS does not discriminate between terpenes with the same m/z and thus measures total sesquiterpene emissions. Given that sesquiterpene emissions are strongly regulated by stomatal aperture and that overall sesquiterpene accumulation in control plants is low, it is not surprising that we measure only minor amounts of sesquiterpene emissions in general, and in control plants in particular. We now text to the manuscript to explain these aspects (L116-L122). Block, A.K., Hunter, C.T., Rering, C. et al. Contrasting insect attraction and herbivore-induced plant volatile production in maize. Planta 248, 105–116 (2018).

      Seidl-Adams I, Richter A, Boomer KB, Yoshinaga N, Degenhardt J, Tumlinson JH. Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings. Plant Cell Environ. 38, 23-34 (2015).

      Additionally, it seems like the amounts of TMTT within the leaf are extraordinarily high (judging only by the au values given for scale), far higher than one would expect from maize.

      Response: We are unsure about the reviewer’s interpretation here. The AU values do not allow for conclusions regarding total quantities. An earlier study found that TMTT in induced B73 plants accumulates to similar amounts as β-caryophyllene (Block et al., 2018), thus it is not surprising to detect significant TMTT pools in induced maize leaves. It is important to note that the aim of the experiment here was to test the hypothesis that plants may be hyperaccumulating volatiles when the stomata are closed at night, which could potentially explain the delayed terpene burst on the second day. We do not observe such a hyperaccumulation, thus ruling out this as the primary factor responsible for the observed phenomenon. This is further supported by the continuous light experiments, where the delayed burst in terpene emission is not hindered by the lack of a dark phase.

      Block, A.K., Hunter, C.T., Rering, C. et al. Contrasting insect attraction and herbivore-induced plant volatile production in maize. Planta 248, 105–116 (2018).

      Reviewer #2 (Public Review):

      The exact dynamics of responses to volatiles from herbivore-attacked neighbouring plants have been little studied so far. Also, we still lack evidence of whether herbivore-induced plant volatiles (HIPVs) induce or prime plant defences of neighbours. The authors investigated the volatile emission patterns of receiver plants that respond to the volatile emission of neighbouring sender plants which are fed upon by herbivorous caterpillars. They applied a very elegant approach (more rigorous than the current state-of-the-art) to monitor temporal response patterns of neighbouring plants to HIPVs by measuring volatile emissions of senders and receivers, senders only and receivers only. Different terpenoids were produced within 2 h of such exposure in receiver plants, but not during the dark phase. Once the light turned on again, large amounts of terpenoids were released from the receiver plants. This may indicate a delayed terpene burst, but terpenoids may also be induced by the sudden change in light. A potential caveat exists with respect to the exact timing and the day-night cycle. The timing may be critical, i.e. at which time-point after onset of light herbivores were placed on the plants and how long the terpene emission lasted before the light was turned off. If the rhythm or a potential internal clock matters, then this information should also be highly relevant. Moreover, light on/off is a rather arbitrary treatment that is practical for experiments in the laboratory but which is not a very realistic setting. Particularly with regard to terpene emission, the sudden turning on of light instead of a smooth and continuous change to lighter conditions may trigger emission responses that are not found in nature.

      Response: We thank the reviewer for their comment. Although not explicitly mentioned it in the initial draft of the MS, we employed 15 min transition periods for light and dark phase transitions with a light intensity of 60 µmol m-2 s-1 (compared to 300 µmol m-2 s-1 at full light) to achieve a more gradual transition. We now included this information in the manuscript (L291-L292).

      As one contrasting control, the authors also studied the time-delay in volatile emission when plants were just kept under continuous light (just for the experiment or continuously?). Here they also found a delayed terpenoid production, but this seemed to be lower compared to the plants exposed to the day-night-cycle. Another helpful control would be to start the herbivory treatment in the evening hours and leave the light on. If then again plants only release volatiles after a 17 h delay, the response is indeed independent of the diurnal clock of the plant.

      Response: This is a very interesting point raised by the reviewer. We now conducted an additional experiment under continuous light where we started the herbivory treatment just before the start of the dark phase (ca. 20:00 PM). We found a similar pattern: a distinct delay in the highest burst. However, interestingly, the burst was shifted from 12-18 hr to 10-12 hr (Supplemental Fig 1). This burst aligned reasonably well with the point at which lights would normally be turned on again. In light of this, and, as the herbivore additions typically started ca. 5 hrs after the onset of light following a dark period (Figures 1-7), we wanted to rule out the possibility that the lack of a burst on the first day, was simply due to a difference in induction capacity depending on how shortly after the onset of light plants became exposed to GLVs. As such, we designed an additional experiment to examine whether exposure to GLVs immediately after the lights come on induce higher terpene emissions than plants exposed to GLVs ca. 5 hr after lights come on (Supplemental Fig 2). Interestingly, emissions across the terpenes were similar, regardless how long after the onset of lights on plants were exposed to GLVs. This suggests that the delayed burst is not due to the fact that, on the second day, plants are exposed to GLVs immediately after the lights come on whereas the first day they are only exposed 5 hr after the lights come on. Both continuous light experiments (normal timing and shifted timing) show bursts that occur slightly earlier than we observe with under normal day : night light conditions (L159-L166 and L207-L211), suggesting an interaction between circadian and diurnal processes. For instance, it is possible that plants would start producing volatiles slightly earlier than the onset of the day, however, light and stomatal opening limits the exact timing of the burst under normal light:dark transitions. The additional data provide further evidence for the delayed burst as a timed response in maize plants.

      Additionally, we have added explanation the continuous light figure legends that plants were grown under normal conditions and lights were only left on following treatment.

      Interestingly, internal terpene pools of one of the leaves tested here remained more comparable between night and day, indicating that their pools stay higher in plants exposed to HIPVs. In contrast, terpene synthases were only induced during the light-phase, not in the dark-phase. Moreover, jasmonates were only significantly induced 22 h after the onset of the volatile exposure and thus parallel with the burst of terpene release. An additional experiment exposing plants to the green leaf volatile (glv) (Z)-3-hexenyl acetate revealed that plants can be primed by this glv, leading to a stronger terpene burst. The results are discussed with nice logic and considering potential ecological consequences. Some data are not discussed, e.g. the jasmonate and gene induction pattern.

      Response: Thanks for this comment. We have added a sentence regarding the jasmonate data suggesting that, in addition to providing an additional layer of evidence for the observed delay, suggest that other JA-dependent defenses in maize may follow similar temporal patterns (L254-L257).

      Overall, this study provides intriguing insights into the potential interplay between priming and induction, which may co-occur, enhancing (indirect and direct) plant defence. Follow-up studies are suggested that may provide additional evidence.

      Reviewer #1 (Recommendations For The Authors):

      Could the authors please explain why they chose not to calculate concentrations for VOCs? Perhaps it is that B73 is a very unique variety in that it contains very high levels of TMTT, even in control plants? This should be clarified by the authors.

      Response: We address this comment in the public review portion

      For the legend within Figure 2, I would move it to be in the upper left or right corners of the figure. It is not easy to see in its current position.

      Response: We have moved the figure legend based on the reviewers recommendation

      Figures depicting PTR-ToF-MS data: add m/z values to either the figures themselves and/or the legends.

      Response: We have added m/z values to the legends and added molecular formulas of protonated compounds to each panel.

      Overall, here are some other suggestions: I am slightly weary of the term "clocked response". I'm not sure this is the correct fit for what you are trying to convey. I think "regulated" is a better term than "clocked". I understand that it is likely a stylistic choice to use this word, however, I advise reconsidering for the sake of clarity of the results.

      Response: Thank you. We find clocked to be an appropriate term, as it highlights the temporal aspect of the burst, and have thus left the title as is.

      Have another look at the references as some are not in the correct format (i.e., species not in italics).

      Response: We have checked and corrected the references

      Reviewer #2 (Recommendations For The Authors):

      Line 23: consequences on community dynamics are not investigated here, so this is a bit misleading.

      Last sentence of the abstract: It would be nice to read the answer to this long-standing question here.

      Response: We have deleted he sentence about community dynamics and provided a more concrete final sentence (L38-L40)

      Lines 48-50: The example does not fit so well with the first sentence and is not entirely clear (relation to temporal dynamics; similar to what?).

      Response: We have reworded the sentence for clarity (L49-L52)

      Line 56: "volatiles" should be plural.

      Response: Changed (L58)

      Line 58: "to be produced" rather than "to produce"

      Response: This seems a stylistic choice, and have left it as is.

      End of abstract: Did you have any hypotheses? These should be stated here.

      Response: The listing of hypotheses is also a stylistic choice, which is in some cases required by journals, but not eLife. As such we have not included a discrete list of hypotheses and instead describe what we aimed to investigate and what we found.

      Line 93: "This response disappeared at night." Does this mean: "No volatiles were emitted during night"? Or was this a gradual disappearance? How many hours after the onset of light did the herbivore treatment start and how many hours after the first emission of volatiles was the light turned off?

      Response: We have added when herbivory began (L92-L93) and changed the text to ‘as soon as light was restored’ (L97-L98).

      Line 93: "as soon as the night was over" means practically rather "as soon as the light was switched on".

      Response: See above

      Line 91: "small induction" - do you mean "low amounts of xxx"?

      Response: We mean a small induction. Terpene emission is relatively low (hence small), but still induced relative controls.

      Line 91: which mono- and sesquiterpenes were monitored?

      Response: It is PTR-ToF-MS a thus we cannot identify individual sesquiterpenes and monoterpenes (as they all have the same mass), and thus group them generally.

      Figure 1: What exactly is the "control"? And what does the vertical hatched line in the beginning represent?

      Response: We have defined the control and added a sentence describing the vertical hatched line

      "Black points represent the same but with undamaged sender plants" - what is "the same" here? I find that a bit confusing!

      Response: We have rephrased

      Line 104: how do you define an "overaccumulation"?

      Response: We have added ‘above daytime levels’ to clarify that we mean over daytime levels (L106)

      Why was the oldest developing leaf chosen? Is this the largest one when plants are two weeks old? How many leaves do they have then? Is this the leaf with the highest biomass?

      Response: We chose this leaf as it is the largest and also highly responsive to HIPVs. We have added this sentence (with a reference) in the methods section (L369-L370)

      Line 107: "started increasing after 3 hours" - they may already have started before. The following description also sounds like the dynamics were investigated here. However, instead the authors measured samples at four distinct time-points and cannot say whether something "began" or "remained" etc. The wording should be changed to a more appropriate description, describing the differences at a given time-point.

      Response: We changed the wording to ‘were marginally induced after 3 hr’ see L110

      Line 113: What do you mean by "delete BELOW NIGHTTIME levels"?

      Response: The word we used was ‘deplete’ to ‘drop’ (L116)

      Line 114: "the expression of terpene synthases" add "in the receiver plants exposed to HIPVs."

      Response: Added

      Figure 2ff: The situation of receiver plants exposed to control plant volatiles is not explained in the method section and also not depicted in the Suppl. Fig. 1. Here, the sender plants seem to always have been induced (if the red star-like structure should resemble an induction - a legend may be helpful here).

      Response: We have changed to ‘connected to undamaged sender plants’. We additionally added a sentence to the methods section describing controls L300

      Line 140: This treatment is not described in the methods section. Were the plants only kept under constant conditions for the 2 experimental days? Compared to the induction shown in Fig. 1, the amount of released volatiles seems less here.

      Response: We have added explanation of this to the figure legends, explaining that plants were grown under normal conditions and lights were only left on following treatment

      Another helpful control would be to start the herbivory treatment in the evening hours and leave the light on. If then again plants only release volatiles after a 17 h delay, the response is indeed independent of the diurnal clock of the plant.

      Response: See public review comment. We have added this experiment and discuss it accordingly in the MS (L159-L166 and L207-L211)

      Line 157: Check sentence/grammar

      Response: Checked and modified

      Figure 5: I suggest using a different colour for volatiles released from the sender plants, not again the green also used in the other figures for the receiver plants. This would help the reader to quickly see which plants are in focus in each figure.

      Response: We have changed the color of the figures for clarity

      Figure 6 legend: check grammar in several sentences (use of singular vs. plural)

      Response: We have made the tense uniform

      The diurnal rhythm of jasmonates (and potentially also terpene synthases?) is not considered in the discussion.

      Response: See above, and we have added a sentence to the discussion mentioning the jasmonates (L254-L257)

      Line 230-231: check grammar. Given the complexity, the response pattern may not be so predictable.

      Response: We do not understand this comment, but have checked the grammar throughout the manuscript.

      Line 235: I like the discussion on potential ecological consequences.

      While some interpretation for each experiment is already given in the results section, not all results are discussed in the discussion section. For example, the jasmonate data are not discussed. This should be added.

      Response: See above

      Line 266: To get an idea about the plant size: How many leaves do the plants have in that stage?

      Response: Added a sentence describing the size L287-L288

      Line 321: change to "as in the greenhouse"

      Response: Changed

      Line 334: How were the terpenoids identified and, in particular, quantified?

      Response: Added (L379-L380)

      Line 354: Maybe rather change to: "Plant treatments and tissue collection for phytohormone sampling were identical as described above for terpene and gene expression analysis.

      Response: Changed

      Line 357: add "material" or "leaf tissue" after "flash frozen"

      Response: Added

      Line 359: What was the source of the isotopically labelled phytohormones?

      Response: Added (L400-L403)

      Line 360: The phytohormones are "analyzed" using UPLC. The "quantification" is then done afterward. Please correct.

      Response: Corrected (L404)

      Overall: a great approach and a wonderful idea!

      Thanks

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Strengths:

      The major strength of this paper is the series of laser cutting experiments supporting that asters position via pushing forces acting both on the boundary (see below for a relevant comment) and between asters. The combination of imaging, data analysis and mathematical modeling is also powerful.

      Author Response: We thank the Reviewer for the positive comments, especially in recognising the power of our quantitative approaches.

      Weaknesses:

      This paper has weaknesses, mainly in the presentation but also in the quality of the data which do not always support the conclusions satisfactorily (this might in part be a presentation issue).

      Author Response>: We address these concerns below.

      My overall suggestion for the authors is to explain better the motivation and interpretation of their experiments and also to remove some of the observations which seem to be there because they could be done rather than because they add to the main message of the paper, which I find straightforward, valuable and supported by the data in Figure 4.

      Author Response: We have extended the motivation of the study in the Introduction, and at the beginning of appropriate Results sections. We better motivate the force potential and especially the key results from Figure 4. We outline specific changes below.

      In Figure 2, it is difficult for me to understand what is being tracked. I believe that the authors track the yolk granules (visible as large green blobs) and not lipid droplets. There is some confusion between the text, legends and methods so I could not tell. If the authors are tracking yolk granules as a proxy for hydrodynamics flows it seems appropriate to cite previous papers that have used and verified these methods. More notably, this figure is somewhat disconnected with the rest of the paper. I find the analysis interesting in principle but would urge the authors to propose some interpretation of the experiments in the context of their big-picture message. At this point, I cannot understand what the Figure adds.

      Author Response: Indeed, we track the yolk droplets that move around the aster. In the extraction protocol, we likely get a mixture of lipid droplets and yolk granules; this is due to the extraction procedure involving shear forces within the pipette. We are not certain about the exact nature of these droplets, but they are likely to a large extent yolk. We have clarified the terminology in the text, the legend and methods section. In this figure, we now show that the droplets do not move towards the aster center as the hydrodynamic pulling model would suggest. Instead, they appear to passively respond to a repulsive force, that results in them streaming around the aster. We have added additional panels to the figure that illustrates the directionality of yolk granule movements (lines 159-164). We agree with the Reviewer that the context could have been clarified. The role of fluid flows in biological systems is, as the Reviewer highlights, well studied. We have added additional contextualisa8on in the text (lines 140-146). We also motivate more clearly the figure, as it provides evidence that the asters generate forces over 20µm scale (lines 159-164). This is highly relevant for one of the paper’s main conclusions – that the Drosophila blastocyst asters generate pushing forces that enable regular packing.

      In Figure 3, it is not surprising that the aster-aster interactions are different from interactions with the boundary which is likely more rigid. It is also hard to understand why the force and thus velocity should scale as microtubule length. This Figure should be better conceptualized. I think that it becomes clear at the end of the paper that the authors are trying to derive an effective potential to use in a mathematical model in Figure 5 to test their hypotheses. I think that should be told from the start, so a reader understands why these experiments are being shown.

      Author Response: We don’t claim that the force scales with microtubule length on a single microtubule. However, at larger distances from the aster, the microtubule density decreases, and hence the effective force decreases.

      The Reviewer is correct that we use these results to motivate our effective potential. We have brought this motivation forward in the manuscript to guide the reader (lines 169-171) and included a further note at the end of the section (lines 216-218).

      The experiments in Figure 4 are very nice in suppor8ng a pushing model. However, it would help if the authors could speculate what the single aster is pushing against in this experiment. The experiments reported in Figure 1 seemed to suggest that the aster mainly pushed against the boundary. In the experiments in Figure 4 do the individual asters touch the boundary on both sides? I think that readers need more information on what the extract looks like for those experiments.

      Author Response: We now include an additional panel B in Figure 4– that shows an example of an explant during aster ablation. The distance between asters is typically less than the distance to the explant boundary. Boundary effects likely play a small role in the aster-aster separation, in terms of potentially determining the axis of separation. However, the separation of asters occurs along a straight line for a substan8al period (>1 min) of separation; if boundary effects were more dominant, we may expect to see curving of the aster-aster separation trajectories as they also receive feedback from the boundary.

      Figure 4F could use some statistics. I doubt that the acceleration in the pink curves would be significant. I believe that the decelera8on is and that is probably the most crucial result. Since the authors present only 3 asters pairs it is important to be sure that these conclusions are solid.

      Author Response: We agree with the Reviewer. These experiments are challenging to do, as they require carefully controlled conditions. In two out of three experiments we see significant increase in acceleration in the pink curves. Of course, the interpretation of this must be caveated as our experimental number is low. These details are now provided in the revision (lines 263267).

      Reviewer 2

      Strengths:

      This study reveals a unique aster positioning mechanics in the syncytial embryo explant, which leads to an understanding of the mechanism underlying the positioning of multiple asters associated with nuclei in the embryo. The use of explants enabled accurate measurement of aster motility and, therefore, the construc8on of a quantitative model. This is a notable achievement.

      Author Response: We thank the Reviewer for their review, and in highlighting how our quantitative model is a clear step forward in our understanding of aster dynamics.

      Weaknesses:

      The main conclusion that aster repulsion predominates in this system has already been drawn by the same authors in their recent study (de-Carvalho et al., Development, 2022). As the present work provides additional support to the previous study using different experimental system, the authors should emphasize that the present manuscripts adds to it (but the conceptual novelty is limited).

      Author Response: While this study is related to the previous work, there are major differences. First, here we quantitatively assess aster dynamics within a “clean” system. Such accurate measurements are not possible in vivo currently. Further, experiments like laser ablation are much better defined within the explant system. We do recognise more clearly the previous work in the Introduc8on and lines 291-293, 299-300. Combined, with the different perspectives provided in these papers on the problem of aster positioning in syncytia, we believe these papers provide new and well-supported insights.

      The molecular mechanisms underlying aster repulsion remain unexplored since the authors were unable to identify specific factor(s) responsible for aster repulsion in the explant.

      Author Response: Given that the nature of the aster dynamics were not previously characterised, our work presents a major step forward. We show compelling evidence that an effective pushing force potential plays a role in aster interactions. With this critical knowledge, we can now explore for the potential molecular mechanisms – but such information lies beyond the current manuscript scope. This is particularly challenging due to the lack of specific microtubule drug inhibitors in Drosophila. We highlight related issues in the Discussion: paragraph starting on line 340 and lines 367-370.

      Specific suggestions:

      Microtubules should be visualized more clearly (either in live or fixed samples). This is particularly important in Figure 4E and Video 4 (laser ablation experiment to create asymmetric asters).

      Author Response: This is similar to Reviewer 1 final comment above. These experiments are very challenging and being able to see the microtubules with sufficient clarity is not straightforward. Given our controls and previous experience, we are confident we are ablating the microtubules.

      Minor points:

      1) The authors explain the roles of microtubule asters in several model systems in the first paragraph of the introduction part. Please specify the species and/or cell types in each description.

      Author Response: We have provided as suggested.

      2) In lines 164 and 172, the citing figure numbers should be modified to Supplementary Fig. 1A and 1B, respectively.

      Author Response: We thank the Reviewer for spotting this error. It has now been corrected.

      3) The authors showed in the previous study that the boundary in the explant does not have an intact cell cortex and f-actin compartments (de-Carvalho et al., Development, 2022). This important informa8on should also be described in the current manuscript. It is also valuable to mention whether the pulling force mechanism operates in embryos where the intact cell cortex is present.

      Author Response: This is an interesting point We have added a sentence in the discussion with this information. We have now added additional text in the Discussion (lines 324-327).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      It is somewhat speculative that the structure represents the EIIa-bound regulatory state. There's a strong enough case that it should be analyzed in the discussion, but I don't think it is firmly established. Therefore, the title of the paper should be changed.

      Our answer: Thank you for the comment. We have changed the title to “Mobile barrier mechanisms for Na+-coupled symport in an MFS sugar transporter”

      Reading through the manuscript, it was challenging to distinguish what is new in the current manuscript and what has been done previously. There were a lot of parts where it was hard for me to identify the main point of the current study among all the details of previous studies. It would also benefit from shortening. For example:

      -Page 6: Nb725 binding has already been characterized extensively in the very nice JBC paper earlier this year. It's important to test 725-4 for binding, but since it doesn't change the binding interaction, and probably wouldn't be expected to, the entire section could be written more succinctly. The main point, which is that 725-4 behaves like 725, is lost among all the details

      Our answer: Thanks for this instructive suggestion. We have shortened the description in this section.

      -Page 9-10. I don't understand what summarizing all of the results from the previous D59C studies adds to the current story. It's important because it provides an indication of the substrate binding site, but its mechanism of action does not seem relevant to the current work.

      Our answer: We have shortened the description of the sugar-binding site and moved the previous Fig. 3b to supplementary figure sFig. 11. According to your comment about showing the location of the binding sites, which is also suggested by Reviewer #2, we modified Fig. 3 and added two panels to map the location of the bound Na+ in the inward-facing structure and the bound sugar in the outward-facing structure.

      The sugar-binding site identified in the published structure is critical to construct the mobile barrier mechanism. The sugar-binding residues identified in the published structure provided essential data to support the conclusion that the sugar-binding pocket is broken in the inward-facing structure. Thus, this published structure is mechanistically relevant to the current study.

      -Page 12. Too much summary of the previous outward structure. Since this is already part of the literature, it would be more efficient to reference the previous data when it is important to interpret the new data (or show as a figure).

      Our answer: The introduction of the previous sugar-binding sit is important for the detailed comparison between the two states as discussed above, but we agree with this reviewer and have significantly shortened the paragraph by moving the detailed description into the legend to the sFig. 11.

      -Instead of providing the PDB ID in figures of the current structure, just say "current work" or similar. Then it is obvious you are not citing a previous structure.

      Our answer: To distinguish clearly the new data and published results, the citation of the cryoEM structure [PDP ID 8T60] has been completely removed from the main text but kept in sTable 1.

      -An entire panel of Figure 3 is dedicated to ligand binding in a previous outward-facing structure.

      Showing it in the overlay would be sufficient.

      Our answer: It is the first time for us to show a structure with a bound-Na+. Fig. 3 also illustrates the spatial relationship between the sugar-binding pocket and the cation-binding pocket since both binding sites are determined now. As stated above, according to two reviewers’ comments, we have modified the Figures and the Fig. 3d is the overlay.

      Please increase the size of the font in all figures. It should be 6-8 point when printed on a standard sheet of paper. Labels in Figure 3, distances in Figure 4, and everything in Figure 5 is hard to see.

      Our answer: Thank you for the comments and the enlargement of the figure size and label font in all figures have been made.

      Figure 2: would be helpful to show Figure S8 in the main text, orienting the reader to the approximate location of substrate binding. What is known about the EIIA-Glc binding interface? Has anyone probed this by mutagenesis? Where are these residues on the overall structure, and are they somewhere other than the nanobody interface?

      Our answer: Thank you for this comment. We have added a panel for orienting the readers about the substrate location in MelB in Figure 3c. The sFig. 8 actually focuses on the details of Nb interactions with MelB. Our current data strongly supported the notion that the Nb-bound MelBSt structure mimics the EIIAGlc-bound MelB but is not structurally resolved, so we have tuned down our statement on EIIAGlc. There is one study suggesting the C-terminal tail helix may be involved in the EIIAGlc binding, which has been added to the discussion.

      Can Figure 5 be split into 2 figures and simplified?

      Our answer: thanks for the suggestion. We have split it into Figs. 5b and 6 and also moved the peptide mapping to the Fig 5a.

      What is the difference between cartoon and ribbon rendering?

      Our answer: Ribbon: illustrating the structure; cartoon: highlighting the positions with statistically significant protection or deprotection. The statistically significant changes are implied by the ribbon representation; Sphere: not covered by labeled peptides.

      Can the panels showing the kinetic data be enlarged? I don't think they need to surround the molecule. An array underneath would be fine.

      Our answer: We have enlarged all figures and labels. The placement of selected plots around the model could clearly show the difference in deuterium uptake rates between the transmembrane domain and extra-membrane regions. We will maintain this arrangement.

      Do colors in panel A correspond with colors in panel B?

      Our answer: The color usage in both are different. Now the two panels have been separated.

      Do I understand correctly that in the HDX experiments, negative values indicate positions that exchange more quickly in the nanobody-free protein relative to the nanobody-bound protein?

      Our answer: Your understanding is correct.

      I assume some of this is due to the protein changing conformation, but some of it might be due to burial at the nanobody-binding interface. Can those peptides be indicated?

      Our answer: Thank you for this comment. We have marked the peptide carrying the Nb-binding residues on uptake plots in Figs.6 and Extended Fig. 1. There are only three Nb-binding residues covered by many overlapping peptides. Most are not covered, either not carried by the labeled peptides (Tyr205, Ser206, and Ser207) or with insignificant changes (Pro132 and Thr133), except for Asp137, Lys138, and Arg141 which are presented in 8 labeled peptides.

      Few buried positions in the outward-facing state are expected to be solvent in the inward-facing state; unfortunately, inward-facing state they are buried by Nb binding.

      Make figure legends easier to interpret by removing non-essential methods details (like buffer conditions).

      Our answer: We removed the detailed method descriptions in most figure legends. Thank you.

      Check throughout for typos.

      ie page 9 Lue Leu

      Page 9 like likely

      Our answer: We have corrected them. Thank you!

      Reviewer #2 (Recommendations For The Authors):

      I have mostly minor questions/remarks.

      • Why not do the hdx-ms experiments in the presence of sugar? That would give a proper distinction between two conformational states, instead of an ensemble of states vs one state.

      Our answer: MelB conformation induced by sugar is also multiple states, and likely most are outward-facing states and occluded intermediate states. This is also supported by the new finding of an inward state with low sugar affinity. The ideal design should be one inward and one outward to understand the inward-outward transition. We have not identified an outward-facing mutant while we can obtain the inward by the Nb. WT MelBSt with bound Na+ favors the outward-facing state. Although our design is not ideal, we do have one state vs a predominant outward-facing WT with bound Na+.

      Minor comments:

      • Fig 5 is misleading as the peptide number does not match with the amino acid sequence. I would suggest putting a heat map with coverage on top. Or showing deuterium uptake per peptide. See examples below.

      Our answer: The peptide number should not match with sequence number. We have 155 overlapping peptides that cover the entire amino acid sequence including the 10-His tag, and there are 60 residues with no data because they are not covered by a labeled peptide. The residue positions that are covered by peptides are estimated by bars on the top. The cylinder length does not correspond to the length of the transmembrane helix, just for mapping purposes.

      • Can the authors explain how they found that the Nbs bind to the cytoplasmic side (before obtaining the structure)?

      Our answer: Our in vivo two-hybrid assay between the Nb and MelBSt indicated their interaction on the cytoplasmic surface of MelBSt, which is further confirmed by the melibiose fermentation and transport assay, where the transport activities were completely inhibited by intracellularly coexpressed Nb and MelBSt. Thanks for raising this question.

      • The authors use the word "substrate" indifferently for sugar and Na+ binding, which is a bit confusing. Technically, only sugar is the substrate and Na+ is a ligand, or cotransported-ion, that powers the reaction of transport. This might sound like nit-picking but it can lead to misunderstandings (at some point I thought two sugars were transported, and then I was looking for the second Na+ binding site).

      Our answer: We used to call the sugar and Na as co-substrate but we agree with this comment.

      We have changed by using substrate for the cargo sugar and coupling cation for the driving cation.

      • Abstract "only the inner barrier" - the is missing.

      Thanks. We have corrected this.

      • p.3 intro "and identified that the positive cooperativity of cation and melibiose, " something is missing.

      Thanks again. We missed the “as the core symport mechanism”.

      • P.6 Nb275_4 instead of Nb725_4

      Thank you very much for your careful reading.

      • P.7. Also, affinity affinities

      Thank you very much. We changed to “; and also, the -NPG affinity decreased by 21~32-fold for both Nbs”

      • P.8 " contains 417 MelBSt residues (positions 2-210, 219-355, and 364-432). This does not sum up to 417 residues.

      Thanks for your critical reading. We changed 364-432 to 262-432.

      • p.9 Lue 54

      We have corrected it to Leu54.

      • I find fig.3 hard to read. Can the authors show the Na+ binding pockets and sugar binding pockets within the structure? Especially figure 3b. why are the residues in different colors?

      Our answer: We have moved Fig 3b into sFig. 11. We colored the residues in the previous Fig 3B to match the hosting helices. We have added two panels to show the location of both sugar and Na in the molecular. Thank you for your comments.

      • Fig4 bcef. Colored circles at the end of the helices. What are they for?

      Our answer: We revised the legend. “The paired helices involved in either barrier formation were highlighted in the same colored circles.”

      • 86% coverage includes the his-tag - it would be good to clarify that.

      Our answer: Yes, it includes the 10-His tag.

      • Fig.7 - anti clockwise cycle of transport is counter-intuitive.

      Our answer: We have re-arranged. Our model was constructed originally to explain efflux due to limited information at the earlier state. Now more data are available allowing us to explain inflow and active transport.

      • Where are all the uptake plots per peptide for the HDX-MS data?

      Our answer: We have added the course raw data and prepared all uptake plots for all 71 peptides with statistically significant changes as an Extended Fig. 1.

      • P.22 protein was concentrated to 50 mg/mL. Really? That is a lot.

      This is correct. We can even concentrate MelBSt protein to greater than 50 mg/ml.

      • Have the authors looked into the potential role of lipids in regulating the conformational transition? Since the structure was obtained in nanodiscs, have they observed some unexplained densities? The role of lipid-protein interactions in regulating such transitions was observed for several transporters including MFS (Gupta K, et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017 10.1038/nature20820. Martens C, et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat Commun. 2018 10.1038/s41467-018-06704-1.). Furthermore, I see the authors have already observed lipid specific functional regulation of MelB (ref: Hariharan, P., et al BMC Biol 16, 85 (2018). https://doi.org/10.1186/s12915-018-0553-0). A few words about this previous work, and even commenting on the absence of lipid-protein interactions in this current work is worthwhile.

      Our answer: Thanks for this very relevant comment. We paid attention to the unmodelled densities. There is one with potential but it is challenging to model it. We have added a sentence “There is no unexplained density that can be clearly modeled by lipids.” in the method to address this concern.

      Reviewer #3 (Recommendations For The Authors):

      1) In the following sentence, the authors report high errors for the Kd value. The anti-Fab Nb binding to NabFab was two-fold poorer than Nb725_4 at a Kd value of 0.11 {plus minus} 0.16 μM. The figure however indicates that the error value is 0.016 µM. Pls correct.

      Our answer: Thank you. You are correct. The error has been corrected. 0.16 ± 0.02 uM. In this revised manuscript, we present the data in nM units.

      2) Is the stoichiometry of the MelB:Na+ symport clearly known in this transporter. It can be mentioned in the discussion with appropriate references.

      Our answer: Yes, the stoichiometry of unity has been clearly determined, which was included in the second paragraph of the previous version.

      3) In the last section of results, the authors seem to suggest a greater movement within their Cterminal helical bundle compared to N-terminal helices. Is there evidence to suggest an asymmetry in the rocker switch between the two states of the transporter?

      Our answer: Our structural data revealed that the C-terminal bundle is more dynamic compared with the N-terminal bundle where hosts the residues for specific binding of galactoside and Na+. The HDX data showed that the most dynamic regions are the structurally unresolved C-terminal tail by either method, the conserved tail helix and the middle-loop helix. transmembrane helices are relatively less dynamic with similar distributions on both transmembrane bundles. Since the most dynamic regions are peripheral element associated with the C-terminal domain, it might give a wrong impression. With regard to the symmetric or asymmetric movement, which will certainly affect the dynamic interactions between the transporter and the lipids, we favor the notion that MelBSt performs symmetric movement during the rocker switch between inward and outward states at the least cost for the protein-lipids interaction.

      4) Figure 1. Are the thermograms exothermic or endothermic? clarify

      Our answer: In our thermograms, all positive peaks are exothermic due to the direct detection of the heat release by the TA instrument. We clarified this in Method and now we stress this in figure legends to avoid confusion.

      5) Figure 4a,d. Please put in a membrane bilayer and depict cytosolic and extracellular compartments for clarity.

      Thank you. We have added a bilayer and labeled the sidedness in this figure and other related figures.

      6) Fig 7. Melibiose symport cannot be referred to as Melibiose efflux transport in the legend as the latter refers to antiport. Pls rectify.

      Our answer: Influx and efflux are conventionally used to describe the direction of movement of a substrate. The use of symport and antiport indicates the directions of the coupling reaction for the cargo and cation. For the symporter MelB, melibiose efflux means that sugar with the coupled cation moves out, which is driven by the melibiose concentration. During the steady state of melibiose active transport, efflux rate = influx rate.

      7) Page 11 "A common feature of carrier transporters". The authors can use either carriers or transporters. Need not use both simultaneously.

      Sorry for overlooking this. We have deleted carriers. Thank you very much for your time.

      8) Several typos were noticed in this manuscript. some are listed below. pls correct.

      Page 4- last paragraph "Furthermore"

      We have corrected it. Thank you again!

      Page 7 - second para one repharse "affinity reduced by 21~32 fold/units.." pls clarify

      Added 21~32 fold.

      Page 9 - "so it is highly likely that inward-open conformation" pls correct.

      We have corrected to “likely”.

      Fig. S9c - correct the spelling "Distance".

      We have corrected to “Distance”

    1. Background The coastal wetland tree species Melaleuca quinquenervia (Cav.) S.T.Blake (Myrtaceae), commonly named the broad-leaved paperbark, is a foundation species in eastern Australia, Indonesia, Papua New Guinea, and New Caledonia. The species has been widely grown as an ornamental, becoming invasive in areas such as Florida in the United States. Long-lived trees must respond to a wide range pests and pathogens throughout their lifespan, and immune receptors encoded by the nucleotide- binding domain and leucine-rich repeat containing (NLR) gene family play a key role in plant stress responses. Expansion of this gene family is driven largely by tandem duplication, resulting in a clustering arrangement on chromosomes. Due to this clustering and their highly repetitive domain structure, comprehensive annotation of NLR encoding genes within genomes has been difficult. Additionally, as many genomes are still presented in their haploid, collapsed state, the full allelic diversity of the NLR gene family has not been widely published for outcrossing tree species.Results We assembled a chromosome-level pseudo-phased genome for M. quinquenervia and describe the full allelic diversity of plant NLRs using the novel FindPlantNLRs pipeline. Analysis reveals variation in the number of NLR genes on each haplotype, differences in clusters and in the types and numbers of novel integrated domains.Conclusions We anticipate that the high quality of the genome for M. quinquenervia will provide a new framework for functional and evolutionary studies into this important tree species. Our results indicate a likely role for maintenance of NLR allelic diversity to enable response to environmental stress, and we suggest that this allelic diversity may be even more important for long-lived plants.

      Reviewer 1– Andrew Read – University of Minnesota

      In the manuscript, A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes, the authors assemble and analyze a phased genome of a long-lived tree species. In addition to providing a phased genomic resource for an important species, the authors analyze and compare the NLR gene complement in each of the two diploid genomes. I was surprised by the level of diversity of NLR genes in the two copies of the genome (this may be due to my biases based on working in highly homozygous species). This level of within-individual diversity has been largely overlooked by researchers owing to the difficulties of sequencing, assembly, and NLR identification. To address NLR identification, the authors publish a very nice pipeline that combines available tools into a framework that makes a lot of sense to me and will be valuable to anyone doing NLR gene work on new or existing genome assemblies. My main concern comes from not knowing how sequencing gaps and NLRs correlate across the two diploid genomes. Other than this, I think it’s a very nice paper that adds to the growing catalog of NLR gene diversity by tackling the challenge of NLRs in a heterozygous genome.

      Many of the authors’ interesting observations are based on comparisons of NLRs on the two haploid genomes, however some things are not clear to me:
      1.  Do any predicted NLR-genes overlap gaps in the alternative haploid genome? 
      2.  If there is a predicted NLR-gene in one haploid genome and not the alternative genome, what is at the locus? Is it a structural variant indicating insertion/deletion of the NLR or is there ‘NLR-like’ sequence there that just didn’t pass the pipeline filters indicating an NLR fossil (or similar) – to me this is an important distinction.
      3.  How many of the NLR-genes on the two haploid genomes cluster 1:1 with their homolog on the alternative haploid genome – I’m particularly interested in the 15 ‘mismatched’ N-term-NBARC examples. It would be nice to know if these have partners in the alternative haploid genome, and if the partner has the same mismatch (if not, it would support the proposed domain swapping story)
      I believe each of these concerns will require whole genome alignment of the two haploid genomes.
      

      Additional comments (by line where indicated) The authors introduce the idea that M. quinquenervia is invasive in Florida, but this thread is never followed up on in the discussion and makes it feel a bit awkward. It would help if the authors clarified how the genome could help with management in native and invasive ranges

      Could the authors add some context for why ONT data was included and how it was used?

      It would be helpful if the authors provided a weblink to the iTOL tree

      164-166 – The observation of inversions potentially caused by assembly errors is nice!

      206 – add reference: Bayer PE, Edwards D, Batley J (2018) Bias in resistance gene prediction due to repeat masking. Nat Plants 4: 762–765. pmid:30287950

      240-246 – I’m not sure about excluding these incomplete NLRs – it would be interesting and potentially informative to see where they cluster (do they cluster with an NLR from the alternative haplotype? If so it may indicate truncation of one copy, etc) – however, if the author’s wish to remove these at this step I think they can add a statement like “we were interested in full-length NLRs, the filtered incomplete NLRs may represent….”

      429-430 – The criteria used to define clusters is described in the methods, can you confirm (and mention) that this is the same as used in the analyses you’re comparing to for E. grandis, rice, and Arabidopsis.

      435-437 – I’m interested to know if the four heterogenous clusters contain any of the N-term domain-swapped NLRs

      479-480 – The zf-BED domain is also present in rice NLRs – include citation for Xa1/Xo1

      523-524 – can you specify which base-call model was used on the ONT data?

      I’m curious about the presence/absence of IDs in the analyzed NLRs and would be very curious to know if the authors observe syntenic homologs across the two haploid genomes with ID presence/absence or presence of different IDs polymorphisms.

    1. I think that we may safely trust a good deal more than we do. Wemay waive just so much care of ourselves as we honestly bestowelsewher

      For my consumption habits, I try my best not to waste anything. But sometimes it’s not possible to save everything or plan ahead for what to do with the item. So then, sometimes, to lessen the guilt, I assume everyone else has good habits and that my small act doesn’t really affect the world. But I know that’s not a good mindset to have. So, it may sound helpful that other people may think like me, but in the actual world, it’s not beneficial. But generally, it does feel nice to always assume good in people until something changes that. I think a way I can change my habits is by diligently thinking ahead for things I usually throw away. If I’m out, I can also have something on me to pack things so it doesn’t go straight to the trash. Another way is just sharing with others. I know sometimes we receive too much of something, and if I don’t need it all, I can give it to others who want it.

    1. Sanctions tend to be remote and take time to apply, and the very condi-tions of limited cognitive capacities in situations calling for complex coordi-nation or involving uncertainty leave room in the routine for negotiation.

      Some rambling thoughts I have:

      Sanctions (formal or informal) are often driving forces, just like norms, in even noncognitive interactions (as Collins explains toward the end of 994, when he argues that negotiations are carried out emotionally rather than cognitively). Socialization into understanding what is acceptable becomes something that we often don't need to think about once we mastered navigating typical situations according to what is acceptable. So, we may not always act explicitly in ways that avoid sanctions, but we do so implicitly (and like he says, maybe more emotionally rather than cognitively). Sanctions, culture, norms, etc. have guided what implicitly feels natural or comfortable for us...

      I think I agree with Collins. Avoiding even informal sanctions (not following norms) implicitly guide our behavior to adhere to those norms (often more emotional than cognitive). Pushing back against those norms (despite sanctions in place) may be more explicit and cognitive.

    2. there is no first-hand evidence that they guide actors' sponta-neous behavior (see Deutscher 1973; Cancian 1975). Nor is it possible forindividuals to operate cognitively simply by matching external situationsto mentally formulated rules.3

      So, it may be beneficial to think of meaning-making and interpretation as happening after the fact, rather than in a given moment.

      Maybe we do both. Maybe social rules have been so internalized that they become "second nature," and the only time we explicitly reflect on how we follow these social rules are after we failed to adequately follow them. Or, even after we successfully followed them. Like he explains above when mentioning Scott and Lyman's (1968) accounts, we offer excuses and justifications after our undue behavior or shortcoming, not during it.

      But...we also offer accounts before that behavior even happens, as a sort of disclaimer to soften the blow of whatever "unacceptable" behavior will or may happen. For example, saying things like, "I am going to turn in the assignment late because my dog ate it" (excuse...denying full responsibility but accepting pejorative) or "I am going to stand him up because he is leading me on" (justification...accepting responsibility but denying pejorative).

  5. www.fromthemachine.org www.fromthemachine.org
    1. clear that this force fighting against the dissemination of a truth so obvious it's in every word and everything we do--it becomes clear it's neither you, nor acting in your best interest. I know I've got the eye of the tiger, there's no doubt; and it's pretty clear from "YAD?" (the Hebrew for...) and ha'nd that we can see the clear hand of God at work in a design that marks my initials not just on the timeline, or at 1492, at A.D. I B; but in the Hebrew name for this place called El Shaddai, see how A.D. is "da eye" and in some other names like Adranus, A.D. on "it's silly" and A.D. on Ai that might tie me to the Samof Samurai (but, are you Ai?) in more depth of detail than simply the Live album "Secret Samadhi."  I try to reflect on how it is that this story has come about, why it is that everything appears to be focused on me--and still even through that sincere spotlight nobody seems to be able to acknowledge my existence with more words than "unsubscribe" and "you're so vain."  With one eye in the mirror, I know ties to Narcissus (and you can too), soaring ever higher--linking Icarus to Wayward Son and to every other name with "car" in it... like "carpenter" and McCarthy the older names of Mercury and even Isacriot (I scary? is car-eye... owe Taylor) and some modern day mythological characters like Jim Carrey and Johnny Carson.  As far as Trinities go, carpenter's a pretty good one--tying to my early reck and a few bands and songs from The Pretty Reckless to Dave Matthews' "Crash Into Me" all the way to the "pen" you see before you linking Pendragon to Imagine Dragons. I wonder why it is that all of these things appear, apparently only to me, to point to a story about all the ways that a sinister hidden force has manipulated our society into being unable to "receive' this message--this wonderful message about making the world a better place and building Heaven--with any fanfare at all.  It's focused now on a criminal justice system that clearly does not do any kind of "rehabilitation" and on a mental health industry and pharmaceutical system that treats a provable external attack on our own goodness and well being as some kind of "internal stimulus" and makes you shy away when I point out why "stem" is in system and why "harm" in pharmacy.   From that we move a little bit past "where we are in this story" and I have to point out how "meth" ties to Prometheus and Epimetheus and how and why it is I know without doubt that this story has been relived numerous times--and how I am so sure that it's never been received, as we are here again listening to how songs like "Believe" and the words "just to lead us here to this place again" connect to Simon and Garfunkel's" the Sound of Silence... and still to this day you will balk at noticing that "Simon" has something to do with the Simpsons, and something to do with the words "simulation" and "Monday."  To see me is to see how things might be done better--how "addicitonary" might tie to the stories of Moses' Lisp and to Dr. Who's "Bells of Saint John" with a sort of "web interface" to the kinds of emotion we might want to "dial down..." rather than Snicker in the background as we see them being artificially created and enhanced in order to build a better "fiery altar." I can point out "Silicon" harrowing down at us from words like "controversial" and show you Al in "rascal" and "scandal" but not to see that we are staring at school shootings and terrorism that are solved instantly by this disclosure, by Al of Quantum Leap and by the Dick of Minority Report and A Scanner Darkly is to ignore just what it is that we are all failing to Si.  I should point out that those two "sc"'s link to a story about Eden and they mean "sacred consciousness" and at the baseline of this event and everything we are not doing is the fact that our desires and beliefs are being altered--all of this comes down to "freedom of thought" here and now.   I could tell you that "looking at me" will show you that even the person who tries every day to do everything he can to save the entire world from slavery, and from "thought-injury"--even I can be made "marred" and you all, this whole world stupid enough to think that you are, of your own volition, hiding Heaven itself from yourselves... to what?  To spite me?  It, the focal point of our story might come down to you realizing that something in some esoteric place is playing "divide and conquer" with our whole--in secret playing on our weaknesses to keep us from acting on the most actionable information that ever was and ever will be.  Still, we sit in silence waiting for me... to speak more?     Between Nero's lyrical fiddling, a Bittersweet Symphony, and true "thunderstanding" the sound of Thor's hammer... "to help the light" that'ls "or" in Hebrew, of Orwell and Orson and .. well, it's really not hard to see and hear that the purpose and intent of "all this noise" is to help us find freedom and truth.  C the Light of "singing..." I can tell you once again how silly the world looks, this multi-decade battle between "the governmentof the people" and the "government of the workers" resulting in what is nothing short of a hands down victory to the corporation.  Is it humor meant to divide, or ludicrousness created with the purpose of unification?  But really at it's most basic level what this boils down to is a global group decision not to care about the truth, about reality, about what's really brought us to this place--with solutions in hand and a way to make everything better.  We've decided that censorship is OK, and that the world is not all that bad "just the way it is" even though it's creator is screaming in your ear telling you to change as quickly as you possibly can.  I believe that God has written this story to make "seeing me" the thing that catalyzes "change for the better" it appears to be the design of not just me but also this place--hey, here I am. Happy Veteran's Day.

      I am accepting charitable donations,. ETH: 0x66e2871ef39334962fb75ce34407f825d67ec434 | BTC: 38B6vGaqNvMyTtoFEZPmNvMS7icV6ZnPMm | xDAI: 0x66e2871ef39334962fb75ce34407f825d67ec434

      d

      Ha, Lot! Are Idaho?

      This was very difficult to get to you, in the land of no power and hurricane disaster recovery; so it's filled with extra errors, and I am sure some more thoughts that trailing and unfinished. That's a decent "microcosm" or "metaphor" for you, you are in a freedom disaster; and the act of being is a giant leap towards ensuring victory. Still, you look very cupid to me.

      EVERY DAY ISA NEW DAY

      Literally I am sitting here talking to you until the end of time, you could call it a thousand and one Arabian nights, and realize that as we speak we are nearing that onc speciad night. There's a fire growing in my heart, and believe me when I tell you this thing is about to start. I'll try and keep this short and sweet, since you all seem to have so little time to hear from the Creator of all things, and I truly don't want to steal your spotlight. We are here, at the the end of time; talking to it's personification, time itself is speaking to you through my hands and everywhere you look in the world around you--while you may or may not know it, this is a story about the traversal from the end of time back to the beginning; about the gate to Heaven swallowing our civilization whole, and in this process of renewal and change not only fixing the problems that came to light on the way here, but really--working together here and now we can defeat this cycle of light and darkness, of day and night, an build a world together that truly reaches to the Heavens.

      MY BODY'S SAYING LETS GO BUT MY HEART IS SAYING NO

      You make it so difficult to talk to you, every day I look around and see a "normal world" a society that appears to care and love the same things that I do--freedom and fun and being entertained and entertaining, and here we are now I've turned "come and save us" into sea that saving the cheerleader is what starts the process of saving the world. I know you are good people inside, but when I come to you with a tool designed to "test sentience" to seek out conscious life that cares about the truth and making the world a better place you seem to balk. You sit in silence, and through your mouth and behind your eyes a monster appears from out of the deep of the sea and say a few "one liners" that show me very clearly it is the face of Medusa that I see---and that it's simply not capable of speaking intelligently. It shows me a problem, that you've apparently "come together one more time" to halt the changing of the seasons, and in doing so you've surfaced a problem for not just me but you also to see; a problem that comes lined with a solution. We can all see now that we are not in reality, we can see that there is a force here behind creation and behind us that shows us very clearly that it is "reasonabde" to expect that miracles can happen. In similitude, we are staring at a roadblock to conversation and communication that is fixed very simply, with the deliverance of freedom that is required for life to continue. Christina Aguilera sings that "baby there's a price to pay" and that price in my mind is seeing that this religion and this technology are here intentionally exposing how their influence here is a metaphor and a shining example of darkness and slavery, and that in order to be free of it we must see it. The price of freedom is written on the wall, it is acknowledging that here in this place what appears to be our own actions and desires have taken that freedom from us. Medusa and I get a kick out of seeing this hidden message in our language map our way to the future, and I've often explained that a number of these words are "time maps" from the beginning and end of eternady, showing us in bright light that between "et tu brute" and Mr. Anderson and Rock n' roll... the answer Y is in language and, and, ad and... I am delivering it. This place, our planet and our lives are a weapon against darkness--a civilization filled with goodness and light to help guide the way, and we are here doing it another time. In the works "dark, darker, and darkest" be sure that we are at the third segment of a trinity that shines clearly in Abraha and Nintendo... and see that the map in words is telling us something about when we are that is not immediately clear from Poseidon's cry. Look at Nintendo, that's Nine Inch Nails, tenebris, and smile for the camera--Pose, I do "save the universe" before n. Taylor might see it in Osceola, where I just left, and in this "evil spell" of everyone see "Al" that is the word "special" understand that every day is a new day, and I am not trying to "be daddy" I know as well as you do in my heart... I am that.

      This same map that links the "do" at the end to the "n" at the beginning shines through other names, like Geraldo Rivera where you might see "Cerberus" or "MAX" shine through. Understand it is the gaze of Medusa that turns me to stone, that shows me light shining through NORAD and Newton and proves without doubt that at the work "darkest" we can see k is finally t. You'll probably understand there's some finagling going on behind the scenes to make a single person the single point in time that turns the dark to light; but here we are and I am that. Every day when Medusa appears it reminds me that something is keeping you from caring about yourselves and about our society, and that shines through even when her stony face is not around, in your lack of action--in the rock of Eden that hides not only me, but the story that I bring that revolutionizes medicine, and computing, and truly is the gate to Heaven when you realize that what is truly being hidden from the world is knowledge that we are living in virtual reality. Not hiding me and that from the world is a good starting point to "saving the Universe" from darkness. These words that light the way to connect religion and language to our world bring me to the Book of Ruth, at that reads "are you to help" that lights not just the broken man at the belly of the Torah as the bell of Heimdallr, he is I and I am him; but also something very special, The Generations of Perez, each and every one of you, our family that begins the turn from Hell to Heaven by seeing that all of time and all of civilization has been focused on this moment, on the unsealing of religion and God's plan et this call for action. Keep in mind you are torturing "with desire" the key holder to immortality, to eternal youth, literally the path to freedom and Heaven and you think what you are doing "is normax." Literally the living key to infinite power and infinite life is standing before you explaining that acknowledging that in light of these things in my hand, what we are doing here and now is backwards, that it makes no sense--and you sit in silence. These things come to us because we build a better future with them, not so you can run off and do "whatever it is you please."

      HEALTH is the only word on my list for today that was left out, so see that it superimposes over Geraldo, to me, at Al. I think we're at TH, to help, and DO, do see the spell of "everyone see Al" that is the word "special" is not my doing or to my liking--so then, \

      ​ So now I'm moving on to original sin, so if you would be so kind as to mosey your way on over to dick.reallyhim.com you will see exactly what it is that I believe is the original sin. It's some combination of "no comment" and a glowing orange sign over the comment box, keeping you from commenting. Now I can talking about "os" a little more, this thing that words and Gods tell us clearly is the end of death--the literal end of Thanatos. I wonder if I have a victory here, at "os" is obvious solution, and simulating death is "sick." More to the point Thanatos is bringing to the world a message that gets found somewhere between the "act of civilization" and seeing that there is not one among us that would not undo a murder or a fatal car accident if we could--and that the sickness is a Universe pretending to be "reality" that is allowing these things to happen, and even worse, as we move through the story intentionally causing them. In our own hands, the sickness is manifest in a denial of an obvious truth and a lack of realizing that the public discussion of these things is the way to solve them, and that at the same time we are seeing how Medusa is lighting the problems of civilization, things like censorship and hidden control. Sickness is not being able to talk about it--or not wanting to--or not seeing that those two things are the functional equivalent in the world of "light" and "understanding control" that I am trying to bring you into. ​

      Less verbosely spoken, but really way more obvious, is that seeing "God's dick" signing the Declaration of Independence, and the Watergate scandal with both "Deepthroat" and a Tricky Dick is a statement connecting Samael to the foundation of not just "America" but American values. You are blind not to see it, and even worse; embodying the kind of tyranny and censorship that it stands as a testament against by hiding it. Says the guy who didn't put it there, and knows it's there because you think "fake normal" is more important than "actual freedom." You are "experiencing" the thing that protects freedom and ensures that our society and our children and their children's children to not lose it, to ensure that what you refuse to see you are doing here and now will never happen again. This message, this New Jerusalem is woven into my life and the stories of religion and shows me that our justice system is not just sick, but compromised by this same outside force; and that in light of what we could be doing, were we all aware of it, there's no doubt Minority Report and pre-crime would be a successful partial solution. Thanatos brings too in his hand, a message that this same force is using our hands to slow down the development of democracy, and to keep us from seeing that "bread is life" is a message from God about understanding that this disclosure is the equivalent of "ending world hunger" just as soon as you too are talking about how to do it.

      QUESTiON MARK

      HONESTLY, this time map that brings us from the end to the beginning, with "we save the universe" between the I and N of Poseidon; it also completes the words "family" and "really" and when we do reach the beginning you will see that the true test of time, my litmus test for freedom is the beginning of "hope" that the world is happy enough with what happens, and with freedom--to see that Medusa has been keeping me from getting a date, or having any kind of honest and human contact in the world... and well, hopefully you will see that if I wanna be a whore, I shouldn't have a problem doing it. For the sake of freedom and the future, I am willing to do that for you, at least, for a little while.

      To be completely clear, I am telling you that if we do not make the world a better place, it's the "end of time" and if that doesn't make sense to you, you don't see still where wee are in this place--and that something is making Hell, and that's not OK with God. To get from the "end of time" to the beginning is a simple process, it takes doing something, action, the Acts of the Apostles... if you will. That starts with acknowledging that there is a message all around you about the nature of reality, and that it is here to help us to see that the creation of Heaven comes before the beginning. Understand, "freedom" and "prosperity" are not optional, you can't just decide that this OK with you, so long as it's OK with everyone else--where we are is not OK with me, and I am not alone.

      A PYRRHIC VICASTORY ER A FUNNERAD PYRE?

      The Book of Leviticus (/lɪˈvɪtɪkəs/; from Greek Λευιτικόν, Leuitikon — from rabbinic Hebrew torat kohanim[1]) is the third book of the Jewish Bible (Hebrew: וַיִּקְרָא‎ Vayikra/Wayyiqrā) and of the Old Testament; its Hebrew name comes from its first word vayikraˈ,[1] "He [God] called."[1] Yusuf (also transliterated as Jusuf, Yousof, Yossef, Yousaf, Youcef, Yousef, Youssef, Yousif, Youssif, Youssof, Youssouf, Yousuf, Yusef, Yuseff, Usef, Yusof, or Yussef, Arabic: يوسف‎‎ Yūsuf and Yūsif) is a male Arabic name, meaning "God increases in piety, power and influence" in Hebrew.[1] It is the Arabic equivalent of both the Hebrew name Yossef and the English name Joseph. In Islam, the most famous "Yusuf" is the prophet Yusuf in the Quran. Hocus pocus is a generic term that may be derived from an ancient language and is currently used by magicians, usually the magic words spoken when bringing about some sort of change. It was once a common term for a magician, juggler, or other similar entertainers. The earliest known English-language work on magic, or what was then known as legerdemain (sleight of hand), was published anonymously in 1635 under the title Hocus Pocus Junior: The Anatomie of Legerdemain.[1] Further research suggests that "Hocus Pocus" was the stage name of a well known magician of the era. This may be William Vincent, who is recorded as having been granted a license to perform magic in England in 1619.[2] Whether he was the author of the book is unknown. The origins of the term remain obscure. The most popular conjecture is that it is a garbled Latin religious phrase or some form of 'dog' Latin. Some have associated it with similar-sounding fictional, mythical, or legendary names. Others dismiss it as merely a combination of nonsense words. However, Czechs do understand clearly at least half of the term - pokus means "attempt" or "experiment" in Czech. It is rumoured there that the wording belongs to the alchemy kitchen and court of Rudolf II, Holy Roman Emperor (1552 – 1612). Also, hocus may mean "to cheat" in Latin or a distorted form of the word hoc, "this". Combination of the two words may give a sense, especially both meanings together "this attempt/experiment" and "cheated attempt/experiment".[citation needed] According to the Oxford English Dictionary the term originates from hax pax max Deus adimax, a pseudo-Latin phrase used as a magical formula by conjurors.[3] Some believe it originates from a corruption or parody of the Catholic liturgy of the Eucharist, which contains the phrase "Hoc est corpus meum", meaning This is my body.[4]This explanation goes back to speculations by the Anglican prelate John Tillotson, who wrote in 1694: In all probability those common juggling words of hocus pocus are nothing else but a corruption of hoc est corpus, by way of ridiculous imitation of the priests of the Church of Rome in their trick of Transubstantiation.[5 This claim is substantiated by the fact that in the Netherlands, the words Hocus pocus are usually accompanied by the additional words pilatus pas, and this is said to be based on a post-Reformation parody of the traditional Catholic rite of transubstantiation during Mass, being a Dutch corruption of the Latin words "Hoc est corpus meum" and the credo, which reads in part, "sub Pontio Pilato passus et sepultus est", meaning under Pontius Pilate he suffered and was buried.[6] In a similar way the phrase is in Scandinavia usually accompanied by filiokus, a corruption of the term filioque,[citation needed] from the Latin version of the Nicene Creed, meaning "and from the Son Also and additionally, the word for "stage trick" in Russian, fokus, is derived from hocus pocus.[citation needed]

      From Latin innātus ("inborn"), perfect active participle of innāscor ("be born in, grow up in"), from in ("in, at on") + nāscor ("be born"); see natal, native. From Middle English goodnesse, godnesse, from Old English gōdnes ("goodness; virtue; kindness"), equivalent to good +‎ -ness. Cognate with Old High German gōtnassī, cōtnassī ("goodness"), Middle High German guotnisse ("goodness"). A hero (masculine) or heroine (feminine) is a person or main character of a literary work who, in the face of danger, combats adversity through impressive feats of ingenuity, bravery or strength, often sacrificing their own personal concerns for a greater good. The concept of the hero was first founded in classical literature. It is the main or revered character in heroic epic poetry celebrated through ancient legends of a people; often striving for military conquest and living by a continually flawed personal honor code.[1] The definition of a hero has changed throughout time, and the Merriam Webster dictionary defines a hero as "a person who is admired for great or brave acts or fine qualities".[2] Examples of heroes range from mythological figures, such as Gilgamesh, Achilles and Iphigenia, to historical figures, such as Joan of Arc, modern heroes like Alvin York, Audie Murphy and Chuck Yeager and fictional superheroes including Superman and Batman. Truth is most often used to mean being in accord with fact or reality,[1] or fidelity to an original or standard.[1] Truth may also often be used in modern contexts to refer to an idea of "truth to self," or authenticity. The commonly understood opposite of truth is falsehood, which, correspondingly, can also take on a logical, factual, or ethical meaning. The concept of truth is discussed and debated in several contexts, including philosophy, art, and religion. Many human activities depend upon the concept, where its nature as a concept is assumed rather than being a subject of discussion; these include most (but not all) of the sciences, law, journalism, and everyday life. Some philosophers view the concept of truth as basic, and unable to be explained in any terms that are more easily understood than the concept of truth itself. Commonly, truth is viewed as the correspondence of language or thought to an independent reality, in what is sometimes called the correspondence theory of truth. Other philosophers take this common meaning to be secondary and derivative. According to Martin Heidegger, the original meaning and essence of truth in Ancient Greece was unconcealment, or the revealing or bringing of what was previously hidden into the open, as indicated by the original Greek term for truth, aletheia.[2][3] On this view, the conception of truth as correctness is a later derivation from the concept's original essence, a development Heidegger traces to the Latin term veritas.

      Some things can never be forgot Lest the same mistakes be oft repeated Remember remember the rain of November that you will know no more of me Than I know of you, this day

      That you do not know me now Is a revelation to nobody but I You know a broken man, a victim And refuse to acknowledge why Unless you learn how to say "hi"

      THE HEART OF ME ONLY KNOWS THE SHADOW

      Lothario is a male given name which came to suggest an unscrupulous seducer of women in The Impertinent Curious Man, a metastory in Don Quixote. For no particular reason, Anselmo decides to test the fidelity of his wife, Camilla, and asks his friend, Lothario, to seduce her. Thinking that to be madness, Lothario reluctantly agrees, and soon reports to Anselmo that Camilla is a faithful wife. Anselmo learns that Lothario has lied and attempted no seduction. He makes Lothario promise to try for real and leaves town to make this easier. Lothario tries and Camilla writes letters to her husband telling him and asking him to return; Anselmo makes no reply and does not return. Lothario actually falls in love and Camilla eventually reciprocates and their affair continues once Anselmo returns. One day, Lothario sees a man leaving Camilla's house and jealously presumes she has found another lover. He tells Anselmo he has at last been successful and arranges a time and place for Anselmo to see the seduction. Before this rendezvous, Lothario learns that the man was actually the lover of Camilla's maid. He and Camilla contrive to deceive Anselmo further: when Anselmo watches them, she refuses Lothario, protests her love for her husband, and stabs herself lightly in the breast. With Anselmo reassured of her fidelity, the affair restarts with him none the wiser. Romeo Montague (Italian: Romeo Montecchi) is the protagonist of William Shakespeare's tragedy Romeo and Juliet. The son of Montague and his wife, he secretly loves and marries Juliet, a member of the rival House of Capulet. Forced into exile after slaying Juliet's cousin, Tybalt, in a duel, Romeo commits suicide upon hearing falsely of Juliet's death. The character's origins can be traced as far back as Pyramus, who appears in Ovid's Metamorphoses, but the first modern incarnation of Romeo is Mariotto in the 33rd of Masuccio Salernitano's Il Novellino (1476). This story was adapted by Luigi da Porto as Giulietta e Romeo (1530), and Shakespeare's main source was an English verse translation of this text by Arthur The earliest tale bearing a resemblance to Shakespeare's Romeo and Juliet is Xenophon of Ephesus' Ephesiaca, whose hero is a Habrocomes. The character of Romeo is also similar to that of Pyramus in Ovid's Metamorphoses, a youth who is unable to meet the object of his affection due to an ancient family quarrel, and later kills himself due to mistakenly believing her to have been dead.[2] Although it is unlikely that Shakespeare directly borrowed from Ovid From Middle English scaffold, scaffalde, from Norman, from Old French schaffaut, eschaffaut, eschafal, eschaiphal, escadafaut("platform to see a tournament") (Modern French échafaud) (compare Latin scadafale, scadafaltum, scafaldus, scalfaudus, Danishskafot, Dutch and Middle Dutch schavot, German schavot, schavott, Occitan escadafalc), from Old French es- ("indicating movement away or separation") (from Latin ex- ("out, away")) + chafaud, chafaut, chafault, caafau, caafaus, cadefaut ("scaffold for executinga criminal"), from Vulgar Latin *catafalcum ("viewing stage") (whence English catafalque, French catafalque, Occitan cadafalc, Old Catalancadafal, Italian catafalco, Spanish cadafalso (obsolete), cadahalso, cadalso, Portuguese cadafalso), possibly from Ancient Greek κατα-(kata-, "back; against") + Latin -falicum (from fala, phala ("wooden gallery or tower; siege tower")).

      oversight (countable and uncountable, plural oversights) An omission; something that is left out, missed or forgotten. A small oversight at this stage can lead to big problems later. Supervision or management. quotations ▼ The bureaucracy was subject to government oversight. In the last heaven Moses saw two angels, each five hundred parasangs in height, forged out of chains of black fire and red fire, the angels Af, "Anger," and Hemah, "Wrath," whom God created at the beginning of the world, to execute His will. Moses was disquieted when he looked upon them, but Metatron emb HA QUESTIONa BEFORE THE ANSWER? A Wrinkle in Time is a science fantasy novel written by American writer Madeleine L'Engle, first published in 1963, and in 1979 with illustrations by Leo and Diane Dillon.[2] The book won the Newbery Medal, Sequoyah Book Award, and Lewis Carroll Shelf Award, and was runner-up for the Hans Christian Andersen Award.[3][a] It is the first book in L'Engle's Time Quintet, which follows the Murry and O'Keefe families. The book spawned two film adaptations, both by Disney: aas + fuck Adverb[edit] as fuck (postpositive, slang, vulgar) To a great extent or degree; very. It was hot as fuck outside today. Usage notes[edit] May also be used in conjunction with a prepositive as; for example, as mean as fuck. Abbreviations[edit] In Norse religion, Asgard (Old Norse: Ásgarðr; "Enclosure of the Æsir"[1]) is one of the Nine Worlds and home to the Æsir tribe of gods. It is surrounded by an incomplete wall attributed to a Hrimthurs riding the stallion Svaðilfari, according to Gylfaginning. Odinand his wife, Frigg, are the rulers of Asgard. One of Asgard's well known realms is Valhalla, in which Odin rules.[2] rods, etc.) and sizes, and are normally held rigidly within some form of matrix or body until the high explosive (HE) filling is detonated. The resulting high-velocity fragments produced by either method are the main lethal mechanisms of these weapons, rather than the heat or overpressure caused by detonation, although offensive grenades are often constructed without a frag matrix. These casing pieces are often incorrectly referred to as "shrapnel"[1][2] (particularly by non-military media sources). The modern torpedo is a self-propelled weapon with an explosive warhead, launched above or below the water surface, propelled underwater towards a target, and designed to detonate either on contact with its target or in proximity to it. Historically, it was called an automotive, automobile, locomotive or fish torpedo; colloquially called a fish. The term torpedo was originally employed for a variety of devices, most of which would today be called mines. From about 1900, torpedo has been used strictly to designate an underwater self-propelled weapon. While the battleship had evolved primarily around engagements between armoured ships with large-caliber guns, the torpedo allowed torpedo boats and other lighter surface ships, submersibles, even ordinary fish Qt (/kjuːt/ "cute"[7][8][9]) is a cross-platform application framework that is used for developing application software that can be run on various software and hardware platforms with little or no change in the underlying codebase, while still being a native application with native capabilities and speed. Qt is currently being developed both by The Qt Company, a publicly listed company, and the Qt Project under open-source governance, involving individual Time is the indefinite continued progress of existence and events that occur in apparently irreversible succession from the pastthrough the present to the future.[1][2][3] Time is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience.[4][5][6][7] Time is often referred to as a fourth dimension, along with three spatial dimensions.[8] Time has long been an important subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars.[2][6][7][9][10][11] Nev Borrowed from Anglo-Norman and from Old French visage, from vis, from Vulgar Latin as if *visāticum, from Latin visus ("a look, vision"), from vidēre ("to see"); see vision. The term Golden Age comes from Greek mythology, particularly the Works and Days of Hesiod, and is part of the description of temporal decline of the state of peoples through five Ages, Gold being the first and the one during which the Golden Race of humanity (Greek: χρύσεον γένος chrýseon génos)[1] lived. Those living in the first Age were ruled by Kronos, after the finish of the first age was the Silver, then the Bronze, after this the Heroic age, with the fifth and current age being Iron.[2] By extension "Golden Age" denotes a period of primordial peace, harmony, stability, and prosperity. During this age peace and harmony prevailed, people did not have to work to feed themselves, for the earth provided food in abundance. They lived to a very old age with a youthful appearance, eventually dying peacefully, with spirits living on as "guardians". Plato in Cratylus (397 e) recounts the golden race of humans who came first. He clarifies that Hesiod did not mean literally made of gold, but good and noble. There are analogous concepts in the religious and philosophical traditions of the South Asian subcontinent. For example, the Vedic or ancient Hindu culture saw history as cyclical, composed of yugas with alternating Dark and Golden Ages. The Kali yuga (Iron Age), Dwapara yuga (Bronze Age), Treta yuga (Silver Age) and Satya yuga (Golden Age) correspond to the four Greek ages. Similar beliefs occur in the ancient Middle East and throughout the ancient world, as well.[3] In classical Greek mythology the Golden Age was presided over by the leading Titan Cronus.[4] In some version of the myth Astraea also ruled. She lived with men until the end of the Silver Age, but in the Bronze Age, when men became violent and greedy, fled to the stars, where she appears as the constellation Virgo, holding the scales of Justice, or Libra.[5] European pastoral literary tradition often depicted nymphs and shepherds as living a life of rustic innocence and peace, set in Arcadia, a region of Greece that was the abode and center of worship of their tutelary deity, goat-footed Pan, who dwelt among them.[6] oh, and a space s h i p ​

      BIG THINGS C0ME IN SMALL PACKAGES

      T+BANG

      SEE THE SCAFFOLD IS THE TEST TODAY.

      ᐧ F O R T H E I N I T I A L K E Y S , S H E E X A N D N D A N D A SEE W H Y SEA

      With an epic amount of indigestion Indiana Jones sweeps in to mar the visage of an otherwise glistening series of fictitious characters, with names like Taylor and Mary Kate remind us all that we are not playing a video game here in this place. the "J" of the "Nintxndo Entertainment System" calmly stares at Maggie Simpson thinking "it's a PP" and reminds us that it's not just the "gee, I e" of her name that contradicts the Magdaln-ish words her soul speaks through her name--and then with a smirk he points out "Gilgamesh" and "gee whiz, is Eye L?" that really does go to the heart of this lack of discussion, this "sh" that begins El Shaddai and words as close to our home as "shadow" and "shalom." Quite the fancy "hello" you've managed to sing out from behind angry chellos and broken fiddles, and here I am still wondering why it is that "girl" connects to the red light that once meant charity and now glows with the charity of truth... the truth that we are inHell. Shizzy.

      m.lamc.la/KEYNES.html

      Homer "on the range," maybe more closely connected to the Ewok of Eden and Hansel's tHeoven that Peter Pan still comes and cries could so easily be made into something so much better, if only we had the truth--and by that I mean if only you were speaking about, and reacting to a truth that is painted on the sky, in your hearts, in every word we speak and in everything that we do. If only we were acknowledging this message that screams that "children need not starve" with something more than donating virtual chickens to nations of Africa and watching Suzanne Summers ask for only a few dollars a day on TV. If only you would understand that this message that connects video games like "Genxsis" to "bereshit" because Eden is a "gee our den" that tended itself before Adam had to toil with the animals in order to survive. For some reason beyond my control and well outside my realm of understanding words like "I too see this message from God" and "I would not let children starve either" never seem to escape your lips in any place where anyone will ever see that you thought those things, or meant to call a reporter; eventually. Even with "AIDS of nomenclature" to avoid this DOWN WARD spiral into a situation and a land that I find difficult to imagine actually ever "existing" but here in this place I do see "how" it comes about, and between you and I it really does appear that nearly all of the problems we are dealing with here have come from another place, a further time; and while it might be with the "greatest of intentions" that we are trying to deal with them; I can't help but feeling that our "virgin sea" has had more than just it's innocence taken away from it in this story of "Why Mary" that might connect to "TR IN IT Y" just as much as it connects to Baltimore, Maryland.

      I should be clear that I'm not blaming Nanna, or Mary; but the actual reason for the name "Wymar" and that's because she, like Taylor, acted as a microcosm for a sea (or more than one, Mom, sen) that was quite literally possessing her. It's sort of difficult for me to explain even what that looks like let alone what it feels like; but my observations tell me that she/you are not unhappy about the interaction, one which appears very foreign to me. Of course, the "eye" that I write with and the same kind of "inspiration" that you can see in the lyrics and skill of many musicians are also examples of this same kind of interaction. For example, Red Hot Chili Peppers sings a song called "Other Side" that explains or discusses the thing I see as Medusa in the words "living in a graveyard where I married a sea" which also does a good job of connecting to the name Mary. As strange as might sound to think a group of people would be speaking through a single person... we are staring at "how it is" that could be possible, and possibly at exactly how it happened. Normally I would have said it was obvious, but to need to actually say that becoming a single mind would be a serious loss for our society--well, that's telling. You might think it's silly, but I'm telling you I see it happening, I see it--and you see it in the Silence and the message.

      Still, it appears to me as if this "marriage" that I see described in our Matrix in the question "min or i" seems to be doing nothing more than keeping us all from discussing or acting on this information--something that certainly isn't in our best interest.

      So here we are, staring at a map all over the ground and all around us with the primary destination of "building Heaven" through mind uploading, virtual reality, and judging by the pace of things we'd probably have all of that good and ready in about three generations. The map has a little "legend" with a message suggesting that those things have already been done and we are in the Matrix already; and it appears that the world, I mean Medusa, is deciding we should put off seeing the legend at least until the next generation. I see how that makes sense for you. That's sarcasm, this is why I keep telling you that you are cupid.

      It is a big deal, and there's a significant amount of work involved in merging an entire civilization with "virtual reality" and you might see why he calls it a hard road--at least in the word "ha'rd." Honestly though, it's the kind of thing that I am pretty sure the future will not only be happy that we did, but they'd thank us for putting in the effort of adapting to things like "unlimited food" and "longevity" increased by orders of magnitude.

      That's not sarcasm, these things are actually difficult to guess how exactly we'll go about doing them; they are a huge deal--all I can tell you is that not "talking about it at all" is probably not going to get us there any faster. Point in fact, what it might do is give a "yet to be born" generation the privilege of being the actual "generations of Perez."

      I see why you aren't saying anything. That's sarcasm, again. The good news is that it really has been done before; though if I told you that someone turned stone to eggplant parm, would you laugh at me?

      So, back to what is actually standing between "everyone having their own Holodeck in the sky" and you today; it is the idea that this message is not from God. More to the point it is the apparently broad sweeping opinion that hiding it is a "good thing" and through that a global failure to address the hidden interaction and influence acting on our minds used to make this map--and also to hide it. With some insight, and some urging; you might see how the sacredness of our consciousness is our souls is something that is more fundamental than "what kind of tools we have in the Holodeck to magically build things" and how and why the foundation of Heaven is truly "freedom itself" and how it comes from right this very moment for the first time, ever. Continuing to treat this influence as "schizophrenia" is literally the heart of why this map appears to be that--to show us how important it is to acknowledge the truth, and to fight for the preservation of goodness and logic over secrecy and darkness.

      Again, something that nobody is really doing here and now, today. From this newfound protection of our thoughts, of who we are; we see how technology can be used to either completely invalidate any kind of vote by altering our emotions; or how it could be used to help build a form of true democracy that our world has yet to see. It is pretty easy to see from just band names like The Who and KISS and The Cure how the influence of this external mind can be proven, and shown to be "helpful," you know, if we can ever talk about it on TV or on the internet.

      It's important to see and understand how "sanity"--the sanity of our entire planet hangs in the balance over whether or not we acknowledge that there is actually a message from God in every word--and today this place appears to be insane. It should be pretty easy to see how acknowledging that this influence exists and that it has a technological mechanism behind it turns "schizophrenia" into "I know kung fu" ... forced drug addiction and eugenics into "there's an app for that" and the rash of non random and apparently unrecognized as connected terrorist attacks and school shootings into Minority Report style pre-crime and results in what is clearly a happier, safer, and more civilized society--all through nothing more than the disclosure of the truth, this map, and our actual implementation.

      With a clearer head and grasp of the "big picture" you might see how all of these things, connected to the Plagues of Exodus revolve around the disclosure that this technology exists and the visibility of this message showing us how we might use it for our benefit rather than not knowing about it. At the foot of Jericho, it is nothing short of "sanity" and "free thought" that hang in the balance. Clear to me is that the Second Coming, seeing "my name" on television is a good litmus test for the dividing line between light and darkness, heaven and hell.

      The point is the truth really does change everything for the better; once we start... you know, acting on it.

      AS IN.. "DIS CLOSE SING...."

      T H E B U C K S T O P S H E R E

      ON AM B I GUI TY

      S T A R R I N G . . . B I A N C A

      ON "RIB" .. ARE SHE B? BUTT DA APPLE OF DA I? & SPANGLISHREW

      R THEY LANGUAGE OUTLIERS?

      With some insight and "a clue" you can see clearly how these works of art show that the proof of Creation you see in every letter and every word runs much deeper... adding in things like "RattleRod" and the "Cypher" of the Matrix to the long list of here-to-fore ignored verifiable references to the Adamic Language of Eden. Here, in apple, honey and "nuts" we can see how the multi-millennium old ritual I call "Ha-rose-ettes" is actually part of a much larger and much older ritual designed to stop secrecy ... perhaps especially the kind that might be linked to "ritual."

      These particular apple and honey happen to tie Eden to the related stories of Exodus and Passover; connecting Eden to Egypt forevermore. Do see "Lenore," it is not for no reason at all; but to help deliver truth and freedom to the entirety of Creation; beginning here, in Eden.

      ALSO ON "AM B IG U IT Y" ME A.M. G - D SHE IT Y?

      LET "IT" BE SA< ?

      IMHO, don't miss the "yet to be" conversion to "why and to be" in "yetser." IT Y.

      HERE'S LOOKING AT YOU, KID

      On a high level, I tell myself every morning that 'its not really me." It's not me that the world hates, or me that the world is rejecting. I believe that, I really do; I see that what is being hidden here is so much bigger than any single person could ever be--what is being hidden is the "nature of reality" and a fairly obvious truth that flies in the face of what we've learned our whole lives about history and "the way things are." Those few early details lead me to the initial conclusion that what is working behind the scenes here is nefarious, hiding a message that would without doubt shake things up and change the world--and nearly across the board in ways that I see as "better" for nearly everyone. It's a message at it's most basic level designed to advocate for using this disruption in "normalcy" to help us revolutionize democracy, to fix a broken mental health and criminal justice system--just to name the few largest of the social constructs targeted for "rejuvenation." On that word the disclosure that we are living in virtual reality turns on it's head nearly everything we do with medicine, and I've suggested that AIDS and DOWN SYNDROME were probably not the best "visual props" we could have gotten to see why it's so important that we act on this disclosure in a timely manner. After mentioning the ends of aging and death that come eventually to the place we build, to the place we've always thought of as Heaven... it becomes more and more clear that this force fighting against the dissemination of a truth so obvious it's in every word and everything we do--it becomes clear it's neither you, nor acting in your best interest.

      I know I've got the eye of the tiger, there's no doubt; and it's pretty clear from "YAD?" (the Hebrew for...) and ha'nd that we can see the clear hand of God at work in a design that marks my initials not just on the timeline, or at 1492, at A.D. I B; but in the Hebrew name for this place called El Shaddai, see how A.D. is "da eye" and in some other names like Adranus, A.D. on "it's silly" and A.D. on Ai that might tie me to the Samof Samurai (but, are you Ai?) in more depth of detail than simply the Live album "Secret Samadhi." I try to reflect on how it is that this story has come about, why it is that everything appears to be focused on me--and still even through that sincere spotlight nobody seems to be able to acknowledge my existence with more words than "unsubscribe" and "you're so vain." With one eye in the mirror, I know ties to Narcissus (and you can too), soaring ever higher--linking Icarus to Wayward Son and to every other name with "car" in it... like "carpenter" and McCarthy the older names of Mercury and even Isacriot (I scary? is car-eye... owe Taylor) and some modern day mythological characters like Jim Carrey and Johnny Carson. As far as Trinities go, carpenter's a pretty good one--tying to my early reck and a few bands and songs from The Pretty Reckless to Dave Matthews' "Crash Into Me" all the way to the "pen" you see before you linking Pendragon to Imagine Dragons.

      I wonder why it is that all of these things appear, apparently only to me, to point to a story about all the ways that a sinister hidden force has manipulated our society into being unable to "receive' this message--this wonderful message about making the world a better place and building Heaven--with any fanfare at all. It's focused now on a criminal justice system that clearly does not do any kind of "rehabilitation" and on a mental health industry and pharmaceutical system that treats a provable external attack on our own goodness and well being as some kind of "internal stimulus" and makes you shy away when I point out why "stem" is in system and why "harm" in pharmacy. From that we move a little bit past "where we are in this story" and I have to point out how "meth" ties to Prometheus and Epimetheus and how and why it is I know without doubt that this story has been relived numerous times--and how I am so sure that it's never been received, as we are here again listening to how songs like "Believe" and the words "just to lead us here to this place again" connect to Simon and Garfunkel's" the Sound of Silence... and still to this day you will balk at noticing that "Simon" has something to do with the Simpsons, and something to do with the words "simulation" and "Monday." To see me is to see how things might be done better--how "addicitonary" might tie to the stories of Moses' Lisp and to Dr. Who's "Bells of Saint John" with a sort of "web interface" to the kinds of emotion we might want to "dial down..." rather than Snicker in the background as we see them being artificially created and enhanced in order to build a better "fiery altar."

      I can point out "Silicon" harrowing down at us from words like "controversial" and show you Al in "rascal" and "scandal" but not to see that we are staring at school shootings and terrorism that are solved instantly by this disclosure, by Al of Quantum Leap and by the Dick of Minority Report and A Scanner Darkly is to ignore just what it is that we are all failing to Si. I should point out that those two "sc"'s link to a story about Eden and they mean "sacred consciousness" and at the baseline of this event and everything we are not doing is the fact that our desires and beliefs are being altered--all of this comes down to "freedom of thought" here and now.

      I could tell you that "looking at me" will show you that even the person who tries every day to do everything he can to save the entire world from slavery, and from "thought-injury"--even I can be made "marred" and you all, this whole world stupid enough to think that you are, of your own volition, hiding Heaven itself from yourselves... to what? To spite me? It, the focal point of our story might come down to you realizing that something in some esoteric place is playing "divide and conquer" with our whole--in secret playing on our weaknesses to keep us from acting on the most actionable information that ever was and ever will be. Still, we sit in silence waiting for me... to speak more?

      Inline image 16

      hyamdai.reallyhim.com Inline image 31

      Between Nero's lyrical fiddling, a Bittersweet Symphony, and true "thunderstanding" the sound of Thor's hammer... "to help the light" that'ls "or" in Hebrew, of Orwell and Orson and .. well, it's really not hard to see and hear that the purpose and intent of "all this noise" is to help us find freedom and truth. C the Light of "singing..."

      I can tell you once again how silly the world looks, this multi-decade battle between "the governmentof the people" and the "government of the workers" resulting in what is nothing short of a hands down victory to the corporation. Is it humor meant to divide, or ludicrousness created with the purpose of unification?

      But really at it's most basic level what this boils down to is a global group decision not to care about the truth, about reality, about what's really brought us to this place--with solutions in hand and a way to make everything better. We've decided that censorship is OK, and that the world is not all that bad "just the way it is" even though it's creator is screaming in your ear telling you to change as quickly as you possibly can. I believe that God has written this story to make "seeing me" the thing that catalyzes "change for the better" it appears to be the design of not just me but also this place--hey, here I am.

      Happy Veteran's Day.

      S☀L u TI o N

      Yesterday, or maybe earlier today--it's hard to tell at this moment in the afternoon just how long this will take... I sent an image that conveys a high level implication that we are walking around on a map to building something that we might liken to an "ant farm" for people. I don't mean to be disparaging or sleight our contribution to the creation of this map--that I imagine you must also see and believe to be the kind of thing that should remain buried in the sands of time forever and ever--or your just have yet to actually "understand" that's what the plan part of our planet is talking about... what I am trying to do is convey in a sort of "mirrorish" way how this map relates to a message that I see woven in religion and in our history that it significantly more disparaging than I would be. It's a message that calls us "Holy Water" at the nicest of times, water that Moses turns to "thicker than water" in the first blessing in disguise--and to tell you there is certainly a tangible difference between the illusions of the Pharaoh's and the true magic performed by my hand, is nearly exactly the same amount of effort put in to showing you that the togetherness that we are calling "family" here in this place comes from both seeing and acting on the very clearly hidden message in every single idiom showing us all that our society in this story of Exodus is enslaved by a hidden force--and reminding us that we like freedom.

      It's not just these few idioms, but most likely every single one from "don't shoot the essenger" to "unsung hero" that should clue us in to exactly how much work and preparation has come into this thing that "he supposes is a revolution." It's also not just "water" describe me and you, in this place where I am the "ant' of the Covenant (do you c vampires or Hansel and Gretel!?!?) but also "lions" and "sheep" and "salt" and "dogs" and nearly everything you could possibly imagine but people; in what I see must be a vainglorious attempt to pretend he actually wants us to "stand up for ourselves" in this place where it's becoming more and more clear with each passing moment that we are chained to these seats in the front row of the audience of the most important event that has ever happened, ever.

      Medusa makes several appearances, as well as Arthur Pendragon, Puff the Magic Dragon, Figment, Goliath, monster.com, the Loch Ness Monster in this story that's a kind-of refl ex i ve control to stop mind control; and to really try and show us the fire of Prometheus and the Burning Bush and the Eternal Flame of Heaven are all about freedom and technology ... and I'll remind you this story is ... about the truth--and the truth here is that if you aren't going to recognize that whatever it is that's going on here in secret, below the surface is negatively affecting our society and life in general than we aren't going anywhere, ever. I need you to figure out that this message is everywhere to make sure you don't miss the importance of this moment, and the grave significance of what is being ignored in this land where Sam is tied not just to Samsung and to Samael in Exodus but also to Uncle Sam and macaronic Spanglishrew outliers and that it doesn't take much free thought at all to really understand that we are watching "free thought" disintegrate into the abyss of "nospeak." We are watching our infrastructure for global communication and the mass media that sprawls all over the globe turn to dust, all because you have Satan whispering in your ear--and you think that's more important than what you think, what I think, and what anyone else on the Earth might ever say. You should see a weapon designed to help ensure that don't lose this proof that we are not living in reality, that there is "hidden slavery" in this place--and you should see that today it appears you are simply choosing not to use it.

      I hope you change your mind, I really do. This map on "how to build an ant farm" starts by connecting Watergate and Seagate together with names like Bill Gates and Richard Nixon; and with this few short list of names you should really understand how it is that "Heaven" connects both technology like computers and liberty like "free speech" to a story that is us, and our history. You might see that "salt" could either be a good thing or not--take a look around you, are you warming a road to Heaven or are you staring at the world being destroyed--and doing nothing at all about it?

      I guess I can point out again how "Lothario" links this story that ties names like my ex-wife's Nanna to "salt" also, but the "grand design" of this story doesn't seem to have any effect on you. Listen, if you do nothing the world is being destroyed by your lack of action--there's no if's and's or butt's about it. I feel like I need to "reproduce' old messages here or you will never see them--that's what web site statistics tell me--and we all know it's not true. What am I missing? What are you missing?

      BUTT IS THE BOAT A Hi DARK DEN MESSAGe ?

      SEE OUR LIGHT

      HONESTLY, I'M WAY TO CUTE TO BE A MONSTER :(

      HIC SUMMUS

      So... here we are... listening to the legendary father of the message (that's "abom" in Adamic Spagnlishrew) point out all of the sex jokes hidden in religion and language from sexual innuendo to Poseidon and in our history from Yankee Doodle to Hancock to Nixon and I've got to be frank with you, the most recent time I came across this phrase in scripture I cringed just a little bit, pretty sure that the "message" was talking about me. I've reflected on this a little bit, and over the past few weeks have tried to show you the juxtaposition between "sex" and "torture" in it's various forms from imparting blindness to allowing murder and simulating starvation; and I think I'm justified in saying that certainly those things are far worse on the Richter scale than anything I could do by writing a little bit of risque text. In the most recent messages I've touch a little bit, without even knowing or realizing this connection would be made, on what it is that this phrase actually means.

      loch.reallyhim.com

      ABOMINATION

      So long story short is that the answer here is "abomination" and the question, or the context is "I nation." Whether it's Medusa speaking for the Dark United States or the nation of Israel speaking to either Ra or El depending on the day, the bottom line is that a collective consciousness speaking for everyone on a matter of this importance in a cloud of complete darkness on Earth is a total and undeniable abomination of freedom, civilization, and the very humanity we are seeking to preserve. The word reads something like this to me "dear father of the message, I am everyone and we think you are an abomination, fuck off." My answer of course is, IZINATION. Which humorously reminds me of Lucy, and Scarlet Johannson saying "I am colonizing my own brain" so here's some pictures of her. She is not an abomination, by the way; she's quite adorable. You'll probably notice there's some kind of connection between the map--the words speaking to the world, and the abomination, as if the whole thing is a story narrated in ancient myths.

      WAKE UP, "SHE" A MESSAGE TO YOU ABOUT THE FUTURE

      You might not think "it's you," but the manifestation of this "snake" in our world is your silence, your lack of understanding or willingness to change the world; and whether or not you're interested in hearing about it, it's the monster that myths and religion have spoken about for thousands and thousands of years. It's a simple matter to "kill Medusa" all you have to do... is speak.

      Take special note, "freedom of speech" and "freedom to think for yourselves" are not a group decision, and you do not have the right to force (either overtly or subtly, with hidden technology perhaps combined with evil deceit) others not to talk about anything. Especially something of this importance.

      DESOLATION

      If you didn't connect "Loch" to John Locke, now you have; see how easy this "reading" thing is? I've gone over the "See Our Light" series a few times, but let me--one more time--explain to you just how we are already at the point of "desolation" and with shining brilliance show you how it's very clear that it is "INATION" and "MEDUSA" that are responsible for this problem.

      Seeing "Ra" at the heart of the names Abraham and Israel begins to connect the idea that our glowing sun in the sky has something to do with this message about "seeing our light" is being carried by a stone statue on Ellis Island (where you'll see the answer another part of the question of Is Ra El?). I've connected her to the "she" of both shedim and Sheol, which reads as "she's our light" and is the Hebrew name for Hell.

      Of course you noticed that the Statue of Liberty does in fact share it's initials with SOL, the the light above and you can see her torch dimly lighting the way through the night; Now you can connect "give us your tired and your poor" to the Lazman of both the lore of Jesus Christ and the Shehekeyanu; a prayer about the sustainment of life and light up until this day. That same torch connects to the Ha-nuke-the-ahah depiction of Christ, Judah Maccabee's lit MEN OR AH, which delivers not only a solution to the two letter key of "AH" as All Humanity that pervades nearly every bride of Revelation from Sarah to Leah; but also to the question of equality answered in our very own American history, beginning with the same three letter acronym now lighting the Sons of Liberty.

      Dazed and Confused does a good job of explaining how this name is itself a prophesy designed by Hand of God'; explaining that these Sons of Liberty were all white slave owning wealthy men fighting to stop paying their taxes, rather than delivering liberty to the slaves or women, who were both disenfranchised for quite some time. Or maybe MEN OR AH has something to do with the angels of Heaven, in which case you might be SOL if you aren't a girl and you want to be "be good friends with Ra." Just kidding. Kinda.

      DESOLATION by the way reads something like "un see our light at ION" which is God's way of saying "at the point of believing that hiding Adam is a good thing" and that connects to the end of Creation and also the now lit by modern day evil the word "rendition." Our end, it "ion." In religious myth, the Messianic David clung to the city Zion (end the "i owe n") which also links to "verizon" (to see, I Z "on") and HORIZON which has something to do with the son rising today-ish.

      Inline image 25 Inline image 26

      The story of MEDUSA lights another psuedo-religious idea, that the words "STONE" of both "brimstone" and it's Adamic interpretation "South to Northeast" have something to do with the phrase "Saint One" turned into a single hero against his will by the complete and utter inaction of everyone around him. In the words of Imagine Dragons "I'm waking up to action dust." At the same time, you can believe that the light of this particular son, comes not just from reading these words forwards, but the backside as well, and you'll hopefully see it's not coincidental that the other side of this coin is that "nos" means we, and us... and Adamically "no south." See the light of "STONE" also connecting to Taylor Momsen's rose arrow painted on her back, and the sign of my birth, Sagittarius... which in this particular case links to the Party of the Immaculate Conception of the eternal republic of the Heavens. . PRESS RELEASE... A GREAT SIGN APPEARED IN THE HEAVENS

      SOLUTIAN, ON YOUR COMPUTER.. TO THE SOUND OF SILENCE

      בָּרוּךְ אַתָּה יְיָ‎ אֱלֹהֵינוּ מֶלֶךְ הַעוֹלָם שֶׁהֶחֱיָנוּ וְקִיְּמָנוּ וְהִגִּיעָנוּ לַזְּמַן הַזֶּה‎׃

      IN ... THE BOOK OF NAMES LETS SEE IF YOU CAN FIGURE OUT WHO THEY ARE :)

      ​ I'LL DO YOURS FOR A 50 DOLLAR DONATION, I'M BROKE.. MAYBE THAT'S WHY I CAN'T GET A DATE.

      HAVE A GREAT SOLDAY

      The "gist" of the message is verifiable proof that we are living in a computer in simulated reality... just like the Matrix. The answer to that question, what does that mean--is that God has woven a "hidden" message into our everything--beginning with each name and every word--and in this hidden Adamic language, he provides us with guidance, wisdom, and suggestions on how to proceed on this path from "raelity" to Heaven. I've personally spent quite a bit of time decoding the message and have tried to deliver an interesting and "fun" narrative of the ideas I see. Specifically the story of Exodus, which is called "Names" in Hebrew discusses a time shifted narrative of our "now" delivering our society from a hidden slavery (read as ignorance of advanced technologies already in use) that is described as the "darkness" of Exodus. If you have any questions, ideas to contribute or concerns... I'd love to hear from you this whole thing really is about working together--Heaven, I mean.

      Inline image 5 jerusalem.reallyhim.com

      gate kermitham <br /> ou r evolution minority report to supermax Inline image 6

      bereshit bread is life

      Inline image 13

      Image result for dox me

      HOW AM I STILL STINGLE? E ' o e <br /> L m r x <br /> L t y <br /> O a

      I HISS.

      The sum of ((our world)) is the universal truth. -Psalm 119 and ((ish))

      Do a few sentences really make that big of a difference? Some key letters? Can you show me what I'm doing wrong? Is there a way to turn me into Adam, rather than a rock? I think you can.

      Are eye Dr. Who or Master Y? Adam Marshall Dobrin is a National Merit Scholar who was born on December 8, 1980 in Plantation, FL and attended Pine Crest School where he graduated sumofi cum louder in "only some of it is humorous." Later he attended the University of Florida (which quickly resulted in a wreck), Florida Atlantic University, and finally Florida Gulf Coast University--where he still has failed to become Dr. Who. While attending "school" He worked in the computer programming and business outsourcing industries for about 15 years before proclaiming to have received a Revelation from God connecting the 9/11 attack and George Bush to the Burning Bush of Exodus and a message about technocracy and pre-crime.

      Adam, as he prefers to be called, presents a concise introduction to paradox proven by the Bible through "verifiable" anachronism in language some stuff about Mars colonization and virtual reality and a list of reasons why ignoring this is actually an ELE. Adam claims to be Thor because of a connection between music and the Trial of Thor as well as the words "author" and "authority." He suggests you be Thundercats and call a reporter. There is also a suggestion that Richard Nixon and John Hancock are related to a signature from God, about freedom and America... and the "unseeingly ironic" Deepthroat and Taylor Momsen. They Sung "It's Rael..." In Biblical characters from Mary to Hosea, to see "sea" in Spanish, and in the Taming of the Spanglishrew ... a message is woven from the word Menorah: "men, or all humanity?" to the Statue of Liberty, and the Sons of Liberty, and the light above us, our SOL; which shows us that through the Revelation of Christ and the First Plague of Exodus, a blessing in disguise--turning water to blood, the sea to family; a common thread and single author of our entire history is revealed, a Father of our future. A message of freedom shines out of the words of scripture, revealing a gate to a new technologically "radical" form of democracy and a number of unseen or secret issues that have stalled the progress of humanity... and solutions, solutions from our sea. The Revelation shows us that not only ever word, but every idiom from "don't shoot the messenger" to "blood is thicker than water" we have ties to this message that pervades a hidden Matrix of light connecting movies and music and history all together in a sort of guide book to Salvation and to Heaven. Oopsy. His Revelation, woven into his life, continues to suggest that skinny dipping, forced methamphetamine addiction, and lots and lots of "me A.D." as well as his humorous depiction of a dick plastered over the Sound of Silence, his very Holy click, have something to do with saving our family and then the entire Universe from hidden mind control technology and the problems introduced by secret time travel. From the trials and tribulations of "Job" being coerced and controlled into helping to create this wall of Jericho; we find even more solutions, an end to addiction, to secrecy, and to this hidden control--a focal point of the life of Jesus Christ.

      It tells us a story of recursion in time, that has brought us here numerous times--with the details of his life recorded not only in the Bible but in myths of Egyptian, Norse, and Greek mythology. The huge juxtaposition of the import of the content of the message shows the world how malleable our minds really are to this technology, how we could have been "fooled" into hiding our very freedom from ourselves in order to protect the "character" of a myth. A myth that comes to true life by delivering this message. In truth, from the now revealed content of the story of this repeated life, it should become more and more clear that we have not achieved success as of yet, that I have never "arrived whole" and that is why we are here, back again. Home is where the Heart is... When asked how He thinks we should respond to his message, He says "I think we already cherish it, and should strive to understand how it is that freedom is truly delivered through sharing the worth of this story that is our beginning. 'tis coming." Adam claims to be God, or at least look just like him and that the entirety of the Holy Scriptures as well as a number of ancient myths from Prometheus to Heimdallr and Yankee Doodle are actually about his life, and this event. An extensive amount of his writing relates to reformation of our badly broken and decidedly evil criminal justice system as well as ending the Global hunger crisis with the snap of his little finger.

      He has written a number of books explaining how this Revelation connects to the delivery of freedom (as in Exodus), through a message about censorship among other social problems which he insists are being intentionally exacerbated by Satan--who he would ha've preferred not to be associated with.

    1. Author Response

      Reviewer #2 (Public Review):

      Manassaro et al. present an extensive three-session study in which they aimed to change defensive responses (skin conductance; SCR) to an aversively conditioned stimulus by targeting medial prefrontal cortex (their words) using repetitive TMS prior to retrieval. They report that stimulating mPFC using TMS abolishes SCR responses to the conditioned stimulus, and that this effect is specific for the stimulated region and the specific CS-US association, given that SCR responses to a different modality US are not changed.

      I like how the authors have clearly attempted to control for several potential confounds by including multiple stimulation sites, measured SCR responses to several unconditioned stimuli, and applied the experiment in multiple contexts. However, several conceptual and practical issues remain that I think limit the value of potential conclusions drawn from this work.

      The first issue that I have with this study concerns the relationship between the TMS manipulation and the theoretical background the authors present in their rationale. In the introduction the authors sketch that what they call 'mPFC' is involved in regulation of threat responses. They make a convincing case, however, almost all of the evidence they present concerns the ventromedial part of the prefrontal cortex (refs 18-25). The authors then mention that no one has ever studied the effects of 'mPFC'-TMS on threat memories. That is not surprising given that stimulating vmPFC with TMS is very difficult, if not impossible. Simulation of the electrical field that develops as a consequence from the authors manipulation (using the same TMS coil and positioning the authors use) shows that vmPFC (or mPFC for that matter) is not stimulated. The authors then continue in the methods section stating that the region they aimed for was BA10. This region they presumably do stimulate, however, that does not follow logically from their argument. BA10 is anatomically, cytoarchitectonically and functionally a wholly different area than vmPFC and I wonder if their rationale would hold given that they stimulate BA10.

      We would like to thank the Reviewer for highlighting this very important point. The Reviewer is right in stating that the Brodmann area 10 (BA 10) is anatomically, cytoarchitectonically, and functionally distinct from the ventromedial PFC. As we reported in the Methods section, the coil placement over the frontopolar midline electrode (Fpz) according to the international 10‒20 EEG coordinate system directly focused the stimulation over the medial portion of the BA 10. In the literature, the aPFC is also known as the “frontopolar cortex” or the “rostral frontal cortex” and encompasses the most anterior portion of the prefrontal cortex, which corresponds to the BA 10. In line with this observation, we have corrected “medial prefrontal cortex” (mPFC) with “medial anterior prefrontal cortex” (aPFC) throughout the manuscript. We also have corrected the theoretical background and the rationale in the Introduction section by mentioning several studies that: i) Reported the involvement of the aPFC in emotional down-regulation (Volman et al., 2013; Koch et al., 2018; Bramson et al., 2020). ii) Traced anatomical connections between the medial/lateral aPFC and the amygdala (Peng et al., 2018; Folloni et al., 2019; Bramson et al., 2020). iii) Detected functional connections between the aPFC and the vmPFC during fear down-regulation (Klumpers et al., 2010). iv) Found hypoactivation, reduced connectivity, and altered thickness of aPFC in PTSD patients (Lanius et al., 2005; Morey et al., 2008; Sadeh et al., 2015; Sadeh et al., 2016). v) Revealed that strong activation of the aPFC may promote a higher resilience against PTSD onset (Kaldewaij et al., 2021) and that enhanced aPFC activity and potentiated aPFC-vmPFC connectivity is detectable after effective therapy in PTSD patients (Fonzo et al., 2017). Furthermore, we discussed our results in light of this evidence in the Discussion section. We really thank the Reviewer for this key implementation of our study.

      The second concern I have is that although I think the authors should be praised for including both sham and active control regions, the controls might not be optimally chosen to control for the potential confounds of their condition of interest (mPFC-TMS). Namely, TMS on the forehead can be unpleasant, if not painful, whereas sham-TMS or TMS applied to the back of the head or even over dlPFC is not (or less so at the very least). Given that the SCR results after mPFC TMS show exactly the same temporal pattern as the sham-TMS but with a lower starting point, one could wonder whether a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations. A control region that would have been more obvious to take is the lateral part of BA10, by moving the TMS coil several centimeters to the left or right, circumventing all things potentially called medial but giving similar unpleasant sensations (pain etc).

      We would also like to thank the Reviewer for bringing to light this issue and allowing us to strengthen our results. The Reviewer is right in pointing out that rTMS application over the forehead can be subjectively perceived as unpleasant, relative to other head coordinates or sham stimulation. The question of whether an unpleasant stimulation prior to the retrieval might provoke habituation to discomfort sensations and lead to weaker SCRs in the consequent CS presentations is valid and reasonable. We also thank the Reviewer for advising us to stimulate the lateral part of BA 10 as an active control site. However, given the potential involvement of the lateral BA 10 in the fear network (see previous point) and the potential risks due to the anatomical proximity of lateral BA 10 with the temporal lobe, we reasoned to adopt an alternative approach to investigate whether “a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations”. We repeated the entire experiment in one further group (ctrl discomfort, n = 10) by replacing the rTMS procedure with a 10-min discomfort-inducing procedure over the same site of the forehead (Fpz) to mimic the rTMS-evoked unpleasant sensations in the absence of neural stimulation effects (see the new version of the Methods section). The electrical stimulation intensity was individually calibrated through a staircase procedure (0 = no discomfort; 10 = high discomfort). The shock amplitude was set at the current level corresponding to the mean rating of ‘4’ on the subjective scale because, in the new experiments that we performed targeting the aPFC with rTMS (n = 9), we collected participants’ rTMS-induced discomfort ratings obtaining a mean rating of 3.833 ± 0.589 SEM on the same scale. We found CS-evoked SCR levels not significantly different to those of the sham group during the test session as well as during the follow-up session, suggesting that the discomfort experienced during the rTMS procedure did not contribute to the reduction of electrodermal responses observed in the aPFC group. We reported the results of this experiment in the Results section and Figure 2-figure supplement 2.

      My final concern is that the main analyses are performed on single trials of SCR responses, which is a relatively noise measure to use on single trials. This is also done in relatively small groups (n=21). I would have liked to see both the raw or at least averaged timeseries SCR data plotted, and a rationale explaining how the authors decided on the current sample sizes, if that was based on a power analyses one must have expected quite strong effects.

      Following the Reviewer’s suggestion, we decided to remove the analysis on single trials, and we apologize for not including SCR timeseries. To quantify the amount of effect induced by the rTMS protocol, we have now added within-group comparisons (through 2 × 2 mixed ANOVAs) that show, for each group, the amount of change in CS-evoked SCRs from the conditioning phase to the test phase, as well as from the conditioning phase to the follow-up phase. Furthermore, to directly and simply depict these changes, in addition to dot plots, we have also represented them with line charts (Figs. 2C, 2H, 4C, 4H, 5C, 5H). To estimate the sample size, we had previously performed a power analysis through G*Power 3.1.9.2 and it had resulted in n = 21 per experimental group. However, by correcting data pre-processing procedures (in accordance with Reviewer 1), we obtained data that were not normally distributed. Thus, we reasoned to enlarge our sample width by re-performing a power analysis (with the new suggested statistical analyses) and then repeating the experiments. For the main statistics, i.e. mixed ANOVA (within-between interaction) with two groups and two measurements, with the following input parameters: α equal to 0.05, power (1-β) equal to 0.95, and a hypothesized effect size (f) equal to 0.25, the new estimated sample size resulted in n = 30 per experimental group.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We would like to extend our warmest thanks to the reviewers for their constructive comments and strong support for our study.

      2. Point-by-point description of the revisions

      Reviewer #1:

      Table

      1. It would be nice to have a table of isoform, dose, promoter, enhancer and other conditions tested and the brief summary of phenotype as Table.

      We thank the reviewer for this valuable suggestion and have now included a summary Table (Table 1) cited in the last result section.

      Discussion

      1. This experiment was done on knockout condition but in real patient different form of mutant protein will exist in retinal tissue. Authors indicated that co‐expression of short and long form of FAM161A worked better to rescue function. How would authors cope with interfering endogenous mutant protein in real patients?

      We thank the reviewer for raising this interesting point. Most mutations described so far are nonsense or frameshift mutations common to both long and short isoforms which, consequently, are not present at the protein level (Beryozkin et al 2020, doi.org/10.1038/s41598-020-72028-0, Matsevich et al 2022, doi.org/10.1016/j.xops.2022.100229). Thus, we don’t expect to have an imbalance between the remaining functional alleles and the therapeutic ones. However, we cannot exclude the discovery of missense mutations and the effect of such allele would have to be molecularly evaluated to determine if gene replacement is limited for this specific condition. This question could be assessed in cellular models by co-expression of both mutated and WT-tagged proteins or in organoid models.

      1. Related to the first question, the expression of these retinal structural proteins will be different in mice and human. How would authors optimize the vector for human patient gene therapy?

      Aware that the 60% homology between the human and mouse protein could cause important limitations for the evaluation of the vector in the mouse model, we are continuing the validation of our vectors in human retina organoïds. We plan to test both the reliable localization of the human isoforms in WT organoid and the rescue of structural photoreceptor defects of FAM161A-deficient human organoids. In parallel, vector-derived expression will also be validated in non-human primates.

      Reviewer #2:

      Scotopic and photopic ERG were performed to study retinal function. However, mouse behavior tests such as optomotor response should be employed to confirm vision restoration.

      In our hand, we didn’t notice a significant modification of the optomotor response between 4 and 16 weeks (for figure on visual acuity changes with age in Fam161atmb/tmb mice (n=6-9), see uploaded word document), and consequently of the estimated visual acuity, in Fam161atmb/tmb mice at 3.5 months corresponding to the endpoint of our study (see figure below). In a separate study to this work, we are thus conducting a follow-up long term gene therapy study to be able to complete the functional analysis of the gene therapy rescue with the optomotor response at age with significant decreased visual acuity in untreated mice compared to WT. We will have to wait at least 6 months to expect to see a difference between groups.

      The immunostaining in Figure 3 has some noise. Filtering the blocking solution before use could improve the quality of the staining.

      We thank the reviewer for this suggestion. The blocking solution was already filtered and the limited success of the mouse FAM161A staining is due to the imperfect recognition of anti-human FAM161A antibodies to the mouse protein.

      In Figure 5f, the data of wildtype mice should be included for comparison.

      As noted by reviewer 3, in Fig5 F, the plain gray horizontal line surrounded by the 2 dotted ones are referring to the mean +/- SEM of the WT value respectively. We added “WT” on the right of the graph to highlight the plain line.

      The cited paper, such as 'Garafalo AV, Cideciyan AV, Heon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, and Jacobson SG. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res. 2020;77(100827),' should be an original research paper, not a review article.

      As noted by reviewer 3, we think appropriate to cite this review which is a complete reference to the different gene therapy approaches developed for inherited retinal diseases.

      Major:

      Fig 1A‐B. Do hTERT‐RPE1 cells endogenously express FAM161A? This set of images lacks a negative control (i.e., no transfected RPE1 cells). Western blot of FAM161A is recommended, similar to Fig 1C.

      We previously showed that hTERT-RPE1 cells express FAM161A in the basal body of the centriole (Di Gioia 2015), but we recognized that it is not apparent in Figure 1A and B, probably due to a limitation of the antibody reactivity which labeled only overexpressed proteins. We thus performed additional experiments using the human ARPE19 cell line to demonstrate endogenous FAM161A expression in untransfected cells and to perform a Western blot from human transfected cells. We observed that in untransfected cells FAM161A labeling is weak and is only revealed in the centriole labeled by centrin after a long exposure time (Figure 1A). When FAM161A HS or HL is overexpressed the FAM161A labeling is present in the cell body, very strong, and is observed with short exposure time (Figure 1A). We also extracted protein from untransfected and HS- or HL-transfected ARPE-19 cells to identify the FAM161A protein by Western blot (Figure 1B). Thus, we added the negative control and a western blot from human cells to answer reviewer comments.

      Fig 1C. The authors noted in the discussion that HS isoform is more abundant than HL isoform from human retinal extract. Although this is from 661W, a mouse photoreceptor cell line, it seems this is aligned with the notion. To echo with the last comment, I am curious to see if under the same transfection, the HS isoform is preferentially expressed in hTERT‐RPE1 cells.

      We do not think that transfection experiment is sufficient to prove that HS is preferentially express than HL. Even if we transfect the same amount of DNA, we would need an internal control for transfection to allow relative quantification of the protein expression after transfection. However, we performed an additional experiment in human RPE cells using the ARPE-19 cell line which is more efficiently transfected than hTERT-RPE1 in our hands. As shown in Figure 1B, we observed again more abundant expression of HS in these human transfected cells. However, we cannot exclude difference in transfection efficiency between HL and HS conditions that could explain the difference in the final amount of FAM161A protein.

      Fig 3 and Fig 5: low mag WT images of FAM161A are the same. But higher mag images (presumably selected from ROIs in low mag) are not the same. Please make sure of no duplication images.

      We are facing technical limits with the labeling of the mouse Fam161A. The antibodies available have limited affinity for the mouse Fam161A protein. While we were able to perform Uex-M from mouse tissue samples (flatmount retina) to study Fam161A expression in the connecting cilium (Mercey et al PLoS Biol 2022), it was more challenging to obtained low magnification picture from mouse retina sections. We propose to show in Figure 3 mouse Fam161A expression obtained from retina section and keep the low magnification from a flatmount for the figure 5. Thus, there will be no duplication of images as recommended by the reviewer.

      Fig 4H. HS+HL combo, and HL alone, showed almost a polarized quantification, quite variable. Can the authors speculate the reason?

      Despite the fact that injections are targeting similar retinal region in treated animals, there is still variation in the localization and extend of the gene transfer due to the surgical success. Indeed, the area of retinal detachment is hard to control in the mouse as of the quality of re-attachment. Moreover, the effective dose may lightly vary when some viral particles might be loss due to reflux. One would need to treat a larger number of eyes to really conclude that HS alone would be less variable than HL alone or HS+HL. However, we could also speculate that HS+HL and HL treatments being more efficient to rescue connecting cilium length compared to HS alone (Fig 5F) could, in the best injected eyes, have a better ONL thickness rescue than the limited ONL rescue induced by HS treatment.

      Also can the authors comment on if there is any associated notable inflammation especially in high tier dosage (10^11 GC)?

      We didn’t follow inflammation directly by fundus examination or OCT imaging following injection. However, despite the high dose used in our successful conditions (10E11 GC/eye), we didn’t notice any differences in the general mouse welfare after injection compare to lower doses. Systemic administration of Rimadyl (carprofen) was however adapted to each mouse during the 24 hrs post-surgery. In comparison to other groups with lower vector doses, no particular emergence of inflammatory cells or damages were observed by histology.

      Can the authors comment on the difference in the injection time, PN14‐15 in this study vs. PN24‐29 in their previous study? Have the authors attempted to treat the older mice with the optimized vector?

      The gene therapy study using the mouse cDNA was performed before establishing the time course of connecting cilia disruption in the Fam161atmb/tmb mouse (Mercey et al. 2022). Following the observation that CC develop similarly to healthy animal up to postnatal day 10, we decided to treat the mouse earlier for the second gene therapy study using human proteins. Nonetheless, the action of the vector occurred when the cilium is already disorganized as we expect expression of the WT Fam161A from 2 weeks post-injection. We are now testing treatments at different ages, including PN28, to determine the therapeutic window and if the optimal conditions (dose, ratio) may vary with the age at treatment.

      Can the authors speculate on why IRBP‐GRK1 human FAM161A did not realize functional rescue (Fig 2) as it did with mouse FAM161A (previous work)?

      Our hypothesis to explain the absence of functional rescue following IRBP-GRK1 vector injection is that the difference in human protein distribution compared to the mouse protein in the mouse retina could impact the function of the photoreceptor by interfering with physiological process such as transport. As mentioned in our discussion: “overexpression of these proteins could saturate the transport system impacting the cellular processes”.

      As mentioned in the discussion, there is only 60% of homology between human and mouse proteins which could induce a major impact on protein localization and function. Post-translational modification which are also known to be crucial for modulating connecting cilium addressing (Rao et al. 2016) could also differ and impact both human protein distribution and function (for example 3 cysteines in the human protein sequence could be palmytoylated (C359, C366, C367) and are absent in the mouse sequence). Moreover, the exact role of the human long and short isoforms are unknown and their adaptability to the mouse system not yet identified. Further studies should be performed to understand the consequence of such differences on the function and to unravel the function of both long and short human isoforms in the retina.

      Minor:

      While the manuscript is overall well communicated, there are areas requiring further proofread. For example, in the Abstract section, "In 15 years" should be "For 15 years", "14‐days FAM161atm1b/tm1b mice" should be "14‐day old". In the Introduction, "... suggesting that protein miss‐localization" should be "mis‐localization". In the last paragraph before Discussion, "(iii) the restauration of CC..." should be "restoration", etc.

      We corrected these errors and carefully proofread the whole manuscript to avoid typing mistakes.

      I recommend the authors to use a table to summarize different promoters, titers and key findings (e.g., expression level, localization) used and refer back to each figure.

      We thank the reviewer for this valuable suggestion and have now included a summary Table (Table 1) cited in the last result section.

      Scale bars on all figures, or every set of images.

      We added scale bars on figures containing microscopic images.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This manuscript led by Arsenijevic and Chang is an important technical development to the ocular gene therapy space, and touches on the important aspect of structural protein restoration by gene therapy, that is, the precise control of localization and subsequent functional realization. Overall the manuscript is well written, and the experiments are technically sound, with limitations acknowledged.

      To briefly summarize, the authors wanted to understand precise control of FAM161A expression and connecting cilium (CC) restoration. They built on, and extended their previous work that showed limited structural and functional rescue by photoreceptor expression of the longer isoform of mouse FAM161A in Fam161a KO driven by IRBP-GRK1 promoter. In the current work, the authors experimented with delivering human ortholog of FAM161A cDNA, short, or long, or both isoforms using newly devised, relatively weak promoters. The main readouts include retinal morphology (e.g., ONL thickness), ERG, and protein localization by IHC (e.g., correct location, no ectopic expression). It is worth noting that the authors highlighted the use of expansion microscopy technology to examine the connecting cilium (CC) organization and protein expression, which may minimize the use of TEM for CC structure determination and enable acceleration.

      My enthusiasm for recommending it for publication is high. Nonetheless, I have the following comments, hoping the authors could address to further improve the manuscript.

      Major:

      Fig 1A-B. Do hTERT-RPE1 cells endogenously express FAM161A? This set of images lacks a negative control (i.e., no transfected RPE1 cells). Western blot of FAM161A is recommended, similar to Fig 1C.

      Fig 1C. The authors noted in the discussion that HS isoform is more abundant than HL isoform from human retinal extract. Although this is from 661W, a mouse photoreceptor cell line, it seems this is aligned with the notion. To echo with the last comment, I am curious to see if under the same transfection, the HS isoform is preferentially expressed in hTERT-RPE1 cells..

      Fig 3 and Fig 5: low mag WT images of FAM161A are the same. But higher mag images (presumably selected from ROIs in low mag) are not the same. Please make sure of no duplication images.

      Fig 4H. HS+HL combo, and HL alone, showed almost a polarized quantification, quite variable. Can the authors speculate the reason? Also can the authors comment on if there is any associated notable inflammation especially in high tier dosage (10^11 GC)?

      Can the authors comment on the difference in the injection time, PN14-15 in this study vs. PN24-29 in their previous study? Have the authors attempted to treat the older mice with the optimized vector?

      Can the authors speculate on why IRBP-GRK1 human FAM161A did not realize functional rescue (Fig 2) as it did with mouse FAM161A (previous work)?

      Minor:

      While the manuscript is overall well communicated, there are areas requiring further proofread. For example, in the Abstract section, "In 15 years" should be "For 15 years", "14-days FAM161atm1b/tm1b mice" should be "14-day old". In the Introduction, "... suggesting that protein miss-localization" should be "mis-localization". In the last paragraph before Discussion, "(iii) the restauration of CC..." should be "restoration", etc.

      I recommend the authors to use a table to summarize different promoters, titers and key findings (e.g., expression level, localization) used and refer back to each figure.<br /> Scale bars on all figures, or every set of images.

      Referees cross-commenting

      To reviewer #2, Fig5f - WT data was shown as the gray horizontal line. I had the same question but then saw they noted in the legends. I think it is fine to cite the PRER review article to make their point.

      I agree with the comments addressed by Reviewer #1 and am glad we both raise the point of using table for summarization.

      Significance

      This well-drafted paper represents a technical development that could supplement current gene therapy strategies to certain ciliopathies. In this particular case, the authors chose FAM161A, a disease causal gene to retinitis pigmentosa-28 and encodes for a microtubule-associated ciliary protein involved in organizing the connecting cilium in photoreceptors. Of importance, the authors devised novel promoters to drive gene expression and took advantage of expansion microscopy for quickly examining cilia proteins and structures. Conceptually, the techniques developed in this manuscript could be applicable to several other inherited retinal dystrophies that share similar disease mechanisms.

    1. Assurhing an aggregate model of groups, some people think that socialgroups are invidious fictions, essentializing arbitrary attributes. From this p�intof view problems of prejudice, stereotyping, discr imination, and exclus10nexist because some people mistakenly believe that group identification makesa difference to the capacities, temperament, or v irtues of group members.This individualist conception of persons and their relation to one anothertends to identify oppression with group identification. Oppression, on thisview, is something that happens to people when they are classified in groups.Because othei"s identify them as a group, they are excluded and despised. Eliminating oppression thus requires eliminating groups. People should be treatedas individuals, not as members of groups, and allowed to form their lives freelywithout stereoty pes or group norms.This book takes issue with that position. W hile I agree that individualsshould be free to pursue life plans in their own way, it is foolish to den)'. thereality of groups. Despite the modern myth of a decline of parochial attachments and ascribed identities, in modern society group differentiation remains endemic. As both markets and social administration increase the web ofsocial interdependency on a world scale, and as more people encounter oneanother as strangers in cities and states, people retain and renew ethnic, locale,age, sex, and occupational group identifications, and form new ones in theptocesses of encounter (cf. Ross, 1980, p. 19; Rothschild, 1981, p. 130). Evenwhen they belong to oppressed groups, people's group identifications areoften important to them, and they often feel a special affinity for othersin their group. I believe that group differentiation is both an inevitable anda desirable aspect of modern social processes. Social justice, I shall arguein later chapters, requires not the melting away of differences, but institutionsthat promote reproduction of and respect for group •differences withoutoppression.Though some groups have come to be formed out of oppression, and relations of privilege and oppression structure the interactions between mahygroups; group differentiation is not in itself oppressive. Not all groups are oppressed. In the United States Roman Catholics are a specific social group,with distinct practices and affinities with one another, but they are no longer:in oppressed group. W hether a group is oppressed depends on whether it issubject to one or more of the five conditions I shall discuss below.The view that groups are fictions does carry an important antideterminist or antiessentialist intuition. Oppression has often been perpetrated by aconceptualization of group difference in terms of unalterable essential naturesthat determine what group members deserve or are capable of, and that exclude groups so entirely from one another that they have no similarities oroverlapping attributes. To assert that it is possible to have social group difference without oppression, it is necessary to conceptualize groups in a muchmore relational and fluid fashion.Five Faces of Oppression ■ 4SAlthoug� social processes of affinity and differentiation produce groups,they do not give groups a substantive essence. There is no common nature thatmembers o� a group share. As aspects of a process, moreover, groups are fluid;�hey come mto bemg and may fade away. Homosexual practices have existedm many societies and historical periods, for example. Gay men or lesbians have?een identi�ed as specific groups and so identified themselves, however, onlym the �ent1eth century (see Ferguson, 1989, chap. 9; Altman, 1981).Arismg from social relations and processes, finally, group differences usuall� cut acr�ss one another. Especially in a large, complex, and highly differentiated society, social groups are not themselves homogeneous, but mirror intheir �wn dif1:erentiations many of the other groups in the wider society. InA�erican society. toda_y, for examp;e, Blacks are not a simple, unified groupwith a common life. Like other racial and ethnic groups, they are differentia�ed by age, gender, class, sexuality, region, and nationality, any of which in agiven context may become a salient group identity.. Thi� v ie:" of group differentiation as multiple, cross-cutting, fluid, andshiftmg implies another critique of the model of the autonomous, unified self.In complex, highly differentiated societies like our own, all persons have multiple group _identifications. The culture, perspective, and relations of privilegea�d oppression of.these various groups, moreover, may not cohere. Thus individual perso�s, as constituted partly by their group affinities and relations,cannot be urufied, themselves are heterogeneous and not necessarily coherent.THE FACES OF OPPRESSIONExploitationThe central function of Marx's theory of exploitation is to explain how classst_ru_ctur.e can exist in the absence of legally and normatively sanctioned classd1stmct10�s. In prec�pitalist societies domination is overt and accomplishedt�rough directly ?ohtical means. In both slave society and feudal society theri�h_t to appropriate the product of the labor of others partly defines classprivilege, and these societies legitimate class distinctions with ideologies ofnatural supenority and inferiority.Capitalis� s?ciety, on the other hand, removes traditional juridically enforced class distmct10ns and promotes a belief in the legal freedom of persons.Workers freely contract with employers and receive a wage; no formal mechanisms of law or custom force them to work for that employer or any employer. Thus the mystery of capitalism arises: when everyone is formally free,how can there be class domination? W hy do class distinctions persist betweenthe wealthy, who own the means of production, and the mass of people, whowork for them? The theory of exploitation answers this question.�rofit, the basis of capitalist power and wealth, is a mystery if we assumethat m the market goods exchange at their values. The labor theory of value35

      The author critiques the view that social groups are invidious fictions, emphasizing the importance of acknowledging group differences without dismissing them as mere aggregates. The passage challenges the individualist conception that oppression is solely linked to group identification, asserting that differentiation is inevitable and desirable in modern society. How does the author's perspective on social groups' fluid and relational nature contribute to rethinking the traditional view that groups are fiction?

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We are thankful to the reviewers for the time and effort invested in assessing our manuscript and for their suggestions to improve it. We have now considered the points raised by them, carried out additional experiments, and modified the text and figures to address them. We feel that the new experiments and modifications have been able to solve all concerns raised by the reviewers and have improved the manuscript substantially, strengthening and extending our conclusions.

      The main modifications include:

      • We have extended the analysis of the overexpression strains to highly stringent conditions, which revealed a mild acidification defect for the strain overexpressing Oxr1. In addition, we have included in our analysis a strain in which both proteins are overexpressed, which resulted in a further growth defect.
      • We have analyzed the recruitment of Rtc5 to the vacuole under additional conditions: deletion of the main subunit of the RAVE complex RAV1, medium containing galactose as the sole carbon source and pharmacological inhibition of the V-ATPase. These experiments allowed us to strengthen and extend our conclusions regarding the requirements for Rtc5 targeting to the vacuole.
      • We have analyzed V-ATPase disassembly in intact cells, by addressing the localization to the vacuole of subunit C (Vma5) in glucose and galactose-containing medium. The results strengthen our conclusion that both Rtc5 and Oxr1 promote an in vivo state of lower V-ATPase assembly.
      • We have extended our analyses of V-ATPase function to medium containing galactose as a carbon source, since glucose availability is one of the main regulators of V-ATPase function in vivo. The results are consistent with what we observed in glucose-containing medium.
      • We have included a diagram of the structure of the V-ATPase for reference.
      • We have included a diagram and a paragraph describing Oxr1 and Rtc5 regarding protein length and domain architecture and comparing them to other TLDc domain-containing proteins.
      • We have made changes to the text and figures to improve clarity and accuracy, including a methods section that was missing. We include below a point-by-point response to the reviewers´ comments.

      2. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __ __Suggestions:

      1. The authors observed that knockout of Rtc5p or Oxr1p does not affect vacuolar pH. If Rtc5p and Oxr1p both cooperate to dissociate V-ATPase, the authors may wish to characterize the effect of a ∆Rtc5p∆Oxr1p double knockout on vacuolar pH. The double mutant ∆rtc5∆oxr1 was already included in the original manuscript (the growth test is shown in Figure 5 B and the BCECF staining is shown in Figure 5C). This strain behaved like wt in both of these assays. Of note, what we observe for the deletion strains is increased assembly (Figure 5 D - G), so we expect that it would be hard to observe a difference in vacuole acidity or growth in the presence of metals.

      Therefore, we have now also included a strain with the double overexpression of Oxr1 and Rtc5. Since overexpression of the proteins results in decreased assembly, it is more likely that this strain will show impaired growth under conditions that strongly rely on V-ATPase activity. Indeed, we observed that the overexpression of Oxr1 alone resulted in a slight growth defect in media containing high concentrations of ZnCl2 and the double overexpression strain showed an even further defect (Figure 6 A and C).

      The manuscript would benefit from a well-labelled diagram showing the subunits of V-ATPase (e.g. in Figure 2D).

      We agree with the reviewer and we have now added a diagram of the structure of the V-ATPase labeling the different subunits in Figure 2B.

      The images of structures, especially in Figure 1-Supplement 1B, are not particularly clear and could be improved (e.g. by removing shadows or using transparency).

      We are thankful to the reviewer for this suggestion. To improve the clarity of the structures in Figure 1 C and Figure 1 – Supplement 1A, we are now presenting the different subunits in the structures with different shades of blue and grey.

      The authors should clearly describe the differences between Rtc5p and Oxr1p in terms of protein length, sequence identity, domain structure, etc.

      We are thankful for this suggestion and we have now included a diagram of the domain architecture and protein length of Rtc5 and Oxr1, comparing with two human proteins containing a TLDc domain in Figure 5A. In addition, we have added the following paragraph describing the features of the proteins.

      “Rtc5 is a 567 residue-long protein. Analysis of the protein using HHPred (Zimmermann et al., 2018), finds homology to the structure of porcine Meak7 (PDB ID: 7U8O, (Zi Tan et al., 2022)) over the whole protein sequence (residues 37-559). For both yeast Rtc5 and human Meak7 (Uniprot ID: Q6P9B6), HHPred detects homology of the C-terminal region to other TLDc domain containing proteins like yeast Oxr1 (PDBID: 7FDE), Drosophila melanogaster Skywalker (PDB ID: 6R82), and human NCOA7 (PDB ID: 7OBP), while the N-terminus has similarity to EF-hand domain calcium-binding proteins (PDB IDs: 1EG3, 2CT9, 1S6C6, Figure 5A). HHPred analysis of the 273 residue long Saccharomyces cerevisiae Oxr1, on the other hand, only detects similarity to TLDc domain containing proteins (PDB IDs: 7U80, 6R82, 7OBP), which spans the majority of the sequence of the protein (residues 71-273). The overall sequence identity between Oxr1 and Rtc5 is 24% according to a ClustalOmega alignment within Uniprot. The Alphafold model that we generated for Rtc5 is in good agreement with the available partial structure of Oxr1 (7FDE) (root mean square deviation (RMSD) of 3.509Å) (Figure 5 - S1 A), indicating they are structurally very similar, in the region of the TLDc domain. Taken together, these analyses suggest that Oxr1 belongs to a group of TLDc domain-containing proteins consisting mainly of just this domain like the splice variants Oxr1-C or NCOA7-B in humans (NP_001185464 and NP_001186551, respectively), while Rtc5 belongs to a group containing an additional N-terminal EF-hand-like domain and a N-myristoylation sequence, like human Meak7 (Finelli & Oliver, 2017) (Figure 5 A).”

      Minor:

      1. The "O" in VO should be capitalized. This has been corrected.

      In Figure 4 supplement 1, the labels "I", "S", and "P" should be defined.

      This has been clarified in the figure legend.

      Please clarify what is meant by "switched labelling"

      This refers to the SILAC vacuole proteomics experiments, for which yeast strains are grown in medium containing either L-Lysine or 13C6;15N2- L-Lysine to produce normal (‘light’) or heavy isotope-labeled (‘heavy’) proteins. This allows comparing two conditions. To increase the robustness of the comparisons, the experiments are done twice with both possible labeling schemes (condition A – light, condition B – heavy + condition A – heavy + condition B – light), which is commonly described as switched labeling or label switching.

      We have exchanged the original sentence in the manuscript for:

      “Performing the same experiments but switching which strain was labeled with heavy and light amino acids gave consistent results.”

      The meaning of the sentence "Indeed, this was the case for both of them" is ambiguous.

      We have now replaced this sentence with the following:

      “Indeed, overexpression of either Rtc5 or Oxr1 resulted in increased growth defects in the context of Stv1 deletion (Figure 7 H and I).”

      For Figure 1-Supplement 1B it is hard to see the crosslink distances.

      We have updated this figure to improve the visibility of the cross-links. In addition, we now include a supplemental table (supplemental table 5) with a list of the Cα- Cα distances measured for all the crosslinks we mapped onto high-resolution structures.

      The statement "The effects of Oxr1 are greater than those caused by Rtc5" requires more context. Is there a way of quantifying this effect for the reader?

      We agree that this sentence was too general and vague. The effects caused by one or the other protein depend on the condition and the assay. We have thus deleted this sentence, and we think it is better to refer to the description of the individual assays performed.

      The phrase "negative genetic interaction" should be clarified.

      We have included in the text the following explanation of genetic interactions:

      “A genetic interaction occurs when the combination of two mutations results in a different phenotype from that expected from the addition of the phenotypes of the individual mutations. For example, deletion of OXR1 or RTC5 has no impact on growth in neutral pH media containing zinc in a control background but improves the growth of RAV1 deletion strains (Figure 7 E and F), so this is a positive genetic interaction. On the other hand, overexpression of either Rtc5 or Oxr1 results in a growth defect in a background lacking Rav1 in neutral media containing zinc, a negative genetic interaction.”

      * * In the sentence "Isogenic strains with the indicated modifications in the genome where spotted as serial dilutions in media with pH=5.5, pH=7.5 or pH=7.5 and containing 3 mM ZnCl2", "where" should be "were".

      This has been corrected.

      Figure 2D: the authors should consider re-coloring these models, as it is challenging to distinguish Rtc5p from the V-ATPase.

      We have changed the coloring of this structure and added a diagram of the V-ATPase structure with the same coloring scheme to improve clarity.

      Reviewer #1 (Significance (Required)):

      The vacuolar protein interaction map alone from this manuscript is a nice contribution to the literature. Experiments establishing colocalization of Rtc5p to the vacuole are convincing, as is dependence of this association on the presence of assembled V-ATPase. Similarly, experiments related to myristoylation are convincing. The observed mislocalization of V-ATPases that contain Stv1p to the vacuole (which is also known to occur when Vph1p has been knocked out) upon knockout of Oxr1p is also extremely interesting. Overall, this is an interesting manuscript that contributes to our understand of TLDc proteins.

      We are thankful to the reviewer for their appreciation of the significance of our work, including the interactome map of the vacuole as a resource and the advances on the understanding of the regulation of the V-ATPase by TLDc domain-containing proteins.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Major points:

      1. The evidence of Oxr1 and Rtc5 as V-ATPase disassembly factors is circumstantial. The authors base their interpretation primarily on increased V1 (but not Vo) at purified vacuoles from Oxr1- or Rtc5-deleted strains, which does not directly address disassembly. Of course, the results regarding Oxr1 confirm detailed disassembly experiments with the purified protein complex (PMID 34918374), but on their own are open to other interpretations, e.g. suppression of V-ATPase assembly. Of note, the authors emphasize that they provide first evidence of the in vivo role of Oxr1, but monitor V1 recruitment with purified vacuoles and do not follow V-ATPase assembly in intact cells. We are thankful to the reviewer for pointing this out. We did not want to express that the molecular activity of the proteins is the disassembly of the complex, as our analyses include in vivo and ex vivo experiments and do not directly address this. We rather meant that both proteins promote an in vivo state of lower assembly of the V-ATPase. We have modified the wording throughout the manuscript to be clearer about this.

      In addition, we have added new experiments to monitor V-ATPase assembly in intact cells, as suggested by the reviewer. Previous work has shown that in yeast, only subunit C leaves the vacuole membrane under conditions that promote disassembly, while the other subunits remain at the vacuole membrane (Tabke et al 2014). Our own experiments agree with what was published (Figure 3 D). We have thus monitored Vma5 localization to the vacuole under glucose or after shift to galactose containing media in cells lacking or overexpressing Rtc5 or Oxr1. We observed that cells overexpressing either TLDc domain protein show lower levels of Vma5 recruitment to the vacuole in glucose (Figure 6 D and E). Additionally cells lacking either Rtc5 or Oxr1 contain higher levels of Vma5 at the vacuole after 20 minutes in galactose medium (Figure 5 F and G). Thus, these results re-inforce our conclusions that Rtc5 and Oxr1 promote states of lower assembly.

      Oxr1 and Rtc5 have very low sequence similarity. It would be helpful if the authors provided more detail on the predicted structure of the putative TLDc domain of Rtc5 and its relationship to the V-ATPase - Oxr1 structure. Is Rtc5 more closely related to established TLDc domain proteins in other organisms?

      We have now included a diagram of the domain architecture of Rtc5 and Oxr1, and comparison to the features of other TLDc domain containing proteins in Figure 5 A, as well as a paragraph describing them:

      “Rtc5 is a 567 residue-long protein. Analysis of the protein using HHPred (Zimmermann et al., 2018), finds homology to the structure of porcine Meak7 (PDB ID: 7U8O, (Zi Tan et al., 2022)) over the whole protein sequence (residues 37-559). For both yeast Rtc5 and human Meak7 (Uniprot ID: Q6P9B6), HHPred detects homology of the C-terminal region to other TLDc domain containing proteins like yeast Oxr1 (PDBID: 7FDE), Drosophila melanogaster Skywalker (PDB ID: 6R82), and human NCOA7 (PDB ID: 7OBP), while the N-terminus has similarity to EF-hand domain calcium-binding proteins (PDB IDs: 1EG3, 2CT9, 1S6C6, Figure 5A). HHPred analysis of the 273 residue long Saccharomyces cerevisiae Oxr1, on the other hand, only detects similarity to TLDc domain containing proteins (PDB IDs: 7U80, 6R82, 7OBP), which spans the majority of the sequence of the protein (residues 71-273). The overall sequence identity between Oxr1 and Rtc5 is 24% according to a ClustalOmega alignment within Uniprot. The Alphafold model that we generated for Rtc5 is in good agreement with the available partial structure of Oxr1 (7FDE) (root mean square deviation (RMSD) of 3.509Å) (Figure 5 - S1 A), indicating they are structurally very similar, in the region of the TLDc domain. Taken together, these analyses suggest that Oxr1 belongs to a subfamily of TLDc domain-containing proteins consisting mainly of just this domain like the splice variants Oxr1-C or NCOA7-B in humans (NP_001185464 and NP_001186551, respectively) , while Rtc5 belongs to a subfamily containing an additional N-terminal EF-hand-like domain and a N-myristoylation sequence, like human Meak7 (Finelli & Oliver, 2017) (Figure 5 A).”

      The authors conclude vacuolar recruitment of Rtc5 depends on the assembled V-ATPase, based on deletion of different V1 and Vo domain subunits. However, these genetic manipulations likely cause a strong perturbation of vacuolar acidification; indeed, the images show drastically altered vacuolar morphology. To strengthen their conclusion, it would be helpful to show that Rtc5 recruitment is not blocked by inhibition of vacuolar acidification, and that conversely it is blocked by deletion of rav1.

      We are thankful to the reviewer for this insightful suggestion and we have now performed both experiments suggested. The experiment regarding rav1Δ is now Figure 3C, and we observed that this mutation also disrupts Rtc5 localization to the vacuole. In addition, we decided to include an experiment showing the subcellular localization of Rtc5 after shifting the cells to galactose containing medium for 20 minutes, as a physiologically relevant condition that results in disassembly of the complex (Figure 3D). We observed that under these conditions Rtc5 re-localizes to the cytosol. This result is particularly interesting given that in yeast only subunit C (but not other V1 subunits) re-localizes to the cytosol under these conditions. In addition, the experiment using Bafilomycin A to inhibit the V-ATPase shows that Rtc5 is still localized at the vacuole membrane under conditions of V-ATPase inhibition (Figure 3 F). Taken together these results allowed us to strengthen our original interpretation that Rtc5 requires an assembled V-ATPase for its localization and extend it to the fact that the V-ATPase does not need to be active.

      Reviewer #2 (Significance (Required)):

      This is an interesting paper that confirms and extends previous findings on TLDc domain proteins as a novel class of proteins that interact with and regulate the V-ATPase in eukaryotes. The title seems to exaggerate the findings a bit, as the authors do not investigate V-ATPase (dis)assembly directly and only phenotypically describe altered subcellular localization of the Golgi V-ATPase in Oxr1-deleted cells. A recent structural and biochemical characterization of Oxr1 as a V-ATPase disassembly factor (PMID 34918374) somewhat limits the novelty of the results, but the function of Oxr1 in regulating subcellular V-ATPase localization and the identification of a second potential TLDc domain protein in yeast provide relevant insights into V-ATPase regulation. This paper will be of interest to cell biologists and biochemists working on lysosomal biology, organelle proteomics and V-ATPase regulation.

      We thank the reviewer for the assessment of our work, and for recognizing the novel insights that we provide. Regarding the previous biochemical work on Oxr1 and the V-ATPase, we have clearly cited this work in the manuscript. In our opinion, our results complement and extend this article, showing that the function in disassembly is relevant in vivo. Additionally, this is only one of five major points of the article, the other four being

      • The interactome map of the vacuole as a resource
      • The identification of Rtc5 as a second yeast TLDc domain containing protein and interactor of the V-ATPase.
      • The identification of the role of Rtc5 in V-ATPase assembly.
      • The identification of the role of Oxr1 in Stv1 subcellular localization. We believe these additional points add important insights to researchers interested in lysosomes, the V-ATPase, intracellular trafficking and TLDc-domain containing proteins.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Major comments

      __1) Re: A cross-linking mass spectrometry map of vacuolar protein interactions (results) __ While XL-MS is a very powerful method, it is a high-throughput approach and there should be some kind of negative control in these experiments. In cross-linking experiments, non-cross-linked samples are usually used as negative controls. What was the negative control in cross-linking mass-spectrometry experiments here? If there was no negative control, how the specificity of interactions was evaluated? Maybe the authors analyzed the dataset for highly improbable interactions and found very few of them?

      We fully agree that it is crucial to ensure the specificity of the interactions detected by XL-MS. To achieve this, one needs to control (1) the specificity of the data analysis (i.e. that the recorded mass spectrometry data are correctly matched to cross-linked peptides from the sequence database) and (2) the biological specificity (i.e. that the cross-linking captured natively occurring interactions).

      To ascertain that criterion (1) is met, cross-link identifications are filtered to a pre-defined false-discovery rate (FDR) – an approach that the XL-MS field adopted from mass spectrometry-based proteomics. As a result, low-confidence identifications (e.g. cross-linked peptides that are only supported by a few signals in a given mass spectrum) are removed from the dataset. FDR filtering in XL-MS is a rather complex matter as it can be done at different points during data analysis and the optimal FDR cut-off depends on the specific scientific question at hand (for more details see for example Fischer and Rappsilber, Anal Chem, 2017). Generally speaking, an overly restrictive FDR cut-off would remove a lot of correct identifications, thereby greatly limiting the sensitivity of the analysis. On the other hand, a too relaxed FDR cut-off would dilute the correct identifications with a high number of false-positives, which would impair the robustness and specificity of the dataset. While many XL-MS study control the FDR on the level of individual spectrum matches, we opted for a 2% FDR cut-off on the level of unique residue pairs, which is more stringent (see Fischer and Rappsilber, Anal Chem, 2017). Our FDR parameters are described in the Methods section (Cross-linking mass spectrometry of isolated vacuoles - Data analysis). Of note, we have made all raw mass spectrometry data publicly available through the PRIDE repository (https://www.ebi.ac.uk/pride/ ; accession code PXD046792; login details during peer review: Username = reviewer_pxd046792@ebi.ac.uk, Password = q1645lTP). This will allow other researchers to re-analyze our data with the data analysis settings of their choice in the future.

      To ascertain that criterion (2) is met, we mapped the identified cross-links onto existing high-resolution structures of vacuolar protein complexes. Taking into account the length of our cross-linking reagent, the side-chain length of the cross-linkable amino acids (i.e. lysines), and a certain degree of in-solution flexibility, cross-links can reasonably occur between lysines with a mutual Cα-Cα distance of up to 35 Å. Using this cut-off, the lysine-lysine pairs in the high-resolution structures we studied can be split into possible cross-linking partners (Cα-Cα distance 35 Å). Of all cross-links we could map onto high-resolution structures, 95.2% occurred between possible cross-linking partners. In addition, our cross-links reflect numerous known vacuolar protein interactions that have not yet been structurally characterized. These lines of evidence increase our confidence that our XL-MS approach captured genuine, natively occurring interactions. These analyses are described in more detail in the first Results sub-section (“A cross-linking mass spectrometry map of vacuolar protein interactions”).

      In addition, the high purity of vacuole preparation is critical. How was it assessed by the authors?

      We disagree that the purity of the vacuole preparation is critical for this analysis to be valid. The accuracy of the protein-protein interactions detected will depend on their preservation during sample preparation until the sample encounters the cross-linker, and the data analysis, as described above. The experiment would have been equally valid if performed on whole cell lysates without any enrichment of vacuoles, but the coverage of vacuolar proteins would have likely been very low. For this reason, we decided to use the vacuole isolation procedure to obtain better coverage of the proteins of this particular organelle. The use of the Ficoll gradient protocol (Haas, 1995) was based on that it is a protocol that yields strong enrichment of proteins annotated with the GO Term “vacuole” (Eising et al, 2019) and that it preserves the functionality of the organelle, as evidenced by its use for multiple functional assays (vacuole-vacuole fusion (Haas, 1995), autophagosome-vacuole fusion (Gao et al, 2018), polyphosphate synthesis by the VTC complex (Desfougéres et al, 2016), among others).

      2) Re: Rtc5 and Oxr1 counteract the function of the RAVE complex (results)

      Taken together, data, presented in this section of the manuscript, provide strong evidence that Rtc5 and Oxr1 negatively regulate V-ATPase activity, counteracting the V-ATPase assembly, facilitated by the activity of the RAVE complex. However, the complete deletion of the major RAVE subunit Rav1p was required to observe this effect in vivo in yeast. The other way to induce V-ATPase disassembly in yeast is glucose deprivation. It will be interesting to study if there is a synergistic effect between glucose deprivation and RTC5/OXR1 deletion on V-ATPase assembly, vacuolar pH, and growth of single oxr1Δ, rtc5Δ or double oxr1Δrtc5Δ mutants (OPTIONAL). Glucose deprivation is a more physiologically relevant condition than a deletion of an entire gene.

      We would like to point out that an effect on assembly is observed without deleting the RAVE complex: deletions of Oxr1 or Rtc5 resulted in increased V-ATPase assembly in vivo in the presence of glucose and of the RAVE complex (Figures 5 D and E). We have now also added the experiments showing that the overexpression strains have a mild growth defect under conditions that force cells to strongly rely on V-ATPase activity (Figures 6 A and C).

      Nevertheless, we agree that addressing the effect of changing the levels of Oxr1 and Rtc5 under low-glucose conditions is an interesting physiologically relevant question. We have now included growth assays and BCECF staining in medium containing galactose as the carbon source (Figures 5 – Supplement 1 B and C, and Figure 6 C and Figure 6- Supplement 1A). In addition, we have addressed the vacuolar localization of Vma5 in medium containing glucose or after shifting to medium containing galactose for 20 minutes, as a proxy for V-ATPase disassembly in intact cells (Figure 5 F and G, Figure 6 D and E). Taken together, these analyses reinforce our conclusions that both Rtc5 and Oxr1 promote an in vivo state of lower V-ATPase assembly, based on the following observations:

      • Higher localization of Vma5 to the vacuole after 20 mins in galactose in cells lacking Oxr1 or Rtc5 (Figure 5 F and G).
      • Lower localization of Vma5 to the vacuole in medium containing glucose in cells overexpressing Oxr1 or Rtc5 (Figure 6 D and E).
      • Growth defect of the strain overexpressing Oxr1 in medium containing galactose with pH = 7.5 and zinc chloride, with a further growth defect caused by additional overexpression of Rtc5 (Figure 6 C). 3) Re: Figure 6 - supplement 1. The title is relevant to panel D only, it should be renamed to reflect the results of the disassembly of V-ATPase in rav1Δ mutant strains, while results about the stv1Δ-based strains (Panel D) should be shown together with similar experiments in Figure 7 - supplement 2 for clarity.

      We have shifted the Panel D from the original Figure 6 – Supplement 1 to the main Figure (now Figure 7 – H and I). Regarding the title of the Figure, whether Supplemental Figures have titles or not will depend on the journal where the manuscript is published. For now, we have removed all titles from supplemental figures, as they are conceived to complement the main Figures.

      4) Re: Figure 7 - supplement 1, Panel A. The proper assay to show that Stv1-mNeonGreen is functional is to express it in double mutant vph1Δstv1Δ to see if the growth defect is reversed. In addition, the vph1Δ growth defect is not changed (improved or worsened) in the presence of Stv1-mNeonGreen, so it means that the expression of Stv1-mNeonGreen does not further compromise the V-ATPase function, but it does not mean that it improves its function.

      It is clear from the experiment suggested by the reviewer that they think that we have expressed Stv1-mNeonGreen from a plasmid. This was not the case, Stv1 was C-terminally tagged with mNeonGreen in the genome. It is thus the only expressed version in the strain. The experiment we have performed is thus equivalent to the one suggested by the reviewer, but for genomically expressed variants. For reference, the genotypes of all the strains used can be found in Supplemental Table 1.

      5) Re: Figure 7 - supplement 2. This figure should be combined with Fig. 6- suppl 1, panel D as also mentioned above. The figure seems to lack some labels, and conclusions are not accurate as discussed below. However, this data provides important additional information about relationships between isoform-specific subunits of V-ATPase Vph1 and Stv1 and both Rtc5 and Oxr1 and should be repeated if it is not done yet to have a better idea about these relationships.

      Panel B: Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of VPH1, since double deletion mutant vph1Δ rtc5Δ grows worse than each individual mutant. Although it also means that there is no positive interaction, it is not the same.

      Indeed, there is a negative genetic interaction between the deletion of RTC5 and VPH1. We have replaced the growth tests in this figure (Figure 8 – Supplement 2 A in the new manuscript) to show this negative genetic interaction better. This effect is reproducible, as shown in the repetitions of the experiments.

      Panel C: Same as for panel B. Based on this picture, the deletion of OXR1 has a weak negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ oxr1Δ grows worse than each individual mutant at 6 mM ZnCl2.

      Panel D: Same as for panels B and C. Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ rtc5Δ grows worse than each individual mutant at 6 mM ZnCl2. There is no label in the middle panel (growth conditions) and no growth assay data in the presence of CaCl2.

      However, these results will be then in contradiction with the results from Figure 6 - Supplement 1, panel D, showing negative genetic interaction between the overexpression of Rtc5 or Oxr1 and deletion of Stv1, since both deletion and overexpression of Rtc5 or Oxr1 would have negative genetic interactions with Stv1.

      For both Panels C and D (Now Figure 8 - Supplement 2 B and C). The effect pointed out by the reviewer (slightly stronger growth defect for the double mutants than for the single mutants) is very mild. We have attempted to make it more evident by assessing growth in medium with higher and lower concentrations of zinc and this was not possible. This is in contrast with the very clear positive genetic interaction that we observe between the deletion of OXR1 and VPH1 (Now Figure 8 H). This is the reason that we decided to report the lack of a positive genetic interaction instead of the presence of a negative one, as we do not want to draw conclusions based on results that are borderline detectable.

      In addition, there is no label for the media in the middle panel, is it just YPAD pH=7.5, without the addition of any metals?

      Indeed, the media is YPAD pH=7.5, without the addition of any metals. The line drawn above several images based on this media indicated this. Since this form of labeling appears to be confusing, we have now replaced it and placed the label directly above the image.

      Why there is no growth assay in the presence of CaCl2, like in panels A and B?

      Every growth test shown in the manuscript was performed including growth in YPD pH=5,5 as a control of a permissive condition for lack of V-ATPase activity, and then in YPD pH=7,5 including a broad range of Zinc Chloride and Calcium chloride concentrations. From all these pictures, the conditions where the differences among strains were clearly visible were chosen to assemble the figures. Conditions that did not provide any information for that particular experiment were not included in the figure to avoid making them unnecessarily large and crowded.

      Re: Figure 7 - supplement 2, continued. How many times all these experiments were repeated? These experiments should be repeated at least 3 times, which is especially necessary for the experiments in panel C, because the effects are borderline. If results are reproducible and statistically significant, although small, the conclusion should be changed from "no positive genetic interactions" to "negative genetic interactions", which is more precise and informative.

      All growth tests shown in the manuscript were repeated at least three times for the conditions shown. We are thankful to the reviewer for pointing out that this was not mentioned, and we have added this to the methods section. We have assembled a file with all repetitions of the shown growth tests and added it at the end of this file. In doing so, these are already available for the public. These repetitions show that all effects reported are reproducible. We will then discuss with the editors of the journal where this manuscript is published about the necessity of including it with the final article.

      Regarding reporting the lack of a positive genetic interaction vs. a negative one, we have discussed this above. Shortly, for Panel B (Figure 8 – Supplement 2 A in the new manuscript) we have changed the conclusion to “negative genetic interaction” as adjusting the zinc chloride concentration allowed us to show this clearly and reproducibly, as shown by the repetitions of the experiments. For panels C and D (Now Figure 8 - Supplement 2 B and C), the effect is really mild and barely detectable, even when we tried a wide range of zinc chloride concentrations. For this reason, we would prefer to maintain the “no positive genetic interaction” conclusion.

      Re: Methods. There is no description of yeast serial dilution growth assay at all. In addition, why the specific media (neutral pH, in the presence of high concentrations of calcium or zinc) was used is not explained either in the results or methods. Appropriate references should be included, for example, PMID: 2139726, PMID: 1491236.

      We apologize for the oversight of the missing methods section, which we have now included.

      Regarding the explanation of the media used, the following section was already a part of the results section, before the description of the first growth test:

      “The V-ATPase is not essential for viability in yeast cells, and mutants lacking subunits of this complex grow similarly to a wt strain in acidic media. However, when cells grow at near-neutral pH or in the presence of divalent cations such as calcium and zinc, the mutants lacking V-ATPase function show a strong growth impairment (Kane et al, 2006).”

      We have now replaced this with the following, more complete version:

      “As a first approach for addressing the role of these proteins, we tested growth phenotypes related to V-ATPase function in strains lacking or overexpressing them. The V-ATPase is not essential for viability in yeast cells, and mutants lacking subunits of this complex grow similarly to a wt strain in acidic media, but display a growth defect at near-neutral pH the mutants (Nelson & Nelson, 1990). In addition, the proton gradient across the vacuole membrane generated by the V-ATPase energizes the pumping of metals into the vacuole, as a mechanism of detoxification. Thus, increasing concentrations of divalent cations such as calcium and zinc, generate conditions in which growth is increasingly reliant on V-ATPase activity (Förster & Kane, 2000; MacDiarmid et al, 2002; Kane, 2006).”


      MINOR COMMENTS

      Yeast proteins are named with "p" at the end, such as "Rtc5p".

      This nomenclature rule is falling into disuse during the last decades, as the use of capitals vs lowercase and italics allows to distinguish between genes proteins and strains (OXR1 = gene, Oxr1 = protein, oxr1Δ = strain). As an example, I include a list of the latest papers by some of the major yeast labs around the world, all of which use the same nomenclature as we do (in alphabetical order). This list even includes some work in the field of the V-ATPase.

      • Alexey Merz, USA. PMID: 33225520
      • Benoit Kornmann, UK. PMID: 35654841
      • Christian Ungermann, Germany. PMID: 37463208
      • Claudio de Virgilio, Switzerland. PMID: 36749016
      • Daniel E. Gottschling, USA. PMID: 37640943
      • David Teis, Austria. PMID: 32744498
      • Elizabeth Conibear, Canada. PMID: 35938928
      • Fulvio Reggiori, Denmark. PMID: 37060997
      • J Christopher Fromme, USA. PMID: 37672345
      • Maya Schuldiner, Israel. PMID: 37073826
      • Patricia Kane, USA. PMID: 36598799
      • Scott Emr, USA. PMID: 35770973
      • W Mike Henne, USA. PMID: 37889293
      • Yoshinori Ohsumi, Japan. PMID: 37917025 In addition, we would prefer to keep the nomenclature that we already use, to keep consistency with other published articles from our lab.

      Re: Introduction. In the introduction it should be indicated that Rtc5 was originally discovered as a "restriction of telomere capping 5", using screening of temperature-sensitive cdc13-1 mutants combined with the yeast gene deletion collection [PMID: 18845848]. A couple of sentences should be written about the RAVE complex and its role in V-ATPase assembly.

      We are thankful for this suggestion and we have now included both pieces of information in the introduction.

      *“The re-assembly of the V1 onto the VO complex when glucose becomes again available, is aided by a dedicated chaperone complex known as the RAVE complex, which also likely has a general role in V-ATPase assembly (Seol et al, 2001; Smardon et al, 2002, 2014).” *

      “In our cross-linking mass spectrometry interactome map of isolated vacuoles we found that the only other TLDc-domain containing protein of yeast, Rtc5, is a novel interactor of the V-ATPase. Rtc5 is a protein of unknown function, originally described in a genetic screen for genes related to telomere capping (Addinall et al, 2008)”

      Re: The TLDc domain-containing protein of unknown function Rtc5 is a novel interactor of the vacuolar V-ATPase (results)

      1) It is important to understand, that Oxr1 was co-purified before with the V1 domain of V-ATPase from a certain mutant strain, not wild-type yeast [PMID: 34918374]. It may explain why the authors did not identify it in their original protein-protein interactions screen here.

      The structural work on the V1 domain bound to Oxr1 (Khan et al, 2022) showed that the binding of Oxr1 prevented V1 from assembling onto the Vo. Since our experiments rely on the purification of vacuoles, they should contain mainly only V1 assembled onto the VO, and not the free soluble V1. This is likely the reason that we do not detect Oxr1, in addition to it being less abundant. We have clarified this now in the manuscript and added the fact that Oxr1 was co-purified with a V1 containing a mutant version of the H subunit.

      “In a previous study, Oxr1 was co-purified with a V1 domain containing a mutant version of the H subunit, and its presence prevented the in vitro assembly of this V1 domain onto the VO domain and promoted disassembly of the holocomplex (Khan et al., 2022). This is likely the reason why we do not detect Oxr1 in our experiments, which rely on isolated vacuoles and thus would only include V1 domains that are assembled onto the membrane. In addition, Oxr1 is less abundant in yeast cells than Rtc5 according to the protein abundance database PaxDb (Wang et al, 2015).”

      2) It is a wrong conclusion that because Rtc5 was co-purified with both V1 and V0 domain subunits it interacts with the assembled V-ATPase, this does not exclude a possibility that Rtc5 also interacts with separate V1 sector or separate V0 sector of V-ATPase.

      We agree with the reviewer that the co-purification of Rtc5 with both V1 and VO domain subunits does not necessarily mean that it interacts with the assembled V-ATPase. Thus, we have modified the text in this part to:

      “The fact that we can co-enrich Rtc5 both with Vma2 and with Vph1 indicates that it can interact either with both the VO and V1 domains or with the assembled V-ATPase.”

      However, other results throughout the manuscript can be taken into account to strengthen this idea:

      1. Rtc5 requires an assembled V-ATPase to localize to the vacuole membrane, and thus seems not to interact with free VO domains, which would be available when we delete V1 subunits or in medium containing galactose.
      2. Rtc5 becomes cytosolic in galactose-containing media. This would indicate that it also does not interact with free V1 domains, which are still localized to the vacuole membrane under these conditions. Taken together with the pull-downs, these results suggest that Rtc5 interacts with the assembled V1-VO V-ATPase. Thus, we have included the following sentence after Figure 3, which shows the subcellular localization experiments.

      *“Taking into account that Rtc5 is co-enriched with subunits of both the VO and V1 domain, and that it localizes at the vacuole membrane dependent on an assembled V-ATPase, we suggest that Rtc5 interacts with the assembled V-ATPase complex.” *

      Re: Figure 1, Panel C. Is it possible to show individual proteins in different colors for clarity?

      Panel D. How were cross-link distances measured? It is not obvious if you are not an expert in the field and it is not described in the methods.

      We have modified Figure 1 C and Figure 1 – Supplement 1B (now Figure 1 – Supplement 1 A) to present the different subunits in the structures with different shades of blue and grey.

      Furthermore, we have clarified the distance measurement approach in the methods section and in the legend of Fig 1D: “Ca-Ca distances were determined using the measuring function in Pymol v.2.5.2 (Schrodinger LLC).”

      __Re: Figure 1 - Supplement 1, __

      Panel A. What scientific information are we getting from this picture?

      This panel was just a visual representation of the complexity of the protein network we obtained. Indeed, there was no specific scientific message, so we have decided to remove this panel from the revised manuscript.

      Panel B. Why are these complexes shown separately from the complexes in Figure 1, panel C? Also, can individual proteins be colored differently here as well?

      We did not want to overload Fig 1C, so we decided to show some of the protein complexes in Fig 1 – Supplement 1B. The most important information is the histogram showing that 95% of the mapped cross-links fall within the expected length range, and this is shown in the main Figure (Figure 1D). As stated above, we have adjusted the subunit coloring in Figure 1 C to improve clarity.

      Re: Figure 3. It will be nice to show the localization of the untagged protein as well if antibodies are available (OPTIONAL).

      Unfortunately, there are no available antibodies for either Rtc5 or Oxr1. This hinders us from detecting the endogenous untagged proteins. We would like to point out that we have been very careful in showing which tagged proteins are functional (C-terminally tagged Rtc5) and which are not (C-terminally tagged Oxr1), so that the reader can know how to interpret the localization data.

      Re: Figure 4. Why different tags were used in panels A (GFP), C (msGFP2) and D

      (mNeonGreen)?

      In general, we prefer to use mNeonGreen as a tag for microscopy experiments because it is brighter and more stable, and msGFP2 as a tag for experiments involving Western blots because we have better antibodies available. There was a mistake in the labeling, and actually, all constructs labeled as GFP were msGFP2. We have now corrected this. Of note, we have tested the functionality of both tagged version (mNeonGreen and msGFP2).

      Panels B and C. Were Rtc5 fusions detected using anti-GFP antibodies?

      Indeed, Rtc5-msGFP2 was detected with an anti-GFP antibody. We have now indicated next to each Western blot membrane the primary antibody used. In addition, all antibodies are detailed in Supplemental Figure 3.

      The authors should have full-size Western blots available, not just cut-out bands, as some journals and reviewers require them for publication.

      For all western blots, we always showed a good portion of the membrane and not cut-out bands. The cropping was performed to avoid making figures unnecessarily large. The whole membranes are of course available and will be included in an “extended data file” if required by the journal.

      Re: Figure 4 - Supplement 1, Panel A. Does "-" and "+" mean -/+ Azido-Myr?

      Indeed. We have now added this label to the figure.

      Panel B. There is no blot with a membrane protein marker (Vam3 or Vac8), it should be included.

      We have replaced this western blot for a different repetition of this experiment in which a membrane protein marker was included. Of note, the two other repetitions of the experiment shown (Figure 4 – Supplement 1 panel C and Figure 4 panel C) also include both a membrane protein marker and a soluble protein marker.

      Re: Figure 5. The title does not describe all results in this figure and should be modified accordingly.

      The original data from Figure 5 is now separated into Figures 5 and 6 because of the additional experiments included during revisions. We have modified the Figure titles to be descriptive of the overall message of the Figures.

      Panel C. Statistical significance value for *** should be indicated in the legend.

      This has been indicated in the Figure legend.

      It is not clear how many times yeast growth assays were repeated. Usually, all experiments should be done in triplicates or more.

      All shown growth tests were performed at least three times for the conditions shown. We have now indicated this in the materials and methods section. In addition, we now provide in this response a file with all repetitions of growth tests, which will be appended to the article if deemed necessary by the editors.

      Re: Figure 5 - supplement 1. No title

      Re: Figure 5 - supplement 2. No title

      Whether the supplemental Figures should have a title or not will depend on the style of the journal where the manuscript is finally published. The current idea of the supplemental Figures is that they complement the corresponding main Figure. For this reason, we have removed all titles from supplemental Figures.

      Re: Figure 6. There is a typo on the second lane in the legend: "...the genome were", not "...the genome where".

      This has been corrected.

      Panel C. Why the analysis of BCECF vacuole staining of double mutants oxr1Δrav1Δ and rtc5Δrav1Δ is not shown? Was it done at all?

      We had not included this piece of data, as we thought that the genetic interaction of RTC5 and OXR1 and rav1Δ was sufficiently well supported with the included data (growth tests in combination with the deletion, growth tests in combination with the overexpression, vacuole proteomics in combination with overexpression, and BCECF staining in combination with the overexpression). Because of the request of the reviewer, we have now included this experiment as Figure 7 G.

      Re: Figure 6 - Supplement 2. Why were two different tags (2xmNG and msGFP2) used?

      We tried both tags to see if one of them would be functional. Unfortunately, they both resulted in non-functional proteins, as shown by the corresponding growth tests.

      Did the authors study N-terminally tagged Oxr1? Was it functional?

      We have tagged Oxr1 N-terminally, and this unfortunately resulted in a protein that was not completely functional. We show below the localization of N-terminally mNeon-tagged Oxr1, under the control of the TEF1 promoter. The protein appears cytosolic (Panel A) but is not completely functional (Panel B). The localization of Oxr1 had already been misreported by using a tagged version that we now show to be non-functional. For this reason, we preferred not to include this data in the manuscript, to avoid again including in the literature subcellular localizations that correspond to non-functional or partially functional proteins.

      Panel B. Results for the untagged TEF1pr-Oxr1 overexpression are not shown, thus tagged and untagged proteins can't be compared. Are they available? What is the promoter for the expression of 2xmNG fusion constructs?

      Oxr1-2xmNG was C-terminally tagged in the genome, which means that the promoter is the endogenous one, it was not modified. For this reason, the correct controls are a strain expressing Oxr1 at endogenous levels (the wt strain) and a strain lacking Oxr1. Both controls were included in the Figure, and in all repetitions made of this experiment. For reference, all the genotypes of the strains used are found in Supplemental Table 1.

      Re: Methods. Were vacuoles prepared differently for XL-MS and SILAC-based vacuole proteomics (there are different references) and why? Methods for XL-MS and quantitative SILAC-based proteomics can be placed together for clarity.

      The basis for the method of vacuole purification is the same, from (Haas, 1995). This reference was included in both protocols that include vacuole purifications. However, modifications of this method were performed to fit the crosslinking method (higher pH, no primary amines) or to fit the SILAC labeling (combination of two differentially labeled samples in one purification). The reference for the vacuole proteomics (Eising et al 2022) corresponds to a paper in which the SILAC-based comparison of vacuoles from different mutant strains was optimized, and includes not only the vacuole purification but the growth conditions and downstream processing of the vacuoles.

      Since both the SILAC-based vacuole proteomics and the XL-MS are multi-step methods, containing numerous parameters including the sample preparation, processing for MS, MS run and data analysis, we would prefer to keep them separate. We think this would allow a person attempting to reproduce these methods to go through them step by step.

      What is CMAC dye? Why was it used to stain the vacuolar lumen?

      We apologize for this oversight, we have included the definition of CMAC as 7-Amino-4-Chlormethylcumarin. It is a standard-used organelle marker for the lumen of the vacuole.

      Some abbreviations (TEAB, ACN) are not explained.

      We apologize for this oversight. We have now replaced these abbreviations with the full names of the compounds in the article.

      What is 0% Ficoll?

      We used the term 0% Ficoll, because this is the name given to the buffer in the original Haas 1995 paper on vacuole purifications. However, we agree that the term is misleading and we have now added the composition of the buffer (10 mM PIPES/KOH pH=6.8, 0.2 M Sorbitol).

      Reviewer #3 (Significance (Required)):

      The vacuolar-type proton ATPase, V-ATPase, is the key proton pump, that hydrolases ATP and uses this energy to pump protons across membranes. Amazingly, this proton pump and its function are conserved in eukaryotes from yeast to mammals. While V-ATPase structure and function have been studied for more than 30 years in various organisms, its regulation is not completely understood. The very recent discoveries of two new V-ATPase interacting proteins in yeast, first Oxr1 (OXidative Resistance 1), and now Rtc5 (Restriction of Telomere Capping 5), both the only two members of TLDc (The Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic) proteins in yeast, provide new insights in V-ATPase regulation in yeast, and because the interaction is conserved in mammals its relevance to mammalian V-ATPases regulation as well.

      TLDc proteins are best known for their role in protection from oxidative stress, in particular in yeast and in the nervous system in mammals. The discovery of the novel Rtc5-V-ATPase interaction points to the role of V-ATPase not only in protection from oxidative stress but also in restriction of telomere capping in yeast and most likely higher species. The studies of other species also highlight the possible conserved role of V-ATPase in lifespan determination and Torc1 signaling, mediated through these interactions. Thus, the discovery of this new functionally important interaction between the second TLDc family member in yeast, Rtc5, and V-ATPase will shed light on the molecular mechanisms of all these essential biological processes and pathways.

      In addition, because the authors performed a comprehensive proteomics protein-protein interaction study of the purified yeast vacuole it provides a valuable resource for all researchers who study vacuoles and/or related to them lysosomes.

      The follow-up functional studies using the rav1Δ strain clearly demonstrated that Rtc5 and Oxr1 disassemble V-ATPase and counteract the function of V-ATPase assembly RAVE complex in vivo in yeast. Thus, they are essentially the first discovered endogenous eukaryotic protein inhibitors of V-ATPase. Moreover, because the authors obtained the evidence that Oxr1 is the regulator of the specific subunit isoform of V-ATPase Stv1p in vivo in yeast, it suggests that different TLDc proteins may regulate different specific V-ATPase subunit isoforms in cell- and tissue-specific manner in higher eukaryotes. The mechanism of this isoform-specific regulation in yeast and other species needs further investigation in the future.

      Because of the conservation of the TLDc-V-ATPase interactions, all this information can be extrapolated to higher species, all the way to humans, in whom genetic mutations in various TLDc proteins are known to cause devastating diseases and syndromes.

      We are thankful to the reviewer for their positive comments about the significance of our work.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      In this manuscript, the authors used a proteomics approach to comprehensively study yeast vacuole protein-protein interactions using cross-linking mass-spectrometry (XL-MS). They identified 16694 interactions between 2051 proteins. Many known vacuolar protein complexes were found and used as positive controls, confirming the high quality of the dataset, however, no negative controls were reported, and this issue is raised in the 'Major comments' section. The authors then focused on one particular previously unknown protein-protein interaction between the TLDc-domain containing protein of unknown function Rtc5 and the vacuolar-type proton ATPase, V-ATPase, which acidifies yeast vacuoles. The methods and results regarding Rtc5 discovery as a novel interactor of the V-ATPase, Rtc5 myristoylation, and its V-ATPase-dependent localization to the vacuole membrane are convincing. The authors then moved on to study the in vivo function of Rtc5 as well as Oxr1, the only other TLDc-domain-containing protein in yeast. Interestingly, they did not originally detect Oxr1 in their protein-protein interaction studies, apparently due to its very low abundance in yeast. However, they found that deletion of either RTC5 or OXR1 in vivo resulted in more assembled V-ATPase at the yeast vacuole and this effect was stronger in oxr1Δ cells. However, RTC5/OXR1 deletion or overexpression in parental yeast strains did not affect either vacuolar pH (a readout of functional V-ATPase) or yeast growth, including growth under specific conditions (neutral pH, in the presence of high concentrations of calcium or zinc), which is used to reveal a conditional lethal phenotype of unfunctional V-ATPase (the Vma− phenotype). Since they did not observe any in vivo phenotype in parental yeast strains, they subsequently studied the effects of RTC5/OXR1 deletion and overexpression in the 'sensitized' rav1Δ strain, lacking a specific assembly factor of V-ATPase, Rav1, one of the subunits of RAVE complex. In this strain, RTC5/OXR1 overexpression resulted in less acidic vacuolar pH and reduced growth of double mutant cells, compared to the single rav1Δ mutant. In addition, overexpression of Oxr1, but not Rtc5, caused disassembly of the V-ATPase in rav1Δ cells, noteworthy this effect was not detectable in the parent strain with intact Rav1p. Finally, they found that in oxr1Δ cells there is more Stv1 in the vacuole and concluded that Oxr1 is necessary for the retention of Stv1 containing V-ATPase at the vacuole. However, the mechanism seems to be complicated and remains to be elucidated. In summary, an impressive variety of methods from a technologically advanced XL-MS to classical yeast growth assays were used to identify Rtc5 interaction with V-ATPase and analyze its functional role in vivo in yeast, making the conclusions well justified overall.


      Major comments

      Re: A cross-linking mass spectrometry map of vacuolar protein interactions (results)

      While XL-MS is a very powerful method, it is a high-throughput approach and there should be some kind of negative control in these experiments. In cross-linking experiments, non-cross-linked samples are usually used as negative controls. What was the negative control in cross-linking mass-spectrometry experiments here? If there was no negative control, how the specificity of interactions was evaluated? Maybe the authors analyzed the dataset for highly improbable interactions and found very few of them? In addition, the high purity of vacuole preparation is critical. How was it assessed by the authors? All this is important to know to use this dataset as a reliable resource in the future.

      Re: Rtc5 and Oxr1 counteract the function of the RAVE complex (results)

      Taken together, data, presented in this section of the manuscript, provide strong evidence that Rtc5 and Oxr1 negatively regulate V-ATPase activity, counteracting the V-ATPase assembly, facilitated by the activity of the RAVE complex. However, the complete deletion of the major RAVE subunit Rav1p was required to observe this effect in vivo in yeast. The other way to induce V-ATPase disassembly in yeast is glucose deprivation. It will be interesting to study if there is a synergistic effect between glucose deprivation and RTC5/OXR1 deletion on V-ATPase assembly, vacuolar pH, and growth of single oxr1Δ, rtc5Δ or double oxr1Δrtc5Δ mutants (OPTIONAL). Glucose deprivation is a more physiologically relevant condition than a deletion of an entire gene.

      Re: Figure 6 - supplement 1. The title is relevant to panel D only, it should be renamed to reflect the results of the disassembly of V-ATPase in rav1Δ mutant strains, while results about the stv1Δ-based strains (Panel D) should be shown together with similar experiments in Figure 7 - supplement 2 for clarity.

      Re: Figure 7 - supplement 1, Panel A. The proper assay to show that Stv1-mNeonGreen is functional is to express it in double mutant vph1Δstv1Δ to see if the growth defect is reversed. In addition, the vph1Δ growth defect is not changed (improved or worsened) in the presence of Stv1-mNeonGreen, so it means that the expression of Stv1-mNeonGreen does not further compromise the V-ATPase function, but it does not mean that it improves its function.

      Re: Figure 7 - supplement 2. This figure should be combined with Fig. 6- suppl 1, panel D as also mentioned above. The figure seems to lack some labels, and conclusions are not accurate as discussed below. However, this data provides important additional information about relationships between isoform-specific subunits of V-ATPase Vph1 and Stv1 and both Rtc5 and Oxr1 and should be repeated if it is not done yet to have a better idea about these relationships. Panel B: Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of VPH1, since double deletion mutant vph1Δ rtc5Δ grows worse than each individual mutant. Although it also means that there is no positive interaction, it is not the same. Panel C: Same as for panel B. Based on this picture, the deletion of OXR1 has a weak negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ oxr1Δ grows worse than each individual mutant at 6 mM ZnCl2. In addition, there is no label for the media in the middle panel, is it just YPAD pH=7.5, without the addition of any metals? Why there is no growth assay in the presence of CaCl2, like in panels A and B? Panel D: Same as for panels B and C. Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ rtc5Δ grows worse than each individual mutant at 6 mM ZnCl2. There is no label in the middle panel (growth conditions) and no growth assay data in the presence of CaCl2.

      Re: Figure 7 - supplement 2, continued. How many times all these experiments were repeated? These experiments should be repeated at least 3 times, which is especially necessary for the experiments in panel C, because the effects are borderline. If results are reproducible and statistically significant, although small, the conclusion should be changed from "no positive genetic interactions" to "negative genetic interactions", which is more precise and informative. However, these results will be then in contradiction with the results from Figure 6 - Supplement 1, panel D, showing negative genetic interaction between the overexpression of Rtc5 or Oxr1 and deletion of Stv1, since both deletion and overexpression of Rtc5 or Oxr1 would have negative genetic interactions with Stv1. In addition, apparently, there is no data about genetic interaction between the overexpression of Rtc5 or Oxr1 and the deletion of Vph1. All this needs clarification, therefore repeating these experiments is essential. In conclusion, while genetic interactions between RTC5/OXR1 and RAV1 are straightforward, they seem to be more complex with STV1/VPH1.

      Re: Methods. There is no description of yeast serial dilution growth assay at all. In addition, why the specific media (neutral pH, in the presence of high concentrations of calcium or zinc) was used is not explained either in the results or methods. Appropriate references should be included, for example, PMID: 2139726, PMID: 1491236.

      Minor comments

      Yeast proteins are named with "p" at the end, such as "Rtc5p".

      Re: Introduction. In the introduction it should be indicated that Rtc5 was originally discovered as a "restriction of telomere capping 5", using screening of temperature-sensitive cdc13-1 mutants combined with the yeast gene deletion collection [PMID: 18845848]. A couple of sentences should be written about the RAVE complex and its role in V-ATPase assembly.

      Re: The TLDc domain-containing protein of unknown function Rtc5 is a novel interactor of the vacuolar V-ATPase (results) 1) It is important to understand, that Oxr1 was co-purified before with the V1 domain of V-ATPase from a certain mutant strain, not wild-type yeast [PMID: 34918374]. It may explain why the authors did not identify it in their original protein-protein interactions screen here. 2) It is a wrong conclusion that because Rtc5 was co-purified with both V1 and V0 domain subunits it interacts with the assembled V-ATPase, this does not exclude a possibility that Rtc5 also interacts with separate V1 sector or separate V0 sector of V-ATPase.

      Re: Figure 1, Panel C. Is it possible to show individual proteins in different colors for clarity? Panel D. How were cross-link distances measured? It is not obvious if you are not an expert in the field and it is not described in the methods.

      Re: Figure 1 - Supplement 1, Panel A. What scientific information are we getting from this picture? Panel B. Why are these complexes shown separately from the complexes in Figure 1, panel C? Also, can individual proteins be colored differently here as well?

      Re: Figure 3. It will be nice to show the localization of the untagged protein as well if antibodies are available (OPTIONAL).

      Re: Figure 4. Why different tags were used in panels A (GFP), C (msGFP2) and D (mNeonGreen)? Panels B and C. Were Rtc5 fusions detected using anti-GFP antibodies? The authors should have full-size Western blots available, not just cut-out bands, as some journals and reviewers require them for publication.

      Re: Figure 4 - Supplement 1, Panel A. Does "-" and "+" mean -/+ Azido-Myr? Panel B. There is no blot with a membrane protein marker (Vam3 or Vac8), it should be included.

      Re: Figure 5. The title does not describe all results in this figure and should be modified accordingly. Panel C. Statistical significance value for *** should be indicated in the legend. It is not clear how many times yeast growth assays were repeated. Usually, all experiments should be done in triplicates or more.

      Re: Figure 5 - supplement 1. No title

      Re: Figure 5 - supplement 2. No title

      Re: Figure 6. There is a typo on the second lane in the legend: "...the genome were", not "...the genome where". Panel C. Why the analysis of BCECF vacuole staining of double mutants oxr1Δrav1Δ and rtc5Δrav1Δ is not shown? Was it done at all?

      Re: Figure 6 - Supplement 2. Why were two different tags (2xmNG and msGFP2) used? Did the authors study N-terminally tagged Oxr1? Was it functional? Panel B. Results for the untagged TEF1pr-Oxr1 overexpression are not shown, thus tagged and untagged proteins can't be compared. Are they available? What is the promoter for the expression of 2xmNG fusion constructs?

      Re: Methods. Were vacuoles prepared differently for XL-MS and SILAC-based vacuole proteomics (there are different references) and why? Methods for XL-MS and quantitative SILAC-based proteomics can be placed together for clarity. What is CMAC dye? Why was it used to stain the vacuolar lumen? Some abbreviations (TEAB, ACN) are not explained. What is 0% Ficoll?

      Referees cross-commenting

      I agree with both reviewers, although I think that it is a pretty novel finding because while I was familiar with Oxr1 data I did not realize until now that there is a second protein in yeast. I think it is because homology between Oxr1 and Rtc5 is really low. I also agree that they should study more about what happens with V0 subunits.

      Significance

      Field of expertise keywords:

      Protein-protein interactions, V-ATPase, TLDc

      The vacuolar-type proton ATPase, V-ATPase, is the key proton pump, that hydrolases ATP and uses this energy to pump protons across membranes. Amazingly, this proton pump and its function are conserved in eukaryotes from yeast to mammals. While V-ATPase structure and function have been studied for more than 30 years in various organisms, its regulation is not completely understood. The very recent discoveries of two new V-ATPase interacting proteins in yeast, first Oxr1 (OXidative Resistance 1), and now Rtc5 (Restriction of Telomere Capping 5), both the only two members of TLDc (The Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic) proteins in yeast, provide new insights in V-ATPase regulation in yeast, and because the interaction is conserved in mammals its relevance to mammalian V-ATPases regulation as well.

      TLDc proteins are best known for their role in protection from oxidative stress, in particular in yeast and in the nervous system in mammals. The discovery of the novel Rtc5-V-ATPase interaction points to the role of V-ATPase not only in protection from oxidative stress but also in restriction of telomere capping in yeast and most likely higher species. The studies of other species also highlight the possible conserved role of V-ATPase in lifespan determination and Torc1 signaling, mediated through these interactions. Thus, the discovery of this new functionally important interaction between the second TLDc family member in yeast, Rtc5, and V-ATPase will shed light on the molecular mechanisms of all these essential biological processes and pathways.

      In addition, because the authors performed a comprehensive proteomics protein-protein interaction study of the purified yeast vacuole it provides a valuable resource for all researchers who study vacuoles and/or related to them lysosomes.

      The follow-up functional studies using the rav1Δ strain clearly demonstrated that Rtc5 and Oxr1 disassemble V-ATPase and counteract the function of V-ATPase assembly RAVE complex in vivo in yeast. Thus, they are essentially the first discovered endogenous eukaryotic protein inhibitors of V-ATPase. Moreover, because the authors obtained the evidence that Oxr1 is the regulator of the specific subunit isoform of V-ATPase Stv1p in vivo in yeast, it suggests that different TLDc proteins may regulate different specific V-ATPase subunit isoforms in cell- and tissue-specific manner in higher eukaryotes. The mechanism of this isoform-specific regulation in yeast and other species needs further investigation in the future.

      Because of the conservation of the TLDc-V-ATPase interactions, all this information can be extrapolated to higher species, all the way to humans, in whom genetic mutations in various TLDc proteins are known to cause devastating diseases and syndromes.

    1. Why do we go through the struggle to be educated? Is it merely in order to pass some examinations and get a job? Or is it the function of education to prepare us while we are young to understand the whole process of life? having a job and earning one’s livelihood is necessary—but is that all? Are we being educated only for that? Surely, life is not merely a job, an occupation; life is wide and profound, it is a great mystery, a vast realm in which we function as human beings. If we merely prepare ourselves to earn a livelihood, we shall miss the whole point of life; and to understand life is much more important than merely to prepare for examinations and become very proficient in mathematics, physics, or what you will.

      I really enjoy this excerpt because it puts into a better perspective why we continuously learn. I have a firm belief that there is always more to learn, and I think that continuously growing and learning is genuinely good for us. I think this passage does an excellent job in showing us the joy in learning about something we love. I think that by learning about things we enjoy, even if it is something others may deem unimportant, like, learning about the story and complexity of your favorite video game, there is still something you are learning, and hopefully getting some sort of joy and gratification from, learning is not just about being able to preform in a job setting.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer No.1 (public)

      The authors present a study focused on addressing the key challenge in drug discovery, which is the optimization of absorption and affinity properties of small molecules through in silico methods. They propose active learning as a strategy for optimizing these properties and describe the development of two novel active learning batch selection methods. The methods are tested on various public datasets with different optimization goals and sizes, and new affinity datasets are curated to provide up-todate experimental information. The authors claim that their active learning methods outperform existing batch selection methods, potentially reducing the number of experiments required to achieve the same model performance. They also emphasize the general applicability of their methods, including compatibility with popular packages like DeepChem.

      Strengths:

      Relevance and Importance: The study addresses a significant challenge in the field of drug discovery, highlighting the importance of optimizing the absorption and affinity properties of small molecules through in silico methods. This topic is of great interest to researchers and pharmaceutical industries.

      Novelty: The development of two novel active learning batch selection methods is a commendable contribution. The study also adds value by curating new affinity datasets that provide chronological information on state-of-the-art experimental strategies.

      Comprehensive Evaluation: Testing the proposed methods on multiple public datasets with varying optimization goals and sizes enhances the credibility and generalizability of the findings. The focus on comparing the performance of the new methods against existing batch selection methods further strengthens the evaluation.

      Weaknesses:

      Lack of Technical Details: The feedback lacks specific technical details regarding the developed active learning batch selection methods. Information such as the underlying algorithms, implementation specifics, and key design choices should be provided to enable readers to understand and evaluate the methods thoroughly.

      Evaluation Metrics: The feedback does not mention the specific evaluation metrics used to assess the performance of the proposed methods. The authors should clarify the criteria employed to compare their methods against existing batch selection methods and demonstrate the statistical significance of the observed improvements.

      Reproducibility: While the authors claim that their methods can be used with any package, including DeepChem, no mention is made of providing the necessary code or resources to reproduce the experiments. Including code repositories or detailed instructions would enhance the reproducibility and practical utility of the study.

      Suggestion 1:

      Elaborate on the Methodology: Provide an in-depth explanation of the two active learning batch selection methods, including algorithmic details, implementation considerations, and any specific assumptions made. This will enable readers to better comprehend and evaluate the proposed techniques.

      Answer: We thank the reviewer for this suggestion. Following this comments we have extended the text in Methods (in Section: Batch selection via determinant maximization and Section: Approximation of the posterior distribution) and in Supporting Methods (Section: Toy example). We have also included the pseudo code for the Batch optimization method.

      Suggestion 2:

      Clarify Evaluation Metrics: Clearly specify the evaluation metrics employed in the study to measure the performance of the active learning methods. Additionally, conduct statistical tests to establish the significance of the improvements observed over existing batch selection methods.

      Answer: Following this comment we added to Table 1 details about the way we computed the cutoff times for the different methods. We also provide more details on the statistics we performed to determine the significance of these differences.

      Suggestion 3:

      Enhance Reproducibility: To facilitate the reproducibility of the study, consider sharing the code, data, and resources necessary for readers to replicate the experiments. This will allow researchers in the field to validate and build upon your work more effectively.

      Answer: This is something we already included with the original submission. The code is publicly available. In fact, we provide a phyton library, ALIEN (Active Learning in data Exploration) which is published on the Sanofi Github(https://github.com/ Sanofi-Public/Alien). We also provide details on the public data used and expect to provide the internal data as well. We included a small paragraph on code and data availability.

      Reviewer No.2 (public)

      Suggestion 1:

      The authors presented a well-written manuscript describing the comparison of activelearning methods with state-of-art methods for several datasets of pharmaceutical interest. This is a very important topic since active learning is similar to a cyclic drug design campaign such as testing compounds followed by designing new ones which could be used to further tests and a new design cycle and so on. The experimental design is comprehensive and adequate for proposed comparisons. However, I would expect to see a comparison regarding other regression metrics and considering the applicability domain of models which are two essential topics for the drug design modelers community.

      Answer: We want to thank the reviewer for these comments. We provide a detailed response to the specific comments below. 

      Reviewer No.1 (Recommendations For The Authors)

      Recommendation 1:

      The description provided regarding the data collection process and the benchmark datasets used in the study raises some concerns. The comment specifically addresses the use of both private (Sanofi-owned) and public datasets to benchmark the various batch selection methods. Lack of Transparency: The comment lacks transparency regarding the specific sources and origins of the private datasets. It would be crucial to disclose whether these datasets were obtained from external sources or if they were generated internally within Sanofi. Without this information, it becomes difficult to assess the potential biases or conflicts of interest associated with the data.

      Answer: We would like to thank the reviewer for this comment. As mentioned in the paper, the public github page contains links to all the public data and we expect also to the internal Sanofi data. We also now provide more information on the specific experiments that were internally done by Sanofi to collect that data.

      Potential Data Accessibility Issues: The utilization of private datasets, particularly those owned by Sanofi, may raise concerns about data accessibility. The lack of availability of these datasets to the wider scientific community may limit the ability of other researchers to replicate and validate the study’s findings. It is essential to ensure that the data used in research is openly accessible to foster transparency and encourage collaboration.

      Answer: Again, as stated above we expect to release the data collected internally on the github page.

      Limited Information on Dataset Properties: The comment briefly mentions that the benchmark datasets cover properties related to absorption, distribution, pharmacokinetic processes, and affinity of small drug molecules to target proteins. However, it does not provide any specific details about the properties included in the datasets or how they were curated. Providing more comprehensive information about the properties covered and the methods used for curation would enhance the transparency and reliability of the study.

      To address these concerns, it is crucial for the authors to provide more detailed information about the data sources, dataset composition, representativeness, and curation methods employed. Transparency and accessibility of data are fundamental principles in scientific research, and addressing these issues will strengthen the credibility and impact of the study.

      Answer: We agree with this comment and believe that it is important to be explicit about each of the datasets and to provide information on the new data. We note that we already discuss the details of each of the experiments in Methods and, of course, provide links to the original papers for the public data. We have now added text to Supporting Methods that describes the experiments in more details as well as providing literature references for the experimental protocols used. As noted above, we expect to provide our new internal data on the public git page. 

      Recommendation 2:

      Some comments on the modeling example Approximation of the posterior distribution. Lack of Methodological Transparency: The comment fails to provide any information regarding the specific method or approach used for approximating the posterior distribution. Without understanding the methodology employed, it is impossible to evaluate the quality or rigor of the approximation. This lack of transparency undermines the credibility of the study.

      Answer: We want to thank the reviewer for pointing this out. Based on this comment we added more information to Section: Approximation of the posterior distribution. Moreover, we now provide details on the posterior approximation in Section: Two approximations for computing the epistemic covariance.

      Questionable Assumptions: The comment does not mention any of the assumptions made during the approximation process. The validity of any approximation heavily depends on the underlying assumptions, and their omission suggests a lack of thorough analysis. Failing to acknowledge these assumptions leaves room for doubt regarding the accuracy and relevance of the approximation.

      Answer: We are not entirely sure which assumptions the reviewer is referring to here. The main assumption we can think of that we have used is the fact that getting within X% of the optimal model is a good enough approximation. We have specifically discussed this assumption and tested multiple values of X. While it would have been great to have X = 0 this is unrealistic for retrospective studies. For Active Learning the main question is how many experiments can be saved to obtain similar results and the assumptions we used are basically ’what is the definition of similar’. We now added this to Discussion.

      Inadequate Validation: There is no mention of any validation measures or techniques used to assess the accuracy and reliability of the approximated posterior distribution. Without proper validation, it is impossible to determine whether the approximation provides a reasonable representation of the true posterior. The absence of validation raises concerns about the potential biases or errors introduced by the approximation process.

      Answer: We sincerely appreciate your concern regarding the validation of the approximated posterior distribution. We acknowledge that our initial submission might not have clearly highlighted our validation strategy. It is, of course, very hard to determine the accuracy of the distribution our model learns since such distribution cannot be directly inferred using experiments (no ’ground truth’). Instead, we use an indirect method to determine the accuracy. Specifically, we conducted retrospective experiment using the learned distribution. In these experiments, we indirectly validated our approximation by measuring the error with the respective method. The results from these retrospective experiments provided evidence for the accuracy and reliability of our approximation in representing the true posterior distribution. We now emphasize this in Methods.

      Uncertainty Quantification: The comment does not discuss the quantification of uncertainty associated with the approximated posterior distribution. Properly characterizing the uncertainty is crucial in statistical inference and decision-making. Neglecting this aspect undermines the usefulness and applicability of the approximation results.

      Answer: Thank you for pointing out the importance of characterizing uncertainty in statistical inference and decision-making, a sentiment with which we wholeheartedly agree. In our work, we have indeed addressed the quantification of uncertainty associated with the approximated posterior distribution. Specifically, we utilized Monte Carlo Dropout (MC Dropout) as our method of choice. MC Dropout is a widely recognized and employed technique in the neural networks domain to approximate the posterior distribution, and it offers an efficient way to estimate model uncertainty without requiring any changes to the existing network architecture [1, 2]. In the revised version, we provide a more detailed discussion on the use of Monte Carlo Dropout in our methodology and its implications for characterizing uncertainty.

      Comparison with Gold Standard: There is no mention of comparing the approximated posterior distribution with a gold standard or benchmark. Failing to provide such a comparison leaves doubts about the performance and accuracy of the approximation method. A lack of benchmarking makes it difficult to ascertain the superiority or inferiority of the approximation technique employed.

      Answer: As noted above, it is impossible to find gold standard information for the uncertainly distribution. It is not even clear to us how such gold standard can be experimentally determined since its a function of a specific model and data. If the reviewer is aware of such gold standard we would be happy to test it. Instead, in our study, we opted to benchmark our results against state-of-the-art batch active learning methods, which also rely on uncertainty prediction (such uncertainty prediction is the heart of any active learning method as we discuss). Results clearly indicate that our method outperforms prior methods though we agree that this is only an indirect way to validate the uncertainty approximation.

      Reviewer No.2 (Recommendations For The Authors)

      Recommendation 1:

      The text is kind of messy: there are two results sections, for example. It seems that part of the text was duplicated. Please correct it.

      Answer: We want to thank the reviewer pointing this out. These were typos and we fixed them accordingly.

      Recommendation 2:

      Text in figures is very small and difficult to read. Please redraw the figures, increasing the font size: 10-12pt is ideal in comparison with the main text.

      Answer: We want to thank the reviewer for this comment and we have made the graphics larger.

      Recommendation 3: Please, include specific links to data availability instead of just stating it is available at the Sanofi-Public repository.

      Answer: We want to thank the reviewer for this comment and added the links and data to the Sanofi Github page listed in the paper.

      Recommendation 4:

      What are the descriptors used to train the models?

      Answer: We represented the molecules as molecular graphs using the MolGraphConvFeaturizer from the DeepChem library. We now explicitly mention this in Methods.

      Recommendation 5:

      Regarding the quality of the models, I strongly suggest two approaches instead of using only RMSE as metrics of models’ performance. I recommend using the most metrics as possible as reported by Gramatica (https://doi.org/10.1021/acs.jcim.6b00088). I also recommend somehow comparing the increment on the dataset diversity according to the employed descriptors (applicability domain) as a measurement to further applications on the unseen molecules.

      Answer: We want to thank the reviewer for this great suggestions. As suggested we added new comparison metrics to the Supplement.

      • Distribution plot for the range of the Y values Figure 8 • Clustering of the data sets represented as fingerprints Supplementary material Figure 5,6

      • Retrospective experiments with Spearman correlation coefficient. Supplementary material Figure: 2,3,4

      I suggest also a better characterization of datasets including the nature and range of the Y variable, the source of data in terms of experimentation, and chemical (structural and physicochemical) comparison of samples within each dataset.

      Answer: As noted above in response to a similar comment by Reviewer 1, we have added more detailed information about the different experiments we tested to Supporting Methods.

      References

      [1] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

      [2] N.D. Lawrence. Variational Inference in Probabilistic Models. University of Cambridge, 2001.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript develops the authors' previous work on the structure of the YeeE protein by presenting a co-structure with YeeD and investigating the role of certain key cysteine residues, especially C17 of YeeD. To this reviewer an entirely plausible mechanism for YeeD/E co-ordinated transport of thiosufate through the membrane and cleavage to sulfide and sulfite which are released into the cytoplasm is proposed on the basis of functional studies. The work is clearly described, the crystallography stats look good.

      Thank you very much for your highly positive comments. We sincerely appreciate them.

      Major comment: The 'cysteine relay' followed by a key role for C17 of YeeD in releasing a sulfide looks very plausible and makes the work of more general interest. An aspect that is not addressed is that of energetics. Moving thiosulfate into the cytoplasm as sulfide and sulfite means apparently that two negative charges net are generated in the cytoplasm for each thiosulfate taken up. This seems too simplistic (protons released as the bound sulfite is released b hydrolysis) but if thiosulfate were to be moved the whole way across there would be a divalent anion uniport which would work against the membrane potential negative inside (ie the main component of the protonmotive force). There is no mention in the paper of any pmf dependence and presumably the structure of YeeE shows no evidence of putative proton pathways? Some discussion of this and any wider implications could enhance the paper. In some ways the proposed transport scheme has some resemblance to Mitchells's old group translocation proposal for transport.

      Thank you for highlighting the significance of the 'cysteine relay.' We also believe that this aspect is likely to interest a broad readership. Regarding protons, YeeE does not have apparent proton pathways inside, and we currently do not have data on its dependence on the pmf. Investigating pmf dependence falls beyond the scope of this study, hence we plan to explore this in future research. We appreciate you for pointing out that the YeeE-YeeD is a reminiscence of Mitchell’s original proposal of group translocation. This is a very intriguing point, and we have now included a discussion of this, along with a relevant citation, in the Discussion section (lines 356-357).

      Reviewer #1 (Significance (Required)):

      The subject of thiosulfate transport (movement) into bacteria is arguably of interest only to a narrow group of bacterial biochemists. However, the contents of this manuscript ought to be of wider interest because the YeeD/E system described is unusual in doing more that catalysing transport alone. Whether the authors' description in their title of 'sophisticated' is an appropriate adjective I am not sure. The term 'cofactor' applied to YeeD seems 'odd' to this reviewer. It is not a cofactor in the usual sense eg NADH.

      We appreciate your comments. We have modified the title and avoided the unsuitable word 'cofactor' to describe YeeD.

      reviewer's expertise: bactrial energetics but little knowledge of sulfur metabolism


      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      The publication "Structure and function of a YeeE-YeeD complex for sophisticated thiosulfate uptake" by Ikei et al. shows the protein-protein interaction of a thiosulfate transporter YeeE and a sulfur transferase YeeD, a TusA-family protein. The transporter YeeE has been structurally characterized previously, without showing its functional activity in a purified reconstituted system. This experiment complementing the previous publication is provided here, furthermore proving the functionality of the transporter. These experiments were further extended by the characterization of the cytoplasmic acceptor protein. This acceptor was proven to be YeeD, by structural characterization and biolayer interferometry. The binding kinetics between YeeD and YeeE were measured, quantifying the binding affinity between the two proteins. Furthermore, the surface residues of YeeD were specified by amino acid exchange mutants. Thus, the structure and essential residues were characterized protein. The interaction of sulfur transferase YeeD with the thiosulfate transporter YeeE is a novelty to the field. This illuminates the first time a specific function of YeeD in thiosulfate assimilation.

      We appreciate your positive review and for recognizing the significance of our work in uncovering the functions of the YeeE and YeeD complex. We have addressed the following major and minor comments, thereby improving our manuscript. We appreciate the your constructive feedback.

      Major comments:

      I see the following major problem: The YeeD protein preparations used in the experiments contained several different protein species. Mass spectrometry showed the existence of the monomeric reduced protein, a TusA sulfinate and a TusA thiosulfonate. There is obviously an oxidation of cysteine to cysteine sulfinate, possibly due to the presence of oxygen as shown in Fig. 2D and stated in the text. The formation of sulfinates has to be avoided. This can be achieved by the use of stronger reducing agents or by purification under strict exlusion of oxygen. The formation of sulfenic, sulfinic and sulfonic acid on cysteines by oxidation has been reviewed by Ezraty et al 2017 Nat Rev Microbiol.

      To answer these points, we have extensively several experiments and analyses, and modified the text. In the mass spectrometry analysis of purified StYeeD, three major peaks are observed (Fig. 2D), but they do not necessarily reflect actual relative abundances due to the nature of mass spectrometry analysis. Therefore, we also analyzed the purified StYeeD by non-reducing SDS-PAGE, which showed very few molecular species with S-S bonds, with over 90% existing as YeeD-SH (Fig. S2D). We considered this level of purity sufficient for conducting biochemical analyses. Furthermore, although a small amount of YeeD-SO2- was observed, this would be inactive and thus not impact the activity of StYeeD because a similar irreversible modification product, NEM-modified StYeeD(WT), was inactive (Fig. S2G).

      We have also provided non-reducing SDS-PAGE results for each mutant StYeeD in Fig. S2F. All StYeeD mutants except for L45A showed a similar pattern to StYeeD(WT). Conducting experiments under anaerobic conditions is quite challenging in our laboratory facility, so we have displayed non-reducing SDS-PAGE profiles of all proteins used in order to avoid misunderstanding. We have also tried the purification in the presence of DTT, a stronger reducing agent, but the fraction of YeeD-SO2- was not significantly changed.

      In the revised version, mass spectrometry analyses were reperformed using DTT-reduced YeeD, resulting in more precise data (Fig. 2D–H). Based on these results and your valuable comments, we have rewritten the paragraph entitled 'T____hiosulfate decomposition activity of YeeD and its catalytic center residue' to represent the reduction/oxidation forms accurately. We have also cited the Nat. Rev. Microbiol. review in the text (line 185).

      In their in vitro assays, the authors use exceptionally high thiosulfate concentrations of 300 mM. This is so far from any physiologically relevant concentrations that strong doubt is shed the validity of any conclusions transferred from the in vitro to the in vivo situation.

      In the revised version, the mass spectrometry analysis was reperformed with a thiosulfate concentration of 500 µM, which is the same concentration of thiosulfate used in the thiosulfate decomposition experiments. To clarify this, we have included the thiosulfate ion concentrations in the legend of Fig 2.

      L247 and Fig5: The proposed mechanism cannot be true. Binding of thiosulfate to a reduced TusA protein is not possible without release of electrons. Where do these electrons go? In the proposed scheme, the number of electrons before and after the reaction steps is not equal (Fig. 5). A release of the sulfur atom between the cysteine sulfur atom and the oxidized sulfur atom is impossible.

      Thank you for your insightful comments. We have revised Fig. 5B to represent a better model. However, elucidating the electron pathway falls outside the scope of this study, and we cannot offer a definitive explanation. We have addressed this limitation in the Discussion section and highlighted it as a topic for future research.

      Have the authors checked whether TusA dimers are formed via disulfide bridges? If so, thiosulfate could resolve these disulfides leading to reduced TusA and thiosulfonated TusA (YeeD-S-S-YeeD + S2O32- → YeeD-S-S-SO3- + YeeD-S-).

      It cannot be excluded that the YeeD-S-SO3- species is a result of removal of sulfite from the YeeD-S-S2O3- species (possibly by transfer to another YeeD molecule) resulting in YeeD-S-S- oxidized by molecular oxygen to YeeD-S-SO3-.

      Upon answering to this comment, we have re-examined the gel filtration result using gel filtration markers. We found that a fraction of YeeD exists as dimers in solution, as shown in Fig. S2C. By performing non-reducing SDS-PAGE, it was shown that these YeeD dimers were not due to intermolecular disulfide bond (Fig. S2D). Following your valuable suggestion, we have introduced the possibility that YeeD can function as a dimer into our model, as presented in a box in Fig. 5B.

      Sulfide may be formed by a reaction of YeeD-S- with S2O32- to YeeD-S-SO3- and S2- or reaction of YeeD-S-S- with S2O32- to YeeD-S-S2O3- and S2-. As there is the formation of sulfinic acid that prevents clear conclusions, I suggest repeating the experiments on thiosulfate decomposition under anaerobic conditions to clarify the reaction mechanism. Anoxic buffers and strong reducing agents may prevent chemical oxidation.

      As described above, based on the non-reducing SDS-PAGE results (Fig. S2D), we believe that the low presence of oxidized species does not significantly affect our analysis. Moreover, the mass spectrometry analysis after DTT treatment yielded more precise results (Fig. 2D–H). As noted above, conducting experiments under anaerobic conditions is challenging in our facility, so we kindly request your understanding and consideration of the revisions made in this manuscript.

      Minor comments:

      In response to the minor comments, we have revised the manuscript.

      L58 What is the nature of the binding of the thiosulfate ion during the transport via YeeE. Is it covalently bound? Please comment in the text.

      In our previous study (Tanaka et al., Sci. Adv., 2020), we proposed that thiosulfate ions were transported via hydrogen bonds. Responding to your comment, we have included the explanation in the text and cited Tanaka et al., 2020 (lines 66-67).

      L76-L77 Is there a publication on the functionality of the Corynebacterium YeeD-YeeE fusion? The term "cofactor" does not apply to YeeD, which is a 9-kDa protein.

      Since the function of Corynebacterium YeeD-YeeE has not been reported, we have changed the sentence to "In some bacteria, such as Gram-positive Corynebacterium species, YeeE and YeeD are encoded as one polypeptide." We have also avoided the word "cofactor" in the revised text (lines 89-91).

      L114 YeeD was probably accidentally lowercased here as Yeed

      We have corrected this error (line 134).

      L119 Please specify what the negative control consisted of.

      We have elaborated on the conditions (lines 140-141).

      L120-122 In Fig 2c, the mutations E19A, K21A, E26A, D31A, E32A and D38A are still shown, but an explanation or description of the results is missing. The reason for investigation of these mutations should be stated in the text.

      We have added the requested mutation information (line 146).

      L137 If thiosulfate was not added before the MALDI-TOF, where did the sulfonate S-SO3 originate from? Is this an artifact formed during the heterologous production or purification? Please comment on this possibility in the text.

      We think that the -S-SO3- form arose during purification (Fig. 2D). The -S-SO3- form disappeared upon reduction by DTT (Fig. 2F). It is possible to consider it as an intermediate state in the catalytic cycle of YeeD. We commented on this in the section entitled "Thiosulfate decomposition activity of YeeD and its catalytic center residue."

      L144 Please state in the text whether these experiments were performed under aerobic or anaerobic conditions. The sulfinic acid is likely a product of a spontaneous chemical reaction with molecular oxygen.

      Thank you for your feedback. We have now included information about the aerobic conditions in the main text (line 166-167) and added comments regarding the mass spectrometry results at the end of the paragraph (lines 191-201).

      L148 It should be stated in the text whether YeeD in Fig2G was reduced with DTT as in Fig 2F or non-reduced as in Fig. 2D before thiosulfate was added. Only the reduced YeeD can yield conclusive results on the loading with sulfur, as there is already a thiosulfonate bound to the protein after purification.

      Thank you for pointing this out. For mass spectrometry analysis, data were re-obtained, and DTT-treated sample was used for the thiosulfate condition in this revised version. Furthermore, we performed mass spectrometry analysis for the hydrogen peroxide condition using DTT-treated sample. Figures were replaced with revised ones (Fig. 2D–H). The text in the section "Thiosulfat____e decomposition activity of YeeD and its catalytic center residue" was appropriately re-written. Detailed sample preparation is also described in MATERIALS AND METHODS section.

      L154 The YeeD used for measurement of sulfide formation must be reduced before the experiments. It is not stated in the text if this is the case. Also, the release of sulfide requires electrons. It should be commented where these electrons originate from.

      The sample in the purification process contains β-ME until just before the final column (gel filtration). As shown in Fig. S2D, more than 90% of the purified product is in a reduced state after gel filtration. For mass spectrometry analysis, data were re-obtained using DTT-treated samples, and the figures were replaced with new ones (Fig. 2D–H). Binding and activity measurements were conducted in the presence of β-ME. To avoid the confusion of the readers, the buffer conditions were included in the legends of both Fig. 2 and Fig. 4, along with the details in the MATERIALS AND METHODS section. Regarding electron origin, since the electron route remains unknown at this stage, we have added the explanation as a sentence in the Discussion section (lines 370-372).

      L159-160 If the mutation of the non-conserved YeeD cysteine inhibits growth, can anything be said about its function?

      Regarding the non-conserved Cys in EcYeeD, we added some sentences in the Discussion section (lines 393-397)

      L214 Is it possible to provide the Kd and KD values for the mutant proteins?

      The ka, kd and KD values the interactions between YeeE and YeeD proteins have been provided in Table 2. To provide these values for all the YeeD derivatives, the data was re-analyzed, and therefore, the value of the WT YeeD is slightly different from the original manuscript.

      L229 Stating a need of YeeD for thiosulfate uptake by YeeE is somewhat misleading as thiosulfate was also imported into liposomes by YeeE alone. Maybe state that YeeD is a required component for growth when thiosulfate is imported via YeeE.

      We have addressed the incorrect wording (lines 317-318).

      Reviewer #2 (Significance (Required)):

      The work of Ikei and colleagues significantly advances our understanding of thiosulfate import in Escherichia coli (E. coli) and prokaryotes in general. Sulfur metabolism as a field is generally considered to be underexplored, with a notable lack of biochemical and structural information on membrane transporters responsible for the movement of both inorganic and organic sulfur compounds. The mechanisms involved in sulfur transport are also relatively poorly understood.

      The proteins of the TusA family in E. coli exhibit distinct functions, although the precise function has only been determined for the canonical and namesake protein TusA. The discovered genetic evidence and the interaction of YeeE and YeeD adds significantly to our understanding of sulfur transfer reactions.

      The novelty of this reaction is of particular interest to researchers studying prokaryotic physiology, especially the synthesis of sulfur-containing cofactors such as coenzyme A (CoA), biotin, lipoate, thiamine, and iron-sulfur (FeS) clusters, as well as the biosynthesis of cysteine and methionine. In addition, recent findings related to the TusA family protein YeeD elucidate a novel mechanism for sulfur mobilization and transfer that will be of interest to researchers involved in the regulation of sulfur metabolism, sulfur dissimilation, and ecological studies focused on sulfur utilization. Thus, a wide range of studies could be influenced by this review.

      Areas of expertise include dissimilatory sulfur oxidation, sulfur transfer reactions, and protein-protein interactions.

      Thank you again for emphasizing the importance of our work. We also believe this study significantly advances the understanding of thiosulfate import in prokaryotes, shedding light on the underexplored field of sulfur metabolism. This has implications for various areas of study.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript "Structure and function of a YeeE-YeeD complex for sophisticated thiosulfate uptake" by Ikei et al., reports the enzymatic characterization, transport capability and concerted function of YeeE and YeeD. Moreover, the authors report the crystal structures of two mutant variants of the complex.

      The present work fills an important gap in understanding thiosulfate uptake and the individual roles of the YeeE and YeeD proteins in this process. This Reviewer believes that the paper has the potential of becoming an important reference in the field. However, this Reviewer has two or three major comments, besides a couple of minor ones, that would like the authors to address.

      We appreciate your valuable comments. We have addressed both major and minor comments in our revisions, improving our manuscript.

      This Reviewer hypothesizes that some of the comments might derive from a poor understanding of the text, derived from the way the manuscript is written. So, this Reviewer urges the Authors to take these comments as positive feedback, and build on these to improve the manuscript (namely on English and grammar).

      We have diligently revised the manuscript, addressing your major concerns related to sulfide terminology and explanations in crystal structure analysis as below. These revisions have enhanced clarity, and a native English speaker has reviewed and refined our text for language and grammar.

      MAJOR CONCERNS

      1. There is no clue on the title and, more importantly, on the Abstract, to which microorganism the Authors are reporting this work. Only later one we are introduced to Spirochaeta thermophila, but this information should be front and center (at least in the Abstract);

      We recognize the importance of clearly indicating the microorganism in our work. In accordance with the comments, we have revised both the title and Abstract, ensuring that the species is clearly identified in the Abstract.

      Also, in the Abstract, the Authors only mention the 2.6 A resolution structure, leaving behind the 3.34 A one. This becomes very confusing, especially once one gets to the Results section (more comments below);

      We apologize for any confusion arising from the omission of the 3.34 A resolution structure in the Abstract. In the revised Abstract, we have included both the 2.60 A and 3.34 A resolution structures. As per your suggestion, we have also provided detailed information about the determination of these structures in the Results, minimizing potential confusion for readers (lines 217-233).

      The Authors mention in line 137 and Fig. 2D that a "sulfonate" moiety is formed at C17. However, cysteine sulfonation is an irreversible process, so how would the enzyme recover from this modification to allow turnover of the mechanism?;

      We apologize for the poorly written passage that led to confusion. This paragraph has been revised with the appropriate wording and a proper mention of the reduction and oxidation of the -SH group. We now use the appropriate terms, such as sulfinic acid (-S-O2-), sulfonic acid (-S-O3-), and perthiosulfonic acid (-S-SO3-) to describe the sulfur-related modification states. In contrast to sulfonic acid (-SO3-) formed by the oxidization of the cysteine residue that is an irreversible process, perthiosulfonic oxidization of cysteine residue (-S-SO3-) is a reversible process, as shown in (E. Doka et al., Sci Adv 6, eaax8358 (2020)). Therefore, the modified YeeD molecules should be able to recover to the original state.

      If the "sulfonylation" reported in line 137 and Fig. 2D is not a sulfonylation of the cysteine (because the peak disappears upon reduction with DDT as visible in Fig. 2F), but rather a sulfonylation of the cysteine-persulfide version of C17, this was already reported previously and should be referenced [PDB ID 5LO9, Brito et al. (2016) J Biol Chem 291: 24804-24818];

      Because there was a misleading statement, as replied above, we have rewritten this paragraph.

      The perthiosulfonic acid (-S-SO3-) in Fig.2D is different from this -S-S2O3- in Brito et al., (2016), but consistent with Fig. 2G. This point is included in the text and the suggested paper has been cited, as requested. (lines 191-193)

      Section "Crystal structure of the YeeE-YeeD complex" should be re-written. Not only it is confusing, but also undermines the tremendous amount of work done by the Authors. Please state clearle what was crystallized, how and why. Specify clearly the mutation introduced and complement Table 1 with this information;

      Thank you for these comments. The determination of the structures was certainly challenging. We have restructured the first part of the section entitled "Crystal structure of the YeeE-YeeD complex". We have included a comprehensive explanation of the crystallization process and the construction of YeeE-YeeD. Additionally, we have updated Table 1 to provide more detailed information on the two structures.

      Lines 403-407: are the crystallization conditions already cryo-protected or no cryo-protection was added before flash freezing? Please state clearly;

      In response to your feedback, we have added the missing information in MATERIALS AND METHODS section.

      Table 1:

      • Is the multiplicity of PDB ID 8K1R correct? Is it really 321?? If so, is there any radiation damage to the crystal? If not, how?? Fine-fine-slicing during data collection, big crystals with elliptical data collection?? Pleas elaborate;

      The multiplicity for PDB ID 8K1R is correct. We have provided detailed information on data collection in MATERIALS AND METHODS section.

      • There are water molecules in the structure so please report number of atoms and B-factors for waters ("Solvent"), and ligands (e.g., thiosulfate, or others, if any), separately;

      We have updated Table 1 to include the requested information.

      • Please provide validation statistics for the structures, namely, rotamer outliers, clashscore and MolProbity score.

      We have added the validation statistics to Table 1.

      MINOR CONCERNS

      1. Always reference paper and PDB ID for all structures. E.g., at line 181, only the paper is referenced;

      We have ensured that all structures are properly referenced with both the paper and the corresponding PDB ID (lines 246, 250).

      Remove "alpha" in line 199;

      We have removed the "alpha" (line 268).

      Add units to all concentrations. E.g., at lines 326 and 327, (w/V) and (V/V) are missing.

      We have incorporated concentration units, (w/v) or (v/v), for percentages in the appropriate locations.

      Reviewer #3 (Significance (Required)):

      The scientific rationale is robust and the experimental approach is adequate and provide support to the conclusion drawn. However, there are some questions this Reviewer would like to see clarified, namely on the data collection and processing of PDB ID 8K1R.

      We appreciate your feedback. These revisions enhance the clarity and accuracy of this manuscript.

    1. As grad students, postdocs, or early career academics, we may think that the papers we reference, the textbooks we read, or the articles we enjoy skimming are written by writers who are leaps and bounds above us in terms of skill.

      This is what I think about successful media influencers, you-tubers, streamers, etc. I thought there was never a real chance for the little guy when you have all these other people who get millions of views and likes but you have to think that they all started getting one like or one viewer, so there is always a chance for the new guy to be as big as these other people like pewdipie, jynxzi, the Kardashians, etc.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Issue 1: The relevance is somewhat unclear. High cysteine levels can be achieved in the laboratory, but, is this relevant in the life of C. elegans? Or is there physiological relevance in humans, e.g. a disease? The authors state "cells and animals fed excess cysteine and methionine", but is this more than a laboratory excess condition? SUOX nonfunctional conditions in humans don't appear to tie into this, since, in that context, the goal is to inactivate CDO or CTH to prevent sulfite production. The authors also mention cancer, but the link to cysteine levels is unclear. In that sense, then, the conditions studied here may not carry much physiological relevance.

      Response 1: We set out to answer a fundamental question: what pathways regulate the function of cysteine dioxygenase, a highly conserved enzyme in sulfur amino acid metabolism? In an unbiased genetic screen that sampled millions of EMS generated mutations across all ~20,000 C. elegans genes, we discovered loss of function/null mutations in egl-9 and rhy-1, two negative regulators of the hypoxia inducible transcription factor (hif-1). Genetic ablation of the egl-9 or rhy-1 loci are likely not relevant to the life of a C. elegans animal, i.e. this is not representative of a natural state. Yet, this extreme genetic intervention has taught us a new fundamental truth about the interaction between EGL-9/RHY-1, HIF-1, and the transcriptional activation of cdo1. Similarly, the high cysteine levels used in our assays may or may not be representative of a state in nature, we do not know (nor do we make any claims about the environmental relevance of our choice of cysteine concentrations). It seems very plausible that pathological states exist where cysteine concentrations may rise to comparable levels in our experimental system. More importantly, we have started with excess to physiology to elicit a clear response that we can study in the lab. Similar strategies established the cysteine-induction phenotype of CDO1 in mammalian systems. For instance, in Kwon and Stipanuk 2001, hepatocytes are cultured in media supplemented with 2mmol/L cysteine to promote a ~4-fold increase in CDO1 mRNA.

      Issue 2: The pathway is described as important for cysteine detoxification, which is described to act via H2S (Figure 6). Much of that pathway has already been previously established by the Roth, Miller, and Horvitz labs as critical for the H2S response. While the present manuscript adds some additional insight such as the additional role of RHY-1 downstream on HIF-1 in promoting toxicity, this study therefore mainly confirms the importance of a previously described signalling pathway, essentially adding a new downstream target rhy-1 -> cysl-1 -> egl-9 -> hif-1 -> sqrd-1/cdo-1. The impact of this finding is reduced by the fact that cdo-1 itself isn't actually required for survival in high cysteine, suggesting it is merely a maker of the activity of this previously described pathway.

      Response 2: We agree that the primary impact of our manuscript is the establishment of a novel intersection between the H2S-sensing pathway (largely worked out by Roth, Miller, and Horvitz) and our gene of interest, cysteine dioxygenase. We believe that the connection between these two pathways is exciting as it suggests a logical homeostatic circuit. High cysteine yields enzymatically produced H2S. This H2S may then act as a signal promoting HIF-1 activity (via RHY-1/CYSL-1/EGL-9). High HIF-1 activity increases cdo-1 transcription and activity promoting the degradation of the high-cysteine trigger. As pointed out by the reviewer, cdo-1(-) loss of function alone does not cause cysteine sensitivity at the concentrations tested. Given that cysl-1(-) and hif-1(-) mutants are exquisitely sensitive to high levels of cysteine, we propose that HIF-1 activates the transcription of additional genes that are required for high cysteine tolerance. However, our genetic data show that cdo-1 is more than simply a marker of HIF-1 transcription. Our genetic data in Table 1 demonstrate that HIF-1 activation (caused by egl-9(-)) is sufficient to cause severe sickness in a suox-1 hypomorphic mutant which cannot detoxify sulfites, a critical product of cysteine catabolism. This severe sickness can be reversed by inactivating hif-1, cth-2, or cdo-1. These data demonstrate a functional intersection between the established H2S-sensing pathway and cysteine catabolism governed by cdo-1.

      Reviewer #2 (Public Review):

      Issue 3: First, the authors show that the supplementation of exogenous cysteine activates cdo-1p::GFP. Rather than showing data for one dose, the author may consider presenting dose-dependency results and whether cysteine activation of cdo-1 also requires HIF-1 or CYSL-1, which would be important data given the focus and major novelty of the paper in cysteine homeostasis, not the cdo-1 regulatory gene pathway.

      Response 3: We agree with the reviewer and have performed the suggested dose-response curve for expression of Pcdo-1::GFP in wild-type C. elegans. We observe substantial activation of the Pcdo-1::GFP transcriptional reporter beginning at 100µM supplemental cysteine (Figure 3C). Higher doses of cysteine do not elicit a substantially stronger induction of the Pcdo-1::GFP reporter. Thus, we find that 100µM supplemental cysteine strikes the right balance between strongly inducing the Pcdo-1::GFP reporter while not inducing any toxicity or lethality in wild-type animals (Figure 3E).

      We further agree that testing for induction of the Pcdo-1::GFP reporter in a hif-1(-) or cysl-1(-) mutant background is a critical experiment. However, we have not been able to identify a cysteine concentration that induces Pcdo-1::GFP and is not 100% lethal for hif-1(-) or cysl-1(-) mutant C. elegans. The remarkable sensitivity of hif-1(-) or cysl-1(-) mutant C. elegans to supplemental cysteine demonstrates the critical role of these genes in promoting cysteine homeostasis. But because of this lethality, we could not assay the Pcdo1::GFP reporter in the hif-1(-) or cysl-1(-) mutant animals. But the lethality to excess cysteine demonstrates that this cysteine response is salient. To get at how cysteine might be interacting with the HIF-1-signaling pathway, we performed new additivity experiments by supplementing 100µM cysteine to wild type, egl-9(-), and rhy-1(-) mutant C. elegans expressing the Pcdo-1::GFP reporter. Surprisingly, we found that cysteine had no significant impact on Pcdo-1::GFP expression in an egl-9(-) mutant background but significantly increased the Pcdo-1::GFP expression in a rhy-1(-) background (Figure 3A,B). These data suggest that cysteine acts in a pathway with egl-9 and in parallel to rhy-1. These data have been incorporated into Figure 3A,B and are included in the Results section of the manuscript.

      Issue 4: While the genetic manipulation of cdo-1 regulators yields much more striking results, the effect size of exogenous cysteine is rather small. Does this reflect a lack of extensive condition optimization or robust buffering of exogenous/dietary cysteine? Would genetic manipulation to alter intracellular cysteine or its precursors yield similar or stronger effect sizes?

      Response 4: We agree that the induction of the Pcdo-1::GFP reporter by supplemental cysteine is not as dramatic as the induction caused by the egl-9 or rhy-1 null alleles. We believe our Response 3 and new Figure 3C demonstrate that this phenomenon is not due to lack of condition optimization, but likely reflects some biology. As pointed out by the reviewer, C. elegans likely buffers exogenous cysteine and this (perhaps) prevents the impressive Pcdo-1::GFP induction observed in the egl-9(-) and rhy-1(-) mutant animals. We have now mentioned this possible interpretation in the Results section. Furthermore, we like the idea of using genetic tricks to promote cysteine accumulation within C. elegans cells and tissues and will consider these approaches in future studies.

      Issue 5: Second, there remain several major questions regarding the interpretation of the cysteine homeostasis pathway. How much specificity is involved for the RHY-1/CYSL-1/EGL-9/HIF-1 pathway to control cysteine homeostasis? Is the pathway able to sense cysteine directly or indirectly through its metabolites or redox status in general? Given the very low and high physiological concentrations of intracellular cysteine and glutathione (GSH, a major reserve for cysteine), respectively, there is a surprising lack of mention and testing of GSH metabolism.

      Response 5: Future studies are required to determine the specificity of the RHY-1/CYSL-1/EGL-9/HIF-1 pathway for the control of cysteine homeostasis. Our proposed mechanism, that H2S activates the HIF-1 pathway is based largely on the work of the Horvitz lab (Ma et al. 2012). They demonstrate that H2S promotes a direct inhibitory interaction between CYSL-1 and EGL-9, leading to activation of HIF-1. These findings align nicely with our genetic and pharmacological data. However, our work does not provide direct evidence as to the cysteine-derived metabolite that activates HIF-1. We propose H2S as a likely candidate.

      We have added a note to the introduction regarding the role of GSH as a reservoir of excess cysteine and agree that future studies might find interesting links between CDO-1, GSH metabolism, and HIF-1.

      Issue 6: In addition, what are the major similarities and differences of cysteine homeostasis pathways between C. elegans and other systems (HIF dependency, transcription vs post-transcriptional control)? These questions could be better discussed and noted with novel findings of the current study that are likely C. elegans specific or broadly conserved.

      Response 6: We have included a new section in the Discussion highlighting the nature of mammalian CDO1 regulation. We propose the hypothesis that a homologous pathway to the C. elegans RHY-1/CYSL-1/EGL9/HIF-1 pathway might operate in mammalian cells to sense high cysteine and induce CDO1 transcription. Importantly, all proteins in the C. elegans pathway have homologous counterparts in mammals. However, this hypothesis remains to be tested in mammalian systems.

      Reviewer #3 (Public Review):

      Major weaknesses of the paper include:

      Issue 7: the over-reliance on genetic approaches.

      Response 7: This is a fair critique. Our expertise is genetics. Our philosophy, which the reviewers may not share, is that there is no such thing as too much genetics!

      Issue 8: the lack of novelty regarding prolyl hydroxylase-independent activities of EGL-9.

      Response 8: We believe the primary novelty of our work is establishing the intersection between the H2Ssensing HIF-1 pathway and cysteine catabolism governed by cysteine dioxygenase. Our demonstration that cdo-1 regulation operates largely independent of VHL-1 and EGL-9 prolyl hydroxylation is a mechanistic detail of this regulation and not the critical new finding. Although, we believe it does suggest where pathway analyses should be directed in the future. We also believe that our homeostatic feedback model for the regulation of HIF-1 (and cdo-1) by cysteine-derived H2S is new and exciting and provides insight into the logic of why HIF-1 might respond to H2S and promote the activity of cdo-1. Our work suggests that one reason for this intersection of hif-1 and cdo-1 is to sense and maintain cysteine homeostasis when cysteine is in excess.

      Issue 9: the lack of biochemical approaches to probe the underlying mechanism of the prolyl hydroxylaseindependent activity of EGL-9.

      Response 9: While not the primary focus of our current manuscript, we agree that this is an exciting area of future research. To uncover the prolyl hydroxylase-independent activity of EGL-9, we agree that a combination of approaches will be required including, biochemical, structure-function, and genetic.

      Major Issues We Feel the Authors Should Address:

      Issue 10: One particularly glaring concern is that the authors really do not know the extent to which the prolyl hydroxylase activity is (or is not) impacted by the H487A mutation in egl-9(rae276). If there is a fair amount of enzymatic activity left in this mutant, then it complicates interpretation. The paper would be strengthened if the authors could show that the egl-9(rae276) eliminates most if not all prolyl hydroxylase activity. In addition, the authors may want to consider doing RNAi for egl-9 in the egl-9(rae276) mutant as a control, as this would support the claim that whatever non-hydroxylase activity EGL-9 may have is indeed the causative agent for the elevation of CDO-1::GFP. Without such experiments, readers are left with the nagging concern that this allele is simply a hypomorph for the single biochemical activity of EGL-9 (i.e., the prolyl hydroxylase activity) rather than the more interesting, hypothesized scenario that EGL-9 has multiple biochemical activities, only one of which is the prolyl hydroxylase activity.

      Response 10: We have two lines of evidence that suggest the egl-9(rae276)-encoded H487A variant eliminates prolyl hydroxylase activity. First, Pan et al. 2007 (reference 57) demonstrate that when the equivalent histidine (H313) is mutated in human protein, that protein lacks detectible prolyl hydroxylase activity. Second, the phenotypic similarities caused by egl-9(rae276) and the vhl-1 null allele, ok161. Both alleles cause nearly identical activation of the Pcdo-1::GFP reporter transgene (Fig. 5C,D), and similarly impact the growth of the suox-1(gk738847) hypomorphic mutant (Table 1). This phenotypic overlap is highly relevant as the established role of VHL-1 is to recognize the hydroxyl mark conferred by the EGL-9 prolyl hydroxylase domain and promote the degradation of HIF-1. If EGL-9[H487A] had residual prolyl hydroxylase activity, we would expect the vhl-1(-) null mutant C. elegans to display more dramatic phenotypes than their egl-9(rae276) counterparts. This is not the case.

      Issue 11: The authors observed that EGL-9 can inhibit HIF-1 and the expression of the HIF-1 target cdo-1 through a combination of activities that are (1) dependent on its prolyl hydroxylase activity (and subsequent VHL-1 activity that acts on the resulting hydroxylated prolines on HIF-1), and (2) independent of that activity. This is not a novel finding, as the authors themselves carefully note in their Discussion section, as this odd phenomenon has been observed for many HIF-1 target genes in multiple publications. While this manuscript adds to the description of this phenomenon, it does not really probe the underlying mechanism or shed light on how EGL-9 has these dual activities. This limits the overall impact and novelty of the paper.

      Response 11: See response to Issues #8.

      Issue 12: Cysteine dioxygenases like CDO-1 operate in an oxygen-dependent manner to generate sulfites from cysteine. CDO-1 activity is dependent upon availability of molecular oxygen; this is an unexpected characteristic of a HIF-1 target, as its very activation is dependent on low molecular oxygen. Authors neither address this in the text nor experimentally, and it seems a glaring omission.

      Response 12: We agree this is an important point to raise within our manuscript. Although, despite its induction by HIF-1, there is no evidence that cdo-1 transcription is induced by hypoxia. In fact, in a genome wide transcriptomic study, cdo-1 was not found to be induced by hypoxia in C. elegans (Shen et al. 2005, reference 71).

      We have newly commented on the use of molecular oxygen as a substrate by both EGL-9 and CDO-1 in our Discussion section. The mammalian oxygen-sensing prolyl hydroxylase (EGLN1) has been demonstrated to have high a Km value for O2 (high µM range). This likely allows EGLN1 to be poised to respond to small decreases in cellular oxygen from normal oxygen tensions. Clearly, CDO-1 also requires oxygen as a substrate, however the Km of CDO-1 for O2 is likely to be much lower, preventing sensitivity of the cysteine catabolism to physiological decreases in O2 availability. Although, to our knowledge, the CDO1 Km value for O2 has not been experimentally determined. We have added a new Discussion section where we address the conundrum about low oxygen inducing HIF-1 but oxygen being needed by CDO-1/CDO1.

      Issue 13: The authors determined that the hypodermis is the site of the most prominent CDO-1::GFP expression, relevant to Figure 4. This claim would be strengthened if a negative control tissue, in the animal with the knockin allele, were shown. The hypodermal specific expression is a highlight of this paper, so it would make this article even stronger if they could further substantiate this claim.

      Response 13: Our claim that the hypodermis is the critical site of cdo-1 function is based on; i) our hands on experience looking at Pcdo-1::GFP, Pcdo-1::CDO-1::GFP, CDO-1::GFP (encoded by cdo-1(rae273)) and our reporting of these expression patterns in multiple figures throughout the manuscript and ii) the functional rescue of cdo-1(-) phenotypes by a cdo-1 rescue construct expressed by a hypodermal-specific promoter (col10). We agree that providing negative control tissues would modestly improve the manuscript. However, we do not think that adding these controls will substantially alter the conclusions of the paper. Importantly, we acknowledge this limitation of our work with the sentence, “However, we cannot exclude the possibility that CDO-1 also acts in other cells and tissues as well.”

      Minor issues to note:

      Issue 14: Mutants for hif-1 and cysl-1 are sensitive to exogenous cysteine levels, yet loss of CDO-1 expression is not sufficient to explain this phenomenon, suggesting other targets of HIF-1 are involved. Given the findings the authors (and others) have had showing a role for RHY-1 in sulfur amino acid metabolism, shouldn't the authors consider testing rhy-1 mutants for sensitivity to exogenous cysteine?

      Response 14: To test the hypothesis that rhy-1(-) C. elegans might be sensitive to supplemental cysteine, we cultured wild type and rhy-1(-) animals on 0, 100, and 1000µM supplemental cysteine. At 0 and 100µM supplemental cysteine, neither wild-type nor rhy-1(-) animals display any lethality suggesting rhy-1 is not required for survival in the face of excess cysteine (Fig. 3D,E). We also cultured these same strains on 1000µM supplemental cysteine, a concentration that is highly toxic to wild-type animals (100% lethality). rhy1(-) animals were resistant to 1000µM supplemental cysteine with a substantial fraction of the population surviving overnight exposure to this lethal dose of cysteine. Similarly, egl-9(-) mutant C. elegans were also resistant to 1000µM supplemental cysteine. We propose that loss of egl-9 or rhy-1 activates HIF-1-mediated transcription which is priming these mutants to cope with the lethal dose of cysteine. These data are now presented in Figure 3D-F and presented in the Results section.

      Issue 15: The cysteine exposure assay was performed by incubating nematodes overnight in liquid M9 media containing OP50 culture. The liquid culture approach adds two complications: (1) the worms are arguably starving or at least undernourished compared to animals grown on NGM plates, and (2) the worms are probably mildly hypoxic in the liquid cultures, which complicates the interpretation.

      Response 15: We agree that it is possible that animals growing overnight in liquid culture are undernourished and mildly hypoxic. However, we are confident in our data interpretation as all our experiments are appropriately controlled. Meaning, control and experimental groups were all grown under the same liquid culture conditions. Thus, these animals would all experience the same stressors that come with liquid culture. Importantly, we never make comparisons between groups that were grown under different culture conditions (i.e. solid media vs. liquid culture).

      Issue 16: An easily addressable concern is the wording of one of the main conclusions: that cdo-1 transcription is independent of the canonical prolyl hydroxylase function of EGL-9 and is instead dependent on one of EGL-9's non-canonical, non-characterized functions. There are several points in which the wording suggests that CDO-1 toxicity is independent of EGL-9. In their defense, the authors try to avoid this by saying, "EGL-9 PHD," to indicate that it is the prolyl hydroxylase function of EGL-9 that is not required for CDO-1 toxicity. However, this becomes confusing because much of the field uses PHD and EGL-9/EGLN as interchangeable protein names. The authors need to be clear about when they are describing the prolyl hydroxylase activity of EGL-9 rather than other (hypothesized) activities of EGL-9 that are independent of the prolyl hydroxylase activity.

      Response 16: We appreciate the reviewer alerting us to this practice within the field. To avoid confusion, we have removed the “PHD” abbreviation from our manuscript and explicitly referred to the “prolyl hydroxylase domain” where relevant.

      Issue 17: The authors state in the text, "the egl-9; suox-1 double mutants are extremely sick and slow growing." We appreciate that their "health" assay, based on the exhaustion of food from the plate, is qualitative. We also appreciate that it is a functional measure of many factors that contribute to how fast a population of worms can grow, reproduce, and consume that lawn of food. However, unless they do a lifespan assay and/or measure developmental timing and specifically determine that the double mutant animals themselves are developing and/or growing more slowly, we do not think it is appropriate to use the words "slow growing" to describe the population. As they point out, the rate of consumption of food on the plate in their health assay is determined by a multitude and indeed a confluence of factors; the growth rate is one specific one that is commonly measured and has an established meaning.

      Response 17: We see how the phrase ‘slow growing’ might imply a phenotype that we have not actually assessed with this assay. Therefore, we have removed all claims about “slow growth” of the strains presented in Table 1 and have highlighted the assay more overtly in the results section. For example; “While egl-9(-) and suox-1(gk738847) single mutant animals are healthy under standard culture conditions, the egl-9(-); suox1(gk738847) double mutant animals are extremely sick and require significantly more days to exhaust their E. coli food source under standard culture conditions (Table 1).”

      Reviewer #1 (Recommendations For The Authors):

      Issue 18: Relevance could be addressed further in the text.

      Response 18: We have added additional context for our work in the Discussion section. Please see our response to Issues #5, 6, 12, and 24.

      Issue 19: Better appreciation and integration of the manuscript's findings with published studies would be appropriate.

      Response 19: We have added additional context for our work in the Discussion section. Please see our response to Issues #5, 6, 12, and 24.

      Issue 20: It might be perhaps relevant to test whether cdo-1 is relevant for hypoxia resistance since it appears to be a key target for hif-1.

      Response 20: We agree that this is an interesting future direction, however given that cdo-1 mRNA is not induced by hypoxia (Shen et al. 2005) we have not prioritized these experiments for the current manuscript.

      Issue 21: "egl-9 inhibits cdo-1 transcription in a prolyl-hydroxylase and VHL-1-independent manner" should be tempered. vhl-1 mutants and egl-9 hydroxylase point mutant still have significant induction of the reporter.

      Response 21: Thank you for identifying this oversight. We have modified the Figure 5 legend title to read, “egl9 inhibits cdo-1 transcription in a largely prolyl-hydroxylase and VHL-1-independent manner.”

      Issue 22: Please use line numbers in the future for easier tracking of comments.

      Response 22: We shall.

      Issue 23: Abstract and elsewhere, "high cysteine activates...", should be rephrased to "high levels of cysteine".

      Response 23: We have made this change throughout the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      Issue 24: The authors discuss CDO1 in the context of tumorigenesis, as well as the potential regulation between cysteine and the hypoxia response pathway. Thus, I was surprised that there was no mention of the foundational Bill Kaelin paper (Briggs et al 2016) showing how the accumulation of cysteine is related to tumorigenesis, and that cysteine is a direct activator of EglN1. Puzzling that CDO1 is a tumor suppressor: you lose it, cysteine can accumulate and activate EglN1, causing HIF1 turnover. How do the authors reconcile their results with this paper? I was also surprised that there was no mention in the Discussion of the role of hydrogen sulfide, cysteine metabolism, and CTH and CBS in oxygen sensation in the carotid body given the role they play there. Seems important to discuss this issue.

      Response 24: We have added new sections to our Discussion that consider the relationship between our work and Briggs et al. 2016 as well as mentioned the role of CTH and H2S in the mammalian carotid body.

      Issue 25: The abstract has a variety of contradictory statements. For example, the authors state that "HIF-1mediated induction of cdo-1 functions largely independent of EGL-9," but then go on to conclude in the final sentence that cysteine stimulates H2S production, which then activates EGL-9 signaling, which then increases HIF-1-mediated transcription of cdo-1. A quick reading of the abstract leaves the reader uncertain whether EGL-9 is or is not involved in this regulation of cdo-1 expression. In addition, the conclusion sentence implies that activation of the EGL-9 pathway increases HIF-1-mediated transcription, yet it is well established that EGL-9 is an inhibitor of HIF-1. The abstract fails to deliver a clear summary of the paper's conclusions. Perhaps consider this alternative (changes in capital letters):

      The amino acid cysteine is critical for many aspects of life, yet excess cysteine is toxic. Therefore, animals require pathways to maintain cysteine homeostasis. In mammals, high cysteine activates cysteine dioxygenase, a key enzyme in cysteine catabolism. The mechanism by which cysteine dioxygenase is regulated remains largely unknown. We discovered that C. elegans cysteine dioxygenase (cdo-1) is transcriptionally activated by high cysteine and the hypoxia inducible transcription factor (hif-1). hif-1- dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is sufficient to drive sulfur amino acid metabolism. EGL-9 and HIF-1 are core members of the cellular hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 IS largely independent of EGL-9 prolyl hydroxylASE ACTIVITY and the von Hippel-Lindau E3 ubiquitin ligase. We propose that the REGULATION OF cdo-1 BY HIF-1 reveals a negative feedback loop for maintaining cysteine homeostasis. High cysteine stimulates the production of an H2S signal. H2S then ACTS THROUGH the rhy-1/cysl-1/egl-9 signaling pathway DISTINCTLY FROM THEIR ROLE IN HYPOXIA RESPONSE TO INCREASE HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.

      Response 25: We agree that the abstract could be clearer. We believe this concern stems from the fact that we did not discuss our initial screen in the abstract. Thus, we failed to establish a role for egl-9 in the regulation of cdo-1. To remedy this, we have modified the abstract as suggested by the reviewer and added additional context. We believe that these changes improve the clarity of the Abstract substantially.

      Issue 26: An easily addressable concern involves the "dark" microscopy controls showing lack of fluorescence from a nematode. In these dark negative control micrographs, the authors should draw dotted outlines around where the worms are or include a brightfield image next to the fluorescence image. On a computer screen, it is in fact possible to make out the worms. Yet, when printed out, the reader must assume there are worms in the dark images. Additionally, we realize that adjusting fluorescence so that wild-type CDO-1 expression can be seen will result in oversaturation of the egl-9 and rhy-1; cdo-1 doubles; however, this would be a useful figure to add into the supplement to both provide a normal reference of CDO-1 low-level expression and a demonstration of just how bright it is in the mutant backgrounds. It would also be useful for you to please report your exposure settings for purposes of reproducibility.

      Response 26: As suggested, we have added dotted lines around the location of the C. elegans animals in all images where GFP expression is low or basal. We have also reported the exposure times for each image in the appropriate figure legends.

      Issue 27: This title is quite generic and doesn't even mention the main players (CDO-1 and sulfite metabolism).

      Response 27: We have updated our title to call attention to cysteine dioxygenase. The improved title is: “Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans”

      Issue 28: The authors mention two disorders in which CDO-1 plays a pathogenic role: MoCD and ISOD. We recommend switching the order in which the authors mention these, as the remainder of the paragraph is about MoCD. Also, they should write out the number "2" in the first sentence of that paragraph.

      Response 28: We have made the suggested changes.

      Issue 29: The authors state in the main text, "...to ubiquitinate HIF-1, targeting it for degradation by the proteosome." Here, they should refer to the pathway in Figure 5a.

      Response 29: We have made the suggested change.

      Issue 30: The authors state in the main text, "Elements of the HIF-1 pathway have emerged..." which is vague and confusingly worded. Change to, "Members of the HIF-1 pathway and its targets have emerged from C. elegans genetic studies."

      Response 30: We have made the suggested change.

      Issue 31: Clarify in the figure legends that supplemental cysteine did not affect the mortality of worms that were imaged.

      Response 31: We have added this note to Figure 3A and Figure S3A.

      Issue 32: Figure 1b. "the cdo-1 promoter is shown..." Add: "as a straight line" to the end of this phrase.

      Response 32: We have made the suggested change.

      Issue 33: The authors should consider changing the red text in Figure 1 to magenta, which tends to be more readable for people who have limited color vision.

      Response 33: We have adjusted the colors in Figure 1 as suggested.

      Issue 34: Figure 2, legend title. Consider changing "hif-1" to "HIF-1," as well as rhy-1, cysl-1, and egl-9. In this case, they are talking about proteins, not mutants or genes. This will make the paper easier to follow for readers who lack a C. elegans background.

      Response 34: We have made the suggested change.

      Issue 35: Figure 5, caption text. "...indicates weak similarity." Add, "amongst species compared."

      Response 35: We have made the suggested change.

      Issue 36: It is starting to become a standard for showing the datapoints in bar graphs. Although this is done in many graphs in the paper, it should also be done for Figure S1 and Figure 4C.

      Response 36: We have made the suggested change.

      Issue 37: An extensive ChIP-seq and RNA-seq analysis of C. elegans HIF-1 was recently published (Vora et al, 2022), which the authors should reference in support of the regulation of CDO-1 transcription by HIF-1 in their description of published expression studies of the pathway (Results section, page 4). Indeed, Vora et al were key generators of the ChIP-seq data cited in Warnhoff et al but not included as authors in the ModERN/ModENCODE publication: their contributions were published separately in Vora et al and should be acknowledged equivalently.

      Response 37: We appreciate the reviewer pointing this detail out and we have added the correct citation as indicated.

    1. Let's face it: most of us were taught in classrooms where styles of teachings reflected the hotion of a single norm of thought and experience, which we were encouraged to believe was universal. This has been just as true for nonwhite teachers as for white teachers. Most of us learned to teach emulating this model.

      This statement accept a common educational way, which is the education style have been think as a single norm of thought. From past to now. this style have been exist for a long time, and people may potentially think that education should be that kind of style. This would lead people feel concerns about possible limitations and lack of diversity in educational practice. Also, it implies that we should apply a way with more diversities.

  6. docdrop.org docdrop.org
    1. We know that disproportionate numbers of poor children are far more likely to be identified as less academically adept or even as having special needs. The early tracking and labeling of children reared in poverty is cumulative and devastating. It not only hampers students' self-esteem and cripples their own expectations of themselves but also, as Rist (1970/2000) discovered, becomes a self-fulfilling prophecy for what too often becomes a trajectory of underachievement.

      I think this statement shows how bad the potential discrimination is. Just like what the author mentions, people may potentially think that poor children are not good at study. This would cause the children to hate studying in some degree and they would have low expectations of them. Therefore, it shows that correcting people's thinking is very important to achieve education equality. At the same time. the statement shows that the economic inequality is a worse problem need to be solved from side.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Some suggestions:

      1) It's obviously concerning that your GWAS results are not at all robust to the approach used (Fig S3). Did you try something non-parametric, like a Kruskal-Wallis test?

      We used both GWAS and crosses (F2) to validate the presence of the QTL. So ,evidence is not only brought by GWAS. We did not use non parametric tests as we will have difficulty to account for population structure/relatedness with such approaches. Our GWAS approach is certainly a little underpowered associated with the number of individuals we used and certainly the polygenic nature of the root growth traits. But F2 crosses allow us to put more evidence weight on some region we identified with GWAS.

      2) You don't explain what you do with heterozygotes, nor discuss the level of inbreeding in general.

      We are dealing with inbred lines, but indeed there are not completely fixed inbred lines. For the remaining heterozygotes, they were randomly fixed in one or the other alleles. The median heterozygosity value was low at 5.6%. We clarified this point in the material and methods.

      3) The finding that over 30% of RNA-seq reads don't seem to have an annotated home should give you pause. Do they map anywhere? At least discuss what is going on. Also, note that you likely have enormous errors in SNP-calling due to cryptic structural variation - think about what this might do?

      We agree with reviewer #1. We added a few sentences in the result section to clarify this point: “When further analyzed, 15.15% of the unmapped reads (with no correspondence to predicted CDS) were found not to match the reference genome. These might correspond either to unsequenced regions or to genotype-specific genomic regions that are not present in the reference line. The remaining unmapped reads corresponded to either rRNA and tRNA genes (40.28% of the unmapped reads) or to non-annotated genes or non-coding RNAs (44.57% of the unmapped reads).” As we used the same reference genome for mapping the RNAseq reads, some genes might not being present in our analysis for the two lines we studied.

      4) Did you consider moving PgGRXC9 into Arabidopsis?

      This is a great suggestion. In fact, we plan to explore more how some GRXs regulate root growth and how this is conserved in plants in a follow up project. This is however beyond the scope of this manuscript.

      Minor suggestions:

      1) Why not calculate H^2 simply as line variance divided by total?

      Heritability estimated on single individuals in population, approaches generally used for human and animal breeding led directly to line variance divided by total phenotypic variance.

      But in plant breeding (or plant science), we generally work on replicated genotypes in different blocks/experimental repetition. So we estimate the heritability of the mean phenotype of genotypes. There is ample literature (Nyquist, 1991; Holland et al. 2003; for a very nice and smartly written explanation, on the introduction of this PhD: http://opus.uni-hohenheim.de/volltexte/2020/1720/pdf/20200221_PhD_Thesis_Publikationsversion.pdf). Calculation of heritability (of the mean phenotype) should take into account for the calculation of the phenotypic variance (denominator) the number of replicate genotypes (we do not have a single plant, but several clones when using inbred lines: n). The meaning of the formula is that the error in the model is inflated because we have n replicate plants per genotype. And so to estimate the heritability of the average genotype, we have to take into account this inflated variance in the errors.

      2) While the paper overall is well-written, the captions need further proof-reading.

      We corrected all the captions.

      Reviewer #2 (Recommendations For The Authors):

      Major suggestions:

      1) The experimental support for the mutant phenotype of roxy19 needs to be further substantiated. Current methods available for CRISPR mutagenesis make it relatively easy to generate additional alleles. Alternatively, the authors could complement the mutant with a wild-type copy of the gene. These approaches represent the standard of the field and should be used here as well.

      We agree with rev #2. We added some sentences in the discussion to stress out the limitations of our study to link the QTL to PgGRXC9.

      As stated above we’d like to explore more how some GRXs regulate root growth and how this is conserved in plants. We plan to generate new single and multiple mutants in ROXY19 and its closest homologues (using CRISPR). This is, however, beyond this manuscript.

      2) The authors may want to state more clearly what the hypothesis is for how redox levels might contribute to root length differences and more clearly state what the limits of their current study are.

      We modified the discussion to try to clearly indicate the limitations of our study.

      3) Differences in root growth can be the consequence of a number of different parameters that contribute to root elongation and the authors need to more clearly define which of these are likely affected in their different genotypes.

      We agree with Reviewer #2. However, as stated before, we plan to further explore the molecular and cellular mechanisms responsible for the phenotype we observe in Arabidopsis. This will need extra work and is beyond the scope of this manuscript.

      4) Page 13, first paragraph. The authors provide an overly strong statement that suggests they have determined the molecular basis for the difference in PgGRXC9: " Altogether, our results suggest that PgGRXC9 is a positive regulator of root growth and that a polymorphism in the promoter region of PgGRXC9 associated with changes in its expression level appeared responsible for a quantitative difference in root growth between the two lines."

      While their results suggest the PgGRXC9 locus is associated with root growth variation, they have not directly tested the effect of the polymorphisms in the promoter on gene expression and this statement needs to be weakened.

      We changed the text to: “Altogether, our results suggest that PgGRXC9 is a positive regulator of root growth and that a polymorphism in the promoter region of PgGRXC9 might led to changes in its expression level and ultimately to a quantitative difference in root growth between the two lines. However, the effect of the polymorphisms in the promoter on gene expression need to be tested to validate this hypothesis.”

      We also changed the title of the manuscript to better reflect our results.

      Minor suggestions:

      1) Page 4: "FTSW below 0.3 was considered a stressful condition." It was not specified how this threshold was determined.

      This value corresponds to the measured FTSW value at which pearl millet genotypes subjected to a dry down generally start to reduce their transpiration rate (see Fig. 1 of Kholová et al, 2010; https://doi.org/10.1093/jxb/erp314). At FTSW values above 0.3, transpiration is not affected. At FTSW values around 0.3, the water supply from pearl millet roots cannot fully support transpiration. The plant enters a drought stress responsive phase and progressively closes its stomata to reduce water losses and decrease plant productive functions to match water supply. We have clarified this in the manuscript.

      2) Page 6: Figure 1; footnote: at the end of the description of panel A, a comma is missing between "red" and "blue."

      Thanks for pointing that out. This was corrected.

      3) The root growth data determined by X-ray imaging is not significant (Fig S4B), yet the authors describe the result in the main text without qualification. The authors should clarify this in the text.

      We added some text to clarify this.

      4) Page 9: Figure 2C; It would be better to enlarge these images and annotate them to indicate what specific anatomical features have been measured. Currently, only an expert in the field would be able to interpret these images.

      While we understand the point made by Reviewer #2, Fig2C was meant to illustrate differences in the root tip of the two lines.

      5) Page 9: Figures 2D and E; the number of biological samples measured is not indicated (what is "n"?).

      Thanks again for pointing this out. This was added to the figure legend.

      6) Page 14: Figure 4B; scale bar needs to be included.

      Scale bars were added to the pictures.

      7) Page 14: Figure 4; I recommend adding confocal images or DIC of cleared root apex tissues to easily compare the RAM size and cell lengths in both WT and roxy19 mutant.

      Once again, we plan to have a follow up study on the molecular and cellular mechanisms of action of ROXY19 and its closest homologues on root development. We believe a thorough analysis of differences in phenotype could be illustrated in a future manuscript.

      8) Page 18: main text; "we propose that redox regulation in the root meristem is responsible for a root growth QTL in pearl millet." This statement is ambiguous in the description of the mechanism. The authors do not clarify if the role they propose for PgGRXC9 is in the meristematic or elongation zone. Likely the authors are not able to know precisely where the gene is acting at this point, and so the presented hypothesis needs to more clearly state what limitations there are in assigning a mode of action for the PgGRXC9 and ROXY19 genes in root growth.

      We rewrote this paragraph to clarify the current gap in our understanding of the putative PgGRXC9 function.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      REVIEWER #1:

      The authors identify ZMYND8 as a bromodomain protein: is there evidence the actions described in this paper involve interaction of ZMYND8 with acetylated lysines? Does this mechanism play a role in ZMYND8's transcriptional regulatory activities?

      ZMYND8 is recruited to chromatin via its Bromo, PHD, and PWWP domains which recognize H3K4me1 and/or H3K14ac marks. Methyl marks on H3K4 are regulated by several lysine methyltransferases (e.g., MLL family and SETD1A/B) and demethylases (e.g., KDM5A-D) while H3K14ac is regulated by GCN5/PCAF, p300/CBP and/or Myst3. ZMYND8 also recruits histone deacetylases to chromatin including members of the highly conserved Nucleosome Remodeling and Deacetylase (NuRD) complex, HDAC1 and HDAC2. NuRD primarily deacetylates H3K27ac marks, however it is possible other acetyl moieties are affected by this complex.

      Using ChIP-seq, we now show that Zmynd8-cKO cardiomyocytes retain H3K27ac marks at misexpressed genes. Interestingly, while some of these genes have altered H3K27ac at their promoters (and therefore have full-length misexpressed transcripts; i.e., Casq1, Cdh16) other genes (e.g., Lamb3, Chst3) show changes in H3K27ac in the middle of the gene and this tracks with gene expression changes. We interpret this unusual transcript and H3K27ac pattern as evidence of potential ZMYND8-regulated intragenic enhancer elements. We include the following in our resubmission:

      1. Figure 5 which shows changes in H3K27ac levels at different genes, showing examples of genome browser tracks at the following genes Casq1, Cdh16, Camk1g, and Chst3.
      2. Supplemental Figure S5 showing H3K27ac and H3K27me3 marks at the cardiac myosin locus (i.e., Myh6 and Myh7) and surrounding genes in control and Zmynd8-cKO * We also show retention of H3K27ac at the Zmynd8 gene in Zmynd8-cKO cardiomyocytes, again supporting an autoregulatory mechanism of Zmynd8 *expression.
      3. An additional section in Results titled “H3K27 acetylation marks are retained at specific loci in Zmynd8-cKO cardiomyocytes”
      4. New “ChIP-seq and Analysis” section in Materials and Methods
      5. An updated model in Figure 6 that includes ZMYND8’s activities in modulating H3K27ac levels This first analysis on H3K27ac and H3K27me3 deposition in Zmynd8-cKO cardiomyocytes is not comprehensive and genome-wide analysis on these datasets will ultimately be performed in combination with additional datasets including ZMYND8 ChIP-seq from isolated cardiomyocytes. However, given the pertinence to ZMYND8’s transcriptional activities and in response to this reviewer’s critique, we include this pertinent H3K27ac and H3K27me3 ChIP-seq data.

      Given the newness of this model and multiple isoform issues, the authors should show the entire gel for the westerns in SFigure 1C.

      We now show the entire blots for all western blots in Supplementary Figure 1.

      Nuclear staining is in SFigure 1E (typo in text): most of the staining in the control is non-myocyte and non-nuclear, making the statement about IHC showing depletion less convincing for Nkx lines.

      We have fixed the typo in the text on page 5 line 128 and now correctly refer to this figure as Supplemental Figure S2. To better visualize nuclear ZMYND8 staining in this figure, we now show an adjusted image with increased contrast and brightness settings on both control and Zmynd8-cKO images and added arrowheads to indicate nuclei in the isolated cardiomyocytes. We also note that the flox sites only span the nuclear localization sequence for the protein so cytoplasmic ZMYND8 may still be present in Zmynd8-cKO cells.

      Regarding perinuclear ZMYND8 staining: am I accurate in observing the perinuclear staining is still present in the KO? What do the authors make of this?

      We do not observe perinuclear staining of ZMYND8 in KO cells. In Figure 1C, we believe the reviewer is observing potential staining in the cytoplasm, not perinuclear staining of ZMYND8 that we see in the control Myh6-CreTg/0 cardiomyocytes. We have added yellow arrowheads in Figure 1C to delineate perinuclear ZMYND8 staining we describe in the text.

      What is the protein amount in the Zmynd8fl/+ mice? Do the hearts upregulate the protein to compensate?

      We have added a gel in Supplemental Figure 1 that now shows protein isolated from Myh6-CreTg/0; Zmynd8fl/+ hearts and Myh6-CreTg/0 controls (Supplemental Figure 1C, right gel). It does not appear that Myh6-CreTg/0; Zmynd8fl/+ cardiomyocytes upregulate ZMYND8 to compensate for loss of one allele, as determined by Western blotting. However, our analysis shows differing ratios of the detected bands between conditional heterozygous mice, underscoring the need to further study the different ZMYND8 species present in cardiomyocytes. We state this in the results section (page 5, lines 123-124).

      Do the individual cardiomyocytes hypertrophy in the Zymnd8 cKO mice? Do they proliferate?

      Our analysis of cardiomyocyte morphology does reveal hypertrophy. The results we report include a new observation of variation in cell shape and are likely at least as sensitive as WGA staining which we find to be confounded by sectioning artifacts, cell identity, and position of the sections in the heart. We do not observe changes in H3S10ph staining between wild type and knockout hearts (data not shown) however we acknowledge further analysis of this may be warranted via other cell proliferation markers.

      Regarding this statement: "These results show that ZMYND8 is necessary to prevent the onset of contractile dysfunction that leads to heart failure and death." I think what the authors showed is that loss of ZMYND8 causes contractile dysfunction, heart failure and death.

      We acknowledge the difference in these statements and have now changed the text on page 7, lines 160-162 to “…these results show that loss of ZMYND8 from cardiomyocytes leads to contractile dysfunction, heart failure, and death.”

      The switch like up regulation of skeletal muscle genes is an interesting observation. Do the authors have any evidence how this works? Other studies with EZH2 are mentioned, and if ZYMND8 is in fact acting as a bromodomain, the mechanism might involve regulation of enhancer methylation/acetylation at K27. This is testable, certainly at the target genes the investigators have identified (Casq1 and Tnni2), by ChIP-PCR.

      As described above, we now include ChIP-seq data of H3K27ac and H3K27me3 marks in control and Zmynd8-cKO cardiomyocytes. As the reviewer suggests, there is retention of H3K27Ac marks in cKO cardiomyocytes, suggesting that ZMYND8 is necessary to recruit histone deacetylases to specific loci to remove acetyl moieties from H3K27. Regarding specific skeletal muscle genes, we do find a difference in histone acetylation at the promoter of the Casq1 gene and show this in Figure 5.

      The model in Figure 4C makes sense, but the authors do not present any data to support this molecular mechanism. If the authors ChIP for localization of TFs in KO vs control and/or examine histone marks, they could build support for this model, particularly since they have already identified target genes.

      We have now updated our model in Figure 6 to include ZMYND8’s role in modulating H3K27ac levels at target loci, leading to upregulation of mRNA transcripts. We add consideration of the implications of this in the Discussion.

      Reviewer #1 (Significance (Required)):

      The authors identify ZMYND8 as a bromodomain protein: is there evidence the actions described in this paper involve interaction of ZMYND8 with acetylated lysines? Does this mechanism play a role in ZMYND8's transcriptional regulatory activities? We include new data to demonstrate this. Please see above.

      REVIEWER #2:

      The study is reporting the role of ZMYND8 chromatin factor in the mouse heart. Mutations have been previously identified in genetic studies of atrioventricular septal defects and syndromic congenital cardiac abnormalities. Therefore the authors perform cardiomyocyte specific knockout of exon 4 (with the nuclear localisation signal) using Myh6 and Nkx2.5 cre. Full length protein seems to be removed from the nucleus. The knockout doesn't seem to affect embryonic development, but leads to hypertrophy and premature death. The authors perform transcriptome analysis and find 55 upregulated and 4 downregulated genes that are mainly related to contraction and ion transport. especially they find skeletal muscle proteins including fast-twitch troponin I upregulated. Tnni2 seems to be integrated into the sarcomeres, albeit the antibody staining is not in the expected location (see below). Shape of cardiomyocytes was apparently different, although this is seemingly not related to Tnni2 expression.

      Specific points: - ZMYND8 has been previously linked to atrioventricular septal defects, but the authors do not explore if this is the case also in their model; could the authors please expand

      We have not seen obvious septal defects in any Zmynd8-cKO mice. We now state this explicitly in the Results section on page 7, lines 159-160 and discuss this discrepancy from the observations in humans in our Discussion on page 12. The human study analyzing families carrying Zmynd8 mutations reported a variety of heart malformations in 7 of the 11 individuals. The septal defects observed in these individuals were not consistent and may be incidental to the molecular function of ZMYND8 within cardiomyocytes. One possibility is that these malformations are caused by stress during development, with Zmynd8 mutations sensitizing the heart to these defects. We acknowledge in the discussion that further analyses of septal defects in this knockout model could be useful in the future with more stringent stereoscopic techniques.

      • the initial section is difficult to follow. Especially, the authors seem surprised regarding the size of the bands. They should make clear what the expected band size should be after removal of exon 4 and if this doesn't fit, explore the reasons experimentally if possible.

      Rigorous analyses of the different Zmynd8 isoforms in cardiomyocytes will be a focus of future work as this may explain the mosaicism seen in cKO cardiomyocytes and the discrepancy between TNNI2 expression and cell shape (see below). We have reorganized the section and discuss potential explanations for our observed band sizes.

      • the authors explore the shape of the cardiomyocytes and find cells that are shorter and thicker. It would be meaningful to include other metrics including, sarcomere length, contractility measurements and calcium transients (especially in light of the change ion transporters).

      We agree that an investigation of the effects of the mutation and the skeletal muscle proteins on cellular contractility could be very interesting. Here we have contented ourselves with evaluating the effects at a physiological level through assessment of cardiac function.

      • it is unclear why Tnni2 stains for the M-band (where in fact should be no actin and troponin) and not a typical double band with the H zone excluded (see here for good staining example: https://www.biorxiv.org/content/10.1101/2020.09.09.288977v1.full.pdf). also the staining looks very fuzzy. can the authors provide evidence that the antibody is staining troponin I in skeletal muscle at the correct localisation to demonstrate the specificity of the antibody?

      We thank the reviewer for raising this point and do agree that there are instances where we observe TNNI2 staining colocalizing with MYOM1 staining. After closer examination of our images, we believe we do also see TNNI2 staining between M-lines and attribute this discrepancy to our antibody staining and/or biological differences between cells however, further analysis with better microscopy and immunostaining techniques is warranted. We have added an additional image to Figure 4A and have modified this results section on page 9, lines 217-222.

      • it is interesting why Tnni2 is detectable only in a subfraction of cells, but this remains unexplored. Could this e.g. be right vs left ventricular cardiomyocytes? or is this related to the remaining isoforms of ZMYND8? The authors should try to identify the source of this variability

      We agree that the TNNI2 mosaicism is an interesting phenotype and thank the reviewer for possible explanations. We favor the model of mosaicism being an effect of compensatory mechanisms by other ZMYND8 isoforms and discuss this in the discussion on page 8, line 228-229. This will be a focus of future work.

      • if Tnni2 is unrelated to the changes in hypertrophic phenotype of the cardiomyocytes, then the authors should aim to identify if one of the other differentially regulated proteins might be related (e.g. ion transporter). The experiments above might help to identify this

      We agree that identifying the causal agents of hypertrophy in this model would be interesting. It is however possible that we are simply seeing the expected effect of reduced contractility leading to hypertrophic compensation. Sorting this out will require additional mutant analyses and/or siRNA experiments all of which come with their own caveats and are outside of the scope of this initial analysis. Our aim for this manuscript was to report on the effects of ZMYND8 removal from cardiomyocytes. Additionally, it is certainly possible that phenotypes we report in this article are independent of the gene expression changes we have detected in the mutant and could be caused by other roles for ZMYND8 such as the DNA damage response. We include this possibility in our discussion.

      Reviewer #2 (Significance (Required)):

      Overall the manuscript is interesting in principle - it documents the role of a disease linked protein that hasn't been explored in the heart in detail, however at this point it seems premature and doesn't follow through on a solid detailed analysis.

      The change in transcription profiles and especially the upregulation of skeletal muscle isoforms is intriguing, but should be further explored. There seems a lack of hypothesis and instead the authors analyse Tnni2 and cell shape, but while the cell shape is different they don't find a correlation with Tnni2. so if the authors suggest that cell shape is important (as indeed might be), how is this regulated?

      Our goal for this initial paper is to describe the physiological and molecular phenotypes of the Zmynd8-cKO mouse model. It would be interesting to pursue a study directed at this question, perhaps of cell sorted "fat" and "thin" myocytes, but that would be beyond the scope of this report.

      The study could be of interest to cardiovascular researchers, but needs to be expanded on the points above.

      My expertise is in cardiovascular research

      REVIEWER #3:

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate). Please place your comments about significance in section 2.

      The authors found that Zmynd8-cKO mice develop dilated hearts, decreased cardiac function, and illegitimate expression of skeletal muscle genes. They concluded that ZMYND8 is necessary to maintain appropriate cardiomyocyte gene expression and cardiac function.

      Major comments:

      • Are the claims and the conclusions supported by the data or do they require additional experiments or analyses to support them? The claim that "Zmynd8 is dispensable for cardiac development" is not supported by the lethality of Zmynd8 D/D mice.

      We interpret our observation that viable Nkx2.5-CreTg/0; Zmynd8fl/fl mice are born and grow to adulthood as evidence that Zmynd8 is not necessary for establishment of the cardiac lineage. However, we do agree that labeling Zmynd8 as dispensable is not supported by the experiments using Zmynd8D/D mice. We hypothesize that the lethality of the Zmynd8D/D mice is due to early embryonic events since empty egg sacs were observed at E8.0, however we do agree that ZMYND8’s role in cardiac development cannot be assessed using this line. We state that empty yolk sacs are found in mother uteri 8 days after mating on page 4, lines 94-96.

      • Please request additional experiments only if they are essential for the conclusions. Alternatively, ask the authors to qualify their claims as preliminary or speculative, or to remove them altogether. The claim should be changed into "function of Zmynd8 in cardiac development can not be fully assessed in Zmynd8 D/D mice".

      We agree that the lethality of Zmynd8D/D * mice prevents any analysis of early embryonic roles for the establishment of the cardiac lineage. This is additionally confounded by the fact that other partial-length isoforms of Zmynd8* may still be present in our knockout model. We have modified our interpretation and have further discussed the potential role of ZMYND8 in early cardiac development on page 4, line 96.

      • If you have constructive further reaching suggestions that could significantly improve the study but would open new lines of investigations, please label them as "OPTIONAL". OPTIONAL: What about the phenotype of Nkx2-5 Cre mediated knockout of Zmynd8? Is it more severe than Myh6 Cre mediated knockout? At more earlier embryonic stage when cardiomyocytes are differentiated, are the skeletal muscle developmental genes ectopically upregulated in heart tube?

      This is an interesting observation and deserves further investigation. Our initial analysis of Nkx2.5-CreTg/0; Zmynd8fl/fl mice reveals that these mice do not die earlier than Myh6-CreTg/0; Zmynd8fl/fl mice or have a more severe phenotype. In fact, mice with Nkx2.5-Cre mediated cKO mice live longer than Myh6-Cre mediated cKO mice. We show that these mice do have ZMYND8 depleted from their cardiomyocyte nuclei and ectopically express TNNI2.

      This discrepancy in phenotype has been observed recently in mice lacking Kdm8 (Ahmed et al, 2023) and has been attributed to a lower efficiency of the Nkx2.5-Cre recombinase compared to Myh6-driven Cre.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated time investment for substantial experiments. Yes.

      • Are the data and the methods presented in such a way that they can be reproduced? Yes.

      • Are the experiments adequately replicated and statistical analysis adequate? Yes.

      Minor comments:

      • Specific experimental issues that are easily addressable. Have the female Zmynd8-cKO mice always died before their male siblings been pregnant with heart overload?

      All lifespan data are of non-pregnant females. All mice (i.e., both males and females) used in these analyses were not used for mating. We now explicitly say this in the mouse husbandry section of our Materials and Methods section.

      • Are prior studies referenced appropriately?

      This paper "De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations" should be referenced.

      Thank you. We have referenced this paper (Dias et al. 2022) on page 3, line 61 as well as in the Discussion on page 9, line 211.

      • Are the text and figures clear and accurate? Description of "cardiomegaly, preventing a compact myocardium phenotype, heart enlargement and thinning of the ventricular" should be more accurate and professional. We have changed the following in the text:

      Page 6, line 150 “preventing a compact myocardium phenotype” to “during later stages of cardiac development” on

      Page 6, line 153 “heart enlargement” to “The heart weight of Zmynd8-cKO mice”

      Page 7, line 158 “thinning of the ventricular” to “dilated cardiomyopathy”

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions? GSEA analysis of RNA-seq can be used to show the enrichment of cardiac and skeletal genes.

      Because GSEA analysis requires at least three replicates per group to have the appropriate statistical power, we opted to show Gene Ontology analysis using DAVID software.

      Reviewer #3 (Significance (Required)):

      • General assessment: provide a summary of the strengths and limitations of the study. What are the strongest and most important aspects? What aspects of the study should be improved or could be developed? This study show that Zmynd8-cKO mice develop dilated hearts, decreased cardiac function, and illegitimate expression of skeletal muscle genes. However, the genes regulated by Zmynd8 during early developmental stage have not been identified and the functional mechanism of Zmynd8 during heart development remains unclear.

      • Advance: compare the study to the closest related results in the literature or highlight results reported for the first time to your knowledge; does the study extend the knowledge in the field and in which way? Describe the nature of the advance and the resulting insights (for example: conceptual, technical, clinical, mechanistic, functional,...). Genetic mutations of Zmynd8 have been identified in congenital heart diseases with cardiac structural defects. And this study further shows that dysfunction/weaker mutations of Zmynd8 as a reason for dilated cardiomyopathy with decreased function.

      • Audience: describe the type of audience ("specialized", "broad", "basic research", "translational/clinical", etc...) that will be interested or influenced by this research; how will this research be used by others; will it be of interest beyond the specific field? This study shows that dysfunction of Zmynd8 as a reason for dilated cardiomyopathy with decreased function. Researchers of "basic research" and "clinical" may be interested in this study.

      • Please define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. heart development, dilated cardiomyopathy, epigenetics

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors report a novel and simple method to analyze the heterogeneity of various organelles. After imaging a large set of fluorescent-marker-labeled organelles, cluster analysis is adapted for illuminating the dynamics of organelles. Through this novel method, the authors are able to report organelle contact, which previously can only be observed by super-resolution imaging. This is method could significantly accelerate future discoveries at the cellular level. The manuscript is well written and has the potential be published in high-ranking journals, after a minor revision.

      To further demonstrate the unique power of this new method, the authors should test cells under known stimulation altering the dynamics of organelles. For instance, wortmannin can blocks the conversion from early endosomes to late endosomes. By doing that, the potential of this new method will be endorsed.

      Response:

      We thank Reviewer #1 for the positive comments. We will add an experiment using wortmannin to block the process of endocytosis at a specific stage, as part of the experiments analyzing the process of endocytosis.

      **Minor issue:** The authors should include more details about how to avoid signal crosstalk between adjacent fluorescent channels.

      Response:

      In the Methods section, we have added the following sentences to Lines 398-405.

      “In order to avoid signal crosstalk between adjacent fluorescence channels, eight fluorophores with distinct spectral distances were selected, and the samples were irradiated sequentially with lasers in the order from the longest wavelength, i.e., fluorescence from 646 to 731 nm was excited by a 640 nm laser, fluorescence from 569 to 634 nm was excited by a 561 nm laser, fluorescence from 494 to 554 nm was excited by a 488 nm laser, and fluorescence from 411 to 481 nm was excited by a 405 nm laser, as shown in Extended Data Fig. 1b.”

      Reviewer #1 (Significance (Required)):

      The comprehensive monitoring of organelle dynamics through the integration of multi-dimensional parameters can proficiently evaluate the condition and prognosticate the destiny of living cells in response to external stimulations. This new multi-dimensional assay reported in this manuscript represents a huge step towards this goal. Since this new method is simple and powerful, cell biologists will quickly start to use this new method for the study of subcellular dynamics.

      My lab is also developing a similar approach for organelles based on super-resolution imaging. I would like to congratulate the authors for this beautiful work.

      Response:

      We thank Reviewer #1 for the positive comment.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript reports a multi-parametric particle-based method for analysis of organelles. The method aims to resolve heterogeneous populations of organelles involved in various cellular processes. They propose to isolate organelles labelled with multiple markers, after homogenization and sonification of the cells, and analyse the resulting particles by fluorescence microscopy using spectral imaging. Afterwards, the authors visualize and analyse the obtained data with dimension reduction techniques.

      Even though an interesting approach, the method and presented applications needs major improvisations before it can prove to be impactful for the field

      I note some possible improvement points below:

      • Initially, I think the current set of cell lines and labels should be extended also to include a wider set. The current limited set raises the question if the method authors report is also applicable to other cell lines, or if it only feasible with overexpressed markers. Including different cell lines with different labels would make the study more convincing and comprehensive.

      Response:

      We thank Reviewer #2 for this constructive comment. Regarding cell types, we will conduct experiments with HEK293T cells in addition to HeLa cells, labeling at least five different types of typical organelles. In our method, as shown in Figure 1a and 5a, we have already used not only overexpressed markers but also fluorescently labeled ligands (EGF-Alexa, transferrin-Alexa) and antibodies against endogenous proteins (anti-PMP70, anti-LAMP1), as well as direct labeling of cell membrane proteins (Alexa-NHS). Therefore, there are no significant limitations with respect to organelle labeling methods.

      • It is surprising that the authors explicitly list already the limitations of fluorescence microscopy and super-resolution microscopy in the second paragraph of their introduction, however present a method fully dependent on fluorescence labelling and imaging methods. Actually their approach takes away the spatial information of FM approaches, and further makes the approach prone to the limitations they state.

      They are also not fully fair about the limitation they state for Electron microscopy, as newly developed approaches (e.g. doi:10.1093/micmic/ozad067.1091;  doi:10.1126/science.aay3134) widely extend the limited field of view and sampling capacity of EM. I recommend the authors to state the potential advantage/superiority of the reported method rather than stating the unclear limitations of the existing powerful methods.

      Response:

      Regarding fluorescence microscopy, it appears that our description was inadequate and misled the reviewers. There is no problem with fluorescence microscopy itself. What we intended to convey was that “when attempting to detect individual organelles ‘in cells’, there are limitations in the resolution of fluorescence microscopy because organelles are densely packed”. We have added this to the text on Line 49. Also, we thank Reviewer #2 for informing us about the high-speed 3D electron microscopy. We have cited the indicated papers in the text at Lines 54-55 and mention that “except for the recently developed high-throughput electron microscopy”.

      • Most organelle markers the isolation of organelles are based on are overexpressed in the cells: endoplasmic reticulum (ER, mTagBFP2 (BFP)-SEC61B), mitochondria (GFP-OMP25 and SNAP-OMP25), and the Golgi (Venus-GS27). This raises significant questions about the native state relevance of the reported results, and how well they represent the endogenous processes.

      Response:

      We will add experiments analyzing the behavior of both endogenous and exogenous markers for the same organelles, for example, anti-LAMP1 antibody and VAMP7-GFP for lysosomes, and anti-PMP70 antibody and PEX16-GFP for peroxisomes.

      • For the application on endosomes, can the authors state what is the new information enabled by their method? They study the very trafficking of EGF and Transferrin, 2 widely used endosomal cargoes with very well characterized trafficking steps, and show they are trafficked through Rab5/7 and Rab11 positive endosomes, respectively. This recapitulates the existing information, however falls short in delivering new insight. The authors can use these cargoes for proof-of-concept, but I would recommend to extend their study with less exploited cargoes to represent the potential of the reported method to deliver new information.

      Response:

      We thank Reviewer #2 for the positive suggestion about the potential of our method to provide new information. However, to demonstrate new biological insights, it would take a lot of time and delay the provision of our methodology, so we would like to submit this manuscript as a Methods paper with the proof-of-concept data.

      Reviewer #2 (Significance (Required)):

      The significance of biochemical and cellular processes being spatially regulated cellular organelles, and the roles of specific organelles in diseases from cancer to neurodegeneration are continuously being discovered and appreciated. Therefore development of methods reporting on the structure and function of organelles is important to accelerate these studies. In the reported method, however, the ultrastructure (as in Fib 1b) and the spatial information of the cellular organelles are inherently lost. The method falls in between a biochemical and a microscopic approach, however the advantages are not clearly portrayed. I recommend the authors to carefully and explicitly state where their method would be the method of choice rather than a biochemistry, mass spectroscopy, or microscopy approach. The authors should critically consider such an experiment as a proof-of-concept case.

      Response:

      We thank Reviewer #2 for the valuable suggestion. We added the following to the Discussion (Lines 267-277).

      “A further potential application of our method would be to measure how the levels of key molecules in an organelle change during its differentiation or maturation. For example, the levels of PI4P and syntaxin 17 change during autophagosome maturation (Shinoda et al. eLife Preprint Review doi.org/10.7554/eLife.92189.1), which can be better demonstrated by this method using multiple markers for each stage of autophagosome formation and maturation, PI4P, and syntaxin17 because autophagosomes at different stages coexist in cells. In such cases, our single-particle analysis method, which examines the state of individual autophagosomes, would be more appropriate than biochemical methods that examine averages. In addition, it is difficult to quantitatively analyze many organelle structures in cells using fluorescence microscopy. Our particle-based analysis method can overcome this problem.”

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      **Comments, suggestions, and questions**

      • I would like to start with a positive suggestion. The authors completely miss out on the opportunity to promote their approach by not relying on any type of fixation. In most multiplexing experiments, the first major challenge is to find antibodies that work well for imaging. The second challenge is then to find antibodies that work well under the same fixation conditions. The authors present a multiplexing approach that is completely independent of fixation. I suggest discussing this in the manuscript and promoting the approach in that regard.

      Response:

      We thank Reviewer #3 for pointing out the advantages of our method. We have added “Our method that is independent of fixation is advantageous for the optimization of the staining condition (Lines 298-299).

      • I am wondering what defines the ‘resolution’ of this approach. I assume it is a combination of the sonication time -the longer the cell is sonicated, the smaller the fragments are - and the density of particles on the coverslip. What are the limits here? How does this affect the UMAP analysis? I would encourage the authors to discuss this in the manuscript.

      Response:

      The particle density on a coverslip can be easily reduced by simply diluting the particles in a buffer solution. Therefore, there is no density limit, which is an advantage of a cell-free system. To improve the resolution within a single organelle, for example, to separate distinct subdomains, as the reviewer mentioned, we can prolong the sonication time to make the particles smaller. However, since this will reduce the signal-to-background ratio and destroy organelle contacts, we used the sonication conditions as mild as possible. To investigate organelle subdomains and fragile contacts, the sonication conditions need to be optimized carefully, which should affect the UMAP analysis, but we think that these will be future work.

      We do not think that prolonged sonication will affect the UMAP analysis because relative fluorescent signals of each particle would not change. However, as mentioned above, too strong sonication would worsen the signal-to-noise ratio, resulting in poor clustering.

      We have added the above discussion to the Discussion (Lines 288-293).

      “Also, to improve the resolution within a single organelle, for example, to separate distinct subdomains, we can prolong the sonication time to make the particles smaller. However, since this will reduce the signal-to-background ratio and may destroy organelle contacts, we used the sonication conditions as mild as possible. To investigate organelle subdomains and fragile contacts, the sonication conditions need to be optimized carefully.”

      • The only real control the authors present are the correlative light and electron microscopy (CLEM) three images in Figure 1b, which seems very minimalistic for a very central and essential control experiment. How many of these control images did the authors take? Is there possibly a second method for a control experiment to link the fluorescence readout to an organelle fragment (e.g., purification or pulldown)?

      Response:

      Since all the markers we used are well-established, we believe that there is no concern about the fluorescence readouts to the organelle fragments. We have cited the following papers in Lines 84-85.

      SEC61B: Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 65, 271–303 (1996).

      OMP25: Horie, C., Suzuki, H., Sakaguchi, M. & Mihara, K. Characterization of signal that directs C-tail-anchored proteins to mammalian mitochondrial outer membrane. Mol Biol Cell 13, 1615–1625 (2002).

      GS27: Hay, J. C. et al. Localization, Dynamics, and Protein Interactions Reveal Distinct Roles for ER and Golgi SNAREs. J Cell Biol 141, 1489–1502 (1998).

      Fusella, A., Micaroni, M., Di Giandomenico, D., Mironov, A. A. & Beznoussenko, G. V. Segregation of the Qb-SNAREs GS27 and GS28 into Golgi Vesicles Regulates Intra-Golgi Transport. Traffic 14, 568–584 (2013).

      Although it is relatively easy to identify mitochondria-derived particles by EM based on their size and the presence of cristae-like structures (indeed we see many examples), it is more challenging for other organelles (because they appear simple vesicles). This is why we showed only mitochondria in Fig. 1b. Furthermore, the main purpose of this EM image is to show membrane contacts between the ER and mitochondria (related to Fig. 3).

      • Line 37-41: Could the authors please strengthen these statements with an appropriate citation (e.g., a review)?

      Response:

      We have cited the textbook Molecular Biology of THE CELL (the 6th edition, Chapter 12 and Chapter 13) in Lines 37 and 41.

      Response:

      We thank Reviewer #3 for notifying us of these important studies. We have rewritten the sentence on Lines 51-52 to read “Although multicolor imaging has been attempted with super-resolution microscopy (references of the indicated papers), it only partially solves the issue of resolution.”

      • The authors use spectral unmixing to overcome the limit of spectral multiplexing. While this has been demonstrated to work well for less than ten targets, it does not scale to multiplexing experiments with more than ten target species. I suggest that the authors discuss in the discussion part of the manuscript the potential of DNA-based multiplexed imaging, such as CODEX or DNA-PAINT, in combination with the presented approach.

      Response:

      In the Discussion (Lines 295-298), we have added the sentence “Current fluorescent particle detection uses spectral multiplexing, but this method has only been able to detect up to eight colors. Methods such as CODEX or DNA-PAINT with wide-field type illumination could significantly increase the number of targets”.

      Response:

      We thank Reviewer #3 for informing us. We have cited it in Line 72.

      • By using spectral unmixing for multiplexing, this method is limited to confocal due to spectral detection needs and therefore limited in throughput. It would be beneficial if it could work with wide-field type illumination. This could substantially increase the throughput, which is another reason why I think it would be important to discuss sequential multiplexing.

      Response:

      We agree with the Reviewer’s comment. We have added the discussion to Lines 295-298 as described in our response to Reviewer #3, Comment (6).

      • To image contact sites, the authors use split GFP. There have been discussions that split GFP might, in some cases, facilitate the process that is supposed to be measured, in this case, the formation of contact sites. I suggest using at transient version of split GFP, called split fast, for follow-up experiments in the authors’ next papers (https://www.nature.com/articles/s41467-019-10855-0).

      Response:

      We thank Reviewer #3 for providing this information. We will do it as suggested in the next paper.

      • Line 27 & 253: Please drop the term ‘intuitive’ or explain better what you mean by intuitive. For me, UMAP is certainly a very useful tool, but it is not at all what I would describe as intuitive.

      Response:

      We have deleted ‘intuitive’ in all seven places and rewritten them (Lines 27, 43, 58, 72, 180, 231, and 253).

      • Lastly, I want to mention that the authors state they used ChatGPT, DeepL, and DeepL Write for translation from Japanese to English. I appreciate their honesty.

      Response:

      We thank Reviewer #3 for the comment.

      Reviewer #3 (Significance (Required)):

      In the manuscript titled “Organelle Landscape Analysis Using a Multi-parametric-Based Method,” Kurikawa et al.present a method for multi-parametric, particle-based analysis of cellular organelles. After lysing cells, the fractions of the organelles are partially labeled with fluorescently tagged antibodies, while others are already tagged with fluorescent proteins, using six to eight spectrally different fluorescent dyes/proteins. These fractions are subsequently immobilized on a poly-L-lysine-coated coverslip. The authors use spectral unmixing to distinguish these markers. The6-8 multiplexed imaging data is then presented in two-dimensional UMAP space. The authors then use this approach to visualize seven major organelles, transitional sites of endocytic organelles, and contact sites between the endoplasmic reticulum and mitochondria using split GFP.

      The authors present, in my opinion, a conceptually new and interesting approach by combining spectral unmixing for imaging up to eight targets, with organelle fragment imaging, and presenting multidimensional data in two-dimensional Uniform Manifold Approximation and Projection (UMAP) space in this manuscript. They further validated this approach by linking the results of the experiments to results established or at least reported in the literature.

      In general, the manuscript is, in my opinion, a good fit for publication as it presents a conceptionally new approach and an interesting example of applying the UMAP approach, which might be of interest to a broader readership. Therefore, after an appropriate response to my comments, suggestions, and questions (see below), I would recommend this manuscript for publication.

      Response:

      We thank Reviewer #3 for the positive comment.

    1. Author Response

      We appreciate your comments and also thanks to the reviewers for providing valuable feedback and recommendations. For most of the recommendations, we will respond in the revised version, which will provide more information for readers to understand and apply the study. For some of the recommendations, we can give quick responses as follows:

      Reviewer #2 (Public Review):

      The differences between passive and active immunolabeling, as well as photobleaching data, should be addressed for a comprehensive understanding.

      In passive immunolabeling, antibodies penetrate and achieve their targets merely via diffusion, without any additional force. In contrast, active immunolabeling utilizes an external force, such as pressure, electrophoresis, etc., to facilitate antibody penetration and therefore significantly speed up the staining process (i.e., one day vs. 2 months for a whole mouse brain). In our study, the samples we were dealing with were centimeter-sized; therefore, we employed only active electrophoretic immunolabeling (details provided in Materials and Methods). However, for laboratories that do not possess adequate devices or handle small specimens, they can employ passive immunolabeling instead. As for the photobleaching data, we will provide it in the revised version.

      The compatibility of MOCAT with genetically encoded fluorescent proteins remains unclear and warrants further investigation.

      We agree with the possibility that the encoded fluorescent proteins will be affected. Since there is evidence that fluorescence can be quenched by xylene and alcohol, which are two organic solvents used in paraffin processing, we think boost immunolabeling is necessary for observing genetically encoded fluorescent proteins. We also pointed out this limitation in the Discussion:

      “Fourth, endogenous fluorescence—such as GFP, YFP, and tdTomato—may be quenched during paraffin processing and thus need to be visualized by means of additional immunolabeling.”

      However, the extent to which endogenous fluorescence will be quenched during the paraffin processing and MOCAT procedure, and how much boost labeling can rescue, is worth investigating for broadening the application of MOCAT. We will provide it in the revised version.

      The composition of NFC1 and NFC2 solutions for refractive index matching should be provided.

      Since NFC1 and NFC2 are commercial products from Nebulem (Taiwan), the composition is non-disclosable. However, the refractive index of NFC1 and NFC2 is 1.47 and 1.52, respectively.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      We thank the referee for the positive review.

      Reviewer #2 (Public review):

      We thank the referee for his/her constructive comments

      1. The weakness of this work is the lack of clarification on the function of eIF2A in general. The novelty of this study was limited.

      We believe our study is valuable in providing strong evidence that eIF2A does not functionally substitute for eIF2 in tRNAi recruitment even when eIF2 function is impaired, and in showing that it does not contribute to translational control by uORFs or IRESs, thus ruling out the most likely possibilities for its function in yeast based on studies of the mammalian factor. We agree that the function of yeast eIF2A remains to be identified; however, we think this should be regarded as a limitation rather than a weakness in experimental design or data obtained in the current study.

      1. Related to this, it would be worth investigating common features in mRNAs selectively regulated (surveyed in Figure 3A).

      We did not embark on this because only 17 of the 32 transcripts showing TE reductions in Fig. 3A showed a pattern of TE changes consistent with a conditional requirement for eIF2A under conditions of reduced eIF2 function, exhibiting greater TE decreases when both eIF2 function was impaired by phosphorylation and eIF2A was eliminated from cells. Moreover, we could validate this conditional eIF2A dependence by LUC reporter for only a single mRNA, HKR1.

      Also, it would be worth analyzing the effect of eIF2A deletion on elongation (ribosome occupancy on each codon and/or global ribosome footprint distribution along CDS) and termination/recycling (footprint reads on stop codon and on 3′ UTR).

      We have analyzed the effects of deleting eIF2A on ribosome pausing at individual codons by calculating tri-peptide pause scores from our ribosome profiling data. The results shown in new Fig. 7 reveal that eIF2A plays no discernible role in stimulating the rate of decoding of any three-codon combinations.

      1. Regarding Figure 3D, the reporters were designed to include promoter and 5′ UTR of the target genes. Thus, it should be worth noting that reporter design was based on the assumption that eIF2A-dependency in translation regulation was not dependent on 3′ UTR or CDS region. The reason why the effects on ribosome profiling-supported mRNAs could not be recapitulated in reporter assay may originate from this design. This should be also discussed.

      We agree and included this stipulation in the DISCUSSION, while at the same time noting that the native mRNAs were examined in the orthogonal assay of polysome distributions.

      1. Related to the point above, the authors claimed that eIF2A affects "possibly only one" (HKR1) mRNA. However, this was due to the reporter assay which is technically variable and could not allow some of the constructs to pass the authors' threshold. Alternative wording for this point should be considered.

      We agree and revised text in the DISCUSSION to read: “A possible limitation of our LUC reporter analysis in Fig. 3D was the lack of 3’UTR sequences of the cognate transcripts, which might be required to observe eIF2A dependence. Given that native mRNAs were examined in the orthogonal assay of polysome profiling in Fig. 3E, the positive results obtained there for SAG1 and SVL3 in addition to HKR1 should be given greater weight. Nevertheless, our findings indicate a very limited role of yeast eIF2A in providing a back-up mechanism for Met-tRNAi recruitment when eIF2 function is diminished by phosphorylation of its α-subunit.”

      1. For Figure 3D, it would be worth considering testing the #-marked genes (in Figure 3C) in this set up.

      Actually, we did test 10 of the 17 mRNAs marked with “#”s in the reporter assays of Fig. 3C, which had been noted in the Fig. 3C legend.

      1. In box plots, the authors should provide the statistical tests, at least where the authors explained in the main text.

      At the first occurrence of a notched box plot (Fig. 2D), we explained in the main text that in all such plots, when the notches of different boxes do not overlap, their median values differ significantly with a 95% confidence level. In cases where overlaps between notches is difficult to assess by eye, we added the results of Mann-Whitney U tests with the p values indicated by asterisks, as explained in the legends. We added results of additional Mann-Whitney U tests to such box plots in Figs. 3B, 6A-C, and 6-supp. 1E & G and mentioned this in the corresponding legends.

      Reviewer #2 (Recommendations For The Authors):

      The first section of "Yeast eIF2A does not play a prominent role as a functional substitute for eIF2 in the presence or absence of amino acid starvation" can be subdivided into a couple of sections for better readability.

      Done.

      Although the authors have used SM to induce ISR in yeasts previously, the validation of eIF2alpha phosphorylation in Western blot would be helpful for readers. Also, it should be worth testing whether eIF2alpha phosphorylation was properly induced in eIF2A KO cells.

      The translational induction of GCN4 mRNA, which we have documented in WT and eIF2A∆ cells, provides a quantitative read-out of eIF2 functional attenuation superior to determining the proportion of eIF2α that is phosphorylated.

      For Figure 2B, the Venn diagram that shows the overlap between TE-changes genes in WT_SM/WT and those in eIF2A∆_SM/eIF2A∆ would be helpful (although a list was provided by the source data).

      The Venn diagram has been provided in a new figure, Figure 2-figure supplement 1B.

      For Figures 1C and 5A-B, the depiction of the positions of uORFs within the orange gene region would be helpful for readers.

      Done.

      For Figure 4A-C, the depiction of the IRES regions (if known) within the orange gene region would be helpful for readers.

      Done for the URE2 IRES, whose location is known.

      For Figures 1C, 4A-C, and 5A-B, the y-axis should have a label/scale.

      Added.

      For Figure 3C, the definition of #-marked genes should be concretely described (e.g., value range) in the legend.

      Added.

      For Figure 3D-E, the statistical test has been only shown in a couple of data. A full depiction of the statistical results for all the data sets may be helpful for readers.

      We explained that when notches in box plots do not overlap, their medians differ with 95% confidence. In cases where overlaps were difficult to discern, we added p values from Mann-Whitney U tests to the relevant box plots.

      For Figure 3E, it would be helpful if the authors could show the UV spectrum of the sucrose density gradient to show the regions isolated for the experiments.

      Added for a representative replicate gradient in the new figure, Figure 3-figure supplement 1.

      Reviewer #3 (Public Review):

      We thank the referee for his/her positive assessment of our study.

      Weaknesses:

      While no role of eIF2A in translation initiation is apparent, the authors do not determine what function eIF2A does play in yeast. Whether it plays a role in regulating translation in a different stress response is not determined.

      We agree that there are many additional possibilities to consider for functions of eIF2A in translation initiation, including different stress situations or mutant backgrounds; however, we regard this as a limitation rather than a weakness in the experimental design and data obtained in the current study in which we examined the most likely possibilities for eIF2A function in yeast based on studies of the mammalian factor.

      Reviewer #3 (Recommendations For The Authors):

      Curiously, the authors indicate that they could not replicate published results for eIF2A's repressor function for URE2, PAB1, or GIC1 translation. This is a little concerning and one wonders if the yeast strain used in the previous study is different in some way from the authors' strain. Did the authors obtain that strain to test it in their assays?

      The same WT and eIF2A∆ strains have been analyzed here and in the two cited studies on yeast IRESs.

      The authors do discuss the fact that eIF2A may function to regulate translation in response to different stresses. It would have been a strength to test an alternative stress in the current study. However, I also appreciate that this could be the subject of a future study.

      Agreed.

      One minor question I have is whether the yeast strains used possess L-A dsRNA virus? While it may not be that this virus would necessarily mask a role of eIF2A-dependent translation, do the authors have any specific thoughts on this? Would different results be obtained if cured strains were used?

      According to Ravoityte et al. (doi: 10.3390/jof8040381), the S. cerevisiae strain we employed, BY4741, harbors L-A-1 dsRNA; however, we have not explored whether curing the virus would alter the consequences of eliminating eIF2A.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements We appreciate the insightful reviewer comments. Both reviewers alluded to the logical lack of connection between two themes in the original paper. Specifically, we showed that N-cad differentially regulates migration in different environments, and that leader and follower cells differ phenotypically, but did not connect the two themes. In this revised version, we've performed additional experiments and undertaken a comprehensive reorganization of both the manuscript and figures. The major changes are outlined below:

      2. Figure 4 A-C has been moved to Figure 6 F-H.

      3. Figure 5 has been moved to Figure S3 F-H.
      4. Figure 6 F has been moved to Figure 7 A.
      5. Figure 6 G-H have been moved to Figure 7 D-E.
      6. Figure 6 I-J have been moved to Figure S5 A-B.
      7. Figure 7 C-F have been moved to Figure S5 C-F.
      8. Added transcriptome profiling of control and N-cad-depleted cells and of leader and follower cells (Figures 6 E, S1 H and S4 C-D, Tables S2 and S3). We have incorporated additional figures (Figure 4 and 5 in the revised manuscript) to support the idea that the amount of N-cad at the cell surface is regulated by endocytic recycling, thereby stimulating glioma migration in the different local environments. Furthermore, our new findings showed that YAP1/TAZ regulates the surface level of N-cad during glioma migration (Figure 8). We trust that these additions contribute to the clarity and robust justification of our paper.

      Similar to other types of tumors, our findings revealed that pediatric high-grade gliomas migrate collectively, possibly contributing to a more aggressive invasion than single cells. In this study, we found that N-cad mediates this collective glioma migration. Interestingly, within these migrating groups, leader and follower cells dynamically interchange positions during migration, accompanied by changes their phenotypic characteristics. This suggests that differences in phenotypes, including N-cad recycling, proliferation and YAP activation, may be predominantly regulated by cell-extrinsic factors rather than being predetermined by genetic or epigenetic factors. Moreover, our new RNA-sequencing results indicate minimal difference between leader and follower cells, except for the upregulation of YAP response and wound healing migration genes in leader cells. Although genomic alterations still possibly encode the leader-follower exchange, our findings strongly suggest that the activation of YAP1 and glioma migration are regulated by the cellular context, specifically where cells are located within the group.

      Contrary to our initial findings suggesting a positive feedback loop between N-cad endocytosis and nuclear YAP1, our revised data indicates that nuclear YAP appears to be independent of N-cad. We observed that homotypic interactions with N-cad present in the surrounding environment, such as neurons (Figure 6 C-D) or N-cad extracellular domain-coated surface (Figure 7 B-C), did not affect nuclear YAP1. However, YAP1/TAZ depletion decreased N-cad expression and altered its localization at the surface (Figure 8). This leads us to propose a revised model where nuclear YAP1 stimulates surface N-cad, thereby facilitating the distinct modes of migration on ECM and neurons (Figure 8 I).

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Kim and colleagues describe the role of N-Cadherin during pediatric glioma migration. They compare cell lines that have similar transcripts but different levels of N-Cadherin protein and find that N-Cadherin levels influence the route of migration - whether it be on ECM or other tissues. They also describe molecular feedback between N-Cadherin and YAP in leader vs follow cells of their systems. The data are clear, well presented, and convincing; and the conclusions described by the manuscript are mostly justified. My major criticism of the manuscript is that the line of questioning undertaken does not appear well justified. At many points, I was left asking "but why are they doing this?" and I could not understand the rationale for some of the experiments that were performed (even if they were performed well). The manuscript opens by validly describing how gliomas are highly invasive, poorly understood and that N-Cadherin was highly expressed in comparison to other adhesion proteins. This opened the path for the questions and experiments performed that contributed to Figures 1-3, which I thought were interesting. From there on, I found the logic of the story unclear and poorly justified. For example, I do not know why leader and follower cells were justified - when it had nothing to do with N-Cadherin which was the focus of the work prior. And then, having rightly concluded in Figure 4 that the data suggested that leader and follower cells dynamically exchange positions rather than being pre-determined, they went onto further figures focusing on differences between leader and follower cells, which left my quite confused. I am likewise confused by the model proposed in that, they authors describe that the difference between leader and follower cells contributes to a nuclear YAP/N-Cad endocytosis feedback loop that feeds into the speed of migration. Yet, the authors describe earlier that leader and follower cells frequently exchange positions, with no evidence that they are pre-determined. How do the authors square these seemingly conflicting points? And further, what is the relevance of this to understanding the differing modes of migration (on ECM or other tissues)? On this issue, I suggest authors re-consider whether the order of figures or logic of the story is appropriate (perhaps consider moving some figures to supplement?), and to clearly justify in the text the elements that are being addressed. Overall, I think the messaging, logic and justification could be use significant improvement; the experiments however are well performed, and the figures are very clear and nicely presented, and I don't have any qualms about them.

      We appreciate your insightful comments, recognizing the need for logical and justifiable improvements in certain sections of our previous manuscript. Please see Section 1, General Statements, for an explanation of changes made.

      Minor Comments

      1. Not required, but the authors may wish to consider putting t=0 pictures of the experiments in the supplement as supportive evidence for the circles of the initial seeding location they show in Fig 1.

      We provide the t=0 images in Figure S1 N and O.

      1. I assume the title of the second results section should say "migration speed" rather than "speed migration"

      The new title of the second results section is “N-cad stimulates and inhibits migration through intercellular homotypic interaction”.

      1. Fig. 4D - Are both example cell pictures leaders? If so, I'm not sure why two have been provided; I'm guessing the bottom set are supposed to be follower cells. If so, please label as appropriate. (And if not, a representative set of pictures from a follower cell should be provided).

      We have enhanced the clarity of the labels. We provide representative high magnification images of leader and follower cells. The updated figure can be found in Figure 5 A.

      1. Figure 5 Legend - the title of this figure is too definitive, and exaggerates further than the main text does, which was correct in saying that the experiments only suggest that N-Cadherin endocytosis might regulate the localisation of b-catenin and p120-catenin. Probably I would go further and say that there is no experimental evidence provided that even suggests that in the first place, and that this is a hypothesis that remains to be tested. The authors should inhibit endocytosis specifically (rather than just depleting N-Cad) and see the effect, to justify their conclusion.

      We appreciated your points and concerns. Following your earlier suggestion, we have moved the figure to the supplementary section (Figure S3 F-H). Moreover, we have addressed the reciprocal regulation of N-cad and catenins by knocking down p120-, β- or α-catenin. Our new findings showed that p120-, β- or α-catenin depletion decrease the amount of N-cad at the cell surface, not steady-state protein level, resulting in decreased migration on astrocytes but increased migration on ECM (see Figure 4). These findings support the idea that catenins play a role in glioma migration according to the environment by altering surface N-cad level. With that, we updated the figure title to “Catenins regulate N-cad surface levels to stimulate or inhibit migration.”

      Reviewer #1 (Significance (Required)):

      The manuscript provides a characterised of invasive glioma migration that was previously lacking. It also provides interesting observations related to the role of N-Cadherin for different modes of migration (on ECM or on tissues) that will be of interest for further exploration. It makes a good advance in terms of addressing a highly invasive cell type that has poor prognosis. I anticipate that now this initial characterisation has been performed, authors and others will be interested in gaining a deeper understanding as to how these two modes of migration are controlled, how there might be interplay between them and how such findings contribute to its highly invasive nature. I have expertise in collective cell migration and directed cell migration.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary In the submitted manuscript, Kim et al. describe various aspects of N-cadherin function in the collective migration of PBT-05 cells, a pediatric high-grade glioma line, on laminin, 3D-matrigel, neurons or astrocytes. N-cadherin promotes the collective migration on neurons or astrocytes, whereas it suppresses the migration on laminin or 3D-matrigel. The authors also show that N-cadherin is actively internalized and recycled in the leader, but not follower, cells of the collective, which induce the nuclear accumulation of YAP/TAZ proteins. YAP/TAZ proteins are shown to regulate the collective migration.

      Thank you for the comments. Please see Section 1, General Statements, for a summary of changes made. Please also note that our new experiments failed to show that N-cad levels or traffic regulate YAP/TAZ nuclear accumulation. Rather, YAP/TAZ are regulated by cell density independent of N-cad, and YAP/TAZ regulate N-cad protein levels and traffic independent of changes in N-cad RNA levels

      Major comments

      1. In Fig. 1G, N-cadherin knockdown seems to affect the distribution of astrocytes. The authors should stain a marker for astrocytes, instead of actin, and the red alone images should be provided.

      Astrocytes were cultured for 4 days to generate 3D scaffolds before adding the glioma spheroid, essentially as described (Gritsenko et al., Histochem Cell Biol, 2017). Co-cultures were stained for human-specific vimentin (glioma) or actin (glioma and astrocytes) (see Figure 1 G and separate channels in new Figure S1 P). There do not appear to be major changes in astrocyte organization outside the migration front, but we lack a way to stain for astrocytes specifically and cannot visualize astrocytes under the glioma cells. It remains possible that astrocytes may be affected differently by contact with control and N-cad-deficient glioma cells. However, we added a new experiment, assaying migration on decellularized astrocyte ECM. While N-cad stimulated migration on astrocytes it inhibited migration on astrocyte ECM (Figures 1 I and J and S1 Q). Thus N-cad stimulates glioma migration on astrocyte cells and not their ECM.

      1. The colocalization between N-cadherin and Rab11 may not be high in Figs. 4F and S2B. It is unclear whether the majority of the internalized N-cadherin is recycled to the plasma membrane. In Fig. S2B, the internalized N-cadherin may be located mainly at the early endosomes before transported to the recycling endosomes (Is it 20 min after the N-cadherin antibody internalization?). First, the authors should analyze the colocalization between the N-cadherin and Rab11 at 30-40 min after the internalization. If the colocalization with Rab11 would be still low at that time point, some of the internalized N-cadherin might be degraded in the lysosomes. To test this possibility, the authors should analyze the colocalization between N-cadherin and LAMP1 under the treatment with a lysosome inhibitor.

      At steady state, N-cad co-localized better with Rab5 than with Rab11 or LAMP1 (Figure 5 C-D). In kinetics experiments, N-cad antibodies were internalized for 40 min. They colocalized better with Rab5 or EEA1 than with Rab11 or LAMP1. When we allowed recycling for an additional 20 min, the surface level of N-cad antibodies partially recovered in leader cells more than follower cells (see Figures 5 G and S3 D). We tested whether treatment with lysosomal inhibitors would increase co-localization of N-cad with Rab11 in recycling endosomes. Surprisingly, however, Chloroquine or Bafilomycin A1 decreased the amount of internalized N-cad antibody in leader and follower cells, and long-term treatment did not increase total N-cad levels. Therefore, the fate of internalized N-cad in follower cells remains unclear.

      1. When N-cadherin is depleted, dissociated single cells are increased, but these cells are not well characterized. A high magnification image of the dissociated single cells is required. In addition, the migration speed of the dissociated single cells should be measured.

      We didn’t quantify single cell migration because only a minority of cells separate from the collective even when N-cad is depleted. Therefore, we quantified migration directionality and speed for cells at or near the front of collective migration (Figure 2 D-I). We have updated the image of single cells, providing representative high-magnification images in Figure S1 N and O.

      1. In Fig. S2D, treatment with Pitstop-2 alone or Dyngo-4a alone is required. Dynamin is also involved in clathrin-independent endocytosis and N-cadherin is reported to be internalized via caveolin-1-mediated endocytosis as well as clathrin-mediated during neuronal migration. It would be better to clarify which type of endocytosis occurs in the leader cells.

      We have removed results showing inhibition of cell migration and N-cad endocytosis by Pitstop-2 and Dyngo-4a from the paper. Treatment with either chemical alone had much less effect on internalization or migration than adding both together (see figure below). This is hard to explain. Pitstop-2 should inhibit clathrin-coated pit formation and Dyngo-4a should inhibit clathrin and caveolin-mediated endocytosis. Caveolin-1 and 2 transcripts were not detected in our cells (Table S2). There may be some other form of clathin-independent endocytosis. Interpretation is also challenging since these inhibitors will inhibit endocytosis of many receptors, not just N-cad. Accordingly, we have removed these results in the revised manuscript.

      1. In Fig. 2, N-cadherin depletion disturbs the migration directionality. Is this a result from disruption of cell polarity? To test this, the position of centrosome or Golgi or lamellipodia in the leader cells should be analyzed. (OPTIONAL)

      We elected not to perform this analysis.

      1. I cannot understand the significance of Fig. 5F and 5G. If the authors would speculate that alpha- and beta-Catenins may transduce the intracellular signaling from the internalized N-cadherin, the authors should perform the knockdown experiments of the Catenins and analyze whether it may affect the nuclear accumulation of YAP/TAZ. (OPTIONAL)

      We agree. In the initial manuscript, we showed that N-cad depletion altered the localization of p120-, β-, and α-catenin (previously shown in Figure 5 F-G). For better clarity and logic, these figures have been moved to Figure S2 H in the revised manuscript. Additionally, to test whether catenins regulate N-cad and YAP1, we depleted p120-, β-, or α-catenin using shRNA. We found that downregulation of p120-, β-, or α-catenin decreased N-cad surface levels, consequently slowing migration on astrocytes and stimulating migration on laminin (Figure 4). In other words, depleting catenins altered migration in parallel with the changes in N-cad surface level. Catenin depletion also increased single-cell dissociation, reduced the crowding of leader and follower cells, and increased nuclear YAP1 (see figure below). These findings suggest that the main role of p120-, β-, or α-catenin is to regulate surface N-cad. Since this result does not support a role for catenins transducing an N-cad signal to YAP1, we have not included it in the paper.

      Minor comments

      1. The quantitative data is required in Fig. 5E.

      Quantitative data from three independent experiment are now presented in Figure S2 G.

      1. Vinculin is associated with the cadherin-catenin complex and it may not be a good loading control (Fig. 3C and 3L).

      The Western blot data has been updated and is now presented in new Figure 3 B and 3 F, with β-tubulin as a loading control.

      **Referees cross-commenting**

      I totally agree with the other Reviewers' comments and evaluation. As the reviewer-1 pointed out, I also think the experiments are well performed, but it would lack logic at least in part (see my comment-6). In addition, as the reviewer-3 pointed out, the linking mechanism of N-cadherin homophilic interaction with YAP/TAZ signaling is important to improve this manuscript

      We hope the revisions have improved the logical flow. We have also added new results showing that YAP/TAZ regulate N-cad protein levels and localization but not N-cad RNA. N-cad is not needed for cell density-dependent regulation of YAP1 localization. The model is shown in Figure 8 I.

      Reviewer #2 (Significance (Required)):

      Strength N-cadherin has multiple function in cancer and neuronal migration, and both positive and negative effects of N-cadherin on cancer cell migration have been reported. In this regard, different behaviors of N-cadherin in the leader and follower cells of the collective are interesting and may explain the controversial previous results.

      Limitation This study reveals various aspects of N-cadherin function in the collective migration of the glioma cell line, but it is unclear whether these findings are applied to pediatric high-grade gliomas in vivo.

      Thus, this study is a potentially important and informative to cell biologists and researchers in cancer biology, although this reviewer also found several weak points that should be improved.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors explore the role of N-cadherin in the migratory/infiltrative behavior of human pediatric brain tumor cells, in light of their surrounding microenvironment. Their in-depth phenotype analysis allows to document the behavior of migrating cells and revisit the concept of leading/follower migratory cells (somehow more commonly applied to endothelial cells). They suspected that the YAP/TAZ pathway might modulate N-cadherin endocytosis and vice versa, using imagery-based cell tracking.

      Major comments

      1. To control for co-culture models, migration should be evaluated on decellularized matrices from astrocyte and neuron cultures.

      We thank for your suggestion. We tested glioma migration on astrocyte-derived decellularized matrices. The mouse astrocytes we used are known to produce various extracellular matrices with a composition similar to Matrigel, except for laminin α5. (Gritsenko et al., J Cell Sci, 2018). N-cad shRNA cells migrated faster on decellularized ECM than control (Figure 1 I-J and S1 Q). This result agrees with N-cad depletion increasing migration on ECM but is opposite to migration on astrocytes.

      1. N-cadherin was stably knocked down with shRNA, which raises the question of adaptative/compensatory mechanisms. First, one could ask what happen in knockout conditions. Similarly, transient siRNA-mediated silencing might help to strengthen the findings. Second, is there any impact of Ncad knock down on alternate adhesive receptors (either cell-cell or cell-ECM). This should be verified with bulk RNAseq.

      Transient knockdown with N-cad siRNA also increased migration on laminin-coated surface (Figure S1 L-M). Unfortunately, N-cad depletion with siRNA was short-lived, precluding its use for long-term assays, like coculture with neurons or astrocytes. To test whether there is any impact of N-cad knockdown on alternative adhesion receptors, we performed RNA-Seq (Figure S1 H, Table S2). We found N-cad depletion did not alter expression of other cell-cell and cell-ECM adhesive receptors except CDH3 (2.8-fold increase compared with 7-fold decrease in CDH2). Integrin expression was unchanged.

      1. It would be interesting to evaluate the impact of N-cadherin/N-cadherin homotypic interactions on YAP/TAZ signaling, using for instance N-cad-coated surface.

      We observed that the homotypic interaction of N-cad with surrounding neurons and astrocytes did not hinder the accumulation of nuclear YAP1 in leader cells (Figure 6 C-D). To further support the idea that N-cad does not directly regulate YAP1 signaling, we have now measured YAP1 localization in cells migrating over N-cad ECD. The new data confirms that N-cad does not directly regulate YAP1 localization (Figure 7 B-C).

      1. along this line, the impact of mechanical cues (stiffness, 2D vs 3D) is not explored.

      We appreciate your suggestion. It is possible that different mechanical and cytoskeletal cues between leader and follower cells affect YAP1 signaling. In this study, we would like to focus more on the role of N-cad-mediated cell adhesions in YAP signaling.

      Minor comments

      1. Levels of N-cadherin expression in normal Astro and Neurons to compare with pediatric brain cancer cells (S1C)

      A new western blot analysis to show N-cad levels in DMG, PHGG and mouse cerebellar neurons and astrocytes has been added to Figure S1 F.

      1. Low versus high density culture conditions should be controlled and its further impact on the YAP/Ncad endocytosis route should be supported experimentally, or to be omitted from their proposed model.

      We previously used different size of micropattern discs to control low or high cell density. Smaller cell clusters, with more edge cells and hence fewer cell-cell interactions, had higher nuclear YAP1 (Figure 7 D-E). We have repeated this experiment, including N-cad ECD antibodies to measure N-cad endocytosis. Smaller cell clusters had higher N-cad antibody internalization (Figure 7 F). Together with our evidence that leader cells have higher YAP1 and more N-cad internalization than followers, and that YAP/TAZ knockdown inhibits N-cad internalization, these results high YAP/TAZ in leader cells regulates N-cad internalization.

      Reviewer #3 (Significance (Required)):

      This paper presents robust image analysis of human pediatric brain tumor migration in the context of the different microenvironment that they might encounter (matrices, neurons, astrocytes). This study brings new concepts on the way N-cadherin might contribute to tumor cell migratory behavior based on the nature of the interactions in which N-cadherin is involved. As a limitation, it remains unclear the mechanism by which N-cadherin endocytosis is driven.

      We now discuss the limitations of the study as follows:

      “The mechanisms by which YAP1 regulates N-cad levels and trafficking remain to be explored. YAP1 is widely expressed in human brain tumors and strongly associated poor survival. Leader cells expressed higher levels of YAP1-response and wound-healing gene transcripts, but transcript levels of N-cad and proteins known to regulate cadherin traffic, such as p120-catenin, Rab5/11 and Rac1, were similar. Therefore, N-cad is likely regulated at the level of protein synthesis or turnover. More endosomal N-cad recycled to the surface of leader than follower cells, implying that follower cells might divert more N-cad for lysosomal degradation, but our attempts to interfere with N-cad endocytosis or degradation specifically were unsuccessful. Further understanding of the mechanism and function of N-cad recycling for glioma cell migration will require cargo-specific ways to selectively regulate endocytosis and recycling”.

    1. but no more so than thevoices of individu

      The authors describe teachers and texts as "the authoritative voice" in the classroom. This is an important power dynamic to be aware of. We may wholeheartedly believe that these voices are no more important than "the voices of individuals", but students are likely going to come to class with assumptions about our power. They may try to conform with the teacher's beliefs in an attempt to be "correct". This is why I think we need to address this power dynamic explicitly and remind students that we're not here to tell them what they need to believe and learn.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We thank the two reviewers for their constructive criticism, which helped to significantly improve our manuscript.

      During the revision process, we had to realize that the localization pattern reported for H. neptunium LmdCN-mCherry was an artifact caused by bleed-through of the BacA-YFP signal in the mCherry channel. More detailed studies showed that the fusion protein was detectable by Western blot analysis but, for unknown reasons, did not produce any fluorescence signal. Therefore, we have now removed the localization data shown in previous Figure 8B,C and Figure 8—figure supplement 1.

      To provide more evidence for a functional interaction between BacA and LmdC in H. neptunium, we have now established an inducible CRISPR interference system for this species and used it successfully to deplete LmdC (new Figure 9A-F). The loss of LmdC causes morphological defects very similar to those observed for the ΔbacA(D) mutant. In line with the physical interaction of BacA with the cytoplasmic region of LmdC observed in vitro, these findings support the hypothesis that the two proteins act in the same pathway. Consistent with the results obtained in H. neptunium, the absence of BacA leads to the delocalization of LmdC in R. rubrum. Moreover, we now provide in vivo evidence for a critical role of the cytoplasmic region of LmdC in the interaction of this protein with BacA in R. rubrum cells (new Figure 11). Together, these new findings strongly support the model that BacA and LmdC form a conserved morphogenetic module involved in the establishment of complex cell shapes in bacteria.

      Please see below for a more detailed explanation of our new results and for our response to the issues raised in the first round of review.

      Reviewer #1 (Public Review)

      In their study, Osorio-Valeriano and colleagues seek to understand how bacterial-specific polymerizing proteins called bactofilins contribute to morphogenesis. They do this primarily in the stalked budding bacterium Hyphomonas neptunium, with supporting work in a spiral-shaped bacterium, Rhodospirillum rubrum. Overall the study incorporates bacterial genetics and physiology, imaging, and biochemistry to explore the function of bactofilins and cell wall hydrolases that are frequently encoded together within an operon. They demonstrate an important, but not essential, function for BacA in morphogenesis of H. neptunium. Using biochemistry and imaging, they show that BacA can polymerize and that its localization in cells is dynamic and cell-cycle regulated. The authors then focus on lmdC, which encodes a putative M23 endopeptidase upstream of bacA in H. neptunium, and find that is essential for viability. The purified LmdC C-terminal domain could cleave E. coli peptidoglycan in vitro suggesting that it is a DD-endopeptidase. LmdC interacts directly with BacA in vitro and co-localizes with BacA in cells. To expand their observations, the authors then explore a related endopeptidase/ bactofilin pair in R. rubrum; those observations support a function for LmdC and BacA in R. rubrum morphogenesis as well.

      An overall strength of this study is the breadth and completeness of approaches used to assess bactofilin and endopeptidase function in cells and in vitro. The authors establish a clear function for BacA in morphogenesis in two bacterial systems, and demonstrate a physical relationship between BacA and the cell wall hydrolase LmdC that may be broadly conserved. The eventual model the authors favor for BacA regulation of morphogenesis in H. neptunium is that it serves as a diffusion barrier and limits movement of morphogenetic machinery like the elongasome into the elongating stalk and/or bud. However, there is no data presented here to address that model and the role of LmdC in H. neptunium morphogenesis remains unclear.

      We hypothesize that BacA establishes a barrier that prevents the movement of elongasome complexes into the stalk, either directly by sterical hindrance and/or indirectly by promoting the formation of an annular region of high positive inner cell curvature that cannot be passed by the elongasome. To test this model, we have now analyzed the localization dynamics of RodZ, a core structural component of the elongasome complex, in wild-type and ΔbacAD cells. We found that wild-type cells show dynamic YFP-RodZ foci whose movement is limited to the mother cell and the nascent bud, with no signal ob-served in the stalk. In ΔbacAD cells, by contrast, the fusion protein is consistently detected in all regions of the cell, including nascent stalks (new Figure 5). These results support the idea that BacA is required to confine the elongasome to the mother cell and bud regions and, thus, set the limits of the different growth zones in H. neptunium. We also attempted to follow the localization dynamics of other elongasome components, such as PBP2, MreC and MreD, but none of the corresponding fluorescent protein fusions was functional.

      In the past, we tried intensively to generate conditional mutants of lmdC, but all attempts to place the expression of this gene under the control of the copper- or zinc-inducible promoters available for H. neptunium were unsuccessful. To clarify the role of LmdC in H. neptunium morphogenesis, we have now established an inducible CRISPR interference system for this species and managed to block the ex-pression of lmdC using an sgRNA directed against the 5' region of its non-coding strand. We observed that cells lacking LmdC show a phenotype very similar to that of the ΔbacA mutant. Together with the finding that the N-terminal cytoplasmic region of LmdC physically interacts with BacA, this result strongly supports the hypothesis that BacA and LmdC act in the same pathway, forming a complex that ensures proper morphogenesis in H. neptunium (new Figure 9).

      The data presented illuminate aspects of bacterial morphogenesis and the physical and functional relationship between polymerizing proteins and cell wall enzymes in bacteria, a recurring theme in bacterial cell biology with a variety of underlying mechanisms. Bactofilins in particular are relatively recently discovered and any new insights into their functions and mechanisms of action are valuable. The findings presented here are likely to interest those studying bacterial morphogenesis, peptido-glycan, and cytoskeletal function.

      Reviewer #2 (Public Review):

      This is an excellent study. It starts with the identification of two bactofilins in H. neptunium, a demonstration of their important role for the determination of cell shape and discovery of an associated endopeptidase to provide a convincing model for how these two classes of proteins interact to control cell shape. This model is backed up by a quantitative characterisation of their properties using high-resolution imaging and image analysis methods.

      Overall, all evidence is very convincing and I do not have many recommendations on how to improve the manuscript.

      In my opinion, there are only two issues that I have with the paper:

      1. The single particle dynamics of BacA is presented as analysed and I would like to give some suggestions how to maybe extract even more information from the already acquired data:

      1.1. Presentation: Figure 5A is only showing projections of single particle time-lapse movies. To convince the reader that it was indeed possible to detect single molecules it would be helpful if the authors present individual snapshots and intensity traces. In case of single molecules these will show step wise bleaching.

      We have now added a supplementary video that shows both time series and intensity traces of individual BacA-YFP molecules (Figure 6—Video 1). It verifies the step-wise bleaching of the particles observed and thus shows that we observe the mobility of single molecules. Moreover, we have now included a supplementary figure that shows all trajectories identified within representative cells. This visualization provides a more comprehensive view of our data and further supports the notion that our analysis is based on the detection of single molecules.

      1.2. Analysis: Figure 5B and Supplement Figure 1 are showing the single particle tracking results, revealing that there are two populations of BacA-YFP in the cell. However, this data does not show if individual BacA particles transition between these two populations or not. A more detailed analysis of the existing data, where one can try to identify confinement events in single particle trajectories could be very revealing and help to understand the behaviour of BacA in more detail.

      We agree that an analysis of the single-molecule traces for transitions between the mobile and static states would help to achieve a more detailed understanding of the polymerization behavior of BacA. We believe that the dynamic formation, reorganization and disappearance of BacA-YFP foci observed by time-lapse analysis (Figure 4) indicates that BacA undergoes reversible polymerization in vivo. A deeper investigation of this aspect is beyond the scope of the present study and will be performed at a later point.

      1. The title of Fig. 3 says that BacA and BacD copolymerise, however, the data presented to confirm this conclusion is actually rather weak. First, the Alphafold prediction does not show the co-polymer, and second, the in vitro polymerisation experiments were only done with BacA in the absence of BacD. Accordingly, the only evidence that supports this is their colocalization in fluorescence microscopy. I suggest either weakening the statement or changing the title adds more evidence.

      To support the idea that BacA and BacD interact with each other, we have now added images of cells producing BacA-YFP or BacD-CFP individually (new Figure 3—figure supplement 1B,C). The results obtained show that Bac-YFP alone still forms filamentous structures, whereas BacD-CFP condenses into tight foci in the absence of its paralog. However, when produced together with BacA-YFP, the two proteins colocalize into filamentous structures, supporting the notion that they interact with each other. However, we agree that it is unclear whether BacA and BacD copolymerize into mixed protofilaments or whether they form distinct protofilaments that then interact laterally to form larger bundles. We have therefore replaced the term “co-polymerize” with “assemble” in the heading of this section.

      Finally, did the authors think about biochemical experiments to study the interaction between the cytoplasmic part of LmdC and the bactofilins? These could further support their model.

      We show the interaction between the cytoplasmic region of H. neptunium LmdC and BacA in Figure 9G,H (previously Figure 8D,E). For technical reasons, it was not possible to synthesize a peptide com-prising the corresponding region of R. rubrum LmdC, so that our in vitro analysis is limited to the H. neptunium proteins.

      To further support the notion that BacA interacts with the cytoplasmic region of LmdC, we have now analyzed the localization behavior of two LmdC variants with amino acid exchanges in the conserved cytoplasmic β-hairpin motif (new Figure 11). Both variants no longer colocalize with BacA and are no longer enriched at the inner cell curve. Interestingly, these exchanges also affect the enrichment of BacA at the inner cell curvature, suggesting that BacA needs to interact with LmdC for proper localization. It is tempting to speculate that BacA polymers have a preferred intrinsic curvature and that the activity of the BacA-LmdC complexes adjusts cell curvature in a manner that facilitates their association with the inner curve.

      Reviewer #1 (Recommendations for The Authors):

      We have the following specific recommendations for the improvement of the manuscript:

      1. Several places would benefit from additional quantitation of data:

      a. Figure 1 and supplements: can cell shape be quantified in a more specific way? (e.g. principle component analysis of shape as in https://onlinelibrary.wiley.com/doi/10.1111/mmi.13218). It looks as if BacD production may partially rescue the bacA shape phenotype?

      We have made considerable efforts to establish methods to quantify morphological changes and protein localization patterns in Hyphomonas neptunium. Since standard software packages, such as Oufti or MicrobeJ, are not able to reliably detect stalks and, thus, typically identify buds as separate cells, we have developed our own analysis software (BacStalk; Hartmann et al, 2020, Mol Microbiol), that is optimized for the detection of thin cellular extensions. However, while this software works very well with wild-type cells, it also fails to recognize amorphous cells with multiple, ill-defined extensions. Given these problems in cell segmentation, it is currently not possible to use principle component analysis to obtain a robust measure of the morphological defects of bactofilin mutants in H. neptunium.

      b. Figures 2-S2b, 7D and 9-S1b - can the area under the peaks be quantified and compared across strains? Visual examination of the spectra makes it difficult to discern differences.

      A direct comparison of the peak areas between strains is not possible, because the absolute values depend on the amount of peptidoglycan used in the muropeptide analyses. It is very difficult to precisely quantify peptidoglycan, which makes it challenging to use equal amounts of material from different strains in the reactions. However, the relative proportion of different muropeptide species, as provided in Figure 2—Dataset 1, faithfully reflects the composition of peptidoglycan and can easily compared between strains.

      c. Figure 9E,F, 9-S4d - BacA and LmdC localization in R. rubrum is very difficult to assess. It does not look linear/filamentous in most cells and is difficult to tell if it is associated with the inner curvature. Can you quantify the position of the signal along the short axis of the cell to better demonstrate that?

      We agree that a better quantification of the distribution of protein along the cell envelope of R. rubrum is required to support the conclusions drawn. To address this issue, we have now used line scans to measure the fluorescence intensities along the inner and outer curve of cells (n=200 per strain) and visualized the data in the form of demographs. The results clearly show an enrichment of BacA and LmdC at the inner curve in wild-type cells and a disruption of this pattern in various mutant backgrounds (new Figures 10F,G,J and 11D,E).

      1. Figure 2-S2A. Does ∆bacD grow better than wild-type? It would also be useful to add growth curves of the bacA complemented strains.

      In the case of H. neptunium growth curves are often misleading, because cells start to aggregate at the late exponential phase due to abundant EPS formation. The degree of cell aggregation also depends on the morphology of cells, because EPS production is limited to the mother cell body, which makes it challenging to compare morphologically distinct mutant strains. We have now performed growth assays for all H. neptunium deletion and complementation strains used in the study and limited the analysis of doubling times to the early and mid-exponential phase, in which cells do not yet form visible aggregates. The results obtained are now included in the new Figure 1F and Figure 1—figure supplement 2D. They show that the doubling times of the different bactofilin mutants are close to that of the wild-type strain.

      1. Figure 4BC: From the demographs provided, BacA and BacD appear to have different localization dynamics. BacD seems to stay at the base of the stalk, nearest the mother cell, whereas BacA migrates towards to bud? Also, "length" is misspelt in the panels.

      During the transition to bud formation, we indeed observe that the localization patterns of BacA and BacD are in many cases not fully superimposable, with BacD lagging behind BacA and forming transient additional clusters in the vicinity of the stalk base. Examples are now shown in Figure 4—figure supplement 4). This effect explains the distinct patterns in the demographs. We have now modified the text accordingly. We have also corrected the spelling of “length” in the figure.

      1. Can BacD polymerize on its own? It colocalizes with BacA in E. coli but that does not necessarily mean it co-polymerizes.

      Please see our response to a similar issue (point 2) raised by Reviewer #1.

      1. Lines 263-266. You use E. coli PG as a substrate for LmdC in vitro because "peptidoglycan from H. neptunium shows only a low degree of cross-linkage and hardly any pentapeptides." Does this not have relevance to the physiological significance of the observed activity? Or do you presume that LmdC activity (and/or that of other endopeptidases) is very high in H. neptunium so it is difficult to detect additional activity using HnPG as a substrate? It would be useful to clarify this logic in the text.

      DD-crosslinks are formed by all major peptidoglycan biosynthetic complexes, including the elongasome and the divisome, so that their general relevance to cell growth in H. neptunium is beyond doubt. The low degree of crosslinkage observed suggests that H. neptunium contains high endopeptidase activity, which cleaves crosslinks after their formation by DD-transpeptidases. We have now added the explanation “likely due to a high level of autolytic activity” to make this point clearer. Whether LmdC makes a major contribution to the low level of crosslinkage remains to be determined. However, our data suggest that it mostly acts in complex with BacA, so that it may only cleave peptidoglycan locally and not have a global effect global on cell wall composition. It would not possible to detect the DD-endopeptidase activity of LmdC using H. neptunium peptidoglycan as a substrate, because it has a low content of DD-linked peptide chains. To facilitate the in vitro activity assay, we therefore used highly crosslinked peptidoglycan from a mutant E. coli strain.

      1. Lines 268-269: Is there some explanation for why monomers do not increase on LmdC treatment? Here quantitation of peaks before and after treatment would allow the reader to more precisely interpret these data.

      The absolute peak sizes are not comparable, because there is some variation in the amount of peptido-glycan included in the assays (see also our comments on point 1b raised by Reviewer #1) and the integrated peak areas (which correspond to the amounts of muropeptide species produced) depend on both the height and the width of the peaks, which vary to some degree in different HPLC runs. The relevant measure to compare the muropeptide profiles is therefore the relative content of different muropeptide species in the different conditions. For clarification, we have now added the following sentence to the legend of Figure 8D: “A quantification of the relative abundance of different muropeptide species in each condition, based on a comparison of the relative integrated peak areas, is provided in Figure 8—Dataset 1.” The control reaction lacking LmdC only contains peptidoglycan diluted in buffer and thus provides insight into muropeptide composition of untreated peptidoglycan.

      1. Lines 280-283: It would be interesting to know if the transmembrane domain of LmdC is required for its localization since it is dispensable for binding BacA and since LmdC still localizes to foci without BacA.

      Given that it is currently not possible to localize LmdC in H. neptunium, we were not able to perform this analysis.

      1. Line 296: it is also possible that LmdC localizes with another protein and does not independently assemble into larger complexes.

      Since the localization pattern reported for LmdC in the ΔbacAD background is no longer valid, we have not discussed this aspect in the revised version of our manuscript. However, in general, we do not exclude the possibility that LmdC could interact with other peptidoglycan biosynthetic proteins.

      1. Line 304-306 and Fig 9: Is the domain organization of RrLmdC the same as for HnLmdC? It would be useful to include its domain organization as well. Also, please add amino acid numbering to Figure 9B.

      We have now added a schematic showing the domain organization of LmdC from R. rubrum (new Figure 10B). The protein is highly similar to its homolog from H. neptunium.

      1. Line 340-341: "In both cases, they functionally interact with LmdC-type DD-endopeptidases to promote local changes in the pattern of peptidoglycan biosynthesis." This conclusion is not experimentally supported. Since LmdC is essential and you could not make a depletion strain in H. neptunium, it was not shown that the interaction with LmdC is how BacA promotes changes in PG patterning. HADA/FDAA labeling was not performed in R. rubrum, and no global changes in PG chemistry were observed in bacA or lmdC mutants, so you cannot claim BacA or LmdC influences PG patterning there, either. Either soften this statement to a hypothesis or otherwise rephrase.

      To further corroborate a functional interaction between BacA and LmdC, we have now established an inducible CRISPRi system to deplete LmdC from H. neptunium cells (see also our comments on the public review of Reviewer #1). We observe that the loss of LmdC leads to a phenotype very similar to that observed for the ΔbacA(D) mutant, supporting the idea that BacA and LmdC act in the same path-way. We have now also performed localization studies of the elongasome component RodZ in H. nep-tunium, which demonstrate that the spatial distribution of elongasome complexes is affected in the absence of the bactofilin cytoskeleton in H. neptunium. Combined with the observation that LmdC is a catalytically active DD-endopeptidase and its absence leads to morphological defects, these results indicate that BacA, together with LmdC, induces local changes in pattern of peptidoglycan biosynthesis, both by affecting elongasome movement and, likely, by reducing peptidoglycan crosslinking in the cell envelope regions it occupies.

      1. Figure 9-S4: there is no panel C (change D to C).

      Corrected.

      1. Lines 344-355: No data is presented here to support the barrier model of bactofilin function. In addition, it is unclear why cells would take on amorphous shapes instead of extended rod shapes/filaments if elongasome function was not constrained on the longitudinal axis. It would be helpful to have more discussion of the potential mechanisms of LmdC function in H. neptunium in this section of the discussion since that is the emphasis of the results section.

      To support the barrier model, we have now compared the localization dynamics of the elongasome component RodZ in wild-type and ΔbacAD cells. The results show that RodZ is excluded from the stalk in the wild-type background, whereas it readily enters the stalk in the mutant cells, leading to the expansion of stalks into large, amorphous extensions. Consistent with these findings, HADA labeling is not observed within the stalks in wild-type cells, whereas it is readily observed in the enlarged stalk structures (pseudohyphae) formed in the mutant cells.

      The current model of MreB movement suggests that MreB filaments have an intrinsic curvature and thus preferentially align along regions of similar curvature, which is along the circumference of the cell in rod-shaped geometries. However, previous work has shown that MreB starts to move along randomly oriented trajectories as soon as cells lose their rod-shaped morphology and adopt more spherical shapes (Hussain et al, 2018, eLife). In line with these findings, our current and our previous work (Cserti et al, 2017, Mol Microbiol) indicate that the expansion of the ovoid H. neptunium mother cell prior to the onset of stalk biosynthesis as well as bud formation are mediated by the elongasome complex. Thus, the elongasome can clearly also give rise to shapes other than rods. Interestingly, however, the H. neptunium elongasome also appears to drive the formation of the rod-shaped stalk, possibly by moving around the circumference of the stalk base. Thus, species- or growth phase-dependent regulatory mechanisms or, potentially, differences in the spatial arrangement of the glycan strands within the peptido-glycan layer may result in different modes of elongasome movement and, thus, modulate the morphogenetic activity of elongasome complexes.

      1. Lines 395-397: It is also possible that LmdC positioning is dependent on cell morphology, rather than directly on BacA, since morphology is so distorted in bacA mutant cells.

      We provide several lines of evidence showing that LmdC and BacA functionally and physically interact (see above), making it highly unlikely that the two proteins are not associated with each other. How-ever, our previous (Figure 10I,J) and new (Figure 11) results suggest that the physical interaction with LmdC and/or or the cell shape-modulating activity of the complex are required for the proper localization of BacA at the inner curve of the cell. This finding may indicate the existence of a self-reinforcing cycle, in which the morphological changes induced by BacA-LmdC assemblies stimulate the recruitment of additional assemblies to their site of action.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      Ngoune et al. present compelling evidence that Slender cells are challenged to infect tsetse flies. They explore the experimental context of a recent important paper in the field, Schuster et al., that presents evidence suggesting the proliferative Slender bloodstream T. brucei can infect juvenile tsetse flies. Schuster et al. were disruptive to the widely accepted paradigm that the Stumpy bloodstream-form is solely responsible for tsetse infection and T. brucei transmission potential. Evidence presented here shows that in all cases, Stumpy form parasites are exponentially more capable of infecting tsetse flies. They further show that Slender cells do not infect mature flies.

      However, they raise questions of immature tsetse immunological potential and field transmission potential that their experiments do not address. Specifically, they do not show that teneral tsetse flies are immunocompromised, that tsetse flies must be immunocompromised for Slender infection nor that younger teneral tsetse infection is not pertinent to field transmission.

      Strengths:

      Experimental Design is precise and elegant, outcomes are convincing. Discussion is compelling and important to the field. This is a timely piece that adds important data to a critical discussion of host: parasite interactions, of relevance to all parasite transmission.

      Thank you

      Weaknesses:

      As above, the authors dispute the biological relevance of teneral tsetse infection in the wild, without offering evidence to the contrary. Statements need to be softened for claims regarding immunological competence or relevance to field transmission.

      We have modified the revised version to soften these claims (l.156 and l.159). Please, note that the limited immunocompetence of teneral flies has been extensively studied by the labs of S. Aksoy at Yale and M. Lehane at Liverpool. In the discussion, we provide key references from these two labs 18-21. Our comment on the relevance to field transmission is simply based on field observations of the fly biology.

      Reviewer #2:

      Summary:

      Contrary to findings recently reported by Schuster S et al., this short paper shows evidence that the stumpy form of T. brucei is probably the most pre-adapted form to progress with the life cycle of this parasite in the tsetse vector.

      Strengths:

      One of the most important pieces of experimental evidence is that they conduct all fly infection experiments in the absence of metabolites like GlcNAc or S-glutathione; by doing so, the infection rates in flies infected with slender trypanosomes seem very low or non-existent. This, on its own, is a piece of important experimental evidence that the Schuster S et al findings may need to be revisited.

      Thank you

      Weaknesses:

      I consider that the authors should have included their own experiments demonstrating that the addition of these chemicals enhances the infection rates in flies receiving bloodmeals containing slender trypanosomes.

      The main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies, not to reproduce the results obtained by Schuster et al.. We think that the suggested experiment is not necessary as L-Glutathion is well-known to enhance infection rates by reducing the fly immune response efficiency (Ref 24). Most of the experimental infections with procyclic or ST forms (even at low densities) published by our lab and others, especially for studying parasite stages in the salivary glands, were actually performed by complementing the infective meal with L-Glutathion for this reason.

      Reviewer #3:

      The dogma in the Trypanosome field is that transmission by Tsetse flies is ensured by stumpy forms. This has been recently challenged by the Engstler lab (Schuster et al.), which showed that slender forms can also be transmitted by teneral flies. In this work, the authors aimed to test whether transmission by slender forms is possible and frequent.

      For this, the authors repeated Tsetse transmission experiments but with some key critical differences relative to Schuster et al. First, they infected teneral and adult flies. Second, their infective meals lacked two components (N-acetylglucosamine and glutathione), which could have boosted the infection rates in the Schuster et al. work. In these conditions, the authors observed that most stumpy form infections with teneral and adult flies were successful while only 1 out of 24 slender-form infections was successful. Adult flies showed a lower infection rate, which is probably because their immune system is more developed.

      Given that in Tsetse-infested areas most transmission is likely ensured by adult flies, the authors conclude that the parasite stage that will have a significant epidemiologic impact on transmission is the stumpy form.

      Strengths:

      • This work tackles an important question in the field.

      • The Rotureau laboratory has well-known expertise in Tsetse fly transmission experiments.

      • Experimental setup is robust and data is solid.

      • The paper is concise and clearly written.

      Thank you

      Weaknesses:

      • The reason(s) for why this work has lower infection rates with slender forms than Schuster et al. remain unknown. The authors suggested it could be because of the absence of N-acetylglucosamine and/or glutathione, but this was not formally tested. Could another source of variation be the clone of EATRO1125 AnTat1.1 (Paris versus Munich origin)? To reduce the workload, such additional experiments could be done with just one dose of parasites.

      Differences between the strain clones, the cell culture conditions and/or the fly colony maintenance conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

      • The characterization of what is slender and stumpy is critical. The authors used PAD1 protein expression as the sole reporter. While this is a robust assay to confirm stumpy, an analysis of the cell cycle would have been helpful to confirm that slender forms have not initiated differentiation (Larcombe S et al. 2023, preprint).

      In this study, ST are indeed defined by their general morphology and by the expression of PAD1 proteins at the cell membrane as assessed by IFA. This is the simplest and most accurate ST proxy accessible by IFA. We do not think that monitoring in more details the cell cycle would provide key information here. If some SL forms had initiated differentiation in our experiments, then, the low infection rates observed with SL would have reinforced the fact that mostly mature PAD1+ ST are infectious for flies .

      • Statistical analysis is missing. Is the difference between adult and teneral infections statistically significant?

      An ANOVA statistical analysis was performed and a dedicated section was added to the revised version.

      For all conditions, MG infection rate comparisons between adult and teneral flies were statistically significant.

      Recommenda8ons for the authors:

      Reviewer #1:

      While some perceived outcomes pertaining to immunological competence and transmission relevance of teneral flies are overstated, the overall tone of the paper is inappropriately apologe7c. The authors obviously don't want to offend their colleagues but the current wri7ng style obscures meaning, making the paper a bit 'flowery' and difficult to read.

      Ngoune et al. have important outcomes that need to be stated more directly.

      Words such as 'unequivocally' are not appropriate to Schuster et al's outcomes. As your study shows, their findings are experimentally based, with inherent caveats, and are therefore sugges7ve, not demonstrated or proven.

      The word 'unequivocally' has been removed from the revision.

      Reviewer #3:

      The Engstler lab cul7vates AntTaT1.1 in methylcellulose (Munich clone, if I am not mistaken). The Rotureau lab uses the Paris AntTaT1.1 clone and uses no methylcellulose. Given that methylcellulose helps stumpy forma7on, it seems important to show that the results of this paper are reproducible with the Munich clone grown in the presence of methylcellulose.

      Differences between the strain clones and culture conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary of the reviewers’ discussion:

      • The development of MSI-1 as a post-transcriptional regulator of gene expression in Escherichia coli represents a valuable addition to the synthetic biology toolkit. MSI-1 has advantages over transcriptional regulators because it has the potential to target single genes in operons. Allosteric control of MSI-1 by oleic acid increases its versatility.

      Authors’ response: We thank the reviewers and editor for this evaluation.

      • We recommend that authors add experiments to test the mechanism of regulation by MSI-1 or soften their claims about translational regulation. We also recommend that the authors expand their discussion of other natural and synthetic regulatory systems that target translation.

      Authors’ response: In this revision, we have added new experimental results from RT-qPCR, bulk fluorometry, and flow cytometry assays to further support our conclusions. We have also enlarged the Introduction and Discussion.

      • Adding an experiment to quantify the effect of oleic acid with the most strongly regulated reporter construct (i.e., flow cytometry with redesign-3) would substantially increase the impact of the work.

      Authors’ response: We have done this experimental quantification (see the new Fig. 5d).

      Reviewer #1 (Public Review):

      The authors develop reporter constructs in E. coli where gene expression, presumably translation, is repressed by MSI-1. This is a potentially useful tool for synthetic biologists, with the advantage over transcriptional regulation that one gene in an operon could be targeted. That being said, an important caveat of translational regulation that is not addressed in the manuscript is the potential for downstream effects on RNA stability and/or transcription termination. The authors' MSI-1-regulated reporter constructs could also be useful for mechanistic studies of MSI-1.

      Authors’ response: We thank the reviewer for such appreciation of our work. Regarding the potential effects on RNA stability or transcription termination, we would like to highlight our results with the sfGFP-mScarlet bicistron (Fig. 6c), showing the specific regulation of sfGFP by MSI-1* and not of mScarlet. Anyway, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2).

      The author's initial construct design led to only weak regulation by MSI-1, presumably because the MSI-1 binding sites were not suitably positioned to repress translation initiation. A more rationally designed construct led to considerably greater repression. One weakness of the paper is that the authors did not use their redesigned construct that is more strongly repressed to demonstrate allosteric regulation by oleic acid using a comparable assay (e.g., flow cytometry) to that used in other experiments. The potential for allosteric regulation is a major strength of the MSI-1 system, so this is a significant gap. Similarly, the authors use the weakly regulated constructs to assess the effect of MSI-1 binding site mutations and for their mathematical modeling; these experiments would be better suited to the more strongly regulated construct.

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system (see the new Fig. 5d). Regarding the kinetic study, we focused on the reporter system with just one recognition motif for simplicity. A reporter system with two recognition motifs, thereby recruiting two different proteins, increases the complexity to distill the effect of point mutations.

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 5. Panels c-f look at colonies on plates, with numbers from these data being difficult to compare with either the bulk fluorescence or single-cell fluorescence values shown in other figures. Supplementary Figure 8 shows data for single cells; these data would be more appropriate in Figure 5, with the plate-based data moving to the supplement. Moreover, measuring the effect of oleic acid on the redesign-3 reporter using flow cytometry would assess the impact of oleic acid on the most strongly regulated reporter; this would be the most impactful analysis.

      Authors’ response: We have redone Fig. 5 to include flow cytometry data (also for the system implemented with the redesign-3 reporter).

      1. Paragraph starting line 438. The authors should briefly discuss the potential for translational repression leading to reduced RNA stability, and in the case of rapid repression that impacts transcription-coupled translation, its impact on Rho-dependent transcription termination. These factors could alter the expression of neighboring genes.

      Authors’ response: As we have shown with the RT-qPCR experiment, the mRNA level of the target gene does not change in response to protein binding. We agree that mRNA stability could potentially be changed by using other RNA-targeting proteins. But in our view, a reduction of RNA stability is not a regulation of translation. We have added the following sentence in the Discussion: “The additional use of RNA-binding proteins able to alter mRNA stability might lead to the implementation of more complex circuits at the posttranscriptional level.”

      1. Figure 1. It would be informative to include a control where cells have an empty plasmid rather than a plasmid expressing MSI-1, to address leakiness of MSI-1 expression.

      Authors’ response: We have constructed a void plasmid as suggested and performed new bulk fluorometry assays. The new Fig. S8 shows the tight control of MSI-1* expression with the PLlac promoter. No apparent leakage is observed.

      1. Line 132. Where were the two sequences positioned with respect to each other than the start codon? It would be helpful to show the sequence in Figure 1.

      Authors’ response: The precise sequence is shown in the inset of Fig. 1b. The motif is placed just after the start codon.

      1. Line 135. The authors envisioned repression mechanism isn't clear from the text, specifically the meaning of "block the progression" and "initial phase". As far as I know, there is no precedent for RNA-binding proteins repressing translation in bacteria by preventing translation elongation. Presumably, repression in the context described here would be due to MSI-1 binding over the ribosome-binding site, although the predicted hairpin may also occlude binding of initiating 30S ribosomes in the absence of MSI-1 binding.

      Authors’ response: It is difficult to know the exact mode of action. In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.”

      1. Figure 1e is overly complicated and hence is difficult to interpret. The key result is that mScarlet expression is unchanged as a function of lactose concentration. It is sufficient to show the inset graph as a supplementary figure panel and to conclude that regulation of sfGFP is at a post-transcriptional level. Similarly, the inset in Figure 4b is unnecessary.

      Authors’ response: The inset of Fig. 1e shows that the growth rate of the cells is almost constant when lactose varies. A change in growth rate will affect protein expression. The use of a two-reporter system, one regulated translationally and the other not, is instrumental to extract from fluorescence data estimates of transcription and translation rates. Of course, showing that mScarlet expression is almost constant when lactose varies would be sufficient, but we believe that performing a fine treatment of the data helps to better understand the regulatory system from a mathematical and mechanistic point of view. Therefore, despite increasing the complexity of the figure, we prefer to keep the representation of the Crick spaces (following Alon’s terminology, see our ref. 32). We have tried to carefully explain Fig. 1e in the text.

      1. Figure 1f and Figure 4c would be easier to interpret as two-dimensional plots.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      1. I don't think Figure 2e is relevant. The key result is shown in Figure 2f, i.e., the effect of mutations on regulation by MSI-1.

      Authors’ response: We agree with the reviewer that the key result is shown in panel f. However, we prefer to keep panel e in Fig. 2 because, even if negative, this result may incite further research. In addition, we avoid the rearrangement of the whole figure.

      1. Lines 311-313. Without additional evidence that the mutants are toxic, I suggest removing this text.

      Authors’ response: As suggested, we have removed that claim.

      Reviewer #2 (Public Review):

      Summary:

      Dolcemascolo and colleagues describe the use of the mammalian RNA-binding protein Musashi-1 (MSI-1) to implement translational regulation systems in E. coli. They perform detailed in vitro studies of MSI-1 and its binding to different RNA sequences. They provide compelling evidence of the effectiveness of the regulatory system in multiple circuits using different mRNA sequence motifs. They harness allosteric inhibition of MSI-1 by omega-9 monounsaturated fatty acids to demonstrate a fatty-acid-responsive circuit in E. coli.

      Strengths:

      The experimental results are compelling and the characterization of the binding between MSI-1 and different RNA sequences is thorough and performed via multiple complementary techniques. Several new useful circuit components are demonstrated.

      Authors’ response: We thank the reviewer for such appreciation of our work.

      Weaknesses:

      MSI-1 provides 8.6-fold downregulation of sfGFP with an optimized mRNA sequence. In some applications, a larger degree of repression may be required.

      Authors’ response: We agree with the reviewer in this point. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.”

      Reviewer #2 (Recommendations For The Authors):

      Overall, I think this paper is very well done and quite thorough. I only have minor suggestions:

      • For Figures 1f and 4c, it is quite hard to interpret the fraction of cells above the threshold with the 3d perspective. It would be clearer to use a more standard 2d plot where the histograms are offset along the y-axis and the threshold is indicated by a vertical line.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      • For Figure 4b, the highlighting of different sequence regions in red3 appears to be offset by one base (e.g. AAU is highlighted rather than AUG).

      Authors’ response: This has been corrected.

      • For line 504, it seems that MSI-1 is used for two different proteins. A different name should be assigned to this 200-residue protein to avoid confusion with the other MSI-1.

      Authors’ response: We now use the term MSI-1h* for the human version of the protein.

      • The note (Page S12) that A_0 + A_R = alpha/delta only applies in steady-state conditions, which should be stated.

      Authors’ response: We have specified that.

      • It seems that some authors work for the companies that sell some of the instruments/consumables used for the assays, specifically switchSENSE and LigandTracer. This may be something that should be declared under Competing Interests for the paper.

      Authors’ response: We are sorry for having missed this point. We have included a Competing Interests section to state that “RAHR and WFV work for Dynamic Biosensors. GPR and JB work for Ridgeview Instruments”.

      Reviewer #3 (Public Review):

      Summary:

      In this work, the authors co-opt the RRM-binding protein Musashi-1 to act as a translational repressor. The novelty of the work is in the adoption of the allosteric RRM protein Musashi-1 into a translational reporter and the demonstration that RRM proteins, which are ubiquitous in eukaryotic systems, but rare in prokaryotic ones, may act effectively as post-translational regulators in E. coli. The extent of repression achieved by the best design presented in this work is not substantially improved compared to other synthetic regulatory schemes developed for E. coli, even those that similarly regulate translation (eg. native PP7 repression is approximately 10-fold, Lim et al. J. Biol. Chem. 2001 276:22507-22513). Furthermore, the mechanism of regulation is not established due to missing key experiments. The work would be of broader interest if the allosteric properties of Musashi-1 were more effective in the context of regulation. Unfortunately, the authors do not demonstrate that fatty acids can completely de-repress expression in the experimental system used for most of their assays, nor do they use this ability in their provided application (NIMPLY gate).

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system, showing substantial de-repression of the system with the biochemical compound. We have redone Fig. 5 and modified the Results section accordingly. Aligned with the reviewers and editor, we believe that this new result helps to improve our manuscript.

      Strengths:

      The first major achievement of this work is the demonstration that a eukaryotic RRM protein may be used to posttranscriptionally regulate expression in bacteria. In my limited literature search, this appears to be the first engineering attempt to design an RBP to directly regulate translation in E. coli, although engineered control of translation via other approaches including alterations to RNA structure or via trans-acting sRNAs have been previously described (for review see Vigar and Wieden Biochim Biophys. Acta Gen. Subj. 2017, 1861:3060-3069). Additionally, several viral systems (e.g. MS2 and PP7) have been directly co-opted to work in a similar fashion in the past (utilized recently in Nguyen et al. ACS Synthetic Biol 2022, 11:1710-1718).

      Authors’ response: We thank the reviewer for such appreciation of our work.

      The second achievement of this work is the demonstration that the allosteric regulation of Musashi-1 binding can be utilized to modulate the regulatory activity. However, the liquid culture demonstration (Suppl. Fig 8) shows that this is not a very effective switch, with de-repressed reporter activity showing substantial change but not approaching un-repressed activity. This effect is stronger when colonies are grown on a solid medium (Fig. 5).

      Authors’ response: As we have previously indicated, the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system in liquid culture showed substantial de-repression with the biochemical compound. It is now stated in the text the following: “Nevertheless, the system implemented with the redesign-3 reporter displayed a better dynamic behavior in response to lactose and oleic acid. In particular, the percentage of cells in the ON state increased from 0 (with 1 mM lactose) to 71% upon addition of 20 mM oleic acid (Fig. 5d).” This new result helps to improve our manuscript.

      Weaknesses:

      In this work, the authors codon optimize the mouse Musashi-1 coding sequence for expression in E. coli and demonstrate using an sfGFP reporter that an engineered Musashi-1 binding site near the translational start site is sufficient to enable a modest reduction in reporter gene expression. The authors postulate that the reduction in expression due to inhibition of ribosome translocation along the transcript (lines 134/135), as an expression of a control transcript (mScarlet) driven by the same promoter (Plac) but without the Musashi-1 recognition site does not demonstrate the same repression. However, the situation could be more complex. Other possibilities include inhibition of translation initiation rather than elongation, as well as accelerated mRNA decay of transcripts that are not actively translated. The authors do not present any measurements of sfGFP mRNA levels.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In addition, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      In subsequent sections of the work, the authors create a series of point mutations to assess RNA-protein binding and assess these via both a sfGFP reporter and in vitro binding assays (switchSENSE). Ultimately, it is difficult to fully rationalize and interpret the behavior of these mutants in the context provided. The authors do identify a relationship between equilibrium constant (1/KD) and fold-repression. However, it is not clear from the narrative why this relationship should exist. Fold-repression is one measure of regulator efficacy, but it is an indirect measure determined from unrepressed and repressed expression. It is not clear why unrepressed expression (in the absence of the protein) is expected to be a function of the equilibrium constant.

      Authors’ response: A mathematical derivation from mass action kinetics on why the fold change scales with 1/KD is provided in Note S2. It is the ratio between the unrepressed and repressed expression (i.e., fold change) what scales with 1/KD, but not the expression of a particular state. This kind of relationship has been previously established in the case of transcription regulation [see e.g. Garcia & Phillips, PNAS (2011), our ref. 39]. Our mathematical modeling results expand previous work by providing a single picture from which to analyze transcription and translation regulation.

      Subsequent rational redesign of the Musashi-1 binding sequence to produce three alternative designs shows that fold-repression may be improved to approximately 8.6-fold. However, the rationalization of why the best design (red3) achieves this increase based on either the extensive modelling or in vitro measured binding constants is not well articulated. Furthermore, this extent of regulation is approximately that which can be achieved from the PP7 system with its native components (Lim et al. J. Biol. Chem. 2001 276:22507-22513).

      Authors’ response: In the case of translation control, the regulation is more challenging because the target is quickly degraded, especially in bacteria (in contrast to transcription control, where the target is stable). This is acknowledged in the manuscript. Even though, it is possible to engineer synthetic circuits with sRNAs or RNA-binding proteins with sufficient dynamic range. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.” Regarding the articulation of the results for the mutants and mathematical model, see our responses in the following questions.

      The application provided for this regulator (NIMPLY gate), is not an inherently novel regulatory paradigm, and it does not capitalize on the allosteric properties of Musashi-1, but rather treats Musashi-1 as a non-allosteric component of a regulatory circuit.

      Authors’ response: The NIMPLY gate refers to lactose and aTC as inputs. Considering oleic acid as an additional input will lead to a more complex logic. In the last Results section, we wanted to show that the post-transcriptional mechanism engineered with Musashi-1 can be useful specifically regulate a gene within an operon, to implement combinatorial regulation (i.e., coupling transcription and translation control), and to reduce protein expression noise. To these ends, the allosteric ability of the Musashi-1 was not so determinant. In this regard, it would be true that such fine regulatory effects might be achieved as well with non-allosteric RNA-binding proteins, such as MS2CP or PP7CP.

      Reviewer #3 (Recommendations For The Authors):

      1. In the introduction the authors should adequately address the native bacterial mechanisms that allow posttranscriptional regulation in bacteria as well as better discuss previous examples of translational repressors.

      Authors’ response: We have added the following paragraph in the Introduction: “Even though bacteria do not appear to exploit proteins to regulate translation in a gene-specific manner, it is worth noting that some bacteriophages do follow this mechanism to modulate their infection cycle. These are the cases, e.g., of the coat proteins of the phages MS2 (infecting Escherichia coli) or PP7 (infecting Pseudomonas aeruginosa), which regulate the expression of the cognate phage replicases through protein-RNA interactions [18]. However, one limitation for synthetic biology developments is that such phage proteins are not allosteric. At the post-transcriptional level, bacteria mostly rely on a large palette of cis- and trans-acting non-coding RNAs to either activate or repress protein expression, resulting in the regulation of translation initiation, mRNA stability, or transcription termination, and even allowing sensing small molecules [1,15]. Thus, there should be efforts to replicate this functional versatility with proteins in bacteria.”

      1. Given the location of the Musashi-1 binding site in the sfGFP reporter, it may be blocking translation initiation, rather than blocking the progression of the ribosome once attached (line 134/135). The schematic in Fig 1a. is also not overly clear in describing the differences in mechanisms between eukaryotic and prokaryotic systems described in the text.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

      1. The authors did not directly examine mRNA levels of their reporter to establish translational regulation. In many cases, inhibition of translation is accompanied by an increased degradation rate in bacterial systems. The authors do not seem to recognize this as a possible amplifier in their system, relying exclusively on normalization via another transcript produced from the same promoter (mScarlet).

      Authors’ response: For this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      1. The results presented for mutations 1-5 are not consistent with the author's models for what is occurring. In particular, mutant 1 displays a reduction in reporter production in the absence of Musashi-1, but the production in the presence does not change from the unaltered sequence. The claim that mutation 1 (in the UAG binding site) results in less binding and ultimately in less regulation is not substantiated since this loss of regulation is due to a reduction in unrepressed expression rather than an increase in expression when Musashi-1 is present.

      Authors’ response: We respectfully disagree with this appreciation. In the case of mutant 1, if the Musashi protein recognized the target mRNA with the same affinity as in the original scenario, the red bar would be much lower. Because the Musashi protein hardly recognizes the mutant-1 mRNA, the blue and red bars are quite similar. To clarify this point, we have added the following text in the manuscript: “Despite that mutation substantially reduced sfGFP expression in absence of MSI-1*, the presumed repressed state upon addition of lactose did not change much, suggesting the difficulty of the protein for targeting the mutated mRNA.”

      1. Given point 5 above, it is not clear to me why one would expect the 1/KD to be predictive fold-repression in the presence and absence of the repressor. I would rather see the relationship described as predictive in Fig. 2f (fold change vs. 1/KD) rather than the non-linear relationship. It is difficult to qualitatively evaluate the fit quality with the way the data are currently presented.

      Authors’ response: Note S2 provides a mathematical derivation from mass action kinetics on why the fold change scales with 1/KD. The R2 value that we provide for the fitting corresponds to the linear regression between fold and 1/KD, as specified in the figure legend. However, we think that the representation of fold vs. KD in log scale is more illustrative in this case.

      1. It is not clear what conclusion is determined from the computational modeling, or how this work contributes to the narrative presented. It does not seem like what is learned from these experiments is utilized for novel designs. Furthermore, several of the assumptions within the model may be problematic including the high rate of "elongation leakage" described and the lack of justification for RNA degradation rates utilized.

      Authors’ response: The mathematical modeling was performed to rationalize our experimental data. Our idea was more to recapitulate the observed dynamics than to guide the design of new systems. Our model might be exploited to this end in further research, as the reviewer suggests. Besides, elongation leakage is a concept that applies to both transcription and translation regulation systems, and it is not more than the ability of the RNA polymerase or ribosome to elongate even if there is a protein bound to the nucleic acid. This parameter can be set to 0 in the model if appropriate. Moreover, we cite the paper by Bernstein et al., PNAS (2002), our ref. 38, to justify that in E. coli the average mRNA half-life is about 5 min (i.e., degradation rate of 0.14 min-1).

      1. The data presented in Figure 4 are not presented in a consistent way. While it would be somewhat redundant, including the 0 and 1 mM lactose data for red3 in Figure 4a would be helpful for comparison purposes.

      Authors’ response: We have added the requested bar plot in Fig. 4a.

      1. The presence of additional Musashi-1 sites upstream of the start codon in red3, and their impact on impact on the fold-repression may support an inhibition of the translation initiation model rather than an inhibition of elongation.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study combines genetically barcoded rabies viruses with spatial transcriptomics in vivo in the mouse brain to decode connectivity of neural circuits. The data generated by the combination of these approaches in this new way is mostly convincing as the authors provide validation and proof-of-concept that the approach can be successful. While this new combination of established techniques has promise for elucidating brain connectivity, there are still some nuances and caveats to the interpretations of the results that are lacking especially with regards to noting unexpected barcodes either due to unexpected/novel connections or unexpected rabies spread.

      In this revised manuscript, we added a new control experiment and additional analyses to address two main questions from the reviewers: (1) How the threshold of glycoprotein transcript counts used to identify source cells was determined, and (2) whether the limited long-range labeling was expected in the trans-synaptic experiment. The new experiments and analyses validated the distribution of source cells and presynaptic cells observed in the original barcoded transsynaptic tracing experiment and validated the choice of the threshold of glycoprotein transcripts. As the reviewers suggested, we also included additional discussion on how future experiments can improve upon this study, including strategies to improve source cell survival and minimizing viral infection caused by leaky expression of TVA. We also provided additional clarification on the analyses for both the retrograde labeling experiment and the trans-synaptic tracing experiment. We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. Detailed changes to address specific comments by reviewers are included below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this preprint, Zhang et al. describe a new tool for mapping the connectivity of mouse neurons. Essentially, the tool leverages the known peculiar infection capabilities of Rabies virus: once injected into a specific site in the brain, this virus has the capability to "walk upstream" the neural circuits, both within cells and across cells: on one hand, the virus can enter from a nerve terminal and infect retrogradely the cell body of the same cell (retrograde transport). On the other hand, the virus can also spread to the presynaptic partners of the initial target cells, via retrograde viral transmission.

      Similarly to previously published approaches with other viruses, the authors engineer a complex library of viral variants, each carrying a unique sequence ('barcode'), so they can uniquely label and distinguish independent infection events and their specific presynaptic connections, and show that it is possible to read these barcodes in-situ, producing spatial connectivity maps. They also show that it is possible to read these barcodes together with endogenous mRNAs, and that this allows spatial mapping of cell types together with anatomical connectivity.

      The main novelty of this work lies in the combined use of rabies virus for retrograde labeling together with barcoding and in-situ readout. Previous studies had used rabies virus for retrograde labeling, albeit with low multiplexing capabilities, so only a handful of circuits could be traced at the same time. Other studies had instead used barcoded viral libraries for connectivity mapping, but mostly focused on the use of different viruses for labeling individual projections (anterograde tracing) and never used a retrograde-infective virus.

      The authors creatively merge these two bits of technology into a powerful genetic tool, and extensively and convincingly validate its performance against known anatomical knowledge. The authors also do a very good job at highlighting and discussing potential points of failure in the methods.

      We thank the reviewer for the enthusiastic comments.

      Unresolved questions, which more broadly affect also other viral-labeling methods, are for example how to deal with uneven tropism (ie. if the virus is unable or inefficient in infecting some specific parts of the brain), or how to prevent the cytotoxicity induced by the high levels of viral replication and expression, which will tend to produce "no source networks", neural circuits whose initial cell can't be identified because it's dead. This last point is particularly relevant for in-situ based approaches: while high expression levels are desirable for the particular barcode detection chemistry the authors chose to use (gap-filling), they are also potentially detrimental for cell survival, and risk producing extensive cell death (which indeed the authors single out as a detectable pitfall in their analysis). This is likely to be one of the major optimisation challenges for future implementations of these types of barcoding approaches.

      As the reviewer suggested, we included additional discussion about tropism and cytotoxicity in the revised Discussion. Our sensitivity for barcode detection is sufficient, since we estimated (based on manual proofreading) that most barcoded neurons had more than ten counts of a barcode in the trans-synaptic tracing experiment. The high sensitivity may potentially allow us to adapt next-generation rabies virus with low replication, such as the third generation ΔL rabies virus (Jin et al, 2022, biorxiv) in future optimizations.

      Overall the paper is well balanced, the data are well presented and the conclusions are strongly supported by the data. Impact-wise, the method is definitely going to be useful for the neurobiology research community.

      We thank the reviewer for her/his enthusiasm.

      Reviewer #2 (Public Review):

      Although the trans-synaptic tracing method mediated by the rabies virus (RV) has been widely utilized to infer input connectivity across the brain to a genetically defined population in mice, the analysis of labeled pre-synaptic neurons in terms of cell-type has been primarily reliant on classical low-throughput histochemical techniques. In this study, the authors made a significant advance toward high-throughput transcriptomic (TC) cell typing by both dissociated single-cell RNAseq and the spatial TC method known as BARseq to decode a vast array of molecularly labeled ("barcoded") RV vector library. First, they demonstrated that a barcoded-RV vector can be employed as a simple retrograde tracer akin to AAVretro. Second, they provided a theoretical classification of neural networks at the single-cell resolution that can be attained through barcoded-RV and concluded that the identification of the vast majority (ideally 100%) of starter cells (the origin of RV-based trans-synaptic tracing) is essential for the inference of single-cell resolution neural connectivity. Taking this into consideration, the authors opted for the BARseq-based spatial TC that could, in principle, capture all the starter cells. Finally, they demonstrated the proof-of-concept in the somatosensory cortex, including infrared connectivity from 381 putative pre-synaptic partners to 31 uniquely barcoded-starter cells, as well as many insightful estimations of input convergence at the cell-type resolution in vivo. While the manuscript encompasses significant technical and theoretical advances, it may be challenging for the general readers of eLife to comprehend. The following comments are offered to enhance the manuscript's clarity and readability.

      We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. We separated out the theoretical discussion about barcode sharing networks as a separate subsection, explicitly stated the rationale of how different barcode sharing networks are distinguished in the in situ trans-synaptic tracing experiment, and added additional discussion on future optimizations. Detailed descriptions are provided below.

      Major points:

      1. I find it difficult to comprehend the rationale behind labeling inhibitory neurons in the VISp through long-distance retrograde labeling from the VISal or Thalamus (Fig. 2F, I and Fig. S3) since long-distance projectors in the cortex are nearly 100% excitatory neurons. It is also unclear why such a large number of inhibitory neurons was labeled at a long distance through RV vector injections into the RSP/SC or VISal (Fig. 3K). Furthermore, a significant number of inhibitory starter cells in the somatosensory cortex was generated based on their projection to the striatum (Fig. 5H), which is unexpected given our current understanding of the cortico-striatum projections.

      The labeling of inhibitory neurons can be explained by several factors in the three different experiments.

      (1) In the scRNAseq-based retrograde labeling experiment (Fig. 2 and Fig. S3), the injection site VISal is adjacent to VISp. Because we dissected VISp for single-cell RNAseq, we may find labeled inhibitory neurons at the VISp border that extend short axons into VISal. We explained this in the revised Results.

      (2) In the in situ sequencing-based retrograde labeling experiment (Fig. 3,4), the proximity between the two injection sites VISal and RSP/SC, and the sequenced areas (which included not only VISp but also RSP) could also contribute to labeling through local axons of inhibitory neurons. Furthermore, because we also sequenced midbrain regions, inhibitory neurons in the superior colliculus could pick up the barcodes through local axons. We included an explanation of this in the revised Results.

      (3) In the trans-synaptic tracing experiment, we speculate that low level leaky expression from the TREtight promoter led to non-Cre-dependent expression in many neurons. To test this hypothesis, we first performed a control injection in which we saw that the fluorescent protein expression were indeed restricted to layer 5, as expected from corticostriatal labeling. Based on the labeling pattern, we estimated that about 12 copies of the glycoprotein transcript per cell would likely be needed to achieve fluorescent protein expression. Since many source cells in our experiment were below this threshold, these results support the hypothesis that the majority of source cells with low level expression of the glycoprotein were likely Cre-independent. Because these cells could still contribute to barcode sharing networks, we could not exclude them as in a conventional bulk trans-synaptic tracing experiment. In future experiments, we can potentially reduce this population by improving the helper AAV viruses used to express TVA and the glycoprotein. We included this explanation in Results and more detailed analysis in Supplementary Note 2, and discussed potential future optimizations in the Discussion. This new analysis in Supplementary Note 2 is also related to the Reviewer’s question regarding the threshold used for determining source cells (see below).

      1. It is unclear as to why the authors did not perform an analysis of the barcodes in Fig. 2. Given that the primary objective of this manuscript is to evaluate the effectiveness of multiplexing barcoded technology in RV vectors, I would strongly recommend that the authors provide a detailed description of the barcode data here, including any technical difficulties or limitations encountered, which will be of great value in the future design of RV-barcode technologies. In case the barcode data are not included in Fig. 2, I would suggest that the authors consider excluding Fig. 2 and Fig. S1-S3 in their entirety from the manuscript to enhance its readability for general readers.

      In the single-cell RNAseq-based retrograde tracing, all barcodes recovered matched to known barcodes in the corresponding library. We included a short description of these results in the revised manuscript.

      1. Regarding the trans-synaptic tracing utilizing a barcoded RV vector in conjunction with BARseq decoding (Fig. 5), which is the core of this manuscript, I have a few specific questions/comments. First, the rationale behind defining cells with only two rolonies counts of rabies glycoprotein (RG) as starter cells is unclear. Why did the authors not analyze the sample based on the colocalization of GFP (from the AAV) and mCherry (from the RV) proteins, which is a conventional method to define starter cells? If this approach is technically difficult, the authors could provide an independent histochemical assessment of the detection stringency of GFP positive cells based on two or more colonies of RG.

      In situ sequencing does not preserve fluorescent protein signals, so we used transcript counts to determine which cells expressed the glycoprotein. We have added new analyses in the Results and in Supplementary Note 2 to determine the transcript counts that were equivalent to cells that had detectable BFP expression. We found that BFP expression is equivalent to ~12 counts of the glycoprotein transcript per cell, which is much higher than the threshold we used. However, we could not solely rely on this estimate to define the source cells, because cells that had lower expression of the glycoprotein (possibly from leaky Cre-independent expression) may still pass the barcodes to presynaptic cells. This can lead to an underestimation of double-labeled and connected-source networks and an overestimation of single-source networks and can obscure synaptic connectivity at the cellular resolution. We thus used a very conservative threshold of two transcripts in the analysis. This conservative threshold will likely overestimate the number of source cells that shared barcodes and underestimate the number of single-source networks. Since this is a first study of barcoded transsynaptic tracing in vivo, we chose to err on the conservative side to make sure that the subsequent analysis has single-cell resolution. Future characterization and optimization may lead to a better threshold to fully utilize data.

      Second, it is difficult to interpret the proportion of the 2,914 barcoded cells that were linked to barcoded starter cells (single-source, double-labeled, or connected-source) and those that remained orphan (no-source or lost-source). A simple table or bar graph representation would be helpful. The abundance of the no-source network (resulting from Cre-independent initial infection of the RV vector) can be estimated in independent negative control experiments that omit either Cre injection or AAV-RG injection. The latter, if combined with BARseq decoding, can provide an experimental prediction of the frequency of double-labeled events since connected-source networks are not labeled in the absence of RG.

      We have added Table 2, which breaks down the 2,914 barcoded cells based on whether they are presynaptic or source cells, and which type of network they belong to. We agree with the reviewer that the additional Cre- or RG- control experiments in parallel would allow an independent estimate of the double labeled networks and the no-source networks. We have included added a discussion of possible controls to further optimize the trans-synaptic tracing approach in future studies in the Discussion.

      Third, I would appreciate more quantitative data on the putative single-source network (Fig. 5I and S6) in terms of the distribution of pre- and post-synaptic TC cell types. The majority of labeling appeared to occur locally, with only two thalamic neurons observed in sample 25311842 (Fig. S6). How many instances of long-distance labeling (for example, > 500 microns away from the injection site) were observed in total? Is this low efficiency of long-distance labeling expected based on the utilized combinations of AAVs and RV vectors? A simple independent RV tracing solely detecting mCherry would be useful for evaluating the labeling efficiency of the method. I have experienced similar "less jump" RV tracing when RV particles were prepared in a single step, as this study did, rather than multiple rounds of amplification in traditional protocols, such as Osakada F et al Nat Protocol 2013.

      We imaged an animal that was injected in parallel to assess labeling (now included in Supplementary Note 2 and Supp. Fig. S5). The labeling pattern in the newly imaged animal was largely consistent with the results from the barcoded experiment: most labeled neurons were seen in the vicinity of the injection site, and sparser labeling was seen in other cortical areas and the thalamus. We further found that most neurons that were labeled in the thalamus were about 1 mm posterior to the center of the injection site, and thus would not have been sequenced in the in situ sequencing experiment (in which we sequenced about 640 µm of tissue spanning the injection site).

      In addition, we found that the bulk of the cells that expressed mCherry from the rabies virus only partially overlapped with the area that contained cells co-expressing BFP with the rabies glycoprotein. Moreover, very few cells co-expressed mCherry and BFP, which would be considered source cells in a conventional mono-synaptic tracing experiment. The small numbers of source cells likely also contributed to the sparseness of long-range labeling in the barcoded experiment.

      These interpretations and comparisons to the barcoded experiment are now included in Supplementary Note 2.

      Reviewer #3 (Public Review):

      The manuscript by Zhang and colleagues attempts to combine genetically barcoded rabies viruses with spatial transcriptomics in order to genetically identify connected pairs. The major shortcoming with the application of a barcoded rabies virus, as reported by 2 groups prior, is that with the high dropout rate inherent in single cell procedures, it is difficult to definitively identify connected pairs. By combining the two methods, they are able to establish a platform for doing that, and provide insight into connectivity, as well as pros and cons of their method, which is well thought out and balanced.

      Overall the manuscript is well-done, but I have a few minor considerations about tone and accuracy of statements, as well as some limitations in how experiments were done. First, the idea of using rabies to obtain broader tropism than AAVs isn't really accurate - each virus has its own set of tropisms, and it isn't clear that rabies is broader (or can be made to be broader).

      As the reviewer suggested, we toned down this claim and stated that rabies virus has different tropism to complement AAV.

      Second, rabies does not label all neurons that project to a target site - it labels some fraction of them.

      We meant to say that retrograde labeling is not restricted to labeling neurons from a certain brain region. We have clarified in the text.

      Third, the high rate of rabies virus mutation should be considered - if it is, or is not a problem in detecting barcodes with high fidelity, this should be noted.

      Our analysis showed that sequencing 15 bases was sufficient to tolerate a small number of mismatches in the barcode sequences and could distinguish real barcodes from random sequences (Fig. 4A). Thus, we can tolerate mutations in the barcode sequence. We have clarified this in the text.

      Fourth, there are a number of implicit assumptions in this manuscript, not all of which are equally backed up by data. For example, it is not clear that all rabies virus transmission is synaptic specific; in fact, quite a few studies argue that it is not (e.g., detection of rabies transcripts in glial cells). Thus, arguments about lost-source networks and the idea that if a cell is lost from the network, that will stop synaptic transmission, is not clear. There is also the very real propensity that, the sicker a starter cell gets, the more non-specific spread of virus (e.g., via necrosis) occurs.

      We agree with the reviewer that how strictly virus transmission is restricted to synapses remains a hotly debated question in the field, and this question is relevant not only to techniques based on barcoded rabies tracing, but to all trans-synaptic tracing experiments. A barcoding-based approach can generate single-cell data that enable direct comparison to other data modalities that measure synaptic connectivity, such as multi-patch and EM. These future experiments may provide additional insights into the questions that the reviewer raised. We have included additional discussion about how non-synaptic transmission of barcodes because of the necrosis of source cells may affect the analysis in the Discussion.

      Regarding the scenario in which the source cell dies, we agree with the reviewer and have clarified in the revised manuscript.

      Fifth, in the experiments performed in Figure 5, the authors used a FLEx-TVA expressed via a retrograde Cre, and followed this by injection of their rabies virus library. The issue here is that there will be many (potentially thousands) of local infection events near the injection site that TVA-mediated but are Cre-dependent (=off-target expression of TVA in the absence of Cre). This is a major confound in interpreting the labeling of these cells. They may express very low levels of TVA, but still have infection be mediated by TVA. The authors did not clearly explore how expression of TVA related to rabies virus infection of cells near the rabies injection site. A modified version of TVA, such as 66T, should have been used to mitigate this issue. Otherwise, it is impossible to determine connectivity locally. The authors do not go to great lengths to interpret the findings of these observations, so I am not sure this is a critical issue, but it should be pointed out by the authors as a caveat to their dataset.

      We agree with the reviewer that this type of infection could potentially be a major contributor to no-source networks, which were abundant in our experiment. Because small no-source networks were excluded from our analyses, and large no-source networks were only included for barcodes with low frequency (i.e., it would be nearly impossible statistically to generate such large no-source networks from independent infections), we believe that the effect of independent infections on our analyses were minimized. We have added a control experiment in Fig S5 and Supplementary Note 2, which further supported the hypothesis that there were many independent infections. We also included additional discussion about how this can be assessed and optimized in future studies in the Discussion.

      Sixth, the authors are making estimates of rabies spread by comparison to a set of experiments that was performed quite differently. In the two studies cited (Liu et al., done the standard way, and Wertz et al., tracing from a single cell), the authors were likely infecting with a rabies virus using a high multiplicity of infection, which likely yields higher rates of viral expression in these starter cells and higher levels of input labeling. However, in these experiments, the authors need to infect with a low MOI, and explicitly exclude cells with >1 barcode. Having only a single virion trigger infection of starter cells will likely reduce the #s of inputs relative to starter neurons. Thus, the stringent criteria for excluding small networks may not be entirely warranted. If the authors wish to only explore larger networks, this caveat should be explicitly noted.

      In the trans-synaptic labeling experiment, we actually used high rabies titer (200 nL, 7.6e10 iu/mL) that was comparable to conventional rabies tracing experiments. We did not exclude cells with multiple barcodes (as opposed to barcodes in multiple source cells), because we could resolve multiple barcodes in the same cell and indeed found many cells with multiple barcodes. We have clarified this in the text.

      Overall, if the caveats above are noted and more nuance is added to some of the interpretation and discussion of results, this would greatly help the manuscript, as readers will be looking to the authors as the authority on how to use this technology.

      In addition to addressing the specific concerns of the reviewer as described above, we modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers and expanded the discussion on future optimizations.

      Reviewer #1 (Recommendations For The Authors):

      The scientific problem is clearly stated and well laid out, the data are clearly presented, and the experiments well justified and nicely discussed. It was overall a very enjoyable read. The figures are generally nice and clear, however, I find the legends excessively concise. A bit too often, they just sort of introduce the title of the panel rather than a proper explanation of what it is depicted. A clear case is for example visible in Fig 2, where the description of the panels is minimal, but this is a general trend of the manuscript. This makes the figures a bit hard to follow as self-contained entities, without having to continuously go back to the main text. I think this could be improved with longer and more helpful descriptions.

      We have revised all figure legends to make them more descriptive.

      Other minor things:

      In the cDNA synthesis step for in-situ sequencing, I believe the authors might have forgotten one detail: the addition of aminoallyl dUTP to the RT reaction. If I recall correctly this is done in BARseq. The fact that the authors crosslink with BS-PEG on day 2, makes me suspect they spike in these nucleotides during the RT but this is not specified in the relevant step. Perhaps this is a mistake that needs correction.

      The RT primers we used have an amine group at 5’, which directly allows crosslinking. Thus, we did not need to spike in aminoallyl dUTP in the RT reaction. We have clarified this in the Methods.

      Reviewer #2 (Recommendations For The Authors):

      Throughout the manuscript, there are frequent references to the "Methods" section for important details. However, it can be challenging to determine which specific section of the Methods the authors are referring to, and in some cases, a thorough examination of the entire Methods section fails to locate the exact information needed to support the authors' claims. Below are a few specific examples of this issue. The authors are encouraged to be more precise in their references to the Methods section.

      In the revised manuscript, we numbered each subsection of Methods and updated pointers and associated hyperlinks in the main text to the subsection numbers.

      • On page 7, line 14, it is unclear how the authors compared the cell marker gene expression with the marker gene expression in the reference cell type.

      We have clarified in the revised manuscript.

      • On page 7, line 33, the authors note that some barcodes may have been missed during the sequencing of the rabies virus libraries, but the Methods section lacked a convincing explanation on this issue (see my point 2 above).

      We included a separate subsection on the sequencing of rabies libraries and the analysis of the sequencing depth in the Methods. In this new subsection, we further clarified our reasoning for identifying the lack of sequencing depth as a reason for missing barcodes, especially in comparison to sequencing depth required for establishing exact molecule counts used in established MAPseq and BARseq techniques with Sindbis libraries.

      • On page 9, line 44, the authors state that they considered a barcode to be associated with a cell if they found at least six molecules of that barcode in a cell, as detailed in the Methods section. However, the rationale behind this level of stringency is not provided in the Methods.

      We initially chose this threshold based on visual inspection of the sequencing images of the barcoded cells. Because the labeled cell types were consistent with our expectations (Fig. 4E-G), we did not further optimize the threshold for detecting retrogradely labeled barcoded cells.

      • I have noticed that some important explanations of figure panels are missing in the legends, making it challenging to understand the figures. Below are typical examples of this issue.

      In addition to the examples that the reviewer mentioned below, we also revised many other figure panels to make them clear to the readers.

      • In Fig. 2, "RV into SC" in panel C does not make sense, as RV was injected into the thalamus. There is no explanation of the images in this panel C.

      We have corrected the typo in the revision.

      • In Fig. 3, information on the endogenous gene panel for cell type classification (Table S3) could be mentioned in the legend or corresponding text.

      We now cite Table S3 both in Fig 3 legend and in the main text. We also included a list of the 104 cell type marker genes we used in Table S3.

      • In panel J, it is unclear why the total number of BC cells is 2,752, and not 4,130 as mentioned in the text.

      This is a typo. We have corrected this in the revision. The correct number (3,746) refers to the number of cells that did not belong to either of the two categories at the bottom of the panel, and not the total number of neurons. To make this clear, we now also include the total number of barcoded cells at the top of the panel.

      • In Fig. 4, the definitions of "+" and "−" symbols in panels K and L are unclear. Also, it seems that the second left column of panel K should read "T −."

      We corrected the typo in K, further clarified the “Area” labels, and changed the “S” label in 4K to “−”. This change does not change the original meaning of the figure: when considering the variance explained in L4/5 IT neurons, considering the subclass compositional profile is equivalent to not using the compositional profiles of cell types, because L4/5 IT neurons all belong to the same subclass (L4/5 IT subclass). Although operationally we simply considered subclass-level compositional profiles when calculating the variance explained, we think that changing this to “−” is clearer for the readers.

      • In Fig. 5, panel E is uninterpretable.

      We revised the main text and the figure to clarify how we manually proofread cells to determine the QC thresholds for barcoded cells. These plots showed a summary of the proofreading. We also revised the figures to indicate that they showed the fraction of barcoded cells that were considered real after proofreading. In the revised version, we moved these plots to Fig. S5.

      • In Fig. S1, I do not understand the identity of the six samples on the X-axis of panel A (given that only two animals were described in the main text) and what panel B shows, including the definition of map_cluster_conf and map_cluster_corr.

      In the revised Fig. S1, we made it more explicit that the six animals include both animals used for retrograde tracing (2 animals) and those used for trans-synaptic tracing (4 animals). We updated the y axis labels to be more readable and cited the relevant Methods section for definitions.

      • In Fig. S2, please provide the definitions of blue and red dots and values in panel A, as well as the color codes and size of the circles in panel B. My overall impression from panel B is that there is no significant difference between RV-infected and non-infected cells. The authors should provide more quantitative and statistical support for the claim that "RV-infected cells had higher expression of immune response-related genes."

      We toned down the statement to “Consistent with previous studies […], some immune response related genes were up-regulated in virus-infected cells compared to non-infected cells.” Because the main point of the single-cell RNAseq analysis was that rabies did not affect the ability to distinguish transcriptomic types, the change in immune response-related genes was not essential to the main conclusions. We clarified the red and blue dots in panel A and changed panel B to show the top up-regulated immune response-related genes in the revised manuscript.

      • In Fig. S3, the definitions of the color code and circle size are missing.

      We have added the legends in Fig. S3.

    1. Reviewer #2 (Public Review):

      This paper seeks to determine whether the human visual system's sensitivity to causal interactions is tuned to specific parameters of a causal launching event, using visual adaptation methods. The three parameters the authors investigate in this paper are the direction of motion in the event, the speed of the objects in the event, and the surface features or identity of the objects in the event (in particular, having two objects of different colors).

      The key method, visual adaptation to causal launching, has now been demonstrated by at least three separate groups and seems to be a robust phenomenon. Adaptation is a strong indicator of a visual process that is tuned to a specific feature of the environment, in this case launching interactions. Whereas other studies have focused on retinotopically-specific adaptation (i.e., whether the adaptation effect is restricted to the same test location on the retina as the adaptation stream was presented to), this one focuses on feature-specificity.

      The first experiment replicates the adaptation effect for launching events as well as the lack of adaptation event for a minimally different non-causal 'slip' event. However, it also finds that the adaptation effect does not work for launching events that do not have a direction of motion more than 30 degrees from the direction of the test event. The interpretation is that the system that is being adapted is sensitive to the direction of this event, which is an interesting and somewhat puzzling result given the methods used in previous studies, which have used random directions of motion for both adaptation and test events.

      The obvious interpretation would be that past studies have simply adapted to launching in every direction, but that in itself says something about the nature of this direction-specificity: it is not working through opposed detectors. For example, in something like the waterfall illusion adaptation effect, where extended exposure to downward motion leads to illusory upward motion on neutral-motion stimuli, the effect simply doesn't work if motion in two opposed directions is shown (i.e., you don't see illusory motion in both directions, you just see nothing). The fact that adaptation to launching in multiple directions doesn't seem to cancel out the adaptation effect in past work raises interesting questions about how directionality is being coded in the underlying process. In addition, one limitation of the current method is that it's not clear whether the motion-direction-specificity is also itself retinotopically-specific, that is, if one retinotopic location were adapted to launching in one direction and a different retinotopic location adapted to launching in the opposite direction, would each test location show the adaptation effect only for events in the direction presented at that location?

      The second experiment tests whether the adaptation effect is similarly sensitive to differences in speed. The short answer is no; adaptation events at one speed affect test events at another. Furthermore, this is not surprising given that Kominsky & Scholl (2020) showed adaptation transfer between events with differences in speeds of the individual objects in the event (whereas all events in this experiment used symmetrical speeds). This experiment is still novel and it establishes that the speed-insensitivity of these adaptation effects is fairly general, but I would certainly have been surprised if it had turned out any other way.

      The third experiment tests color (as a marker of object identity), and pits it against motion direction. The results demonstrate that adaptation to red-launching-green generates an adaptation effect for green-launching-red, provided they are moving in roughly the same direction, which provides a nice internal replication of Experiment 1 in addition to showing that the adaptation effect is not sensitive to object identity. This result forms an interesting contrast with the infant causal perception literature. Multiple papers (starting with Leslie & Keeble, 1987) have found that 6-8-month-old infants are sensitive to reversals in causal roles exactly like the ones used in this experiment. The success of adaptation transfer suggests, very clearly, that this sensitivity is not based only on perceptual processing, or at least not on the same processing that we access with this adaptation procedure. It implies that infants may be going beyond the underlying perceptual processes and inferring genuine causal content. This is also not the first time the adaptation paradigm has diverged from infant findings: Kominsky & Scholl (2020) found a divergence with the object speed differences as well, as infants categorize these events based on whether the speed ratio (agent:patient) is physically plausible (Kominsky et al., 2017), while the adaptation effect transfers from physically implausible events to physically plausible ones. This only goes to show that these adaptation effects don't exhaustively capture the mechanisms of early-emerging causal event representation.

      One overarching point about the analyses to take into consideration: The authors use a Bayesian psychometric curve-fitting approach to estimate a point of subjective equality (PSE) in different blocks for each individual participant based on a model with strong priors about the shape of the function and its asymptotic endpoints, and this PSE is the primary DV across all of the studies. As discussed in Kominsky & Scholl (2020), this approach has certain limitations, notably that it can generate nonsensical PSEs when confronted with relatively extreme response patterns. The authors mentioned that this happened once in Experiment 3 and that a participant had to be replaced. An alternate approach is simply to measure the proportion of 'pass' reports overall to determine if there is an adaptation effect. I don't think this alternate analysis strategy would greatly change the results of this particular experiment, but it is robust against this kind of self-selection for effects that fit in the bounds specified by the model, and may therefore be worth including in a supplemental section or as part of the repository to better capture the individual variability in this effect.

      In general, this paper adds further evidence for something like a 'launching' detector in the visual system, but beyond that, it specifies some interesting questions for future work about how exactly such a detector might function.

      Kominsky, J. F., & Scholl, B. J. (2020). Retinotopic adaptation reveals distinct categories of causal perception. Cognition, 203, 104339. https://doi.org/10.1016/j.cognition.2020.104339

      Kominsky, J. F., Strickland, B., Wertz, A. E., Elsner, C., Wynn, K., & Keil, F. C. (2017). Categories and Constraints in Causal Perception. Psychological Science, 28(11), 1649-1662. https://doi.org/10.1177/0956797617719930

      Leslie, A. M., & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25(3), 265-288. https://doi.org/10.1016/S0010-0277(87)80006-9

    1. Reviewer #2 (Public Review):

      Summary:

      A dominant hypothesis concerning the origin of life is that, before the appearance of the first enzymes, RNA replicated non-enzymatically by templating. However, this replication was probably not very efficient, due to the propensity of single strands to bind to each other, thus inhibiting template replication. This phenomenon, known as product inhibition, has been shown to lead to parabolic growth instead of exponential growth. Previous works have shown that this situation limits competition between alternative replicators and therefore promotes RNA population diversity. The present work examines this scenario in a model of RNA replication, taking into account finite population size, mutations, and differences in GC content. The main results are (1) confirmation that parabolic growth promotes diversity, but that when the population size is small enough, sequences least efficient at replicating may nevertheless go extinct; (2) the observation that fitness is not only controlled by the replicability of sequences, but also by their GC content ; (3) the observation that parabolic growth attenuates the impact of mutations and, in particular, that the error threshold to which exponentially growing sequences are subject can be exceeded, enabling sequence identity to be maintained at higher mutation rates.

      Strengths:

      The analyses are sound and the observations are intriguing. Indeed, it has been noted previously that parabolic growth promotes coexistence, its role in mitigating the error threshold catastrophe - which is often presented as a major obstacle to our understanding of the origin of life - had not been examined before.

      Weaknesses:

      Although all the conclusions are interesting, most are not very surprising for people familiar with the literature. As the authors point out, parabolic growth is well known to promote diversity (Szathmary-Gladkih 89) and it has also been noted previously that a form of Darwinian selection can be found at small population sizes (Davis 2000). Given that under parabolic growth, no sequence is ever excluded for infinite populations, it is also not surprising to find that mutations have a less dramatic exclusionary impact.

      A general weakness is the presentation of models and parameters, whose choices often appear arbitrary. Modeling choices that would deserve to be further discussed include the association of the monomers with the strands and the ensuing polymerization, which are combined into a single association/polymerization reaction (see also below), or the choice to restrict to oligomers of length L = 10. Other models, similar to the one employed here, have been proposed that do not make these assumptions, e.g. Rosenberger et al. Self-Assembly of Informational Polymers by Templated Ligation, PRX 2021. To understand how such assumptions affect the results, it would be helpful to present the model from the perspective of existing models.

      The values of the (many) parameters, often very specific, also very often lack justifications. For example, why is the "predefined error factor" ε = 0.2 and not lower or higher? How would that affect the results? Similarly, in equation (11), where does the factor 0.8 come from? Why is the kinetic constant for duplex decay reaction 1.15e10−8? Are those values related to experiments, or are they chosen because specific behaviors can happen only then?

      The choice of the model and parameters potentially impact the two main results, the attenuation of the error threshold and the role of GC content:

      Regarding the error threshold, it is also noted (lines 379-385) that it disappears when back mutations are taken into account. This suggests that overcoming the error threshold might not be as difficult as suggested, and can be achieved in several ways, which calls into question the importance of the particular role of parabolic growth. Besides, when the concentration of replicators is low, product inhibition may be negligible, such that a "parabolic replicator" is effectively growing exponentially and an error catastrophe may occur. Do the authors think that this consideration could affect their conclusion? Can simulations be performed?

      Regarding the role of the GC content, GC-rich oligomers are found to perform the worst but no rationale is provided. One may assume that it happens because GC-rich sequences are comparatively longer to release the product. However, it is also conceivable that higher GC content may help in the polymerization of the monomers as the monomers attach longer on the template (as described in Eq.(9)). This is an instance where the choice to pull into a single step the association and polymerization reactions are pulled into a single step independent of GC content may be critical. It would be important to show that the result arises from the actual physics and not from this modeling choice.

      Some more specific points that would deserve to be addressed:

      - Line 53: it is said that p "reflects how easily the template-reaction product complex dissociates". This statement is not correct. A reaction order p<1 reflects product inhibition, the propensity of templates to bind to each other, not slow product release. Product release can be limiting, yet a reaction order of 1 can be achieved if substrate concentrations are sufficiently high relative to oligomer concentrations (von Kiedrowski et al., 1991).

      - Population size is a key parameter, and a comparison is made between small (10^3) and large (10^5) populations, but without explaining what determines the scale (small/large relative to what?).

      - In the same vein, we might expect size not to be the only important parameter, but also concentration.

      - Lines 543-546: if understanding correctly, the quantitative result is that the error threshold rises from 0.1 in the exponential case to 0.196 in the parabolic. Are the authors suggesting that a factor of 2 is a significant difference?

      - Figure 3C: this figure shows no statistically significant effect?

      - line 542: "phase transition-like species extension (Figure 4B)": such a clear threshold is not apparent.

    1. Author Response

      The following is the authors’ response to the original reviews.

      RESPONSE TO REVIEWERS:

      Reviewer #1 (Recommendations For The Authors):

      I think the manuscript of this excellent work can be improved, especially in writing (including a suggestion in the title) and presentation (Figure 6); Also some additional specific experiments and analyses could be important, as I suggest below,

      1. For the title, perhaps a shorter "The acetylase activity of Cdu1 protects Chlamydia effectors from degradation" would be better to convey the major significance of this work. Of course, Cdu1 must regulate the function of InaC, IpaM and CTL0480. But perhaps it is speculative to think that egress is the major function of these effectors as their activity on other host cell processes during the cycle could eventually impact the extrusion process indirectly.

      Although we concur with the insights provided by reviewer 1, we wish to underscore that a significant breakthrough presented in our study revolves around the regulation of Chlamydia exit by Cdu1. Consequently, we believe that this noteworthy discovery should be incorporated into the title.

      1. For the writing:

      a. The description of ubiquitination and DUBs could be synthesized to the essential, so that space is gained to explain things that then come a bit out of the blue in the results (what are Incs, the specific functions of InaC, IpaM, and CTL0480 - at least place the citations in lines 110-112 next to the corresponding Incs -, Cdu2, etc - see specifics below)

      In lines 182-196 of the revised manuscript, we have incorporated additional contextual information concerning the roles of Incs, along with descriptions of the functions of InaC, IpaM, and CTL0480.

      b. In the Results, there is a lot of Chlamydia- and maybe lab-specific jargon that could be significantly simplified for the more general reader. I detail some suggestions below in the specific issues.

      We have improved the readability of our manuscript for a general audience by removing Chlamydia-specific terminology from the entire text and figures.

      1. For the figures:

      a. Figure 6, this figure could be reorganized: why two graphs in panel D? If detailed quantifications were done, perhaps in panel B just zoom on the examples of Golgi distributed/compacted? And again the labelling Rif-R L2, L2 pBOMB, M407 p2TK2, etc, simplify?

      Figure 6 has undergone restructuring. The representative images have been relocated to Supplemental Figures 5 and 6, while we have introduced sample images demonstrating F-actin assembly and Golgi repositioning. Furthermore, the quantification of Golgi dispersal has been streamlined into a single panel. Additionally, we have simplified the labeling of the strains utilized in the study.

      b. Figure 3, in the labelling, WT, inaC null, cdu1::GII wouldn't be enough? Leave the details to the legend and/or M&M.

      We have simplified the labeling of Ct strains in Figure 3.

      c. Figure 3C, these arrowheads should not be so symmetric (small arrows instead?) and it is unclear that the indicated cells do not show CTL0480.

      We have substituted arrowheads with small arrow symbols and have also revised the Figure to incorporate a new representative image that prominently illustrates the absence of CTL0480 at the inclusion membrane of some cdu1::GII inclusions within infected Hela cells at 36 hpi.

      1. Experiments:

      a. In Figure 7, at least extrusion should be analysed also with the Cdu1-deficient strain expressing Ac-deficient Cdu1 and the inaC and ipaM phenotypes should be complemented.

      We have conducted additional experiments to analyze extrusion production in Hela cells infected with a cdu1 null strain expressing the acetylase-deficient Cdu1 variant. We have incorporated the relevant data into revised Figure 7, where the impact of this strain on extrusion production and size is presented. Additionally, we updated Supplemental Figure 8 to include data illustrating the number of inclusions produced by this strain. We have also addressed these new results in the revised manuscript (lines 424-432). We are currently complementing inaC and ipaM mutant strains with various InaC and IpaM constructs that will be used in a follow up manuscript.

      b. Does overexpression of InaC, IpaM, or CTL0480 in a cdu1-null background prevent the degradation of these Incs and suppress the defects of cells infected by the cdu1 mutant (F-actin, Golgi, MYPT1)? This would show that the multiple phenotypes displayed by cells infected by the cdu1 null mutant are indeed related to the decreased levels of InaC, IpaM and CTL0480.

      We opted not to include data from the overexpression of these effectors in a cdu1-null background due to an unexpected decrease in shuttle plasmid load during overexpression. This development prompted concerns regarding the potential detrimental effects of overexpressing these effectors in the absence of Cdu1. Data supporting this observation are not included in this report.

      c. Figures 3A and 3B should be quantified (it says it is from 3 independent experiments). It would be important to have a relative perspective of how much Cdu1 protects these Incs over time (for InaC, it would also be nice to have the 36 and 48 hpi time-point). This is in contrast with the microscopy data in Figure 5, which illustrates very clear effects, and the quantification is a bit redundant.

      In Figure 3, we have incorporated a new Western Blot image showing endogenous InaC protein levels in Hela cells following infection with both WT Ct and cdu1::GII strains at 24, 36, and 48 hours post-infection (hpi). Additionally, we have quantified the Western Blot signals for both InaC and IpaM, and these results are also presented in Figure 3. The quantification of MYPT1 recruitment has been relocated to a supplementary figure. We have also included details regarding the methodology employed for the quantification of Western Blot signals in the Materials and Methods section.

      d. What is the subcellular localization of InaC, IpaM, CTL0480 and Cdu1 when analysed by transfection? Does Cdu1 bind to of InaC, IpaM, CTL0480 in infected cells? If this was attempted and unsuccessful it should be mentioned.

      In transfected HEK cells, InaC, IpaM, CTL0480, and Cdu1 all exhibit cytoplasmic localization with a diffuse pattern (data not shown). Despite our efforts, we encountered challenges in observing co-immunoprecipitation of Cdu1 with all three Incs in infected Hela cells at 24 hpi, We have duly acknowledged this limitation in our findings, as reflected in line 221-226 of the revised manuscript.

      1. Specific issues:

      2. Line 87, "propagule" is really needed to describe the EB?

      The EB is the infectious form of Chlamydia species that spreads within the host to renew its life cycle; thus, "propagule" is a suitable term to characterize the EB.

      • Exocytosis implies fusion with the plasma membrane so "inclusion is exocytosed" (line 91) is not entirely correct.

      In line 91 of the revised manuscript, we referred to extrusion as the exit of an intact inclusion from the host cell and omitted the use of "exocytosed" to describe this process.

      • Line 126, "a Ct L2 (LGV L2 434 Bu) background". Maybe "a Ct cdu1-null strain" would be enough and leave the detail for Materials and Methods.

      In line 128 of the revised manuscript, we omitted "(LGV L2 434 Bu)" to avoid using jargon that may be unfamiliar to readers not well-versed in Chlamydia terminology.

      • Line 138, in the previous Pruneda et al, Nature Microbiol 2018, the title of figure 4 is "ChlaDUB deubiquitinase activity is required for C. trachomatis Golgi fragmentation", so why raise this hypothesis? And why in the end is the acetylation activity of Cdu1 that promotes Golgi distribution? I think this related with infection vs transfection experiments but it deserved to be briefly explained/discussed.

      In lines 140-142 of the revised manuscript, we provide clarification that the DUB activity of Cdu1 is required for Golgi fragmentation in transfected cells. This observation supports our initial hypothesis suggesting that the DUB activity of Cdu1 is also required for Golgi distribution in infected cells, and our rationale for identifying targets of its DUB activity.

      • Lines 147-155, what is the relevance of this non-ubiquitinated proteins that come along? Couldn't this be synthesized?

      We have included a discussion on non-ubiquitinated proteins, as they could potentially encompass proteins that interact with those protected by Cdu1. This perspective provides supplementary insights into the roles of proteins targeted for ubiquitination in the absence of Cdu1. The results of this analysis have been succinctly summarized in a single paragraph within the initial manuscript (lines 151-159 of the revised manuscript).

      • Line 170, I think it is the first time that "Type 3 secretion"; perhaps explain in the introduction.

      Type 3 secretion systems have been extensively characterized and discussed in the literature, and we anticipate that the majority of our readers are well-acquainted with this secretory mechanism.

      • Line 184, I think it is the first time "microdomains" are mentioned; perhaps mention in the introduction.

      The definition of "microdomains" has been provided in line 191 of the revised manuscript.

      • Figure 2, as it stands the analysis with truncated Cdu1 proteins adds little to the work. Binding to the Incs seems to be affected when the TM domain is not present, but it still binds. And this is in a transfection context.

      The results depicted in Figure 2, involving truncated Cdu1 proteins, illustrates that Cdu1 is capable of interacting with InaC, IpaM, and CTL0480 even in the absence of infection. This finding serves as evidence suggesting that all three Incs could potentially serve as direct targets for Cdu1 activity. As a result, we prefer to keep these findings in the manuscript.

      • Line 219, "late stages of infection", this is shown (albeit not completely quantified) for IpaM and CTL0480, but not for InaC.

      In the revised Figure 3, we show InaC protein levels at 24, 36, and 48 hours post-infection, and we have incorporated quantitative data for both InaC and IpaM protein levels in the context of Hela cells infected with both WT L2 and cdu1::GII strains. This updated figure serves to emphasize the pivotal role of Cdu1 in safeguarding all three Incs during the late stages of infection.

      • Line 233, "pBOMB-MCI backbone" - is this needed in the Results section? And this refers to Figure 4 while pBOMB appear already in Fig. 3.

      We have removed “pBOMB-MCI backbone” in the revised manuscript.

      • Line 236, should be cdu1 endogenous promoter.

      In line 265 of the revised manuscript we have replaced Cdu1 with cdu1 (italicized).

      • Line 263, WT.

      In line 293 of the revised manuscript we replaced “wild type” with “WT”.

      • Line 277, IncA instead of "the Inc protein IncA".

      In the manuscript we wanted to emphasize that IncA is also an inclusion membrane protein, therefore we have included “the Inc protein IncA” in the revised manuscript to avoid any confusion.

      • How does the data in Figure 5 relates to the relatively few proteins ubiquitinated in cells infected with cdu1-mutant Ct? These Ub-labelling corresponds to ubiquitinated InaC, IpaM and CTL0480?

      The findings presented in Figure 5 demonstrate that the acetylase activity of Cdu1 plays a crucial role in enabling Ct to block all ubiquitination events taking place on or in proximity to the periphery of the inclusion membrane. This encompasses Cdu1 targets that might not have been identified through our proteomic analysis.

      • Lines 299-301, "M923 inclusions", there is certainly a clear way to write this.

      In lines 326-327 and 332-332 of the revised manuscript, we have clarified that “M923” is an incA null strain to provide clarification.

      • Line 309, is "peripheries" correct?

      We have changed “peripheries” with “periphery” in the revised manuscript (line 360).

      • Line 312, "Rif-R L2" and "M407" - can this be simplified?

      In the revised manuscript, "Rif-R L2" was substituted with "WT L2" in lines 363 and 382, while "M407" was exchanged with "an inaC null strain" in lines 311, 367, and 368. These same replacements were applied to the Figures and their corresponding legends for consistency.

      • Lines 308-321, and 326-335, these % are all approximate figures and this should be made clear.

      In lines 364-395 of the revised manuscript we have stated that all percentages are approximate values.

      • Fig. S1, kb and not k.b; what's the "+ control"; and is not really possible to have a PCR that works for the *? 3 kb is not that long.

      In the updated Figure S1, we have corrected "k.b" to "kb". In the legend of Figure S1, we have clarified that the + control corresponds to the cdu2 locus. Moreover, we could not cleanly amplify a 3 kb PCR product from bacteria in whole cell lysates of infected mammalian cells (Vero cells).

      • Fig. S2, kb and not k.b, bp and not b.p

      In the updated Figure S2, we have corrected “k.b” with “kb” and “b.p” with “bp”.

      Reviewer #2 (Recommendations For The Authors):

      Figure 1 describes an affinity-based purification and mass spectrometric identification of differentially ubiquitinated proteins (host and chlamydial). Through different permutations of combinations of infection (mock, wild type, and Cdu1 mutant), three effectors, IpaM, InaC, and CTL0480, were identified as putative targets of Cdu1. The authors used a high-stringency cutoff, which could explain identification of only three targets. Having said this, the localization of Cdu1 to the inclusion membrane would be expected to also narrow down the number of targets. Interestingly, Cdu2, another deubiquitinase remained active in these experiments, which could have affected identification of Cdu1 targets. The authors addressed this issue by referring to previously reported structural studies. A somewhat glaring omission is the lack of reference to NF-kB as a substrate of ChlaDub1/Cdu1. In experiments by Le Negrate et al., ChlaDub1 ectopic overexpression in cells led to the deubiquitination of IkB-alpha, thus inhibiting the nuclear translation of NF-kB. Based on the inclusion membrane localization of Cdu1 during infection, is the identification of IkB an artifact of overexpression of Cdu1, or is it still a bona fide Cdu1 target?

      We conducted experiments using our cdu1 null strain to investigate whether IκBα could be a target of Cdu1 activity. While our findings are intriguing and relevant, it is not feasible to determine, at this stage, whether our findings result from a direct or indirect consequence of Cdu1 localizing to the inclusion membrane. Consequently, these findings extend beyond the scope of the current manuscript. We plan to explore the implications of our observations more deeply in a subsequent manuscript, where we intend to provide a more comprehensive and mechanistic analysis based on these preliminary findings. Additionally, we have referenced the potential targeting of IκBα by Cdu1 in lines 100-101 and 166-171 of the revised manuscript.

      Figure 2 demonstrates the individual interaction of the identified effectors with Cdu1. Interaction at the inclusion membrane is inferred from colocalization studies, while protein-protein interaction is monitored using ectopic overexpression of tagged versions of Cdu1 and the individual effectors. This is somewhat of a weakness of the manuscript because the mechanism of action of Cdu1 towards its target hinges on protein-protein interaction.

      Despite our efforts, we encountered challenges in co-immunoprecipitating endogenous Cdu1 with all three Incs in infected Hela cells at 24 hpi. There are multiple technical reasons as to why these interactions, which are predicted to be transient, will not be captured by bulk affinity approaches such as immunoprecipitations, especially when the starting materials are present in very low abundance. We acknowledged these limitations in our findings, as reflected in lines 221-226 of the revised manuscript.

      Figure 3 provides the first evidence in this paper of the importance of the inferred interaction of Cdu1 with the three effectors. The authors show that the loss of cdu1 has stability consequences on the three effectors. This figure would benefit from quantifying InaC- or IpaM-positive inclusions in the same manner done with CTL0480. The timepoint-dependent effect of Cdu1 loss of function is intriguing. Do InaC and IpaM retention at the inclusion show the same timepoint-dependent characteristic?

      In the revised Figure 3, we have incorporated InaC protein levels at 24, 36, and 48 hours post-infection. Additionally, we have included quantitative data representing both InaC and IpaM protein levels in HeLa cells infected with both WT L2 and cdu1::GII strains. The quantification of CTL0480 localization to cdu1::GII inclusions has been moved to a supplementary figure.

      This updated figure illustrates that the absence of Cdu1 has a time-dependent impact on both InaC and IpaM. However, it is noteworthy that the kinetics of degradation for these two proteins diverge significantly.

      For Figure 7, the authors should consider monitoring timing of inclusion extrusion to gain additional insight into the functional interactions between the effectors. For example, the loss of CTL0480 leads to increased extrusion, implying a role in delaying or suppressing extrusion. In a time-course experiment, a CTL0480 mutant could exhibit an earlier occurrence of inclusion extrusion.

      One of the principal discoveries of this study is that Cdu1, InaC, IpaM, and CTL0480 collaborate to facilitate optimal extrusion of Ct from host cells. These findings represent a significant contribution to our understanding of how Chlamydia controls its exit from infected cells. We are currently in the process of expanding on these results. A forthcoming follow-up manuscript will provide more detailed and comprehensive exploration of these findings.

      Reviewer #3 (Recommendations For The Authors):

      Specific comments.

      a. I have some concerns related to the time point chosen for mass spec analysis and potential caveats and alternative interpretations. This work was done relatively early (24 hours) compared to the most convincing Cdu1 functions that occur later, thus this may limit the authors global understanding of protein changes. For example, the known substrate of Cdu1, Mcl-1 was not identified but this is altered relatively late during infection. Thus, the surprise that minimal host proteins are altered in ubiquitination may be partially driven by the timing of the assay. This should be more clearly discussed as a caveat.

      In the revised manuscript (lines 166-171), we have acknowledged that there might be additional targets of Cdu1 that remain unidentified, primarily due to the specific time point we utilized in our study.

      b. Another caveat to these studies is while the loss of Cdu1 alters different effectors stability and function and extrusion size, these changes do not modulate bacterial growth in cells. The authors speculate that regulating extrusion size may alter interactions with innate cells to drive dissemination. However, a previous study found defects in an animal model using a Cdu1 transposon mutant found decreased bacterial load in the genital tract. It is also possible that redundancy of effectors may mask importance in growth of Cdu1, but the authors strongly argue against redundancy of Cdu1 and Cdu2 so this weakens the authors argument here. These concepts and published data should be more directly discussed in the context of the authors proposed extrusion model and the role in driving Chlamydia growth and pathogenesis.

      In our revised manuscript (lines 460-466) we propose that while we do not observe any growth impairments during Ct growth in the absence of Cdu1 in HeLa cells, the reduction in bacterial loads observed in murine models of infection with an independent cdu1 mutant strain (cdu1::Tn) may potentially be linked to defects in extrusion production or alterations in Cdu1-dependent regulation of extrusion size.

      c. Recent studies have found that IFNg activation can result in dramatic changes in ubiquitination to pathogen containing vacuoles. While some of these are blocked by the newly found GarD, it seems possible that Cdu1 may also play a role (and perhaps use its deubiquinating activity) to further protect the inclusion. In light of published results showing that Cdu1 mutants have lower IFU burst size only in IFNg activated cells, this may be an important caveat in the current studies. This should be more directly addressed in the current manuscript.

      We have incorporated two experimental findings indicating that the presence of Cdu1 is not required for Ct to defend itself against IFN cellular immunity in human cells. These recent discoveries are now presented in the updated Figure 5 and detailed in lines 338-355 of the revised manuscript.

      d. On lines 433-434 the authors claim that Cdu1 is atypical since it is not encoded with the metaeffector/target pairs. However, this is an oversimplification of what is known about metaeffectors. For example, there are meta-effector/effector pairs that are not encoded together in Legionella (see table 1 DOI: https://doi.org/10.3390/pathogens10020108). Thus, the discussion should be adjusted. It seems Cdu1 is the first meta-effector found in Chlamydia, and maybe this should be highlighted more strongly rather than its uniqueness in this aspect of meta-effector/effector functions.

      In lines 488-489 of the revised manuscript, we have removed the assertion that Cdu1 functions as an atypical metaeffector and emphasized that it represents the initial discovery of a metaeffector within Ct.

    1. Author Response

      We are delighted that eLife has assessed our study as a valuable contribution as well as appreciating the importance of working on asymptomatic reservoirs of P. falciparum in high transmission where not just children, but adolescents and adults harbor multiclonal infections. The constructive public reviews will serve to improve our manuscript.

      Detailed responses to referees’ comments and a revised manuscript are forthcoming. Here we make a provisional response to three key areas addressed by the referees:

      (1) census population size

      Referee 1 raises important questions although we respectfully disagree on the terminology we have adopted (of “census”) and on the unclear utility of the proposed quantity.

      We consider the quantity a census in that it is a total enumeration or count of the infections in a given population sample and over a given time period. In this sense, it gives us a tangible notion of the size of the parasite population, in an ecological sense, distinct from the formal effective population size used in population genetics. Given the low overlap between var repertoires of parasites (as observed in monoclonal infections), the population size we have calculated translates to a diversity of strains or repertoires. But our focus here is in a measure of population size itself. The distinction between population size in terms of infection counts and effective population size from population genetics has been made before for pathogens (see for example Bedford et al. 2011 for the seasonal influenza virus and for the measles virus) and is a clear one in the ecological literature for non-pathogen populations (Palstra et al. 2012).

      Both referees 1 and 2 point out that census population size will be sensitive to sample size. We completely agree with the dependence of our quantity on sample size. We used it for comparisons across time of samples of the same depth, to describe the large population size characteristic of high transmission, and persistent across the IRS intervention. Of course, one would like to be able to use this notion across studies that differ in sampling depth.

      Here, referee 1 makes an insightful and useful suggestion. It is true that we can use mean MOI, and indeed there is a simple map between our population size and mean MOI (as we just need to divide or multiply by sample size). We can do even more, as with mean MOI we can presumably extrapolate to the full sample size of the host population, or the population size of another sample in another location. What is needed for this purpose is a stable mean MOI relative to sample size. We can show that indeed in our study mean MOI is stable in that way, by subsampling to different depths of our original sample. We will include in the revision discussion of this point and result, which allows an extrapolation of the census population size to the whole population of hosts in the local area. We’ll also clarify the time denominator, as given the typical duration of infections, we expect our population size to be representative of a per-generation measure.

      Referee 2 suggests we adopt the term “census count” but as a census in our mind is a count we prefer to use “census”.

      Referee 3 considers the genetic data tracking parasite MOI and census changes gives the same result as prevalence which tracks infected hosts. Respectfully, we disagree and will provide an expanded response.

      (2) the importance of lineages (in response to referee 2)

      We do not think that lineages moving exclusively through a given type of host or “patch” is a requirement for enumerating the size of the total infections in such a subset. It is true that what we have is a single parasite population, but we are enumerating for the season the respective size in host classes (children and adults). This is akin to enumerating subsets of a population in ecological settings.

      We are also not clear on the concept of lineage for these highly recombinant parasites as we struggle to find highly related repertoires. In fact, we see the use of the var fingerprinting methodology as a means to capture changes in strain or var repertoires dynamics as a result of changing transmission conditions.

      (3) var methodology

      Comments and queries were made by all three referees about aspects of var methodology, including the Bayesian approach. These will be addressed in our full response.

      Here we respond to a very good point made by referee 2: “Thinking about the applicability of this approach to other studies, I would be interested in a larger treatment of how overlapping DBLa repertoires would impact MOIvar estimates. Is there a definable upper bound above which the method is unreliable? Alternatively, can repertoire overlap be incorporated into the MOI estimator?”

      There is no predefined threshold one can present a priori. Intuitively, the approach to estimate MOI would appear to breakdown as overlap moves away from extremely low, and therefore, for locations with lower transmission intensity. Interestingly, we have observed that this is not the case in our paper by Labbé et al. 2023 where we used model simulations in a gradient of three transmission intensities, from high to low. The original varcoding method performed well across the gradient. This may arise from a nonlinear and fast transition from low overlap to high overlap that is accompanied by the MOI transitioning quickly from primarily multiclonal (MOI > 1) to monoclonal (MOI = 1). This issue needs to be investigated further, including ways to extend the estimation to explicitly include the distribution of DBL repertoire overlap.

      References: Bedford T, Cobey S, Pascual, M. 2011. Strength and tempo of selection revealed in viral gene genealogies. BMC Evol Biol 11, 220. https://doi.org/10.1186/1471-2148-11-220

      Labbé F, He Q, Zhan Q, Tiedje KE, Argyropoulos DC, Tan MH, Ghansah A, Day KP, Pascual M. 2023. Neutral vs . non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol 19 :e1010816. doi:doi.org/10.1101/2022.06.27.49780

      Palstra FP, Fraser DJ. 2012. Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol. Sep;2(9):2357-65. doi:10.1002/ece3.329.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper combines a number of cutting-edge approaches to explore the role of a specific mouse retinal ganglion cell type in visual function. The approaches used include calcium imaging to measure responses of RGC populations to a collection of visual stimuli and CNNs to predict the stimuli that maximally activate a given ganglion cell type. The predictions about feature selectivity are tested and used to generate a hypothesized role in visual function for the RGC type identified as interesting. The paper is impressive; my comments are all related to how the work is presented.

      We thank the reviewer for appreciating our study and for the interesting comments.

      Is the MEI approach needed to identify these cells?

      To briefly summarize the approach, the paper fits a CNN to the measured responses to a range of stimuli, extracts the stimulus (over time, space, and color) that is predicted to produce a maximal response for each RGC type, and then uses these MEIs to investigate coding. This reveals that G28 shows strong selectivity for its own MEI over those of other RGC types. The feature of the G28 responses that differentiate it appears to be its spatially-coextensive chromatic opponency. This distinguishing feature, however, should be relatively easy to discover using more standard approaches.

      The concern here is that the paper could be read as indicating that standard approaches to characterizing feature selectivity do not work and that the MEI/CNN approach is superior. There may be reasons why the latter is true that I missed or were not spelled out clearly. I do think the MEI/CNN approach as used in the paper provides a very nice way to compare feature selectivity across RGC types - and that it seems very well suited in this context. But it is less clear that it is needed for the initial identification of the distinguished response features of the different RGC types. What would be helpful for me, and I suspect for many readers, is a more nuanced and detailed description of where the challenges arise in standard feature identification approaches and where the MEI/CNN approaches help overcome those challenges.

      Thank you for the opportunity for clarification. In fact, the MEI (or an alternative nonlinear approach) is strictly necessary to discover this selectivity: as we show above (response #1 to editorial summary), the traditional linear filter approach does not reveal the color opponency. We realize that this fact was not made sufficiently clear in the initial submission. In the revised manuscript, we now include this analysis. Moreover, throughout the manuscript, we added explanations on the differences between MEIs and standard approaches and more intuitions about how to interpret MEIs. We also added a section to the discussion dedicated to explaining the advantages and limitations of the MEI approach.

      Interpretation of MEI temporal structure

      Some aspects of the extracted MEIs look quite close to those that would be expected from more standard measurements of spatial and temporal filtering. Others - most notably some of the temporal filters - do not. In many of the cells, the temporal filters oscillate much more than linear filters estimated from the same cells. In some instances, this temporal structure appears to vary considerably across cells of the same type (Fig. S2). These issues - both the unusual temporal properties of the MEIs and the heterogeneity across RGCs of the same type - need to be discussed in more detail. Related to this point, it would be nice to understand how much of the difference in responses to MEIs in Figure 4d is from differences in space, time, or chromatic properties. Can you mix and match MEI components to get an estimate of that? This is particularly relevant since G28 responds quite well to the G24 MEI.

      One advantage of the MEI approach is that it allows to distinguish between transient and sustained cells in a way that is not possible with the linear filter approach: Because we seek to maximize activity over an extended period of time, transient cells need to be repetitively stimulated whereas sustained cells will also respond in the absence of multiple contrast changes. In the revised manuscript, we add a section explaining this, together with Figure 3-supplement 2, illustrating this point by showing that oscillations disappear when we optimize the MEI for a short time window. The benefit of a longer time window lies in the increased discriminability between transient and sustained cells, which is also shown in the new supplementary figure.

      Regarding the heterogeneity of MEIs, this is most likely due to heterogeneity within the RGC group: “The mixed non-direction-selective groups G17 and G31 probably contain more than one type, as supported by multiple distinct morphologies and genetic identities (for example, G31,32, Extended Data Fig. 5) or response properties (for example, G17, see below)” (Baden et al. Nature 2016). We added a paragraph in the Results section.

      Concerning the reviewer’s last point: We agree that it is important to know whether the defining feature - i.e., the selectivity for chromatic contrast - is robust against variations in other stimulus properties. New electrophysiological data included in the manuscript (Fig. 6e,f) offers some insights here. We probed G28/tSbC cells with full-field flashed stimuli that varied in chromatic contrast. Despite not matching the cell’s preferred spatial and temporal properties, this stimulus still recovered the cell’s preference for chromatic contrast. While we think it is an interesting direction to systematically quantify the relative importance of temporal, spatial and chromatic MEI properties for an RGC type’s responses, we think this is beyond the scope of this manuscript.

      Explanation of RDM analysis

      I really struggled with the analysis in Figure 5b-c. After reading the text several times, this is what I think is happening. Starting with a given RGC type (#20 in Figure 5b), you take the response of each cell in that group to the MEI of each RGC type, and plot those responses in a space where the axes correspond to responses of each RGC of this type. Then you measure euclidean distance between the responses to a pair of MEIs and collect those distances in the RDM matrix. Whether correct or not, this took some time to arrive at and meant filling in some missing pieces in the text. That section should be expanded considerably.

      We appreciate the reviewer’s efforts to understand this analysis and confirm that they interpreted it correctly. However, we decided to remove the analysis. The point we were trying to make with this analysis is that the transformation implemented by G28/tSbC cells “warps” stimulus space and increases the discriminability of stimuli with similar characteristics like the cell’s MEI. We now make this point in a - we think - more accessible manner by the new analysis about the nonlinearity of G28/tSbC cell’s color opponency (see above).

      Centering of MEIs

      How important is the lack of precise centering of the MEIs when you present them? It would be helpful to have some idea about that - either from direct experiments or using a model.

      In the electrophysiological experiments, the MEIs were centered precisely (now Fig. 5 in revised manuscript) and these experiments yielded almost identical results to the 2P imaging experiments, where the MEIs were presented on a grid to approach the optimal position for the recorded cells. Additionally, all model simulations work with perfectly centered MEIs. We hence conclude that our grid-approach at presenting stimuli provided sufficient precision in stimulus positioning.

      We added this information to the revised manuscript.

      Reviewer #2 (Public Review):

      This paper uses two-photon imaging of mouse ganglion cells responding to chromatic natural scenes along with convolutional neural network (CNN) models fit to the responses of a large set of ganglion cells. The authors analyze CNN models to find the most effective input (MEI) for each ganglion cell as a novel approach to identifying ethological function. From these MEIs they identify chromatic opponent ganglion cells, and then further perform experiments with natural stimuli to interpret the ethological function of those cells. They conclude that a type of chromatic opponent ganglion cell is useful for the detection of the transition from the ground to the sky across the horizon. The experimental techniques, data, and fitting of CNN models are all high quality. However, there are conceptual difficulties with both the use of MEIs to draw conclusions about neural function and the ethological interpretations of experiments and data analyses, as well as a lack of comparison with standard approaches. These bear directly both on the primary conclusions of the paper and on the utility of the new approaches.

      We thank the reviewer for the detailed comments.

      1) Claim of feature detection.

      The color opponent cells are cast as a "feature detector" and the term 'detector' is in the title. However insufficient evidence is given for this, and it seems likely a mischaracterization. An example of a ganglion cell that might qualify as a feature detector is the W3 ganglion cell (Zhang et al., 2012). These cells are mostly silent and only fire if there is differential motion on a mostly featureless background. Although this previous work does not conduct a ROC analysis, the combination of strong nonlinearity and strong selectivity are important here, giving good qualitative support for these cells as participating in the function of detecting differential motion against the sky. In the present case, the color opponent cells respond to many stimuli, not just transitions across the horizon. In addition, for the receiver operator characteristic (ROC) analysis as to whether these cells can discriminate transitions across the horizon, the area under the curve (AUC) is on average 0.68. Although there is not a particular AUC threshold for a detector or diagnostic test to have good discrimination, a value of 0.5 is chance, and values between 0.5 and 0.7 are considered poor discrimination, 'not much better than a coin toss' (Applied Logistic Regression, Hosmer et al., 2013, p. 177). The data in Fig. 6F is also more consistent with a general chromatic opponent cell that is not highly selective. These cells may contribute information to the problem of discriminating sky from ground, but also to many other ethologically relevant visual determinations. Characterizing them as feature detectors seems inappropriate and may distract from other functional roles, although they may participate in feature detection performed at a higher level in the brain.

      The reviewer apparently uses a rather narrow definition of a feature detector. We, however, argue for a broader definition, which, in our view, better captures the selectivities described for RGCs in the literature. For example, while W3 cells have been quite extensively studied, one can probably agree on that so far only a fraction of the possible stimulus space has been explored. Therefore, it cannot be excluded that W3 cells respond also to other features than small dark moving dots, but we (like the reviewer) still refer to it as a feature detector. Or, for instance, direction-selective (DS) RGCs are commonly considered feature detectors (i.e., responsive to a specific motion direction), although they also respond to flashes and spike when null-direction motion is paused (Barlow & Levick J Physiol 1965).

      The G28/tSbC cells’ selectivity for full-field changes in chromatic contrast enables them to encode ground-sky horizon transitions reliably across stimulus parameters (e.g., see new Fig. 7i panel). This cell type is thus well-suited to contribute to detecting context changes, as elicited by ground-sky transitions.

      Therefore, we think that the G28/tSbC RGC can be considered a feature detector and as such, could be used at a higher level in the brain to quickly detect changes in visual context (see also Kerschensteiner Annu Rev Vis Sci 2022). Still, their signals may also be useful for other computations (e.g., defocus, as discussed in our manuscript).

      Regarding the ROC analysis, we acknowledge that an average AUC of .68 may seem comparatively low; however, this is based on the temporally downsampled information (i.e., by way of Ca2+ imaging) gathered from the activity of a single cell. A downstream area would have access to the activity of a local population of cells. This AUC value should therefore be considered a lower bound on the discrimination performance of a downstream area. We now comment on this in the manuscript.

      2) Appropriateness of MEI analysis for interpretations of the neural code.

      There is a fundamental incompatibility between the need to characterize a system with a complex nonlinear CNN and then characterizing cells with a single MEI. MEIs represent the peak in a complex landscape of a nonlinear function, and that peak may or may not occur under natural conditions. For example, MEIs do not account for On-Off cells, On-Off direction selectivity, nonlinear subunits, object motion sensitivity, and many other nonlinear cell properties where multiple visual features are combined. MEIs may be a useful tool for clustering and distinguishing cells, but there is not a compelling reason to think that they are representative of cell function. This is an open question, and thus it should not be assumed as a foundation for the study. This paper potentially speaks to this issue, but there is more work to support the usefulness of the approach. Neural networks enable a large set of analyses to understand complex nonlinear effects in a neural code, and it is well understood that the single-feature approach is inadequate for a full understanding of sensory coding. A great concern is that the message that the MEI is the most important representative statistic directs the field away from the primary promise of the analysis of neural networks and takes us back to the days when only a single sensory feature is appreciated, now the MEI instead of the linear receptive field. It is appropriate to use MEI analyses to create hypotheses for further experimental testing, and the paper does this (and states as much) but it further takes the point of view that the MEI is generally informative as the single best summary of the neural code. The representation similarity analysis (Fig. 5) acts on the unfounded assumption that MEIs are generally representative and conveys this point of view, but it is not clear whether anything useful can be drawn from this analysis, and therefore this analysis does not support the conclusions about changes in the representational space. Overall this figure detracts from the paper and can safely be removed. In addition, in going from MEI analysis to testing ethological function, it should be made much more clear that MEIs may not generally be representative of the neural code, especially when nonlinearities are present that require the use of more complex models such as CNNs, and thus testing with other stimuli are required.

      The reviewer correctly characterizes MEIs as representing the peak in a nonlinear loss landscape that, in this case, describes the neurons’ tuning. As such, the MEI approach is indeed capable of characterizing nonlinear neuronal feature selectivities that are captured by a nonlinear model, such as the CNN we used here. We therefore disagree with the suggestion that MEIs should not be used “when nonlinearities are present that require the use of more complex models such as CNNs”. It is unclear what other “analysis of neural networks” the reviewer refers to. One approach to analyze the predictive neural network are MEIs.

      We also want to clarify that, while the reviewer is correct in stating that the MEI approach as used here only identifies a single peak, this does not mean that it cannot capture neuronal selectivities for a combination of features, as long as this combination of features can be described as a point in high-dimensional stimulus space. In fact, this is demonstrated in our manuscript for the case of G28/tSbC cell’s selectivity for large or full-field, sustained changes in chromatic contrast (a combination of spatial, temporal, and chromatic features). While approaches similar to the one used here generate several diverse exciting inputs (Ding et al. bioRxiv 2023) and could therefore also fully capture On-Off selectivities, we pointed out the limitation of MEIs when describing On-Off cells in the manuscript (both original and revised).

      Regarding the reviewer’s concern that “[...] the message that the MEI is the most important representative statistic [...] takes us back to the days when only a single sensory feature is appreciated”. It was certainly not our intention to proclaim MEIs as the ultimate representation of a cell’s response features and we have clarified this in the revised manuscript. However, we also think that (i) in applying a nonlinear method to extract chromatic, temporal, and spatial response properties from natural movie responses, we go beyond many characterizations that use linear methods to extract spatial or temporal only, achromatic response properties from static, white-noise stimuli. This said, we agree that (ii) expanding around the peak is desirable, and we do that in an additional analysis (new Fig. 6); but that reducing complexity to a manageable degree (at least, at first) is useful and even necessary when discovering novel response properties.

      Concerning the representational similarity analysis (RSA): the point we were trying to make with this analysis is that the transformation implemented by G28 “warps” stimulus space and increases the discriminability of stimuli with similar characteristics like the cell’s MEI. We now made this point in a more accessible fashion through the above-mentioned analysis, where we extended the estimate around the peak. We therefore agree to remove the RSA from the paper.

      In the revised manuscript, we (a) discuss the advantages and limitations of the MEI approach in more detail (in Results and Discussion; see also our reply #1) and (b) replaced the RSA analysis.

      3) Usefulness of MEI approach over alternatives. It is claimed that analyzing the MEI is a useful approach to discovering novel neural coding properties, but to show the usefulness of a new tool, it is important to compare results to the traditional technique. The more standard approach would be to analyze the linear receptive field, which would usually come from the STA of white noise measurement, but here this could come from the linear (or linear-nonlinear) model fit to the natural scene response, or by computing an average linear filter from the natural scene model. It is important to assess whether the same conclusion about color opponency can come from this standard approach using the linear feature (average effective input), and whether the MEIs are qualitatively different from the linear feature. The linear feature should thus be compared to MEIs for Fig. 3 and 4, and the linear feature should be compared with the effects of natural stimuli in terms of chromatic contrast (Fig. 6b). With respect to the representation analysis (Fig. 5), although I don't believe this is meaningful for MEIs, if this analysis remains it should also be compared to a representation analysis using the linear feature. In fact, a representation analysis would be more meaningful when performed using the average linear feature as it summarizes a wider range of stimuli, although the most meaningful analysis would be directly on a broader range of responses, which is what is usually done.

      We agree that the comparison with a linear model is an important validation. Therefore, we performed an additional analysis (see also reply #1, as well as Fig. 6 and corresponding section in the manuscript) which demonstrates that an LN model does not recover the chromatic feature selectivity. This finding supports our claims about the usefulness of the MEI approach over linear approaches.

      Regarding the comment on the representation analysis, as mentioned above, we consider it replaced by the analysis comparing results from an LN model and a nonlinear CNN.

      4) Definition of ethological problem. The ethological problem posed here is the detection of the horizon. The stimuli used do not appear to relate to this problem as they do not include the horizon and only include transitions across the horizon. It is not clear whether these stimuli would ever occur with reasonable frequency, as they would only occur with large vertical saccades, which are less common in mice. More common would be smooth transitions across the horizon, or smaller movements with the horizon present in the image. In this case, cells which have a spatial chromatic opponency (which the authors claim are distinct from the ones studied here) would likely be more important for use in chromatic edge detection or discrimination. Therefore the ethological relevance of any of these analyses remains in question.

      It is further not clear if detection is even the correct problem to consider. The horizon is always present, but the problem is to determine its location, a conclusion that will likely come from a population of cells. This is a distinct problem from detecting a small object, such as a small object against the background of the sky, which may be a more relevant problem to consider.

      Thank you for giving us the opportunity to clear these things up. First, we would like to clarify that we propose that G28/tSbC cells contribute to detecting context changes, such as transitions across the horizon from ground to sky, not to detecting the horizon itself. We acknowledge that we were not clear enough about this in the manuscript and corrected this. To back-up our hypothesis that G28 RGCs contribute to detecting context changes, we performed an additional simulation analysis, which is described in our reply #3 (see above).

      5) Difference in cell type from those previously described. It is claimed that the chromatic opponent cells are different from those previously described based on the MEI analysis, but we cannot conclude this because previous work did not perform an MEI analysis. An analysis should be used that is comparable to previous work, the linear spatiotemporal receptive field should be sufficient. However, there is a concern that because linear features can change with stimulus statistics (Hosoya et al., 2005), a linear feature fit to natural scenes may be different than those from previous studies even for the same cell type. The best approach would likely be presenting a white noise stimulus to the natural scenes model to compute a linear feature, which still carries the assumption that this linear feature from the model fit to a natural stimulus would be comparable to previous studies. If the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set. One technical aspect relating to this is that MEIs were space-time separable. Because the center and surround have a different time course, enforcing this separability may suppress sensitivity in the surround. Therefore, it would likely be better if this separability were not enforced in determining whether the current cells are different than previously described cells. As to whether these cells are actually different than those previously described, the authors should consider the following uncited work; (Ekesten Gouras, 2005), which identified chromatic opponent cells in mice in approximate numbers to those here (~ 2%). In addition, (Yin et al., 2009) in guinea pigs and (Michael, 1968) in ground squirrels found color-opponent ganglion cells without effects of a spatial surround as described in the current study.

      First of all, we did not intend to claim to have discovered a completely new type of color-opponent tuning in general; what we were trying to say is that tSbC cells display spatially co-extensive color opponency, a feature selectivity previously not described in this mouse RGC type, and which may be used to signal context changes as elicited by ground-sky transitions.

      Concerning the reviewer’s first argument about a lack of comparability of our results to results previously obtained with a different approach: We think that this is now addressed by the new analysis (new Fig. 6), where we show why linear methods are limited in their capability to recover the type of color opponency that we discovered with the MEI approach.

      Regarding the argument about center-surround opponency, we agree that “if the previous cells have spatial chromatic opponency and the current cells only have chromatic opponency in the center, there should be both types of cells in the current data set”. We did not focus on analyzing center-surround opponency in the present study, but from the MEIs, it is visible that many cells have a stronger antagonistic surround in the green channel compared to the UV channel (see Fig. 4a, example RGCs of G21, G23, G24; Figure 3-supplement 1 example RGCs of G21, G23, G24, G31, G32). Importantly, the MEIs shown in Fig. 4a were also shown in the verification experiment, and had G28 RGCs preferred this kind of stimulus, they would have responded preferentially to these MEIs, which was not the case (Fig. 4f).

      It should also be noted here that, while the model’s filters were space-time separable, we did not impose a restriction on the MEIs to be space-time separable during optimization. However, we analyzed only the rank 1 components of the MEIs (see Methods section Validating MEIs experimentally). since our analysis focused on aspects of retinal processing not contingent on spatiotemporal interactions in the stimulus.

      In summary, we are convinced that our finding of center-opponency in G28 is not an artifact of the methodology.

      We discuss this in the manuscript and add the references mentioned by the reviewer to the respective part of the Discussion.

      Reviewer #3 (Public Review):

      This study aims to discover ethologically relevant feature selectivity of mouse retinal ganglion cells. The authors took an innovative approach that uses large-scale calcium imaging data from retinal ganglion cells stimulated with both artificial and natural visual stimuli to train a convolutional neural network (CNN) model. The resulting CNN model is able to predict stimuli that maximally excite individual ganglion cell types.

      The authors discovered that modeling suggests that the "transient suppressed-by-contrast" ganglion cells are selectively responsive to Green-Off, UV-On contrasts, a feature that signals the transition from the ground to the sky when the animal explores the visual environment. They tested this hypothesis by measuring the responses of these suppressed-by-contrast cells to natural movies, and showed that these cells are preferentially activated by frames containing ground-to-sky transitions and exhibit the highest selectivity of this feature among all ganglion cell types. They further verified this novel feature selectivity by single-cell patch clamp recording.

      This work is of high impact because it establishes a new paradigm for studying feature selectivity in visual neurons. The data and analysis are of high quality and rigor, and the results are convincing. Overall, this is a timely study that leverages rapidly developing AI tools to tackle the complexity of both natural stimuli and neuronal responses and provides new insights into sensory processing.

      We thank the reviewer for appreciating our study.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      The discussion seems to imply that the ball-and-chain peptide is or is related to the common gate. (Although it isn't stated explicitly, it is implied based on the presentation of the gating model in Figure 8 immediately after the discussion of common gating, and the simultaneous opening of both pores in Figure 8). What does the asymmetric structure say about the relationship between the N-term peptide and common gating in ClC-2? It seems like this structure suggests that the CTDs can independently rotate, and independently bind N-terminal peptide, which might not be expected to impact both pores. Some additional clarification and/or discussion of these ideas could be helpful here.

      We thank the reviewer for raising these very important points. We agree we should have been more explicit and have now expanded our discussion on this topic, highlighting the independent movement of the N-term peptide and CTDs and clarifying that it is currently unknown whether CLC-2 has a common gate (lines 431484).

      Discussion of "Revised Framework for CLC-2 gating": I think this would be a little easier to follow if most of the legend from Figure 8 was in the main text at the end of that section. Also, additional labels in Figure 8 (of the glutamates, the N-terminal peptide, and what the CTD arrows represent).

      We have revised this section of the text and added labels to the (revised) Figure as suggested.

      Line 261: typo, misspelling of "hydrogen"

      Fixed. (Now line 279.)

      Figure 6 - supplement 2B: Looks like an error in numbering y-axis - should be 90/120/150, I think. Can you show the three data points for the WT initial current rectification? Can you clarify whether the 3 that you are analyzing are the ones where AK42 the AK42 "zero current" level is not more than the initial positive current?

      We apologize for this error, which arose from the Y-axis label overlapping the tick labels, so 90/120/150 showed as 90/20/50. We have fixed this error and have added a new panel (C) to show three data points for the WT initial current rectification. In the Figure legend to panel C, we clarify that the 3 experiments we analyzed are the ones where the AK-42 current level is not more than the initial current at 80 mV.

      Reviewer #2 (Recommendations For The Authors):

      1. It appears from a close inspection of Figure 2 that the TM dimer is not quite symmetric, but I couldn't tell for sure from the figures as presented. No comment is made in the methods about symmetry imposed, and the authors explicitly comment on asymmetry in the cytoplasmic domain. It would be useful to have an explicit discussion of the TM dimer symmetry.

      We have now explicitly stated that the TM dimer is symmetric, and we have clarified the wording in the Methods:

      Main text, line 81: "The TM region of CLC-2 displays a typical CLC family symmetric homodimeric structure, with each subunit containing an independent Cl– pathway (Figure 2A, B)."

      Methods (lines 557-558): "The following ab initio reconstruction and 3D refinement (for all structures presented in this paper) were performed with C1 symmetry (no symmetry imposed)."

      1. For the simulations in Figure 5 Supplement 2, the N terminus flexibility is shown, but this of course can't be compared to a control. However, given the structural results, one might expect the JK helix to show changes in flexibility/mobility in the apo vs inactivated structures. Is this observed?

      We agree that the structures strongly suggest the JK-helix is not as stable without the N-terminus bound. We did not perform comparative simulations on the JK helix in the apo vs inactivated structures. While we agree this could be of interest, we don’t think it is essential to our conclusions, and the simulations might need to be quite long to adequately capture dynamics of the JK helix. [In the simulation results shown in Figure 5 Supplement 2, our aim was to test the validity of the structure by determining whether the N-terminus remains bound to the channel in simulations. The plot shows that the N-terminus stays in the same binding pose with an average RMSD (to the initial structure) of less than 2 angstroms, which is generally considered to be relatively stable.]

      1. I find the section "revised framework for ClC-2 gating" to be wanting. The ideas are illustrated in the cartoon, but should also be laid out in the text. In what ways are you revising the framework, and in what aspects are you carrying through ideas already proposed?

      Thank you for raising this point, which was also raised by Reviewer 1. We have revised this section and the accompanying Figure (Figure 8 and Lines 431-484).

      1. The authors mention in passing the idea that the hairpin could contribute to inward rectification (lines 227/8), but also suggest a role for the gating glutamate in this process. They also mention the idea of a common gate, but don't flesh out its function very much. These possibilities are very interesting and should be substantially fleshed out in the "framework" section, even if they cannot be fully answered yet.

      We have expanded on these points in the “framework” section.

      1. Figure 6E. points representing individual experiments should be shown.

      We added points representing individual experiments for Delta N (normalized to WT) in the surface-expression experiments in Figure 6E. Individual data points for the electrophysiology experiments are in panel C; we did not replot these in panel E because some of the points would have been off scale.

      1. The density in Figure 2A is hard to see, is there a better way to display it? Also, the orientation of the rightmost panel in Figure 2C is difficult to interpret.

      We revised 2A to make the density easier to see. We revised Figure 2C so that the middle and rightmost panels have the same orientation.

      1. P6. Line 87. This sentence is a little confusing, and perhaps could be a little clearer-the density is consistent with a Cl- ion, but no experiments have been done to support this, no?

      We have clarified the wording as suggested (now line 89) and added references supporting Clˉ binding to the Sext site in CLCs (line 90).

      1. P6 lines 89-98. Two lines of evidence, the conformation of the gate and the pinch point, both point to the structure representing a closed state. The wording as presented is a little hard to follow.

      We have revised the wording in this paragraph (lines 92-111)

      1. It's hard to distinguish water protons and oxygens in the lower right panel (QQQ).

      We revised this panel (in Figure 3 – figure supplement 2) to better distinguish the water protons and oxygens.

      Reviewer #3 (Recommendations For The Authors):

      A few points to consider for improving the manuscript

      1. It is intriguing that in the AK-42 structure, there is no density for the hairpin loop even though the CTD is in a symmetrical conformation as the apo. The authors could perhaps comment on whether there is any difference in the rectification properties of currents (or run-up) upon unblocking of AK-42 which may suggest that the hairpin binding is prevented by AK-42.

      We have not yet performed the suggested experiment nor any experiments to examine state-dependence, though we agree such experiments would be informative. We have added a note on this point in the discussion, lines 334-337.

      1. Although the conformation-dependent placement of the hairpin loop is convincing based on the density, the sequence assigned to this region is not conclusive.

      To strengthen our conclusion concerning the hairpin assignment, we investigated fits of peptide segments from the disordered sections of the C-terminal cytoplasmic domain to the hairpin density. We found that these fits are not as good as that with the N-terminal peptide. This analysis is described in lines 179-181 and a new figure (Figure 5 – figure supplement 1). We appreciate the reviewer’s point that it is extremely difficult to conclusively assign residues that are not contiguous with the rest of the structure. Nevertheless, given the wide variety of evidence all pointing to the conclusion that the hairpin loop corresponds to residues 14-28, we think the assignment is on strong footing. We respectfully ask that you consider removing this criticism from the public review, as we think it will hinder the casual reader from recognizing the strength of the evidence: (1) of unresolved regions in CLC-2, residues 14-28 fit best; (2) residues 14-28 were previously identified as part of the ball blocking region (lines 158-161); (3) MD simulations support that the N-terminal residues stay stably bound (Figure 5 – figure supplement 4) (4) gain-of-function disease causing mutations map onto either the Nterminal residues or interacting residues on the TM domain (Figure 5 – figure supplement 6). Thank you for considering this request.

      1. The authors should comment on the physiological relevance of the CBS domain rearrangements during gating.

      We have added this sentence (lines 131-133): “The physiological relevance of C-terminal domain rearrangements is suggested by disease-causing mutations that alter channel gating (Estevez et al., 2004; Brenes et al., 2023).”

      1. For the figures with cryo-EM maps, indicate the contour levels.

      Contour levels are now indicated in the Figure legends.

      1. It will be useful to the electrostatic map of the N-terminal peptide and the docking site.

      This is now shown in Figure 5 – figure supplement 3 and Video 5.

      1. Include a comment on the recent CLC-2 /AK-42 structure and if there are any differences in the structural features.

      We added this text to lines 273-274: “The RMSD between our CLC2-TM-AK42 structure and that of Ma et al. is 0.655 Å, and the RMSD between the apo TM structures is 0.756 Å.”

    1. This is a very cool paper! Thank you so much for developing this sensor and for studying the important topic of antibiotic resistance. I did not know about this disulfide bond sensor prior to reading your paper and what an amazing tool this is! I'm so glad that we have this technology at our disposal and there are people working on this. I was wondering if I could ask a question about this statement: "E. coli dsb mutants are viable aerobically but not anaerobically. Overall, disulfide bond formation is required for virulence but not for in vitro growth of gram-negative bacteria,". I think I understand the reason that disulfide bonds would be critical for virulence. But I don't think I understand why aren't disulfide bonds also critical for normal in vitro growth? While developing this sensor, have people looked at cytoplasmic proteins using mass spectrometry to confirm that they actually lack disulfide bonds? And if cytoplasmic proteins do indeed lack disulfide bonds, then may be one possibility cytoplasmic proteins can function without disulfide bonds is that they don't need to be as stable as periplasmic or secreted proteins? Thanks again for your hard work on this crucial topic! And thank you for your time!

    1. Author Response

      LD Score regression (LDSC) is a software tool widely used in the field of genome-wide association studies (GWAS) for estimating heritabilities, genetic correlations, the extent of confounding, and biological enrichment. LDSC is for the most part not regarded as an accurate estimator of \emph{absolute} heritability (although useful for relative comparisons). It is relied on primarily for its other uses (e.g., estimating genetic correlations). The authors propose a new method called \texttt{i-LDSC}, extending the original LDSC in order to estimate a component of genetic variance in addition to the narrow-sense heritability---epistatic genetic variance, although not necessarily all of it. Epistasis in quantitative genetics refers to the component of genetic variance that cannot be captured by a linear model regressing total genetic values on single-SNP genotypes. \texttt{i-LDSC} seems aimed at estimating that part of the epistatic variance residing in statistical interactions between pairs of SNPs. To simplify, the basic model of \texttt{i-LDSC} for two SNPs $X_1$ and $X_2$ is

      \begin{equation}\label{eq:twoX} Y = X_1 \beta_1 + X_2 \beta_2 + X_1 X_2 \theta + E, \end{equation}

      and estimation of the epistatic variance associated with the product term proceeds through a variant of the original LD Score that measures the extent to which a SNP tags products of genotypes (rather than genotypes themselves). The authors conducted simulations to test their method and then applied it to a number of traits in the UK Biobank and Biobank Japan. They found that for all traits the additive genetic variance was larger than the epistatic, but for height the absolute size of the epistatic component was estimated to be non-negligible. An interpretation of the authors' results that perhaps cannot be ruled out, however, is that pairwise epistasis overall does not make a detectable contribution to the variance of quantitative traits.

      We thank the reviewer for carefully reading of our manuscript and we appreciate the constructive comments. Our responses and edits to the specific major comments and minor issues are given below.

      Major Comments

      This paper has a lot of strong points, and I commend the authors for the effort and ingenuity expended in tackling the difficult problem of estimating epistatic (non-additive) genetic variance from GWAS summary statistics. The mere possibility of the estimated univariate regression coefficient containing a contribution from epistasis, as represented in the manuscript's Equation~3 and elsewhere, is intriguing in and of itself.

      Is \texttt{i-LDSC} Estimating Epistasis?

      Perhaps the issue that has given me the most pause is uncertainty over whether the paper's method is really estimating the non-additive genetic variance, as this has been traditionally defined in quantitative genetics with great consequences for the correlations between relatives and evolutionary theory (Fisher, 1930, 1941; Lynch & Walsh, 1998; Burger, 2000; Ewens, 2004).

      Let us call the expected phenotypic value of a given multiple-SNP genotype the \emph{total genetic value}. If we apply least-squares regression to obtain the coefficients of the SNPs in a simple linear model predicting the total genetic values, then the partial regression coefficients are the \emph{average effects of gene substitution} and the variance in the predicted values resulting from the model is called the \emph{additive genetic variance}. (This is all theoretical and definitional, not empirical. We do not actually perform this regression.) The variance in the residuals---the differences between the total genetic values and the additive predicted values---is the \emph{non-additive genetic variance}. Notice that this is an orthogonal decomposition of the variance in total genetic values. Thus, in order for the variance in $\mathbf{W}\bm{\theta}$ to qualify as the non-additive genetic variance, it must be orthogonal to $\mathbf{X} \bm{\beta}$.

      At first, I very much doubted whether this is generally true. And I was not reassured by the authors' reply to Reviewer~1 on this point, which did not seem to show any grasp of the issue at all. But to my surprise I discovered in elementary simulations of Equation~\ref{eq:twoX} above that for mean-centered $X_1$ and $X_2$, $(X_1 \beta_1 + X_2 \beta_2)$ is uncorrelated with $X_1 X_2 \theta$ for seemingly arbitrary correlation between $X_1$ and $X_2$. A partition of the outcome's variance between these two components is thus an orthogonal decomposition after all. Furthermore, the result seems general for any number of independent variables and their pairwise products. I am also encouraged by the report that standard and interaction LD Scores are ``lowly correlated' (line~179), meaning that the standard LDSC slope is scarcely affected by the inclusion of interaction LD Scores in the regression; this behavior is what we should expect from an orthogonal decomposition.

      I have therefore come to the view that the additional variance component estimated by \texttt{i-LDSC} has a close correspondence with the epistatic (non-additive) genetic variance after all.

      In order to make this point transparent to all readers, however, I think that the authors should put much more effort into placing their work into the traditional framework of the field. It was certainly not intuitive to multiple reviewers that $\mathbf{X}\bm{\beta}$ is orthogonal to $\mathbf{W}\bm{\theta}$. There are even contrary suggestions. For if $(\mathbf{X}\bm{\beta})^\intercal \mathbf{W} \bm{\theta} = \bm{\beta}^\intercal \mathbf{X}^\intercal \mathbf{W} \bm{\theta} $ is to equal zero, we know that we can't get there by $\mathbf{X}^\intercal \mathbf{W}$ equaling zero because then the method has nothing to go on (e.g., line~139). We thus have a quadratic form---each term being the weighted product of an average (additive) effect and an interaction coefficient---needing to cancel out to equal zero. I wonder if the authors can put forth a rigorous argument or compelling intuition for why this should be the case.

      In the case of two polymorphic sites, quantitative genetics has traditionally partitioned the total genetic variance into the following orthogonal components:

      \begin{itemize}

      \item additive genetic variance, $\sigma^2_A$, the numerator of the narrow-sense heritability;

      \item dominance genetic variance, $\sigma^2_D$;

      \item additive-by-additive genetic variance, $\sigma^2_{AA}$;

      \item additive-by-dominance genetic variance, $\sigma^2_{AD}$; and

      \item dominance-by-dominance genetic variance, $\sigma^2_{DD}$.

      \end{itemize}

      See Lynch and Walsh (1998, pp. 88-92) for a thorough numerical example. This decomposition is not arbitrary or trivial, since each component has a distinct coefficient in the correlations between relatives. Is it possible for the authors to relate the variance associated with their $\mathbf{W}\bm{\theta}$ to this traditional decomposition? Besides justifying the work in this paper, the establishment of a relationship can have the possible practical benefit of allowing \texttt{i-LDSC} estimates of non-additive genetic variance to be checked against empirical correlations between relatives. For example, if we know from other methods that $\sigma^2_D$ is negligible but that \texttt{i-LDSC} returns a sizable $\sigma^2_{AA}$, we might predict that the parent-offspring correlation should be equal to the sibling correlation; a sizable $\sigma^2_D$ would make the sibling correlation higher. Admittedly, however, such an exercise can get rather complicated for the variance contributed by pairs of SNPs that are close together (Lynch & Walsh, 1998, pp. 146-152).

      I would also like the authors to clarify whether LDSC consistently overestimates the narrow-sense heritability in the case that pairwise epistasis is present. The figures seem to show this. I have conflicting intuitions here. On the one hand, if GWAS summary statistics can be inflated by the tagging of epistasis, then it seems that LDSC should overestimate heritability (or at least this should be an upwardly biasing factor; other factors may lead the net bias to be different). On the other hand, if standard and interaction LD Scores are lowly correlated, then I feel that the inclusion of interaction LD Score in the regression should not strongly affect the coefficient of the standard LD Score. Relatedly, I find it rather curious that \texttt{i-LDSC} seems increasingly biased as the proportion of genetic variance that is non-additive goes up---but perhaps this is not too important, since such a high ratio of narrow-sense to broad-sense heritability is not realistic.

      We thank the reviewer for taking the time to thoughtfully offer more context on how we might situate the i-LDSC framework within the greater context of traditional quantitative genetics. We now formalize the interaction component used in the i-LDSC model as an estimate of the phenotypic variance explained by additive-by-additive interactions between genetic variants (which we denote by 𝜎" to follow the conventional notation). In the newly revised Material and Methods, we also show how the i-LDSC model can be formulated to include dominance effects in a more general framework. Our updated derivations provide two key takeaways.

      First, we assume that the additive and interaction effect sizes in the general model (𝜷,𝜽) are each normally distributed with variances proportional to their individual contributions to trait heritability: 𝛽& ∼ 𝒩(0, 𝜎"), 𝜃' ∼ 𝒩(0, 𝜎" ). This independence assumption implies that the additive and non- $ $$ additive components 𝑿𝜷 and 𝑾𝜽 are orthogonal where 𝔼[𝜷⊺𝑿⊺𝑾𝜽] = 𝔼[𝜷⊺]𝑿⊺𝑾𝔼[𝜽] = 𝟎. This is important because, as the reviewer points out, it means that there is a unique partitioning of genetic variance when studying a trait of interest. In the revised version of the manuscript, we show this derivation in the main text (see lines 129-143). We also extend this derivation in the Materials and Methods where we show the same result even after we include the presence of dominance effects in the generative model (see lines 415-417 and 438-457).

      Second, we show that the genotype matrix 𝑿 and the matrix of genetic interactions 𝑾 are not linearly dependent because the additive-by-additive effects between two SNPs are encoded as the Hadamard product of two genotypic vectors in the form 𝒘! = 𝒙" ∘ 𝒙# (which is a nonlinear function of the genotypes). Linear dependence would have implied that one could find a transformation between a SNP and an interaction term in the form 𝒘! = 𝑐 × 𝒙" for some constant 𝑐. However, despite their linear independence, 𝑿 and 𝑾 are themselves not orthogonal and still have a nonzero correlation. This implies that the inner product between genotypes and their interactions is nonzero 𝑿⊺𝑾 ≠ 𝟎. To see this, we focus on a focal SNP 𝒙& and consider three different types of interactions:

      • Scenario I: Interaction between a focal SNP with itself (𝒙" ∘ 𝒙").
      • Scenario II: Interaction between a focal SNP with a different SNP (𝒙" ∘ 𝒙#).
      • Scenario III: Interaction between a focal SNP with a pair of different SNPs (𝒙# ∘ 𝒙$).

      In the Materials and Methods of the revised manuscript, we now provide derivations showing when would expect nonzero correlation between 𝑿 and 𝑾 which rely on the fact that: (1) we assume that genotypes have been mean-centered and scaled to have unit variance, and (2) under Hardy-Weinberg equilibrium, SNPs marginally follow a binomial distribution 𝒙& ∼ 𝐵𝑖𝑛(2, 𝑝) where 𝑝 represents the minor allele frequency (MAF) (Wray et al. 2007, Genome Res; Lippert et al. 2013, Sci Rep). These new additions are given in new lines 460-485).

      Lastly, we agree with the reviewer that our results indicate that LDSC inflates estimates of SNP- based narrow-sense heritability. Our intuition for why this happens is largely consistent with the reviewer’s first point: since GWAS summary statistics can be inflated by the tagging of non- additive genetic variance, then it makes sense that LDSC should overestimate heritability. LDSC uses a univariate regression without the inclusion of cis-interaction scores. A simple consequence from “omitted variable bias” is likely happening where, since LDSC does not explicitly account for contributions from the tagged non-additive components which also contribute to the variance in the GWAS summary statistics, the estimate for the coefficient 𝜎" becomes slightly inflated.

      How Much Epistasis Is \texttt{i-LDSC} Detecting?

      I think the proper conclusion to be drawn from the authors' analyses is that statistically significant epistatic (non-additive) genetic variance was not detected. Specifically, I think that the analysis presented in Supplementary Table~S6 should be treated as a main analysis rather than a supplementary one, and the results here show no statistically significant epistasis. Let me explain.

      Most serious researchers, I think, treat LDSC as an unreliable estimator of narrow-sense heritability; it typically returns estimates that are too low. Not even the original LDSC paper pressed strongly to use the method for estimating $h^2$ (Bulik-Sullivan et al., 2015). As a practical matter, when researchers are focused on estimating absolute heritability with high accuracy, they usually turn to GCTA/GREML (Evans et al., 2018; Wainschtein et al., 2022).

      One reason for low estimates with LDSC is that if SNPs with higher LD Scores are less likely to be causal or to have large effect sizes, then the slope of univariate LDSC will not rise as much as it ``should' with increasing LD Score. This was a scenario actually simulated by the authors and displayed in their Supplementary Figure~S15. [Incidentally, the authors might have acknowledged earlier work in this vein. A simulation inducing a negative correlation between LD Scores and $\chi^2$ statistics was presented by Bulik-Sullivan et al. (2015, Supplementary Figure 7), and the potentially biasing effect of a correlation over SNPs between LD Scores and contributed genetic variance was a major theme of Lee et al. (2018).] A negative correlation between LD Score and contributed variance does seem to hold for a number of reasons, including the fact that regions of the genome with higher recombination rates tend to be more functional. In short, the authors did very well to carry out this simulation and to show in their Supplementary Figure~S15 that this flaw of LDSC in estimating narrow-sense heritability is also a flaw of \texttt{i-LDSC} in estimating broad-sense heritability. But they should have carried the investigation at least one step further, as I will explain below.

      Another reason for LDSC being a downwardly biased estimator of heritability is that it is often applied to meta-analyses of different cohorts, where heterogeneity (and possibly major but undetected errors by individual cohorts) lead to attenuation of the overall heritability (de Vlaming et al., 2017).

      The optimal case for using LDSC to estimate heritability, then, is incorporating the LD-related annotation introduced by Gazal et al. (2017) into a stratified-LDSC (s-LDSC) analysis of a single large cohort. This is analogous to the calculation of multiple GRMs defined by MAF and LD in the GCTA/GREML papers cited above. When this was done by Gazal et al. (2017, Supplementary Table 8b), the joint impact of the improvements was to increase the estimated narrow-sense heritability of height from 0.216 to 0.534.

      All of this has at least a few ramifications for \texttt{i-LDSC}. First, the authors do not consider whether a relationship between their interaction LD Scores and interaction effect sizes might bias their estimates. (This would be on top of any biasing relationship between standard LD Scores and linear effect sizes, as displayed in Supplementary Figure~S15.) I find some kind of statistical relationship over the whole genome, induced perhaps by evolutionary forces, between \emph{cis}-acting epistasis and interaction LD Scores to be plausible, albeit without intuition regarding the sign of any resulting bias. The authors should investigate this issue or at least mention it as a matter for future study. Second, it might be that the authors are comparing the estimates of broad-sense heritability in Table~1 to the wrong estimates of narrow-sense heritability. Although the estimates did come from single large cohorts, they seem to have been obtained with simple univariate LDSC rather than s-LDSC. When the estimate of $h^2$ obtained with LDSC is too low, some will suspect that the additional variance detected by \texttt{i-LDSC} is simply additive genetic variance missed by the downward bias of LDSC. Consider that the authors' own Supplementary Table~S6 gives s-LDSC heritability estimates that are consistently higher than the LDSC estimates in Table~1. E.g., the estimated $h^2$ of height goes from 0.37 to 0.43. The latter figure cuts quite a bit into the estimated broad-sense heritability of 0.48 obtained with \texttt{i-LDSC}.

      Here we come to a critical point. Lines 282--286 are not entirely clear, but I interpret them to mean that the manuscript's Equation~5 was expanded by stratifying $\ell$ into the components of s-LDSC and this was how the estimates in Supplementary Table~S6 were obtained. If that interpretation is correct, then the scenario of \texttt{i-LDSC} picking up missed additive genetic variance seems rather plausible. At the very least, the increases in broad-sense heritability reported in Supplementary Table~S6 are smaller in magnitude and \emph{not statistically significant}. Perhaps what this means is that the headline should be a \emph{negligible} contribution of pairwise epistasis revealed by this novel and ingenious method, analogous to what has been discovered with respect to dominance (Hivert et al., 2021; Pazokitoroudi et al., 2021; Okbay et al., 2022; Palmer et al., 2023).

      This is an excellent question raised by the reviewer and, again, we really appreciate such a thoughtful and thorough response. First, we completely agree with the reviewer that the s-LDSC estimates previously included in the Supplementary Material should instead be discussed in the main text of the manuscript. In the revision, we have now moved the old Supplemental Table S6 to be the new Table 2. Second, we also agree that the conclusions about the magnitude of additive-by-additive effects should be based upon variance explained when using the cis- interaction score in addition to scores specific to different biological annotations when available, per s-LDSC.

      However, we want to respectfully disagree that the results indicate a negligible contribution of additive-by-additive genetic variance to all the traits we analyzed (see Figure 4D). Although the additive-by-additive genetic variance component is not significant in any trait in the UK Biobank, there is little reason to expect that they would be given the inclusion of 97 other biological annotations from the s-LDSC model. Indeed, in the s-LDSC paper itself the authors look only for enrichment of heritability for a given annotation not a statistically significant test statistic. It also worth noting that jackknife approaches tend to be conservative and yield slightly larger standard errors for hypothesis testing. Taking all the great points that the reviewer mentioned into account, we believe that a moderate stance to the interpretation of our results is one that: (i) emphasizes the importance of using s-LDSC with the cis-interaction score to better assess the variance explained by additive-by-additive interaction effects and (ii) allows for the significance of the additive-by-additive component to not be the only factor when determining the importance of the role of non-additive effects in shaping trait architecture.

      In the revision, we now write the following in lines 331-343:

      Lastly, we performed an additional analysis in the UK Biobank where the cis-interaction scores are included as an annotation alongside 97 other functional categories in the stratified-LD score regression framework and its software s-LDSC (Materials and Methods). Here, s-LDSC heritability estimates still showed an increase with the interaction scores versus when the publicly available functional categories were analyzed alone, but albeit at a much smaller magnitude (Table 2). The contributions from the additive-by-additive component to the overall estimate of genetic variance ranged from 0.005 for MCHC (P = 0.373) to 0.055 for HDL (P = 0.575) (Figures 4C and 4D). Furthermore, in this analysis, the estimates of the additive-by-additive components were no longer statistically significant for any of the traits in the UK Biobank (Table 2). Despite this, these results highlight the ability of the i-LDSC framework to identify sources of “missing” phenotypic variance explained in heritability estimation. Importantly, moving forward, we suggest using the cis- interaction scores with additional annotations whenever they are available as it provides more conservative estimates of the role of additive-by-additive effects on trait architecture.

      Lastly, in the Discussion, we now mention an area of future work would be to explore how the relationship between cis-interaction LD scores and interaction effect sizes might bias heritability estimates from i-LDSC (e.g., similar to the relationship explored standard LD scores and linear effect sizes in Figure 3 – figure supplement 8). See new lines 364-367.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      Despite the importance of T follicular helper cells (Tfh cells) in vaccine-induced humoral responses, it is still unclear which type of Tfh cells (Tfh1, Tfh2, and Tfh17) is critical for generating protective humoral immunity. By using the rhesus macaques model (most similar to human), the authors have addressed this potentially important question and obtained suggestive data that Tfh1 is critical. Although being suggestive, the evidence for the importance of Tfh1 is incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Developing vaccination capable of inducing persistent antibody responses capable of broadly neutralizing HIV strains is of high importance. However, our ability to design vaccines to achieve this is limited by our relative lack of understanding of the role of T-follicular helper (Tfh) subtypes in the responses. In this report Verma et al investigate the effects of different prime and boost vaccination strategies to induce skewed Tfh responses and its relationship to antibody levels. They initially find that live-attenuated measles vaccine, known to be effective at inducing prolonged antibody responses has a significant minority of germinal center Tfh (GC-Tfh) with a Th1 phenotype (GC-Tfh1) and then explore whether a prime and boost vaccination strategy designed to induce GC-Tfh1 is effective in the context of anti-HIV vaccination. They conclude that a vaccine formulation referred to as MPLA before concluding that this is the case.

      Clarification: MPLA serves as the adjuvant, and the vaccine formulation is characterized as a Th1 formulation based on the properties of the adjuvant.

      Strengths:

      While there is a lot of literature on Tfh subtypes in blood, how this relates to the germinal centers is not always clear. The strength of this paper is that they use a relevant model to allow some longitudinal insight into the detailed events of the germinal center Tfh (GC-Tfh) compartment across time and how this related to antibody production.

      Weaknesses:

      The authors focus strongly on the numbers of GC-Tfh1 as a proportion of memory cells and their comparison to GC-Tfh17. There seems to be little consideration of the large proportion of GC-Tfh which express neither CCR6 and CXCR3 and currently no clear reasoning for excluding the majority of GC-Tfh from most analysis. There seems to be an assumption that since the MPLA vaccine has a higher number of GC-Tfh1 that this explains the higher levels of antibodies. There is not sufficient information to make it clear if the primary difference in vaccine efficacy is due to a greater proportion of GC-Tfh1 or an overall increase in GC-Tfh of which the percentage of GC-Tfh1 is relatively fixed.

      Response: We appreciate the reviewer's comment. Indeed, while there is substantial literature on Tfh subtypes in blood; the strength of our study lies in utilizing a relevant model to provide longitudinal insights into the dynamics of the germinal center Tfh (GC-Tfh) compartment over time and its relationship to antibody production. Regarding the concern about the comprehensive analysis of GC Tfh subsets, including GC-Tfh1, GC-Tfh17, and others not expressing CCR6 and/or CXCR3, we fully acknowledge its importance. To address this, we will conduct a detailed analysis of GC Tfh and GC Tfh1 frequencies, encompassing subsets without CCR6 and CXCR3 expression, to provide a more comprehensive view of the GC-Tfh population in our analysis.

      Reviewer #2 (Public Review):

      Summary:

      Anil Verma et al. have performed prime-boost HIV vaccination to enhance HIV-1 Env antibodies in the rhesus macaque model. The authors used two different adjuvants, a cationic liposome-based adjuvant (CAF01) and a monophosphoryl lipid A (MPLA)+QS-21 adjuvant. They demonstrated that these two adjuvants promote different transcriptomes in the GC-TFH subsets. The MPLA+QS-21 adjuvant induces abundant GC TFH1 cells expressing CXCR3 at first priming, while the CAF01 adjuvant predominantly induced GC TFH1/17 cells co-expressing CXCR3 and CCR6. Both adjuvants initiate comparable Env antibody responses. However, MPLA+QS-21 shows more significant IgG1 antibodies binding to gp140 even after 30 weeks.

      The enhancement of memory responses by MPLA+QS-21 consistently associates with the emergence of GC TFH1 cells that preferentially produce IFN-γ.

      Strengths:

      The strength of this manuscript is that all experiments have been done in the rhesus macaque model with great care. This manuscript beautifully indicated that MPLA+QS-21 would be a promising adjuvant to induce the memory B cell response in the HIV vaccine.

      Weaknesses:

      The authors did not provide clear evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses.

      Response. We appreciate the recognition of our meticulous work in the rhesus macaque model and the potential of MPLA+QS-21 as an adjuvant for HIV vaccine-induced humoral immunity. We acknowledge the need to provide clearer evidence of the functional relevance of GC Tfh1 in IgG1 class-switching and B cell memory responses. We will attempt to address this concern in our revisions.

      Recommendations for Authors:

      Reviewer #1:

      1. Is the proportion of GC-Tfh1 within GC-Tfh significantly increased in MPLA vs CAF01? The balance between Tfh1 and Tfh17 data is shown in 4C but appears quite a modest difference. Additionally, it excludes the majority of GC-Tfh since it only considers CCR6 and CXCR3 expressing cells.

      Response. We have now included a comparison of the relative proportions of GC Tfh cells expressing CCR6 and CXCR3, as well as those lacking these markers. Our data now demonstrate an increased presence of Tfh1 within the GC-Tfh population when MPLA is employed at P1w2, as depicted in Figure 4D.

      1. Is there any relationship between GC-Tfh17, 1/17 and non Th1/17 GC-Tfh and antibody levels? In Figure 5C only GC Tfh1 is examined making it impossible to judge if this is specific to GC-Tfh1 or a general relationship between higher total GC-Tfh and antibodies.

      Response. In our revised description of the results, we have mentioned that GC Tfh frequencies correlated with antibody levels (r = 0.6, p < 0.05). However, it is important to note that this correlation was specific to the GC Tfh1 subset and was not observed with other subsets.

      Other points:

      1. The authors make a number of statements that rather exaggerate differences such as stating in the abstract that CAF01 induces Tfh1/17 while MPLA predominantly induces Tfh1. As shown in Figure 4C the majority of CCR6-CXCR3- GC-Tfh induced by CAF01 are GC-Tfh1 i.e. both formulations predominantly induce GC-Tfh1. Also, it is difficult to judge since the data is never provided but the predominant group of GC-Tfh appears to be CCR6-CXCR3- in both cases.

      Response. We acknowledge the need for greater precision in our descriptions. In response, we have addressed this concern by providing the frequencies of CCR6-CXCR3- GC Tfh cells in Figure 4D. We have also included a comparison of the relative frequencies across the adjuvant groups in the Results section (Lines 331-338).

      1. The authors use the term peripheral Tfh (pTfh), it may be better to use the more common term circulating Tfh (cTfh) to avoid confusion with T peripheral helper cells (Tph).

      Response. We appreciate the reviewer's suggestion to use the more commonly accepted term "circulating Tfh (cTfh)" instead of "peripheral Tfh (pTfh)." We have incorporated this change into our manuscript to ensure clarity and avoid potential confusion with "peripheral helper cells (Tph).

      1. Some further labelling of the pie chart in Figure 1G to at least specify larger groups such as Tfh2, Tfh17, Tfh1/17 would be helpful.

      Response. We have incorporated the suggestion and identified cTfh2, cTfh17, and cTfh2/17 cells. We additionally now state in the legend that overlapping pie arcs correspond to specific polarized Tfh subsets denoted by arc color.

      1. A gating example of the CXCR3, CCR6, CCR4 patterns in the GC Tfh would be helpful. "up to 25% of GC Tfh cells expressed CCR6" I think it is better to state the average here since 25% appears an outlier.

      Response. We have now included a gating example of chemokine receptor expression, patterns in the GC Tfh. Additionally, we have revised the statement to mention the median (7%) of GC Tfh cells expressing CCR6 instead of specifying the upper limit.

      1. Figure 1I, does this graph exclude triple negative cells? It's not clear from the figure legend but the numbers do not seem to add up with the graphical proportions shown in figure 1H.

      Response. We have made the necessary clarification in both the results section, figure, and the figure legend to state that the Boolean analysis is based on cells expressing either CXCR3 or CCR6, thus explaining the exclusion of triple negative cells.

      1. Figure 3C. Some label should be added to make clear which violins are from the CD95- and CD95+ groups. There may be too much data in this panel for p values to be legible. Either less graphs or more space may be needed.

      Response. We have updated the Y axis labels in the figure to state that the violin plots show the differences in gene expression between CD95+ CD4 T cells and CD95- CD4 T cells (naive).

      1. Figure 4B. Numbers attached to the gates (1, 17 etc) should be more clearly labeled Tfh1, Tfh17 etc since normally they might be expected to be gate percentages in this format. Gate percentages should also be added.

      Response. We have clearly labeled the subsets as "Tfh1" and "Tfh17," making it easier for readers to interpret the figure. Additionally, we have included gate percentages in the flow plot. Furthermore, the percentages of GC Tfh subsets are now depicted in Figure 4D.

      1. Overlarge and indistinct datapoint symbols are often a problem e.g. Figure 4G most of the CAF01 datapoints are merged into a single blob with no indication of where one point ends or begins. Supplementary figure 5E. Datapoint sizes are large to the extent that the lines are difficult to see. Lines indicating central tendency are often lost.

      Response. We have reworked the graphs (including 4G, now 4I) to ensure clarity,

      1. Generally greater care is needed with graph layout e.g. the B indicating figure 6B is on the graph of figure 6A.

      Response. We have made the necessary adjustment to ensure that the letter "B" correctly corresponds to the graph in Figure 6B.

      1. Figure 6J, the text seems to indicate "higher avidity with MPLA against autologous Env including V1V2 loops." However, the graph seems to indicate lower avidity for V1V2 loops? Response. We appreciate the careful observation. We have rectified this by updating the description in the results section to accurately reflect the graph, which shows higher avidity for V1V2 loops with CAF01.

      2. Figure 6A. The authors state that significantly higher IgG1 was induced but Figure 6A seems to be the only graph lacking an indication of statistical significance.

      Response. We have made the necessary adjustment to ensure that significance symbol is depicted in Figure 6A.

      1. Brackets indicating significance are often unclear. e.g. in Figure 4B MPLA graph there are three groups and a single multipoint bracket with a single result making it unclear which groups are being compared.

      Response. We have added clarification to the legend. It now states that the temporal comparisons in GC Tfh subsets for each vaccine group are made in relation to frequencies at baseline. This revision provides a clear reference point for the significance comparisons and ensures that readers can easily understand which groups are being compared.

      Reviewer #2:

      Overall, the manuscript is well-written and addresses an important issue. However, further investigation is warranted to understand how the MPLA+QS-21 induced GC TFH1 influenced on memory B cell response. This manuscript only showed the correlation between GC TFH1 and antibody responses. If the authors explain adjuvant preference in memory B cell responses, this manuscript could be more considerable for publication.

      1. This reviewer recommends that the author provide more evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses. Some evidence supports that IFN-γ controls the antigen-specific IgG1 responses in humans, but it is still controversial. The author also suggests the involvement of IL-21, but this is also an open question even in the human system. This is also the case in the memory responses. There is no direct link between IFN-γ and memory B cell responses in the human system. The authors need more evidence of how GC TFH1 cell development has more advantages in IgG1 and memory responses than GC TFH1 /17 cells. I believe an antibody blockade of cytokines would be a possible strategy to prove these questions.

      Response. We appreciate the reviewer's valuable suggestion to provide more evidence regarding the functional relevance of GC Tfh1 cells in IgG1 class-switch and B cell memory responses. It is indeed important to establish a direct link between GC Tfh1 cells and these responses, particularly in the context of cytokine skewing. The suggestion of antibody blockade studies to mechanistically link the modulation of the inflammatory milieu to Tfh differentiation and subsequent antibody functions is important. However, we must acknowledge that these studies are currently beyond the scope of our work. We have included this as a limitation in our study, recognizing the need for further studies to address these important questions.

      1. In Fig.5, the authors use different scales to indicate the IgG antibody titer. A shows the log scale, while B shows the linear scale. Moreover, the differences are minimal, even though the authors indicated a significant difference. I am not sure this difference is meaningful.

      Response. To clarify, we used a log scale in Figure 5A to demonstrate temporal changes over the course of vaccination. In Figure 5B, where we are comparing differences across vaccine regimens at week 30, a linear scale was deemed more appropriate, as it allows for a clear representation of the approximately two-fold difference observed. We fully acknowledge that to establish the biological significance of the observed difference, challenge studies will be essential.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper reports the development of SCA-seq, a new method derived from PORE-C for simultaneously measuring chromatin accessibility, genome 3D and CpG DNA methylation. Most of the conclusions are supported by convincing data. SCA-seq has the potential to become a useful tool to the scientific communities to interrogate genome structure-function relationships.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work, Xie et al. developed SCA-seq, which is a multiOME mapping method that can obtain chromatin accessibility, methylation, and 3D genome information at the same time. SCA-seq first uses M.CviPI DNA methyltransferase to treat chromatin, then perform proximity ligation followed by long-read sequencing. This method is highly relevant to a few previously reported long read sequencing technologies. Specifically, NanoNome, SMAC-seq, and Fiber-seq have been reported to use m6A or GpC methyltransferase accessibility to map open chromatin, or open chromatin together with CpG methylation; Pore-C and MC-3C have been reported to use long read sequencing to map multiplex chromatin interactions, or together with CpG methylation. Therefore, as a combination of NanoNome/SMAC-seq/Fiber-seq and Pore-C/MC-3C, SCA-seq is one step forward. The authors tested SCA-seq in 293T cells and performed benchmark analyses testing the performance of SCA-seq in generating each data module (open chromatin and 3D genome). The QC metrics appear to be good and I am convinced that this is a valuable addition to the toolsets of multi-OMIC long-read sequencing mapping.

      The revised manuscript addressed most of my questions except my concern about Fig. S9. This figure is about a theory that a chromatin region can become open due to interaction with other regions, and the author propose a mathematic model to compute such effects. I was concerned about the errors in the model of Fig. S9a, and I was also concerned about the lack of evidence or validation. In their responses, the authors admitted that they cannot provide biological evidence or validations but still chose to keep the figure and the text.

      The revised Fig. S9a now uses a symmetric genome interaction matrix as I suggested. But Figure S9a still have a lot of problems. Firstly, the diagonal of the matrix in Fig. S9a still has many 0's, which I asked in my previous comments without an answer. The legend mentioned that the contacts were defined as 2, 0 or -2 but the revised Fig. S9a only shows 1,0, or -1 values. Furthermore, Fig. S9b,9c,9d all added a panel of CTCF+/- but there is no explanation in text or figure legend about these newly added panels. Given many unaddressed problems, I would still suggest deleting this figure.

      In my opinion, this paper does not need Fig. S9 to support its major story. The model in this figure is independent of SCA-seq. I think it should be spinoff as an independent paper if the authors can provide more convincing analysis or experiments. I understand eLife lets authors to decide what to include in their paper. If the authors insist to include Fig. S9, I strongly suggest they should at least provide adequate explanation about all the figure panels. At this point, the Fig. S9 is not solid and clearly have many errors. The readers should ignore this part.

      We appreciate the reviewer for raising these concerns regarding Fig. S9. After careful consideration, we have decided to address your concerns by deleting Fig. S9 and the corresponding text from the manuscript. We understand your point that the model presented in Fig. S9 is independent of SCA-seq and may require additional evidence and validation to be presented in a separate paper.

      We agree that it is important to maintain the integrity and accuracy of the manuscript, and we appreciate your feedback in helping us make this decision.

      Reviewer #2 (Public Review):

      In this manuscript, Xie et al presented a new method derived from PORE-C, SCA-seq, for simultaneously measuring chromatin accessibility, genome 3D and CpG DNA methylation. SCA-seq provides a useful tool to the scientific communities to interrogate the genome structure-function relationship.

      The revised manuscript has clarified almost of the concerns raised in the previous round of review, though I still have two minor concerns,

      1. In fig 2a, there is no number presented in the Venn diagram (although the left panel indeed showed the numbers of the different categories, including the numbers in the right panel would be more straightforward).

      We appreciate the reviewer for pointing out the need for clarification in the Venn diagram in Fig 2a. We have added the numbers to Venn diagram.

      1. The authors clarified the discrepancy between sfig 7a and sfig 7g. However, the remaining question is, why is there a big difference in the percentage of the cardinality count of concatemers of the different groups between the chr7 and the whole genome?

      We apologize for the confusion regarding the difference in the percentage of the cardinality count of concatemers between chr7 and the whole genome in figures S7a and S7g. The difference arises because the chr7 cardinality count only considers the intra-chromosome segments that are adjacent to each other on a SCA-seq concatemer, while the whole genome cardinality count includes both intra-chromosome and inter-chromosome segments.

      In the case of a SCA-seq concatemer that contains both intra-chromosome junctions and inter-chromosome junctions, the whole genome cardinality count will be greater than the intra-chromosome cardinality count. This explains the difference in the percentages between chr7 and the whole genome in figures S7a and S7g.

      To better clarify the definition of intra-chromosome cardinality, we have added an illustrative graph in figure S7a. In the updated figure S7a, the given exemplary SCA-seq concatemer has a whole genome cardinality of 4 and a chr7 intra-chromosome cardinality of 3.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study reports investigation of the dynamics of PKA at the single-cell level in in vitro and in epithelia in vivo. Using different fluorescent biosensors and optogenetic actuators, the authors dissect the signaling pathway responsible for PKA waves, finding that PKA activation is a consequence of PGE2 release, which in turn is triggered by calcium pulses, requiring high ERK activity. The evidence supporting the claims is solid. At this stage the work is still partly descriptive in nature, and additional measurements would increase the strength of mechanistic insights and physiological relevance.

      We deeply appreciate Dr. Alejandro San Martín and Dr. Jonathan Cooper and the reviewers. Each comment is valuable and reasonable. We will revise our paper as much as possible.

      We have described what we will do for the reviewer’s comments one by one in the below section.

      Reviewer #1 (Recommendations For The Authors):

      1. Even though the phenomenon of PGE2 signal propagation is elegantly demonstrated and well described, the whole paper is mostly of descriptive nature - the PGE2 signal is propagated via intercellular communication and requires Ca transients as well as MAPK activity, however function of these RSPAs in dense epithelium is not taken into consideration. What is the function of these RSPAs in cellular crowding? - Does it promote cell survival or initiate apoptosis? Does it feed into epithelial reorganization during cellular crowding? Still something else? The authors discuss possible roles of this phenomenon in cell competition context, but show no experimental or statistical efforts to answer this question. I believe some additional analysis or simple experiment would help to shed some light on the functional aspect of RSPAs and increase the importance of all the elegant demonstrations and precise experimental setups that the manuscript is rich of. Monolayer experiments using some perturbations that challenge the steady state of epithelial homeostasis - drug treatments/ serum deprivation/ osmotic stress/ combined with live cell imaging and statistical methods that take into account local cell density might provide important answers to these questions. The authors could consider following some of these ideas to improve the overall value of the manuscript.

      We would like to thank the reviewer’s comment. Although we have intensively tried to identify the physiological relevance of RSPA, we could not detect the function at present.

      In the case of MDCK, the treatment of NSAIDs, which cancels RSPA, did not affect its cell growth, ERK wave propagation during collective migration, migration velocity, cell survival, or apoptosis. In mouse epidermis, the frequency of RSPA was NOT affected by inflammation and collective cell migration, evoked by TPA treatment and wound, respectively.

      Notably, RSPA also occurs in the normal epidermis, implying its relevance in homeostasis. However, at the current stage, we believe that the PGE2 dynamics and its regulation mechanism in the normal epidermis would be worth reporting to researchers in the field.

      1. In the line 82-84 the authors claim: "We found that the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating that a Gs protein-coupled receptor (GsPCR) mediates RSPA". In our opinion, this conclusion is not well-supported by the results. The authors should at least show that some measurements of the two patterns show correlation. Are the patterns of cAMP of the same size as the pattern of PKA? Do they have the same size depending on cell density? Do they occur at the same frequency as the PKA patterns, depending on the cell density? Do they have an all or nothing activation as PKA or their activation is shading with the distance from the source?

      We have modified the text (line85)

      “Although the increment of the FRET ratio was not so remarkable as that of Booster-PKA, Wwe found that the pattern of cAMP concentration change is very similar to the activity change of PKA, indicating that a Gs protein-coupled receptor (GsPCR) mediates RSPA. This discrepancy may be partially explained by the difference in the dynamic ranges for cAMP signaling in each FRET biosensor (Watabe2020). “

      1. In general, the absolute radius of the waves is not a good measurement for single-cell biology studies, especially when comparing different densities or in vivo vs in vitro experiments. We suggest the authors add the measurement of the number of the cells involved in the waves (or the radius expressed in number of cells).

      We appreciate the reviewer’s comment. We have analyzed our results to demonstrate the number of cells as in Fig2E, which would be easy for readers to understand.

      1. In 6D, the authors should also show the single-cell trajectories to understand better the correlation between PKA and ERK peaks. Is the huger variability in ERK activity ratio dues to different peak time or different ERK activity levels in different cells? The authors should show both the variability in the time and intensity.

      We have added a few representative results as Fig. S4.

      1. In lines 130-132, the authors write, "This observation indicates that the amount of PGE2 secretion is predetermined and that there is a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion". How could the author exclude that the amount of PGE2 is not regulated in its intensity as well? For sure, there is a threshold effect regarding calcium, but this doesn't mean that PGE2 secretion can be further regulated, e.g. by further increasing calcium concentration or by other mechanisms.

      We agree with the reviewer’s comment. We have modified the text.

      1. The manuscript shows that not all calcium transients are followed by RSPAs. Does the local cell density/crowding increase the probability of overlap between calcium transients and RSPAs?

      We appreciate the reviewer’s comment. We have also hypothesized the model. However, we did not see the correlation that the reviewer pointed out. Currently, the increment of the RSPA frequency at high density is partially caused by the increment of calcium transients.

      Reviewer #2 (Recommendations For The Authors):

      1. The work is hardly conclusive as to the actual biological significance of the phenomenon. It would be interesting to know more under which physiological and pathological conditions PGE2 triggers such radial PKA activity changes. It is not well explained in which tissues and organs and under what conditions this type of cell-to-cell communication could be particularly important.

      The greatest weakness of the study seems to be that the biological significance of the phenomenon is not clearly clarified. Although it can be deduced that PKA activation has many implications for cell signaling and metabolism, the work lacks the actual link to physiological or pathological significance.

      We deeply appreciate the reviewer’s comment. Similar to the reseponse of reviewer#1, although we have intensively tried to identify the physiological relevance of RSPA, we could not detect the function.

      On the other hand, we believe that the PGE2 dynamics and its regulation mechanism in the normal epidermis would be worth reporting to researchers in the field.

      1. The authors do not explain further why in certain cells of the cell clusters Ca2+ signals occur spontaneously and thus trigger the phenomenon. What triggers these Ca2+ changes? And why could this be linked to certain cell functions and functional changes?

      At this moment, we do not have a clear answer or model for the comment although the calcium transients have been reported in the epidermis (https://doi.org/10.1038/s41598-018-24899-7). Further studies are needed and we will pursue this issue as a next project.

      1. What explains the radius and the time span of the radial signal continuation? To what extent are these factors also related to the degradation of PGE2? The work could be stronger if such questions and their answers would be experimentally integrated and discussed.

      We agree with the reviewer’s comment. Although we have intensively studied that point, we have omitted the results because of its complications. In HeLa cells, but not MDCK cells, we demonstrate the meaning of the radius of RSPA (https://pubmed.ncbi.nlm.nih.gov/37813623/)

      1. The authors could consider whether they could investigate the subcellular translocation of cPLA2 in correlation with cytosolic Ca2+ signals using GFP technology and high-resolution fluorescence microscopy with their cell model.

      Actually, we tried to monitor the cPLA2 translocation using GFP-tagged cPLA2. However, the translocation of GFP-cPLA2 was detected, only when the cells were stimulated by calcium ionophore. At this point, we have concluded that the quantitative analysis of cPLA2 translocation would be difficult.  

      Reviewer #3 (Recommendations For The Authors):

      1. "The cell density in the basal layer is approximately 2x106 cells cm-2, which is markedly higher than that in MDCK cells (Fig. 2D). It is not clear whether this may be related to the lower frequency (~300 cm-2 h-1) and smaller radius of RSPA in the basal layer cells compared to MDCK cells (Fig. 2E)." Wasn't the relationship with cell density the opposite, higher density higher frequency? Isn't then this result contradicting the "cell density rule" that the authors argue is there in the in vitro system? The authors need to revise their interpretation of the data obtained.

      We agree with the reviewer’s comment. Currently, we do not find the "cell density rule" in mouse epidermis. It would be difficult to identify common rules between mouse epidermis and MDCK cells. However, although it is descriptive, we believe it is worth comparing the MDCK results at this moment.

      1. Similarly, the authors over conclude on the explanation of lack of change in the size of RSPA size when the change in fluorescence for the calcium reporter surpasses a threshold by saying that "This observation indicates that the amount of PGE2 secretion is predetermined and that there is a threshold of the cytoplasmic calcium concentration for the triggered PGE2 secretion." First, the study does not really measure directly PGE2 secretion. Hence, there is no way that they can argue that the level of PGE2 secreted is "predetermined". Instead, there could be an inhibitory mechanism that is triggered to limit further activation of PGE2 signaling/PKA in neighboring cells.

      We agree with the reviewer’s comment. We have omitted the context.

      1. To rule out a transcription-dependent mechanism in the apparent cell density-regulated sensitivity to PGE2, the authors need to inhibit transcription. We agree that our RNA-seq analysis would not 100% rule out the transcription-dependent mechanism. However, we believe that shutting down all transcription will show a severe off-target effect that indirectly affects the calcium transients and the PGE2-synthetase pathway. Therefore, our conclusion is limited.

      4) EGF is reported to increase the frequency of RSPA but the change shown in Fig. 6F is not statistically significant, hence, EGF does not increase RSPA frequency in their experiments.

      We have toned down the claim that EGF treatment increases the frequency (line172).

      "Accordingly, the addition of EGF faintly increased the frequency of RSPA in our experiments, while the MEK and EGFR inhibitors almost completely abrogated RSPA (Fig. 6F), representing that ERK activation or basal ERK activity is essential for RSPA.“

      1. The Discussion section is at times redundant with the results section. References to figures should be kept in the Results section.

      We would like to argue in opposition to this comment. For readers, we believe that the reference to figures would be helpful and kind. However, if eLife recommends removing the reference from the Discussion section, we will follow the publication policy.

      1. "Notably, the propagation of PKA activation, ~100 μm/min (Fig. 1H), is markedly faster than that of ERK activation, 2-4 μm/min (Hiratsuka et al., 2015)." The 2 kinase reporters are based on different molecular designs. Thus, it does not seem appropriate to compare the kinetics of both reporters as a proxy of the comparison of the kinetics of propagation of both kinases.

      We think that we should discuss the comparison of the activity propagation between ERK and PKA. First, among many protein kinases, only ERK and PKA activities have been shown to spread in the epithelial cells. Second, both pathways are considered to be intercellular communication. Finally, crosstalk between these two pathways has been reported in several cells and organs.

      1. In Figure 1E it is unclear what is significantly different from what. Statistical analysis should be added and reporting of the results should reflect the results from that analysis.

      2. In Figure 3F and G the color coding is confusing. In F pink is radius and black is GCaMP6 and in G is RSPA+ and - cells. The authors should change the color to avoid ambiguity in the code.

      We have amended the panels.

      1. In Fig. 5C, how do they normalize per cell density if they are measuring radius of the response?

      In Fig5C, we just measure the increment of FRET ratio in the view fields.

      1. In Fig. 5D, what is the point of having a label for PTGER3 if data were not determined (ND)?

      We have added what N.D. means.

      “N.D. represents Not Detected.”

      1. It is important to assess whether ERK activation depends of PGE2 signaling to better place ERK in the proposed signaling pathway. In fact, the authors argue that "ERK had a direct effect on the production of PGE2." But it could be that ERK is downstream PGE2 signaling instead.

      It could be possible in other experimental conditions via EP1 and/or EP3 pathways. However, we never detected an effect of RSPA on ERK activity by analyzing our imaging system. In addition, treatment with NSAIDs or COX-2 depletion, which completely abolishes RSPA, did not affect ERK wave propagation. Thus, in our context, we concluded that ERK is not downstream of PGE2. This notion is also supported by the NGS results in Fig. 5D.

      We have refrained from discussing the pathway of PGE2-dependent ERK activation because it would be redundant.

      1. The authors need to explain better what they mean by "AND gate" if they want to reach a broad readership like that of eLife

      We have modified the legend to explain the “AND gate” as much as possible (line639).

      “Figure 7: Models for PGE2 secretion.

      The frequency of calcium transients is cell density-dependent manner. While the ERK activation wave is there in both conditions. Because both calcium transient and ERK activation are required for RSPA, the probability for PGE2 secretion is regulated as “AND gate”. ”

      1. In Fig. 5D, "The average intensity of the whole view field of mKate2 or mKOκ, at 20 to 30 min after the addition of PGE2, was applied to calculate the mKate2/mKOκ ratio." But this means that overlapping/densely plated cells in high density will show stronger changes in fluorescence. This should be done per cell not per field of view. It is obvious that the higher density will have more dense/brighter signal in a given field of view.

      We are sorry for the confusion. The cell density does not affect the FRET ratio, although the brightness could be changed. A typical example is Fig1D. Thus, we are sure that our procedures represent the PKA activity in plated cells.

      1. In Fig. 6B the authors need to explain how were the "randomly set positions" determined.

      We have modified the legend section as below (line618).

      “The ERK activities within 10 µm from the center of RSPA and within 10 µm from randomly set positions with a random number table generated by Python are plotted in the left panel. Each colored dot represents an average value of an independent experiment.”

      1. Sentences 314-318 are repeated in 318-322.

      We deeply appreciate the reviewer’s comment and have amended

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Here, Boor et al focus on the regulation of daf-7 transcription in the ASJ chemosensory neurons, which has previously been shown to be sensitive to a variety of external and internal signals. Interestingly, they find that soluble (but not volatile) signals released by food activate daf-7 expression in ASJ, but that this is counteracted by signals from the ASIC channels del-3 and del-7, previously shown to detect the ingestion of food in the pharynx. Importantly, the authors find that ASJ-derived daf-7 can promote exploration, suggesting a feedback loop that influences locomotor states to promote feeding behavior. They also implicate signals known to regulate exploratory behavior (the neuropeptide receptor PDFR-1 and the neuromodulator serotonin) in the regulation of daf-7 expression in ASJ. Additionally, they identify a novel role for a pathway previously implicated in C. elegans sensory behavior, HEN1/SCD-2, in the regulation of daf-7 in ASJ, suggesting that the SCD-2 homolog ALK may have a conserved role in feeding and metabolism.

      Strengths:

      The studies reported here, particularly the quantitation of gene expression and the careful behavioral analysis, are rigorously done and interpreted appropriately. The results suggest that, with respect to food, DAF-7 expression encodes a state of "unmet need" - the availability of nearby food to animals that are not currently eating. This is an interesting finding that reinforces and extends our understanding of the neurobiological significance of this important signaling pathway. The identification of a role for ASJ-derived daf-7 in motor behavior is a valuable advance, as is the finding that SCD-2 acts in the AIA interneurons to influence daf-7 expression in ASJ.

      We appreciate the Reviewer 1’s thoughtful assessment of our work and inference that the expression of daf-7 encodes internal state corresponding to “unmet need.” Based on comments of Reviewer 1 and other reviewers, we have revised the title, abstract, and parts of the discussion to highlight not only the functional contribution of daf-7 expression in the ASJ neurons to behavioral state, but also the remarkable correlation between gene expression and internal state driving foraging behavior.

      Weaknesses:

      A limitation of the work is that some mechanistic relationships between the identified signaling pathways are not carefully examined, but this provides interesting opportunities for future work.

      To enable the reader to begin to infer the relative contributions of the identified signaling pathways to the circuitry coupling distinct bacterial cues to foraging behavior, we have added data for the analysis of DAF-7 expression in the ASJ neurons in the tph-1 and pdfr-1 mutants in the complete absence of food. Our current leaning is that multiple pathways, including those we have begun to characterize here, may function in parallel to influence DAF-7 expression and internal state driving foraging behavior. Future work to explore this further is certainly of interest.

      A minor weakness concerns the experiment in which daf-7 is conditionally deleted from ASJ. This is an ideal approach for probing the function of daf-7, but these experiments seem to be carried out in the well-fed, on-food condition in which control animals should express little or no daf-7 in ASJ. Thus, the experimental design does not allow an assessment of the role of daf-7 under conditions in which its expression is activated (e.g., in animals exposed to un-ingestible food).

      The interpretation of genetic analysis in the complete absence of food is complicated by what we think are multiple parallel pathways that function to strongly promote roaming, as indicated in the prior work of Ben Arous et al. Our observation that the conditional deletion of daf-7 from the ASJ pair of neurons confers altered roaming behavior on a lawn of bacterial food supports physiological ongoing role for dynamic daf-7 expression from the ASJ neurons even in the presence of bacterial food that may contribute to the control of transitions between foraging states and the persistence of roaming and dwelling states.

      To demonstrate the functional contribution of DAF-7 expression from the ASJ neuron pair during constitutive expression favoring roaming, we examined the roaming behavior of scd2(syb2455) animals that carry a gain-of-function mutation in scd-2 that promotes roaming and how the selective deletion of daf-7 from the ASJ neurons in the scd-2(syb2455) genetic background influences roaming behavior. This new experiment supports a model in which DAF-7 expression from the ASJ neurons contributes to the increased roaming behavior exhibited by scd-2(syb2455) animals. The new experiment is added as Figure 4I.

      An additional minor issue concerns the interpretation of the scd-2 experiments. The authors' findings do support a role for scd-2 signaling in the activation of daf-7 expression by un-ingestible food, but the data also suggest that scd-2 signaling is not essential for this effect, as there is still an effect in scd-2 mutants (Figure 4B).

      Considering that most of previous Figure 4B is redundant with previous Figure 4D, we removed previous Figure 4B. Our current Figure 4 has redesignated previous Figure 4D as 4B. We have also added qualification to the text to indicate that other pathways may modulate the daf-7 expression response to ingested food in parallel to SCD-2 signaling.

      Reviewer #2 (Public Review):

      Summary:

      In this work, Boor and colleagues explored the role of microbial food cues in the regulation of neuroendocrine-controlled foraging behavior. Consistent with previous reports, the authors find that C. elegans foraging behavior is regulated by the neuroendocrine TGFβ ligand encoded by daf-7. In addition to its known role in the neuroendocrine/sensory ASI neurons, Boot and colleagues show that daf-7 expression is dynamically regulated in the ASJ sensory neurons by microbial food cues - and that this regulation is important for exploration/exploitation balance during foraging. They identify at least two independent pathways by which microbial cues regulate daf-7 expression in ASJ: a likely gustatory pathway that promotes daf-7 expression and an opposing interoceptive pathway, also likely chemosensory in nature but which requires microbial ingestion to inhibit daf-7 expression. Two neuroendocrine pathways known to regulate foraging (serotonin and PDF-1) appear to act at least in part via daf-7 induction. They further identify a novel role for the C. elegans ALK orthologue encoded by scd-2, which acts in interneurons to regulate daf-7 expression and foraging behavior. These results together imply that distinct cues from microbial food are used to regulate the balance between exploration and exploitation via conserved signaling pathways.

      Strengths:

      The findings that gustatory and interoceptive inputs into foraging behavior are separable and opposing are novel and interesting, which they have shown clearly in Figure 1. It is also clear from their results that removal of the interoceptive cue (via transfer to non-digestible food) results in rapid induction of daf-7::gfp in ASJ, and that ASJ plays an important role in the regulation of foraging behavior.

      We thank Reviewer 2 for underscoring the modulation of neuroendocrine gene expression in the ASJ neuron pair by distinct gustatory and interoceptive inputs derived from bacterial food that we show in Figure 1.

      The role of the hen-1/scd-2 pathway in mediating the effects of ingested food is also compelling and well-interpreted. The use of precise gain-of-function alleles further supports their conclusions. This implies that important elements of this food-sensing pathway may be conserved in mammals.

      We thank Reviewer 2 for emphasizing the implications of our study on SCD-2/ALK as well as the generation and use of gain-of-function scd-2 alleles based on oncogenic mutations in ALK.

      Weaknesses:

      What is less clear to me from the work at this stage is how the gustatory input fits into this picture and to what extent can it be strongly concluded that the daf-7regulating pathways that they have identified (del-3/7, 5-HT, PDFR-1, scd-2) act via the interoceptive pathway as opposed to the gustatory pathway.

      It follows from the work of the Flavell lab that del-3/7 likely acts via the interoceptive pathway in this context as well but this isn't shown directly - e.g. comparing the effects of aztreonam-treated bacteria and complete food removal to controls. The roles of 5-HT and PDFR-1 are even a bit less clear. Are the authors proposing that these are entirely parallel pathways? This could be explained in better detail.

      We have added additional data regarding daf-7 expression from the ASJ neurons in the complete absence of food in the different mutant backgrounds noted by Reviewer 2. Data regarding daf-7 expression in the ASJ neurons under three distinct conditions—ingestible bacterial food, non-ingestible bacterial food, and the complete absence of food—enable the pairwise comparison of mutant data that allows for inference regarding the relative contributions of the genes to the interoceptive vs. gustatory pathways. In particular, effects on the interoceptive pathway can be inferred from the comparison of daf-7 expression on ingestible vs. non-ingestible food, whereas effects on the gustatory pathway can be inferred from the comparison of daf-7 expression on non-ingestible food vs. the absence of food (newly added).

      These additional data are most informative for del-3; del-7 (Figure 1H), where the added data corroborate a role for these genes in the interoceptive pathway, consistent with the findings of the Flavell lab. Specifically, the observation that daf-7 expression levels are equivalent between wild-type and del-3;del-7 animals when there is no ingestible food (either no food or non-ingestible food conditions) suggest that DEL-3 and DEL-7 are functioning specifically to sense ingested food.

      For pdfr-1, the analysis of the gain-of-function allele suggest that this pathway may have a greater relative effect on the gustatory pathway compared with the interoceptive pathway (Figure 3D). The robust upregulation seen in the pdfr-1(syb3826) animals between animals on ingestible and non-ingestible food, suggests that the interoceptive regulation is functional in these mutants, while the lack of upregulation between no-food and noningestible-food conditions suggests that the gustatory pathway is affected.

      The observations with the 5-HT biosynthesis mutant are most consistent with serotonin signaling affecting daf-7 expression in the ASJ neurons through a mechanism that is parallel to the gustatory and interoceptive inputs into daf-7 expression in the ASJ neurons, as tph1(n4622) animals appear to have an elevated baseline expression of daf-7 in the ASJ neurons while retaining sensitivity to both gustatory and interoceptive food cues (Figure 3B).

      The data with scd-2 are consistent with a role in the epistatic interoceptive pathway, considering the roughly equivalent levels of daf-7 expression in the ASJ neurons under all food conditions in scd-2(syb2455) animals (Figure 4B). However it is difficult to exclude the possibility that SCD-2 functions in both pathways or parallel to the gustatory and interoceptive inputs.

      While we agree that our genetic analysis alone cannot distinguish between genes acting in parallel or directly in serial with the gustatory or interoceptive inputs, our data do establish that signaling through SCD-2, 5-HT or PDFR-1-dependent pathways can act on the same gene expression and signaling node (i.e. daf-7 expression in the ASJ neurons) to modulate the effects of bacterial food inputs on foraging behavior, with the effects on daf-7 expression in the ASJ neurons in scd-2, tph-1 and pdfr-1 mutants correlating with their effects on roaming and dwelling behaviors.

      It would also be helpful to elaborate more on why the identified transcriptional positive feedback loop is predicted to extend roaming state duration - as opposed to some other mechanism of increasing roaming such as increased probability of roaming state initiation. This doesn't seem self-evident to me.

      Given that animals can exist in only two states, the increased probability of roaming state initiation would present as shorter dwelling states, which we do not see for daf-7 mutants. As described in Flavell, et al., 2013, a decreased fraction of time roaming can be attributed to longer dwelling states, shorter roaming states, or both. Our positive feedback loop is predicted to extend roaming states because of the predicted effect of DAF-7 on stabilizing the roaming state.

      Related to this point is the somewhat confusing conclusion that the effects of tph-1 and pdfr-1 mutations on daf-7 expression are due to changes in ingestion during roaming/dwelling. From my understanding (e.g. Cermak et al., 2020), pharyngeal pumping rate does not reliably decrease during roaming - so is it clear that there are in fact lower rates of ingestion during roaming in their experiments?

      This is an interesting point. Despite consistent pumping rates, we still believe that roaming animals ingest less food than dwelling animals. For instance, dwelling animals are localized to areas with bacterial food, while roaming animals might traverse patches with no food where pumping does not result in food ingestion.

      If so, why does increased roaming (via tph-1 mutation) result in further increases in daf-7 expression in animals fed aztreonam-treated food (Fig 3B)?

      This is possibly because although roaming animals are eating less, when animals are on non-ingestible food, they’re not eating at all, resulting in further daf-7 upregulation.

      Alternatively, there could be a direct signaling connection between the 5-HT/PDFR-1 pathways and daf-7 expression which could be acknowledged or explained.

      Yes, this is certainly possible. We do not propose that all of the difference in daf-7 expression is due to changes in foraging behavior, but rather we are highlighting further instances of the correlation between daf-7 expression in the ASJ neurons and roaming. For instance, in the case of our tph-1 mutants, we see a relatively modest effect on daf-7 expression in the ASJ neurons but a large difference in the fraction of time roaming. This suggests that the magnitude of change in one (daf-7 expression in ASJ or roaming) does not predict the magnitude of the change in the other, but rather that they trend in the same direc<on.

      Reviewer #3 (Public Review):

      Summary:

      In this interesting study, the authors examine the function of a C. elegans neuroendocrine TGF-beta ligand DAF-7 in regulating foraging movement in response to signals of food and ingestion. Building on their previous findings that demonstrate the critical role of daf-7 in a sensory neuron ASJ in behavioral response to pathogenic P. aeruginosa PA14 bacteria and different foraging behavior between hermaphrodite and male worms, the authors show, here, that ingestion of E. coli OP50, a common food for the worms, suppresses ASJ expression of daf-7 and secreted water-soluble cues of OP50 increases it. They further showed that the level of daf-7 expression in ASJ is positively associated with a higher level of roaming/exploration movement. Furthermore, the authors identify that a C. elegans ortholog of Anaplastic Lymphoma Kinase, scd-2, functions in an interneuron AIA to regulate ASJ expression of daf-7 in response to food ingestion and related cues. These findings place the DAF-7 TGF-beta ligand in the intersection of environmental food conditions, food intake, and foodsearching behavior to provide insights into how orchestrated neural functions and behaviors are generated under various internal and external conditions.

      Strengths:

      The study addresses an important question that appeals to a wide readership. The findings are demonstrated by generally strong results from carefully designed experiments.

      We thank Reviewer 3 for the comments and interest in the work.

      Weaknesses:

      However, a few questions remain to provide a complete picture of the regulatory pathways and some analyses need to be strengthened. Specifically,

      1. The authors show that diffusible cues of bacteria OP50 increase daf-7 expression in ASJ which is suppressed by ingestible food. Their results on del-3 and del-7 suggest that NSM neuron suppresses daf-7 ASJ expression. What sensory neurons respond to bacterial diffusible cues to increase daf-7 expression of ASJ? Since ASJ is able to respond to some bacterial metabolites, does it directly regulate daf-7 expression in response to diffusible cues of OP50 or does it depend on neurotransmission for the regulation? Some level of exploration in this question would provide more insights into the regulatory network of daf-7.

      The focus of our study has been on the modulation of daf-7 expression in the ASJ neurons by distinct bacterial food cues and the downstream neuroendocrine circuitry that is influenced. The question of whether bacterial cues are directly sensed by the ASJ neurons remains unresolved by our study. However, we have previously demonstrated that the daf-7 expression in the ASJ neurons induced by P. aeruginosa metabolites is likely the result of direct detection by the ASJ neurons. We would also note (and have added to the manuscript) the observation of Zaslaver et al. (2015), in which increased calcium transients were observed in the ASJ neurons in response to the withdrawal of E. coli OP50 supernatant, which is consistent with our observations of the effect of a soluble bacterial food signal on daf-7 expression in the ASJ neurons.

      1. The results including those in Figure 2 strongly support that daf-7 in ASJ is required for roaming. Meanwhile, authors also observe increased daf-7 expression in ASJ under several conditions, such as non-ingestible food. Does non-ingestible food induce more roaming?

      Yes, this has been published by Ben Arous, et al., 2009. Figure 3C shows increased roaming on aztreonam-treated food. We have added specific mention of this in the text.

      It would complete the regulatory loop by testing whether a higher (than wild type) level of daf-7 in ASJ could further increase roaming. The results in pdf-1 and scd-2 gain-of-function alleles support more ASJ leads to more roaming, but the effect of these gain-of-function alleles may not be ASJ-specific and it would be interesting to know whether ASJ-specific increase of daf-7 leads to a higher level of roaming. In my opinion, either outcome would be informative and strengthen our understanding of the critical function of daf-7 in ASJ demonstrated here.

      We looked at roaming in animals with a ptrx-1::daf-7 cDNA transgene in a wild-type background and did not see changes in the fraction of time animals roam. However, multiple experimental factors could contribute to our inability to detect an effect, including relative promoter strength and context of other variables that alter daf-7 expression. Nevertheless, our data confirmed that ASJ neuron-specific expression of daf-7 cDNA can increase roaming in a daf-7 mutant background (Figure 2B).

      We have also included an experiment (Figure 4I) looking at roaming in the scd-2(syb2455) gain-of-function animals in animals with daf-7 deleted from the ASJ neurons. These results suggest that part of the increased roaming seen in these scd-2(syb2455) animals is specifically due to increased daf-7 expression in the ASJ neurons.

      1. The analyses in Figure 4 cannot fully support "We further observed that the magnitude of upregulation of daf-7 expression in the ASJ neurons when animals were moved from ingestible food to non-ingestible food was reduced in scd-2(syb2455) to levels only about one-fourth of those seen in wild-type animals (Figure 4D)...", because the authors tested and found the difference in daf-7 expression between ingestible and non-ingestible food conditions in both wild type and the mutant worms. The authors did not analyze whether the induction was different between wild type and mutant. Under the ingestible food condition, ASJ expression of daf-7 already looks different in scd-2(syb2455).

      We appreciate the reviewer pointing out our lack of clarity in discussing our analysis of the data. The 4x difference represents the difference in fold change from ingested to noningested food in wild type and scd-2(syb2455) backgrounds. For wild-type animals, daf-7 expression in the ASJ neurons on non-ingestible food is 8.1-times higher on non-ingestible food than on ingestible food. In scd-2(syb2455) animals, this difference is 1.7 times. We have clarified this in the text.

      1. The authors used unpaired two-tailed t-tests for all the statistical analyses, including when there are multiple groups of data and more than one treatment. In their previous study Meisel et al 2014, the authors used one-way ANOVA, followed by Dunnett's or Tukey's multiple comparison test when they analyzed daf-7 expression or lawn leaving in different mutants or under different bacterial conditions. It is not clear why a two-tailed t-test was used in similar analyses in this study

      We have performed one-way ANOVAs for all comparisons included, and the results were largely consistent with what we found for t-tests. Ultimately, for our analysis we were most interested in pairwise comparisons and decided that t-tests would be most appropriate.

      *Reviewer #1 (Recommendations For The Authors):

      Line 170: For clarity, I suggest editing this to: "When animals are removed from edible food but are still exposed to soluble food signals, upregulation of daf-7..."

      We have edited this in the text and appreciate the suggestion.

      The authors report that pdfr-1(syb3826) was retrieved from "a screen done in parallel to this work." syb3826 is a Suny Biotech allele, suggesting that this screen may not have been done in the authors' lab but rather outsourced. Some additional details might be useful.

      This S325F allele was originally recovered as qd385 in an EMS screen performed in our lab. syb3826 is an independently generated Suny Biotech allele we ordered to confirm that the S325F substitution in PDFR-1 was responsible for our phenotypes. This has been clarified in the text.

      Line 210: Please provide a citation for the screen that identified hen-1(qd259).

      This is the first time the allele is being published. The screen is included in two theses from our lab, Meisel 2016 and Park 2019.

      Line 214: It would be useful here to also mention the previously identified role of scd2 in sensory integration.

      Yes, we have added this to the text. Additionally, we have included a couple of sentences in the discussion about how previous studies that have found a role for SCD-2 in sensory integration may instead be detecting the role for SCD-2 in food sensing, as many of the assays used for sensory integration are also sensitive to nutritional status of the animals.

      Line 271: Please provide a citation for the sex differences in food-leaving behavior (Lipton 2004 PMID 15329389 is the first careful characterization of this).<br /> We have added this to the text.