Reviewer #2:
This paper contributes to the large number of papers currently posted on BioRxiv showing that the N protein of SARS CoV2 can undergo liquid-liquid phase separation on its own and in the presence of RNA, and that this behavior can be modulated by phosphorylation. The work here is somewhat different from much of the other work in that the authors have generated the N protein from mammalian cells. The authors have also examined the effects of known drugs on the phase separation process. Given the importance of coronavirus it is imperative to get out information on its biology. But it is also imperative that the information be correct, interpreted with appropriate caution, and of sufficient depth to be valuable to others in the field and not potentially misdirect future research and clinical efforts. In this respect, I think the authors need to clean up some of their experiments and pull back on some of their claims, as I detail below.
Major comments:
1) In general, the authors' use of size, number and morphology of droplets to assess the effects of small molecules in figure 4 is problematic. The authors should be measuring the effects of the compounds on the phase separation threshold concentration (of N+RNA or of salt) to see whether the compounds stabilize or destabilize the droplets. Changes in size, number and morphology can be due to many factors, many of which are unlikely to be relevant to viral assembly.
For example, the authors report that nelfinavir mesylate and LDK378 produced fewer but larger droplets, and conclude that these compounds could disrupt virion assembly. This is problematic for two reasons. Most importantly, it is almost impossible to interpret what fewer larger droplets means. Are they nucleating more slowly and/or growing more rapidly? Are they more viscous and thus less disrupted by handling? Are they denser and thus settling more rapidly? Has the thermodynamic threshold to phase separation changed? Secondarily, because of these uncertainties, it is an overinterpretation to state based on the data that these compounds could act by disrupting virion assembly.
The class II molecules, which increase both size and number of droplets, are probably more relevant, since concomitant increases in both probably mean that the threshold concentration for LLPS has decreased, and thus the compound has stabilized the droplets.
The changes in morphology induced by the class III molecules are also hard to interpret. Does the change reflect greater adhesion to and spreading on the slide surface (probably irrelevant to drug action)? Or changes in droplet dynamics--slowed fusion or increased viscosity? What does it mean that nilotinib causes the morphology of N+RNA condensates to become filamentous, and could this same effect account for the (modest) decrease in N protein foci in cells upon drug treatment?<br> I honestly am concerned that the authors conclude the paper urging use of nilotinib in clinical trials, and the effects of drugs on phase separation as a proxy for vRNP formation, based on these very thin data.
2) In Figure 1 (and beyond), it is not good practice to use fractional areas of droplets that have settled to a slide surface to quantify droplet formation in LLPS experiments. Droplets fall to the slide surface at different rates depending on their sizes, which in turn depend on many factors, some biochemical (the relative rates of nucleation and growth; density; all of which can vary with buffer conditions) and some technical (exactly how the sample was handled). Turbidity, which also is imperfect, is nevertheless a more reliable measure; so is microscopic assessment of the presence or absence of droplets. The authors should provide at least some additional measure in these initial experiments to show the numbers obtained from the fractional area are qualitatively correct.
3) In figure 1C, the dissolution with salt is not a measure of liquid-like properties, as claimed at the bottom of page 3. The authors should look for evidence of droplet fusion, spherical shape (for droplets larger than the diffraction limit) and rapid exchange with solvent.
4) The claims on page 4 that the condensates formed with viral RNA fragments are gel-like should be supported with some measure of dynamics, and not simply the shape of the objects that settle to the slide surface.
5) In the CLMS experiments, how do the authors know that the changes observed are due to LLPS per se and not to differences in structure induced by differences in salt? It seems like additional controls are warranted to make this claim. Relatedly, the authors should state/examine whether higher salt affects dimerization of the dimerization domain.
6) The analogy made on page 4 between the asymmetric structures observed upon mixing N and viral RNA fragments to the strings of vRNPs observed by cryoEM is quite a stretch. The vRNPs are 15 nm in diameter. The structures observed here are vastly larger. Such associated but non-fused droplets are often observed for solidifying phase separating systems. The superficial similarity of connected particles between the cellular vRNPs and the structures here is, in my opinion, unlikely to be meaningful.