- Last 7 days
-
link.aps.org link.aps.org
-
Vazquez, A. (2020). Superspreaders and lockdown timing explain the power-law dynamics of COVID-19. Physical Review E, 102(4), 040302. https://doi.org/10.1103/PhysRevE.102.040302
-
-
link.aps.org link.aps.org
-
Ghavasieh, A., Nicolini, C., & De Domenico, M. (2020). Statistical physics of complex information dynamics. Physical Review E, 102(5), 052304. https://doi.org/10.1103/PhysRevE.102.052304
-
- Feb 2021
-
psyarxiv.com psyarxiv.com
-
Jacobson, N. C., Price, G., Song, M., Wortzman, Z., Nguyen, N. D., & Klein, R. J. (2020, October 27). Machine Learning Models Predicting Daily Affective Dynamics Via Personality and Psychopathology Traits. https://doi.org/10.31234/osf.io/2zgv6
-
- Jan 2021
-
psyarxiv.com psyarxiv.com
-
Dideriksen, C., Christiansen, M. H., Tylén, K., Dingemanse, M., & Fusaroli, R. (2020, October 12). Building common ground: Quantifying the interplay of mechanisms that promote understanding in conversations. https://doi.org/10.31234/osf.io/a5r74
-
-
-
Landry. N., Restrepo. J. G. (2020).The effect of heterogeneity on hypergraph contagion models. Physics and Society. Retrieved from: https://arxiv.org/abs/2006.15453
-
- Nov 2020
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
by attaching acceptor and donor to different domains of a target protein, the interdomain dynamics can be monitored
-
-
www.michellekimconsulting.com www.michellekimconsulting.com
-
What’s truly sad (but not shocking) about this whole situation is that this person, James Damore, a Havard educated, seemingly well-intentioned fella, had steadfast beliefs based on his complete misunderstanding of how “sexism” or “discrimination” actually work.And that’s the problem with the way we talk about diversity and inclusion in the business world.People are learning about unconscious bias WITHOUT the foundational knowledge of the cycle of socialization.People are learning about microaggressions WITHOUT the context of power dynamics.People are learning about “diversity programs” WITHOUT true understanding of concepts such as privilege or allyship.
While there are some people with good intents in the [[DEI]] space - it's starting to become apparent that there are some [[foundational concepts]] that we are missing, such as understanding how [[cycle of socialization]] impacts [[unconscious bias]]
or not understanding the role of [[power dynamics]] and [[microaggression]]
-
- Oct 2020
-
-
Maia, H. P., Ferreira, S. C., & Martins, M. L. (2020). Adaptive network approach for emergence of societal bubbles. ArXiv:2010.08635 [Nlin, Physics:Physics]. http://arxiv.org/abs/2010.08635
-
-
covid-19.iza.org covid-19.iza.org
-
COVID-19 and the Labor Market. (n.d.). IZA – Institute of Labor Economics. Retrieved October 10, 2020, from https://covid-19.iza.org/publications/dp13569/
-
-
-
Ghavasieh, A., Nicolini, C., & De Domenico, M. (2020). Statistical physics of complex information dynamics. ArXiv:2010.04014 [Cond-Mat, Physics:Physics]. http://arxiv.org/abs/2010.04014
-
-
link.aps.org link.aps.org
-
Gaisbauer, F., Olbrich, E., & Banisch, S. (2020). Dynamics of opinion expression. Physical Review E, 102(4), 042303. https://doi.org/10.1103/PhysRevE.102.042303
-
-
link.aps.org link.aps.org
-
Burda, Z., Kotwica, M., & Malarz, K. (2020). Ageing of complex networks. Physical Review E, 102(4), 042302. https://doi.org/10.1103/PhysRevE.102.042302
-
-
www.pnas.org www.pnas.org
-
Karatayev, Vadim A., Madhur Anand, and Chris T. Bauch. ‘Local Lockdowns Outperform Global Lockdown on the Far Side of the COVID-19 Epidemic Curve’. Proceedings of the National Academy of Sciences 117, no. 39 (29 September 2020): 24575–80. https://doi.org/10.1073/pnas.2014385117.
-
- Sep 2020
-
-
Chen, Q., & Porter, M. A. (2020). Epidemic Thresholds of Infectious Diseases on Tie-Decay Networks. ArXiv:2009.12932 [Physics]. http://arxiv.org/abs/2009.12932
-
-
arxiv.org arxiv.org
-
James, N., & Menzies, M. (2020). Human and financial cost of COVID-19. ArXiv:2009.11660 [Physics, q-Fin]. http://arxiv.org/abs/2009.11660
-
-
twitter.com twitter.com
-
Pausal Živference on Twitter. (n.d.). Twitter. Retrieved September 26, 2020, from https://twitter.com/PausalZ/status/1309208611265093632
-
-
science.sciencemag.org science.sciencemag.org
-
Saad-Roy, C. M., Wagner, C. E., Baker, R. E., Morris, S. E., Farrar, J., Graham, A. L., Levin, S. A., Mina, M. J., Metcalf, C. J. E., & Grenfell, B. T. (2020). Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science. https://doi.org/10.1126/science.abd7343
-
-
www.imperial.ac.uk www.imperial.ac.uk
-
COVID-19 reports. (n.d.). Imperial College London. Retrieved September 17, 2020, from http://www.imperial.ac.uk/medicine/departments/school-public-health/infectious-disease-epidemiology/mrc-global-infectious-disease-analysis/covid-19/covid-19-reports/
-
-
-
Giles, J. R., Erbach-Schoenberg, E. zu, Tatem, A. J., Gardner, L., Bjørnstad, O. N., Metcalf, C. J. E., & Wesolowski, A. (2020). The duration of travel impacts the spatial dynamics of infectious diseases. Proceedings of the National Academy of Sciences, 117(36), 22572–22579. https://doi.org/10.1073/pnas.1922663117
-
-
academic.oup.com academic.oup.com
-
Kahn, R., Kennedy-Shaffer, L., Grad, Y. H., Robins, J. M., & Lipsitch, M. (n.d.). Potential Biases Arising from Epidemic Dynamics in Observational Seroprotection Studies. American Journal of Epidemiology. https://doi.org/10.1093/aje/kwaa188
-
-
github.com github.com
-
aaronpeikert. (2020). Aaronpeikert/reproducible-research [TeX]. https://github.com/aaronpeikert/reproducible-research (Original work published 2019)
-
-
-
Miyoshi, S., Jusup, M., & Holme, P. (2020). Flexible imitation mechanisms suppress epidemics through better vaccination. ArXiv:2009.00443 [Physics, q-Bio]. http://arxiv.org/abs/2009.00443
-
-
arxiv.org arxiv.org
-
Carmona, H. A., de Noronha, A. W. T., Moreira, A. A., Araujo, N. A. M., & Andrade Jr, J. S. (2020). Cracking urban mobility. ArXiv:2008.13644 [Cond-Mat, Physics:Physics]. http://arxiv.org/abs/2008.13644
-
- Aug 2020
-
link.aps.org link.aps.org
-
Perez, I. A., Di Muro, M. A., La Rocca, C. E., & Braunstein, L. A. (2020). Disease spreading with social distancing: A prevention strategy in disordered multiplex networks. Physical Review E, 102(2), 022310. https://doi.org/10.1103/PhysRevE.102.022310
-
-
-
Waites, W., Cavaliere, M., Manheim, D., Panovska-Griffiths, J., & Danos, V. (2020). Scaling up epidemiological models with rule-based modelling. ArXiv:2006.12077 [q-Bio]. http://arxiv.org/abs/2006.12077
-
-
covid-19.iza.org covid-19.iza.org
-
Dynamics of Social Mobility during the COVID-19 Pandemic in Canada. COVID-19 and the Labor Market. (n.d.). IZA – Institute of Labor Economics. Retrieved August 4, 2020, from https://covid-19.iza.org/publications/dp13376/
-
-
-
Moya, C., Cruz y Celis Peniche, P. D., Kline, M. A., & Smaldino, P. (2020). Dynamics of Behavior Change in the COVID World [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/kxajh
-
-
www.medrxiv.org www.medrxiv.org
-
Starnini, M., Aleta, A., Tizzoni, M., & Moreno, Y. (2020). Impact of the accuracy of case-based surveillance data on the estimation of time-varying reproduction numbers. MedRxiv, 2020.06.26.20140871. https://doi.org/10.1101/2020.06.26.20140871
-
-
www.biorxiv.org www.biorxiv.org
-
Sun, F., Wang, X., Tan, S., Dan, Y., Lu, Y., Zhang, J., Xu, J., Tan, Z., Xiang, X., Zhou, Y., He, W., Wan, X., Zhang, W., Chen, Y., Tan, W., & Deng, G. (2020). SARS-CoV-2 Quasispecies provides insight into its genetic dynamics during infection. BioRxiv, 2020.08.20.258376. https://doi.org/10.1101/2020.08.20.258376
-
-
www.scientificamerican.com www.scientificamerican.com
-
Oreskes, N. (n.d.). Jeffrey Epstein’s Harvard Connections Show How Money Can Distort Research. Scientific American. https://doi.org/10.1038/scientificamerican0920-84
-
-
link.aps.org link.aps.org
-
Velásquez-Rojas, F., Ventura, P. C., Connaughton, C., Moreno, Y., Rodrigues, F. A., & Vazquez, F. (2020). Disease and information spreading at different speeds in multiplex networks. Physical Review E, 102(2), 022312. https://doi.org/10.1103/PhysRevE.102.022312
-
-
www.medrxiv.org www.medrxiv.org
-
Sun, K., Wang, W., Gao, L., Wang, Y., Luo, K., Ren, L., Zhan, Z., Chen, X., Zhao, S., Huang, Y., Sun, Q., Liu, Z., Litvinova, M., Vespignani, A., Ajelli, M., Viboud, C., & Yu, H. (2020). Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. MedRxiv, 2020.08.09.20171132. https://doi.org/10.1101/2020.08.09.20171132
-
-
www.medrxiv.org www.medrxiv.org
-
Cevik, M., Tate, M., Lloyd, O., Maraolo, A. E., Schafers, J., & Ho, A. (2020). SARS-CoV-2, SARS-CoV-1 and MERS-CoV viral load dynamics, duration of viral shedding and infectiousness: A living systematic review and meta-analysis. MedRxiv, 2020.07.25.20162107. https://doi.org/10.1101/2020.07.25.20162107
-
-
arxiv.org arxiv.org
-
Ran, Y., Deng, X., Wang, X., & Jia, T. (2020). A generalized linear threshold model for an improved description of the spreading dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(8), 083127. https://doi.org/10.1063/5.0011658
-
-
www.nber.org www.nber.org
-
Bisin, A., & Moro, A. (2020). Learning Epidemiology by Doing: The Empirical Implications of a Spatial-SIR Model with Behavioral Responses (Working Paper No. 27590; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27590
-
-
www.nber.org www.nber.org
-
Alon, T., Kim, M., Lagakos, D., & VanVuren, M. (2020). How Should Policy Responses to the COVID-19 Pandemic Differ in the Developing World? (Working Paper No. 27273; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27273
-
-
-
Krueger, D., Uhlig, H., & Xie, T. (2020). Macroeconomic Dynamics and Reallocation in an Epidemic (Working Paper No. 27047; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27047
-
-
-
Jinjarak, Y., Ahmed, R., Nair-Desai, S., Xin, W., & Aizenman, J. (2020). Accounting for Global COVID-19 Diffusion Patterns, January-April 2020 (Working Paper No. 27185; Working Paper Series). National Bureau of Economic Research. https://doi.org/10.3386/w27185
-
-
-
Radicchi, F., & Bianconi, G. (2020). Epidemic plateau in critical SIR dynamics with non-trivial initial conditions. ArXiv:2007.15034 [Cond-Mat, Physics:Physics, q-Bio]. http://arxiv.org/abs/2007.15034
-
- Jul 2020
-
www.medrxiv.org www.medrxiv.org
-
Golding, N., Russell, T. W., Abbott, S., Hellewell, J., Pearson, C. A. B., Zandvoort, K. van, Jarvis, C. I., Gibbs, H., Liu, Y., Eggo, R. M., Edmunds, J. W., & Kucharski, A. J. (2020). Reconstructing the global dynamics of under-ascertained COVID-19 cases and infections. MedRxiv, 2020.07.07.20148460. https://doi.org/10.1101/2020.07.07.20148460
-
-
-
Reher, D. S., Requena, M., de Santis, G., Esteve, A., Bacci, M. L., Padyab, M., & Sandström, G. (2020). The COVID-19 pandemic in an aging world [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/bfvxt
-
-
-
bahri, muhamad. (2020). The nexus impacts of the Covid-19: A qualitative perspective [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/yj8c9
-
-
-
Cazabet, R., Boudebza, S., & Rossetti, G. (2020). Evaluating Community Detection Algorithms for Progressively Evolving Graphs. ArXiv:2007.08635 [Physics]. http://arxiv.org/abs/2007.08635
-
-
www.nationalgeographic.com www.nationalgeographic.com
-
See how a sneeze can launch germs much farther than 6 feet. (2020, April 17). Science. https://www.nationalgeographic.com/science/2020/04/coronavirus-covid-sneeze-fluid-dynamics-in-photos/
-
-
-
Shafer, K., Milkie, M., & Scheibling, C. (2020). The Division of Labour Before & During the COVID-19 Pandemic in Canada [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/24j87
-
-
osf.io osf.io
-
Dou, Z., Stefanovski, D., Galligan, D., Lindem, M., Rozin, P., Chen, T., & Chao, A. M. (2020). The COVID-19 Pandemic Impacting Household Food Dynamics: A Cross-National Comparison of China and the U.S. [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/64jwy
-
-
osf.io osf.io
-
Schraff, D. (2020). Political trust during the Covid-19 pandemic: Rally around the flag or lockdown effects? [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/pu47c
-
-
link.aps.org link.aps.org
-
Sayama, H. (2020). Enhanced ability of information gathering may intensify disagreement among groups. Physical Review E, 102(1), 012303. https://doi.org/10.1103/PhysRevE.102.012303
-
-
-
Flushing “can propel viral infection 3ft into air.” (2020, June 16). BBC News. https://www.bbc.com/news/health-53047819
-
-
aip.scitation.org aip.scitation.org
-
Coronavirus cases may be linked to brain complications, study finds. (n.d.). Thetowntalk. Retrieved July 5, 2020, from https://www.usatoday.com/story/news/health/2020/06/27/coronavirus-cases-may-linked-brain-complications-study-finds/3270615001/
-
-
-
Althouse, B. M., Wenger, E. A., Miller, J. C., Scarpino, S. V., Allard, A., Hébert-Dufresne, L., & Hu, H. (2020). Stochasticity and heterogeneity in the transmission dynamics of SARS-CoV-2. ArXiv:2005.13689 [Physics, q-Bio]. http://arxiv.org/abs/2005.13689
-
- Jun 2020
-
-
Mohseni-Kabir, A., Pant, M., Towsley, D., Guha, S., & Swami, A. (2020). Percolation Thresholds for Robust Network Connectivity. ArXiv:2006.14496 [Cond-Mat, Physics:Physics]. http://arxiv.org/abs/2006.14496
-
-
doi.org doi.org
-
Willem, L., Hoang, T. V., Funk, S., Coletti, P., Beutels, P., & Hens, N. (2020). SOCRATES: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19 [Preprint]. Epidemiology. https://doi.org/10.1101/2020.03.03.20030627
-
-
psyarxiv.com psyarxiv.com
-
Schmidt, A., Brose, A., Kramer, A., Schmiedek, F., Witthöft, M., & Neubauer, A. (2020). Cyclical Across-Day Dynamics of Corona-Related Media Exposure and Worries in People’s Everyday Lives During the COVID-19 Pandemic. https://doi.org/10.31234/osf.io/rea57
-
-
twitter.com twitter.com
-
Mason Porter on Twitter: “I am here to help. https://t.co/JBQbTAPTQX” / Twitter. (n.d.). Twitter. Retrieved June 17, 2020, from https://twitter.com/masonporter/status/1273054551583555585
-
-
www.medscape.com www.medscape.com
-
Dean, N. E. (2020, June 15). Asymptomatic Transmission? We Just Don’t Know. Medscape. Retrieved June 16, 2020, from http://www.medscape.com/viewarticle/932246
-
-
-
Murphy, C., Laurence, E., & Allard, A. (2020). Deep learning of stochastic contagion dynamics on complex networks. ArXiv:2006.05410 [Cond-Mat, Physics:Physics, Stat]. http://arxiv.org/abs/2006.05410
-
-
threader.app threader.app
-
Balloux, F. (2020, May 22) A thread written by @BallouxFrancois. Threader. https://threader.app/thread/1263745877702737920
-
-
-
Khamsi, R. (2020, March 14). They Say Coronavirus Isn’t Airborne—But It’s Definitely Borne by Air. Wired. https://www.wired.com/story/they-say-coronavirus-isnt-airborne-but-its-definitely-borne-by-air/
-
-
fivethirtyeight.com fivethirtyeight.com
-
Koerth, M. (2020, March 31). Why It’s So Freaking Hard To Make A Good COVID-19 Model. FiveThirtyEight. https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make-a-good-covid-19-model/
-
-
-
Della Rossa, F., & DeLellis, P. (2020). Stochastic master stability function for noisy complex networks. Physical Review E, 101(5), 052211. https://doi.org/10.1103/PhysRevE.101.052211
-
-
-
Ortiz, E., García-Pérez, G., & Serrano, M. Á. (2020). Geometric detection of hierarchical backbones in real networks. ArXiv:2006.03207 [Physics]. http://arxiv.org/abs/2006.03207
-
-
jamanetwork.com jamanetwork.com
-
Cheng, H.-Y., Jian, S.-W., Liu, D.-P., Ng, T.-C., Huang, W.-T., Lin, H.-H., & for the Taiwan COVID-19 Outbreak Investigation Team. (2020). Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Internal Medicine. https://doi.org/10.1001/jamainternmed.2020.2020
-
-
arxiv.org arxiv.org
-
Yu, Y. W., Delvenne, J.-C., Yaliraki, S. N., & Barahona, M. (2020). Severability of mesoscale components and local time scales in dynamical networks. ArXiv:2006.02972 [Physics]. http://arxiv.org/abs/2006.02972
-
-
-
Velásquez-Rojas, F., da Silva, P. C. V., Connaughton, C., Moreno, Y., Rodrigues, F. A., & Vazquez, F. (2020). Disease and information spreading at different speeds in multiplex networks. ArXiv:2006.01965 [Physics]. http://arxiv.org/abs/2006.01965
-
-
www.ages.at www.ages.at
-
Epidemiologische Abklärung am Beispiel COVID-19. (n.d.). AGES - Österreichische Agentur für Gesundheit und Ernährungssicherheit. https://www.ages.at/service/service-presse/pressemeldungen/epidemiologische-abklaerung-am-beispiel-covid-19/
-
-
iaciac.github.io iaciac.github.io
-
Iacopini, I. (2020, June 3). Networks beyond pairwise interactions: Structure and dynamics. Iacopo Iacopini. https://iaciac.github.io/post/beyond/
-
-
science.sciencemag.org science.sciencemag.org
-
Zhang, J., Litvinova, M., Liang, Y., Wang, Y., Wang, W., Zhao, S., Wu, Q., Merler, S., Viboud, C., Vespignani, A., Ajelli, M., & Yu, H. (2020). Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science, eabb8001. https://doi.org/10.1126/science.abb8001
-
-
-
Eroglu, D. (2020). Revealing Dynamics, Communities, and Criticality from Data. Physical Review X, 10(2). https://doi.org/10.1103/PhysRevX.10.021047
-
- May 2020
-
psyarxiv.com psyarxiv.com
-
Golino, H., Christensen, A. P., Moulder, R. G., Kim, S., & Boker, S. M. (2020, April 14). Modeling latent topics in social media using Dynamic Exploratory Graph Analysis: The case of the right-wing and left-wing trolls in the 2016 US elections. https://doi.org/10.31234/osf.io/tfs7c
-
-
www.thelancet.com www.thelancet.com
-
Rybniker, J., & Fätkenheuer, G. (2020). Importance of precise data on SARS-CoV-2 transmission dynamics control. The Lancet Infectious Diseases, S1473309920303595. https://doi.org/10.1016/S1473-3099(20)30359-5
-
-
www.thelancet.com www.thelancet.com
-
Liu, Y., Eggo, R. M., & Kucharski, A. J. (2020). Secondary attack rate and superspreading events for SARS-CoV-2. The Lancet, 395(10227), e47. https://doi.org/10.1016/S0140-6736(20)30462-1
-
-
wellcomeopenresearch.org wellcomeopenresearch.org
-
Endo, A., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott, S., Kucharski, A. J., & Funk, S. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Research, 5, 67. https://doi.org/10.12688/wellcomeopenres.15842.1
-
-
science.sciencemag.org science.sciencemag.org
-
Cobey, S. (2020). Modeling infectious disease dynamics. Science, 368(6492), 713–714. https://doi.org/10.1126/science.abb5659
-
-
www.pnas.org www.pnas.org
-
Stadnytskyi, V., Bax, C. E., Bax, A., & Anfinrud, P. (2020). The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proceedings of the National Academy of Sciences, 202006874. https://doi.org/10.1073/pnas.2006874117
-
-
-
Pichler, Anton, Marco Pangallo, R. Maria del Rio-Chanona, François Lafond, and J. Doyne Farmer. “Production Networks and Epidemic Spreading: How to Restart the UK Economy?” ArXiv:2005.10585 [Physics, q-Fin], May 21, 2020. http://arxiv.org/abs/2005.10585.
Tags
- social distincing
- production network
- lang:en
- is:article
- demand
- epidemiology
- economic growth
- transmission rate
- reopening industry
- COVID-19
- United Kingdom
- production
- industry
- GDP
- economics
- input-output constraints
- epidemic spreading
- unemployment
- inventory dynamics
- supply
- work from home
- consumption
Annotators
URL
-
-
-
Johnson, N.F., Velásquez, N., Restrepo, N.J. et al. The online competition between pro- and anti-vaccination views. Nature (2020). https://doi.org/10.1038/s41586-020-2281-1
-
-
-
Masuda, N., & Holme, P. (2020). Small inter-event times govern epidemic spreading on networks. Physical Review Research, 2(2), 023163. https://doi.org/10.1103/PhysRevResearch.2.023163
-
-
www.annualreviews.org www.annualreviews.org
-
Edelmann, A., Wolff, T., Montagne, D., & Bail, C. A. (2020). Computational Social Science and Sociology. Annual Review of Sociology, 46(1), annurev-soc-121919-054621. https://doi.org/10.1146/annurev-soc-121919-054621
-
-
arxiv.org arxiv.org
-
Tuninetti, M., Aleta, A., Paolotti, D., Moreno, Y., & Starnini, M. (2020). Prediction of scientific collaborations through multiplex interaction networks. ArXiv:2005.04432 [Physics]. http://arxiv.org/abs/2005.04432
-
-
sfi-edu.s3.amazonaws.com sfi-edu.s3.amazonaws.com
-
The Santa Fe Institute - SFI Transmission PDF
-
-
-
Buitrago-Garcia, D. C., Egli-Gany, D., Counotte, M. J., Hossmann, S., Imeri, H., Salanti, G., & Low, N. (2020). The role of asymptomatic SARS-CoV-2 infections: Rapid living systematic review and meta-analysis [Preprint]. Epidemiology. https://doi.org/10.1101/2020.04.25.20079103
-
-
www.nejm.org www.nejm.org
-
Arons, M. M., Hatfield, K. M., Reddy, S. C., Kimball, A., James, A., Jacobs, J. R., Taylor, J., Spicer, K., Bardossy, A. C., Oakley, L. P., Tanwar, S., Dyal, J. W., Harney, J., Chisty, Z., Bell, J. M., Methner, M., Paul, P., Carlson, C. M., McLaughlin, H. P., … Jernigan, J. A. (2020). Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. New England Journal of Medicine, NEJMoa2008457. https://doi.org/10.1056/NEJMoa2008457
-
-
www.cdc.gov www.cdc.gov
-
Ghinai, I., Woods, S., Ritger, K. A., McPherson, T. D., Black, S. R., Sparrow, L., Fricchione, M. J., Kerins, J. L., Pacilli, M., Ruestow, P. S., Arwady, M. A., Beavers, S. F., Payne, D. C., Kirking, H. L., & Layden, J. E. (2020). Community Transmission of SARS-CoV-2 at Two Family Gatherings—Chicago, Illinois, February–March 2020. MMWR. Morbidity and Mortality Weekly Report, 69(15), 446–450. https://doi.org/10.15585/mmwr.mm6915e1
-
-
www.thelancet.com www.thelancet.com
-
Yong, S. E. F., Anderson, D. E., Wei, W. E., Pang, J., Chia, W. N., Tan, C. W., Teoh, Y. L., Rajendram, P., Toh, M. P. H. S., Poh, C., Koh, V. T. J., Lum, J., Suhaimi, N.-A. M., Chia, P. Y., Chen, M. I.-C., Vasoo, S., Ong, B., Leo, Y. S., Wang, L., & Lee, V. J. M. (2020). Connecting clusters of COVID-19: An epidemiological and serological investigation. The Lancet Infectious Diseases, S1473309920302735. https://doi.org/10.1016/S1473-3099(20)30273-5
-
-
-
Zhu, Y., Bloxham, C. J., Hulme, K. D., Sinclair, J. E., Tong, Z. W. M., Steele, L. E., Noye, E. C., Lu, J., Chew, K. Y., Pickering, J., Gilks, C., Bowen, A. C., & Short, K. R. (2020). Children are unlikely to have been the primary source of household SARS-CoV-2 infections [Preprint]. Epidemiology. https://doi.org/10.1101/2020.03.26.20044826
-
-
academic.oup.com academic.oup.com
-
Danis, K., Epaulard, O., Bénet, T., Gaymard, A., Campoy, S., Bothelo-Nevers, E., Bouscambert-Duchamp, M., Spaccaferri, G., Ader, F., Mailles, A., Boudalaa, Z., Tolsma, V., Berra, J., Vaux, S., Forestier, E., Landelle, C., Fougere, E., Thabuis, A., Berthelot, P., … Bag, B. C. (2020). Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, 2020. Clinical Infectious Diseases, ciaa424. https://doi.org/10.1093/cid/ciaa424
-
-
-
Jing, Q.-L., Liu, M.-J., Yuan, J., Zhang, Z.-B., Zhang, A.-R., Dean, N. E., Luo, L., Ma, M.-M., Longini, I., Kenah, E., Lu, Y., Ma, Y., Jalali, N., Fang, L.-Q., Yang, Z.-C., & Yang, Y. (2020). Household Secondary Attack Rate of COVID-19 and Associated Determinants [Preprint]. Epidemiology. https://doi.org/10.1101/2020.04.11.20056010
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Bi, Q., Wu, Y., Mei, S., Ye, C., Zou, X., Zhang, Z., Liu, X., Wei, L., Truelove, S. A., Zhang, T., Gao, W., Cheng, C., Tang, X., Wu, X., Wu, Y., Sun, B., Huang, S., Sun, Y., Zhang, J., … Feng, T. (2020). Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: A retrospective cohort study. The Lancet Infectious Diseases, S1473309920302875. https://doi.org/10.1016/S1473-3099(20)30287-5
-