53 Matching Annotations
  1. Nov 2024
    1. Cholina a obszary mózgu:Poziom choliny wpływa na obszary mózgu związane z inteligencją niewerbalną, umiejętnościami wzrokowo-przestrzennymi oraz pamięcią roboczą. Dzieci otrzymujące suplementację choliny wykazują mniej objawów ADHD i lepsze wyniki poznawcze, co wskazuje na rolę choliny w funkcjonowaniu układu cholinergicznego w ADHD.

      Rola choliny w objawach ADHD

    1. Funkcje biologiczne obsługiwane przez PFC są bardzo wrażliwe na zmiany neurochemiczne, zwłaszcza na katecholaminy, noradrenalinę (NE) i dopaminę (DA) [9]. NE i DA odgrywają kluczową rolę w utrzymaniu nastroju, pobudzenia i zachowania. Stany niskiego pobudzenia są związane z niskim wyładowaniem komórek NE [13, 14], podczas gdy sytuacje wymagające czujności wymagają umiarkowanego tonicznego wyładowania i zwiększonego fazowego wyładowania komórek zawierających NE i DA [14–18]. W stresujących okolicznościach występują wysokie poziomy katecholamin w PFC [16, 19] w wyniku wysokiego, tonicznego wyładowania neuronów NE [14, 15] i neuronów DA [20]. Badania na zwierzętach wykazały również, że neurony PFC mają zdolność utrzymywania modalności specyficznej informacji „na linii” i wykorzystania tej informacji do kierowania zachowaniem tych zwierząt w braku wskazówek środowiskowych [21]. Inny ważny aspekt efektu związanego z NE na aspekty poznawcze i behawioralne człowieka jest związany z enzymem, który syntetyzuje NE – beta hydroksylazą dopaminową. Niższa aktywność tego enzymu jest związana ze słabymi funkcjami wykonawczymi [22], słabą uwagą [23] i impulsywnością [24].

      Związek NE z pobudzeniem i funkcjami uwagowymi

  2. Oct 2024
    1. Fizjologiczny stan pobudzenia wpływa na aktywność poznawczą poprzez łączność miejsca sinawego (LC) (22) i szlaki noradrenalinowe, koordynowane przez centralną sieć autonomiczną (CAN) (23). CAN składa się z połączonych obszarów między korą mózgową, w tym korą wyspową i przyśrodkową korą przedczołową, oraz strukturami podkorowymi, takimi jak ciało migdałowate, podwzgórze, istota szara okołowodociągowa, regiony przymostowe mostu, jądro pasma samotnego i rdzeń przedłużony brzuszno-boczny (24). Główną funkcją CAN jest utrzymanie homeostazy w obecnym i przewidywanym kontekście behawioralnym (25) i jest również zintegrowana z procesami afektywnymi, motywacyjnymi i poznawczymi odzwierciedlonymi w funkcjonowaniu mózgu (24), które obejmują regulację pobudzenia (26).

      Regulacja pobudzenia przez szlaki LC

    2. Jedną z najbardziej obecnie akceptowanych hipotez dotyczących jej podstawowej fizjopatologii jest deficyt w mechanizmach sygnalizacji dopaminowej, związany z czynnikami genetycznymi kodującymi receptor dopaminy DRD4 i transporter dopaminy DAT1, wpływający na korę przedczołową, jądra podstawy, wzgórze i obwody ciała migdałowatego, które uczestniczą w EF (7). Te konstrukty neuronalne są bezpośrednio istotne dla teorii dysfunkcji wykonawczej, wprowadzonej przez Barkleya (2), która sugeruje redukcję kontroli wykonawczej związaną z nieprawidłowościami w funkcjonowaniu sieci czołowo-ciemieniowej i czołowo-prążkowiowej (8). Badania anatomiczne i funkcjonalne znalazły dowody na różnice strukturalne i zmienioną aktywację kory przedczołowej, obwodów czołowo-ciemieniowych i czołowo-prążkowiowych u dzieci z ADHD (9), wspierając tę hipotezę, dodatkowo do dysfunkcji neurotransmiterów dopaminergicznych i noradrenergicznych (10), co jest krytyczne dla operacyjnej efektywności tych obwodów

      Dowody patofizjologiczne tłumaczące słabe EF w ADHD

  3. Nov 2023
    1. Sygnalizacja fazowa ACh w tym obwodzie jest prawdopodobnie przyczynowym mediatorem wykrywania sygnałów, ponieważ wykazano, że optogenetyczna stymulacja NbM podczas zadania wykrywania wskazówek poprawiła wydajność podczas prób z sygnalizacją i zwiększyła wskaźnik fałszywych alarmów podczas prób bez wskazówek, co sugeruje, że milisekundowa sygnalizacja cholinergiczna w skali czasu pochodząca z NbM jest bezpośrednio zaangażowana w kodowanie reprezentacji wskazówki w korze przedczołowej u myszy [9].

      Sygnalizacja fozowa jako poszukiwanie wskazówek

    2. Nie można jednak wykluczyć możliwości, że zadania uwagi wzrokowej wymagają zarówno nienaruszonej tonicznej, jak i fazowej sygnalizacji ACh w mPFC i możliwe jest, że wykonanie tych zadań wymaga czujnego stanu uwagi regulowanego przez sygnalizację toniczną, która, jak wykazano, pośredniczy w zmianach uwagi, a także sygnalizacji fazowej w celu kodowania określonych epok behawioralnych i służy jako wskaźnik prezentacji wskazówek. Taki mechanizm zostałby pominięty w metodach mikrodializy. Tak więc nie można wykluczyć możliwości, że wykonywanie zadań zależy od sygnalizacji fazowej, podczas gdy zaangażowanie behawioralne zależy od tonicznej sygnalizacji otoczenia, która jest stale obecna w korze mózgowej, a rozgraniczenie tych dwóch jest potencjalnym obszarem przyszłych badań.

      Działanie sygnalizacji tonicznej i fazowej w ACTH

    3. Układ cholinergiczny przodomózgowia jest ważnym mediatorem pobudzenia, uwagi, pamięci i innych procesów poznawczych. Sygnalizacja cholinergiczna jest zwykle podzielona na dwa wzorce, sygnalizację toniczną, która obejmuje trwałe zmiany tonu acetylocholiny otoczenia (ACh) w ciągu sekund do minut, oraz sygnalizację fazową, która obejmuje szybko zmieniające się, przestrzennie specyficzne uwalnianie ACh w milisekundowej skali czasowej. Istnieją dowody sugerujące unikalne role funkcjonalne dla obu typów sygnalizacji w korze przedczołowej: uważa się, że fazowe uwalnianie ACh jest niezbędne do procesów uwagi, a także wykrywania sygnałów, podczas gdy uważa się, że sygnalizacja toniczna jest zaangażowana w regulację globalnych stanów pobudzenia i wykazano, że wzrasta wraz z ogólnym zapotrzebowaniem poznawczym. Różnice między tymi dwoma typami sygnalizacji mogą wynikać z właściwości elektrofizjologicznych typów komórek cholinergicznych, odrębnego wykorzystania i / lub ekspresji receptorów muskarynowych i nikotynowych i / lub zróżnicowanej hydrolizy ACh przez acetylocholinoesterazy. Niniejszy przegląd podsumuje obecne poglądy na temat funkcjonalnej roli każdego rodzaju sygnalizacji, podczas gdy zbadany zostanie wkład receptorów ACh, hydrolizy i podstawowej anatomii przodomózgowia. Dodatkowo zbadane zostaną implikacje tych czynników w sygnalizacji ACh pod kątem dysfunkcji obwodu cholinergicznego, która występuje w chorobach neurodegeneracyjnych.

      Działanie sygnalizacji tonicznej i fazowej w ACTH

    1. Co najważniejsze, badania optogenetyczne (Gritton i in., 2016 ) wykazali, że cholinergicznestany przejściowezachowanie powodujące: optogenetyczne hamowaniestany przejściowepodczas prób sygnałowych zmniejszała liczbę trafień, ale nie wpływała na prawidłowe odrzucenia, podobnie jak skutki zmian cholinergicznych ( Mcgaughy i in., 1996 ). Ponadto optogenetyczne wytwarzanie cholinergicznestany przejściowepodczas sygnalizowanych prób, które w związku z tym zbiegły się z okazjonalną nieobecnością wygenerowaną endogennie lub zastąpiły jąstany przejściowe, zwiększone współczynniki wykrywalności (lub trafień). Co jeszcze bardziej uderzające, optogenetycznie generowany cholinergicznystany przejściowepodczas prób niewskazanych (lub ślepych), podczas których są endogennestany przejściowenie są przestrzegane, drastycznie wzrósł odsetek fałszywych alarmów, czyli fałszywych twierdzeń o obecności sygnału w próbach niesygnałowych, z ϳ20% do prawie 50% (Gritton i in., 2016 ).Następnie wykazaliśmy, że siła behawioralna stanów przejściowych cholinergicznych wynika z generowania oscylacji o wysokiej częstotliwości w korze mózgowej, które utrzymują się poza okresem sygnalizacji i wymagają muskarynowego receptora acetylocholiny M1( mAChR ) stymulacja ( Howe i in., 2017 ). Zatem szybko, fazowo iprecyzyjnie zsynchronizowana presynaptyczna sygnalizacja cholinergiczna może powodować stosunkowo długotrwałe efekty postsynaptyczne( Hangya i in., 2015 ; Martinez-Rubio i in., 2018 ; Urban-Ciecko i in., 2018 ) (patrz także Studium przypadku 2 poniżej).

      Dynamika procesu sygnalizacji cholinergicznej, współczynniki wykrywalnościw zadanich go/no go. Duże znaczenie mają sygnały o dużej częstotliwości!!!!!

    2. Jak szczegółowo omówiono wcześniej ( Sarter i Kim, 2015 ; Sarter i in., 2016b ), czasy narastania cholinergicznegostany przejściowe, zazwyczaj ponad 0,2–0,5 s po bodźcu lub zdarzeniu wywołującym przejściowe skutki, są ściśle skorelowane z zachowaniem. Natomiast stosunkowo opóźniony o kilka sekund moment szczytowych amplitud prądów cholinowych odzwierciedla konkurencyjne procesy komórkowe (produkcja i hydroliza ACh w porównaniu z klirensem choliny), a zatem jest mało prawdopodobne, aby wskazywało na szczytowe uwalnianie ACh. Biorąc pod uwagę ograniczenia związane z pomiarami, prawdopodobnie nie można twierdzić, że dowody uzyskane metodami elektrochemicznymi ujawniają „prawdziwą” czasową rozdzielczość sygnalizacji synaptycznej. Istotna jest jednak obecność substancji cholinergicznych drugiej zasadystany przejściowe, związane z konkretnymi zachowaniami i próbami zadaniowymi, w przeciwieństwie do nichdo minutowych zmian związanych ze stosunkowo trwałymi stanami „pobudzenia”, wskazuje, że cholinergiczna przejściowa sygnalizacja, przynajmniej w korze mózgowej, jest wystarczająca do wspierania operacji poznawczych.

      Charakterystyka procesu sygnalizacji cholinergicznej od percepcji do bodźca

    1. mózgu.Istnieją przekonujące dowody sugerujące, że równowaga między integracją a segregacją jest już częściowo przesiąknięta strukturą szkieletu połączeń istoty białej kory mózgowej( Park i Friston, 2013 ; Sporns, 2013 ). W

      Balans między pobudzeniem i hamowanie

    2. Zaobserwowaliśmy znaczącą dodatnią korelację między aktywnością fazową po LC, krajobrazem energetycznym ELC i siłą łączności między LC i nbM, która została zlokalizowana w oknie 2 TR po wybuchu fazowym (ryc. 4 B ) . Odkrycie to sugeruje, że bezpośrednio po wybuchach fazowych LC jest mało prawdopodobne, aby osoba z silnymi powiązaniami między LC i nbM miała duże odchylenia w dynamice stanu mózgu.

      Po wybuchu sygnalizacji NE, mało prawdopodbne jest by mózg przesedł w stan dynamiczny, elastyczny

    3. Zaobserwowaliśmy zwiększoną integrację po szczytach LC w stosunku do aktywności nbM w kilku obszarach kory, w tym w korze czołowo-ciemieniowej i korze wzrokowej ( ryc. 3 D). Aby dokładniej zbadać ten wynik, zbadaliśmy korelację między całkowitą ważoną łącznością linii strumienia a indywidualnymi korelacjami krzyżowymi między impulsami fazowymi LC ( ryc. 3 ; środek) lub nbM ( ryc. 3 ; po prawej) a sieciątopologia. Co ciekawe, zaobserwowaliśmy znaczące ujemne korelacje między pikami post- nbM a silnie segregowanym stanem sieci ( ryc. 3 C) w rozproszonych regionach kory ( ryc. 3 F).

      Wzrost sygnalizacji NE oznacza segregację i skupienie, a ACTH poszukiwanie nowości i eksplorację środowiska

    4. W ten sposób udało nam się ustalić, czy podstawowa siła wBiała materiausprawnienia między LC i nbM odnoszą się do zmieniających się w czasie rekonfiguracji na poziomie siecitopologiapo wybuchach aktywności neuromodulacyjnej. WagaBiała materiapołączenia między LC i nbM były dodatnio skorelowane ze stopniem integracji na poziomie sieci po relacji LC do impulsów fazowych nbM ( ryc. 3 ; po lewej).Wyniki te sugerują, że silna łączność między LC anbM umożliwia sieci przejście w kierunku podwyższonego poziomu integracji po szczytach LC w stosunku do aktywności nbM

      Dynamika sieci ACTH i NE. Noradrenalina wywiera integracyjny efekt na sieci mózgu.

    5. Co ciekawe, neurony cholinergiczne w podstawnej części przodomózgowia otrzymują rozległe, pobudzające (tj. za pośrednictwem Gq) projekcje synaptyczne z LC , ale nie wysyłają projekcji z powrotem ( Hajszán i Zaborszky, 2002 ; Smiley i in., 1999 ; Zaborszky i in., 1993 ). , co sugeruje zależną relację topologiczną, której implikacje funkcjonalne pozostają słabo poznane.

      Neurony cholinergiczne dostają projekcje z NE, ale nie wysyłają ich spowrotem, czyli NE będzie układem hamującym?

    6. Oprócz zmiany siecitopologia, noradrenergiczny iukłady cholinergicznemoże również wpływać na stan mózgudynamikaz upływem czasu, w sposób dobrze ujęty w koncepcji krajobrazu atraktorów teorii systemów dynamicznych ( John i in., 2022 ). W skrócie, podejście to tworzy niskowymiarową topologiczną reprezentację zmian w sieciach neuronowych na poziomie systemówdynamikagdzie prawdopodobieństwo wystąpienia stanu mózgu (natychmiastowa aktywność neuronowa) można powiązać ze statystyczną „energią” wymaganą do osiągnięcia tego stanu – na przykład powszechny (rzadki) stan mózgu byłby powiązany z niską (wysoką) energią . Podobnie jak kontur wije się po lądzie, indywidualne trajektorie w przestrzeni stanów reprezentują unikalne, indywidualne stany poznawcze.Korzystając z tych ram,odkryliśmy, że w następstwie rozbłysków fazowych LC krajobraz atraktorów uległ spłaszczeniu(w odniesieniu do odpoczynkudynamika) –mózg wszedł w stan, który obniżył wcześniej przejścia wysokoenergetyczne( Ryc. 1 C) (Munn i in., 2021 ). Natomiast rozbłyski fazowe nbM pogłębiły lokalne studnie krajobrazu atraktorów ( ryc. 1 F), co sugeruje, że mózg był zamknięty w określonym stanie (ryc. 1 F).Munn i in., 2021 ). Pomimo tych powiązań, jak dotąd niewiele badań wykazało związek między tymi efektami a różnicami indywidualnymiBiała materiasiła połączeń między ośrodkami noradrenergicznymi i cholinergicznymi oraz ich rola w zarządzaniu dynamicznym mózgiemtopologia.

      Dynamika sieci NE i ACTH

    7. Noradrenergiczne iukłady cholinergicznemają także różne wzorce projekcji w mózgu. Podczas gdy noradrenergiczna LC wysyła rozległe projekcje wokół całej kory (Kim i in., 2016 ; Samuels i Szabadi, 2008 ) ( ryc. 1 A), cholinergiczny nbM projektuje w znacznie bardziej ukierunkowany sposób do różnych miejsc wokół kory mózgowej (Kim i in., 2016 ;Zaborszky i in., 2015 ) ( ryc. 1 D).W oparciu o te cechyniedawno zaproponowaliśmy, że rekrutacja układu noradrenergicznego przesunie sieci mózgu w stan zwiększonej integracji sieci( Shine, Aburn i in., 2018 ; Shine, van den Brink i in., 2018),podczas gdy układ cholinergiczny jest powiązany ze względną segregacją topologii sieci(Zaborszky i in., 2015 ). W poprzedniej pracy zaobserwowaliśmy dowody na te efekty sieciowe w stanie spoczynku 7TfMRIdane ( Munn i in., 2021 ).

      Układ noradenergiczny przesuwa system w kierunku integracji, skupienia na bodźcu/zadaniu, natomiast system cholinergiczny w stronę elastyczności, eksploracji.

    8. Chociaż w mózgu istnieje wiele różnych układów neuromodulacyjnych, noradrenergiczny iukłady cholinergicznesą głównymi kandydatami do wywierania wpływu na neurony na szeroką skalędynamikai przesunięcie siecitopologia(Shine, 2019 ) ( ryc. 1 B, E). Główne wystające korowo węzły tych układów – noradrenergicznemiejsce sinawe( LC ) ( Carter i in., 2010 ) i cholinergicznejądro podstawne Meynerta( nbM ) ( Lee i Dan, 2012 ) – są zdolne do zmiany aktywności oscylacyjnej w mózgu: zazwyczaj poprzez zmniejszenie synchronicznej aktywności mózgu o niskiej częstotliwości, przy jednoczesnym zwiększeniu aktywności mózgu o wysokiej częstotliwości ( Castro-Alamancos i Gulati, 2014 ; Lin i in. in., 2015 ; Mena-Segovia i in., 2008 ).

      Stymulacja o wysokiej częstotliwości (!!!!!) jako funkcja układu ACTH i NE.

    9. Aby przetestować tę hipotezę,oszacowaliśmy siłę połączeń strukturalnych między kluczowymi węzłami systemów pobudzenia noradrenergicznego i cholinergicznego(tmiejsce sinawe[ LC ] ijądro podstawne Meynerta[ nbM ], odpowiednio). Następnie zapytaliśmy, czy wytrzymałość strukturalnego LC iWzajemna łączność nbM była związana z indywidualnymi różnicami w powstających, dynamicznych sygnaturachintegracji funkcjonalnej mierzonej na podstawie danych fMRI stanu spoczynku, takich jak topografia sieci i atraktorów. Zaobserwowaliśmy znaczącą pozytywną zależność między siłą połączeń istoty białej między LC i nbM a stopniem integracji na poziomie sieci po szczytach sygnału BOLD w LC w stosunku do aktywności nbM . Ponadto osoby z gęstszymi liniami istoty białej łączącymi ośrodki neuromodulacyjne również wykazały zwiększoną zdolność do przechodzenia do nowych stanów mózgu. Wyniki te sugerująże osoby z silniejszymi połączeniami strukturalnymi pomiędzy noradrenergią iukłady cholinergicznemają większą zdolność do pośredniczenia w elastycznej siecidynamikawymagane do wspierania złożonych, adaptacyjnych zachowań. Ponadto,nasze wyniki podkreślają podstawowe cechy statyczne ośrodków neuromodulacyjnych, które mogą nakładać pewne ograniczenia na dynamiczne cechy mózgu

      Występuje wzajemna łączność między układem cholinergicznym i noradenergicznym i pośredniczy ona w przełączaniu się stanów mózgu w związku z nowymi zadaniam

    10. Aby przetestować tę hipotezę,oszacowaliśmy siłę połączeń strukturalnych między kluczowymi węzłami systemów pobudzenia noradrenergicznego i cholinergicznego(tmiejsce sinawe[ LC ] ijądro podstawne Meynerta[ nbM ], odpowiednio). Następnie zapytaliśmy, czy wytrzymałość strukturalnego LC iWzajemna łączność nbM była związana z indywidualnymi różnicami w powstających, dynamicznych sygnaturachintegracji funkcjonalnej mierzonej na podstawie danych fMRI stanu spoczynku, takich jak topografia sieci i atraktorów. Zaobserwowaliśmy znaczącą pozytywną zależność między siłą połączeń istoty białej między LC i nbM a stopniem integracji na poziomie sieci po szczytach sygnału BOLD w LC w stosunku do aktywności nbM . Ponadto osoby z gęstszymi liniami istoty białej łączącymi ośrodki neuromodulacyjne również wykazały zwiększoną zdolność do przechodzenia do nowych stanów mózgu. Wyniki te sugerująże osoby z silniejszymi połączeniami strukturalnymi pomiędzy noradrenergią iukłady cholinergicznemają większą zdolność do pośredniczenia w elastycznej siecidynamikawymagane do wspierania złożonych, adaptacyjnych zachowań. Ponadto,nasze wyniki podkreślają podstawowe cechy statyczne ośrodków neuromodulacyjnych, które mogą nakładać pewne ograniczenia na dynamiczne cechy mózgu.

      Występuje wzajemna łączność między układem cholinergicznym i noradenergicznym i pośredniczy ona w przełączaniu się stanów mózgu w związku z nowymi zadaniami.

    1. Cholinergiczne stany przejściowe były związane z wykrywaniem sygnałów, a nie z dostarczaniem lub pobieraniem nagrody [12,13]. Te stany nieustalone występują tylko wtedy, gdy występują duże opóźnienia czasowe między wskazówkami lub gdy wskazówka jest poprzedzona rzeczywistą lub postrzeganą próbą bez sygnału. Odkrycia te sugerują, że cholinergiczne stany przejściowe pośredniczą w wykrywaniu sygnałów, gdy takie wykrywanie wiąże się z przesunięciem zadania i aktywacją zestawu odpowiedzi związanych z cue; tj. przejście od monitorowania do zachowania kierowanego przez wskazówki ("shift-hits")

      Kirowanie uwagą monitorowanie i przechodzenie do działąnia

    2. Zapisy potencjałów polowych za pomocą elektrod używanych do rejestracji stanów nieustalonych sugerują, że mechanizm leżący u podstaw tej cholinergicznej indukowanej przejściowymi aktywacji odpowiedniego zestawu zadań obejmuje wywołane sygnałem oscylacje o wysokiej częstotliwości w korze przedczołowej i stymulację postsynaptycznych receptorów muskarynowych M1 [17]

      Kirowanie uwagą monitorowanie i przechodzenie do działąnia

    1. Jedną ze wskazówek jest związek między skutecznością MPH a odmianami genów DRD3 i SLC6A2, zarówno w populacjach ASD, jak i ADHD.

      Zależność midzy MPH i dopaminą

    2. Dowody na udział CHRNA4 w ADHD są silne, ponieważ wiele badań wykazało związek ADHD z genem (Todd i in., 2003; Lee i in., 2008; Wallis i in., 2009; Faraone i Mick, 2010; Mastronardi i in., 2016).Dysfunkcja układu cholinergicznego może leżeć u podstaw dysfunkcji SaN w ASD i ADHD.Dysfunkcja w wykrywaniu istotności może wyjaśniać niezliczone objawy tych zaburzeń, a normalizacja tego systemu może być realnym celem interwencji farmakologicznych

      Sieć istotności ważna w ADHD i ASD

    3. Współczesne badania sugerują, że modulacja DArgic wpływa na uczenie się nagrody i zachowania ukierunkowane na cel oraz odgrywa rolę w kierowaniu uwagi na istotne bodźce w środowisku (Horvitz, 2000; Koob i Wołkow, 2010; Kroemer i in., 2014; Peters i in., 2016)
    4. Jedną z możliwości jest to, że wzajemne powiązania między LC a komputerami móżdżku odgrywają zasadniczą rolę w tym względzie, wskazując na możliwą skuteczność leczenia ukierunkowanego na NE u większości osób z ASD i być może u mniejszości populacji ADHD

      Rola móżdżku i Noradrenaliny

    5. Kora wyspowa otrzymuje dane wejściowe zarówno z neuronów LC-NE, jak i neuronów przedczołowych NE (Robertson i in., 2013).Korzystając z metod śledzenia wirusowo-genetycznego, Schwarz i in. (2015) byli w stanie wyjaśnić projekcje aferentne do LC.Projekcje aferentne pochodzą z wielu miejsc, w tym z obszarów kory mózgowej i ciała migdałowatego.
    1. Podawanie produktu Biperiden wiązało się ze specyficznym upośledzeniem uczenia się sekwencji motorycznych w grupie zdrowych uczestnikówZnormalizowane wyniki uczenia się były niższe po otrzymaniu biperydenu niż po placeboW przypadku RT zaobserwowano dwukierunkową interakcję między tym, czy podawano biperyden, czy placebo, a tym, czy sekwencja była wyuczona, czy losowaBrak wpływu biperydenu na wydajność podczas sekwencji losowych sugeruje specyficzną modulację uczenia się sekwencji, a nie ogólnego wykonywania motorycznego i jest zgodny z wcześniejszymi badaniami wykrywającymi brak wpływu biperynu na ogólną sprawność motoryczną (Borghans i in., 2020; Guthrie i in., 2000), podczas gdyZaobserwowano interakcję między stanem a typem sekwencji w wpływie modulacji cholinergicznej na moc oscylacyjną. Rozważamy tę interakcję w kontekście znanych oscylacyjnych korelatów uczenia sekwencji i modulacji cholinergicznejRóżnice mocy oscylacyjnej między uczeniem się sekwencji motorycznej a reakcjami na sekwencję losową są zgodne z wcześniejszymi badaniamiRytm alfa jest zaangażowany w bramkowanie czuciowe (Klimesch i in., 2006), a niższa moc alfa podczas mapowania bodziec-odpowiedź dla reakcji wzrokowo-ruchowych na losową sekwencję wiąże się z większą uwagą wzrokowąOscylacje beta przyczyniają się do uczenia się sekwencji motorycznych poprzez integrację bodźców wzrokowych i somatosensorycznych (Hardwick i in., 2013; Hazeltine i inni, 1997; Voegtle i in., 2023)Hamowanie ACh przez biperyden skutkowało zwiększeniem mocy theta, alfa i beta w porównaniu z placebo
    1. Stwierdzono, że poziom ekspresji α7 nAChR jest niezwykle wysoki w ludzkim siatkowatym jądrze wzgórza (RTN), z [125I]-α-bungarotoksyną ([125I]-αBTX) wykrytym w całym jądrze.W RTN szczura wykryto bardzo niskie poziomy mRNA α7 nAChR i wiązania [125I]-αBTX.RTN zawiera dużą populację neuronów GABA-ergicznych i wiadomo, że odgrywa ważną rolę w bramkowaniu uwagi i czuciowym (Mitrofanis i Guillery 1993).

      Bramkowanie uwagi i czuciowe

    2. Dane są sugestywne: podwyższony poziom BDNF w podstawie przodomózgowia osób z autyzmem może odzwierciedlać jego kompensacyjną rolę w utrzymaniu jąder cholinergicznych i ich projekcji; a zmiany w specyficznym wiązaniu muskarynowych receptorów M1 i 3H-epibatydyny oraz poziomy ekspresji podjednostek α4 i β2 nAChR u osób z autyzmem mogą być zgodne z zakłóceniem transmisji cholinergicznej, ale na te zmiany mogą wpływać współistniejące ID i napady padaczkowe (Perry i in. 2001).

      ACTH, a padaczka

    3. Populacja komórek ziarnistych nie-GABA-dodatnich została aktywowana w zakręcie zębatym przez myszy intruzów; Ekspresja CaMKII kolokalizowana z immunofluorescencyjnym barwieniem Arc w komórkach ziarnistych aktywowanych przez myszy intruzówZarówno nikotyna, jak i GTS-21, agonista selektywny α7 nAChR, tłumiły agresję myszy rezydentnych α7 HET (Lewis i in. 2018).Obustronna stereotaktyczna infuzja hipokampa wektora wirusa 2 związanego z adenowirusem (AAV2) zawierającego/eksprymującego małe RNA spinki do włosów ukierunkowane na α7 nAChR zablokowała antyagresywne, "sereniczne" działanie nikotyny i GTS-21 u samców myszy Balb / c typu dzikiego, które są bardziej agresywne w tym paradygmacie niż samce myszy C57BL / 6; ten ostatni szczep myszy C57BL/6 posłużył jako tło genetyczne dla oryginalnej delecji Chrna (Lewis i in. 2018).Dane sugerują, że zakręt zębaty jest węzłem aktywowanym w obwodzie agresji, a α7 nAChR moduluje agresję w paradygmacie "rezydent-intruz", który może być terapeutycznie ukierunkowany w celu zmniejszenia agresji (Lewis i in. 2018).Dane te potwierdzają badania nad interwencjami agonistów α7 nAChRselektywnych w leczeniu wtórnych objawów agresji/napadów złości/drażliwości u dzieci z ASD

      Związek z agresji u ludzi z ACTH.

      To też wykrywanie zmian? Reaguj albo nie?

    4. Mysi model ASD z PTZ wyraźnie pokazuje, że heteropentameryczny podtyp α4β2 nAChR może być zaangażowany w zwiększoną pobudliwość centralną, co znajduje odzwierciedlenie w obniżeniu progu klonicznej aktywności napadowej i upośledzonej towarzyskości.Agresja wykazywana przez samce myszy z heterozygotycznymi delecjami Chrna (tj. myszami α7 HET), a tym samym haploniewystarczającą ekspresją α7 nAChR została zwiększona, w porównaniu z ich rodzeństwem z miotu typu dzikiego, w paradygmacie behawioralnym "rezydent-intruz" (Lewis i in. 2018).W tym paradygmacie umieszczenie myszy intruza w klatce domowej myszy rezydenta wywołuje u myszy rezydenta powtarzające się napady agresji.Wysoka gęstość α7 nAChR ulegała ekspresji w hipokampie myszy typu dzikiego, aw szczególności warstwa komórek ziarnistych zakrętu zębatego została "aktywowana" u agresywnych myszy rezydentnych; Aktywację oceniano na podstawie ekspresji Arc, natychmiastowego wczesnego genu, w komórkach ziarnistych (Lewis i in. 2018).
    5. Dane sugerują, że zmniejszona ekspresja α7 nAChR w hipokampie była odpowiedzialna za deficyt pamięci społecznej, zwiększoną pobudliwość neuronów piramidowych hipokampa i rozregulowanie nastroju wykazywane przez myszy Chat-Mecp2À/y, które zostały "uratowane" przez wstrzyknięcie wektora wirusowego zawierającego transkrypt Mecp do BF lub wstrzyknięcie PNU-282987, selektywnego agonisty α7 nAChR, lub samą nikotynę do regionu CA1 hipokampa (Zhang i in. 2016).

      ACTH, a poznanie społeczne

    6. Sugeruje się, że aktywacja podtypu α7 nAChR powoduje obniżenie syntezy cytokin prozapalnych i zapobieganie uszkodzeniom tkanek (Tracey 2002; De Rosa i in. 2009) reprezentujący "cholinergiczny szlak przeciwzapalny" do modulacji układu odpornościowego.

      ACTH, a układ odpornościowy

    7. W PFC eksperymenty badające rolę tych receptorów w pamięci roboczej wykazały kluczową rolę w aktywności związanej z uwagą i odporności na dystraktory (Sun i in. 2017).Jonoforetyczna aktywacja tych receptorów w dlPFC z selektywnym agonistą nie zwiększyła znacząco odpalania związanego z opóźnieniem, ale może zapobiec znacznemu zmniejszeniu aktywności opóźniającej obserwowanej podczas prezentacji rozpraszających bodźców w okresie opóźnienia.Blokada tych receptorów nie wpływa znacząco na aktywność komórek opóźniających, ale znacząco zmniejsza aktywność neuronów wykazujących podwyższoną trwałą aktywność przez cały czas trwania każdej próby, określanej jako komórki "fiksacyjne" (Sun i in. 2017).

      Rola ACTH w pamięci roboczej i odporności na dystraktory

    8. Cholinergiczna regulacja stanu pobudzeniaCoraz więcej dowodów wskazuje na kluczową rolę projekcji ACh w świadomym czuwaniu, gdzie badania na kotach wykazały wysoką szybkość wypalania w jądrach pnia mózgu ACh podczas świadomego czuwania i snu paradoksalnego lub REM, ale bardzo niską szybkość wypalania podczas snu głębokiego/wolnofalowego (Kayama i in. 1992; Steriade i in. 1990).Badania na szczurach wykazały ważną rolę ACh w rytmie dobowym i początku snu, gdzie wstrzyknięcie nikotynowego antagonisty α-bungarotoksyny do jądra nadchiazmatycznego blokowało efekty ekspozycji na światło w szyszynce, co szybko odwraca wysoki poziom N-acetylotransferazy serotoninowej (Zatz i Brownstein 1981).Badania te są poparte badaniami na pacjentach z padaczką skroniową, u których obrazowanie i elektroencefalografia wewnątrzczaszkowa wykazały kluczową rolę cholinergicznego jądra nakrywkowego szypułkowatej śródmózgowia w utracie przytomności podczas napadu padaczkowego (Andrews i wsp. 2019; Englot i in. 2010).

      Rola ACTH w śnie i czuwaniu

    9. Jądra cholinergiczne i projekcjeACh jest syntetyzowany i uwalniany w ośmiu pierwotnych jądrach w mózgu naczelnych.Cztery z tych jąder znajdują się w pniu mózgu i śródmózgowiu i rzutują na wzgórze, jądra śródmózgowia wytwarzające dopaminę, międzyszypułkowe jądra pnia mózgu i górne colliculi.Dwa z tych jąder cholinergicznych pnia mózgu i śródmózgowia, jądro szypułkowe (PPT) i jądro nakrywki bocznej (LDT), odgrywają kluczową rolę w obwodach pobudzenia i snu, z gęstymi projekcjami do siatkowatej formacji pnia mózgu i jąder przekaźnikowych wzgórza (Steriade i in. 1990; Steriade i wsp. 1988; Yeomans 2012).Pozostałe cztery jądra cholinergiczne obejmują podstawę przodomózgowia (BF) i rzutują na opuszkę węchową, hipokamp, ciało migdałowate i korę.Cztery odrębne jądra składające się na BF rozróżnia się na podstawie wzorów projekcyjnych.Jądro podstawne Meynerta (CH4) zawiera >90% neuronów cholinergicznych i unerwia cały płaszcz korowy i ciało migdałowate.

      Projekcje ACTH do struktur podkorowych i krowych

    10. Nowe dowody z badań neurofarmakologicznych i behawioralnych wskazują, że leki, które wzmacniają przejściowe stany cholinergiczne poprzez toniczną neuromodulację synaps cholinergicznych (np. agoniści α4β2 nAChR) mogą poprawić kontrolę uwagi.Selektywni dla M1 agoniści mAChR mogą wywierać korzystny wpływ na wykrywanie sygnałów poprzez zwiększenie wydajności fazowego ACh do synchronizacji aktywności sieci przedczołowych.Leki, które wpływają na mechanizmy molekularne w celu zwiększenia zdolności synaps cholinergicznych do podtrzymywania fazowej sygnalizacji cholinergicznej, mogą zwiększać wydajność uwagi.Badania nad hormonalną regulacją przekaźnictwa cholinergicznego dopiero zaczynają odpowiadać na konkretne pytania dotyczące różnic płci w układzie cholinergiczno-uwagi.Badania te przyniosą ogromne korzyści w rozwoju leków procholinergicznych do specyficznego dla płci leczenia objawów poznawczych zaburzeń psychicznych
    11. Istotne dowody wskazują, że podawanie agonistów nikotyny i nAChR, tych, które aktywują α4β2 nAChR, wywiera korzystny wpływ na uwagę i związane z nią zdolności poznawcze (Allison i Shoaib 2013; Howe i in. 2010; Newhouse i in. 2004; Sarter i in. 2009a; Stolerman i in. 2000; Wilens i Decker 2007).Α4β2 nAChR zlokalizowane na wypustkach glutaminergicznych wzgórza w przyśrodkowym PFC są ważnym składnikiem obwodów uwagi, a stymulacja tych receptorów zwiększa aktywność glutaminergiczną (Lambe i in. 2003; LucasMeunier i in. 2009).Badania neurofarmakologiczne z wykorzystaniem amperometrii in vivo wykazały, że stymulacja α4β2 nAChR powoduje przejściowy wzrost uwalniania glutaminianu i ACh w przyśrodkowym PFC oraz że szczytowo-korowe zakończenia glutaminergiczne są niezbędne do generowania cholinergicznych stanów przejściowych (Parikh i in. 2008, 2010).Ogólnoustrojowe podanie pełnego agonisty α4β2 nAChR S38232 poprawiło wydajność uwagi po prezentacji dystraktora u szczurów (Howe i wsp. 2010).Kontrola uwagi wymaga neuromodulacji cholinergicznej i możliwe jest, że aktywacja α4β2 nAChR ułatwia fazową sygnalizację cholinergiczną poprzez toniczną modulację interakcji glutaminergiczno-cholinergicznych (Hasselmo i Sarter 2011).Doniesiono, że agoniści α7 nAChR zwiększają przedczołową transmisję glutaminergiczną, nie wytwarzają szybszych cholinergicznych stanów przejściowych, jak obserwowano po stymulacji α4β2 nAChR (Bortz i in. 2013; Parikh i in. 2010).Możliwe, że α7 nAChR rekrutują inne modulatory wstępujące, takie jak monoaminy, które wpływają na dynamikę sygnalizacji cholinergicznej BF w inny sposób, powodując bardziej złożony wpływ na uwagę.Konsekwentnie wykazano, że ogólnoustrojowe podawanie antagonisty mAChR, skopolaminy, powoduje upośledzenie uwagi, co wskazuje, że mAChR może być ważne dla cholinergicznego pośrednictwa uwagi (Callahan i wsp. 1993; Chudasama i in. 2004; Young i in. 2013).
    12. Podsumowując, te interesujące odkrycia wskazują na ważną rolę funkcji CHT w regulacji presynaptycznej neuromodulacji cholinergicznej i w podtrzymywaniu fazowej sygnalizacji cholinergicznej w sytuacjach, które nakładają zwiększone wymagania na neurony cholinergiczne BF, takich jak odgórna kontrola uwagi.
    13. Ponieważ synapsy cholinergiczne w dużym stopniu polegają na cholinie do produkcji ACh, zdolność do importu choliny do presynaptycznych przedziałów cholinergicznych za pośrednictwem CHT dyktuje szybkość syntezy i uwalniania ACh (Ferguson i Blakely 2004; Sarter i Parikh 2005).
    14. Proponuje się, aby toniczna aktywność cholinergiczna odzwierciedlała odgórnie neuromodulacyjną rolę neuronów cholinergicznych BF w regulowaniu obwodów wykrywania kory mózgowej w celu utrzymania wydajności zadań w warunkach rozproszenia uwagi (Sarter i Lustig 2019).Dysocjacja między fazowymi i neuromodulacyjnymi składnikami sygnalizacji cholinergicznej wydaje się być wyraźna pod względem operacji poznawczych; Te dwa tryby mogą wchodzić w interakcje, aby wspierać ogólną wydajność uwagi.Pogląd ten jest wspierany przez poprzednie badanie amperometrii in vivo, które wykazało dodatnią korelację między wielkością wolniejszego wzrostu aktywności cholinergicznej związanej z sesją a amplitudami fazowych sygnałów cholinergicznych u zwierząt wykonujących zadanie odpowiedzi cued-appetitive (Parikh i in. 2007).Biorąc pod uwagę ograniczenia nałożone przez AChE na sygnalizację cholinergiczną, dyskutowany jest pogląd, że neuromodulująca/toniczna aktywność cholinergiczna jest napędzana przez "transmisję objętościową" (Sarter i in. 2009b).Nie wiadomo jeszcze, czy neuromodulacja cholinergiczna jest konsekwencją długotrwałej aktywności neuronów cholinergicznych BF, lokalnej regulacji presynaptycznej w mikroukładach korowych, czy też innej populacji neuronów cholinergicznych BF, które wytwarzają wyładowania toniczne (Sarter i Kim 2015; Sarter i in. 2014; Unal i in. 2012)

      Monitorowanie i wykrywanie sygnałów przez ACTH

    15. W innym badaniu, w którym połączono optogenetykę z elektrochemią, przetestowano hipotezę, że cholinergiczne stany przejściowe mają zdolność do wywoływania wykrywania sygnałów nawet przy braku sygnałów (Gritton i in. 2016).Fotostymulacja neuronów cholinergicznych BF z ekspresją rodopsyny kanałowej i przedczołowych zakończeń cholinergicznych wygenerowała optogenetycznie wywołane cholinergiczne stany przejściowe i zwiększone wskaźniki trafień u myszy wykonujących SAT.Tłumienie fazowej aktywności cholinergicznej przez fotostymulujące neurony cholinergiczne BF z ekspresją halorodopsyny skutkowało zmniejszeniem trafień bez wpływu na prawidłowe odrzucenia.Odkrycia te wskazują, że fazowa sygnalizacja cholinergiczna w PFC jest związana wyłącznie z wykrywaniem sygnałów, ale jest przyczynowym mediatorem uderzeń przesunięcia.Pogląd ten jest zgodny z badaniami nad zmianami chorobowymi, które pokazują, że szkodliwe skutki korowej deaferentacji cholinergicznej były powiązane ze skutecznością wykrywania

      Wykrywanie wskazówek i reakcja na nowości przy ACTH

    16. Początek przejściowego cholinergicznego był silnie skorelowany z początkiem zmiany zachowania.Przedczołowe stany przejściowe cholinergiczne były związane z wykrytymi wskazówkami i nie występowały z innymi zdarzeniami zadaniowymi, takimi jak dostarczanie nagrody i pobieranie nagrody.W badaniach z pominięciem wskazówek, w których zwierzę zorientowało się na wskazówkę, ale nie zainicjowało żadnej reakcji, nie obserwowano sygnałów cholinergicznych.

      Monitorowanie środowiska poprzez wolno płynące szlaki ACTH

    17. Chociaż prowadzone są znaczne prace farmakologiczne i elektrofizjologiczne z wykorzystaniem egzogennych agonistów, kluczowe pytanie brzmi, jakie receptory, na których komórki są rekrutowane przez endogenną acetylocholinęAby odpowiedzieć na to pytanie, autorzy zwrócili się do badań wykorzystujących optogenetykę do stymulacji cholinergicznych zakończeń aksonów w korze czuciowej i przedczołowej.W tej części przeanalizowano funkcjonalną aktywację receptorów cholinergicznych w typach neuronalnych w warstwach korowych w korze przedczołowej i czuciowej, ze szczególnym uwzględnieniem badań z wykorzystaniem narzędzi optogenetycznych do uwalniania endogennej acetylocholiny i pomiaru odpowiedzi postsynaptycznych.Powierzchowne warstwy kory wydają się być pobudzane przez endogenną acetylocholinę przez nikotynowe i pobudzające receptory muskarynowe, te ostatnie nie zostały tak szeroko zbadane (Hedrick i Waters 2015; Kimura i in. 2014).W warstwie 2/3 występują różnice w działaniu acetylocholiny między korą czuciową i przedczołową: bezpośrednie pobudzające działanie acetylocholiny nie jest powszechnie obserwowane w neuronach piramidowych L2/3 w korze przedczołowej, podczas gdy neurony te wykazują bezpośrednie EPSC za pośrednictwem receptora nikotynowego w pierwotnej korze wzrokowej i słuchowej (Poorthuis i in. 2013; Hedrick i Waters, 2015; Nelson i Mooney 2016; Verhoog i in. 2016).W warstwie 4 kory somatosensorycznej neurony pobudzające, w tym piramidowe i kolczaste komórki gwiaździste, wykazują hamowanie muskarynowe M2 / M4 zarówno egzogennie, jak i endogennie uwalnianej acetylocholiny (Eggermann i Feldmeyer 2009; Dasgupta i in. 2018).W neuronach piramidowych warstwy 5 zarówno kory czuciowej, jak i przedczołowej, acetylocholina może powodować przejściowe hamowanie z powodu otwarcia kanałów SK przez uwalnianie wapnia z wewnętrznych zapasów za pośrednictwem IP3, a następnie pobudzenie, w którym pośredniczą receptory muskarynowe M1 / M3 (Gulledge i Stuart 2005; Gulledge i in. 2009; Dasari i in. 2017; Proulx i in. 2014b).Endogenne uwalnianie acetylocholiny aktywuje neurony warstwy 6 w szybkim tempie za pośrednictwem receptorów nikotynowych α4β2 (Hay i in. 2016; Verhoog i in. 2016; Sparks i wsp. 2017) z pobudzającymi receptorami muskarynowymi przyspieszającymi potencjały czynnościowe i wydłużającymi czas trwania pobudzenia (Sparks i wsp. 2017).Wydaje się, że silniejsza ekspresja podjednostki receptora nikotynowego α5 w warstwie przedczołowej 6 (ryc. 3) przyczynia się do szybkiej skali czasowej cholinergicznej aktywacji tych neuronów, uważanej za krytyczną dla uwagi.Ostatnie prace pokazują, że neurony z nokautem α5 wykazują wolniejszą aktywację cholinergiczną do optogenetycznego uwalniania acetylocholiny (Venkatesan i Lambe 2020)

      Pobudzenie i hamowanie w korze przedczołowej przez ACTH

    18. Wnioski oparte na danych z mikrodializy były zgodne z konwencjonalną charakterystyką ACh jako wolno działającego neuromodulatora całej kory mózgowej, optymalizującego przetwarzanie danych wejściowych poprzez regulację stanów pobudzenia.
    19. Wnioski i kierunki przyszłych badańSygnalizacja cholinergiczna w korze czuciowej i przedczołowej jest niezbędna dla procesów poznawczych.Pomimo pewnych różnic w unerwieniu cholinergicznym i celach receptorowych, istnieją duże podobieństwa w modulacji kory czuciowej i przedczołowej przez endogenną acetylocholinę.Acetylocholina poprawia percepcję zmysłową i uwagę, jest niezbędna dla wyuczonych skojarzeń i ułatwia wykrywanie sygnałów poprzez rekrutację kory czuciowej i przedczołowej.Zrozumienie przez autorów specyficznych dla warstwy i regionu odpowiedzi cholinergicznych oraz ich konsekwencji behawioralnych wynika z rozwoju technik, takich jak obrazowanie wapnia in vivo i optogenetyczne manipulacje endogenną acetylocholiną.

      ACTH moduluje wykrywanie nowości

    20. Optogenetyczna aktywacja neuronów cholinergicznych podstawy przodomózgowia u myszy desynchronizowała lokalne sygnały potencjału pola w korze wzrokowej, tłumiąc moc przy niższych częstotliwościach (1–5 Hz) i zwiększając moc przy wyższych częstotliwościach (60–100 Hz).Towarzyszyła temu zwiększona dyskryminacja wzrokowa, podczas gdy optogenetyczne hamowanie neuronów cholinergicznych tłumiło dyskryminację wzrokową (Pinto i in. 2013).

      ACTH a wzrok

    21. Odkrycie to może potwierdzać zaangażowanie nikotynowej podjednostki α5 ulegającej ekspresji w warstwie przedczołowej 6 w szybkiej odpowiedzi cholinergicznej prowadzącej do wykrywania sygnałów.
    22. Rola acetylocholiny w kodowaniu i pobieraniuAcetylocholina jest uwalniana podczas ekspozycji na nowość, a wyższe poziomy acetylocholiny zwiększają szeroki wachlarz procesów zorientowanych na nowość, takich jak eksploracja i plastyczność synaptyczna, omówione w (Easton i in. 2012a; Hasselmo 2012; Lever i in. 2006; Poulter i in. 2018).Podanie skopolaminy do kory okołęchowej upośledza pamięć rozpoznawania obiektów, gdy jest podawana podczas kodowania, ale nie podczas pobierania (Warburton i in. 2003).To upośledzenie kodowania, ale nie pobierania, jest częstym wynikiem podawania skopolaminy w innych domenach, takich jak pamięć przestrzenna zależna od hipokampa (Deiana i in. 2011; Easton i in. 2012a) i znajduje się obok obserwacji roli acetylocholiny w interferencji (Winters i in. 2007).Kiedy bodźce zakłócające są prezentowane w obecności podania skopolaminy, następuje zaskakująca poprawa pamięci rozpoznawania obiektów (Winters i in. 2006).Efekt ten przypisuje się udziałowi acetylocholiny w kodowaniu wszystkich informacji o obiekcie.Jeśli skopolamina jest podawana w momencie prezentacji tych bodźców zakłócających, nie będą one dobrze zakodowane i będą miały mniejszy wpływ zakłócający na bodźce eksperymentalne, co oznacza, że te bodźce eksperymentalne zostaną lepiej zapamiętane.Takie modele wyjaśniają, że w każdym zadaniu, w którym może wystąpić proaktywna interferencja, acetylocholina jest ważna, aby pomóc w kodowaniu nowych informacji pomimo zakłóceń.

      Acetylocholiny w kodowaniu nowych informacji, pomimo zakłóceń - Nowe czy nie nowe?

    23. Ten wzorzec podkreśla znaczenie kontroli czasowej w korze przedczołowej i jest zgodny z wyższą ekspresją AChE w warstwie przedczołowej.

      Czasowe wydzielanie ACTH, w korze przedczołowej

    24. Taka synapsa ma zakończenie presynaptyczne zawierające enzymy acetylotransferazy choliny (ChAT) do syntezy acetylocholiny z choliny i pęcherzykowych transporterów acetylocholiny (VAChT), które transportują acetylocholinę do pęcherzyków w celu uwolnienia. Kiedy neuron cholinergiczny wyzwala potencjał czynnościowy, acetylocholina jest uwalniana i dyfunduje przez szczelinę synaptyczną, aby działać na postsynaptyczne receptory nikotynowe i / lub muskarynowe.Presynaptyczne autohamujące receptory M2/M4 ograniczają późniejsze uwalnianie acetylocholiny z korowych zakończeń cholinergicznych (Levey i wsp. 1991; Zhang i in. 2002; Venkatesan i Lambe 2020).Acetylocholina jest szybko rozkładana do choliny przez enzymy acetylocholinoesterazy (AChE) zlokalizowane zarówno na końcu presynaptycznym, jak i na neuronie postsynaptycznym.Ten produkt rozpadu jest transportowany z powrotem do terminala presynaptycznego przez transportery choliny.

      Jak ACTH jest uwalniane w konkretnych miejscach kory.

    1. Potwierdzenie wcześniejszych ustaleń Niniejsza metaanaliza uzasadnia spójny wzorzec wielkoskalowych zaburzeń sieci mózgowych w ADHD, w którym FPN odgrywa kluczową rolę w regulacji funkcji innych sieci (ryc. 3). Nasze odkrycie niezrównoważonej łączności między FPN a regionami DMN i VAN (określanymi również jako "SN") wspiera dobrze znany model dysfunkcji potrójnej sieci patofizjologii związanej z wieloma zaburzeniami psychicznymi (Menon, 2011), w tym ADHD, i może leżeć u podstaw objawów nieuwagi, które charakteryzują ADHD

      Powierdzenie, że ACTH bierze udział w kierunkowaniu i utrzymywaniu uwagi. Czy ta sieć uwzględnia także struktury podkorowe?