152 Matching Annotations
  1. Dec 2023
  2. Nov 2022
  3. Aug 2022
    1. Lauring, A. S., Tenforde, M. W., Chappell, J. D., Gaglani, M., Ginde, A. A., McNeal, T., Ghamande, S., Douin, D. J., Talbot, H. K., Casey, J. D., Mohr, N. M., Zepeski, A., Shapiro, N. I., Gibbs, K. W., Files, D. C., Hager, D. N., Shehu, A., Prekker, M. E., Erickson, H. L., … Self, W. H. (2022). Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: Prospective observational study. BMJ, 376, e069761. https://doi.org/10.1136/bmj-2021-069761

    1. ReconfigBehSci. (2021, December 9). a rather worrying development- a (local) newspaper “fact checking” the new German health minister simply by interviewing a virologist who happens to have a different view. There’s simply no established “fact” as to the severity of omicron in children at this point in time [Tweet]. @SciBeh. https://twitter.com/SciBeh/status/1469037817481334786

  4. Apr 2022
    1. Mathew, D., Giles, J. R., Baxter, A. E., Oldridge, D. A., Greenplate, A. R., Wu, J. E., Alanio, C., Kuri-Cervantes, L., Pampena, M. B., D’Andrea, K., Manne, S., Chen, Z., Huang, Y. J., Reilly, J. P., Weisman, A. R., Ittner, C. A. G., Kuthuru, O., Dougherty, J., Nzingha, K., … Wherry, E. J. (2020). Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 369(6508), eabc8511. https://doi.org/10.1126/science.abc8511

  5. Feb 2022
    1. Agarwal, A., Rochwerg, B., Lamontagne, F., Siemieniuk, R. A., Agoritsas, T., Askie, L., Lytvyn, L., Leo, Y.-S., Macdonald, H., Zeng, L., Amin, W., Barragan, F. A., Bausch, F. J., Burhan, E., Calfee, C. S., Cecconi, M., Chanda, D., Dat, V. Q., Sutter, A. D., … Vandvik, P. O. (2020). A living WHO guideline on drugs for covid-19. BMJ, 370, m3379. https://doi.org/10.1136/bmj.m3379

    1. Adele Groyer. (2022, January 8). Friday report is now out. Https://covidactuaries.org/2022/01/07/the-friday-report-issue-58/ I am struck that perception of a “mild” Covid situation is relative. In SA natural deaths were >30% higher than predicted in Dec. The last time weekly death rates in E&W were more than 30% above 2015-19 levels was in Jan 2021. Https://t.co/S9fkn2WFVk [Tweet]. @AdeleGroyer. https://twitter.com/AdeleGroyer/status/1479760460589191170

    1. Trisha Greenhalgh. (2022, January 8). Apart from (e.g.): 1. Severe disease in clinically vulnerable (they are people too); 2. Long covid in many; 3. Strokes / heart attacks / kidney failure from micro-clots; 4. New-onset diabetes and MIS-C in children; 5. High potential for recombinant mutations. [Tweet]. @trishgreenhalgh. https://twitter.com/trishgreenhalgh/status/1479738523511136258

    1. Elaine Maxwell. (2022, February 3). In the latest @ONS estimates of #LongCovid (up to 2nd Jan 2022), only 87 thousand of the 1.33 million cases were admitted to hospital with their acute Covid19 infection. [Tweet]. @maxwele2. https://twitter.com/maxwele2/status/1489179055412989953

  6. Jan 2022
    1. Paolucci, S., Cassaniti, I., Novazzi, F., Fiorina, L., Piralla, A., Comolli, G., Bruno, R., Maserati, R., Gulminetti, R., Novati, S., Mojoli, F., Baldanti, F., Bruno, R., Mondelli, M., Brunetti, E., Matteo, A. D., Seminari, E., Maiocchi, L., Zuccaro, V., … Ferrari, A. (2021). EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count. International Journal of Infectious Diseases, 104, 315–319. https://doi.org/10.1016/j.ijid.2020.12.051

  7. Dec 2021
    1. Adam Bienkov. (2021, December 14). Conservative MP Desmond Swayne says the “carnage” on UK roads is “certainly killing more people than Covid at the moment”. For context there were just 1,460 deaths on British roads in the whole of 2020, compared to more than 4,000 deaths of people with Covid last month alone. Https://t.co/NVD6SxhTKB [Tweet]. @AdamBienkov. https://twitter.com/AdamBienkov/status/1470783359064358929

    1. Seth Trueger. (2021, June 26). friendly reminder that “more transmissible” is by itself REALLY BAD for a pandemic. Even small increases in R₀ mean more potential for spread, more cases, more deaths etc please get your vax & help others get theirs https://t.co/mlojYmp71j [Tweet]. @MDaware. https://twitter.com/MDaware/status/1408811800108355586

  8. Oct 2021
    1. Magusali, N., Graham, A. C., Piers, T. M., Panichnantakul, P., Yaman, U., Shoai, M., Reynolds, R. H., Botia, J. A., Brookes, K. J., Guetta-Baranes, T., Bellou, E., Bayram, S., Sokolova, D., Ryten, M., Sala Frigerio, C., Escott-Price, V., Morgan, K., Pocock, J. M., Hardy, J., & Salih, D. A. (2021). A genetic link between risk for Alzheimer’s disease and severe COVID-19 outcomes via the OAS1 gene. Brain, awab337. https://doi.org/10.1093/brain/awab337

    1. Wickenhagen, A., Sugrue, E., Lytras, S., Kuchi, S., Noerenberg, M., Turnbull, M. L., Loney, C., Herder, V., Allan, J., Jarmson, I., Cameron-Ruiz, N., Varjak, M., Pinto, R. M., Lee, J. Y., Iselin, L., Palmalux, N., Stewart, D. G., Swingler, S., Greenwood, E. J. D., … Wilson, S. J. (n.d.). A prenylated dsRNA sensor protects against severe COVID-19. Science, 0(0), eabj3624. https://doi.org/10.1126/science.abj3624

    1. Clift, A. K., von Ende, A., Tan, P. S., Sallis, H. M., Lindson, N., Coupland, C. A. C., Munafò, M. R., Aveyard, P., Hippisley-Cox, J., & Hopewell, J. C. (2021). Smoking and COVID-19 outcomes: An observational and Mendelian randomisation study using the UK Biobank cohort. Thorax, thoraxjnl-2021-217080. https://doi.org/10.1136/thoraxjnl-2021-217080

  9. Sep 2021
    1. Lee, J. W., Su, Y., Baloni, P., Chen, D., Pavlovitch-Bedzyk, A. J., Yuan, D., Duvvuri, V. R., Ng, R. H., Choi, J., Xie, J., Zhang, R., Murray, K., Kornilov, S., Smith, B., Magis, A. T., Hoon, D. S. B., Hadlock, J. J., Goldman, J. D., Price, N. D., … Heath, J. R. (2021). Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nature Biotechnology, 1–11. https://doi.org/10.1038/s41587-021-01020-4

    1. Twohig, K. A., Nyberg, T., Zaidi, A., Thelwall, S., Sinnathamby, M. A., Aliabadi, S., Seaman, S. R., Harris, R. J., Hope, R., Lopez-Bernal, J., Gallagher, E., Charlett, A., Angelis, D. D., Presanis, A. M., Dabrera, G., Koshy, C., Ash, A., Wise, E., Moore, N., … Gunson, R. (2021). Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: A cohort study. The Lancet Infectious Diseases, 0(0). https://doi.org/10.1016/S1473-3099(21)00475-8

  10. Aug 2021
  11. Jul 2021
  12. Apr 2021
  13. Mar 2021
    1. Griffith, G. J., Morris, T. T., Tudball, M. J., Herbert, A., Mancano, G., Pike, L., Sharp, G. C., Sterne, J., Palmer, T. M., Davey Smith, G., Tilling, K., Zuccolo, L., Davies, N. M., & Hemani, G. (2020). Collider bias undermines our understanding of COVID-19 disease risk and severity. Nature Communications, 11(1), 5749. https://doi.org/10.1038/s41467-020-19478-2

  14. Feb 2021
  15. Dec 2020
  16. Nov 2020
  17. Oct 2020
  18. Sep 2020
    1. Le Bert, N., Tan, A. T., Kunasegaran, K., Tham, C. Y. L., Hafezi, M., Chia, A., Chng, M. H. Y., Lin, M., Tan, N., Linster, M., Chia, W. N., Chen, M. I.-C., Wang, L.-F., Ooi, E. E., Kalimuddin, S., Tambyah, P. A., Low, J. G.-H., Tan, Y.-J., & Bertoletti, A. (2020). SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 584(7821), 457–462. https://doi.org/10.1038/s41586-020-2550-z

    1. Blokland, I. V. van, Lanting, P., Ori, A. P., Vonk, J. M., Warmerdam, R. C., Herkert, J. C., Boulogne, F., Claringbould, A., Lopera-Maya, E. A., Bartels, M., Hottenga, J.-J., Ganna, A., Karjalainen, J., Study, L. C.-19 cohort, Initiative, T. C.-19 H. G., Hayward, C., Fawns-Ritchie, C., Campbell, A., Porteous, D., … Franke, L. H. (2020). Using symptom-based case predictions to identify host genetic factors that contribute to COVID-19 susceptibility. MedRxiv, 2020.08.21.20177246. https://doi.org/10.1101/2020.08.21.20177246

  19. Aug 2020
    1. Yonker, L. M., Neilan, A. M., Bartsch, Y., Patel, A. B., Regan, J., Arya, P., Gootkind, E., Park, G., Hardcastle, M., John, A. S., Appleman, L., Chiu, M. L., Fialkowski, A., Flor, D. D. la, Lima, R., Bordt, E. A., Yockey, L. J., D’Avino, P., Fischinger, S., … Fasano, A. (2020). Pediatric SARS-CoV-2: Clinical Presentation, Infectivity, and Immune Responses. The Journal of Pediatrics, 0(0). https://doi.org/10.1016/j.jpeds.2020.08.037

    1. Chen, Y., Yang, W.-H., Huang, L.-M., Wang, Y.-C., Yang, C.-S., Liu, Y.-L., Hou, M.-H., Tsai, C.-L., Chou, Y.-Z., Huang, B.-Y., Hung, C.-F., Hung, Y.-L., Chen, J.-S., Chiang, Y.-P., Cho, D.-Y., Jeng, L.-B., Tsai, C.-H., & Hung, M.-C. (2020). Inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 main protease by tafenoquine in vitro. BioRxiv, 2020.08.14.250258. https://doi.org/10.1101/2020.08.14.250258

    1. Qu, J., Cai, Z., Liu, Y., Duan, X., Han, S., Zhu, Y., Jiang, Z., Zhang, Y., Zhuo, C., Liu, Y., Liu, Y., Liu, L., & Yang, L. (2020). Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer. BioRxiv, 2020.08.05.238998. https://doi.org/10.1101/2020.08.05.238998

    1. Havers, F. P., Reed, C., Lim, T., Montgomery, J. M., Klena, J. D., Hall, A. J., Fry, A. M., Cannon, D. L., Chiang, C.-F., Gibbons, A., Krapiunaya, I., Morales-Betoulle, M., Roguski, K., Rasheed, M. A. U., Freeman, B., Lester, S., Mills, L., Carroll, D. S., Owen, S. M., … Thornburg, N. J. (2020). Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020. JAMA Internal Medicine. https://doi.org/10.1001/jamainternmed.2020.4130

    1. Unterman, A., Sumida, T. S., Nouri, N., Yan, X., Zhao, A. Y., Gasque, V., Schupp, J. C., Asashima, H., Liu, Y., Cosme, C., Deng, W., Chen, M., Raredon, M. S. B., Hoehn, K., Wang, G., Wang, Z., Deiuliis, G., Ravindra, N. G., Li, N., … Cruz, C. S. D. (2020). Single-Cell Omics Reveals Dyssynchrony of the Innate and Adaptive Immune System in Progressive COVID-19. MedRxiv, 2020.07.16.20153437. https://doi.org/10.1101/2020.07.16.20153437

  20. Jul 2020
    1. Seow, J., Graham, C., Merrick, B., Acors, S., Steel, K. J. A., Hemmings, O., O’Bryne, A., Kouphou, N., Pickering, S., Galao, R., Betancor, G., Wilson, H. D., Signell, A. W., Winstone, H., Kerridge, C., Temperton, N., Snell, L., Bisnauthsing, K., Moore, A., … Doores, K. (2020). Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection. MedRxiv, 2020.07.09.20148429. https://doi.org/10.1101/2020.07.09.20148429

  21. Jun 2020
  22. May 2020
  23. Apr 2020
    1. ompared with patients without cardiac injury, patients with cardiac injury presented with more severe acute illness, manifested by abnormal laboratory and radiographic findings, such as higher levels of C-reactive protein, NT-proBNP, and creatinine levels; more multiple mottling and ground-glass opacity; and a greater proportion requiring noninvasive or invasive ventilation.
  24. Apr 2019
    1. Being a teenager is hard; there are constant social and emotional pressures that have just been introduced into the life of a middle or high schooler, which combines with puberty to create a ticking time bomb. By looking at the constant exposure to unreasonable expectations smartphones and social media create, we can see that smartphones are leading to an increased level of depression and anxiety in teenagers, an important issue because we need to find a safe way to use smartphones for the furture generations that are growing up with them. Social media is a large part of a majority of young adults life, whether it includes Instagram, Facebook, Snapchat, Twitter, or some combination of these platforms, most kids have some sort of presence online. Sites like Facebook and Instagram provide friends with a snapshot of an event that happened in your life, and people tend to share the positive events online, but this creates a dangerous impact on the person scrolling.​ When teens spend hours scrolling through excluisvely happy posts, it creates an unrealistic expectation for how real life should be. Without context, teenagers often feel as if their own life is not measuring up to all of their happy friends, but real-life will never measure up to the perfect ones expressed online. Picture Picture Furthermore, social media sites create a way for teenagers to seek external validation from likes and comments, but when the reactions online are not perceived as enough it dramatically alters a young adults self-confidence. This leads to the issue of cyberbullying. There are no restrictions on what you can say online, sometimes even annonimously, so often people choose to send negative messages online. Bullying is not a new concept, but with online bullying, there is little to no escape as a smartphone can be with a teenager everywhere, and wherever the smartphone goes the bullying follows.This makes cyberbullying a very effective way to decrease a youth's mental health, in fact, cyberbullying triples the risk of suicide in adolescents, which is already the third leading cause of death for this age group.