159 Matching Annotations
  1. Last 7 days
  2. Oct 2020
  3. Sep 2020
  4. Aug 2020
    1. Felipe, L. S., Vercruysse, T., Sharma, S., Ma, J., Lemmens, V., Looveren, D. van, Javarappa, M. P. A., Boudewijns, R., Malengier-Devlies, B., Kaptein, S. F., Liesenborghs, L., Keyzer, C. D., Bervoets, L., Rasulova, M., Seldeslachts, L., Jansen, S., Yakass, M. B., Quaye, O., Li, L.-H., … Dallmeier, K. (2020). A single-dose live-attenuated YF17D-vectored SARS-CoV2 vaccine candidate. BioRxiv, 2020.07.08.193045. https://doi.org/10.1101/2020.07.08.193045

    1. Zhu, F.-C., Guan, X.-H., Li, Y.-H., Huang, J.-Y., Jiang, T., Hou, L.-H., Li, J.-X., Yang, B.-F., Wang, L., Wang, W.-J., Wu, S.-P., Wang, Z., Wu, X.-H., Xu, J.-J., Zhang, Z., Jia, S.-Y., Wang, B.-S., Hu, Y., Liu, J.-J., … Chen, W. (2020). Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(20)31605-6

    1. Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., Schäfer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K. H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch, E. J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B. M., … Graham, B. S. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 1–8. https://doi.org/10.1038/s41586-020-2622-0

    1. Walls, A. C., Fiala, B., Schäfer, A., Wrenn, S., Pham, M. N., Murphy, M., Tse, L. V., Shehata, L., O’Connor, M. A., Chen, C., Navarro, M. J., Miranda, M. C., Pettie, D., Ravichandran, R., Kraft, J. C., Ogohara, C., Palser, A., Chalk, S., Lee, E.-C., … King, N. P. (2020). Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. BioRxiv, 2020.08.11.247395. https://doi.org/10.1101/2020.08.11.247395

    1. Sun, W., McCroskery, S., Liu, W.-C., Leist, S. R., Liu, Y., Albrecht, R. A., Slamanig, S., Oliva, J., Amanat, F., Schäfer, A., Dinnon, K. H., Innis, B. L., García-Sastre, A., Krammer, F., Baric, R. S., & Palese, P. (2020). A Newcastle disease virus (NDV) expressing membrane-anchored spike as a cost-effective inactivated SARS-CoV-2 vaccine. BioRxiv, 2020.07.30.229120. https://doi.org/10.1101/2020.07.30.229120

    1. Bangaru, S., Ozorowski, G., Turner, H. L., Antanasijevic, A., Huang, D., Wang, X., Torres, J. L., Diedrich, J. K., Tian, J.-H., Portnoff, A. D., Patel, N., Massare, M. J., Yates, J. R., Nemazee, D., Paulson, J. C., Glenn, G., Smith, G., & Ward, A. B. (2020). Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. BioRxiv, 2020.08.06.234674. https://doi.org/10.1101/2020.08.06.234674

  5. Jul 2020
    1. Mulligan, M. J., Lyke, K. E., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S. P., Neuzil, K., Raabe, V., Bailey, R., Swanson, K. A., Li, P., Koury, K., Kalina, W., Cooper, D., Fonter-Garfias, C., Shi, P.-Y., Tuereci, O., Tompkins, K. R., Walsh, E. E., … Jansen, K. U. (2020). Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report. MedRxiv, 2020.06.30.20142570. https://doi.org/10.1101/2020.06.30.20142570

    1. Corbett, K. S., Edwards, D., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., Schäfer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K. H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch, E. J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B. M., … Graham, B. S. (2020). SARS-CoV-2 mRNA Vaccine Development Enabled by Prototype Pathogen Preparedness. BioRxiv, 2020.06.11.145920. https://doi.org/10.1101/2020.06.11.145920

  6. Jun 2020
    1. Starr, T. N., Greaney, A. J., Hilton, S. K., Crawford, K. H., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., Veesler, D., & Bloom, J. D. (2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding [Preprint]. Microbiology. https://doi.org/10.1101/2020.06.17.157982

    1. . According to published reports, the vaccine being developed uses a replication-deficient adenovirus (a harmless virus) to deliver a SARS-CoV-2 protein to induce a protective immune response. Coded as ChAdOx1, the same vaccine has been used against several other pathogens, including one for the Mers virus.

      Still nothing in sight!

    2. Kang cited how the BCG vaccine underwent as many as 200 sub-cultures before it was considered attenuated (weakened) enough for human use. Another leading virologist tells ET Prime that Moderna is in an uncharted territory and no vaccine using that technology has reached the licensing stage.

      Requires significant attenuation before you actually see results.

    3. Known as messenger RNA, Moderna’s vaccine essentially aims to induce an immune response by sending instruction signals for a spike protein located on the surface of the virus. These immune cells are then expected to develop antibodies against the virus whenever a person contracts the coronavirus. Although promising, this pathway has not been successful or used to develop vaccines before.

      Novel form of vaccine but not entirely worth it.

    4. Moderna had earlier announced that it would start its pivotal phase III studies in July, to be followed by a biologic-licence application (BLA) with the USFDA. While apprehensions have been raised over that timeline, senior researchers like Fauci who had backed Moderna’s vaccine have not made any observations on the quality of data shared.

      Very bad quality of data

    5. He passionately explains how his team developed a reverse-genetics system against a poultry virus called avian paramyxovirus. In simple terms, this is a method of recovering a virus, manipulating its genome, and using it as a vector to induce an immune response.
    6. A few days ago, the US launched a public-private partnership under Operation Warp Speed that hand-picked five companies that can develop and make vaccines, diagnostics, and therapeutics on an accelerated basis.
    7. Hundreds of chemistry-based and biological drugs – new and existing – are being tested everyday across continents to rein in the coronavirus, but so far only one has shown partial activity.