58 Matching Annotations
  1. Mar 2023
    1. Vmax has a low-level natural resistance to kanamycin but is more susceptible to other antibiotics. When selecting on Kan plates, Vmax with KanR will simply grow faster than Vmax without KanR. Larger colonies=KanR. Other antibiotics select against Vmax but must have a dosage change compared to E. coli.
  2. Aug 2022
  3. Apr 2022
  4. Mar 2022
  5. Feb 2022
  6. Jan 2022
    1. Kuchipudi, S. V., Surendran-Nair, M., Ruden, R. M., Yon, M., Nissly, R. H., Vandegrift, K. J., Nelli, R. K., Li, L., Jayarao, B. M., Maranas, C. D., Levine, N., Willgert, K., Conlan, A. J. K., Olsen, R. J., Davis, J. J., Musser, J. M., Hudson, P. J., & Kapur, V. (2022). Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proceedings of the National Academy of Sciences, 119(6). https://doi.org/10.1073/pnas.2121644119

    1. Different people have different responses to technology, even on the same platform. Scholars call this phenomenon “differential susceptibility” to media effects among a subgroup of people, and it holds equally for the differential well-being and mental health impacts of social media on young adults.

      Differential susceptibility is a technical term used to describe the ways that different people and different groups have different responses to technology even on the same platform. Similar versions of it can be applied to other areas outside of technology, which is but one target. Other areas include differential well-being and mental health.


      It could also be applied to drug addiction as some are more susceptible to becoming addicted to nicotine than others. Which parts of this might be nature, nurture, culture, etc.

    1. Liu, Y., Ebinger, J. E., Mostafa, R., Budde, P., Gajewski, J., Walker, B., Joung, S., Wu, M., Bräutigam, M., Hesping, F., Rupieper, E., Schubert, A.-S., Zucht, H.-D., Braun, J., Melmed, G. Y., Sobhani, K., Arditi, M., Van Eyk, J. E., Cheng, S., & Fert-Bober, J. (2021). Paradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 infection. Journal of Translational Medicine, 19(1), 524. https://doi.org/10.1186/s12967-021-03184-8

  7. Nov 2021
  8. Sep 2021
  9. Aug 2021
  10. Jul 2021
  11. Jun 2021
  12. May 2021
  13. Mar 2021
  14. Feb 2021
  15. Jan 2021
  16. Dec 2020
  17. Oct 2020
  18. Sep 2020
    1. Le Bert, N., Tan, A. T., Kunasegaran, K., Tham, C. Y. L., Hafezi, M., Chia, A., Chng, M. H. Y., Lin, M., Tan, N., Linster, M., Chia, W. N., Chen, M. I.-C., Wang, L.-F., Ooi, E. E., Kalimuddin, S., Tambyah, P. A., Low, J. G.-H., Tan, Y.-J., & Bertoletti, A. (2020). SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 584(7821), 457–462. https://doi.org/10.1038/s41586-020-2550-z

    1. Blokland, I. V. van, Lanting, P., Ori, A. P., Vonk, J. M., Warmerdam, R. C., Herkert, J. C., Boulogne, F., Claringbould, A., Lopera-Maya, E. A., Bartels, M., Hottenga, J.-J., Ganna, A., Karjalainen, J., Study, L. C.-19 cohort, Initiative, T. C.-19 H. G., Hayward, C., Fawns-Ritchie, C., Campbell, A., Porteous, D., … Franke, L. H. (2020). Using symptom-based case predictions to identify host genetic factors that contribute to COVID-19 susceptibility. MedRxiv, 2020.08.21.20177246. https://doi.org/10.1101/2020.08.21.20177246

  19. Aug 2020
    1. Martino, C., Kellman, B. P., Sandoval, D. R., Clausen, T. M., Marotz, C. A., Song, S. J., Wandro, S., Zaramela, L. S., Benítez, R. A. S., Zhu, Q., Armingol, E., Vázquez-Baeza, Y., McDonald, D., Sorrentino, J. T., Taylor, B., Belda-Ferre, P., Liang, C., Zhang, Y., Schifanella, L., … Knight, R. (2020). Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. BioRxiv, 2020.08.17.238444. https://doi.org/10.1101/2020.08.17.238444

  20. Jul 2020
  21. Jun 2020
  22. May 2020
  23. Oct 2019
  24. Aug 2016