3 Matching Annotations
  1. Sep 2020
  2. Aug 2016
  3. Mar 2016
  4. arxiv.org arxiv.org
    1. Letβ:V×V→Wbe a symmetric bilinear form whereVand (W,h,i) arereal vector spaces of finite dimensionnandp, respectively, equipped withinner products.Thes-nullityνsofβfor any integer 1≤s≤pis defined byνs= maxUs⊂Wdim{x∈V:βUs(x, y) = 0 for ally∈V}.HereβUs=πUs◦βwhereUsis anys-dimensional subspace ofWandπUs:W→Usdenotes the orthogonal projection.LetR:V×V×V×V→Rbe the multilinear map with the algebraicproperties of the curvature tensor defined byR(x, y, z, w) =hβ(x, w), β(y, z)i − hβ(x, z), β(y, w)i.Lemma 4.Assume that2p < nandνs< n−2sfor all1≤s≤p. LetV=V1⊕V2be an orthogonal splitting such thatR(x, y, z, u) =R(x, y, u, v) =R(x, u, v, w) = 0for anyx, y, z∈V1andu, v, w∈V2. Then,S=span{β(x, y) :x∈V1andy∈V2}= 0.